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Abstract

Quantum information and computation provide a fascinating twist on
the notion of proofs in computational complexity theory. For instance,
one may consider a quantum computational analogue of the complex-
ity class NP, known as QMA, in which a quantum state plays the role
of a proof (also called a certificate or witness), and is checked by a
polynomial-time quantum computation. For some problems, the fact
that a quantum proof state could be a superposition over exponen-
tially many classical states appears to offer computational advantages
over classical proof strings. In the interactive proof system setting, one
may consider a verifier and one or more provers that exchange and
process quantum information rather than classical information during
an interaction for a given input string, giving rise to quantum com-
plexity classes such as QIP, QSZK, and QMIP∗ that represent natural
quantum analogues of IP, SZK, and MIP. While quantum interactive
proof systems inherit some properties from their classical counterparts,
they also possess distinct and uniquely quantum features that lead to
an interesting landscape of complexity classes based on variants of this
model.

In this survey we provide an overview of many of the known re-
sults concerning quantum proofs, computational models based on this
concept, and properties of the complexity classes they define. In partic-
ular, we discuss non-interactive proofs and the complexity class QMA,
single-prover quantum interactive proof systems and the complexity
class QIP, statistical zero-knowledge quantum interactive proof sys-
tems and the complexity class QSZK, and multiprover interactive proof
systems and the complexity classes QMIP, QMIP∗, and MIP∗.

T. Vidick and J. Watrous. Quantum Proofs. Foundations and TrendsR© in
Theoretical Computer Science, vol. 11, no. 1-2, pp. 1–215, 2015.
DOI: 10.1561/0400000068.
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1
Introduction

The topic of this survey, quantum interactive proof systems, draws
upon three different notions—quantum information, interaction, and
proofs—whose combination forms a fascinating recipe best presented
in the reverse order.

We begin with the notion of proofs in complexity theory. This no-
tion has been central to complexity theory from its early beginnings,
relating closely to the fundamental distinction between efficient con-
struction and efficient verification. In greater detail, it has long been
recognized that for some computational problems whose solutions may
be difficult to obtain, it may nevertheless be possible to efficiently verify
the correctness of a solution, given some additional information (rep-
resenting a proof ) that aids in this verification. The complexity class
NP represents a formalization of this notion—it includes those decision
problems for which positive instances can be efficiently verified given a
suitable proof string (and for which negative instances are never incor-
rectly verified as positive ones).

The distinction between efficient construction and efficient verifica-
tion appears, for instance, in work of Edmonds [55] from 1965 (although
not in his more famous 1965 paper [56]), where he describes the princi-

2
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3

ple of the absolute supervisor : a supervisor can ask his or her assistant
to carry out a potentially lengthy search procedure for some compu-
tational problem (potentially “killing” the assistant with work!), and
at the end of the day the assistant is expected to provide sufficient
information so that his or her solution can be “verified with ease” by
the supervisor.

The more modern terminology used to describe this situation is
that of a prover and verifier : the prover represents the assistant, while
the verifier represents the supervisor in Edmonds’ story. With respect
to this terminology, our sympathies are generally reversed: the verifier,
faced with limitations on its computational abilities, simply wants to
know whether or not a given input is a positive instance of a fixed
decision problem, while the computationally unrestricted prover is un-
trustworthy and will try to convince the verifier that the input is a
positive instance, irrespective of the truth.

The importance of what is now known as the P vs NP question,
which essentially asks if there are indeed problems for which the ef-
ficient construction of a solution is impossible while an efficient ver-
ification is possible, was in fact implicitly noted some time prior to
Edmonds’ work—in a letter written to John von Neumann in the mid-
1950s, Kurt Gödel observed the striking consequences that would result
from an efficient solution to a certain problem in first-order logic that
is now known to be NP-complete. The development of the theory of
NP-completeness, by Cook [49], Levin [122], and Karp [105] in the early
1970s, placed the notion of proofs in computational complexity on a
firm mathematical foundation.

