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Abstract

The significant progress that has been made in recent years both in
hardware implementations and in numerical computing has rendered
real-time optimization-based control a viable option when it comes to
advanced industrial applications. More recently, the need for control of
a process in the presence of a limited amout of hardware resources has
triggered research in the direction of embedded optimization-based con-
trol. At the same time, and standing at the other side of the spectrum,
the field of big data has emerged, seeking for solutions to problems
that classical optimization algorithms are incapable to provide. This
triggered some interest to revisit the family of first order methods com-
monly known as decomposition schemes or operator splitting methods.
Although it is established that splitting methods are quite beneficial
when applied to large-scale problems, their potential in solving small to
medium scale embedded optimization problems has not been studied
so extensively. Our purpose is to study the behavior of such algorithms
as solvers of control-related problems of that scale. Our effort focuses
on identifying special characteristics of these problems and how they
can be exploited by some popular splitting methods.

G. Stathopoulos, H. Shukla, A. Szűcs, Y. Pu and C. N. Jones. Operator Splitting
Methods in Control. Foundations and TrendsR© in Systems and Control, vol. 3,
no. 3, pp. 249–362, 2016.
DOI: 10.1561/2600000008.



1
Introduction

The significant progress that has been made in recent years both in
hardware implementations and in numerical computing has rendered
real-time optimization-based control a viable option when it comes to
advanced industrial applications. More recently, the need for control of
a process in the presence of a limited amout of hardware resources has
triggered research in the direction of embedded optimization-based
control. Many efficient high-speed solvers have been developed for
both linear and nonlinear control, based on either first order methods
(FiOrdOs [133], QPgen [57],[59], DuQuad [88]), interior point (IP)
methods (FORCES [43], CVXGEN [84]) and active set methods
(QPOASES [50]).

In this work we focus on systems with linear dynamics, giving rise
to convex control problems. The purpose of the survey is to explore
a family of first order methods known as decomposition schemes or
operator splitting methods. The abstract form of the problem at hand
is the minimization of the sum of two convex functions subject to linear
equality constraints, and can be written as

minimize f(z) + g(Lz) , (1.1)

3



4 Introduction

with variables z ∈ Rn, where f and g are closed, proper convex func-
tions and A : Rn → Rp is a linear map. A splitting method can be
applied to the above problem after rewriting it as

minimize f(z) + g(y)
subject to Lz = y ,

(1.2)

by alternatingly (or simultaneously) minimizing over y and z. Clearly,
the solutions of problems (1.2) and (1.1) are identical. Inequality con-
straints that might appear are already embedded in one of the two
functions in the form of indicator functions, i.e., a membership func-
tion for a set C

δC(z) =
{

0 z ∈ C
∞ otherwise, (1.3)

which is the reason why both f and g are considered to be extended-
real-valued functions (see [18, § 3.1.2]). Formulations similar to the
above have been studied extensively and we can look for their roots in
the method of multipliers [75], [110], the Arrow-Hurwicz method [3],
Douglas-Rachford splitting [44] and ADMM [60], [55]. Decomposition
of the original problem into simpler ones is beneficial when distributed
computation tools are available. This potential is already suggested in
the classical references [15] and [45]. It was not until recently, though,
that decomposition algorithms were indeed applied in modern engineer-
ing problems (signal and image processing, big data analysis, machine
learning, [17] and [27]), in cases where off-the-shelf interior point solvers
simply fail due to the large dimensions involved. The thesis [47] pro-
vides a comprehensive description of the connection of several splitting
algorithms under a common framework. Finally, the book [7] provides
a mathematically rigorous introduction to operator splitting methods
in general Hilbert spaces.

The plethora of different approaches for solving problem (1.2) is
partly a consequence of the problem-dependent behavior of first or-
der methods. This behavior has both its pros and cons; on one hand,
sensitivity to the problem’s structure and data requires pre-processing
and tuning of several parameters, a procedure that can be cumber-
some. However, it is exactly this procedure that gives the flexibility
to customize the solver to the problem at hand, and, in many cases,
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outperform by several orders of magnitude general purpose solvers.
Consequently, there are numerous approaches, each of which can be
less or more pertinent for the specific problem. Mentioning some of
the most important categorizations, we can solve either the primal
problem, the dual problem, or a primal-dual formulation. Regarding
primal approaches, the most popular one is the primal decomposition
method [15], [19], where the original problem is decomposed into a
master problem and two subproblems. The two subproblems have both
local and shared (complicating) variables, while the master subprob-
lem manipulates only the complicating variables. Primal decomposition
works well when the complicating variables for the two subproblems are
few.

