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Abstract

We survey the average-case complexity of problems in NP.
We discuss various notions of good-on-average algorithms, and

present completeness results due to Impagliazzo and Levin. Such com-
pleteness results establish the fact that if a certain specific (but some-
what artificial) NP problem is easy-on-average with respect to the uni-
form distribution, then all problems in NP are easy-on-average with
respect to all samplable distributions. Applying the theory to natu-
ral distributional problems remain an outstanding open question. We
review some natural distributional problems whose average-case com-
plexity is of particular interest and that do not yet fit into this theory.

A major open question is whether the existence of hard-on-average
problems in NP can be based on the P 6=NP assumption or on related
worst-case assumptions. We review negative results showing that cer-
tain proof techniques cannot prove such a result. While the relation
between worst-case and average-case complexity for general NP prob-
lems remains open, there has been progress in understanding the rela-
tion between different “degrees” of average-case complexity. We discuss
some of these “hardness amplification” results.
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1

Introduction

The study of the average-case complexity of intractable problems began
in the 1970s motivated by two distinct applications: the development of
the foundations of cryptography and the search for methods to “cope”
with the intractability of NP-hard problems.

All definitions of security for cryptographic problems require that
any efficient algorithm that tries to “break” the protocol “succeeds”
only with a very small probability. The formalizations of breaking and
succeeding depend on the specific application, but it has been known
since the 1980s that there is a unifying concept: no cryptographic task
(e.g., electronic signature or data encryption) is possible unless one-way
functions exist.1 Informally, a one-way function is an efficiently com-
putable function f : {0,1}∗ → {0,1}∗ that maps {0,1}n to {0,1}n and
such that, if we are given f(x) for a random x ∈ {0,1}n, it is intractable
(in time polynomial in n) to find a pre-image x′ such that f(x′) = f(x).
In particular, the existence of one-way functions implies that there is
a search problem in NP (given y ∈ {0,1}n, find x ∈ {0,1}n such that
f(x) = y) that is intractable to solve on random inputs sampled from

1 The realizability of many cryptographic tasks, in fact, is equivalent to the assumption that
one-way functions exist.

1
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2 Introduction

a simple distribution (the distribution f(x), where x is chosen ran-
domly from {0,1}n). The fact that all of cryptography is predicated
on the existence of average-case intractable problems in NP is a main
motivation for the study of the theory we describe in this study.

In particular, a long-standing open question is whether it is possible
to base the existence of one-way functions on the P 6= NP assumption,
or related ones (such as NP-complete problems not allowing polynomial
size circuits).

The second motivation for the study of the average-case complex-
ity of problems in NP comes from the analysis of heuristic algorithms.
Unless P = NP, we cannot hope for efficient algorithms that solve NP-
complete problems exactly on all inputs. We may hope, however, for
algorithms that are “typically efficient” on inputs sampled from distri-
butions that occur in practice. In order to understand the limitations
of such an approach, it would be desirable to have an “average-case
analog” of the theory of NP-completeness. Such a theory would enable
us to prove that for certain problems, with respect to certain distribu-
tions, it is impossible to have algorithms that perform well on “typical”
inputs, unless an entire class of presumably intractable problems can
be efficiently solved.

The basic foundations of such a theory have been laid out. Sur-
prisingly, subtle difficulties arise even when just developing the analogs
of trivial elements of the theory of NP-completeness, such as the def-
initions of computational problem, efficient algorithm, reduction, and
completeness, and the equivalent complexity of decision versus search
for NP-complete problems. In this study we will discuss these difficul-
ties and show how they were resolved. We will see a number of results,
insights, and proof techniques the usefulness of which goes beyond the
study of average-case complexity.

The right techniques to apply such a theory to natural problems and
distributions have not been discovered yet. From this point of view, the
current state of the theory of average-case complexity in NP is simi-
lar to the state of the theory of inapproximability of NP optimization
problems before the PCP Theorem.

Finding ways of applying this theory to natural problems is another
outstanding open question in this area.

Full text available at: http://dx.doi.org/10.1561/0400000004



1.1. Roadmap 3

1.1 Roadmap

In this section we give an overview of the content of this survey.

