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Abstract

Error-correcting codes are used to cope with the corruption of data
by noise during communication or storage. A code uses an encoding
procedure that judiciously introduces redundancy into the data to pro-
duce an associated codeword. The redundancy built into the codewords
enables one to decode the original data even from a somewhat distorted
version of the codeword. The central trade-off in coding theory is the
one between the data rate (amount of non-redundant information per
bit of codeword) and the error rate (the fraction of symbols that could
be corrupted while still enabling data recovery). The traditional decod-
ing algorithms did as badly at correcting any error pattern as they
would do for the worst possible error pattern. This severely limited the
maximum fraction of errors those algorithms could tolerate. In turn,
this was the source of a big hiatus between the error-correction per-
formance known for probabilistic noise models (pioneered by Shannon)
and what was thought to be the limit for the more powerful, worst-case
noise models (suggested by Hamming).

In the last decade or so, there has been much algorithmic progress
in coding theory that has bridged this gap (and in fact nearly elimi-
nated it for codes over large alphabets). These developments rely on
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an error-recovery model called “list decoding,” wherein for the patho-
logical error patterns, the decoder is permitted to output a small list of
candidates that will include the original message. This book introduces
and motivates the problem of list decoding, and discusses the central
algorithmic results of the subject, culminating with the recent results
on achieving “list decoding capacity.”
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1

Introduction

1.1 Codes and noise models

Error-correcting codes enable reliable transmission of information over
a noisy communication channel. The idea behind error-correcting codes
is to encode the message to be transmitted into a longer, redundant
string (called a codeword) and then transmit the codeword over the
noisy channel. The redundancy is judiciously chosen in order to enable
the receiver to decode the transmitted codeword even from a somewhat
distorted version of the codeword. Naturally, the larger the amount of
noise (quantified appropriately, according to the specific channel noise
model) one wishes to correct, the greater the redundancy that needs
to be introduced during encoding. A convenient measure of the redun-
dancy is the rate of an error-correcting code, which is the ratio of the
number of information bits in the message to the number of bits in the
codeword. The larger the rate, the less redundant the encoding.

The trade-off between the rate and the amount of noise that can be
corrected is a fundamental one, and understanding and optimizing the
precise trade-off is one of the central objectives of coding theory. The
optimal rate for which reliable communication is possible on a given

3
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4 Introduction

noisy channel is typically referred to as “capacity.” The challenge is
to construct codes with rate close to capacity, together with efficient
algorithms for encoding and error correction (decoding).

The underlying model assumed for the channel noise crucially gov-
erns the rate at which one can communicate while tolerating noise.
One of the simplest models is the binary symmetric channel; here the
channel flips each bit independently with a certain cross-over prob-
ability p. It is well-known that the capacity of this channel equals
1 − H(p) where H(x) = −x log2 x − (1 − x) log2(1 − x) is the binary
entropy function. In other words, there are codes of rate up to
1 − H(p) that achieve probability of miscommunication approaching 0
(for large message lengths), and for rates above 1 − H(p), no such codes
exist.

The above was a stochastic model of the channel, wherein we took
an optimistic view that we knew the precise probabilistic behavior of
the channel. This stochastic approach was pioneered by Shannon in
his landmark 1948 paper that marked the birth of the field of infor-
mation theory [65]. An alternate, more combinatorial approach, put
forth by Hamming [46], models the channel as a jammer or adversary
that can corrupt the codeword arbitrarily, subject to a bound on the
total number of errors it can cause. This is a stronger noise model since
one has to deal with worst-case or adversarial, as opposed to typical,
noise patterns. Codes and algorithms designed for worst-case noise are
more robust and less sensitive to inaccuracies in modeling the pre-
cise channel behavior (in fact, they obviate the need for such precise
modeling!).

