
APSIPA Transactions on Signal and Information Processing, 2023, 12, e9
This is an Open Access article, distributed under the terms of the Creative Commons
Attribution licence (http:// creativecommons.org/ licenses/ by-nc/ 4.0/), which permits un-
restricted re-use, distribution, and reproduction in any medium, for non-commercial use,
provided the original work is properly cited.

Original Paper

Design of Multiple Routing
Configurations Considering Load
Distribution for Network Slicing
Takeru Misugi1, Hideyoshi Miura1, Kouji Hirata2∗ and Takuji Tachibana3

1Graduate School of Science and Engineering, Kansai University, Osaka,
Japan
2Faculty of Engineering Science, Kansai University, Osaka, Japan
3Graduate School of Engineering, University of Fukui, Fukui, Japan

ABSTRACT

In recent years, the network slicing technology has attracted much
attention because it can provide virtual networks called slices according
to service requirements. This paper proposes a load-balanced fast failure
recovery method based on Multiple Routing Configurations (MRC) for
network slicing environments. MRC ensures the availability of routing
paths for any possible single link/node failures by preparing multiple
backup routing configurations corresponding to the failures. MRC can
construct backup routing configurations for physical networks, but it does
not consider network slicing environments. The proposed failure recovery
method extends the concept of MRC. In the proposed method, dedicated
backup routing configurations are constructed for each slice only with
necessary physical nodes and links, instead of using all the physical nodes
and links. By doing so, we expect to avoid making inefficient detour
paths. Through numerical experiments, we show the effectiveness of
the proposed method. In addition, we implement our proposed method
with Programming Protocol-Independent Packet Processors (P4) in

∗Corresponding author: Kouji Hirata, hirata@kansai-u.ac.jp. This research was sup-
ported by SCOPE of the Ministry of Internal Affairs and Communications, Japan, under
Grant No. 191605004.

Received 28 July 2022; Revised 21 November 2022
ISSN 2048-7703; DOI 10.1561/116.00000148
© 2023 T. Misugi, H. Miura, K. Hirata, and T. Tachibana

http://creativecommons.org/licenses/by-nc/4.0/

2 Misugi et al.

software-defined networking environments. We conduct demonstration
experiments using Mininet to confirm our P4-based implementation.

Keywords: Network slicing, failure recovery, multiple routing configurations,
P4

1 Introduction

In recent years, network slicing has attracted much attention as a technology
that meets the requirements for various types of Internet services [1, 12]. The
network slicing technology virtually divides a communication network into
multiple networks (called slices), each of which is independent of each other.
Each slice is allocated a certain amount of network resources such as link
bandwidth and switch capacity. This slicing technology enables different types
of services, e.g., high-speed, high-capacity services and high-reliability, low-
latency services, to be provided on a common physical network [32]. Because
of these features, network slicing is expected to be used in services that require
high-quality communications.

In communications using the network slicing technology, in order to provide
high-quality services to users, it is necessary to continue the services of each
slice in the case of failures. In traditional IP networks, when the network
states change due to a network failure, the routing table of each router is
dynamically modified by a traditional routing protocol such as Open Shortest
Path First (OSPF) [13]. In such a routing protocol, the routing table is modified
by exchanging network state information among routers. The convergence
time during which the routing table is unstable is long. Thus a lot of packets
forwarded during this period could be dropped. In order to resolve this problem,
the Multiple Routing Configurations (MRC) algorithm has been introduced [17].
MRC is a fast failure recovery mechanism for a single link/node failure of a
network. MRC ensures path availability in the case of a link/node failure by
preparing multiple backup routing configurations in advance. In each backup
routing configuration, some nodes and links are assumed to be failed. These
nodes and links are called isolated nodes and links, respectively. Although
the isolated nodes and links are not used for data transmission after a failure
occurrence on the backup routing configuration, the path availability between
each node pair is ensured by other nodes and links. When a link/node failure
is detected, MRC immediately switches a normal routing configuration to
a backup routing configuration in which the failed point is selected as an
isolated link/node. As a result, MRC can continue data transmission. In MRC,
each link/node is treated as an isolated link/node in one of backup routing
configurations to ensure failure recovery from any single link/node failures.