Dualization plays a crucial role in more complicated problems. It
can be performed by means of Lagrangian relaxations (dual decomposi-
tion [35], [49], [123], [14]), augmented Lagrangian relaxations [13], [117],
[116], alternating minimization (Gauss-Seidel) augmented Lagrangian
schemes (ADMM), mixture of Lagrangian with augmented Lagrangian
schemes (AMA [131]), linearized augmented Lagrangians or approxi-
mate minimization schemes ([23], [4]) and, finally, mixtures of alter-
nating minimization with partial linearization (PDHG [139], [48], [22],
[30] and several similar primal-dual schemes [28], [134], [16]).

Although it is well-established that splitting methods are quite ben-
eficial when applied to large-scale problems, their potential in solving
small to medium scale embedded optimization problems has not been
studied so extensively. It was not until very recently that the first
works attempting to apply decomposition methods in control prob-
lems started making their appearance [102], [56], [57], [59], [105]. Our
purpose is to study the behavior of such algorithms as solvers of control-
related convex problems of that scale, i.e., from tens to a few hundreds
of variables. Our effort focuses on identifying special characteristics of
these problems and how they can be exploited by some popular split-
ting methods. Some of the questions that we attempt to answer are:

1. It is very common in practice that optimal control problems come
with a quadratic objective, since in this way stability can be
proven for regulation or tracking purposes. What is the best way



6 Introduction

to exploit this smooth term, along with the special structure of
the dynamics equation?

2. Given that a control problem has to be solved repeatedly (e.g.,
MPC), how does warm-starting of the solution affect the speed?

3. Given the structure of the problem at hand, which algorithms
will converge more quickly?

4. Are there ways to precondition the problem in order to reduce
the solve time?

In what follows we present three well-understood splitting algo-
rithms, the alternating direction method of multipliers (ADMM), the
alternating minimization algorithm (AMA) and a primal-dual algo-
rithm (PDA), the most popular representative of several primal-dual
schemes that have been recently developed. These three methods come
from different sides of the spectrum described above, but also hold
very strong similarities. Our choice is motivated from the fact that the
methods are analyzed and extended from several communities, and
hence their properties are well-understood.

The paper is organized as follows: In Chapter 2 we formulate the
problem we want to solve and look at it from three different perspec-
tives, resulting in the three algorithms we use. Subsequently we intro-
duce the algorithms under a unified scheme and report their properties.
In Chapters 3 and 4 we build on the basic variants of the methods pre-
sented before, introduce several enhanced versions and focus on their
applicability for solving optimization problems. More specifically, in
Chapter 3 we review how one can exploit the structure of the problem
to accelerate the theoretical convergence rates. In Chapter 4 we extend
the discussion on acceleration to more practical schemes, i.e., stepsize
selection and preconditioning. We provide a comprehensive literature
review of existing methods and we present generic preconditioned ver-
sions of the three algorithms. In Chapter 5 we discuss the computa-
tional aspects; we identify the bottlenecks in each method and propose
ways to speed up the computation. In Chapter 6 we summarize the
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observations that we have made and attempt to construct a guideline
about how to choose a splitting scheme given a problem. Finally, the
algorithms are illustrated with three examples in Chapter 6.

1.1 Notation and Definitions

Let Z = (Rn, 〈·, ·〉) be a Euclidean space equipped with the inner prod-
uct 〈z, x〉 = z>x and the corresponding norm ‖z‖ =

√
〈z, z〉. Sym-

metric n-dimensional matrices are denoted with Sn, while positive
(semi)definite matrices are denoted with (Sn+)Sn++. We also consider
the scaled norm ‖z‖P =

√
〈z, Pz〉, with P ∈ S+. The matrix norm

of the linear operator M ∈ Rm×n is defined as ‖M‖ = sup
z 6=0

‖Mz‖
‖z‖ . The

minimum and maximum eigenvalue of a matrix Q ∈ Rn×n are denoted
by λmin(Q) and λmax(Q), respectively.
The domain of the extended-real-valued function f is defined as
dom f = {z ∈ Z : f(z) < +∞} and f is proper if dom f 6= ∅ and
f > −∞. The function f is closed if its epigraph epi f = {(z, t) ∈
Rn × R : f(z) ≤ t} is a closed nonempty convex set. The range of
extended-real-valued functions is denoted with R∪{+∞} = R. We de-
note the conjugate of a convex function with f?, while a minimizer is
denoted by an asterisk, i.e., f(z∗) ≤ f(z) ∀z ∈ Z. Finally, for succinct-
ness in the notation, we denote the class of all proper, closed, convex
functions from Z to R with Γ0(Z).
The indicator function of a convex set C is denoted with δC(·). For the
common norm balls the notation changes to δi(z, α), i = 1, 2,∞, which
denotes the constraint ‖z‖i ≤ α. Similar notation to the 2-norm ball is
used for the second-order cone constraint, with the difference that the
second argument is a scalar affine function itself, i.e., δ2(Ax+b, c>z+d)
denotes the constraint ‖Az + b‖2 ≤ c>z + d. The most common pairs
of indicator functions with their conjugate representation are given in
Table A.1.
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