This survey focuses on the worst-case noise model. Our main objec-
tive is to highlight that even against adversarial channels, one can
achieve the information-theoretically optimal trade-off between rate
and fraction of decodable errors, matching the performance possible
against weaker, stochastic noise models. This is shown for an error
recovery model called list decoding, wherein for the pathological, worst-
case noise patterns, the decoder is permitted to output a small list
of candidate messages that will include the correct message. We next
motivate the list decoding problem, and discuss how it offers the hope
of achieving capacity against worst-case errors.
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1.2. List decoding: Context and motivation 5

Remark 1. [Arbitrarily varying channel]
The stochastic noise model assumes knowledge of the precise prob-

ability law governing the channel. The worst-case model takes a con-
servative, pessimistic view of the power of the channel assuming only
a limit on the total amount of noise. A hybrid model called Arbitrarily
Varying Channel (AVC) has also been proposed to study communi-
cation under channel uncertainty. Here the channel is modeled as a
jammer which can select from a family of strategies (corresponding to
different probability laws) and the sequence of selected strategies, and
hence the channel law, is not known to the sender. The strategy can in
general vary arbitrarily from symbol to symbol, and the goal is to do
well against the worst possible sequence. A less powerful model is that
of the compound channel where the jammer has a choice of strategies,
but the chosen channel law does not change during the transmission of
various symbols of the codeword. AVCs have been the subject of much
research – the reader can find a good introduction to this topic as well
as numerous pointers to the extensive literature in a survey by Lapi-
doth and Narayan [54]. To the author’s understanding, it seems that
much of the work has been of a non-constructive flavor, driven by the
information-theoretic motivation of determining the capacity under dif-
ferent AVC variants. There has been less focus on explicit constructions
of codes or related algorithmic issues.

1.2 List decoding: Context and motivation

Given a received word r, which is a distorted version of some codeword
c, the decoding problem strives to find the original codeword c. The
natural error recovery approach is to place one’s bet on the codeword
that has the highest likelihood of being the one that was transmitted,
conditioned on receiving r. This task is called Maximum Likelihood
Decoding (MLD), and is viewed as the holy grail in decoding. MLD
amounts to finding the codeword closest to r under an appropriate
distance measure on distortions (for which a larger distortion is less
likely than a smaller one). In this survey, we will measure distortion by
the Hamming metric, i.e., the distance between two strings x,y ∈ Σn
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6 Introduction

is the number of coordinates i ∈ {1,2, . . . ,n} for which xi 6= yi. MLD
thus amounts to finding the codeword closest to the received word in
Hamming distance. No approach substantially faster than a brute-force
search is known for MLD for any non-trivial code family. One, therefore
settles for less ambitious goals in the quest for efficient algorithms. A
natural relaxed goal, called Bounded Distance Decoding (BDD), would
be to perform decoding in the presence of a bounded number of errors.
That is, we assume at most a fraction p of symbols are corrupted by
the channel, and aim to solve the MLD problem under this promise.
In other words, we are only required to find the closest codeword when
there is a codeword not too far away (within distance pn) from the
received word.

In this setting, the basic trade-off question is: What is the largest
fraction of errors one can correct using a family of codes of rate R? Let
C : ΣRn → Σn be the encoding function of a code of rate R (here n is
the block length of the code, and Σ is the alphabet to which codeword
symbols belong). Now, a simple pigeonholing argument implies there
must exist x 6= y such that the codewords C(x) and C(y) agree on the
first Rn − 1 positions. In turn, this implies that when C(x) is transmit-
ted, the channel could distort it to a received word r that is equidistant
from both C(x) and C(y), and differs from each of them in about a
fraction (1 − R)/2 of positions. Thus, unambiguous bounded distance
decoding becomes impossible for error fractions exceeding (1 − R)/2.

However, the above is not a compelling reason to be pessimistic
about correcting larger amounts of noise. This is due to the fact that
received words such as r reflect a pathological case. The way Hamming
spheres pack in high-dimensional space, even for p much larger than
(1 − R)/2 (and in fact for p ≈ 1 − R) there exist codes of rate R (over a
larger alphabet Σ) for which the following holds: for most error patterns
e that corrupt fewer than a fraction p of symbols, when a codeword c
gets distorted into z by the error pattern e, there will be no codeword
besides c within Hamming distance pn of z.1 Thus, for typical noise

