
APSIPA Transactions on Signal and Information Processing, 2022, 11, e10
This is an Open Access article, distributed under the terms of the Creative Commons 
Attribution licence (http:// creativecommons.org/ licenses/ by-nc/ 4.0/ ), which permits un-
restricted re-use, distribution, and reproduction in any medium, for non-commercial use, 
provided the original work is properly cited.

Original Paper

Adjoint Bilateral Filter and Its
Application to Optimization-based
Image Processing
Keiichiro Shirai1, Kenjiro Sugimoto2 and Sei-ichiro Kamata3∗

1Shinshu University, Nagano-shi 380-8553, Japan
2Japan R&D Center, Xiaomi, PMOGOTANDA, Tokyo-to 141-0031, Japan 
3Waseda University, Kitakyushu-shi 808-0135, Japan

ABSTRACT

This study primarily presents efficient tools for optimization-based image
processing using a bilateral filter (BF). Generally, for image restoration,
e.g., deblurring, a forward operation and its adjoint operation pair
are required to solve inverse problems via iterative approaches such as
the gradient method. Image data comprise millions of variables; thus,
the operations should be performed as image filters rather than matrix
products because of the considerable matrix size. This approach is known
as a matrix-free approach, i.e., filter form, because it is executed without
explicitly generating an enormous matrix. When BF is incorporated
into optimization, its matrix-free adjoint BF is required to solve the
optimization problem. This study discusses the matrix-free adjoint BF
and its constant-time algorithm to solve optimization problems in a
practical time frame. The experimental results demonstrate that the
proposed method yields sufficient filtering accuracy for solving inverse
problems. Furthermore, BF-based optimization improves accuracy by
adjusting the image quality of resultant images.

∗Corresponding author: Keiichiro Shirai, keiichi@shinshu-u.ac.jp. Keiichiro Shirai and
Kenjiro Sugimoto contributed equally to this work.

Received 03 September 2021; Revised 26 January 2022
ISSN 2048-7703; DOI 10.1561/116.00000046
© 2022 K. Shirai, K. Sugimoto and S. Kamata

http://creativecommons.org/licenses/by-nc/4.0/


2 Shirai et al.

1 Introduction

In image processing, computer vision, and computer graphics, a bilateral filter
(BF) [1, 31, 38] is a common edge-preserving smoothing filter. Traditional
low-pass linear filters, for example, Gaussian filters, determine filter weights
(coefficients) from distance in a spatial domain; however, in addition to the
spatial domain, the BF uses distance in the pixel intensity domain. Because of
its simple concept and structure, BF has been extensively used for various ap-
plications, including intensity tone mapping [13], demosaicing [29], abstraction
[40], and optical flow estimation [41].

In the last two decades, BF has been actively extended to achieve higher
smoothing quality along with lower computational complexity. An extensively
used extension for high-quality smoothing of noisy images is cross filtering (or
joint filtering) [14, 26]. Cross BF can produce high-quality images compared
to the original BF by determining filter weights from an additional guide
image captured under different photographic conditions rather than noisy
target images. Another algorithm to accelerate BF is the constant-time (O(1))
BF [6–8, 10, 11, 13, 25, 32–34, 42, 44]. Here, constant time indicates that
the per-pixel computational complexity is independent of the filter window
size, i.e., it runs in O(1) time per pixel. Regardless of filter window size, this
technique allows us to perform BF in nearly the same time.

Recently, BF has played a role in an optimization tool to extract image
structures [2–4, 18, 24, 30, 45]. In variational approaches, the desired image is
characterized as a minimizer of the sum of a regularization term incorporating
a priori knowledge of an image and a data fidelity term that evaluates image
consistency. Existing methods incorporate the BF for characterizing the desired
image as a tool to separately handle the structure and texture components of an
image. This enables us to perform edge-preserving or texture-preserving image
processing via optimization. Indeed, compared to conventional formalizations,
this technique has demonstrated higher potential relative to resulting quality
in certain tasks.

However, existing methods with optimization have faced severe difficulty
when directly handling enormous matrices, which occupy vast memory space
and incur significant computational time. For variational approaches, an
N -pixel image is denoted as an N -dimensional vector, and a filter applied to
the image is represented as a vector-matrix product with an N ×N matrix.
Indeed, this matrix comprises N2 elements, which is enormous for image
processing, e.g., a 1920 × 1080 grayscale image (N = 2, 073, 600) requires a
matrix with N2 = 4, 299, 816, 960, 000 elements. Thus, vector-matrix products
in optimization are generally limited to operations that can be run without
explicitly generating filter matrices. We refer to this approach as a matrix-free
operation (inspired from [20]). Note that well-known matrix-free operations
include various image filters, e.g., correlation and convolution, fast Fourier
transform, wavelet transform, and sparse matrix products.



Adjoint Bilateral Filter and Its Application to Optimization-based Image Processing 3

This paper proposes a matrix-free operation of adjoint BF, which we
refer to as BF∗ in this study. For many optimizers, such as the gradient
descent method, the iterative steps comprise certain matrix products (forward
operators) and their transposed matrix products (adjoint operators). The
matrix-free operation of the original BF is obvious. However, to our knowledge,
matrix-free operation of the BF∗ has not been investigated to date; nevertheless,
this task seems nontrivial. Although an optimization approach with BF was
proposed previously [4], it did not discuss BF∗ and was limited to equations
comprising ℓ2-norm terms. Moreover, acceleration techniques for the matrix-
free BF∗ has not been discussed to date, e.g., O(1) BF∗. Thus, it is necessary
to develop efficient algorithms for the BF∗ to realize realistic computational
time for BF-based optimization of image processing applications.

This study tackles this problem by deriving a matrix-free BF∗. Our discus-
sion begins from a pair of filters required in optimization, i.e., a (forward) filter
and its adjoint filter, which correspond to correlation filtering and convolution
filtering in linear filtering. Moreover, we extend this method to cross filtering
for better smoothing quality and to O(1) filtering for lower computational
complexity. As demonstrated by experimental results, our proposed method
can efficiently solve BF-based optimization problems and produce the same or
comparable resulting images at acceptable computational complexity while
consuming significantly less memory space.

Our primary contributions are summarized as follows: (1) We derive the
matrix-free BF∗, which has not been investigated in the literature to date. (2)
We propose a matrix-free O(1) BF∗, which is designed based on some existing
O(1) BF. Note that preliminary work has been published previously [37], and,
in this study, we complement the unclear points of the preliminary work, for
example, the differences of boundary conditions between matrix-form and
matrix-free operations.

2 Preliminaries

This section describes the fundamentals required to comprehend the importance
of BF∗ and matrix-free BF∗ in image processing based on variational approaches
using BF.

