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Abstract

Spectral methods refer to the use of eigenvalues, eigenvectors, singu-
lar values, and singular vectors. They are widely used in Engineering,
Applied Mathematics, and Statistics. More recently, spectral methods
have found numerous applications in Computer Science to “discrete”
as well as “continuous” problems. This monograph describes modern
applications of spectral methods and novel algorithms for estimating
spectral parameters. In the first part of the monograph, we present
applications of spectral methods to problems from a variety of top-
ics including combinatorial optimization, learning, and clustering. The
second part of the monograph is motivated by efficiency considera-
tions. A feature of many modern applications is the massive amount
of input data. While sophisticated algorithms for matrix computations
have been developed over a century, a more recent development is algo-
rithms based on “sampling on the fly” from massive matrices. Good
estimates of singular values and low-rank approximations of the whole
matrix can be provably derived from a sample. Our main emphasis in
the second part of the monograph is to present these sampling methods
with rigorous error bounds. We also present recent extensions of spec-
tral methods from matrices to tensors and their applications to some
combinatorial optimization problems.
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1

The Best-Fit Subspace

Many computational problems have explicit matrices as their input
(e.g., adjacency matrices of graphs, experimental observations, etc.)
while others refer to some matrix implicitly (e.g., document-term matri-
ces, hyperlink structure, object–feature representations, network traffic,
etc.). We refer to algorithms which use the spectrum, i.e., eigenvalues
and vectors, singular values, and vectors, of the input data or matri-
ces derived from the input as Spectral Algorithms. Such algorithms are
the focus of this monograph. In the first part of this monograph, we
describe applications of spectral methods in algorithms for problems
from combinatorial optimization, learning, clustering, etc. In the sec-
ond part, we study efficient randomized algorithms for computing basic
spectral quantities such as low-rank approximations.

The Singular Value Decomposition (SVD) from linear algebra and
its close relative, Principal Component Analysis (PCA), are central
tools in the design of spectral algorithms. If the rows of a matrix
are viewed as points in a high-dimensional space, with the columns
being the coordinates, then SVD/PCA are typically used to reduce
the dimensionality of these points, and solve the target problem in
the lower-dimensional space. The computational advantages of such a

3
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4 The Best-Fit Subspace

projection are apparent; in addition, these tools are often able to high-
light hidden structure in the data. Section 1 provides an introduction
to SVD via an application to a generalization of the least-squares fit
problem. The next three chapters are motivated by one of the most
popular applications of spectral methods, namely clustering. Section 2
tackles a classical problem from Statistics, learning a mixture of Gaus-
sians from unlabeled samples; SVD leads to the current best guarantees.
Section 3 studies spectral clustering for discrete random inputs, using
classical results from random matrices, while Section 4 analyzes spec-
tral clustering for arbitrary inputs to obtain approximation guarantees.
In Section 5, we turn to optimization and see the application of tensors
to solving maximum constraint satisfaction problems with a bounded
number of literals in each constraint. This powerful application of low-
rank tensor approximation substantially extends and generalizes a large
body of work.

In the second part of this monograph, we begin with algorithms
for matrix multiplication and low-rank matrix approximation. These
algorithms (Section 6) are based on sampling rows and columns of
the matrix from explicit, easy-to-compute probability distributions and
lead to approximations additive error. In Section 7, the sampling meth-
ods are refined to obtain multiplicative error guarantees. Finally, in
Section 8, we see an affine-invariant extension of standard PCA and a
sampling-based algorithm for low-rank tensor approximation.

To provide an in-depth and relatively quick introduction to SVD
and its applicability, in this opening chapter, we consider the best-fit
subspace problem. Finding the best-fit line for a set of data points is
a classical problem. A natural measure of the quality of a line is the
least-squares measure, the sum of squared (perpendicular) distances
of the points to the line. A more general problem, for a set of data
points in Rn, is finding the best-fit k-dimensional subspace. SVD can
be used to find a subspace that minimizes the sum of squared distances
to the given set of points in polynomial time. In contrast, for other
measures such as the sum of distances or the maximum distance, no
polynomial-time algorithms are known.