1.1.1 Definitions of tractability

The first difficulty in developing a theory of average-case intractability
is to come up with a formal definition of what it means for a prob-
lem to be “intractable on average” or, equivalently, what it means to
be “average-case tractable.” A natural definition would be to consider
an algorithm efficient-on-average if it runs in expected polynomial time.
Such a definition has various shortcomings (related to the fact that it
is too restrictive). For example, if an algorithm A runs in time t(x),
and its simulation B (in a different model of computation) runs in
time t2(x), it is natural that we would like our definition to be such
that A is efficient-on-average if and only if B is. Suppose, however,
that our inputs come from the uniform distribution, and that A runs
in time n2 on all inputs of length n, except on one input on which
A takes time 2n. Then the expected running time of A is polynomial
but the expected running time of B is exponential. Looking at the
median running time of an algorithm gives us a more robust measure
of complexity, but still a very unsatisfactory one: if an algorithm runs
in polynomial time on 70% of the inputs, and in exponential time on
30% of the inputs, it seems absurd to consider it an efficient-on-average
algorithm. The right way to capture the notion of “efficient on typical
instances” should be that it is fine for an algorithm to take a large
amount of time on certain inputs, provided that such inputs do not
occur with high probability: that is, inputs requiring larger and larger
running times should have proportionally smaller and smaller proba-
bility. This is the idea of Levin’s definition of average-case complexity.
In (an equivalent formulation of) Levin’s definition [53], an algorithm
is polynomial-time-on-average if there is a constant c > 0 such that the
probability, over inputs of length n, that the algorithm takes more than
time T is at most poly(n)/T c. As is usual with complexity theory, vari-
ous choices can be made in the definition: we may look at deterministic
algorithms, randomized algorithms, or non-uniform families of circuits.
An additional choice is whether we require our algorithm to always be

Full text available at: http://dx.doi.org/10.1561/0400000004



4 Introduction

correct, but possibly run in superpolynomial time on some inputs, ver-
sus requiring the algorithm to always run in polynomial time, but to
give an incorrect answer to some inputs. This will lead to several possi-
ble definitions, each meaningful in some applications. (See Chapter 2.)
The important thing will be that almost all the results we discuss in
this study are based on reductions that preserve tractability under all
of these definitions. Hence, the treatment of completeness, reductions,
families of distributions, and decision versus search is independent of
the specific notion of tractability that one is interested in.

1.1.2 Reductions between distributional problems

Let L be a decision problem and D be a distribution over inputs2;
we call the pair (L,D) a distributional problem. All the definitions of
average-case tractability have a characteristic in common: an algorithm
A is efficient for (L,D) if a certain set of “bad” inputs has low proba-
bility under D. (The bad inputs could be the ones where the algorithm
A takes a very long time, or those on which A outputs an incorrect
answer.) This motivates the following definition of reduction [53]: we
say that (L,D) reduces to (L′,D′) if there is a polynomial time com-
putable function f such that x ∈ L if and only if f(x) ∈ L′ and, in
addition, for every input y, the probability of generating y by pick-
ing x at random according to D and then computing f(x) is at most
poly(|x|) larger than the probability of sampling y at random from D′.3

The motivation for this definition is the following. Suppose that A′ is
a good algorithm for (L′,D′), so that the set B′ of inputs that are bad
for A′ has a small probability according to D′. Consider the following
algorithm for (L,D): on input x, output A′(f(x)). Now, the bad inputs
for this algorithm are the inputs x such that f(x) ∈ B′. The probability
of sampling such an x, according to D, however, is upper bounded by
poly(|x|) times the probability of sampling an element of B′ according
to D′, which we had assumed to be small. Hence, we have a good algo-
rithm for (L,D), and the definition of reduction preserves average-case
tractability. Note that, in this argument, we used nothing about the

2 Additional difficulties arise in defining how to specify D.
3 When the second condition holds, we say that D′ dominates D.
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1.1. Roadmap 5

definition of tractability except the notion of “bad” input. (See also
Chapter 3.)