2.1 Motivation of Matrix-free Adjoint Operation

Here, consider the image processing of a grayscale image with N pixels. To
facilitate understanding the importance of our work, we present a toy example
of the simple inverse problem:

min
x

{
f(x) := 1

2∥Ax− y∥22
}
, (1)



4 Shirai et al.

where the column vectors x,y ∈ RN represent a latent image and observed
image, respectively, A ∈ RN×N represent a matrix that aligns all filter coeffi-
cients of a linear (low-pass) filter, and ∥ · ∥2 represents the ℓ2-norm of a vector.
If we estimate latent image x in a least-squares manner, the analytical solution
can be obtained as the pseudo inverse x = (A⊤A)−1A⊤y. In this equation,
we observe the adjoint (transposed) operator A⊤. In the following additional
example, which works in a wider range of situations, the same problem can be
solved by an iterative optimizer, e.g., the gradient descent method:

x(t+1) ← x(t) − τ∇f(x(t))

= x(t) − τA⊤(Ax(t) − y),
(2)

where t is an iteration counter and τ is a step-size parameter that must
be appropriately set. If we naively compute Equation (2), the filter matrix
(linear operator) A and its transposed matrix (adjoint operator) A⊤ must
be explicitly generated in the iterative process. However, A and A⊤ are
enormous in size; thus, it is computationally expensive to directly handle both
matrices. Therefore, matrix-free operations are required for image processing
via optimization.

2.2 Bilateral Filter and Cross Bilateral Filter

BF [1, 31, 38] is an edge-preserving smoothing filter that determines filter
coefficients from both the spatial and range (pixel intensity) distances of a
target image. The cross BF [14, 26] is an extension that determines the range
distance from a guide image captured under different photographic conditions
rather than a target image. This technique can mitigate loss in quality when
the target image is very noisy and contains unsharp or pseudo edges. The
theoretical differences between the original and cross BF appear trivial; thus,
we refer to both as BF in the following discussions. By appropriately switching
target images and guide images, BFs have played an important role in various
smoothing tasks, for example, color grading [27, 28], jaggy smoothing for image
zooming [22], and depth maps [23].

Here, consider the BF applied to a two-dimensional grayscale image x. Let
p ∈ Z2 indicate the position of a target pixel and xp ∈ R1 indicate its pixel
intensity, and let q ∈ Np indicate a neighboring pixel of p, where Np ⊂ Z2 is
the set of neighboring pixels at p, i.e., a rectangular domain supported in a
filter window. Using these notations, BF is defined as follows:

BF(p) :=

∑
q∈Np

ws(p,q) · wr(gp, gq) · xq∑
q∈Np

ws(p,q) · wr(gp, gq)
. (3)

where gp is a target pixel in the guide image and gq is one of its neighboring
pixels. This definition is identical to the original BF when it is self-guided,



Adjoint Bilateral Filter and Its Application to Optimization-based Image Processing 5

i.e., gp = xp and gq = xq. The former weight ws(p,q) defined on the pixel
position domain is referred to as the spatial kernel, and the latter weight
wr(gp, gq) defined on the pixel intensity domain is referred to as the range
kernel. Generally, both are set as an even-symmetric unimodal function, for
example, a Gaussian or Lorentzian function. The most common choice is the
Gaussian kernel as follows:

ws(p,q) := exp

(
− 1

2σ2
s

∥p− q∥22
)
,

wr(gp, gq) := exp

(
− 1

2σ2
r

(gp − gq)2
)
.

(4)

As shown in Equation (3), the BF smooths a target image using only the
neighboring pixels with similar intensity values to that of the target pixel
xp. This simple concept can prevent smoothing edges from corresponding to
those of the guide image because the intensities or colors around edge regions
drastically change.

3 Proposed Methods

This section proposed the matrix-free BF∗ and its O(1) algorithm.

3.1 Matrix-free Adjoint Bilateral Filter

In existing methods based on variational approaches [2, 24], BF and BF∗

were implemented as naive, matrix-form operations (rather than matrix-free
operations). This naive technique is technically easy to implement; however,
it is impractical because of its enormous matrix size, which requires significant
memory space and incurs expensive computation. Consequently, it is necessary
to develop a matrix-free BF∗. Unfortunately, unlike linear filters (such as
Gaussian filters), this task appears to be nontrivial.

Here, we mathematically derive the matrix-free BF∗. For simplicity, we
first introduce the next compound kernel:

wsr(p,q) := ws(p,q) · wr(gp, gq), (5)

Let Bg ∈ RN×N be a filter matrix of the BF, where the subscript g indicates
the guide image to be used. The (i, j)-th element of Bg is then determined as
follows:

[Bg]i,j :=


wsr(pi,pj)∑

v∈Npi
wsr(pi,v)

if pj ∈ Npi
,

0 otherwise.
(6)



6 Shirai et al.

where [·]i,j denotes the (i, j)-th element of a matrix. Using this filter matrix
and target image x, the BF can be represented as Bgx ∈ RN , and BF∗ can be
given as B⊤

g x ∈ RN in a linear algebra manner. Before deriving the matrix-free
BF∗, we separate Equation (6) into a denominator and numerator using a
matrix Wg ∈ RN×N comprising the unnormalized filter weights:

[Wg]i,j :=

{
wsr(pi,pj) if pj ∈ Npi

,

0 otherwise.
(7)

If we extensively redefine the division operator as an element-wise operator
between two vectors or two matrices, the BF Equation (3) can be rewritten as
follows:

Bgx =
Wgx
Wg1

=

(
Wg

Wg11⊤

)
x, (8)

where 1 ∈ RN is a column all-one vector. Note that Wg11⊤ ∈ RN×N is
a matrix whose columns all are Wg1 ∈ RN because each element of Wg1
indicates the sum of the filter weights in each local window region. Then, the
matrix-free BF∗ can be derived from Equation (8) as follows:

B⊤
g x =

(
W⊤

g

11⊤W⊤
g

)
x = W⊤

g

(
x

Wg1

)
. (9)

We use the following formula that we found:(
A

1c⊤

)
x = A

(x
c

)
, (10)

where A := W⊤
g and c := Wg1.

Proof. A ∈ RM×N , c ∈ RN , and x ∈ RN . Here, both sides are M -dimensional
column vectors; thus, we can rewrite the m-th element of the left-hand side to
that of the right-hand side as follows:[(

A
1c⊤

)
x
]
m

=
∑
n

[
A

1c⊤

]
m,n

[x]n

=
∑
n

(
[A]m,n

[1c⊤]m,n

)
[x]n =

∑
n

[A]m,n[x]n
[1]m[c]n

=
∑
n

[A]m,n[x]n
[c]n

=
∑
n

[A]m,n

(
[x]n
[c]n

)
=
∑
n

[A]m,n

[x
c

]
n
=
[
A
(x
c

)]
m

(11)

where [·]m,n and [·]m denote the (m,n) element of a matrix and m-th element
of a (column) vector, respectively.



Adjoint Bilateral Filter and Its Application to Optimization-based Image Processing 7

Similar to the original BF Equation (3) and its matrix form Equation (8),
we can obtain the matrix-free BF∗ from Equation (9) as follows:

BF∗(p) :=
∑

q∈Np

wsr(p,q)

(
xq∑

v∈Nq
wsr(q,v)

)
, (12)

where we employ the symmetry Wg = W⊤
g because wsr(p,q) = wsr(q,p) for

even-symmetric kernels. From Equations (8) and (9), the BF and BF∗ differ
in that the BF finally divides the resulting image of Wgx by Wg1; however,
BF∗ divides the target image of Wgx by Wg1.

3.2 Boundary Padding

In practical image processing implementations, we must incorporate bound-
ary padding into the matrix-form BF Equation (8) and matrix-form BF∗

Equation (9). This indicates that the image boundary must be appropri-
ately expanded for a protruding filter window, for example, by zero padding,
replication padding, and odd symmetric padding. To fill the gap between
matrix-form and matrix-free operations with boundary padding, we complete
the matrix-free BF∗ with appropriate boundary padding in a more practical
form.