A clustering problem widely studied in theoretical computer science
is the k-median problem. In one variant, the goal is to find a set of k

Full text available at: http://dx.doi.org/10.1561/0400000025



1.1 Singular Value Decomposition 5

points that minimize the sum of the squared distances of the data points
to their nearest facilities. A natural relaxation of this problem is to find
the k-dimensional subspace for which the sum of the squared distances
of the data points to the subspace is minimized (we will see that this
is a relaxation). We will apply SVD to solve this relaxed problem and
use the solution to approximately solve the original problem.

1.1 Singular Value Decomposition

For an n × n matrix A, an eigenvalue λ and corresponding eigenvector
v satisfy the equation

Av = λv.

In general, i.e., if the matrix has nonzero determinant, it will have
n nonzero eigenvalues (not necessarily distinct) and n corresponding
eigenvectors.

Here we deal with an m × n rectangular matrix A, where the m
rows denoted A(1),A(2), . . .A(m) are points in Rn; A(i) will be a row
vector.

If m 6= n, the notion of an eigenvalue or eigenvector does not make
sense, since the vectors Av and λv have different dimensions. Instead,
a singular value σ and corresponding singular vectors u ∈Rm,v ∈Rn

simultaneously satisfy the following two equations

1. Av = σu

2. uTA = σvT .

We can assume, without loss of generality, that u and v are unit
vectors. To see this, note that a pair of singular vectors u and v must
have equal length, since uTAv = σ‖u‖2 = σ‖v‖2. If this length is not 1,
we can rescale both by the same factor without violating the above
equations.

Now we turn our attention to the value max‖v‖=1 ‖Av‖2. Since the
rows of A form a set of m vectors in Rn, the vector Av is a list of the
projections of these vectors onto the line spanned by v, and ‖Av‖2 is
simply the sum of the squares of those projections.

Full text available at: http://dx.doi.org/10.1561/0400000025



6 The Best-Fit Subspace

Instead of choosing v to maximize ‖Av‖2, the Pythagorean theorem
allows us to equivalently choose v to minimize the sum of the squared
distances of the points to the line through v. In this sense, v defines
the line through the origin that best fits the points.

To argue this more formally, Let d(A(i),v) denote the distance of
the point A(i) to the line through v. Alternatively, we can write

d(A(i),v) = ‖A(i) − (A(i)v)vT ‖.

For a unit vector v, the Pythagorean theorem tells us that

‖A(i)‖2 = ‖(A(i)v)vT ‖2 + d(A(i),v)2.

Thus we get the following proposition:

Proposition 1.1.

max
‖v‖=1

‖Av‖2 = ||A||2F − min
‖v‖=1

‖A − (Av)vT ‖2F

= ||A||2F − min
‖v‖=1

∑
i

‖A(i) − (A(i)v)vT ‖2

Proof. We simply use the identity:

‖Av‖2 =
∑
i

‖(A(i)v)vT ‖2 =
∑
i

‖A(i)‖2 −
∑
i

‖A(i) − (A(i)v)vT ‖2

The proposition says that the v which maximizes ‖Av‖2 is the “best-
fit” vector which also minimizes

∑
i d(A(i),v)2.

Next, we claim that v is in fact a singular vector.

Proposition 1.2. The vector v1 = argmax‖v‖=1 ‖Av‖2 is a singular
vector, and moreover ‖Av1‖ is the largest (or “top”) singular value.

Proof. For any singular vector v,

(ATA)v = σATu = σ2v.

Full text available at: http://dx.doi.org/10.1561/0400000025



1.1 Singular Value Decomposition 7

Thus, v is an eigenvector of ATA with corresponding eigenvalue σ2.
Conversely, an eigenvector of ATA is also a singular vector of A. To see
this, let v be an eigenvector of ATA with corresponding eigenvalue λ.
Note that λ is positive, since

‖Av‖2 = vTATAv = λvT v = λ‖v‖2

and thus

λ =
‖Av‖2

‖v‖2
.

Now if we let σ =
√
λ and u = Av

σ . it is easy to verify that u,v, and σ

satisfy the singular value requirements.
The right singular vectors {vi} are thus exactly equal to the eigen-

vectors of ATA. Since ATA is a real, symmetric matrix, it has n

orthonormal eigenvectors, which we can label v1, . . . ,vn. Expressing a
unit vector v in terms of {vi} (i.e., v =

∑
iαivi where

∑
iα

2
i = 1), we see

that ‖Av‖2 =
∑

iσ
2
i α

2
i which is maximized exactly when v corresponds

to the top eigenvector of ATA. If the top eigenvalue has multiplicity
greater than 1, then v should belong to the space spanned by the top
eigenvectors.