1.1.3 A completeness result

Having given the definition of computational problem and of reduction,
we will present a completeness result [53]. We consider the bounded
halting problem BH, where on input (M,x,1t) we have to determine
whether the non-deterministic Turing machine M accepts input x

within t steps. This problem is readily seen to be NP-complete. We
show that for every distributional problem (L,D), where L is in NP
and D is a polynomial-time computable distribution there is a reduc-
tion from (L,D) to (BH,UBH), where UBH is a reasonable formalization
of the notion of a “uniformly chosen” random input for BH. Informally,
the reduction maps an input x into the triple (M ′,C(x),1t), where C

is a (carefully chosen) injective polynomial-time computable encoding
function; M ′ is a non-deterministic machine that first recovers x from
C(x) and then simulates the non-deterministic polynomial time Turing
machine that decides whether x ∈ L (recall that L is in NP); and t is
a polynomial upper bound to the running time of M ′. The main claim
in the analysis of the reduction is that, for x selected from D, C(x) is
“approximately” uniformly distributed. Technically, we show that the
distribution of C(x) is dominated by the uniform distribution. This
will follow from a choice of C as an information-theoretically optimal
compression scheme.

The completeness result implies that if (BH,UBH) has a good-on-
average algorithm (according to one of the possible definitions), then
all problems (L,D), where L is in NP and D is polynomial-time com-
putable, also have good-on-average algorithms.

The proof uses the fact that all polynomial-time computable dis-
tributions D allow polynomial-time computable optimal compression
schemes. Many natural distributions are polynomial-time computable,
but there are a number of important exceptions. The output of a
pseudorandom generator, for example, defines a distribution that is
not optimally compressible in polynomial time and, hence, is not
polynomial-time computable.

Full text available at: http://dx.doi.org/10.1561/0400000004



6 Introduction

1.1.4 Decision versus search

The second result that we present, due to Ben-David et al. [12], shows
that if (BH,UBH) has a good-on-average algorithm, then for all NP rela-
tions R and all polynomial-time computable distributions D, there is an
efficient algorithm that, given x sampled from D, almost always finds a
y such that R(x,y), provided that such a y exists. This shows that the
question of whether there are intractable-on-average search problems
in NP (with respect to polynomial-time computable distributions) is
equivalent to the question of whether there are intractable-on-average
decision problems in NP (with respect to such distributions). Both
questions are equivalent to the specific decision problem (BH,UBH)
being intractable.

1.1.5 Computable, samplable, and arbitrary distributions

The restriction of the completeness result to samplable distributions is
quite undesirable because it rules out reasonably natural distributions
that can occur in certain applications. Ideally, it would be desirable that
the theory put no restriction whatsoever on the distributions, and that
we could prove results of the form “if there is a good-on-average algo-
rithm for (BH,UBH), then for every L in NP and every distribution D
there is a good-on-average algorithm for (L,D).” The conclusion, how-
ever, is equivalent to P = NP.4 More specifically, there is a distribution
D such that, for every language L in NP, if there is a good-on-average
algorithm for (L,D) then there is an efficient worst-case algorithm for
L. As we discuss below, there are difficulties in relating the worst-
case complexity to the average-case complexity of all problems in NP,
and so it seems unlikely that the theory can be generalized to han-
dle completely arbitrary distributions. An important intermediate case
between polynomial-time computable distributions and arbitrary dis-
tributions is the class of polynomial-time samplable distributions. This
class includes some natural distributions that are not polynomial-time
computable (e.g., the output of a pseudorandom generator), and an

