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Abstract

The problem addressed in this document concerns the coordinated allocation of a
finite set of reusable resources to a set of concurrently running processes. These
processes execute in a staged manner, and each stage requires a different subset of
the system resources for its support. Furthermore, processes will hold upon the re-
sources currently allocated to them until they will secure the necessary resources for
their next processing stage. Such resource allocation dynamics currently arise in the
context of many flexibly automated operations: from the workflow that takes place
in various production shop floors and certain internet-supported platforms that seek
to automate various service operations; to the traffic coordination in guidepath-based
transport systems like industrial monorail and urban railway systems; to the resource
allocation that takes place in the context of the contemporary multi-core computer
architectures. From a theoretical standpoint, the resource allocation problems that
are abstracted from the aforementioned applications, correspond to the problem of
scheduling a stochastic network with blocking and deadlocking effects. This is an
area of the modern scheduling theory with very limited results. To a large extent, this
lack of results is due to the intricacies that arise from the blocking, and especially
the deadlocking effects that take place in these networks, and prevents a tractable
analysis of these problems through the classical modeling frameworks. Hence, the
departing thesis of the work that is presented in this document, is the decomposition
of the aforementioned scheduling problems to (i) a supervisory control problem that
will seek to prevent the deadlock formation in the underlying resource allocation
dynamics, and (ii) a scheduling problem that will be formulated on the admissible
subspace to be defined by the adopted supervisory control policy. Each of these two
subproblems can be further structured and addressed using some formal modeling
frameworks borrowed, respectively, from the qualitative and the quantitative theory
of Discrete Event Systems. At the same time, the above two subproblems possess
considerable special structure that can be leveraged towards their effective and effi-
cient solution. The presented material provides a comprehensive tutorial exposition
of the current achievements of the corresponding research community with respect
to the first of the two subproblems mentioned above. As it will be revealed by this
exposition, the corresponding results are pretty rich in their theoretical developments
and practically potent. At the same time, it is expected and hoped that the resulting
awareness regarding the aforementioned results will also set the stage for under-
taking a more orchestrated effort on the second of the two subproblems mentioned
above.

S. Reveliotis. Logical Control of Complex Resource Allocation Systems. Foundations and
Trends R© in Systems and Control, vol. 4, no. 1-2, pp. 1–223, 2017.
DOI: 10.1561/2600000010.
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1
Introduction

As indicated by its title, this document addresses problems pertaining to re-
source allocation. This is a fundamental concept in the design and operation
of many different applications, and therefore, it has been the subject of study
in many academic disciplines for a long time. In their basic positioning, re-
source allocation problems concern the arbitration of the utilization of a fi-
nite set of (frequently) reusable resources by a set of contesting processes in
a way that promotes certain notions of operational efficiency. Usually, this
efficiency is characterized and quantified by some time-based performance
criteria, like (i) the maximization of the number of processes served per unit
of time – also, known as the (average) throughput in the relevant terminol-
ogy; (ii) the minimization of the average waiting time experienced by the
contesting processes, and of the corresponding congestion that results from
the incurred waits; and (iii) the ability to meet effectively pre-specified due
dates for the various running processes. Collectively, the resulting problems
define an area that is known as “scheduling theory” [116] and has been very
conspicuous within the disciplines of Industrial Engineering (IE), Operations
Research (OR) and Operations Management (OM). In fact, scheduling theory
has also been a subject of study in the fields of theoretical Computer Science
(CS) [109], Stochastic Control [8, 93], and even Artificial Intelligence (AI)

2
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3

[97]. All this research activity has provided a rich body of results for various
versions of the underlying resource allocation problems, but it has also es-
tablished the computational challenges that are posed by a very large number
of these problems; in particular, the majority of the formulated scheduling
problems has been shown to belong to the class of NP-hard problems [46].