Matrix-form image filtering requires two boundary-operating matrices,
i.e., the boundary padding and boundary trimming operators. For better
understanding, we provide some examples of one-dimensional filtering. Let
x ∈ R3 be a target signal and y ∈ R5 be a both-ends-padded signal. The
boundary padding operator P produces a padded signal from the target signal
by appropriately assuming the boundary condition. In a replication padding
case, the operator can be computed as follows:

Px =


1 0 0
1 0 0
0 1 0
0 0 1
0 0 1


xy
z

 =


x
x
y
z
z

 . (13)

The adjoint operator performs cumulative summation of the pixel values at
the padded positions as follows:

P⊤y =

1 1 0 0 0
0 0 1 0 0
0 0 0 1 1



a
b
c
d
e

 =

a+ b
c

d+ e

 . (14)



8 Shirai et al.

Then, the boundary trimming operator Q reduces the size of the padded signal
to the original size by truncating the padded positions as follows:

Qy =

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0



a
b
c
d
e

 =

bc
d

 . (15)

The adjoint operator of the boundary trimming operator simply works as zero
padding as follows:

Q⊤x =


0 0 0
1 0 0
0 1 0
0 0 1
0 0 0


xy
z

 =


0
x
y
z
0

 . (16)

Obviously, all boundary operations are matrix-free operations because they
are very sparse binary matrices.

Next, we consider a two-dimensional BF with a boundary operation in a
matrix-form manner. Because of the size of a target image H×W and padding
radius r ∈ N, the boundary padding and boundary trimming operators are
defined as follows:

P ∈ {0, 1}(H+2r)(W+2r)×HW ,

Q ∈ {0, 1}HW×(H+2r)(W+2r),
(17)

Using the above boundary padding and trimming operators, we can decompose
the unnormalized BF operation as Wg = QŴgP, where Ŵg indicates a
unnormalized BF for expanded images of size (H +2r)× (W +2r). Using this
representation, the matrix-form BF (Equation 8) should be reformulated with
boundary padding as follows:

Bgx =
QŴgPx

QŴgP1
=

(
QŴgP

QŴgP11⊤

)
x. (18)

Similarly, the matrix-form BF∗ Equation (9) can be redefined as follows:

B⊤
g x = P⊤Ŵ

⊤
g Q⊤

(
x

QŴgP1

)
. (19)

In the padding version, the symmetry Ŵg = Ŵ
⊤
g holds but Wg ̸= W⊤

g . Note
that all of the abovementioned matrix products in Equations (18) and (19)
can be performed as filtering, binary permutation, and summation with low
memory consumption.



Adjoint Bilateral Filter and Its Application to Optimization-based Image Processing 9

3.3 Constant-time Adjoint BF

Here, we demonstrate how to reduce the per-pixel computational complexity
of BF∗ from linear to constant time. The per-pixel computational complexity
of Equation (12) is proportional to the filter window size, which is significantly
high for iterative optimizers. To make per-pixel computational complexity
more practical, we must design an O(1) algorithm of the matrix-free BF∗.
For BF, this improvement has been discussed extensively [6–8, 10, 11, 13, 25,
32–34, 42, 44] to improve the performance tradeoffs between computation
complexity and approximation accuracy. Here, we clarify that BF∗ can be
extended to an O(1) algorithm by applying certain concepts from the existing
O(1) BF.

Most existing O(1) BFs share a general framework based on separability.
Here, we consider the approximation of the range kernel by the separable form:

wr(gp, gq) ≈
K∑

k=1

ϕk(gp) · ψk(gq), (20)

where ϕk : R→ R, ψk : R→ R, and K is an approximation order. Multiple
functions for ϕk(·) and ψk(·) have been previously proposed, e.g., trigonometric
functions [6, 10, 34] for the Gaussian range kernel and a hat function [13]
and low-rank approximation [11, 32, 33] for an arbitrary range kernel. If
Equation (20) is substituted for the numerator in Equation (3), we obtain the
following: ∑

q∈Np

ws(p,q)

{
K∑

k=1

ϕk(gp) · ψk(gq)

}
xq

=

K∑
k=1

ϕk(gp)

 ∑
q∈Np

ws(p,q) · ψk(gq) · xq︸ ︷︷ ︸
x′
q

 .
(21)

The denominator of Equation (3) shows the same structure by replacing the
rightmost xq to by 1, i.e., x′q := ϕk(gq). Note that the [·] part in Equation (21)
is a linear filter with spatial kernel ws(p,q) to an intermediate image x′

newly generated by a pixel-wise product, i.e., x′q := ψk(gq) · xq. Certain
spatial kernels, such as Gaussian kernels, can be efficiently convolved in
O(1) time per pixel via recursive approximation [12, 39] or truncated-cosine
approximation [5, 34, 36]. Thus, the BF can be approximated by the weighted
sum of K intermediate images generated by O(1) filtering. Importantly, the
proposed O(1) BF∗ can use this framework because both the denominator and
numerator of the matrix-free BF∗ Equation (12) show the nested structure of
Equation (21). Thus, if we appropriately set the approximation order K, our
O(1) BF∗ produces the sufficiently accurate output of the naive BF∗.



10 Shirai et al.

Algorithm 1 Standard BF

1: function bf(x,g) ▷ x: target image, g: guide image.
2: w←QŴgP1 ▷ In a matrix-free and/or O(1) manner.
3: t← QŴgPx ▷ In a matrix-free and/or O(1) manner.
4: x← t

w ▷ Element-wise division.
5: return x
6: end function

Algorithm 2 Adjoint bilateral filter (BF∗)

1: function bf∗(x,g) ▷ x: target image, g: guide image.
2: w←QŴgP1 ▷ In a matrix-free and/or O(1) manner.
3: t← x

w ▷ Element-wise division.
4: x← P⊤ŴgQ⊤t ▷ In a matrix-free and/or O(1) manner.
5: return x
6: end function

In Section 3.2, we did not consider whether the signal length is finite or
infinite. Moreover, for simplicity, we handled W as a symmetric matrix. Here,
we consider actual finite length signals, and W (including boundary processing)
is assumed to be an asymmetric matrix. However, when representing W =

QŴP, the symmetry Ŵ = Ŵ
⊤

holds because the remaining part after
trimming by Q is not influenced by whether Ŵ is symmetric.

3.4 Algorithm Procedure

We summarize the procedure of the existing BF and proposed BF∗ with
boundary operations in the pseudocode given in Algorithms (1) and (2). In
BF, the denominator image w is generated by QŴgP1(line 2), the numerator
image t is generated by QŴgPx in a matrix-free manner (line 3), and then we
produce the resulting image by their element-wise division (line 4). However,
in BF∗, the denominator image w is generated by QŴgP1 (line 2) and we
generate the intermediate image t via element-wise division by w (line 3),

and then the resulting image is generated by P⊤ŴgQ⊤t (recall Ŵg = Ŵ
⊤
g )

(line 4). For both these filters, we must perform all matrix products of Ŵg in
a matrix-free manner, and we can compute them approximately as an O(1)
algorithm, as discussed in the preceding section.