4 This was first proved by Levin. In Section 2.5 we present a later proof by Li and Vitányi
[55].
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1.1. Roadmap 7

argument can be made that any distribution that occurs “in nature”
should be samplable. Impagliazzo and Levin [42] show that the com-
pleteness result can be extended to all samplable distributions. That is,
if (BH,UBH) admits a good-on-average algorithm, then for every prob-
lem L in NP and every samplable distribution D, the problem (L,D)
has a good-on-average algorithm. In Sections 5.1 and 5.2, we present
two proofs of this result. A simpler one, appearing in the article of
Impagliazzo and Levin, which applies only to some (but not all) defini-
tions of “good-on-average,” and a second proof, also due to Impagliazzo
and Levin, but unpublished, that is more complex but that applies to
all definitions. The first proof is similar to the proof of the complete-
ness result for polynomial-time computable distributions, but using a
randomized encoding scheme. An input x for L is mapped into an input
(M ′,(r,C(r,x)),1t) for BH, where r is randomly chosen. The desired
properties of the randomized encoding C are (i) over the choices of r,
the encoding x→ (r,C(x,r)) is “approximately injective,” and (ii) the
distribution (r,C(x,r)) is “approximately uniform” when r is uniformly
chosen and x is sampled from D. Some additional difficulties arise: in
order to compute the randomized encoding one needs some extra infor-
mation about x, and the reduction just “guesses” all possible values
for this extra information, and, for technical reasons, this forces us to
work with the search rather than the decision version of L. This is done
without loss of generality given the reduction of Ben-David et al. [12].
The idea for the second proof is that, if S is the sampling algorithm for
L, and L is hard-on-average over the outputs of S, then the problem
“on input r, is it true that S(r) ∈ L?” should be hard-on-average with
respect to the uniform distribution. This intuition is quite difficult to
translate into a proof, especially in the case in which the computation
of the sampler S is a one-way function.

1.1.6 Worst case versus average case

In order to unify the theory of average-case complexity with the rest of
complexity theory, it would be highly desirable to prove a theorem of
the form, “if P 6= NP then there is a hard-on-average problem (L,D),
where L is in NP and D is samplable.” In order to prove such a result

Full text available at: http://dx.doi.org/10.1561/0400000004



8 Introduction

via a reduction, we would need to find an oracle algorithm R (the
reduction) such that if A is a good-on-average algorithm for (L,D),
then RA is a worst-case efficient algorithm for, say, 3SAT. Feigenbaum
and Fortnow [27] show that (under standard assumptions) such a result
cannot be proved via a non-adaptive random reduction, that is, via an
algorithm R that makes non-adaptive queries and such that each query
has the distribution D (regardless of the input of R). Bogdanov and
Trevisan [15] show that the same impossibility result holds even if R is
allowed to make arbitrary non-adaptive queries, provided that R works
for arbitrary oracles. It remains possible that a worst-case-to-average-
case reduction in NP exists which makes adaptive access to the oracle,
or that uses the code of the algorithm A (and, hence, does not work for
arbitrary oracles). Guttfreund and Ta-Shma [37] make some progress
in the latter direction. An even more ambitious goal is to show, via
reductions, that “if P 6= NP then one-way functions exist.” The result
of Bogdanov and Trevisan rules out the possibility of proving such a
result via oracle non-adaptive reductions; Akavia et al. [9] present a
simpler proof in the setting of one-way functions (which, unlike the
Bogdanov-Trevisan proof, works also in the uniform setting) and are
also able, for a restricted class of one-way functions, to rule out non-
adaptive reductions.

1.1.7 Degrees of average-case intractability

If a problem L is worst-case intractable, then every efficient algo-
rithm makes an infinite number of mistakes; if a problem (L,D) is
average-case intractable, then every efficient algorithm makes mis-
takes5 on a set of inputs that has noticeably large probability accord-
ing to D. Given the difficulties in relating these two settings, it is
interesting to ask what happens if we consider different quantita-
tive formulations of “noticeably large.” O’Donnell [61] shows that any
quantification between 1/2 − 1/n.33 and 1/poly(n) leads essentially to
an equivalent intractability assumption. O’Donnell’s argument, pre-
sented in Chapter 6, gives a far-reaching generalization of Yao’s XOR
Lemma [76].

5 Or fails, depending on the definition of average-case tractability that we are using.
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1.2. A historical overview 9

1.1.8 Specific problems

Eventually, we would like the theory to talk about the complexity of
specific natural problems with specific natural distributions. It follows
from Cook’s reduction that if there is a hard-on-average problem (L,D),
where L is in NP and D is samplable, then every NP-hard problem is
hard on average with respect to some samplable distribution, albeit
a very unnatural one. On the other hand, Levin’s completeness result
shows (under the same assumption) that there are hard-on-average
problems (L,D), where D is uniform, but L is quite artificial. Yet,
the theory of average-case completeness has little to say about specific
cases of interest where both L and D are natural: for instance, the
hardness of 3SAT or maximum independent set with respect to natural
distributions on inputs.