Some operational elements that contribute to the difficulty and the po-
tential intractability of a scheduling problem are: (i) the staged / sequential
execution of the involved processes; (ii) the presence of routing flexibility,
i.e., the availability of alternative execution paths for certain processes; (iii)
the need for coordination among the running processes either in the form
of the synchronized execution of certain steps, or of precedence constraints
among these steps; (iv) the requirement of an extensive set of resources for
the support of any single processing stage; and eventually (v) the random-
ness that is typically present in the arrival times of the executed processes
and in the service times of their processing stages. The OR community has
tried to tackle many of the complexities that arise from the aforementioned
operational features by abstracting the corresponding structures and dynam-
ics through the concept of the “stochastic network” [31, 54, 93]. Furthermore,
in the more recent years, by using some asymptotic analysis techniques that
result in a more continuous representation of the involved dynamics,1 the
corresponding research community was able to establish the optimality or
near-optimality of certain scheduling policies for various classes of stochas-
tic networks [66, 67, 30, 94, 31, 92, 87, 93].

A particular trait of all the aforementioned analyses and results is the cor-
respondence of the “resource” concept to the notion of a “server” that sup-
ports or participates in the execution of a subset of the operations that take
place in the considered network. The protocol that governs the allocation of
these servers to the various processes and their release is rather simple, and
essentially it assumes that the servers can be re-distributed to the running
processes in any way that satisfies the requirements of the applied scheduling
policy. In many cases, such an assumption is quite natural, given the “active”
nature that is assumed for these servers. This assumption also implies that
the waiting processes do not interfere with those processes that (are assigned
to) receive service. Under such an operational regime, the main concern for

1These representations are known as “fluid” or “diffusion” models [31, 54, 93].
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4 Introduction

a scheduling policy that seeks to maximize the throughput of the underlying
system and control the expected delays for the running processes, is the ef-
fective utilization of the processing capacity of the various servers, especially
those that experience the highest expected workloads and are known as the
“bottlenecks” of the underlying stochastic network. In some more technical
terms, this last requirement is characterized as the control of the “starvation”
that is experienced by the network servers, especially those servers that con-
stitute the bottlenecks of the network.

This work, however, deals with resource allocation problems where the
allocated resources are not only the active servers that were described in the
previous paragraph, but also the more passive elements that are necessary
for the physical staging of the running processes and for the further support
of their various processing steps. Some characteristic examples of these new
resource types are as follows:

1. In the context of the operations that take place in modern computer-
integrated production systems [51], a workpiece that goes through the
different workstations of this system must always be staged in a well-
defined area, that might be either a buffer slot, or the working table
of a certain machine, or a certain position on a material handling de-
vice. Furthermore, in many cases, the processed workpieces must be
mounted on fixtures that stabilize them in certain ways during their so-
journ through the system and facilitate the execution of the operations
that take place at the system workstations. The pertinent allocation of
all these additional resources is a central function of the system con-
troller and it is critical for the effective support of the extensive levels
of automation, integration and autonomy that is expected for these sys-
tems.

2. In the context of the automated unit-load material handling systems,
like the Automated Guided Vehicle (AGV) systems and the overhead
monorail systems that are used in many contemporary production and
distribution facilities [56], the system vehicles are forced to move on
a specified guidepath network that is defined either by the inherent
structure of this system (as in the case of the overhead monorail sys-
tems), or it is externally imposed in an effort to isolate the traffic of
this particular system from the remaining activity of the facility (which

Full text available at: http://dx.doi.org/10.1561/2600000010
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is typical in the case of the deployed AGV systems). Furthermore, the
edges of this guidepath network define a set of “zones” that must be
occupied by at most one vehicle at any time, a requirement that seeks
to establish a certain level of separation among the traveling vehicles,
and thus, the avoidance of collisions and other interference problems
among them. The imposition of such a zoning scheme essentially turns
the vehicle trip between any two endpoints of the underlying guidepath
network into a sequential resource allocation process, where the occu-
pation of every zone that is needed for this trip must be negotiated with
a centralized controller that controls the entire traffic in this network
[136, 163, 37, 146]. In fact, “zone”-based resource allocation schemes
have been proposed recently even for the management of the traffic that
is generated by a fleet of free-ranging agents that circulate in a confined
area [132]. These agents can be, for instance, a set of robots moving in
a confined 2-dim area, or a set of aircrafts or submarines moving in a
3-dim region, and the corresponding “zones” are respectively defined
by a number of rectangles or parallelepipeds that tesselate the motion
area. Finally, similar control schemes can be envisioned for automated
subway and railway systems, and for other automated traffic systems
that are contemplated for the future support of urban mass-transport
needs [49].