1 This claim holds with high probability for a random code drawn from a natural ensemble.
In fact, the proof of Shannon’s capacity theorem for q-ary symmetric channels can be

viewed in this light. For Reed–Solomon codes, which will be our main focus later on, this
claim has been shown to hold, see [19, 59,58].
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1.2. List decoding: Context and motivation 7

patterns one can hope to correct many more errors than the above
limit faced by the worst-case error pattern. However, since we assume
a worst-case noise model, we do have to deal with bad received words
such as r. List decoding provides an elegant formulation to deal with
worst-case errors without compromising the performance for typical
noise patterns – the idea is that in the worst-case, the decoder may
output multiple answers. Formally, the decoder is required to output a
list of all codewords that differ from the received word in a fraction p

of symbols.
Certainly returning a small list of possibilities is better and more

useful than simply giving up and declaring a decoding failure. Even if
one deems receiving multiple answers as a decoding failure, as men-
tioned above, for many error patterns in the target noise range, the
decoder will output a unique answer, and we did not have to model
the channel stochastics to design our code or algorithm! It may also be
possible to pick the correct codeword from the list, in case of multiple
answers, using some semantic context or side information (see [23]).
Also, if in the output list, there is a unique closest codeword, we can
also output that as the maximum likelihood choice. In general, list
decoding is a stronger error-recovery model than outputting just the
closest codeword(s), since we require that the decoder output all the
close codewords (and we can always prune the list as needed). For
several applications, such as concatenated code constructions and also
those in complexity theory, having the entire list adds more power
to the decoding primitive than deciding solely on the closest code-
word(s).

Some other channel and decoding models. We now give pointers
to some other relaxed models where one can perform unique decoding
even when the number of errors exceeds half the minimum Hamming
distance between two codewords. We already mentioned one model
where an auxiliary channel can be used to send a small amount of side
information which can be used to disambiguate the list [23]. Another
model that allows one to identify the correct message with high proba-
bility is one where the sender and recipient share a secret random key,
see [53] and a simplified version in [67].
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8 Introduction

Finally, there has been work where the noisy channel is modeled
as a computationally bounded adversary (as opposed to an all-powerful
adversary), that must introduce the errors in time polynomial in the
block length. This is a very appealing model since it is a reasonable
hypothesis that natural processes can be implemented by efficient com-
putation, and therefore real-world channels are, in fact, computation-
ally bounded. The computationally bounded channel model was put
forth by Lipton [56]. Under standard cryptographic assumptions, it
has been shown that in the private key model where the sender and
recipient share a secret random seed, it is possible to decode correctly
from error rates higher than half-the-minimum-distance bound [21,48].
Recently, similar results were established in a much simpler crypto-
graphic setting, assuming only that one-way functions exist, and that
the sender has a public key known to the receiver (and possibly to the
channel as well) [60].

1.3 The potential of list decoding

The number of codewords within Hamming distance pn of the worst-
case received word r is clearly a lower bound on the runtime of any
list decoder that corrects a fraction p of errors. Therefore, in order
for a polynomial time list decoding algorithm to exist, the underlying
codes must have the a priori combinatorial guarantee of being p-list-
decodable, namely every Hamming ball of radius pn has a small number,
say L(n), of codewords for some polynomially bounded function L(·).2
This “packing” constraint poses a combinatorial upper bound on the
rate of the code; specifically, it is not hard to prove that we must have
R 6 1 − p or otherwise the worst-case list size will grow faster than any
polynomial in the block length n.

Remarkably, this simple upper bound can actually be met. In other
words, for every p, 0 < p < 1, there exist codes of rate R = 1 − p − o(1)
which are p-list-decodable. That is, non-constructively we can show the
existence of codes of rate R that offer the potential of list decoding up
to a fraction of errors approaching (1 − R). We will refer to the quan-
tity (1 − R) as the list decoding capacity. Note that the list decoding

2 Throughout the survey, we will be dealing with the asymptotics of a family of codes of
increasing block lengths with some fixed rate.
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1.4. The origins of list decoding 9

capacity is twice the fraction of errors that one could decode if we
insisted on a unique answer always – quite a substantial gain! Since the
message has Rn symbols, information-theoretically we need at least a
fraction R of correct symbols at the receiving end to have any hope
of recovering the message. Note that this lower bound applies even if
we somehow knew the locations of the error and could discard those
misleading symbols. With list decoding, therefore, we can potentially
reach this information-theoretic limit and decode as long as we receive
slightly more than Rn correct symbols (the correct symbols can be
located arbitrarily in the received word, with arbitrary noise affecting
the remaining positions).