Next, we add a second ingredient: interaction. The notion of an
interactive proof system was introduced independently by Goldwasser,
Micali, and Rackoff [71, 72] and Babai [19, 22] in the 1980s. Babai
was following a similar line of thought that led to the introduction of
P and NP: the identification of structural features that allow a fine
classification of the difficulty of solving classes of computational prob-
lems (in this case, problems related to groups). Goldwasser, Micali, and
Rackoff arrived at the notion from a different angle. They introduced
a notion of “knowledge complexity” of an interactive proof (informally,
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4 Introduction

the amount of information about a problem instance conveyed by the
interaction beyond the problem’s solution) and gave an example of a
simple problem (testing quadratic residuosity) for which there existed
a zero-knowledge interactive proof.

The simplest type of interactive proof system represents an inter-
action between a prover and verifier, which are similar characters to
the ones introduced in the non-interactive setting above, except that
now we imagine that they may engage in a discussion rather than the
prover simply providing the verifier with information. In particular, the
verifier may ask the prover questions and demand acceptable responses
in order to be satisfied. As before, one views that the prover’s aim is
to convince the verifier that a given input string is a positive instance
to a fixed decision problem (or, equivalently, that an input string pos-
sesses a fixed property of interest). The verifier’s goal is to check the
validity of the prover’s argument, accepting only in the event that it is
indeed convinced that the input string is a positive problem instance,
and rejecting if not.

It turns out that the (classical) interactive proof system model only
represents a departure from the non-interactive setting described above
when the verifier makes use of randomness—in which case we must
generally be satisfied with the verifier gathering overwhelming statis-
tical evidence, but not having absolute certainty, in order to conclude
that the prover’s argument is valid. (When no randomness is used,
the prover may as well attempt to convince the verifier to accept non-
interactively by simply presenting a complete transcript of the con-
versation they would have had by interacting, which the verifier can
efficiently check for validity by itself.) As in the non-interactive case,
we also make the standard assumption that the prover’s computational
abilities are greater than the verifier’s (or, at the very least, that the
prover has access to information that the verifier lacks). The class IP
is representative of the case in which the verifier is required to run in
polynomial time and the prover is computationally unrestricted. The
characterization IP=PSPACE [124, 150] cements the tight relationship
between interactive proofs and computation, justifying its position as
a fundamental concept in computational complexity theory.

Full text available at: http://dx.doi.org/10.1561/0400000068
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Many variants of interactive proof systems have been considered
that impose additional conditions on the interaction, place more strin-
gent limits on the prover’s abilities, or consider interactions between
more diverse sets of parties, such as a verifier interacting with mul-
tiple cooperating or competing provers. Prominent examples include
the class SZK of problems that have zero-knowledge interactive proofs
and the class MIP of problems whose solution can be determined by a
polynomial-time verifier interacting with multiple cooperating provers,
restricted only in their inability to communicate with one other.

Finally, we finish off with a curious catalyst: quantum information.
The Church–Turing thesis plays a foundational role in computer sci-
ence by postulating that computability is model independent: whether
based on the concept of a Turing machine, first-order logic, or any
“purely mechanical process,” the classes of functions whose values can
be “effectively calculated” are identical. The development of quantum
computing in the 1990s posed the first serious threat to this thesis.
Impetus for the consideration of computational procedures based on
the laws of quantum mechanics was provided by Shor’s discovery of
an efficient quantum algorithm for factoring [151, 152], a problem for
which no efficient classical probabilistic algorithm is known. The study
of the relation between P (or BPP) and BQP, the class of problems
that can be decided in polynomial time by a quantum Turing machine,
is among the most interesting and mysterious problems in modern com-
plexity theory. The difficulty of this question prompts the introduction
of “quantum analogues” of the most important classical complexity
classes in an attempt to identify problems for which the consideration
of quantum processes induces a strict separation.