Design of Multiple Routing Configurations Considering Load Distribution 3

MRC does not use isolated links and nodes as routing paths on backup
routing configurations. When MRC is applied to a large-scale network, the
number of isolated links/nodes unused for routing paths in a backup routing
configuration becomes large. This feature can make inefficient detour paths that
cause an increase in the number of hops and unbalanced load on network links
leading to network congestion. Furthermore, this problem becomes pronounced
in the case of applying MRC to network slicing environments where there
are multiple slices on a physical network. When common backup routing
configurations are constructed for the slices, many unnecessary physical links
and nodes are included in backup routing paths for the slices even though the
size of the slices is small. Therefore, the length of some backup routing paths
could become long, compared with the size of the slices. Furthermore, in the
case of failures, each slice tends to use the same backup routing paths, which
concentrates load on specific links and nodes. Therefore, it is preferred that we
construct different backup routing configurations for respective slices. However,
there are no works that discuss how to make backup routing configurations of
MRC for network slicing environments, taking load distribution into account.

In this paper, we propose a load-balanced fast failure recovery method
based on MRC for network slicing environments. The proposed method extends
the concept of MRC to construct backup routing configurations for slices. In
the proposed method, dedicated backup routing configurations are constructed
for each slice only with necessary physical nodes and links, instead of using all
the physical nodes and links. By doing so, the number of isolated links and
nodes per routing configuration is reduced. Thus, we expect to avoid making
inefficient detour paths for each slice, which suppresses network congestion after
a failure occurrence. The proposed method provides an algorithm to construct
backup routing configurations for each slice with the use of minimum necessary
physical links and nodes. Through numerical experiments, we show the
effectiveness of the proposed method. In addition, we implement our proposed
method with Programming Protocol-Independent Packet Processors (P4) [6]
in Software-Defined Networking (SDN) environments. P4 is a programming
language for SDN and it allows us to flexibly define the functions of network
devices. By confirming the operation using Mininet [20], we show that routing
paths are ensured by switching routing configurations in the case of a single
link/node failure.

This paper is an extended version of our conference paper [21], where we
have provided the concept of our MRC design for network slicing. In the
conference paper, we have introduced a simple method to apply the MRC
algorithm using common backup routing configurations for each slice and
implemented its basic operation with the use of P4. In this present paper, we
extend our work by providing the algorithm to construct backup routing paths
for each slice. Furthermore, we conduct numerical experiments for examining
the performance of our proposed method in more detail.

4 Misugi et al.

The contributions of this paper are as follows:

• We introduce the algorithm to design backup routing configurations for
network slicing environments. The algorithm enables us to construct
dedicated backup routing configurations for each slice with the use of
minimum necessary physical nodes and links.

• Through numerical experiments, we show the effectiveness of the proposed
method. Specifically, the proposed method alleviates unbalanced load
on network links, which is expected to avoid network congestion after a
failure occurrence.

• We provide an example of the implementation of our proposed method
with P4. Through demonstration experiments, we confirm that our
proposed method ensures the path availability in the case of a failure.

The rest of this paper is organized as follows. Section 2 discusses related
works. In Section 3, we explain the outline of network slicing and MRC.
Section 4 explains our proposed method. In Section 5, we examine the perfor-
mance of our proposed method through numerical experiments. In Section 6,
we conduct demonstration experiments by implementing the proposed method
with P4. We state the conclusion of this paper in Section 7.

2 Related Works

Failure recovery methods switch normal routing paths to backup routing
paths that do not pass through failed points after failures occur. They are
categorized into reactive and proactive methods according to ways to switch
routing paths [3, 27]. Reactive methods calculate backup routing paths after
failures occur, without preparing backup routing paths in advance. For instance,
SDN controllers calculate backup routing paths according to the failure in SDN
environments. Thus, network nodes do not need to maintain backup routing
paths. Although the reactive methods can reduce the number of routing entries
to be stored in network nodes, they require more recovery time than proactive
methods. On the other hand, proactive methods prepare backup routing
paths in advance. When failures occur, the proactive methods immediately
switch normal routing paths to backup routing paths. Therefore, the proactive
methods can quickly recover from failures, but they need to store many routing
entries in network nodes to maintain backup routing paths. MRC is a proactive
method because it prepares backup routing configurations in advance.