We can reduce the computational time of BF and BF∗ in optimization
by exploiting the following concepts. Although both filters comprise similar
operations, they differ in that BF connects lines 2 and 3 in parallel; however,



Adjoint Bilateral Filter and Its Application to Optimization-based Image Processing 11

BF∗ connects lines 2 and 4 in serial. Thus, the filter coefficients can be reused in
BF by simultaneously operating the coefficients but cannot BF∗. Consequently,
the computational time of BF∗ is slightly greater than that of BF; however, in
the O(1) case, the matrix products share some parts, e.g., ϕk(gp) and ψk(gq)
in Equation (21). Moreover, they are precomputable and can be considered
as a few intermediate images. This reduces the computational time of BF∗,
which results in nearly the same filtering time as the existing BF.

4 Results and Discussion

Here, we confirm the fundamental performance of the proposed BF∗ and its
O(1) algorithm in several experiments conducted to evaluate computational
time and approximation accuracy. The test image was the standard “Lenna”
image (Figure 2), which is a 24-bit RGB color image (512× 512 pixels). Each
RGB channel was normalized in advance to [0, 1] as 64-bit floating-point values,
and we independently processed each RGB channel. Note that processing time
depends only on image size (not pixel values). The test environment comprised
an Intel Core i7-9700K @ 3.60 GHz CPU with 16 GB DDR4 @ 2,666 MHz
main memory. We wrote all implementations in MATLAB R2019b with MEX
(C++) compiled by Microsoft Visual Studio 2019.

The implementation and parameter setting details of the proposed methods
are summarized as follows. Both the spatial and range kernels were set to Gaus-
sian kernels in all cases. The proposed O(1) BF∗ internally requires an O(1) BF,
and it was decomposed into an O(1) Gaussian filter. We adopted the compres-
sive BF [34] for the former and the O(1) Gaussian filter based on DCT-5 [35]
for the latter, where their tolerance parameters were set to εBF ∈ {0.01, 0.1}
for the compressive BF and εGF = 0.5 for the O(1) Gaussian filter. The
parameter εBF primarily affected the tradeoff between computational time
and approximation accuracy, i.e., larger values yield faster computational
time but lower accuracy. For the boundary padding in Equation (19), the
compressive BF [34] uses replication padding in the original implementation:
it is implicitly performed in its inside as P is replication padding and Q is
trimming. However, we explicitly set for the BF∗ as Q⊤ is zero padding and
P⊤ is cumulative summation, which somewhat increases the computational
time.

4.1 Approximation Accuracy

We confirmed the approximation accuracy of the proposed O(1) BF∗ against
the naive BF∗ Equation (12), which is assumed to be the ideal output. We
confirm that the matrix-form BF∗ and the proposed matrix-free BF∗ show



12 Shirai et al.

Figure 1: Approximation accuracy (PSNR [dB]) versus spatial scale σs and range scale σr.

equivalent results. The approximation accuracy is quantified as the PSNR
[dB] between the output of the naive and O(1) methods.1

Note that higher PSNR means less approximation error. Figure 1(a)
shows the PSNR under gradually changing spatial scale σs with fixed range
scale σr = 0.1, and Figure 1(b) shows the PSNR under gradually changing
range scale σr with fixed spatial scale σs = 2.0. Moreover, Standard(i)
and Adjoint(i) correspond to parameter εBF = 0.01, and Standard(ii) and
Adjoint(ii) correspond to εBF = 0.1. For both these results, the approximation
accuracy of the proposed O(1) BF achieves at least 42 dB and higher than
50 dB at a small spatial scale. This indicates that the approximation accuracy
is sufficient and the difference is visually imperceptible; thus, the proposed
methods experimentally produce sufficient accuracy for multiple practical
applications.

Furthermore, qualitative differences are an important evaluation factor.
Figure 2 shows the input and resulting images of each implementation of BF∗.
On the basis of the results, we observe that the BF simply smooths an image.
On the other hand, the proposed BF∗ appears to emphasize edges. Compared
with (c) with (d), the approximation accuracy of the proposed O(1) BF∗

exceeds 50 dB in PSNR. If we amplify the difference ten times, we can observe
some errors around edges; however, the difference is practically negligible. In
applications shown later, we show that the difference does not influence the
performance of the applications.

1We compute the PSNR for color images as follows. Let Xi,j,k ∈ [0, 1] and Yi,j,k ∈ [0, 1]
be the pixel values of the two images, where (i, j) is the pixel position and k indicates a
color channel index. Using the mean square error MSE = 1

N

∑
i,j,k(Xi,j,k − Y i, j, k)2, we

calculate the PSNR as PSNR = 10 log10

(
MAX
MSE

)
, where MAX = 1 indicates the maximum

value of the dynamic range.



Adjoint Bilateral Filter and Its Application to Optimization-based Image Processing 13

Figure 2: The top row shows the input “Lenna” image and corresponding images filtered
by each BF∗. The bottom row shows magnified images of the corresponding upper images,
inside the white square frame. Here, σs = 2.0, σr = 0.1, εBF = 0.1, and εGF = 0.5. In (e),
we demonstrate the difference between (c) and (d) amplified 10× to facilitate visualization.
The peak signal-to-noise ratio (PSNR) of the error was 53 dB.

Figure 3: Mean values and standard deviations of the 24 images in the Kodak image data
set: approximation accuracy (PSNR [dB]) versus spatial scale σs and range scale σr.

We also show the results using multiple images, i.e., a Kodak image data
set [17] and its 24 images. Figure 3 shows the average result of each setting.
The same parameters as in Figure 1 are used. The transition curves are the
mean values of the 24 images. The belt-like light-colored region and its half
the width in the vertical direction show the standard deviations of the 24
images, i.e., the transition curves obtained from the images mainly pass inside
the region. One can see that the same tendencies as in Figure 1 are observed
in Figure 3. This indicates that the approximation accuracy is sufficient and
the difference is visually imperceptible.



14 Shirai et al.

Figure 4: Computational time versus spatial scale σs in log–log plot with range scale
σr = 0.1.

Figure 5: Computational time versus range scale σr in log–log plot with spatial scale σs = 2.

4.2 Computational Complexity

Here, confirm the computational time of BF Equation (3), the proposed naive
BF∗ Equation (12), and the proposed O(1) BF∗. Figures 4 and 5 show the
relationship between computational time and the spatial scale σs and range
scale σr of the Gaussian kernels, respectively. The parameter setting for O(1)
BF/BF∗ is εBF = 0.01 and 0.1.