One prominent example is the complexity class QMA of decision
problems whose positive instances have quantum proofs that can be
verified by an efficient quantum procedure. Aside from the fundamen-
tal problem of understanding the physical substrate of computation,
the consideration of quantum mechanical states as proofs provides a
fascinating window into some of the most subtle features of quantum
physics. An essential way in which quantum states differ from their
classical counterparts is in one’s ability to recover information that is
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6 Introduction

present in the mathematical description of the state. In quantum me-
chanics this ability is limited by the uncertainty principle—for exam-
ple, both the momentum and position of an electron can be determined
with high precision in principle, but there is a fundamental limit to the
accuracy with which those two properties can be simultaneously de-
termined. Thus, the study of QMA sheds light on the many areas of
physics in which the properties of quantum states play an important
role, from the theory of superconductors to that of black holes.

Stir vigorously, and you have a recipe for quantum interactive
proofs. Beyond the class QMA already discussed, quantum interac-
tive proofs reflect the richness of the classical model on which they
are based, providing a powerful lens on the properties of quantum me-
chanics and quantum information. For example, single-prover quantum
interactive proofs, corresponding to the class QIP, have the distin-
guishing property that they can be parallelized to three message in-
teractions, and this property (unlikely to hold for classical interactive
proofs) makes crucial use of the superposition principle of quantum me-
chanics. The no-cloning theorem plays an important role in the study
of the class QSZK of problems having quantum zero-knowledge inter-
active proofs by hindering the construction of “simulators” essential to
the study of classical zero-knowledge. By allowing multiple cooperating
provers to share quantum entanglement, the class QMIP∗ provides a
complexity-theoretic viewpoint on the nonlocal properties of entangle-
ment.

Having set a rather ambitious stage for this survey, we proceed with
a more concrete description of what is to come.

Chapter 2 introduces some preliminary material. While it is as-
sumed that the reader will be familiar with the basics of complexity
theory and quantum computing, we have made an effort to state and ex-
plain the facts that play an important role in the results to be discussed,
directing the reader to standard textbooks for background material.

In Chapter 3 we begin with the consideration of the class QMA
of languages that have efficiently verifiable quantum proofs. This class
satisfies many of the desirable features of NP, such as strong error
amplification procedures and a rich set of complete problems. It also
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has many variants restricting, or extending, the types of proofs allowed
and the power of the verifier; a small but representative set of such
variants is discussed in the chapter.

Chapter 4 considers single-prover quantum interactive proof sys-
tems. An important tool in the study of the associated class QIP is a
semidefinite programming formulation of the verifier’s maximum accep-
tance probability. We introduce this formulation and use it to establish
a parallel repetition property of QIP as well as to give an essentially
self-contained proof of the characterization QIP=PSPACE.

In Chapter 5 we consider the class QSZK of quantum zero-
knowledge interactive proofs. One aspect in which these proof systems
differ from their classical counterparts is the difficulty of extending the
key techniques (such as rewinding) that are systematically used in the
classical setting, and we describe known quantum analogues for such
techniques.

The final chapter, Chapter 6, is devoted to quantum multi-prover
interactive proofs. It will be seen that the consideration of entanglement
between multiple provers leads to a failure of the most basic intuition
on which the classical theory is built (most important of which are the
technique of oracularization and the characterization MIP=NEXP).
We describe ways to work around this failure by fighting fire with fire,
devising techniques that make positive use of the provers’ ability to
share entanglement.

This survey is mainly intended for non-specialists having a basic
background in complexity theory and quantum information. A typical
reader may be a student or researcher in either area desiring to learn
about the fundamentals of the (actively developing) theory of quan-
tum interactive proofs. In most cases we have not included full proofs
of the main results we present, but whenever possible we have either
included detailed sketches of the key ideas behind the proofs, or have
attempted to describe their most salient elements in simplified settings.
Each chapter ends with notes that provide references for the results dis-
cussed in the chapter as well as a brief survey of related results and
pointers to the literature.
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