A specific problem whose average-case behavior has been widely
investigated is random kSAT with respect to the following distribution
of instances: Choose at random mk(n) out of the 2k

(
n
k

)
possible clauses

of kSAT independently. The tractability of this problem appears to
depend heavily on the number of clauses mk(n). While it is believed
that random kSAT is hard for certain choices of mk(n), no hardness
result supporting this intuition is known. However, Feige [23] shows the
following surprising connection between hardness of random 3SAT and
hardness of approximation: Assuming that random 3SAT is hard for
certain values of m3(n), it is worst-case hard to approximate certain
problems in NP (e.g., maximum bipartite clique within n−ε for some
ε > 0.)

For certain lattice problems we know an equivalence between worst-
case and average-case complexity [5, 57, 59, 64]. If such equivalences
could be proved for NP-complete lattice problems, we would have a
positive solution to the question of whether the existence of hard-on-
average problems in NP can be based on the worst-case hardness of
NP-complete problems.

1.2 A historical overview

In this section we review the historical progression toward the results
described in the previous section.

Full text available at: http://dx.doi.org/10.1561/0400000004



10 Introduction

1.2.1 One-way functions and cryptography

The average-case performance of algorithms on random inputs has been
studied since the beginning of the modern theory of efficient algorithms
in the 1950s and 1960s. Such work was often focused on problems for
which worst-case polynomial-time algorithms were also known. The
third volume of The art of computer programming [49] (published in
1973) extensively surveys average-case analyses of algorithms for prob-
lems such as sorting and median finding.

The study of the average case of (conjectured) intractable problems
began in the 1970s motivated by the development of the foundations of
cryptography and by interest in heuristic approaches to NP-complete
problems.

When Diffie and Hellman [20] introduced the notion of public key
cryptography, they speculated that one could base a trapdoor permu-
tation on the difficulty of an NP-complete problem.6 Even, Yacobi and
Lempel [22,51] devised a public key cryptosystem such that an efficient
adversary that breaks the system for every key implies an efficient algo-
rithm for an NP-complete problem. An efficient adversary that breaks
the system on almost all keys, however, is also discussed.

Shamir [68] discusses the difficulty in formulating a definition of
intractability for cryptographic applications. Worst-case complexity is
immediately seen as inadequate. Furthermore, Shamir emphasizes that
a cryptographic system cannot be considered secure if there is an attack
that takes expected polynomial time. In fact, Shamir adds, it is not
even enough to rule out expected polynomial time attacks. Consider,
for example, a system that can be broken by an attacker whose expected
running time is very large but whose median running time is efficient.
This is possible if the attacker takes a very long time, say, on one-third
of the keys but is efficient otherwise. Even though the expected running
time of the adversary is large, such a system cannot be considered
secure.

6 Indeed, Diffie and Hellman give two main justifications for their claim that “we stand on

the brink of a revolution in cryptography”: the availability of cheap and efficient computers
(in the 1970s!) and the development of NP-completeness.
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1.2. A historical overview 11

The median running time of an adversary is thus a better complex-
ity measure of the expected running time, Shamir notes, but one needs
to go beyond, and consider the running time of, say, the 1% fraction of
inputs on which the algorithm is fastest. This short discussion antici-
pates the formal definition of one-way function and the difficulties in
defining a robust notion of “average-case tractability” in Levin’s theory
of average-case complexity.

The work of Blum, Goldwasser, Micali, and Yao [35,14,76] put cryp-
tography on solid foundational grounds, and introduced the modern
definitions of one-way functions, trapdoor permutations, pseudoran-
dom generators, and secure encryption. In their definition, an efficiently
computable function f is one-way if there is no polynomial-time algo-
rithm that finds a pre-image of f(x) with more than inverse polynomial
probability over the choice of x. This means that if f is a one-way func-
tion, then the computational problem “given y = f(x) find a pre-image
of y,” has no algorithm of expected polynomial time, no algorithm of
median polynomial time, no algorithm that runs in polynomial time on
the easiest 1% fraction of inputs, and so on.