Figure 4 shows the computational time [s] for fixed σr = 0.1 and gradually
changing σs. The domain of 1 ≤ σs covers practical cases because the Gaussian
shape with σs < 1 is non-negligibly distorted on discrete grids. Note that
the filter window size for the Gaussian spatial kernel is commonly set to
M = 2 ⌈3σs⌉ + 1 to support the Gaussian shape, e.g., 1 ≤ σs corresponds
to 7 ≤ M . This figure shows seven plots of the following three methods:
(I) Mtx (Matrix) shows the time of matrix product of matrix-form BF/BF∗



Adjoint Bilateral Filter and Its Application to Optimization-based Image Processing 15

and Mtx+Prepa (Matrix+Preparation) adds the time of explicitly generating
three BF matrices for RGB colors to Mtx; (II) Naive corresponds to naive BF
and the proposed matrix-free BF∗; and (III) O1(i)/(ii) and O1+Prepa(i)/(ii)
show the results of the O(1) BF where Prepa (Preparation) indicates that
the time of generating the common intermediate images. From these results,
we observe that the Mtx/Mtx+Prepa and naive BF methods demonstrate
per-pixel time that is proportional to O(M) and O(σs); however, the proposed
O(1) methods show obvious O(1) per-pixel time. For the BF∗ case, the naive
implementation is slightly slower than the BF because the BF coefficients must
be computed twice (Section 3.4). Moreover, O1 and O1+Prepa demonstrate
slightly longer times than the standard ones because the BF∗ must explicitly
manage boundary operations. The fastest one around σs ∈ [0.5, 1.5] is Mtx if
the BF matrix can be physically allocated; however, 1.5 < σs, the proposed
O(1) BF∗ outperforms the other methods. Note that Mtx causes a memory
shortage around σs = 6.5 (3 ≤ σs; it becomes slow because of a memory swap).
Moreover, with significantly larger images, e.g., 2624×3936 pixels, the memory
shortage occurs around σs ∈ [1, 2] (Section 5.2).

Figure 5 shows computational time obtained with fixed σs = 2.0 and
gradually changing σr. The domain 0.05 ≤ σr ≤ 0.2 will cover most practical
cases. Moreover, the plots show similar results to those given in Figure 4.
As can be seen, the proposed O(1) BF and BF∗ reduce computational time
compared to other methods. Furthermore, the proposed O(1) BF∗ runs
considerably faster than our naive BF∗ for most situations.

4.3 Memory Usage

Here, we compare the memory usage of the matrix-form and matrix-free
BF/BF∗. Let M be the number of pixels in an image; N be the number of
pixels in a filter window; C be the number of colors; and K be the number of
terms used to approximate the BF in Equation (20).

Memory usage in the matrix-form BF Essentially, the matrix-form BF
requires MNC nonzero elements and additional side information to represent
the coordinates of the sparse matrix. When M = 10002 and N = 112

(corresponding to σs = 1.5), at least the following is required at double
precision (8 [byte]):

MNC × 8 [byte] = 10002 × 112 × 3× 8

≈ 2.7 GB (2.7× 10243 [byte]).

The side information is mainly the position information of the nonzero elements,
i.e., the indexes (coordinates) of the row and column, which is simply calculated
as:

MNC × 4 [byte]× 2 [row, col] ≈ 2.7 GB,



16 Shirai et al.

where 4 [byte] is the size of the integer type and 2 is the number of indexes for
the row and column. The total theoretical memory size is

MNC × (8 + 4× 2) [byte] ≈ 5.4 GB. (22)

Memory usage in the matrix-free BF The matrix-free BF developed
based on Sugimoto and Kamata [34] requires 4MCK for the parameter images,
i.e., ϕk(gp), ψ(gq), and the extended versions in Equation (21), which can be
precomputed and shared. As another example, if the parameters are C = 3
(RGB images), σs = 1.5, σr = 0.1, εBF = 0.01, maximum dynamic range of
1.0, and K = 6, the memory usage for the images is

4MCK × 8 [byte] = 4× 10002 × 3× 6× 8

≈ 550 MB.
(23)

The difference between the above calculations Equations (22) and (23) is
N and 2K, respectively, where N = 112 = 121 and 2K = 2 × 6 = 12, and
precisely, N ≫ 2K. Therefore, a difference of ×10 appears in this case. When
handling larger images, such as, 2K or 4K images that require a larger spatial
scale in filtering, this difference becomes critical, and the matrix-form BF
cannot handle these images.

The actual memory usage required for an application is thought of becoming
larger than the mentioned theoretical one. In addition to the matrix or filter-
form BF, the memory usage depends on the number of variables and temporary
variables used in the code. In Section 5.2, we show an example of an actual
memory usage in an application.

5 Applications to Optimization-based Image Processing

This section presents two applications based on variational approaches with
BF and how the BF and BF∗ (as well as their O(1) algorithms) are used in
real-world situations. The second application is a conventional method [2];
however, the equation is more difficult than the first application. Therefore, for
the first application, we introduce how to use BF/BF∗ and the definitions of
variables. Then, for the second application, we demonstrate how the proposed
methods improve performance.

5.1 Correction After Color Grading

The first example is a post process for color grading [27] that attempts to
correct noisy resulting images after color grading by performing BF-based
optimization.



Adjoint Bilateral Filter and Its Application to Optimization-based Image Processing 17

5.1.1 Decomposition into Structure and Texture Components

Similar to the original BF [14, 26], a major example of the BF is decomposition
of a target image using its guide image into a structure component of the target
and texture component of the guide, which corresponds to a low-frequency
part, for example, colors and edges, and a high-frequency part. Given a target
image y and guide image g, we can extract the structure component from
the target image as Bgy and the texture component from the guide image
as g − Bgg. We can treat this as a linear problem because the BF filter
matrix Bg can be fixed throughout the process. By adding these components
appropriately, we can transfer the texture of the guide image onto the structure
of the input image. In particular, we obtain the following:

x := Bgy︸︷︷︸
structure

+λ1 Bgg︸︷︷︸
texture

, (24)

where Bg = I−Bg is introduced for simplicity, I is the identity matrix, and
λ1 is a balancing parameter. However, if component extraction results in
insufficient quality, this approach may demonstrate nonnegligible artifacts.

We avoid this drawback using a variational approach. Here, we consider
an extension of the above naive approach to an optimization problem with BF;
this extension can be formalized as follows:

min
x

{
f(x) := 1

2 ∥Bg(x− y)∥22︸ ︷︷ ︸
structure

+λ2
1
2 ∥Bg(x− g)∥22︸ ︷︷ ︸

texture

}
, (25)

where λ2 is a balancing parameter. In Equation (25), the first and second terms
induce a solution that is similar to the structure component of the input image
y and texture component of the guide image g, respectively. This problem
can be solved using an iterative optimizer, e.g., the gradient descent method
Equation (2) or conjugate gradient method [15, 21]. The gradients required
by this computation can be derived by considering the partial derivative of
Equation (25) relative to x as follows:

∇f(x(t)) = B⊤
g Bg(x(t) − y) + λ2B

⊤
g Bg(x(t) − g)

= B⊤
g Bgx(t) + λ2B

⊤
g Bgx(t)

−
{
B⊤

g Bgy + λ2B
⊤
g Bgg

}
.

(26)

This model seems considerably more sophisticated than the naive model
Equation (24); however, it is computationally expensive to naively iterate the
computation of Equation (26).

We can reduce the computational burden of the abovementioned approach
using the proposed methods. First, the computation of line 3 in Equation (26)



18 Shirai et al.

can be moved outside the iteration process. It is precomputable because
it is independent of the iteration counter t. The matrix product of Bg or
B⊤

g , which indicates BF or BF∗, can be replaced by their associated filter
operations in practice because this computation is performed from right to left
as an image filter or its O(1) algorithm. Moreover, we can efficiently compute
h(x(t)) := B⊤

g Bgx(t) + λ2B
⊤
g Bgx(t), which is required for iterations in line 2

of Equation (26), as follows:
u(t) ← Bgx(t),

v(t) ← λ2(x(t) − u(t)),

h(x(t)) = B⊤
g (u

(t) − v(t)) + v(t),

(27)

Thus, each iteration performs one BF and one BF∗; however, this must be
performed three times to process an RGB image.

