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Abstract

Locally decodable codes are a class of “error-correcting codes.” Error-

correcting codes help to ensure reliability when transmitting informa-

tion over noisy channels. They allow a sender of a message to add

redundancy to messages, encoding bit strings representing messages

into longer bit strings called codewords, in a way that the message can

still be recovered even if a certain fraction of the codeword bits are

corrupted. Classical error-correcting codes however do not work well

when one is working with massive messages, because their decoding

time increases (at least) linearly with the length of the message. As a

result in typical applications the message is first partitioned into small

blocks, each of which is then encoded separately. Such encoding allows

efficient random-access retrieval of the message, but yields poor noise

resilience.

Locally decodable codes are codes intended to address this seeming

conflict between efficient retrievability and reliability. They are codes

that simultaneously provide efficient random-access retrieval and high

noise resilience by allowing reliable reconstruction of an arbitrary bit of

the message from looking at only a small number of randomly chosen

codeword bits. This review introduces and motivates locally decodable
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codes, and discusses the central results of the subject. In particular,

local decodability comes at the price of certain loss in terms of code

efficiency, and this review describes the currently known limits on the

efficiency that is achievable.
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1

Introduction

Locally Decodable Codes (LDCs) are a special kind of error-correcting

codes. Error-correcting codes are used to ensure reliable transmission

of information over noisy channels as well as to ensure reliable storage

of information on a medium that may be partially corrupted over time

(or whose reading device is subject to errors).

In both of these applications the message is typically partitioned

into small blocks and then each block is encoded separately. Such encod-

ing strategy allows efficient random-access retrieval of the information,

since one needs to decode only the portion of data one is interested

in. Unfortunately, this strategy yields very poor noise resilience, since

in case even a single block (out of possibly tens of thousands) is com-

pletely corrupted some information is lost. In view of this limitation, it

would seem preferable to encode the whole message into a single code-

word of an error-correcting code. Such solution clearly improves the

robustness to noise, but is also hardly satisfactory, since one now needs

to look at the whole codeword in order to recover any particular bit of

the message (at least when classical error-correcting codes are used).

Such decoding complexity is prohibitive for modern massive data-sets.

Locally decodable codes are error-correcting codes that avoid the

problem mentioned above by having extremely efficient sublinear-time

1
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2 Introduction

decoding algorithms. More formally, an r-query locally decodable code

C encodes k-bit messages x in such a way that one can probabilistically

recover any bit x(i) of the message by querying only r bits of the

(possibly corrupted) codeword C(x), where r can be as small as 2.

Example 1.1. The classical Hadamard code encoding k-bit messages

to 2k-bit codewords provides the simplest nontrivial example of locally

decodable codes. In what follows, let [k] denote the set {1, . . . ,k}. Every

coordinate in the Hadamard code corresponds to one (of 2k) subsets

of [k] and stores the XOR of the corresponding bits of the message x.

Let y be an (adversarially corrupted) encoding of x. Given an index

i ∈ [k] and y, the Hadamard decoder picks a set S in [k] uniformly at

random and outputs the XOR of the two coordinates of y corresponding

to sets S and S 4 {i}. (Here, 4 denotes the symmetric difference of

sets such as {1,4,5} 4 {4} = {1,5}, and {1,4,5} 4 {2} = {1,2,4,5}).
It is not difficult to verify that if y differs from the correct encoding

of x in at most δ fraction of coordinates than with probability 1 − 2δ

both decoder’s queries go to uncorrupted locations. In such case, the

decoder correctly recovers the ith bit of x. The Hadamard code allows

for a super-fast recovery of the message bits (such as, given a codeword

corrupted in 0.1 fraction of coordinates, one is able to recover any bit of

the message with probability 0.8 by reading only two codeword bits).

The main parameters of interest in locally decodable codes are the

codeword length and the query complexity. The length of the code

measures the amount of redundancy that is introduced into the message

by the encoder. The query complexity counts the number of bits that

need to be read from the (corrupted) codeword in order to recover

a single bit of the message. Ideally, one would like to have both of

these parameters as small as possible. One however cannot minimize

the length and the query complexity simultaneously. There is a trade-

off. On one end of the spectrum we have classical error correcting codes

that have both query complexity and codeword length proportional to

the message length. On the other end we have the Hadamard code

that has query complexity 2 and codeword length exponential in the

message length. Establishing the optimal trade-off between the length
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1.1 Families of Locally Decodable Codes 3

and the query complexity is the major goal of research in the area of

locally decodable codes.

Interestingly, the natural application of locally decodable codes to

data transmission and storage described above is neither the historically

earliest nor the most important. LDCs have a host of applications in

other areas of theoretical computer science.

1.1 Families of Locally Decodable Codes

One can informally classify the known families of locally decodable

codes into three broad categories based on the relation between the

message length k and the query complexity r.

1. Low query complexity. Here we look at codes where r is a constant

independent of k or some very slowly growing function of k. Such codes

have important applications in cryptography to constructions of pri-

vate information retrieval schemes. Early examples of such codes are

the Hadamard code and the Reed Muller (RM) code that is sketched

below.