3. In the operational context of multithreaded programming, the various
concurrently executing threads typically share a number of resources
that are provided by the underlying operating system in the form of
registers and other storage locations, I/O devices, data files, etc. In
many cases, these resources must be allocated exclusively to the re-
questing threads, and this allocation is coordinated through the associ-
ation to each resource unit of a token that is known as a “semaphore” or
“mut(ually)-ex(clusive) lock”; a process must acquire the correspond-
ing semaphore before it can access the requested resource [32]. Also,
in this operational regime, a process might need to acquire a set of
resources for the execution of a single operation, and frequently these
resources will not be allocated simultaneously as a “bundle” but are ob-
tained sequentially, one semaphore at a time. Multithreaded program-
ming has been a very popular programming paradigm since the early

Full text available at: http://dx.doi.org/10.1561/2600000010



6 Introduction

days of modern computing, as it enabled time sharing in the opera-
tional context of the mainframe computers that were used at that era.
More recently, the interest in this programing paradigm has been re-
vived with the advent of the multi-core computer architectures that are
prominent on all modern computer platforms [65]. But the semaphore-
based resource allocation mechanism that is described in this paragraph
can also be applied to the (internet-based) workflow management en-
gines that have been proposed for the automation of various business
processes; from the processing of insurance claims, to the backend op-
erations supporting the transactions that take place in (e-)commerce
and the banking sector [156, 110].

4. Another example comes from the more avant-garde world of quantum
computing [106]. In the corresponding computational environments,
the processed information is stored in the quantum states of a number
of ionized atoms that are known as “qubits”. These qubits are physi-
cally stored in certain locations, and they must be transported to some
other locations where they will go through a controlled interaction
for the execution of the various elementary operations that are sup-
ported by the corresponding processors. Furthermore, the transport of
the qubits among the various locations is supported by a network of
“ion traps”, and it must take place in a way that isolates them from the
surrounding environment and from each other. This last requirement
gives rise to a zone-based traffic control scheme that has a very strong
similarity to the traffic that takes place in the zone-based unit-load au-
tomated material handling systems that were discussed in item #2 of
this list.

A novel element that is introduced by the resource allocation that takes
place in the aforementioned examples is that of “blocking”: A workpiece that
has completed its processing in the current workstation, or an AGV that has
completed the traversal of its current zone, might not be able to advance any
further at the current time-point, due to the fact that the next requested re-
source(s) is not currently available. Also, in some other cases like that of
multithreaded programming, a blocking effect might arise from the fact that
a process has acquired a subset of the resources that are necessary for the
execution of its next processing step, but it is still waiting for the allocation
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of the remaining resources. All these blocked processes hold upon their cur-
rently allocated resources, possibly preventing some other process to utilize
these resources for its next step.

Frequently, this blocking is a transient phenomenon that is eventually re-
solved when a certain process instance completes its current processing and
advances to its next processing step, releasing the required resources for the
remaining blocked processes to advance as well. But it is also possible that,
under a general structure for the process sequential logic and the correspond-
ing resource allocation requests, the “hold while waiting” effect that was de-
scribed in the previous paragraph, will give rise to circular waiting patterns
among a subset of the running processes; these patterns are known as “(par-
tial) deadlocks” or “deadly embraces”. As both of these terms suggest, the oc-
currence of circular waiting among some of the running processes will result
in (i) the inability of these processes to advance any further in their process
plans without some external intervention / interrupting procedure that will re-
solve this deadlock, and (ii) the waste of the resource units that are involved
in this deadlock. Hence, deadlock is an important problem in the operation
of the aforementioned applications that must be promptly recognized and re-
solved for the effective management of these applications.

Past industrial practice has tried to resolve the deadlocks that might arise
in the aforementioned application contexts either (i) by adopting simple re-
source allocation patterns for the sequential logic of the corresponding pro-
cesses that will not allow the formation of circular dependencies, or (ii) by
allowing deadlock to occur and providing the necessary mechanisms for its
detection and the recovery from it through the interruption of some of the
deadlocked processes. As a case in point of the first approach, we mention
the, so called, tandem AGV systems that are currently used in many industrial
settings [11]. These systems decompose the underlying traffic into a number
of unidirectional loops that are interfaced with a number of buffers. By having
all vehicles in each loop moving in the same direction, deadlock is certainly
avoided, but at the cost of longer and also slower trips, since traffic is even-
tually regulated by the slower vehicles. Furthermore, in the case of transports
across different loops, there is a need for “double-handling” of the transported
material, since it has to be transported by at least two different vehicles; this
effect introduces an additional operational cost that could have been avoided
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8 Introduction

