
APSIPA Transactions on Signal and Information Processing, 2023, 12, e3
This is an Open Access article, distributed under the terms of the Creative Commons
Attribution licence (http:// creativecommons.org/ licenses/ by-nc/4.0/ ), which permits un-
restricted re-use, distribution, and reproduction in any medium, for non-commercial use,
provided the original work is properly cited.

Original Paper

Convolutional Neural Networks
Inference Memory Optimization with
Receptive Field-Based Input Tiling
Weihao Zhuang∗, Tristan Hascoet, Xunquan Chen, Ryoichi Takashima,
Tetsuya Takiguchi and Yasuo Ariki

Kobe University, Kobe 657-8501, Japan

ABSTRACT

Currently, deep learning plays an indispensable role in many fields,
including computer vision, natural language processing, and speech
recognition. Convolutional Neural Networks (CNNs) have demonstrated
excellent performance in computer vision tasks thanks to their powerful
feature-extraction capability. However, as the larger models have shown
higher accuracy, recent developments have led to state-of-the-art CNN
models with increasing resource consumption. This paper investigates
a conceptual approach to reduce the memory consumption of CNN
inference. Our method consists of processing the input image in a
sequence of carefully designed tiles within the lower subnetwork of the
CNN, so as to minimize its peak memory consumption, while keeping the
end-to-end computation unchanged. This method introduces a trade-off
between memory consumption and computations, which is particularly
suitable for high-resolution inputs. Our experimental results show that
MobileNetV2 memory consumption can be reduced by up to 5.3 times
with our proposed method. For ResNet50, one of the most commonly
used CNN models in computer vision tasks, memory can be optimized
by up to 2.3 times.

Keywords: Convolutional neural network, memory optimization, receptive field.
∗Corresponding author: Weihao Zhuang, zhuangweihao@stu.kobe-u.ac.jp.

Received 20 March 2022; Revised 16 October 2022
ISSN 2048-7703; DOI 10.1561/116.00000015
© 2023 W. Zhuang, T. Hascoet, X. Chen, R. Takashima, T. Takiguchi and Y. Ariki

http://creativecommons.org/licenses/by-nc/4.0/


2 Zhuang et al.

1 Introduction

Recent developments in computer vision have led to the introduction of new
models with improved accuracy. Unfortunately, higher accuracy often comes
at the cost of increased resource consumption. Given their high resource
consumption, state-of-the-art models are difficult to deploy in practical edge
device use cases, in which resources are limited. Although it is possible to
delegate the inference from edge devices to remote servers, this solution comes
with additional network resource consumption, latency, and additional data
privacy risks. Hence, optimizing the computing resources needed by CNNs to
run on edge devices without affecting the accuracy is a challenge of practical
importance.

In this paper, we focus on one particular aspect related to the resource
consumption of CNNs: we aim to optimize the memory consumption of CNNs
during the inference phases. The memory used by a CNN model consists of two
parts – activations and parameters. The number of parameters a given CNN
has is fixed when the model is designed. The amount of device memory used
by activations is largely related to the resolution of the input. Figure 1 shows
the ratio of the memory consumption caused by the activations to the memory
consumption due to parameters of the model for different resolutions; i.e., the
memory consumption of the activations divided by the memory consumption
of the parameters. As the input image resolution increases, the memory

Figure 1: The ratio of activations memory consumption to the parameters
at different resolutions in CNN inference.



Convolutional Neural Networks Inference Memory Optimization 3

bottleneck in inference is gradually dominated by activations. For models
with a smaller number of parameters, the effect of activations on memory
consumption will become more pronounced as the resolution increases. For
MobileNetV2 [16], the model with the smallest number of parameters among
these models, the memory consumption for activations is 16 times higher than
the parameters when the input resolution is 1024× 1024.

Many computer vision benchmarks and implementations use image res-
olutions of 224 × 224 pixels, which is a common standard nowadays. This
relatively low resolution explains why activations have not been considered
a bottleneck in inference memory consumption, and most works aiming to
compress networks for inference have focused on reducing the footprint of the
model parameters. However, using higher resolution input is important for
some practical computer vision tasks: Sabottke et al. [15] proposed that a
CNN network trained with a high resolution has better performance when
dealing with medical images. In industrial defect detection applications, the
resolution of the image is often relatively high [17, 18]. Therefore, it would
be beneficial to reduce the memory bottleneck caused by activations in the
inference phase.