More generally, we consider a k-dimensional subspace that best fits
the data. It turns out that this space is specified by the top k singular
vectors, as stated precisely in the following proposition.

Theorem 1.3. Define the k-dimensional subspace Vk as the span of
the following k vectors:

v1 = arg max
‖v‖=1

‖Av‖

v2 = arg max
‖v‖=1,v·v1=0

‖Av‖

...

vk = arg max
‖v‖=1,v·vi=0 ∀i<k

‖Av‖,

Full text available at: http://dx.doi.org/10.1561/0400000025



8 The Best-Fit Subspace

where ties for any argmax are broken arbitrarily. Then Vk is optimal
in the sense that

Vk = arg min
dim(V )=k

∑
i

d(A(i),V )2.

Further, v1,v2, . . . ,vn are all singular vectors, with corresponding sin-
gular values σ1,σ2, . . . ,σn and

σ1 = ‖Av1‖ ≥ σ2 = ‖Av2‖ ≥ · · · ≥ σn = ‖Avn‖.

Finally, A =
∑n

i=1σiuiv
T
i .

Such a decomposition where,

1. The sequence of σis is nonincreasing
2. The sets {ui},{vi} are orthonormal

is called the Singular Value Decomposition (SVD) of A.

Proof. We first prove that Vk are optimal by induction on k. The case
k = 1 is by definition. Assume that Vk−1 is optimal.

Suppose V ′k is an optimal subspace of dimension k. Then we can
choose an orthonormal basis for V ′k, say w1,w2, . . .wk, such that wk is
orthogonal to Vk−1. By the definition of V ′k, we have that

||Aw1||2 + ||Aw2
2|| + . . . ||Awk||2

is maximized (among all sets of k orthonormal vectors.) If we replace
wi by vi for i = 1,2, . . . ,k − 1, we have

‖Aw1‖2 + ‖Aw2
2‖ + . . .‖Awk‖2 ≤ ‖Av1‖2 + . . . + ‖Avk−1‖2 + ‖Awk‖2.

Therefore we can assume that V ′k is the span of Vk−1 and wk. It then
follows that ‖Awk‖2 maximizes ‖Ax‖2 over all unit vectors x orthogonal
to Vk−1.

Proposition 1.2 can be extended to show that v1,v2, . . . ,vn are all
singular vectors. The assertion that σ1 ≥ σ2 ≥ ·· · ≥ σn ≥ 0 follows from
the definition of the vis.

Full text available at: http://dx.doi.org/10.1561/0400000025



1.1 Singular Value Decomposition 9

We can verify that the decomposition

A =
n∑
i=1

σiuiv
T
i

is accurate. This is because the vectors v1,v2, . . . ,vn form an orthonor-
mal basis for Rn, and the action of A on any vi is equivalent to the
action of

∑n
i=1σiuiv

T
i on vi.

Note that we could actually decompose A into the form
∑n

i=1σiuiv
T
i

by picking {vi} to be any orthogonal basis of Rn, but the proposition
actually states something stronger: that we can pick {vi} in such a way
that {ui} is also an orthogonal set.

We state one more classical theorem. We have seen that the span
of the top k singular vectors is the best-fit k-dimensional subspace for
the rows of A. Along the same lines, the partial decomposition of A
obtained by using only the top k singular vectors is the best rank-k
matrix approximation to A.

Theorem 1.4. Among all rank-k matrices D, the matrix Ak =∑k
i=1σiuiv

T
i is the one which minimizes ‖A − D‖2F =

∑
i,j(Aij − Dij)2.

Further,

‖A − Ak‖2F =
n∑

i=k+1

σ2
i .

Proof. We have

‖A − D‖2F =
m∑
i=1

‖A(i) − D(i)‖2.

Since D is of rank at most k, we can assume that all the D(i) are
projections of A(i) to some rank-k subspace and therefore,

m∑
i=1

‖A(i) − D(i)‖2 =
m∑
i=1

‖A(i)‖2 − ‖D(i)‖2

= ‖A‖2F −
m∑
i=1

‖D(i)‖2.

Full text available at: http://dx.doi.org/10.1561/0400000025



10 The Best-Fit Subspace

Thus the subspace is exactly the SVD subspace given by the span of
the first k singular vectors of A.