In the past, various methods for recovering from link/node failures in SDN
environments including network slicing have been proposed. Chu et al. [10] have
proposed a failure recovery method for hybrid SDNs in which traditional IP

Design of Multiple Routing Configurations Considering Load Distribution 5

routers and SDN switches co-exist. When a failure occurs, IP routers redirect
traffic flows to SDN switches along pre-configured tunneling paths in order to
bypass the failed point. Lin et al. [19] have introduced a recovery method that
periodically collects information about the global network topology using link
layer discovery protocol packets. Based on this information, a controller proac-
tively establishes backup routing paths, which are installed on network nodes.
Wang et al. [30] have presented a ring-based failure recovery method to reduce
the number of routing entries in SDN switches. It constructs a ring in such a
way that each backup routing path includes a part of the ring. Baumgartner
et al. [4] have introduced a mathematical model for a general network slice
design problem. They have provided network slice protection against single
node/link failures to add survivability aspects to their model. Wen et al. [31]
have investigated robust network slicing mechanisms by addressing the slice
recovery and reconfiguration in a unified framework. They have designed an
optimal joint slice recovery and reconfiguration algorithm for stochastic traffic
demands by exploiting robust optimization. Mohan and Gurusamy [23] have
proposed an approach for resilient network slice embedding such that virtual
nodes providing network services are placed on appropriate physical nodes to
minimize the number of affected network services in the case of failures. They
have developed an optimization programming formulation for the proposed
approach. Zhang et al. [35] have introduced the Progressive Slice Recovery
(PSR) problem that decides the best sequence of repairs during recovery for
network slicing environments. They have proposed a comprehensive PSR
method achieving fast recovery of slices based on an optimization model.

Furthermore, some implementation of fast failure recovery with P4 have
been introduced in the past. Cascone et al. [7] have proposed a failure detection
and recovery method. They have implemented the failure detection mechanism
and the path-based failure recovery mechanism, using OpenState [5] and
P4. Sedar et al. [26] have discussed P4-based implementation of fast reroute
algorithms. They have presented a mechanism that reduces the number of flow
entries in SDN switches by applying a wildcard match table to fast reroute
algorithms. Also, Chiesa et al. [9] have introduced P4-based implementation of
a fast-reroute mechanism. It provides fast failure recovery by avoiding packet
recirculation in switches for finding active output ports. Xu et al. [33] have
presented P4-based implementation of a proactive failure recovery method. It
creates a custom packet header that contains backup routing path information.
When a failure occurs, packets are forwarded to backup routing paths based
on the custom packet header. Hirata and Tachibana [16] have designed P4-
based implementation of MRC. They have provided some mechanisms to
realize MRC in SDN environments. These works have implemented failure
recovery mechanisms with P4, but they have not considered network slicing
environments. In this paper, we provide P4-based implementation of fast
failure recovery for network slicing environments.

6 Misugi et al.

3 Outline of Background Technologies

3.1 Network Slicing

Network slicing is a technology that embeds virtual networks called slices
into a physical network consisting of physical links and nodes. The physical
network into which slices are embedded is referred to as the substrate network.
A slice consists of virtual nodes and virtual links. A virtual node is placed on
one of physical nodes and it implements a specific network functionality such
as router and firewall. This can be implemented by the Network Function
Virtualization (NFV) technology [28]. A virtual link between two virtual
nodes represents communication requirements between them to provide some
network services. The virtual link can be realized as a multihop physical path.
The structure of slices depends on service requirements of clients.

Figure 1 is an example of the construction of slices on a substrate network.
We assume that there are two slices to be embedded into the substrate network.
We consider the case where each virtual node is mapped to the physical node
having the same number as the virtual node. Each virtual node and link
requires a certain amount of network resources, i.e., node capacity and link
bandwidth, respectively. In Figure 1, the numbers next to nodes and links
represent the amount of required network resources. For example, the amount
of required node capacity of virtual node 1 on the red-colored slice is 2 (in a
square). Similarly, the amount of required bandwidth of virtual link 1-3 on
the red-colored slice is 3. These two slices are embedded into the substrate

Figure 1: Example of network slicing.

Design of Multiple Routing Configurations Considering Load Distribution 7

network as shown in the figure. In this example, virtual node 1 of each slice is
embedded into the same physical node, and thus the amount of used capacity
of physical node 1 is 1 + 2 = 3. As long as the amount of used capacity is less
than the capacity of the physical node, different virtual nodes can be embedded
into the physical node. Similarly, the other virtual nodes are embedded into
corresponding physical nodes. Virtual links are mapped to physical links. Note
that some virtual links consist of multihop physical paths, e.g., virtual link
1–4 of the red-colored slice consists of physical path 1-2-4. The physical path
is calculated based on routing algorithms such as the shortest path routing.
The physical links along the physical path allocate bandwidth to the virtual
link. For instance, on physical link 1–3, the link bandwidth is allocated to
virtual links 1–3 and 1–5 of the slices (i.e., 1 + 3 = 4).

3.2 Multiple Routing Configurations (MRC)

MRC is a technology to realize fast recovery from a single link/node failure
in a biconnected network [17]. MRC prepares K (K > 1) backup routing
configurations on which backup routing paths are established in advance,
covering all possible single link/node failures in the network as shown in
Figure 2. The value of K is determined according to the size of the network.