A straightforward method to reduce the memory consumption of CNN
inference consists of sequentially processing input images in spatially arranged
tiles, as illustrated in Figure 4a. That way, the computations of the model are
equivalent to sequentially processing low-resolution images, hence reducing
the inference memory cost. However, naively processing images in spatial tiles
will result in approximate computations due to artifacts arising at the edges of
each tile, which affects the accuracy of the CNN. This is because pixels at the
edge of each tile lose the information of their neighbor pixel because they are
typically replaced by zero-padding in most practical implementations. This
causes information at the edge to be lost. These artifacts can be mitigated, and
even completely removed, using overlapping tiles to guarantee a computation
exactly similar to the standard model execution. However, overlapping tiles
introduce a computational cost overhead due to redundant computations at
the edge of the tiles. This highlights a fundamental trade-off between memory
consumption and computations, which is the topic of this paper.

We propose using the receptive fields of neurons at arbitrary layers to
parameterize tiles that ensure that the output is unchanged and without
unnecessary computation. Given these tiles, we are able to quantify the
amount of redundant computation, and, hence, the memory overhead of a
given choice of tiles. Similarly, we are able to compute the memory reduction
achieved for different tiles. This provides us with formulas for calculating the
trade-off between memory consumption and computational overhead later for
different models and choices of tiling.

Several methods have been proposed to reduce the memory consumption
associated with inference. These can be broadly divided into three categories:



4 Zhuang et al.

model compression [4–6, 10], light-weight model design [2, 7–9, 12, 16, 21], and
low-level operation implementation optimization [3, 19]. Most of these methods
are carried out from the perspective of optimizing the memory consumption
of the parameters.

Our method is based on using the receptive field to tile the input image,
and then optimizing the memory bottleneck caused by activations during CNN
inference. The method of calculating an arbitrary neural network receptive
field proposed by Araujo et al. [1] provides us with tools for theoretical anal-
ysis. The method most related to our approach is proposed by Wu et al. [20],
which also tiles the input to several parts and feeds them into the CNN model.
However, this method does not use receptive field-based tiling, which makes
it impossible to study the exact trade-off we propose in this paper.

The remainder of this paper is organized as follows: We start by presenting
prerequisite knowledge together with our methodology in Section 2. In Section 3
we use a toy parametrization of CNN architecture to derive the exact trade-
off between memory consumption and computational overhead. Finally, in
Section 4 we analyze the trade-off between computational overhead and memory
consumption for some standard CNN architectures using our proposed method.

2 The Proposed Method

Section 2.1 presents background information about the memory consumption
of CNN models in the inference phase. The basics of the receptive field will be
introduced in Section 2.2. Section 2.3 combines these concepts to formalize
our proposed method.

2.1 Memory Consumption of CNN Inference

When a CNN performs inference, the total memory consumption is the sum
of the parameters and activations stored in the device’s memory. A simple
memory allocation strategy is to allocate memory buffers for all the activations
and parameters needed by the model. The Tensorflow lite [11] naive method
uses exactly this strategy. However, the memory cost of this strategy is very
high. PyTorch [13] allocates output buffers before and deallocates input buffers
after the execution of each layer. This strategy greatly reduces memory usage
at the cost of overhead for dynamic memory management. The Tensorflow
Lite optimized method uses the method proposed by Pisarchyk et al. [14] to
optimize memory consumption during inference. In [14], to reduce the overhead
of dynamic memory management, the authors allocate memory buffers that
can be reused during the execution of the model. In addition, [14] greedily
allocates the smallest possible memory buffers when the model is executed.



Convolutional Neural Networks Inference Memory Optimization 5

Figure 2 illustrates the memory consumption of MobileNetV2 using different
inference strategies. Figure 2a shows only the memory occupied by the
activations, while Figure 2b shows the memory consumption including the
activations and parameters. We can see that the memory consumption after
Tensorflow Lite optimization is very close to that of “PyTorch Naive”, although
there is still a difference of about 4MB.

Figure 2: Comparison of different methods for MobileNetV2 memory opti-
mization (224× 224 Input).