Reed Muller code. The code is specified by three integer param-

eters, an alphabet size q, a number of variables n, and a degree

d < q − 1. The code encodes k =
(
n+d
d

)
-long q-ary messages to

qn-long codewords. We fix a certain collection of vectors W =

{w1, . . . ,wk} in Fnq . A message x is encoded by a complete Fnq -

evaluation of a polynomial F ∈ Fq[z1, . . . ,zn] of degree up to d, such

that for all i ∈ [k], x(i) = F (wi). Our choice of W ensures that such

a polynomial exists for any x. Given i ∈ [k] and a δ-corrupted evalu-

ation of F the Reed Muller decoder needs to recover the value of F

at wi. To do this the decoder picks a random affine line L through

wi and reads the (corrupted) values of F at d + 1 points of L\{wi}.
Next, the decoder uses univariate polynomial interpolation to recover

the restriction of F to L. Each query of the decoder samples a ran-

dom location, thus with probability at least 1 − (d + 1)δ, it never

queries a corrupted coordinate and decodes correctly. Setting d and

q to be constant and letting n grow one gets r-query codes of length

N = exp(k1/(r−1)).
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4 Introduction

Other families of codes in this category are the recursive codes of

Beimel et al. and the Matching Vector (MV) codes. MV codes offer the

best-known trade-off between the query complexity and the codeword

length of locally decodable codes for small values of query complexity.

In particular they give three-query codes of length N(k) where N grows

slower than any function of the form exp(kε).1 In this review we cover

the construction of matching vector codes in full detail.

2. Medium query complexity. Here we look at codes with r = logc k, for

some c > 1. Such codes have been used in constructions of probabilis-

tically checkable proofs. They also have applications to worst-case to

average-case reductions in computational complexity theory. Setting

d = nc, q = Θ(d) in the definition of Reed Muller codes, and letting

the number of variables n grow to infinity yields codes of query com-

plexity logc k and codeword length N = k1+1/(c−1)+o(1). These are the

best-known locally decodable codes in this regime.

3. High query complexity. Here we look at codes with r = kε, for some

ε > 0. This is the only regime where we (so far) have locally decod-

able codes of positive rate, that is, codeword length proportional to

message length. Such codes are potentially useful for data transmis-

sion and storage applications. The early examples of such codes are the

Reed Muller codes with the number of variables n = 1/ε, growing d, and

q = Θ(d). Such setting of parameters yields codes of query complexity

r = kε and rate εΘ(1/ε). The rate is always below 1/2. Another family

of codes in the high query complexity category is the family of mul-

tiplicity codes. Multiplicity codes are based on evaluating high degree

multivariate polynomials together with their partial derivatives. Mul-

tiplicity codes extend Reed Muller codes; inherit the local-decodability

of these codes, and at the same time achieve better tradeoffs and flex-

ibility in their rate and query complexity. In particular for all α,ε > 0

they yield locally decodable codes of query complexity r = kε and rate

1 − α. In this survey we cover multiplicity codes in full detail.

1 Throughout the survey we use the standard notation exp(x) = 2O(x).

Full text available at: http://dx.doi.org/10.1561/0400000030



1.2 Organization 5

1.2 Organization

The goal of this survey is to summarize the state-of-the-art in locally

decodable codes. Our main focus is on multiplicity codes and on

matching vector codes. The survey is organized into eight sections.

In Section 2 we formally define locally decodable codes and give a

detailed treatment of Reed Muller codes. In Section 3 we study multi-

plicity codes. We show how multiplicity codes generalize Reed Muller

codes and obtain bounds on their rate and query complexity.

In Section 4 we introduce the concept of matching vectors and

present a transformation that turns an arbitrary family of such vec-

tors into a family of locally decodable (matching vector) codes. We

provide a detailed comparison between the parameters of matching vec-

tor codes based on the currently largest known matching families and

Reed Muller codes. Section 5 contains a systematic study of families of

matching vectors. We cover several constructions as well as impossibil-

ity results.

In Section 6 we deal with lower bounds for the codeword length of

locally decodable codes. In Section 7 we discuss some prominent appli-

cations of locally decodable codes, namely, applications to private infor-

mation retrieval schemes, secure multi party computation, and average

case complexity. Finally, in the last section we list (and comment on)

the most exciting open questions relating to locally decodable codes

and private information retrieval schemes.

1.3 Notes

We now review the history of locally decodable codes. Ideas behind the

early constructions of LDCs go back to classical codes [77, Section 10],

named after their discoverers, Reed and Muller. Muller discovered the

codes [70] in the 1950s, and Reed proposed the majority logic decod-

ing [81]. Since then, local decodability of these codes has been exploited

extensively. In particular, in the early 1990s a number of theoretical

computer science papers developed and used local decoding algorithms

for some variants of these codes [5, 11, 24, 43, 44, 67, 78]. The first

formal definition of locally decodable codes was given however only in
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6 Introduction

2000 by Katz and Trevisan [60], who cited Leonid Levin for inspiration.

See also [90].

Today there are three families of locally decodable codes that sur-

pass Reed Muller codes in terms of query complexity vs. codeword

length trade-off. These are the recursive codes of Beimel et al. [15]

(see also [97]), the matching vector codes [18, 19, 35, 38, 59, 61, 69, 79,

85, 99], and the multiplicity codes [63]. Matching vector codes offer the

best-known trade-off between the query complexity and the codeword

length of locally decodable codes for small values of query complexity.

Multiplicity codes are the best-known locally decodable codes for large

values of query complexity.

The first lower bounds for the codeword length of locally decod-

able codes were obtained in [60]. Further work on lower bounds

includes [31, 41, 48, 62, 74, 94, 95, 96]. It is known that 1-query LDCs

do not exist [60]. The length of optimal 2-query LDCs was settled in [62]

and is exponential in the message length. However for values of query

complexity r ≥ 3 we are still very far from closing the gap between lower

and upper bounds. Specifically, the best lower bounds to date are of

the form Ω̃(k1+1/(dr/2e−1)) due to [95], while the best upper bounds are

super-polynomial in k when r is a constant [38, 69].
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