To realize this potential, however, we need an explicit description
of such capacity-achieving list-decodable codes, and an efficient algo-
rithm to perform list decoding up to the capacity (the combinatorics
only guarantees that every Hamming ball of certain radius has a small
number of codewords, but does not suggest any efficient algorithm to
actually find those codewords). The main technical result in this sur-
vey will achieve precisely this objective – we will give explicit codes of
rate R with a polynomial time list decoding algorithm for a fraction
(1 − R − ε) of errors, for any desired ε > 0.

The above description was deliberately vague on the size of the
alphabet Σ. The capacity 1 − R for codes of rate R applies in the limit
of large alphabet size. It is also of interest to ask how well list decoding
performs for codes over a fixed alphabet size q. For the binary (q = 2)
case, to correct a fraction p of errors, list decoding offers the potential
of communicating at rates up to 1 − H(p). This is exactly the capacity
of the binary symmetric channel with cross-over probability p that we
discussed earlier. With list decoding, therefore, we can deal with worst-
case errors without any loss in rate. For binary codes, this remains a
non-constructive result and constructing explicit codes that achieve list
decoding capacity remains a challenging goal.

1.4 The origins of list decoding

List decoding was proposed in the late 50s by Elias [13] and
Wozencraft [78]. Curiously, the original motivation in [13] for formu-
lating list decoding was to prove matching upper and lower bounds on
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10 Introduction

the decoding error probability under maximum likelihood decoding on
the binary symmetric channel. In particular, Elias showed that, when
the decoder is allowed to output a small list of candidate codewords
and a decoding error is declared only when the original codeword is not
on the output list, the average error probability of all codes is almost
as good as that of the best code, and in fact almost all codes are almost
as good as the best code. Despite its origins in the Shannon stochastic
school, it is interesting that list decoding ends up being the right notion
to realize the true potential of coding in the Hamming combinatorial
school, against worst-case errors.

Even though the notion of list decoding dates back to the late
1950s, it was revived with an algorithmic focus only recently, beginning
with the Goldreich–Levin algorithm [17] for list decoding Hadamard
codes, and Sudan’s algorithm in the mid 1990s for list decoding Reed–
Solomon codes [69]. It is worth pointing out that this modern revival
of list decoding was motivated by questions in computational complex-
ity theory. The Goldreich–Levin work was motivated by constructing
hard-core predicates, which are of fundamental interest in complexity
theory and cryptography. The motivation for decoding Reed–Solomon
and related polynomial-based codes was (at least partly) establishing
worst-case to average-case reductions for problems such as the perma-
nent. These and other more recent connections between coding theory
(and specifically, list decoding) and complexity theory are surveyed
in [29,70,74] and [28, Chapter 12].

1.5 Scope and organization of the book

The goal of this survey is to obtain algorithmic results in list decod-
ing. The main technical focus will be on giving a complete presenta-
tion of the recent algebraic results achieving list decoding capacity. We
will only provide pointers or brief descriptions for other works on list
decoding.

The survey is divided into two parts. The first part (Chapters 1–5)
covers the general literature, and the second part focuses on achieving
list decoding capacity. The author’s Ph.D. dissertation [28] provides
a more comprehensive treatment of list decoding. In comparison with
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1.5. Scope and organization of the book 11

[28], most of Chapter 5 and the entire Part II of this survey discuss
material developed since [28].

We now briefly discuss the main technical contents of the various
chapters. The basic terminology and definitions are described in Chap-
ter 2. Combinatorial results which identify the potential of list decoding
in an existential, non-constructive sense are presented in Chapter 3. In
particular, these results will establish the capacity of list decoding (over
large alphabets) to be 1 − R. We begin the quest for explicitly and algo-
rithmically realizing the potential of list decoding in Chapter 4, which
discusses a list decoding algorithm for Reed–Solomon (RS) codes – the
algorithm is based on bivariate polynomial interpolation. We conclude
the first part with a brief discussion in Chapter 5 of algorithmic results
for list decoding certain codes based on expander graphs.

In Chapter 6, we discuss folded Reed–Solomon codes, which are RS
codes viewed as a code over a larger alphabet. We present a decoding
algorithm for folded RS codes that uses multivariate interpolation plus
some other algebraic ideas concerning finite fields. This lets us approach
list decoding capacity. Folded RS codes are defined over a polynomially
large alphabet, and in Chapter 7 we discuss techniques that let us bring
down the alphabet size to a constant independent of the block length.
We conclude with some notable open questions in Chapter 8.
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