Tensorflow Lite, as a successful deployment framework, usually fuses Batch
Normalization (BN) into convolution to reduce the inference latency, while
PyTorch performs all operators as separate computational nodes by default.
Our approach is optimized base on PyTorch Naive, which we describe in
Section 2.3. Although we could choose to optimize the PyTorch implementation
after BN fusion, we do not do that for the sake of comparison with the standard
PyTorch implementation.

Our proposed method can optimize 4.35 times the activation consumption
compared to Tensorflow Lite optimized method. Although our approach has a
huge memory optimization for activations, it comes at the cost of increased
computation. Moreover, for the optimization method with tiling of 16, we
need to execute the model 16 times, which results in a certain degree of
memory management time consumption and low-level implementation time
consumption.

Table 1 and Figure 3 show the memory footprint of a simple CNN model
at inference. Table 1 shows the architecture of this CNN model. This model
consists of six convolution layers and two max-pooling layers. Every two
convolution layers are followed by a max-pooling layer, which downsamples
the activations by a factor of 2 in both spatial dimensions.

Figure 3 shows the memory consumption footprint of the model during the
inference phase. We drew Figure 3 based on the PyTorch memory management



6 Zhuang et al.

Table 1: Toy network architecture.

Output Size Configuration
Layer Name (Channel, Height, Width) (Kernel, Channel, Stride)

Input 3× 32× 32 -
Conv1, Conv2 32× 32× 32 3× 3, 32, 1
Maxpool1 32× 16× 16 3× 3, 2
Conv3, Conv4 64× 16× 16 3× 3, 64, 1
Maxpool2 64× 8× 8 3× 3, 2
Conv5, Conv6 128× 8× 8 3× 3, 128, 1

Figure 3: Memory consumption footprint of toy CNN model inference (FP32).

approach as a motivation to introduce our memory optimization approach.
The blue line represents the amount of device memory occupied by the model’s
parameters. The parameters are always stored in the device memory. The
orange curve shows the number of activations and the amount of memory
occupied by the device by the parameters. Memory consumption peaks at
some stage of the CNN model inference, such as Conv2 in Figure 2. Our goal
is to reduce this peak.

2.2 The Receptive field of CNN models

This section introduces the basics of the receptive field related to this paper
using a two-layer convolutional model and a CNN model with a residual block.



Convolutional Neural Networks Inference Memory Optimization 7

The concepts and information covered in this paper have been introduced
by [1].

The receptive field (RF) is defined as the size of the input region that
produces the feature. Figure 5a illustrates the effect of the number of layers
on the RF size. The blue trapezoid on the left illustrates the case where the
size of the RF is 5 after two layers of 3× 3 convolution. That is, there are five
elements in the one-dimensional input that contribute to the activations of the
output. The light orange trapezoid on the right illustrates the case where the

Figure 4: Naive method and proposed method.



8 Zhuang et al.

Figure 5: The receptive field (RF) of the model with two layers of convolution
and the model with residual blocks.

RF is 3 after one layer of 3× 3 convolution. The figure shows that the size of
the RF increases as the number of layers of the CNN model network increases.

Figure 5b illustrates the case where the RF has different values on two
different branches after using a residual block. A residual block can be seen as
a module combining a branch with a 3× 3 convolution and a branch with an
addition operation. The value of the RF after 3× 3 convolution is 3, while for
the addition operation the RF is only 1.

In models with different branches, the maximum of the branches is used
as the RF value. For example, in Figure 5b, we use the receptive fields of
the 3 × 3 convolution instead of the residual block. The widely used CNN
models usually consist of many connected convolutional layers, and the RF size
calculated in the last layer of the model is usually larger than the resolution
of the input image.

2.3 The Proposed Method

The method proposed in this paper is shown in Figure 4b. We first determine
the number of inputs after tiling the input image (which is 16 in Figure 4b),
and then decide a position for the activations to be aggregated, so that the
CNN model is divided into two parts: the head and the tail.

The input image is tiled according to the receptive field, and the black grids
on the input image in Figure 4b show the size of each tile obtained after tiling.
RF-based tiling induces some overlap between adjacent tiles, as illustrated in
Figure 4b. These overlaps are designed so as to ensure that the output of the
network remains exactly the same.