Moreover, similar to lines 2 and 3 in Algorithm 1, we can reduce the
computational time by sharing the generated filter coefficients because we use
both BF and BF∗ in the same order for each term, and we can share the same
guide image to compute the filter coefficients.

5.1.2 Results

The existing method based on Equation (24) was proposed in Rabin et al. [28].
Note that the previous study used (rather than the BF) Yaroslavsky et al.
filter [43], which can be considered as a specific case of BF simplified using a
box spatial kernel. In these experiments, we attempt to use BF. Here, both
the spatial and range kernels were Gaussian kernels, and the scale parameters
σs = 4 and σr = 0.05. The tolerance for the O(1) BF and BF∗ was set to
εBF = 0.1. We solved Equation (25) using the conjugate gradient method [15,
21]. Moreover, the test environment and implementations were the same as
those identified in Section 4. Here, we used an RGB test image (361 × 481
pixels).

Figure 6 (a) shows the target image before color grading, and Figure 6(b)
shows the resulting image after color grading. In this task, we performed
BF using (a) as the guide image g and (b) as the input image y. We suc-
cessfully obtained the desired colors of the structure component; however, an
unexpected texture occurred as artifacts in the sky region. Thus, we aim to
reduce this artifact by transferring the texture contained in the original image.
Figures 6(c)∼(h) show the resulting images of an existing approach based on
the Rabin method (top row) and our optimization Equation (25) obtained with
various balancing parameter values (λ1 = 0.1, 1, 10 and λ2 = 0.1, 1, 10). As
can be seen, we successfully reduced the artifact in the sky region. Relative to
parameter adjustments, the existing approach Equation (24) was significantly



Adjoint Bilateral Filter and Its Application to Optimization-based Image Processing 19

Figure 6: Examples of correcting results of color grading. The images in (a) and (b) are
courtesy of Pitié et al. [27].

sensitive to the parameter λ1, which directly affected the sharpness of the
entire texture. However, the proposed approach Equation (25) (bottom row)
can only affect the texture of the sky region, which is easier for controlling the
parameter λ2.

Here, the number of iterations required to converge to a visually similar
result was four, and each iteration required 0.16 s. Thus, we consider that
we have overcome the severe problem of the existing methods based on BF
optimization [2, 24], which is caused by explicitly generating the BF filter
matrix with numerous nonzero elements by replacing it with the proposed
O(1) filter operation.

5.2 Flash/no-flash Photo Integration for Denoising

The second example is a flash/no-flash image integration method [2], which
was referred to as a conventional method in the Introduction. In this method,
BF and BF∗ are used to integrate under-exposed regions.

Here, let y be a no-flash image, g be a flash image as the guide image, and
Bg be the BF filter matrix generated using a flash image. The BF and BF∗

parameters are σr = 0.05 and εBF = 0.1, and we varied σs from 1 to 4 for
comparison. The integration problem for under-exposed regions is expressed
as follows:

min
x

1
2∥y− x∥22 + λ3∥Bgx∥1, (28)

where the first term is a data fidelity term used to transfer the color and
contrast of the no-flash image to the solution x; the second term is a regularizer
comprising the Laplacian using BF Bgx := x − Bgx and the ℓ1 norm, i.e.,
total variation using BF rather than differential filters, to reduce noise on x;



20 Shirai et al.

and λ3 is a balancing parameter (set to λ3 = 0.1). To solve this problem,
the primal dual splitting [9] convex optimization method was used. Here, the
iterative algorithm is derived as follows:

x(t+1) ← x(t) − τ1{(x(t) − y) + B
⊤
g z(t)},

v(t) ← z(t) + τ2B(2x(t+1) − x(t)),

z(t+1) ← v(t) λ3

max(

√
(v(t)

R )2 + (v(t)
G )2 + (v(t)

B )2, λ3)

,

(29)

where v and z are temporal variables; the third row is element-wise computation
of each vector; vR, vG, and vB are the R, G, and B color components,
respectively; and τ1 and τ2 are parameters that control the convergence
(τ1 = 0.1 and τ2 = 0.8).

In the original method, the matrix form is used to calculate the BFs: B
⊤
g z(t)

and B(2x(t+1) − x(t)). However, our method uses the following matrix-free
BF and BF∗. In this case, the number of iterations for Equation (29) was set
300 to measure the sufficiently long computational time.

5.2.1 Results

First, we demonstrate qualitative results in Figure 7, where (from left to right)
the images are (a) the flash image used as the guide, (b) the no-flash image, (c)
the result from the matrix form approach (conventional method), (d) the result
of the matrix-free approach (proposed method), and (e) the difference between
(c) and (d) was magnified 10× times. The original image size was 427× 640,
and we show a partial region of size 300 × 270 to exhibit the details. The
nearly same results were obtained from the matrix form (c) and matrix-free
form (d), and their perceptual difference (e) is minimal even if the error is
emphasized. The PSNR between (c) and (d) in the whole 427× 640 region
exceeds 60 dB; thus, the numerical difference is sufficiently small.

The computational times and PSNR for reference are listed in Table 1.
In addition to the 427 × 640 images, 1152 × 1728 and 2624 × 3936 images
taken with a Canon EOS20D camera. Here, the computational times for the
matrix and matrix-free forms are shown (faster times are shown in bold).
These results indicate that the advantage of the matrix form method is limited
to when σs < 2.0, and it cannot handle large images and large kernels, i.e.,
high-resolution images, because of memory shortage (“out of memory” in the
figure). However, the matrix-free BF∗ can process images in constant time
regardless of the filter size.

The required memory size can be estimated by Equations (22) and (23).
First, “out of mem.” in Table 1 indicates that the actual memory usage



Adjoint Bilateral Filter and Its Application to Optimization-based Image Processing 21

Figure 7: Examples of flash/no-flash image integration. Images (a) and (b) are courtesy of
Baba et al. [2]. The PSNR of error (e) between matrix form (c) and matrix-free form (d) is
58 dB.

exceeded 16 GB that is mounted on the PC used for all the experiments
through the paper. When using the 2624× 3936 image and 13× 13 filter, the
theoretical memory usage for the matrix-form BF/BF∗ is estimated as follows
using Equation (22):

MNC × 16 [byte] = (2624× 3936)× 132 × 3× 16

≈ 78 GB.

On the other hand, the theoretical memory usage for the matrix-free BF/BF∗

is estimated as follows using Equation (23):

4MCK × 8 [byte] = 4× (2624× 3936)× 3× 6× 8

≈ 5.5 GB.

Therefore, large-size images and large-size filter critically affect the computation
using BF/BF∗.



22 Shirai et al.

T
ab

le
1:

A
ve

ra
ge

co
m

pu
ta

ti
on

al
ti

m
e

of
B

F
an

d
B

F
∗

in
fla

sh
/n

o-
fla

sh
im

ag
e

in
te

gr
at

io
n,

an
d

P
SN

R
of

re
su

lt
in

g
im

ag
es

be
tw

ee
n

m
at

ri
x

fo
rm

an
d

m
at

ri
x-

fr
ee

O
(1
)

m
et

ho
ds

fo
r

re
fe

re
nc

e.