1.2 Algorithms for Computing the SVD

Computing the SVD is a major topic of numerical analysis [48, 64, 67].
Here we describe a basic algorithm called the power method.

Assume that A is symmetric.

1. Let x be a random unit vector.
2. Repeat:

x :=
Ax

‖Ax‖

For a nonsymmetric matrix A, we can simply apply the power iteration
to ATA.

Exercise 1.5. Show that the power iteration applied k times to a
symmetric matrix A finds a vector xk such that

E
(
‖Axk‖2

)
≥
(

1
n

)1/k

σ2
1(A).

[Hint: First show that ‖Axk‖ ≥ (|x · v|)1/kσ1(A) where x is the starting
vector and v is the top eigenvector of A; then show that for a random
unit vector x, E ((x · v)2) = 1/n].

The second part of this monograph deals with faster, sampling-
based algorithms.

1.3 The k-Variance Problem

This section contains a description of a clustering problem which is
often called k-means in the literature and can be solved approximately
using SVD. This illustrates a typical use of SVD and has a provable
bound.

We are given m points A = {A(1),A(2), . . .A(m)} in n-dimensional
Euclidean space and a positive integer k. The problem is to find k

Full text available at: http://dx.doi.org/10.1561/0400000025



1.3 The k-Variance Problem 11

points B = {B(1),B(2), . . . ,B(k)} such that

fA(B) =
m∑
i=1

(dist(A(i),B))2

is minimized. Here dist(A(i),B) is the Euclidean distance of A(i) to its
nearest point in B. Thus, in this problem we wish to minimize the sum
of squared distances to the nearest “cluster center”. We call this the
k-variance problem. The problem is NP-hard even for k = 2.

Note that the solution is given by k clusters Sj , j = 1,2, . . .k. The
cluster center B(j) will be the centroid of the points in Sj , j = 1,2, . . . ,k.
This is seen from the fact that for any set S = {X(1),X(2), . . . ,X(r)} and
any point B we have

r∑
i=1

‖X(i) − B‖2 =
r∑
i=1

‖X(i) − X̄‖2 + r‖B − X̄‖2, (1.1)

where X̄ is the centroid (X(1) + X(2) + · · · + X(r))/r of S. The next
exercise makes this clear.

Exercise 1.6. Show that for a set of point X1, . . . ,Xk ∈Rn, the point
Y that minimizes

∑k
i=1 |Xi − Y |2 is their centroid. Give an example

when the centroid is not the optimal choice if we minimize sum of
distances rather than squared distances.

The k-variance problem is thus the problem of partitioning a set of
points into clusters so that the sum of the variances of the clusters is
minimized.

We define a relaxation called the Continuous Clustering Problem
(CCP), as the problem of finding the subspace V of Rn of dimension
at most k which minimizes

gA(V ) =
m∑
i=1

dist(A(i),V )2.

The reader will recognize that this is given by the SVD. It is easy to
see that the optimal value of the k-variance problem is an upper bound
for the optimal value of the CCP. Indeed for any set B of k points,

fA(B) ≥ gA(VB), (1.2)

where VB is the subspace generated by the points in B.

Full text available at: http://dx.doi.org/10.1561/0400000025



12 The Best-Fit Subspace

We now present a factor-2 approximation algorithm for the k-
variance problem using the relaxation to the best-fit subspace. The
algorithm has two parts. First we project to the k-dimensional SVD
subspace. Then we solve the problem in the smaller-dimensional space
using a brute-force algorithm with the following guarantee.

Theorem 1.7. The k-variance problem can be solved in O(mk2d/2)
time when the input A ⊆Rd.

We describe the algorithm for the low-dimensional setting. Each
set B of “cluster centers” defines a Voronoi diagram where cell Ci =
{X ∈Rd : |X − B(i)| ≤ |X − B(j)| for j 6= i} consists of those points
whose closest point in B is B(i). Each cell is a polyhedron and the total
number of faces in C1,C2, . . . ,Ck is no more than

(
k
2

)
since each face is

the set of points equidistant from two points of B.
We have seen in Equation (1.1) that it is the partition of A that

determines the best B (via computation of centroids) and so we can
move the boundary hyperplanes of the optimal Voronoi diagram, with-
out any face passing through a point of A, so that each face contains
at least d points of A.