by a more agile configuration of the AGV system. The second current ap-
proach to deadlock resolution, that relies on their detection and recovery, is
most popular among the community of multithreaded programming, since
the idea of process interruption and redefinition of its running stage is more
easily implementable in that operational context [32]. In fact, such a scheme
can be pretty efficient in the cases where deadlocks are rather rare events. But
it can be quite disruptive when the coupling and the interaction among the
program threads increases through extensive resource sharing.

Based on all the above remarks, it can be effectively argued that the re-
source allocation functions that were described in the aforelisted examples,
and the corresponding industries, can benefit from the development of a con-
trol paradigm that will manage the corresponding resource allocation func-
tions in a way that ensures their deadlock-freedom, and at the same time it
can support the extent of the automation and the autonomy, as well as the op-
erational concurrency, flexibility and efficiency that are currently sought for
these applications. This document provides a methodological base and a set
of key results that are currently available for the aforementioned problem.

The departing point for the developments to be presented in this work
is the realization that deadlock formation is an effect that results from the
sequencing of the various resource allocation events that take place in the
underlying system, and not by the exact timing of these events. This real-
ization implies that the investigation of the deadlock-related problems that
are described in the previous paragraphs, and the effective resolution of these
problems, will necessitate a different set of methods and tools than the meth-
ods and tools used by the scheduling theory for the analysis and control of the
time-based (or “timed”) dynamics of the considered resource allocation sys-
tems. To acknowledge and highlight this differentiation in the methodological
approaches, in the sequel we shall refer to the study of the event sequences
that are generated by the considered resource allocation functions and sys-
tems, as the “untimed” dynamics of these systems (also known as “logical”
or “qualitative” dynamics).

In the context of systems and control theory, the analysis and the control
of the “event” sequences that are generated by various natural and engineered
event-driven systems, has been the subject of qualitative Discrete Event Sys-
tems (DES) theory [17, 162, 149]. Hence, the developments that are presented
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in this work have sought to leverage and extend the theoretical developments
of qualitative DES theory in order to provide rigorous and computationally
tractable solutions to the deadlock resolution problem that was described in
the previous paragraphs. Using the formal abstraction of the “(sequential)
resource allocation system (RAS)” [139], and further formal representations
borrowed from qualitative DES theory, these developments have provided:

1. a succinct analytical characterization of the considered class of prob-
lems;

2. the formulation of a notion of “optimal control” for the corresponding
dynamics;

3. the characterization of the computational complexity of the sought op-
timal solutions (it turns out that for the majority of the considered re-
source allocation problems, the computation and deployment of the
corresponding optimal solution is NP-hard [131], which is another
manifestation of the “curse of dimensionality” that haunts most sequen-
tial decision-making problems [7]);

4. effective and efficient algorithms that are able to provide optimal and
near-optimal deadlock resolution for any practical instantiation from
the considered RAS classes, in spite of the negative result of item #3
above;

5. and eventually, a methodological base that can be further leveraged
towards the effective scheduling of the considered RAS.

From a more conceptual standpoint, and in line with the basic predi-
cations of the DES Supervisory Control (SC) theory [17, 162], the devel-
opments that are described in the previous paragraph constitute “preventive
control” for the underlying RAS classes; i.e., the corresponding SC policies
seek to restrain the dynamics generated by the underlying resource alloca-
tion function in order to keep the resultant operation (partial-)deadlock-free.
Stated in a different manner, the theory that is presented in this document
seeks to confine the original feasible behavior of the underlying RAS into a
subspace that constitutes the admissible behavior, where the latter is charac-
terized by the absence of partial-deadlock. Furthermore, the optimal control
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10 Introduction

problem that was mentioned in the above list intends to specify this admis-
sible behavior in a maximally permissive manner. With the admissible RAS
behavior well-defined, one can subsequently formulate and address the cor-
responding scheduling problem over this more restricted behavioral space.
Hence, the developments that are presented in this work can eventually fa-
cilitate the scheduling of stochastic networks with blocking and deadlocking
effects, an area that has received very limited attention in the current liter-
ature. Figure 1.1 provides the basic architecture of a real-time, event-driven
controller for these networks, that results from the proposed decomposition
of the corresponding control problem into a logical control problem and its
scheduling counterpart.