Convolutional Neural Networks Inference Memory Optimization 9

These tiles are fed one after another into the head of the CNN model, and
the activations obtained from each tile are aggregated and fed into the tail of
the model to complete the remaining inference.

We feed the model smaller-sized inputs each time, reducing memory con-
sumption peak. As shown in Figure 3, the peak memory consumption of
the CNN model occurs at the Conv2 layer. The aggregated activations are
guaranteed to be the same as the original un-tiled model, and, thus, RF-based
tiling does not affect the model accuracy.

After the max-pooling operation with stride 2, the memory occupied by the
activations is significantly reduced as the length and width of the activations
are downsampled to one half of the original size. Max-pooling, however, results
in an exponential increase in RF, which results in excess computation, and
we will discuss the trade-off between memory and computation in the next
section on the position of activation aggregation.

3 Computation vs. Memory Trade-off

Our proposed method consists of feeding to the network a sequence of overlap-
ping adjacent tiles. Hence, the overlap between these tiles is fed into the model
multiple times for computation, which introduces a computation redundancy
overhead. For a particular CNN model, the computation/memory trade-off
that is achieved depends on the specific layer at which the activations tiles are
aggregated.

In this section, we explore the memory and computational overhead trade-
offs for sequential convolutional neural networks and convolutional neural
networks with residual blocks, presenting formulas for theoretically calculating
the computation and memory trade-offs of CNN models.

Furthermore, we use a parameterizable CNN toy model to explore the
influence of parameters on memory consumption and computation trade-
offs, which provides a framework for designing more memory-friendly CNN
models. We conclude this section with experiments on several successful CNN
architectures to show the memory consumption and computation trade-offs
they can achieve.

3.1 Sequential Convolutional Neural Networks

3.1.1 Peak Memory Consumption

First, we theoretically explore the peak memory consumption achieved by a
sequential CNN model. Figure 6 illustrates the architecture of this sequential
CNN model. We only study the optimization of two-dimensional convolu-
tional neural networks because two-dimensional convolution is the basis of



10 Zhuang et al.

Figure 6: A sequential CNN model consisting of N blocks and M modules.

computer vision research. Successful optimization on two-dimensional convolu-
tional neural networks can provide optimization theory for higher-dimensional
convolutional neural networks.

We consider a network made of N blocks. In each block, there are M
convolution layers. Hm

n , Wm
n , and Cm

n represent the height, width, and channel,
respectively, of the input activations of the m-th convolution module in the
n-th block. We use M + 1 to denote the output of the M -th convolution
module. Every two blocks are connected to each other using max-pooling.

The peak memory consumption O can then be calculated according to
Equation (1). R is the parameters of model.

O = max
(
Hm

n Wm
n Cm

n +Hm+1
n Wm+1

n Cm+1
n

)
+R,

n = 1, 2, . . . , N, m = 1, 2, . . . ,M
(1)

Equation (1) can be applied to PyTorch and our proposed method. Equa-
tion (1) shows that the peak memory consumption for model inference occurs
at a certain layer.

The maximum memory Of required by the Tensorflow Lite naive method
can be calculated using Equation (2). Tensorflow Lite native method allocates
the memory required by the activations of all layers on the initialization.
Therefore, the maximum memory consumption during inference is the sum of
the memory required by all activations and includes the parameters R of the
model.

Of =

(
N∑

n=1

M∑
m=1

Hm
n Wm

n Cm
n

)
+R (2)

3.1.2 Multiply–Accumulate Operation

Moreover, we discuss the MAC (the number of multiply-accumulate operations)
required for the inference after using our proposed method. We use Q to denote
the MAC required to use our method, and Qf to denote the MAC for using the



Convolutional Neural Networks Inference Memory Optimization 11

methods (Tensorflow Lite Naive, Tensorflow Lite Optimized, PyTorch Naive,
PyTorch BN Fused) in Figure 2 other than our proposed method.

The parameter kmn indicates the kernel size of the m-th convolutional layer
in the n-th block. Hm

n , Wm
n , and Cm

n represent the height, width, and channel,
respectively, of the input activations of the m-th convolution module in the
n-th block. t denotes the number of tiled input images, and activations are
aggregated after l block.