C
om

pu
ta

ti
on

al
ti

m
e

[s
ec

/i
te

ra
ti

on
]

Im
ag

e
si

ze
σ
s

F
ilt

er
si

ze
B

F
B

F
∗

P
SN

R
[d

B
]

M
at

ri
x

fo
rm

F
ilt

er
fo

rm
M

at
ri

x
fo

rm
F
ilt

er
fo

rm
42
7
×
64
0

1.
0

7
×

7
0.

03
5

0.
14

1
0.

02
4

0.
17

4
62

.4
2.

0
13
×

13
0.

11
3

0.
14

2
0.

07
0

0.
19

1
63

.3
3.

0
19
×

19
0.

23
4

0.
14

4
0.

14
6

0.
21

3
60

.2
4.

0
25
×

25
0.

40
2

0.
14

4
0.

25
5

0.
23

1
60

.2
11
52
×
17
28

1.
0

7
×

7
0.

28
1

1.
10

6
0.

18
5

1.
24

3
64

.1
2.

0
13
×

13
14

.4
55

1.
08

7
5.

82
7

1.
29

2
65

.8
3.

0
19
×

19
ou

t
of

m
em

.
1.

08
9

ou
t

of
m

em
.

1.
33

4
–

4.
0

25
×

25
ou

t
of

m
em

.
1.

13
9

ou
t

of
m

em
.

1.
40

6
–

26
24
×
39
36

1.
0

7
×

7
99

.4
62

5.
56

2
28

.0
08

6.
28

4
68

.7
2.

0
13
×

13
ou

t
of

m
em

.
5.

56
9

ou
t

of
m

em
.

6.
40

0
–

3.
0

19
×

19
ou

t
of

m
em

.
5.

58
8

ou
t

of
m

em
.

6.
52

0
–

4.
0

25
×

25
ou

t
of

m
em

.
5.

59
2

ou
t

of
m

em
.

6.
62

6
–



Adjoint Bilateral Filter and Its Application to Optimization-based Image Processing 23

6 Conclusion

This study has proposed the BF∗ and demonstrated matrix-free and O(1)
algorithms as powerful tools for optimization-based image processing with BF.
The proposed method can be extended to cross filtering and O(1) filtering
as an essential optimization tool. It can be applied to image processing
based on optimization with BF without sacrificing the advantages of BF-based
techniques.

Using the proposed approach, various conventional tasks that can tradi-
tionally be handled by BF will be extended as an optimization problem with
a certain normalization method and appropriate constraints. This approach
will outperform the conventional approach because of the added normalization
and constraints. Many other cross-filtering methods, including the weighted
least squares-based filter [16] and guided image filter [19], have been proposed.
BF outperforms such existing methods in terms of computational complexity
if high-resolution images are filtered or a large filter window is required. Thus,
we consider that the BF will continue to be used in the future and that the
proposed method will serve as an effective optimization tool.

Biographies

Keiichiro Shirai received the B.E., M.E., and D.Eng. degrees from Keio
University, Yokohama, Japan, in 2001, 2003, and 2006. He has been with
Shinshu University, Japan, since 2006 and is currently an Associate Professor
of Electrical and Computer Engineering. His research interests include signal
processing, image processing, and computer vision.

Kenjiro Sugimoto currently serves as an imaging engineer at Japan R&D
Center, Xiaomi, since 2021. His research mainly focuses on signal/image
processing, computer vision and machine learning, specializing in particular on
accelerating imaging algorithms. He holds engineering degrees from Kurume
National College of Technology (B.E. in 2007) and Waseda University (M.E. in
2009 and Ph.D. in 2015). Before working at the current position, he had been
a research fellow of the Japan Society for the Promotion of Science (JSPS)
during 2010–2012, a visiting research scientist with Durham University in
2015, and a research associate and an assistant professor with Graduate School
of Information, Production and Systems, Waseda Univeristy (Japan) during
2014–2021. He is a member of IEEE and IEICE.

Sei-ichiro Kamata received the M.S. degree in computer science from Kyushu
University, Fukuoka, Japan, in 1985, and the Doctor of Computer Science,



24 Shirai et al.

Kyushu Institute of Technology, Kitakyushu, Japan, in 1995. From 1985
to 1988, he was with NEC, Ltd., Kawasaki, Japan. In 1988, he joined the
faculty at Kyushu Institute of Technology. From 1996 to 2001, he has been an
Associate Professor in the Department of Intelligent System, Graduate School
of Information Science and Electrical Engineering, Kyushu University. Since
2003, he has been a professor in the Graduate School of Information, Produc-
tion and Systems, Waseda University. In 1990 and 1994, he was a Visiting
Researcher at the University of Maine, Orono. His research interests include
image processing, pattern recognition, image compression, and space-filling
curve application. He is a member of IEEE, IEICE and ITE in Japan.

References

[1] V. Aurich and J. Weule, “Non-linear Gaussian Filters Performing Edge
Preserving Diffusion,” in Mustererkennung DAGM-Symposium, 1995,
538–45.

[2] T. Baba, R. Matsuoka, S. Ono, K. Shirai, and M. Okuda, “Flash/No-
flash Image Integration Using Convex Optimization,” in Proceedings
of the IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2014, 1194–8.

[3] J. T. Barron, A. Adams, Y. Shih, and C. Hernández, “Fast Bilateral-space
Stereo for Synthetic Defocus,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2015, 4466–74.

[4] J. T. Barron and B. Poole, “The Fast Bilateral Solver,” in Proc. Euro.
Conf. Comput. Vis. (ECCV), 2016, 617–32.

[5] D. Charalampidis, “Recursive Implementation of the Gaussian Filter
Using Truncated Cosine Functions,” IEEE Transactions on Signal Pro-
cessing, 64(14), 2016, 3554–65.

[6] K. N. Chaudhury, “Acceleration of the Shiftable O(1) Algorithm for
Bilateral Filtering and Nonlocal Means,” IEEE Transactions on Image
Processing, 22(4), 2013, 1291–300.

[7] K. N. Chaudhury, “Constant-time Filtering Using Shiftable Kernels,”
IEEE Signal Processing Letters, 18(11), 2011, 651–4.

[8] K. N. Chaudhury, D. Sage, and M. Unser, “Fast O(1) Bilateral Filtering
Using Trigonometric Range Kernels,” IEEE Transactions on Image
Processing, 20(12), 2011, 3376–82.

[9] L. Condat, “A Primal-dual Splitting Method for Convex Optimization In-
volving Lipschitzian, Proximable and Linear Composite Terms,” Journal
of Optimization Theory and Applications, 158(2), 2013, 460–79.

[10] G. Deng, “Fast Compressive Bilateral Filter,” Electronics Letters, 53(3),
2017, 150–2.



Adjoint Bilateral Filter and Its Application to Optimization-based Image Processing 25

[11] G. Deng, J. H. Manton, and S. Wang, “Fast Kernel Smoothing by a
Low-rank Approximation of the Kernel Toeplitz Matrix,” Journal of
Mathematical Imaging and Vision, 60(8), 2018, 1181–95.

[12] R. Deriche, “Fast Algorithms for Low-level Vision,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, 12(1), 1990, 78–87.

[13] F. Durand and J. Dorsey, “Fast Bilateral Filtering for the Display of
High-dynamic-Range Images,” ACM Trans. Graph. (Proc. SIGGRAPH),
21(3), 2002, 257–66.

[14] E. Eisemann and F. Durand, “Flash Photography Enhancement via
Intrinsic Relighting,” ACM Trans. Graph. (Proc. SIGGRAPH), 1(212),
2004, 673–8.