1.2.2 Levin’s theory of average-case intractability

The development of the theory of NP-completeness gave evidence that
a large number of important computational problems do not admit
worst-case efficient algorithms and motivated the design of good-on-
average algorithms as a way to “cope” with intractability.

Following this approach, the goal is to analyze worst-case
superpolynomial-time algorithms for NP-complete problems and to
show that on “typical” instances they are efficient. A celebrated
example is Karp’s algorithm for TSP in the plane [46]. An anno-
tated bibliography by Karp et al. [47] written in 1985 reports several
results on average-case tractability of NP-complete problems on natural
distributions.

The initial success in the design of good-on-average algorithms led
to the question of the limitations of such an approach. Are there NP-
complete problems that, with respect to natural distributions, do not
even have good-on-average algorithms? Are there general techniques,
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analogous to the theory of NP-completeness, to prove average-case
intractability?7

Levin [53] laid the foundations for a theory of the average-case
tractability of problems in NP. He introduced the definition of average-
case tractability and of reduction outlined above and proved the first
completeness result, for the class (NP,PComp) of problems (L,D) such
that L is in NP and D is polynomial-time computable.

Levin’s article, both in the one-page conference version and in
the two-page full version [53], gives few details about the intuition
behind the definitions and the possibility of generalized or alternative
definitions.

Ben-David et al. [12] consider two issues not addressed in Levin’s
article. One issue is the class of distributions to consider. Levin restricts
his attention to the class of “polynomial time computable distribu-
tions” that includes several natural distributions but that excludes, for
example, the output of a pseudorandom generator and other natural
distributions. Ben David et al. observe that the more general class of
“efficiently samplable” distributions is a better formalization of the
notion of natural distribution and formulate the question of whether
Levin’s completeness result can be extended to the corresponding class
(NP,PSamp) of distributional problems (L,D) such that L is in NP
and D is samplable. Another issue studied in [12] is the average-case
complexity of decision versus search problems, and their main result
shows that if every decision problem in NP can be solved efficiently
with respect to the uniform distribution, then every search problem
in NP can also be solved efficiently with respect to the uniform dis-
tribution. Impagliazzo and Levin [42], solving the main open question
formulated in [12], prove that there is a problem that is complete for
(NP,PSamp).

7 Interestingly, around the same time (mid-1970s), another approach was studied to “cope”

with the intractability of NP-complete optimization problems, namely, to design provably

efficient approximate algorithms that deliver near-optimal solutions, and the question was
asked of when not even such algorithms exist. In the 1990s, the theory of probabilistically

checkable proofs gave a powerful tool to prove intractability of approximation problems.

A satisfactory and general theory to prove average-case intractability, unfortunately, does
not exist yet.
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1.2.3 Average-case intractability and derandomization

Yao [76] proves that the existence of pseudorandom generators implies
the possibility of derandomizing probabilistic algorithms, and that
pseudorandom generators can be constructed using one-way permu-
tations. (H̊astad et al. [39] later proved that the existence of one-
way functions is sufficient.) The existence of a one-way permutation
f can be stated as the average-case intractability of the distribu-
tional search problem of inverting f on a random input, so Yao’s
result proves that a specific average-case assumption (for certain search
problems within NP) implies derandomization of probabilistic algo-
rithms. The connection between average-case complexity and deran-
domization became more direct, simpler, and more general in the work
of Nisan and Wigderson [60]. Their work requires the existence of
hard-on-average distributional decision problems in EXP. The work
of Nisan and Wigderson raised the question of whether derandomiza-
tion could be based on worst-case assumptions about problems in EXP
instead of average-case assumptions. The question led to the study of
worst-case versus average-case complexity in EXP, and to such tools
as random self-reduction [10], amplification of hardness [41, 44], and
error-correcting codes [69]. As a result of this decade-long investiga-
tion, we now know that worst-case and average-case are equivalent in
complexity classes such as EXP and PSPACE. The interested reader
can find an account of such results in survey articles by Trevisan [71]
(see, in particular, Chapter 4) and by Kabanets [45].