We can tile only the height axis or the width axis of the image, or both.
Tiling both height and width make the tiles smaller and requires less memory,
so we will only discuss the case where both height and width are tiled. The
minimum value of t is 4, which means that we tile both height and width once.
The size of the activations will be gradually reduced by the max-pooling layers.
The maximum value of t is H1

l+1W
1
l+1, i.e., the activations before aggregation

are tiled into H1
l+1 by W 1

l+1 activations.
Q can be calculated using Equation (3). The first term expresses the

amount of MAC required after tiles are fed into the head of the model, whereas
the second term describes the MAC required by the execution of the tail of
the model. Qf can be calculated using Equation (4). Equation (4) has the
same form as the second term of Equation (3), feeding the activations that
are not tiled into the model.

Q = t

l∑
n=1

M∑
m=1

Hm
n Wm

n (Cm
n )

2
(kmn )

2
+

N∑
n=l+1

M∑
m=1

Hm
n Wm

n (Cm
n )

2
(kmn )

2
,

t = 4, 9, 16, . . . , (i+ 1)2, . . . ,H1
l+1W

1
l+1, i ∈ N

l = 1, 2, . . . , N − 1

(3)

Qf =

N∑
n=1

M∑
m=1

Hm
n Wm

n (Cm
n )

2
(kmn )

2 (4)

3.2 Residual Convolutional Blocks

3.2.1 Peak memory consumption

Similar to 3.1, we assume that there are N residual blocks, and each block has
M convolution modules, as shown in Figure 7. The peak memory consumption
Or of the residual block after using our proposed method can be calculated
using Equation (5).

Note that because the residual structure needs to add the input activations
and output activations, the input activations H1

nW
1
nC

1
n will always stay in the

device memory before completing the last step.
In this paper, we only consider the aggregation of activations outside the

residual block, although we can also do it inside the residual block since the
residual block requires the addition operation. It is necessary to keep the



12 Zhuang et al.

Figure 7: A Residual CNN model consisting of N blocks and M modules.

size of the added activations the same, which will increase extra memory
consumption.

The memory consumed by the Tensorflow Lite naive method can still
be calculated using Equation (2) and PyTorch memory consumption can be
calculated using Equation (5).

Or = H1
nW

1
nC

1
n +max

(
Hm

n Wm
n Cm

n +Hm+1
n Wm+1

n Cm+1
n

)
+R

n = 1, 2, . . . , N, m = 1, 2, . . . ,M
(5)

3.2.2 Multiply–Accumulate Operation

In fact, the residual structure does not change the way MAC is calculated
after using this method. We can use Equation (3) to calculate the MAC of the
residual model. In addition to our method in Figure 2, MAC can be calculated
using Equation (4).

3.3 Guidelines for Designing a More Memory-Friendly Model

In this section, we use a parametrizable toy model to analyze the trade-off
between memory and computational overhead. This analysis can provide us
with tools to design memory-friendly CNN models.

The parameterizable toy model architecture is shown in Figure 8. The
toy model is mainly composed of residual blocks, and it consists of N blocks,
which are connected by max-pooling layers. Max-pooling layers downsample
both the height and width of the activations by half. The output channel
Co of each module is double that of input channel Ci of the module. Cst is
denoted as the number of channels of the first convolution. In each block,
B residual blocks are connected, and each residual block is composed of M
3 × 3 convolutional layers. In the last residual block of the module, a 1 × 1
convolutional layer is used to increase the number of output channels.



Convolutional Neural Networks Inference Memory Optimization 13

Figure 8: A parameterizable toy CNN model.

3.3.1 Memory Footprint

Figure 9a to 9d show the memory footprints of the toy model with N = 3,
B = 2, M = 3, and Cst = 32 using the PyTorch naive implementation and
our proposed method with 16 tilings. We represent the toy model with N = 3,
B = 2, M = 3, and Cst = 32 as toy model 1.

The input size of the model is 224× 224. The x-axis represents the order
of model execution. L1 to L8 represent the positions where the activations
can be aggregated using our proposed method. The positions where the
activations are aggregated are marked by red dots. The y-axis shows the
memory consumption. The maximum memory consumption for each residual
block is denoted by P̂1 to P̂6.