Figure 2: Workflow of MRC.

8 Misugi et al.

Note that the value of K is generally much smaller than the number of links
and nodes in the network. When a node or link failure occurs along a normal
routing path on a normal routing configuration, the previous node of the failed
point detects the failure. Then, MRC immediately switches the normal routing
configuration to a backup routing configuration covering the failed point. By
using an alternate routing path on the backup routing configuration, data
transmission can continue without packet losses.

On backup routing configurations, nodes are classified into normal nodes
and isolated nodes. Also, links are classified into normal links, isolated links,
and restricted links. The normal nodes and the normal links can be used for
packet transmission on the backup routing configuration, while the isolated
nodes and the isolated links do not carry any traffic. The restricted links are
used only for the first hop or the last hop of packet flows, whose source or
destination on the backup routing configuration is an isolated node, to enable
the packet flows to reach the isolated node.

After a failure occurs, MRC uses a backup routing configuration where the
failed point is selected as an isolated link/node. MRC guarantees tolerance for
all possible single link/node failures by isolating each link and each node on
one of backup routing configurations. On each backup routing configuration,
each normal node pair must be connected by a path that does not pass through
any isolated links and nodes. Therefore, each backup routing configuration
must satisfy the following constraints.

1. Each backup routing configuration includes a connected graph composed
of all the normal nodes and the normal links.

2. Each link/node becomes an isolated link/node on one of backup routing
configurations.

3. Isolated nodes are connected with isolated or restricted links, while they
are not connected with normal links.

4. At least one of links connected to an isolated node is a restricted link.

5. At least one of nodes connected to an isolated link is an isolated node.

6. Nodes connected by a restricted link are a normal node and an isolated
node.

Kvalbein et al. [17] have introduced the heuristic algorithm to construct backup
routing configurations satisfying these constraints. The heuristic algorithm
takes as input a biconnected network and the number K of backup routing
configurations that are intended created. In this paper, we use the heuristic
algorithm to make K backup routing configurations. In what follows, we
briefly explain the procedure of the heuristic algorithm. Note that detailed
explanations on the heuristic algorithm have been discussed in [17].

Design of Multiple Routing Configurations Considering Load Distribution 9

Let G = (V, E) denote a biconnected substrate network where V and E
denote sets of physical nodes and links, respectively. Let vi ∈ V denote i-
th physical nodes (i = 1, 2, . . . , |V|). Let C denote a set of backup routing
configurations and Ck denote the k-th configuration (k = 1, 2, . . . ,K). The
outline of the MRC algorithm is as follows.

MRC Algorithm:

Input: Biconnected substrate network G = (V, E) and the number K of
backup routing configurations to be constructed

Output: Set C = {Ck | k = 1, 2, . . . ,K} of backup routing configurations

Step (1) For each k = 1, 2, . . . ,K, Ck ← G. Then, k ← 1 and i← 1.

Step (2) If configuration Ck does not satisfy the constraint 1 of MRC discussed
above in the case where node vi is removed from Ck, go to Step (4).

Step (3) If the constraints 2-6 of MRC for each configuration are satisfied
after node vi becomes an isolated node in configuration Ck, the following
sub-procedures (3-1)–(3-3) are done; otherwise go to Step (4).

(3-1) In configuration Ck, node vi becomes an isolated node.
(3-2) In configuration Ck, at least one link of node vi becomes a re-

stricted link, and the other links of node vi become isolated links.
(3-3) i ← i + 1. If i ≤ |V|, go to Step (2); otherwise, the algorithm

terminates.

Step (4) k ← (k mod K) + 1. If there are no configurations in which node
vi can become an isolated node, the algorithm terminates; otherwise, go
to Step (2).

The MRC algorithm sequentially adopts nodes as isolated nodes in backup
routing configurations. Step (1) is the initialization. In Steps (2) and (3),
a node becomes an isolated node and corresponding links become restricted
or isolated links in one of backup routing configurations while satisfying the
constraints of MRC. By repeating these steps, the MRC algorithm constructs
backup routing configurations. Note that the case where the MRC algorithm
terminates in Step (4) means that the algorithm fails to construct K backup
routing configurations. In this case, we need to appropriately increment the
value of K and apply the MRC algorithm again to be able to construct backup
routing configurations.

In MRC, in order to ensure the reachability of all node pairs on each backup
routing configuration, a connected sub-graph consisting of all the normal links
and the normal nodes must be included in the backup routing configuration
as shown in Figure 2. The structure of networks applied MRC needs to be a
biconnected graph to meet this condition.

