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Abstract

In this monograph we discuss selected topics on small-depth compu-
tation, presenting a few unpublished proofs along the way. The four
sections contain:

(1) A unified treatment of the challenge of exhibiting explicit
functions that have small correlation with low-degree poly-
nomials over {0,1}.

(2) An unpublished proof that small bounded-depth circuits
(AC0) have exponentially small correlation with the parity
function. The proof is due to Klivans and Vadhan; it builds
upon and simplifies previous ones.

(3) Valiant’s simulation of log-depth linear-size circuits of fan-in
2 by sub-exponential size circuits of depth 3 and unbounded
fan-in. To our knowledge, a proof of this result has never
appeared in full.

(4) Applebaum, Ishai, and Kushilevitz’s cryptography in
bounded depth.
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1

Introduction

The NP-completeness of SAT is a celebrated example of the power
of bounded-depth computation: the core of the argument is a depth
reduction establishing that any small non-deterministic circuit — an
arbitrary NP computation on an arbitrary input — can be simulated by
a small non-deterministic circuit of depth 2 with unbounded fan-in —
a SAT instance.

Many other examples permeate theoretical computer science. In this
monograph we discuss a selected subset of them and include a few
unpublished proofs.

We start in Section 2 with considering low-degree polynomials over
the fields with two elements {0,1} (a.k.a. GF(2)). Polynomials are
a bounded-depth computational model: they correspond to depth-2
unbounded fan-in circuits whose output gate is a sum (in our case,
modulo 2). Despite the apparent simplicity of the model, a fundamen-
tal challenge has resisted decades of attacks from researchers: exhibit
explicit functions that have small correlation with low-degree poly-
nomials. The section is a unified treatment of the state-of-the-art on
this challenge. We discuss long-standing results and recent develop-
ments, related proof techniques, and connections with pseudorandom
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2 Introduction

generators. We also suggest several research directions. Along the way,
we present previously unpublished proofs of certain correlation bounds.

In Section 3 we consider unbounded fan-in circuits of small depth
with ∧ (and), ∨ (or), and ¬ (not) gates, known as AC0. Here, we
present an unpublished proof of the well-known result that small AC0

circuits have exponentially small correlation with the parity function.
The proof is due to Klivans and Vadhan; it builds upon and simplifies
previous ones.

In Section 4 we present a depth-reduction result by Valiant [72, 73]
whose proof to our knowledge has never appeared in full. The result is
that log-depth linear-size circuits of fan-in 2 can be simulated by sub-
exponential size circuits of depth 3 and unbounded fan-in (again, the
gates are ∧,∨,¬). Although the parameters are more contrived, this
result is in the same spirit of the NP-completeness of SAT mentioned
at the beginning of this introduction. The latter depth-reduction cru-
cially exploits non-determinism; interestingly, we have to work harder
to prove Valiant’s deterministic simulation.

Finally, in Section 5 we present the result by Applebaum, Ishai, and
Kushilevitz [7] that shows that, under standard complexity theoretic
assumptions, many cryptographic primitives can be implemented in
very restricted computational models. Specifically, one can implement
those primitives by functions such that each of their output bits only
depends on a constant number of input bits. In particular, each output
bit can be computed by a circuit of constant size and depth.

Of course, many exciting works on small-depth computation are not
covered here. Recent ones include Rossman’s lower bound [68] and the
pseudorandom generators for small-depth circuits by Bazzi, Razborov,
and Braverman [21].

Publishing note. Section 2 appeared in ACM SIGACT News Vol-
ume 40, Issue 1 (March 2009). The other sections are a polished version
of the notes of Lectures 4, 5, 6, 7, 10, 12, 13, and 14 of the author’s
class “Gems of Theoretical Computer Science,” taught at Northeast-
ern University in Spring 2009 [78]. I thank the audience of the class,
Rajmohan Rajaraman, and Ravi Sundaram for their useful feedback.
I am grateful to Aldo Cassola, Dimitrios Kanoulas, Eric Miles, and
Ravi Sundaram for scribing the above lectures.
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