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The notion of long range dependence is discussed from a variety of
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1

Introduction

Long range dependence and long memory are synonymous notions, that
are arguably very important. This importance can be judged, for exam-
ple, by the very large number of publications having one of these notions
in the title, in areas such as finance [84], econometrics [115], internet
modeling [70], hydrology [109], climate studies [142], linguistics [3] or
DNA sequencing [71]. These publications address a great variety of
issues: detection of long memory in the data, statistical estimation of
parameters of long range dependence, limit theorems under long range
dependence, simulation of long memory processes, and many others.
Surprisingly, very few of these publications address what long range
dependence is. When definitions are given, they vary from author to
author (the econometric survey [58] mentions 11 different definitions).
The notion of long range dependence can also be applied to differ-
ent aspects of a given stochastic process [63]. More diverse definitions
become possible if, instead of looking at the “usual” stationary pro-
cesses, one studies stationary point processes, as in [37], or random
fields, as in [4].

It is the purpose of this survey to discuss what is meant (often
implicitly) by long range dependence, clarify why this notion is

1
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2 Introduction

important, mention different point of views on the topic and, hope-
fully, remove some of the mystery that surrounds it.

The notion of long range dependence has, clearly, something to do
with memory in a stochastic process. Memory is, by definition, some-
thing that lasts. It is the requirement that the memory has to be “long”
that is special. Why is it important that in one model the memory is “a
bit longer” than in another model? The first serious argument that this
can be important is in a series of papers of B. Mandelbrot and his co-
authors, e.g. [89] and [93]. It is also due to the influence of these early
papers and subsequent publications of Mandelbrot (especially [90]) that
long range dependence has also become associated with scaling and
fractal behavior. We survey some of the early history in Section 2.

The “specialness” of long memory indicates that most stationary
stochastic processes do not have it. This also makes it intuitive that
non-stationary processes can provide an alternative explanation to the
empirical phenomena that the notion of long range dependence is
designed to address. This connection between long memory and lack of
stationarity is very important. It is related to such well known phenom-
ena as unit root problem [111] and regime switching [42]. We discuss
the connections with non-stationary processes in Section 3.

A very attractive point of view on long range dependence is based
on ergodic-theoretical properties of the dynamical system on which a
stationary stochastic process is constructed. Many features that are
intuitively associated with long memory are automatically found in
such an approach. For several reasons this approach has not become
widely accepted. We discuss this in Section 4.

Most of the definitions of long range dependence appearing in liter-
ature are based on the second-order properties of a stochastic process.
Such properties include asymptotic behavior of covariances, spectral
density, and variances of partial sums. The reasons for popularity of the
second-order properties in this context are both historical and practi-
cal: second-order properties are relatively simple conceptually and easy
to estimate from the data. This approach to the notion of long memory
is discussed in Section 5.

The term “fractional” appears very frequently in the context of long
range dependence. This usually refers to a model constructed using a

Full text available at: http://dx.doi.org/10.1561/0900000004



3

generalized operation of a non-integer order, whereas the “usual” order
of the operation has to be integer. The examples include differencing or
differentiation “non-integral number of times.” Certain features often
associated with long memory can sometimes be obtained by doing so.
Models obtained in this way are discussed in Section 6.

It is, once again, largely due to the early history that the notion of
long range dependence has become closely associated with self-similar
processes. Self-similar processes are stochastic models with the property
that a scaling in time is equivalent to an appropriate scaling in space.
The connection between the two types of scaling is determined by a
constant often called the Hurst exponent, and it has been argued that
the value of this exponent determines whether or not the increments
of a self-similar process with stationary increments possess long range
dependence. We discuss self-similar processes in Section 7.

The final part of this survey, Section 8, introduces a different
approach to understanding long memory, a one that is related to the
notion of phase transitions. We argue that this approach makes the
notion of long range dependence both intuitive and practical. One
should hope for major future research effort in this direction.
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tional Lévy motion,” in Stable Processes and Related Topics, (S. Cambanis,
G. Samorodnitsky, and M. Taqqu, eds.), pp. 261–273, Boston: Birkhäuser,
1991. (Volume 25 of Progress in Probability).

[57] C. Granger and R. Joyeux, “An introduction to long-memory time series and
fractional differencing,” Journal of Time Series Analysis, vol. 1, pp. 15–30,
1980.
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