Similarly, Figure 9e to 9h show the memory footprint of the toy model
with N = 3, B = 2, M = 4, and Cst = 32, and the aggregated positions are
also denoted by L1 to L8. We represent the toy model with N = 3, B = 2,
M = 4, and Cst = 32 as toy model 2. The maximum memory consumption for
each residual block is denoted by P1 to P6. Figure 9e to 9h using the PyTorch
naive method consumes more memory than Figure 9a to 9d and the y-axis
rises from 15 MB. P is higher than P̂ for the same subscript. This is because
the increased convolution parameters take up some memory, but the memory
required for activations does not increase with M (the highest point on the
y-axis minus the lowest point).

3.3.2 Memory-Computation Trade-off

We will now describe the memory and computation trade-off using our method
and the PyTorch naive method in this part.

Figure 9i shows the change in the MAC relative overhead ratio for increasing
tiling size. The y-axis indicates the relative MAC improvement at different
aggregation positions.



14 Zhuang et al.

Figure 9: Analysis of parametric toy models in terms of computational
redundancy overhead and memory trade-off.

The MAC of the model using our proposed method can be calculated using
Equation (3), where t = 16 and l depends on the aggregation position (from 1
to 8). The MAC of the PyTorch method can be calculated using Equation (4).
y = 1 indicates that the same MAC is needed to use our proposed method and
the PyTorch naive method. The blue curve is for the toy model 1. and the
orange curve is for the model B.

We tiled the 224 × 224 input into 16 parts based on the receptive field.
Although, the size of each activation before aggregation inside the model is the
same, the size of the tiles mapped to the input image is different for different
positions of activation. For the 16 input tiles, the tile size in the middle part is



Convolutional Neural Networks Inference Memory Optimization 15

the largest, and the smallest size tile is at the edge of the image. The largest
tile is the rectangle with equal length and width. The largest tile causes the
largest memory bottleneck. For the sake of calculation, we assume that all 16
tiles are of the same size as the largest tile. Therefore, we choose the largest
size tile as the x-axis of Figure 9i.

Figure 9j shows the memory relative optimization ratio as the MAC over-
head ratio increases. The y-axis of Figure 9i shares the x-axis of Figure 9j. The
y-axis of Figure 9j represents the peak memory consumption using the PyTorch
naive method divided by the peak memory consumption using our method.
The y = 1 indicates that the peak memory consumption using our proposed
method is as high as the PyTorch naive method. The memory consumed using
our method and the memory consumed by PyTorch can be calculated using
Equation (5).

As the aggregation position deepens, more MAC is required using our
proposed method. The relative memory optimization rate does not increase
with deeper aggregation positions.

In the following, we summarize four cases where the memory optimization
changes as the computational redundancy (aggregation position) varies. We
use Figure 9a to 9d as examples.

(1) The memory consumption using our proposed method is equivalent to
the memory consumption of PyTorch (aggregation position: L1):

This happens when the aggregation position is before the peak memory
consumption in the PyTorch naive method, as shown in Figure 9a. P̂2 is
the peak memory consumption in the PyTorch naive method, and when
the aggregation position is in L1, the activations after aggregation will
still increase to P̂2 without causing memory optimization.

(2) The memory relative optimization ratio does not increase as the ag-
gregation position deepens (aggregation position: from L2 or L3 to
L4):

This case is similar to the first case, and occurs when the memory
consumption at the head of the model is smaller than the memory con-
sumption at the tail of the model. When the activations are aggregated
at L2, L3, and L4, although P̂2 is crossed, P̂4 becomes the new memory
consumption peak, as shown in Figure 9b. This change in position does
not make the memory consumption more optimal.

(3) The memory relative optimization ratio goes up (aggregation position:
from L1 to L6):

This is what we expect to happen. This situation occurs across the
current memory consumption peak. For example, when our aggregation
positions go from L1 to L2 or L3, we cross P̂2, and optimization of



16 Zhuang et al.

memory consumption increases. When we cross P̂4 from L4 to L5 or L6,
the optimization of memory consumption will also increase.

(4) The memory relative optimization ratio decreases (aggregation position:
from L5 or L6 to L7):

This happens when the memory consumed at the head of the model is
larger than at the tail of the model. As the aggregation position deepens,
the tiling increases, and the memory consumption of the input tiling
in the head of the model becomes larger and larger in this case. For
example, when going from L5 or L6 to L7, we may naturally think of P̂6

as the memory bottleneck. But at this time, the memory consumption
in the model head is already higher than P̂6 as the tiling increases, as
shown in Figure 9c and 9d.