In view of the above positioning of the content and the intended contribu-
tion of this document, the rest of its chapters are organized as follows: Chap-
ter 2 provides the modeling abstraction of the sequential RAS, and a formal
representation of the qualitative RAS dynamics in the modeling framework
of the Finite State Automata (FSA) [59, 17]. This chapter also characterizes
the corresponding SC problem and the associated notion of “maximal per-
missiveness”, and it reviews a series of results that establish the NP-hardness
of the sought maximally permissive SC policy. Chapter 3 overviews a set
of results characterizing a number of RAS classes for which the optimal SC
policy is of polynomial complexity with respect to (w.r.t.) the size of the un-
derlying RAS. Chapter 4 presents a series of recently developed results that
have managed to deploy the maximally permissive DAP for very large RAS
instances by isolating the expensive part of the corresponding computation in
an off-line stage of the overall deployment process. Instrumental for these de-
velopments is the realization that the sought SC policy essentially functions
as a classifier that dichotomizes the underlying state space on the basis of
the state admissibility. Chapter 5 presents the major results on the considered
problem of RAS deadlock resolution that have been derived through the Petri
net (PN) modeling framework [98], the second major modeling framework
offered by qualitative DES theory. Petri nets can offer more compactness and
a higher specificity in the representation of the underlying RAS dynamics,
and a richer set of analytical tools for the characterization of the emergent
behavior. In particular, they can reveal more succinctly the connection be-
tween the underlying RAS structure and the emergent behavioral properties,
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Figure 1.1: An event-driven control scheme for the real-time management of the
considered RAS [139]. The controller responds to the various events taking place
in the controlled RAS by updating a state model that defines the feasible behav-
ior generated by this system. This behavior is “filtered” through the logical con-
troller in order to obtain the admissible behavior, i.e., the behavior that is consistent
with certain specifications imposed on the RAS operation, including the require-
ment for deadlock-freedom. Finally, the admissible behavior is processed through
the performance-oriented controller in order to select the particular action(s) among
the admissible behavior that eventually will be commanded upon the RAS.

a line of analysis that is known as “structural analysis” in the relevant PN
theory. At the same time, the material of this chapter will reveal a comple-
mentarity between the analytical power and capabilities offered by the FSA
and the PN modeling frameworks. Chapter 6 complements the fundamental
results presented in the previous chapters through a series of refinements and
extensions that further enrich the presented theory and augment its applicabil-
ity. Finally, Chapter 7 concludes the presentation and highlights directions for
further extensions and future work. Furthermore, two appendices provide the
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12 Introduction

basic background on the FSA and the PN modeling frameworks that is nec-
essary for the communication of the corresponding results that are presented
in the main part of the text.

A note on the adopted notation: In the technical part to be presented
in the rest of this document, variables or parameters that are scalar quantities
will be denoted by small letters. Vectors will be denoted by boldface small
letters, and they will be considered as column vectors. Furthermore, the zero
vector will be denoted by 0, the vector with all its elements equal to one
will be denoted by 1, and the unit vector with the nonzero element in its i-th
component will be denoted by 1i. Matrices will be denoted by capital letters.
Sets and the tuples that define the structured objects that are addressed in this
document, will be denoted by capital letters, and they might also be scripted.
Transposition of vectors and matrices will be denoted by superscripting these
entities by “T”. R will denote the set of real numbers, and Z will denote the
set of integers. Furthermore, R+ and R+

0 will respectively denote the sets of
strictly positive and the nonnegative reals; and similar notation will be used
for the integers. At certain occasions, we shall also set Z+

0 ≡ N, in order to
emphasize the standard interpretation of this particular set as the set of “nat-
ural numbers”. We also set B≡ {0,1}, and we shall use this notation in order
to characterize the domain of the binary variables that are used in the text.
Finally, the application of the notation “≤” on a pair of vectors will imply
the component-wise interpretation of this relationship, and the application of
the notation “<” on a pair of vectors strengthens the “≤” relationship among
these vectors by implying that the strict inequality holds for at least one co-
ordinate. The operator | · | when applied on a set returns its cardinality; when
applied on a vector returns its l1 norm; and when applied on one of the struc-
tured objects that are defined in the text, returns the “size” of this object (as
defined in the text).