10 Misugi et al.

4 Proposed Method

4.1 System Model

Figure 3 represents the system model assumed in this paper. In this paper,
we consider the situation where there is a substrate network G = (V, E), and
multiple slices are embedded into the substrate network. Let S denote a set of
slices to be embedded. Let Si = (Vi, Ei) denote the i-th slice, where Vi and Ei
denote sets of virtual nodes and links constituting the slice, respectively. The
slices have different structures as shown in Figure 3, and they are given as the
problem input. Each virtual node of a slice is embedded into the corresponding
physical node of the substrate network as discussed in Section 3.1. On the
other hand, each virtual link of a slice is mapped to a multihop physical path
on the substrate network. We assume that the physical path is the shortest
path in terms of the number of hops. Each virtual node of a slice communicates
with other virtual nodes connected by virtual links, which require a certain
amount of link bandwidth along their physical paths as discussed in Section 3.1.
We assume that the capacity of each physical node and link is sufficiently large
to accommodate all slices. Under these assumptions, the proposed method
applies the MRC algorithm to a biconnected graph constructed for each slice.

Figure 3: System model.

4.2 Application of MRC to Slices

4.2.1 Background and Overview

In this paper, we examine how to construct efficient backup routing configura-
tions in network slicing environments. When applying MRC to a large-scale
network, each backup routing configuration includes a lot of isolated links

Design of Multiple Routing Configurations Considering Load Distribution 11

and isolated nodes which cannot be used for data transmission. As a result,
inefficient long paths could be established on the backup routing configuration
as shown in Figure 4. In this figure, we consider a flow from node 8 to node 13.
In the normal routing configuration, the shortest path of the flow is 8-11-13
whose hop count is 2. On the other hand, the shortest path of the backup
routing configuration is 8-6-7-10-12-13 whose hop count is 5, which is much
larger than that of the normal routing configuration.

Figure 4: Common backup routing configuration for slices.

This problem of MRC becomes pronounced in network slicing environments
where there are multiple slices on the substrate network. When each slice
uses common backup routing configurations constructed based on the whole
substrate network, inefficient detour paths could be established, regardless
of the size of slices. As shown in Figure 4, the size of slice S1 is relatively
small, but the backup routing path (i.e., 8-6-7-10-12-13) from node 8 to node
13 becomes long in the case of the failure discussed above. Furthermore,
in the case where multiple slices use the same backup routing path, traffic
concentrates on specific links and nodes. For example, in Figure 4, we assume
that node 5 communicates with node 12 on slice S2. Its routing path on the
backup routing configuration is 5-6-7-10-12. In this case, the flows of slices S1
and S2 pass through many common links and nodes, which could cause network
congestion. Therefore, it is preferred that we construct different backup routing
configurations for respective slices. Figure 5 shows an example of making
dedicated backup routing configurations for each slice. In this example, each
backup routing configuration is constructed with a sub-graph consisting of a
small number of physical links and nodes, instead of using all the physical links

12 Misugi et al.

Figure 5: Construction of dedicated backup routing configurations for respective slices.

and nodes of the substrate network. As a result, for slice S1, the backup routing
path from node 8 to node 13 is 8-6-9-12-13, the length of which is smaller than
that in the case of using a common backup routing configuration shown in
Figure 4. Furthermore, by using dedicated backup routing configurations for
respective slices, backup routing paths tend to pass through different links
and nodes. As a result, we expect to distribute the load on network links.

However, there is a case where a sub-graph of the substrate network
corresponding to a slice is not a biconnected graph. Therefore, MRC cannot
be directly applied to the sub-graph. To resolve this problem, the proposed
method in this paper constructs a biconnected graph by adding minimum
necessary components, i.e., physical links and nodes, to the sub-graph of each
slice. To do so, the proposed method detects nodes that are articulation points
in the sub-graph corresponding to the slice. A node in a network is referred to
as an articulation point if the network becomes disconnected by removing the
node, as shown in Figure 6. For example, in this figure, the red-colored nodes
are articulation points. When any of the nodes are removed, the graph is
divided into two graphs. We can construct a biconnected graph by eliminating
the articulation points. By applying MRC to the biconnected graph, we can
reduce the size of backup routing configurations for the slice. As a result, we
expect to make efficient detour paths for each slice, which suppresses network
congestion after a failure occurrence.