3.3.3 Memory-friendly model guideline

We give three guidelines for designing memory-friendly models that are well
suited for RF-based tiling memory optimization:

(1) The maximum memory consumption of the model tends to occur at the
relatively low layers. This way there is only a small amount of computa-
tional redundancy when aggregating the activations after crossing the
memory consumption peak.

(2) The memory used by the activations should be higher than the memory
used by the parameters, so that the bottleneck will be better reflected
in the memory occupied by the activations. This makes better memory
optimization possible with our method.

(3) The number of convolutions in a residual block should be reduced appro-
priately because the method cannot aggregate activations in the residual
block. The increase in the number of convolutions in the residual block
will lead to more computational redundancy when aggregating activations
behind the residual block and will result in more parameters.

4 Results and Discussion

We conducted experiments with our proposed method using some successful
CNN models in an experimental environment with the PyTorch [13] deep-
learning framework and Nvidia GPUs. Note that the optimization of device
memory in the CNN inference phase depends to some extent on the optimization
capabilities of the framework.



Convolutional Neural Networks Inference Memory Optimization 17

Figure 10: Computation and memory trade-offs at different resolutions input
after applying our proposed method to some widely used CNN models.

Figure 10 shows the effect of different input resolutions and the different
number of tiles on the memory-computation trade-offs after using our method.
We can see from Figure 10 that MobileNetV2 achieves a higher memory
optimization rate than other models. Because MobileNetV2 is a lightweight
network, the memory occupied by the parameters is much smaller than the
memory occupied by the activation. In Figure 10b, we see that MobileNetv2
can achieve a memory optimization ratio of 5.3, which means that the memory
burden is only 19% that of the original one after using our method.

A larger input resolution results in a higher memory optimization ratio.
For example, MobileNetV2 achieves at most a 1.6× memory optimization
ratio in Figure 10a, but 5.3× memory optimization ratio in Figure 10b. Our
proposed method is more suitable for optimizing memory bottlenecks resulting
from high-resolution inputs.

Unfortunately, a larger amount of tiling may require more computational
overhead to achieve the same memory optimization ratio using smaller tiling
sizes. In Figure 10a MobileNetV2 requires 1.5× the computational overhead
to achieve a memory optimization ratio of 1.6×. However, in Figure 10c, only
less than 1.1× computational overhead is needed to achieve a 2.0× memory



18 Zhuang et al.

optimization ratio. We recommend selecting the input size, the number of
tiles, and the aggregation position of the activations according to the usage
requirements.

In both figures, we can find that the optimization rate of memory rises
quickly with little computational overhead, which indicates that the memory
bottleneck occurs at the lower layers when these models are performing default
inference. The curves of both MobileNetV2 and ResNet50 in Figure 10a do
not decrease, which indicates that the memory bottleneck occurs at the tail of
the model.

5 Conclusion

In this paper, we propose a method to reduce the memory consumption of
convolutional neural networks in the inference phase that is orthogonal to other
model compression methods. Using our method and the analytical results
of this formulation, we can design a more memory-friendly model. We have
used our proposed method in some successful CNN models, resulting in a
reduction in the memory consumption of the model in the device. However,
our proposed method also imposes a certain computational overhead, showing
that it is more effective for high-resolution input images.

References

[1] A. Araujo, W. Norris, and J. Sim, “Computing Receptive Fields of
Convolutional Neural Networks,” Distill, 4(11), 2019, e21.

[2] F. Chollet, “Xception: Deep Learning with Depthwise Separable Con-
volutions,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2017, 1251–8.

[3] A. Gural and B. Murmann, “Memory-Optimal Direct Convolutions
for Maximizing Classification Accuracy in Embedded Applications,” in
International Conference on Machine Learning, 2019, 2515–24.

[4] S. Han, H. Mao, and W. J. Dally, “Deep Compression: Compressing
Deep Neural Networks with Pruning, Trained Quantization and Huffman
Coding,” arXiv preprint arXiv:1510.00149, 2015.

[5] S. Han, J. Pool, J. Tran, and W. Dally, “Learning Both Weights and Con-
nections for Efficient Neural Network,” Advances in Neural Information
Processing Systems, 28, 2015, 1135–43.