1.2.4 Worst-case versus average case within NP

The proofs of the worst-case and average-case equivalence for complete
problems in EXP, PSPACE, and other classes raise the question of
whether a similar worst-case and average-case equivalence also holds for
intractable problems within NP. This is related to fundamental ques-
tions in the foundations of cryptography: Is it possible to base one-way
functions on NP-completeness? If so, what about one-way permutations
or public key encryption?

On the one hand, it is easy to see that one-way permutations can-
not be based on NP-completeness, unless NP = coNP (or AM = coAM,
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if one allows randomized reductions, or NP/poly = coNP/poly, if one
allows non-uniform reductions). Not even the intractability of worst-
case inversion can be based on NP-completeness (see Section 7.2).

On the other hand, it is possible to define “one-way functions” that
are computable in polynomial time and that cannot have a “worst-case
inverter” (i.e., a polynomial time inverter that works on all inputs)
unless P = NP. For this reason, when we ask whether the existence of
one-way functions (under the standard, average-case, definition) can be
based on NP-completeness, we are asking a question about the average-
case complexity of inverters.

To clarify before we continue: The existence of one-way permu-
tations implies the existence of one-way functions, which implies the
existence of hard-on-average distributional problems in (NP,PSamp),8

which implies that P is different from NP. We do not know how to prove
the inverse of any of those implications, even though we believe that
all the statements are true, and so they all imply each other vacously.

We can ask, however, whether reverse implications can be proved
via reductions, that is, for example, whether there is a distributional
problem (L,D) in (NP,PSamp) and a reduction R such that, for every
algorithm A that solves (L,D) well on average, the reduction R plus
the algorithm A give a worst-case algorithm for 3SAT.

Feigenbaum and Fortnow [27] study a special case of the above ques-
tion. They consider the case in which R is a “non-adaptive random self-
reduction.” They show that the existence of such a reduction implies
the collapse of the polynomial hierarchy (which contradicts standard
conjectures). The result of Feigenbaum and Fortnow rules out a cer-
tain way of proving equivalence of worst-case and average-case for NP-
complete problems, including the way used in the work on EXP and
PSPACE [10,41,44,69] (see Section 7.3).

In a celebrated breakthrough, Ajtai [5], describes a distributional
problem in (NP,PComp) whose average-case complexity is at least as
high as the worst-case complexity of a related (promise) problem in
NP–a version of the shortest vector problem for lattices in Rn. Ajtai
also proves the existence of one-way functions that are based on the

8 This implication is non-trivial; see Section 4.3.
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worst-case complexity of problems in NP. Ajtai and Dwork [7] present
a public key cryptosystem based on a worst-case assumption, and Mic-
ciancio and Regev [57,59,64] present various improvements.

The security of the cryptosystems of Ajtai, Dwork, Micciancio, and
Regev relies on the worst-case complexity of problems that are not
known to be NP-complete and, in fact, are in NP ∩ coNP. It remains
an open question whether these techniques can be refined and improved
to the point where cryptography primitives can be constructed that rely
on the worst-case complexity of an NP-complete problem.

Bogdanov and Trevisan [15] prove that no non-adaptive worst-
case to average-case reduction exists for NP-complete problems unless
NP/poly = coNP/poly. Akavia et al. [9] prove that one-way functions
cannot be based on NP-complete problems via non-adaptive reductions
unless AM = coAM (see Section 7.3).

It seems likely that reductions cannot relate worst-case and average-
case hardness in NP. What about different degrees of average-case
intractability? For instance, if there exist distributional problems in
NP that are hard on some non-negligible fraction of instances, does
it follow that there are distributional problems in NP that are hard
on almost all instances? These questions have been answered in the
affirmative by O’Donnell [61] and Healy, Vadhan, and Viola [40] in the
non-uniform setting and by Trevisan [70,72] in the uniform setting (see
Chapter 6).
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