1.1 Notes and Sources

The problem of deadlock formation and its effective resolution was first stud-
ied in the late 60’s and early 70’s, in the context of the multi-threaded com-
putation that was emerging at that time. A series of seminal works presented,
for instance, in [34, 55, 53, 58] sought to understand the structural elements
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of the underlying resource allocation function that lead to deadlock forma-
tion, and to provide some structural characterizations of these formations
that were eventually used primarily for deadlock detection and recovery. The
mathematical tools used in these studies were rather ad hoc graph-theoretic
structures that facilitated the tracing of the existing dependencies among the
running processes and the system resources, that were established by the cur-
rent resource allocation and the posed requests. A particular line of work that
sought a more proactive real-time control approach against deadlock forma-
tion, and at the same time tried to provide a solution of polynomial compu-
tational complexity w.r.t. the size of the underlying system, is the Banker’s
algorithm that was proposed by Dijkstra in the late 60’s [34]. Currently, this
algorithm is standard material in any textbook that deals with computer op-
erating systems and concurrent processes; we shall return to this algorithm
in Chapter 6 where we discuss and extend this algorithm to render it appli-
cable to the more complex and more dynamic resource allocation functions
that are considered in this work. Another theme from that time that is stan-
dard textbook material in the literature on computer operating systems and
concurrent processes, is the “Dining Philosophers” problem [32], a stylized
case study that demonstrates the formation of deadlock due to the sequential
acquisition by a set of concurrently executing processes of the resources that
are necessary for the execution of a single processing step.

A second seminal set of results on the RAS deadlock resolution problem
appeared in the late 70’s, in the wake of the major advances in computational
complexity theory that occurred at that time. In particular, the works of [3,
50] established the NP-hardness of the optimal deadlock resolution problem
that was outlined in the earlier parts of this chapter, and they also sought to
specify a boundary between the corresponding hard and easy cases. More
recently, these complexity results and the corresponding boundary have been
sharpened in [74, 131].

The last distinct wave in the developments on the deadlock resolution
problem considered in this work, which also constitutes the major base for
the presented material, originated in the late 80’s / early 90’s. This wave was
motivated by the quest for extensive flexibility, automation, integration and
autonomy of the operations that take place in the context of various major
contemporary applications, including production and distribution, fleets of
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mobile agents, urban subway and railway systems, and internet-based work-
flow management systems. These enhanced requirements were, themselves,
inspired and facilitated by the dramatic advancement of the computational
capabilities of those times. On the theoretical side, all these practical trends
were complemented and supported by the emergence of DES SC theory [121]
that provided a rich and rigorous analytical base for the formal modeling
of the considered resource allocation functions and the investigation of their
dynamics. The corresponding literature is too broad to be enumerated ex-
haustively in this discussion, but we shall visit most of its key developments
in the subsequent parts of this work, where we shall also provide the cor-
responding references. Some pioneering seminal works from this latest era
are presented in [158, 5, 164, 35, 143, 38], while various parts of this lit-
erature are accumulated and classified in the texts and the survey papers of
[139, 169, 82, 81, 15, 123].

Concluding this introductory chapter, we should also notice that, besides
the aforementioned developments, the notion of “blocking” has been stud-
ied, to a certain extent, by queueing theory. Most of the corresponding results
can be traced in the monographs [115, 114, 108]. However, in line with the
broader spirit of queueing theory, all these results are of descriptive rather
than prescriptive nature; i.e., they try to characterize the impact of any aris-
ing blocking and deadlocking effects on the performance of the underlying
system, without making any effort to control these effects.

A first formulation of the “companion” control problem to the SC prob-
lems that are addressed in this work, regarding the real-time scheduling of
the logically controlled RAS depicted in Figure 1.1, can be found in [139].
Also, a first set of results for this problem are presented in [20, 21, 22]. Fur-
thermore, a more recent study of this problem, with a stronger and a more
extensive set of results, especially from a practical computational standpoint,
can be found in [75, 76, 77]. However, it is generally true that the real-time
scheduling of the logically controlled RAS has received only limited attention
in the current literature and it is pretty open to further investigation.
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