[15] H. W. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse
Problems, Springer, 1996.

[16] Z. Farbman, R. Fattal, D. Lischinski, and R. Szeliski, “Edge-preserving
Decompositions for Multi-scale Tone and Detail Manipulation,” ACM
Trans. Graph. (Proc. SIGGRAPH), 27(3), 2008, 67:1–67:10.

[17] R. Franzen, “Kodak Lossless True Color Image Suite,” http://r0k.us/
graphics/kodak/, December 2021.

[18] L. Hang and K. Urahama, “Color Restoration Based on Scene Obser-
vation Model,” IEICE Lett. Fundamentals Electronics (in Japanese),
J98-A(12), 2015, 695–9.

[19] K. He, J. Sun, and X. Tang, “Guided Image Filtering,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, 35(6), 2013, 1397–409.

[20] F. Heide, S. Diamond, M. Nieß, J. Ragan-Kelley, W. Heidrich, and G.
Wetzstein, “ProxImaL: Efficient Image Optimization Using Proximal
Algorithms,” ACM Trans. Graph., 35(4), 2016, 84:1–84:15.

[21] M. R. Hestenes and E. Stiefel, “Methods of Conjugate Gradients for
Solving Linear Systems,” Journal of Research of the National Bureau of
Standards, 49, 1952, 409–36.

[22] J. Kopf, M. F. Cohen, D. Lischinski, and M. Uyttendaele, “Joint Bilateral
Upsampling,” ACM Trans. Graph. (Proc. SIGGRAPH), 26(3), 2007, 1–5.

[23] T. Matsuo, N. Fukushima, and Y. Ishibashi, “Weighted Joint Bilateral
Filter with Slope Depth Compensation Filter for Depth Map Refinement,”
in Proc. Int. Conf. Comput. Vis. Theory Appl. (VISAPP), Vol. 2, 2013,
300–9.

[24] R. Morita, K. Shirai, and Y. Tanaka, “Retargeting Pyramid Using Direct
Decimation,” in Proceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2014, 2832–6.

[25] S. Paris and F. Durand, “A Fast Approximation of the Bilateral Filter
Using a Signal Processing Approach,” International Journal of Computer
Vision, 81(1), 2009, 24–52.

http://r0k.us/graphics/kodak/
http://r0k.us/graphics/kodak/


26 Shirai et al.

[26] G. Petschnigg, M. Agrawala, H. Hoppe, R. Szeliski, M. Cohen, and K.
Toyama, “Digital Photography with Flash and No-flash Image Pairs,”
ACM Trans. Graph. (Proc. SIGGRAPH), 1(212), 2004, 664–72.

[27] F. Pitié, A. C. Kokaram, and R. Dahyot, “Automated Colour Grading
Using Colour Distribution Transfer,” Comput. Vis. Image Understd.,
107(1-2), 2007, 123–37.

[28] J. Rabin, J. Delon, and Y. Gousseau, “Regularization of Transportation
Maps for Color and Contrast Transfer,” in Proc. IEEE Int. Conf. Image
Process. (ICIP), 2010, 1933–6.

[29] R. Ramanath and W. E. Snyder, “Adaptive demosaicking,” J. Electronic
Imag., 12(4), 2003, 633–42.

[30] Y. Romano, M. Elad, and P. Milanfar, “The Little Engine That Could:
Regularization by Denoising (RED),” SIAM Journal on Imaging Pro-
cessing, 10(4), 2017, 1804–44.

[31] S. M. Smith and J. M. Brady, “SUSAN – A New Approach to Low Level
Image Processing,” International Journal of Computer Vision (IJCV),
23(1), 1997, 45–78.

[32] K. Sugimoto, T. P. Breckon, and S. Kamata, “Constant-time Bilateral
Filter Using Spectral Decomposition,” in IEEE Internat. Conf. Image
Process. (ICIP), September 2016, 3319–23.

[33] K. Sugimoto, N. Fukushima, and S. Kamata, “200 FPS Constant-Time
Bilateral Filter Using SVD and Tiling Strategy,” in IEEE Internat. Conf.
Image Process. (ICIP), September 2019, 190–4.

[34] K. Sugimoto and S. Kamata, “Compressive Bilateral Filtering,” IEEE
Transactions on Image Processing (TIP), 24(11), 2015, 3357–69.

[35] K. Sugimoto and S. Kamata, “Efficient Constant-time Gaussian Filtering
with Sliding DCT/DST-5 and Dual-domain Error Minimization,” ITE
Trans. Media Technol. Appli., 3(1), 2015, 12–21.

[36] K. Sugimoto and S. Kamata, “Fast Gaussian Filter with Second-order
Shift Property of DCT-5,” in Proc. IEEE Int. Conf. Image Process.
(ICIP), 2013, 514–8.

[37] K. Sugimoto, K. Shirai, and S. Kamata, “O(1) Transposed Bilateral
Filtering for Optimization,” in Proc. APSIPA Conf. Signal Process. 2014,
1–4.

[38] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color
images,” in Proc. IEEE Int. Conf. Comput. VIs. (ICCV), 1998, 839–46.

[39] L. J. van Vliet, I. T. Young, and P. W. Verbeek, “Recursive Gaussian
Derivative Filters,” in Proc. IAPR Int. Conf. Pattern Recognit. (ICPR),
Vol. 1, 1998, 509–14.

[40] H. Winnemöller, S. C. Olsen, and B. Gooch, “Real-time Video Abstrac-
tion,” ACM Trans. Graph. (Proc. SIGGRAPH), 25(3), 2006, 1221–6.



Adjoint Bilateral Filter and Its Application to Optimization-based Image Processing 27

[41] J. Xiao, H. Cheng, H. Sawhney, C. Rao, and M. Isnardi, “Bilateral
Filtering-based Optical Flow Estimation,” Proc. Euro. Conf. Comput.
Vis. (ECCV), Springer LNCS 3951, 2006, 211–24.

[42] Q. Yang, K.-H. Tan, and N. Ahuja, “Real-time O(1) Bilateral Filtering,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2009, 557–64.

[43] L. P. Yaroslavsky, Digital Picture Processing. An Introduction, Springer-
Verlag, Berlin, 1985.

[44] S. Yoshizawa, A. Belyaev, and H. Yokota, “Fast Gauss Bilateral Filter-
ing,” Computer Graphics Forum, 29(1), 2010, 60–74.

[45] L. Yuan, J. Sun, L. Quan, and H.-Y. Shum, “Progressive Inter-scale and
Intra-scale Non-blind Image Deconvolution,” ACM Trans. Graph. (Proc.
SIGGRAPH), 27(3), 2008, 74:1–74:10.


	Introduction
	Preliminaries
	Motivation of Matrix-free Adjoint Operation
	Bilateral Filter and Cross Bilateral Filter

	Proposed Methods
	Matrix-free Adjoint Bilateral Filter
	Boundary Padding
	Constant-time Adjoint BF
	Algorithm Procedure

	Results and Discussion
	Approximation Accuracy
	Computational Complexity
	Memory Usage

	Applications to Optimization-based Image Processing
	Correction After Color Grading
	Decomposition into Structure and Texture Components
	Results

	Flash/no-flash Photo Integration for Denoising
	Results


	Conclusion

