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ABSTRACT
Chemical process equipment (e.g., sensors, valves, pumps,
and vessels) can impact the dynamics, profitability, and
safety of plant operation. While continuous chemical pro-
cesses are typically operated at steady-state, a new control
strategy in the literature termed economic model predictive
control (EMPC) moves process operation away from the
steady-state paradigm toward a potentially time-varying
operating strategy to improve process profitability. The
EMPC literature is replete with evidence that this new
paradigm may enhance process profits when a model of the
chemical process provides a sufficiently accurate represen-
tation of the process dynamics. Recent work in the EMPC
literature has indicated that though the dynamics associated
with equipment are often neglected when modeling a chemi-
cal process, they can significantly impact the effectiveness
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of an EMPC (and the potentially time-varying operating
policies dictated by an EMPC may impact equipment in
ways that have not been previously observed under steady-
state operating policies); therefore, equipment dynamics
must be accounted for within the design of an EMPC. This
monograph analyzes the work that has accounted for valve
behavior in EMPC to date to develop insights into the
manner in which equipment behavior should impact the
design process for EMPC and to provide a perspective on a
number of open research topics in this direction.

Keywords: valve stiction, valve nonlinearities, economic model predictive
control, process control, process safety, process equipment
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1
Introduction

The limitations of process equipment (e.g., catalysts, valves, pumps,
compressors, heat exchangers, vessels, and sensors), and the manner
in which the materials that comprise such equipment change over
time, have long been understood to pose issues for chemical process
control and therefore have been accounted for in various ways. In
the commonly utilized optimization-based controller known as model
predictive control (MPC) (Qin and Badgwell, 2003), valve limitations are
often accounted for within the control design by setting bounds on the
manipulated inputs as constraints (Rawlings, 2000). Issues associated
with sensors (e.g., drift and bias) have been accounted for in process
control utilizing techniques such as measurement replacement (Kettunen
et al., 2008) and output compensation (Prakash et al., 2002). Actuator
faults (Venkatasubramanian et al., 2003; Gajjar and Palazoglu, 2016)
have been handled through reconfiguration of MPC designs (Mhaskar,
2006; Alanqar et al., 2017c; Lao et al., 2013). Because such equipment
limitations have been recognized to play an important role in the
effectiveness of MPC designs and in maintaining closed-loop stability and
process operational safety, developments in economic model predictive
control (EMPC) (Ellis et al., 2014a; Rawlings et al., 2012; Müller

3
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4 Introduction

et al., 2015; Amrit et al., 2013; Limon et al., 2014), which is an
MPC with a modified objective function (compared to the traditional
industrial design) that does not take its minimum at a process steady-
state and therefore may operate a process in a time-varying fashion,
can incorporate similar techniques. The methods for accounting for
equipment limitations just described are handled at the design stage
of MPC/EMPC when it is still possible to add appropriate constraints
and abilities for model updating or controller reconfiguration to the
control system.

Despite recognition of the importance of accounting for equipment
limitations like hard bounds and equipment failure in MPC and EMPC,
little emphasis has been placed on accounting for equipment behavior in
a dynamic context. Though it could be argued that the traditional meth-
ods utilized for model updating in MPC based on process data (Marlin
and Hrymak, 1996) and data-based on-line model update methods for
EMPC (Alanqar et al., 2017b) can account for time-varying process
dynamics attributable to equipment issues such as catalyst deactivation
and heat exchanger fouling, these methods do not explicitly analyze the
dynamic behavior of equipment to understand how it may, like other
limitations/failure mechanisms of equipment, imply that adjustment
may need to be made to MPC/EMPC designs at the design stage.
Several works on MPC accounting for valve behavior through various
constraints (e.g., Zabiri and Samyudia, 2006; del Carmen Rodríguez
Liñán and Heath, 2012) have appeared. However, these have not taken
the dynamic behavior of the valves explicitly into account in the dynamic
model utilized for making state predictions. Srinivasan and Rengaswamy
(2008) explored a compensation method for valve stiction in which a
compensating signal to be added to the output of a linear controller for
a process is computed by an optimization problem with a model that
includes a data-driven stiction model (it is EMPC-like, taking advantage
of a prediction horizon to compute a number of compensating signals
throughout this horizon and only applying the first). Several recent
works (e.g., Durand et al., 2017; Durand and Christofides, 2016; Bacci
di Capaci et al., 2017) have focused on explicitly accounting for the
dynamic behavior of valves in MPC/EMPC. It has been demonstrated
that in addition to updates to the model utilized for making state

Full text available at: http://dx.doi.org/10.1561/2600000015
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predictions in MPC/EMPC to handle the valve behavior, adjustments
may also need to be made to the design itself, incorporating different
constraints than in the case that the valve dynamics can be neglected.
Furthermore, the time-varying nature of the input trajectories that
may be set up under an EMPC may cause equipment considerations
to become relevant that may not have been previously observed when
steady-state tracking was the operational goal.

Motivated by these recent developments indicating that accounting
for dynamic valve behavior in control design can be critical to the success
of an MPC/EMPC formulation, we focus in this work on analyzing the
literature related to valve behavior in EMPC to bring to the forefront the
notion that despite the general trend in the literature toward neglecting
equipment behavior, equipment behavior should be accounted for within
EMPC at the design stage. Using the literature focused on accounting
for valve behavior in EMPC as a guide, we highlight the necessity
of accounting for equipment behavior in EMPC from an economics
and a constraint satisfaction viewpoint and also indicate that it may
not be possible to develop EMPCs without accounting for equipment
behavior and then expect that all results will readily translate to the
case with equipment behavior accounted for in the model utilized for
making state predictions. To demonstrate this, we select several recent
EMPC developments which have not explicitly considered process-valve
or process-equipment systems within the design, and suggest that the
relevant dynamics of process-equipment systems may not fit within the
traditional set of assumptions developed when equipment behavior is
neglected. Therefore, equipment behavior must be considered from the
start of EMPC design; if it is not, it may be necessary to assess whether
developments in the literature can be directly applied to practical
systems in which equipment plays a role before utilizing such designs.

Full text available at: http://dx.doi.org/10.1561/2600000015
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