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Abstract

Hybrid systems, i.e., heterogeneous systems that include discrete and
continuous time subsystems, have been used to model applications in
automotive such as engine, brake, and stability control, as well as air
traffic control and manufacturing plant control. Because of their gen-
erality (they include as special cases continuous and discrete systems),
deriving rigorous controller synthesis procedures is difficult. The most
effective hybrid control algorithms are based on full state feedback.
However, in the majority of cases, only partial information about the
internal state of the hybrid plant can be measured. Observability and
detectability are concepts of fundamental importance that establish the
conditions for reconstruction of the state of a system and have been
thoroughly investigated in the continuous and discrete domain but not
as systematically for hybrid systems.

Hybrid systems’ observability involves both the discrete structure
and the continuous dynamics of the system. A hybrid system is said to
be observable when it is possible to reconstruct the discrete as well as
the continuous state of the system from the observed output informa-
tion.

This paper reviews and places in context how the continuous and
the discrete dynamics, as well as their interactions, intervene in the
observability property of a quite general class of hybrid systems: linear
hybrid systems calledH−systems. Our specific objective is to show how
the hybrid characteristics of the system come into play and give rise
to particular aspects and properties that do not simply generalize the
ones that are well-known for traditional dynamical systems. This paper
intends to provide a tutorial approach to hybrid systems observability
in its various forms to students in control and its application as well as
to practitioners in the field.

E. De Santis and M.D. Di Benedetto . Observability of Hybrid Dynamical Systems.
Foundations and TrendsR© in Systems and Control, vol. 3, no. 4, pp. 363–540, 2016.
DOI: 10.1561/2600000009.



1
Introduction

Safety-critical embedded control systems, such as the ones encountered
in transportation systems (e.g., airplanes, cars, and trains) or indus-
trial plants, have become increasingly important as autonomy is taking
centre stage. When designing these control systems, it is essential to
take all effects into consideration, including the interaction between
the plant to be controlled and the embedded controller. This calls for
methods that can deal with heterogeneous components exhibiting a
variety of different behaviors. For example, discrete controllers can be
represented mathematically as discrete event systems, while plants are
mostly represented by continuous time systems. The properties of these
heterogeneous systems, called hybrid systems, have to be proven under
all foreseeable scenarios and this need calls for formal approaches to
design. Indeed, theoretical properties of hybrid systems have been the
subject of intense research in the last decades.

Because of the generality of hybrid systems (see e.g. Lin and Antsak-
lis [2014] where different models and analysis methods are illustrated
in detail), deriving rigorous controller synthesis procedures is often dif-
ficult. In many cases, we must resort to either heuristics or approxi-
mations because the generality of hybrid models implies a high level

2



3

of complexity. Even when the structure of the hybrid problem is such
that a controller can be synthesized, strong assumptions on the avail-
ability of information about the system have to be used. For example,
in the automotive domain, a hybrid formalism was proposed to solve
power-train control problems and to derive control laws based on full
state feedback, requiring that the entire state of the system under con-
trol be known at all times (see e.g. Balluchi et al. [2000]). However, in
most cases, only partial information about the internal state of the hy-
brid plant is available. Hence, to adopt hybrid controllers, the design
of hybrid state observers that can reconstruct the state from partial
information is of fundamental importance.

Indeed, reconstructing the internal behavior of a dynamical system
on the basis of the available measurements is a central problem in
control theory in general, not only for hybrid systems. Starting from the
seminal paper Kalman [1959], state observability has been investigated
both in the continuous domain since the sixties (Luenberger [1971] for
the linear case and Griffith and Kumar [1971] for the nonlinear case),
and in the discrete state domain since the eighties (see e.g. Ozveren
and Willsky [1990] and Ramadge [1986]). However, the observability
question is far from being fully answered (see e.g., the recent papers
on nonlinear observability and observers design Khalil and Praly [2013]
and Sassano and Astolfi [2014]). Even for linear observer design, there
are still open questions (see e.g. Blumthaler and Trumpf [2014], Trumpf
et al. [2014]).

For a discrete state system, observability corresponds to the recon-
struction of the current discrete state. A related property is diagnos-
ability, which corresponds to the possibility of determining the past
occurrence of some particular states, for example faulty states. Recent
advances on diagnosis methods for discrete event systems can be found
in the excellent survey Zaytoon and Lafortune [2013]). The paper De
Santis and Di Benedetto [2015] offers a general framework where a
number of observability and diagnosability properties can be framed
as special cases, for example, "critical observability" that arises when
dealing with safety critical applications, e.g. Air Traffic Management
Di Benedetto et al. [2005b], De Santis et al. [2006a]. In these applica-



4 Introduction

tions, the critical set of discrete states represents dangerous situations
that must be detected to avoid unsafe or even catastrophic behavior of
the system.

Hybrid systems’ observability involves both the discrete structure
and the continuous dynamics of the system. We say that a hybrid
system is observable when it is possible to reconstruct the discrete as
well as the continuous state of the system from the observed output
information.

The reconstruction of the discrete state of a hybrid system corre-
sponds to understanding which specific continuous dynamical system
(corresponding to a state in the discrete abstraction) is evolving. This
can be done either by using only the discrete output information, and
in this case hybrid discrete state observability simply coincides with
discrete observability, or by using only the continuous output infor-
mation. In this latter case, the important property is the possibility of
inferring based on the continuous output information which continuous
system is indeed active (this property is referred to as distinguishability
of a pair of dynamical systems). However, we can exploit the hybrid
nature of the system and merge the two to yield weaker conditions
for the identification of the discrete state. If the current discrete state
can be identified - using discrete and/or continuous information - the
system is said to be current location observable. The possibility of esti-
mating the continuous state of the hybrid system is closely related to
the identification of the discrete state: as it will be seen in this paper,
the observability property is equivalent to the current location observ-
ability property.