Assume that the points of A are in general position and 0 /∈ A (a
simple perturbation argument deals with the general case). This means
that each face now contains d affinely independent points of A. We
ignore the information about which side of each face to place these
points and so we must try all possibilities for each face. This leads to the
following enumerative procedure for solving the k- variance problem:

Algorithm: k-variance

1. Enumerate all sets of t hyperplanes, such that

k ≤ t ≤ k(k − 1)/2 hyperplanes, and each hyperplane

contains d affinely independent points of A. The

number of sets is at most

(k2)∑
t=k

((m
d

)
t

)
= O(mdk2/2).

Full text available at: http://dx.doi.org/10.1561/0400000025



1.3 The k-Variance Problem 13

2. Check that the arrangement defined by these

hyperplanes has exactly k cells.

3. Make one of 2td choices as to which cell to assign

each point of A which lies on a hyperplane

4. This defines a unique partition of A. Find

the centroid of each set in the partition and

compute fA.

Now we are ready for the complete algorithm. As remarked previously,
CCP can be solved by Linear Algebra. Indeed, let V be a k-dimensional
subspace of Rn and Ā(1), Ā(2), . . . , Ā(m) be the orthogonal projections
of A(1),A(2), . . . ,A(m) onto V . Let Ā be the m × n matrix with rows
Ā(1), Ā(2), . . . , Ā(m). Thus Ā has rank at most k and

‖A − Ā‖2F =
m∑
i=1

|A(i) − Ā(i)|2 =
m∑
i=1

(dist(A(i),V ))2.

Thus to solve CCP, all we have to do is find the first k vectors of the
SVD of A (since by Theorem 1.4, these minimize ‖A − Ā‖2F over all
rank-k matrices Ā) and take the space VSV D spanned by the first k
singular vectors in the row space of A.

We now show that combining SVD with the above algorithm gives
a 2-approximation to the k-variance problem in arbitrary dimension.
Let Ā = {Ā(1), Ā(2), . . . , Ā(m)} be the projection of A onto the subspace
Vk. Let B̄ = {B̄(1), B̄(2), . . . , B̄(k)} be the optimal solution to k-variance
problem with input Ā.

Algorithm for the k-variance problem

• Compute Vk.
• Solve the k-variance problem with input Ā to obtain B̄.
• Output B̄.

It follows from Equation (1.2) that the optimal value ZA of the
k-variance problem satisfies

ZA ≥
m∑
i=1

|A(i) − Ā(i)|2. (1.3)

Full text available at: http://dx.doi.org/10.1561/0400000025



14 The Best-Fit Subspace

Note also that if B̂ = {B̂(1), B̂(2), . . . , B̂(k)} is an optimal solution to the
k-variance problem and B̃ consists of the projection of the points in B̂
onto V , then

ZA =
m∑
i=1

dist(A(i), B̂)2 ≥
m∑
i=1

dist(Ā(i), B̃)2 ≥
m∑
i=1

dist(Ā(i), B̄)2.

Combining this with Equation (1.3) we get

2ZA ≥
m∑
i=1

(|A(i) − Ā(i)|2 + dist(Ā(i), B̄)2) =
m∑
i=1

dist(A(i), B̄)2 = fA(B̄)

proving that we do indeed get a 2-approximation.

Theorem 1.8. Algorithm k-variance finds a factor-2 approximation
for the k-variance problem for m points in Rn in O(mn2 + mk3/2)
time.

1.4 Discussion

In this chapter, we reviewed basic concepts in linear algebra from a
geometric perspective. The k-variance problem is a typical example of
how SVD is used: project to the SVD subspace, then solve the original
problem. In many application areas, the method known as “Principal
Component Analysis” (PCA) uses the projection of a data matrix to the
span of the largest singular vectors. There are several general references
on SVD/PCA, e.g., [12, 48].

The application of SVD to the k-variance problem is from [33] and
its hardness is from [3]. The following complexity questions are open:
(1) Given a matrix A, is it NP-hard to find a rank-k matrix D that
minimizes the error with respect to the L1 norm, i.e.,

∑
i,j |Aij − Dij |?

(more generally for Lp norm for p 6= 2)? (2) Given a set of m points
in Rn, is it NP-hard to find a subspace of dimension at most k that
minimizes the sum of distances of the points to the subspace? It is
known that finding a subspace that minimizes the maximum distance
is NP-hard [58]; see also [49].
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