As discussed above, MRC ensures the path availability between each node
pair for any possible single link/node failures by preparing K backup routing

Design of Multiple Routing Configurations Considering Load Distribution 13

Figure 6: Articulation point.

configurations. When a link or node failure occurs, MRC selects the backup
routing configuration where the link or node is isolated. These backup routing
configurations are shared by each node. Each node maintains common routing
entries for the backup routing configurations, and thus MRC can realize fast
recovery within a few tens of milliseconds [17, 22]. In the proposed method,
we apply this concept to network slicing environments. Specifically, each node
maintains backup routing entries for each slice in order to ensure the path
availability for any possible single link/node failures on the sub-graph for the
slice. Therefore, we prepare K backup routing configurations for each slice. In
what follows, we explain the procedure of the proposed method in detail.

4.2.2 Articulation Point Detection

A biconnected graph has no articulation points. Thus the graph is connected
even after any one of the nodes is removed [2]. We can determine whether a
target network is a biconnected graph by detecting articulation points. As a
detection method, Depth First Search (DFS) is generally used [11, 18].

DFS constructs a spanning tree T called DFS tree on the network. If node
v of the DFS tree T meets the following condition A or B, v is an articulation
point, where vr denotes the root node of T .

A. In the case of v = vr, the number of child nodes of vr is greater than or
equal to 2.

B. In the case of v ̸= vr, v has a child node vc such that there are no back
edges, which are not included in T , from vc or any descendant nodes of
vc to any ancestor nodes of v.

Figure 7 illustrates an example of articulation point detection using DFS. In
this figure, nodes 1 and 3 are articulation points. Node 1 is the root node
and the number of child nodes is 2 (i.e., nodes 2 and 5), which meets the
condition A. On the other hand, node 3 is not the root node. It has a child
node (i.e., node 4) and there are no back edges from node 4 to nodes 1 or 2 on
the original network. Thus node 3 meets the condition B. Actually, if node 1
or 3 is removed, the network becomes disconnected.

14 Misugi et al.

Figure 7: Articulation point detection using DFS.

4.2.3 Procedure of the Proposed Method

We here discuss the detailed procedure of the proposed method to construct
backup routing configurations for each slice on the substrate network. Let
B(Si) = (VB(Si), EB(Si)) denote a biconnected graph to be constructed for
slice Si, where VB(Si) and EB(Si) denote sets of nodes and links, respectively,
included in the biconnected graph. Let N (p) and L(p) denote sets of physical
nodes and links, respectively, which are included in physical path p. The
procedure of the proposed method is as follows.

Configuration Construction Algorithm:

Input: Substrate network G = (V, E) and set S = {Si = (Vi, Ei) | i =
1, . . . , |S|} of slices

Output: Backup routing configurations for each slice Si ∈ S

Step (1) i← 1.

Step (2) VB(Si)← ∅ and EB(Si)← ∅.

Step (3) For each virtual link es ∈ Ei, physical nodes and links included in
the physical path pes corresponding to es are added to B(Si). Specifically,
VB(Si)← VB(Si) ∪N (pes) and EB(Si)← EB(Si) ∪ L(pes).

Step (4) Articulation points are detected by applying the DFS algorithm, in
which the root node is randomly selected, to B(Si). If an articulation
point is selected as the root node, the DFS algorithm using another node
as the root node is applied to B(Si) again. Until an articulation point is
not selected as the root node, this operation is repeated.

Step (5) If there are no articulation points, i← i+ 1. If i > |S|, it goes to
Step (10); otherwise, it goes to Step (2).

Step (6) For each articulation point v, the length l(vc, va) of the shortest
path from its child node vc to each ancestor node va of v on the substrate
network without using the DFS tree is calculated.

Design of Multiple Routing Configurations Considering Load Distribution 15

Step (7) The pair of vc and va with the smallest value of l(vc, va) is selected,
and then its path p is added to B(Si) to eliminate the articulation point.
Specifically, VB(Si)← VB(Si) ∪N (p) and EB(Si)← EB(Si) ∪ L(p).

Step (8) If there are physical links e that connect two nodes in VB(Si) such
that e /∈ EB(Si), EB(Si)← EB(Si) ∪ {e}.

Step (9) It goes to Step (4).

Step (10) The MRC algorithm is applied to the biconnected graph of each
slice Si ∈ S to construct K backup routing configurations for the slice.

In step (3), the resulting graph B(Si) is a connected graph because it consists
of physical nodes and links corresponding to the slice. In step (4), to consider
only the condition B of the DFS tree discussed in Section 4.2.2, we deal
with the case where the root of the DFS tree is not an articulation point.
By performing step (7), we can eliminate the articulation point because the
resulting graph B(Si) no longer meets the condition B. In Step (10), we use the
MRC algorithm introduced in [17] to construct backup routing configurations.