In recent years, many researchers have considered the observability
problem for hybrid systems (see e.g. the special issue De Santis and
Di Benedetto [2009] (Eds.) on observability and observer-based con-
trol of hybrid systems and the references therein, Balluchi et al. [2002],
Bemporad et al. [2000], Collins and van Schuppen [2007], Babaali and
Pappas [2005], De Santis et al. [2003], Vidal et al. [2003], Balluchi
et al. [2013], Tanwani et al. [2013] among others). The formal defi-
nition and analysis of observability properties depend on the model,
on the available output information, and on the objective for which
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state reconstruction is needed, e.g. for control purposes, for detection
of critical situations, and for diagnosis of past system evolutions. It is
therefore hard, in general, to understand the precise relationships that
exist between different observability notions, especially when dealing
with hybrid systems and when the results are established with differ-
ent formalisms.

In this paper, we present a tutorial view of this topic, for a general
class of hybrid systems, with the specific objectives of

• demonstrating the roles that the continuous and the discrete dy-
namics, as well as their interactions, play in the observability
property;

• showing how the hybrid characteristics of the system come into
play and give rise to particular aspects and properties that do
not simply generalize the ones that are well-known for traditional
dynamical systems.

Given our intent, we chose not to delve into the many nuances of
the research on observability that are valid for particular versions of hy-
brid systems (e.g., controlled and uncontrolled switching systems and
impulsive systems, under special assumptions), but to focus on a gen-
eral class of hybrid systems for which strong results can be obtained:
linear hybrid systems called LH−systems. For this class of systems,
we first present definitions of observability and detectability, a weaker
and more general form of observability (see De Santis et al. [2009]).
Then, in order to clarify the function of the hybrid nature of the sys-
tem, we proceed step by step, by first analyzing the discrete structure
and the continuous dynamics separately. Then we address the problems
(and opportunities) posed by the interaction between the two parts of
the system. We also address the observer design problem following the
methodology presented in Balluchi et al. [2013] where the identifica-
tion of the current discrete state and the estimation of the continuous
state are intertwined. Further we show how the observability conditions
ensure the existence of such an observer. An application in the auto-
motive domain proves how the theoretical conditions illustrated in the
paper can indeed be used to construct an observer.



6 Introduction

Because of the multiplicity of different notions of observability ex-
isting in the literature, in our exposition we need rigor and precision
in the definitions and derivations in order to avoid confusion. As a
consequence, notations are at times complex and not always intuitive.
However, when necessary, we sacrifice mathematical precision to pro-
vide intuition and a working knowledge of the topics. Hence the way
we address the audience of the paper is a compromise between mathe-
matical rigor and informal descriptions.

We do not cover more specific research topics that are con-
cerned with, for example, the use of the observer in output feed-
back control, distributed observability, diagnosis by abstraction. How-
ever, we inserted in every chapter a review section that presents
the most relevant literature on the subject matter of the chap-
ter. This review is by no means exhaustive and it is also intended
to offer potential avenues of further analysis of the material pre-
sented.

Our paper is organized as follows.
In Chapter 2, we define the general hybrid system model, called

H−system, and describe some of its properties.
In Chapter 3, we focus on the discrete structure of the hybrid sys-

tem, which is a Finite State Machine (FSM) associated with the original
system. We introduce the notions of strongly connected components,
persistent states and traps, which are used in the sequel to characterize
observability and detectability. We also illustrate some transformations
of the FSM, which do not alter the information that is relevant for
checking the detectability of the hybrid system.

In Chapter 4, always with reference to the discrete structure of the
H−system, we define and characterize two observability properties,
called current location observability and critical observability. These
two notions will be extended in the following chapters to a general
hybrid system.

In Chapter 5, observability and detectability for hybrid systems are
defined. We use simple examples to illustrate how these properties are
not only related to the corresponding properties of the same concepts
for linear systems, but depend also, for example, on the topology of
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the discrete system, on the resets, the minimum and maximum dwell
times in each discrete state.

In Chapter 6, we suppose that no output information is available
from the discrete part of the system and investigate the possibility of
determining the current discrete state of a hybrid system by using only
the continuous output information. The notion of distinguishability
of two dynamical systems plays the main role in the solution to this
problem. We also analyze how and when it is possible to determine
the times at which a discrete transition takes place (called switching
times), without necessarily identifying which discrete mode is active.

In Chapter 7, we define the class of current location observable hy-
brid systems, that is systems for which the current discrete state can be
identified after a finite number of steps, either independently from the
continuous evolution, or by using also the continuous evolution. Cur-
rent location observability is characterized in terms of set membership
and some computationally efficient algorithms for the determination of
the sets of interest are proposed.

In Chapter 8, we first define the unobservable sub-system associated
to a hybrid system. Then, we show that detectability is equivalent to
the observability of an appropriate hybrid system associated with the
original one and the asymptotic stability of its unobservable part. Then,
we provide a characterization of detectability by using a Kalman-like
approach.

In the last Chapter 9, we address the observer design problem. We
show how, under the observability conditions illustrated in the previous
chapters, it is possible to design hybrid observers for current location
observable hybrid systems. The hybrid observer consists in the con-
struction of two sub-systems: a location observer that identifies the
current discrete state of the hybrid plant, and a continuous observer
that produces an estimate of the evolution of the continuous state of the
hybrid plant. The application to an automotive test case is described.

For the reader’s convenience, the notations are summarized in the
Appendix.
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