[6] G. Hinton, O. Vinyals, and J. Dean, “Distilling the Knowledge in a
Neural Network,” arXiv preprint arXiv:1503.02531, 2015.



Convolutional Neural Networks Inference Memory Optimization 19

[7] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “MobileNets: Efficient Convolutional Neural
Networks for Mobile Vision Applications,” arXiv preprint arXiv:1704.
04861, 2017.

[8] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, “SqueezeNet: AlexNet-Level Accuracy with 50× Fewer
Parameters and <0.5 MB Model Size,” arXiv preprint arXiv:1602.07360,
2016.

[9] J. Jin, A. Dundar, and E. Culurciello, “Flattened Convolutional Neural
Networks for Feedforward Acceleration,” arXiv preprint arXiv:1412.5474,
2014.

[10] R. Krishnamoorthi, “Quantizing Deep Convolutional Networks for Effi-
cient Inference: A Whitepaper,” arXiv preprint arXiv:1806.08342, 2018.

[11] J. Lee and Y. Pisarchyk, “Optimizing TensorFlow Lite Runtime Memory,”
2020, url: https://blog.tensorflow.org/2020/10/optimizing-tensorflow-
lite-runtime.html.

[12] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “ShuffleNet v2: Practical
Guidelines for Efficient CNN Architecture Design,” in Proceedings of the
European Conference on Computer Vision (ECCV), 2018, 116–31.

[13] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T.
Killeen, Z. Lin, N. Gimelshein, L. Antiga, et al., “Pytorch: An Imper-
ative Style, High-Performance Deep Learning Library,” arXiv preprint
arXiv:1912.01703, 2019.

[14] Y. Pisarchyk and J. Lee, “Efficient Memory Management for Deep Neural
Net Inference,” arXiv preprint arXiv:2001.03288, 2020.

[15] C. F. Sabottke and B. M. Spieler, “The Effect of Image Resolution on
Deep Learning in Radiography,” Radiology: Artificial Intelligence, 2(1),
2020, e190015.

[16] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mo-
bileNetv2: Inverted Residuals and Linear Bottlenecks,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2018, 4510–20.

[17] X. Tao, D. Zhang, W. Ma, X. Liu, and D. Xu, “Automatic Metallic
Surface Defect Detection and Recognition with Convolutional Neural
Networks,” Applied Sciences, 8(9), 2018, 1575.

[18] T. Wang, Y. Chen, M. Qiao, and H. Snoussi, “A Fast and Robust
Convolutional Neural Network-Based Defect Detection Model in Product
Quality Control,” The International Journal of Advanced Manufacturing
Technology, 94(9), 2018, 3465–71.

[19] Y. Wen, A. Anderson, V. Radu, M. F. O’Boyle, and D. Gregg, “TASO:
Time and Space Optimization for Memory-Constrained DNN Inference,”
in 2020 IEEE 32nd International Symposium on Computer Architecture
and High Performance Computing (SBAC-PAD), 2020, 199–208.

https://blog.tensorflow.org/2020/10/optimizing-tensorflow-lite-runtime.html
https://blog.tensorflow.org/2020/10/optimizing-tensorflow-lite-runtime.html


20 Zhuang et al.

[20] S. Wu, M. Zhang, G. Chen, and K. Chen, “A New Approach to Compute
CNNs for Extremely Large Images,” in Proceedings of the 2017 ACM on
Conference on Information and Knowledge Management, 2017, 39–48.

[21] X. Zhang, X. Zhou, M. Lin, and J. Sun, “ShuffleNet: An Extremely Effi-
cient Convolutional Neural Network for Mobile Devices,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2018, 6848–56.


	Introduction
	The Proposed Method
	Memory Consumption of CNN Inference
	The Receptive field of CNN models
	The Proposed Method

	Computation vs. Memory Trade-off
	Sequential Convolutional Neural Networks
	Peak Memory Consumption
	Multiply–Accumulate Operation

	Residual Convolutional Blocks
	Peak memory consumption
	Multiply–Accumulate Operation

	Guidelines for Designing a More Memory-Friendly Model
	Memory Footprint
	Memory-Computation Trade-off
	Memory-friendly model guideline


	Results and Discussion
	Conclusion