We here explain an example of biconnected graph construction with Figure 8.
In this figure, we assume that there is a slice consisting of three virtual nodes
and two virtual links. The virtual nodes are mapped to physical nodes 1, 5,
and 8. The path between nodes 1 and 5 includes nodes 1, 2, 5, links 1-2, and
2-5. Thus, the resulting graph B(Si) in step (3) has the structure shown in
Figure 8(a). In step (4), the DFS tree is constructed. In this case, articulation
points are nodes 2 and 5 as shown in Figure 8(b). In step (6), the path length
on the substrate network without using the DFS tree is calculated for each
node pair. Specifically, for node 2, the path length from node 5, which is
a child node of node 2, to node 1, which is an ancestor node of node 2, is
calculated. Also, for node 5, the path length from node 8 to nodes 1 and 2 is
calculated. In this case, the path length from node 8 to node 2 is the smallest
(i.e., l(5, 1) = 3, l(8, 1) = 3 and l(8, 2) = 2). Thus, the path (i.e., 8-7-2) is
added to the graph B(Si) in step (7). Then, in step (8), link 5-7 is added to
the graph B(Si) (Figure 8(c)). The DFS algorithm is applied to the resulting
graph B(Si) to detect articulation points (Figure 8(d)). By repeating this
procedure, we can construct a biconnected graph for the slice, using a small
number of components (Figure 8(e)). The backup routing configurations that
are constructed by applying the MRC algorithm to the resulting graph are
shown in Figure 8(f) where K = 3. As we can see from this figure, we can
construct the backup routing configurations using only necessary components
while without using the whole substrate network.

Note that this algorithm can always construct a bi-connected graph B(Si)
for each slice Si ∈ S. The algorithm detects an articulation point in Step (4).
Then, the detected articulation point is eliminated by Steps (6)-(8) by adding

16 Misugi et al.

Figure 8: Procedure for creating a bi-connected graph.

some links and nodes of the substrate network. By repeating these steps, the
algorithm constructs a bi-connected graph. In the worst case, the resulting
bi-connected graph corresponds to the whole substrate network, which is a
bi-connected graph.

5 Numerical Experiments

5.1 Model

In order to examine the performance of the proposed method, we conduct
numerical experiments. As substrate networks, we use two network models:
German Network (GN) and US Backbone Network (UBN) shown in Figure 9(a)
and (b), respectively. We randomly make 5 slices on the substrate network for
each experiment. The number of virtual nodes on each slice is set to the same
value. The virtual nodes of each slice are mapped to randomly selected physical
nodes of the substrate network. The structure of each slice is a complete graph.
The amount of traffic between each virtual node pair is randomly selected

Design of Multiple Routing Configurations Considering Load Distribution 17

Figure 9: Network model.

from among [12, 20]. They communicate with each other using the virtual
link, which is the shortest path on the substrate network.

As performance metrics, we use the number of hops of each path and the
load of each link after a failure occurrence. The link load is defined as the sum
of the amount of traffic passing through the link. For each slice, we construct
K = 4 backup routing configurations. In each experiment, we measure the
number of hops and the link load for all possible node failures. We collect
100 independent samples from experiments and the average is shown in each
result.

5.2 Results

First, we examine the average number have of hops of backup routing paths
for slices. It is defined as

have =

∑
Si∈S

∑
k∈Ki

∑
p∈P[k]

i
h
[k]
p∑

Si∈S
∑

k∈Ki
|P [k]

i |
,

where Ki represents a set of backup routing configurations for slice Si ∈ S.
The symbol P [k]

i represents a set of backup routing paths on backup routing
configuration k ∈ Ki. The symbol h[k]

p represents the length of backup path p ∈
P [k]
i . For the sake of comparison, we consider the case (labeled with “common

configuration”) where each slice uses common backup routing configurations,
which are constructed by applying the MRC algorithm to the whole substrate
network.

Figure 10(a) shows the average number have of hops of backup routing
paths as a function of the number of virtual nodes in each slice in the GN
model. From this figure, we observe that the average number have of hops of
backup routing paths in the proposed method is slightly smaller than that in

18 Misugi et al.

Figure 10: Average number of hops of backup routing paths.

the case where each slice uses common backup routing configurations. Also,
Figure 10(b) shows the average number have of hops of backup routing paths
as a function of the number of virtual nodes in each slice in the UBN model.
As shown in this figure, the proposed method slightly improves the average
number have of hops of backup routing paths, compared with the case of using
the common configurations. This result is very similar to that in the GN
model. These results mean that the length of most backup routing paths is not
much reduced by the proposed method. However, the length of some backup
routing paths is remarkably reduced by the proposed method as discussed
next.

We then examine the maximum number of hops of backup routing paths
for each slice. We define the average maximum number have_max of hops as

have_max =

∑
Si∈S

{
max

k∈Ki,p∈P[k]
i

h
[k]
p

}
|S|

.

Figure 11(a) shows the average maximum number have_max of hops as a
function of the number of virtual nodes in each slice in the GN model. From
this figure, we observe that the proposed method efficiently reduces the average
maximum number of hops. The reason is that making long detoured paths
tends to be suppressed by constructing dedicated backup routing configurations
for respective slices on small substrate networks as shown in Figure 5. On the
other hand, as discussed above, the improvement of the average number have

of hops of the proposed method is relatively small. These results imply that
the proposed method tends to smooth the variance of the length of backup
routing paths. Figure 11(b) shows the average maximum number have_max of
hops as a function of the number of virtual nodes in each slice in the UBN
model. As shown in this figure, the proposed method also works well in the
UBN model.

Design of Multiple Routing Configurations Considering Load Distribution 19

Figure 11: Average maximum number of hops.

Next, we examine the maximum link load after a failure occurs. The
maximum link load is generally used for a performance metric of load-balancing.
The high maximum link load indicates that traffic concentrates on a specific
network link. On the other hand, the low maximum link load indicates that
traffic is distributed to various links. In this paper, we define the maximum
link load l

[v]
max after node v is failed as

l[v]max = max
e∈E

l[v]e ,

where l
[v]
e represents the load of link e ∈ E after node v is failed. l

[v]
e is given

by
l[v]e =

∑
Si∈S

∑
p∈P[b(i,v)]

i :e∈p

λp,

where λp represents the traffic volume of path p and b(i, v) represents the
routing configuration for slice Si ∈ S when node v is failed. In this paper,
we assume that each virtual node pair uses the shortest path on the selected
routing configuration to communicate with each other after the failure occurs.
Note that if the backup routing configurations for the slice do not include the
failed node v, the normal routing configuration is used.

Figure 12(a) and (b) show the average maximum link load for each failure
case as a function of the number of virtual nodes in each slice in the GN and
UBN models, respectively. The average maximum link load lave_max for each
failure case is defined as

lave_max =

∑
v∈V l

[v]
max

|V|
.

As we can see from these figures, the proposed method efficiently reduces the
maximum link load, regardless of the number of virtual nodes in each slice.

20 Misugi et al.

Figure 12: Maximum link load.

This is because when the slices use a common backup routing configuration,
the backup routing paths tend to share many links, as discussed in the example
of Figure 4. On the other hand, in the proposed method, the slices tend to
use different links for backup routing paths on their respective backup routing
configurations, as discussed in the example of Figure 5. As a result, the
proposed method avoids the concentration of multiple backup routing paths
on a specific link after a failure occurs. This result means that the proposed
method efficiently distributes the load on network links.

Figure 13(a) and (b) show the maximum link load l
[v]
max when node v is

failed, in the GN and UBN models, respectively, where the number of virtual
nodes in each slice is 5. As we can see from these figures, the proposed method
efficiently reduces the maximum link load in most failure cases. In the UBN
model, especially, the proposed method works well because the size of the
substrate network is large. We thus conclude that the proposed method can
distribute the load on network links after a failure occurs.

Figure 13: Maximum link load for each node failure.

Design of Multiple Routing Configurations Considering Load Distribution 21

6 Implementation Demonstration with P4

We here demonstrate simple implementation of our proposed method. In this
paper, we confirm that the implementation of the failure recovery mechanism
of MRC in our proposed method works for network slicing environments
through demonstration experiments using P4. Note that in this paper, we
do not discuss the detailed performance evaluation similar to the numerical
experiments. We leave the performance evaluation using the implementation
with P4 as future work. P4 is a language to program the behavior of data
planes (i.e., functions used for packet forwarding in network switches) [6]. P4
enables us to implement various kinds of network applications such as traffic
offloading, duplicate address detection, bandwidth management, denial of
service mitigation, traffic metering, routing control, and service protection [8,
14, 15, 24, 29, 34].

We can define and add the functions required for packet forwarding in
network slicing environments by using P4. In this paper, we mainly discuss how
to implement packet forwarding on each slice, while the MRC implementation
is based on [16]. Note that we do not consider failure detection. We focus on
the behavior of each P4-enabled switch after a failure occurs.

6.1 The Concept of P4

P4 adopts the concept of match-action pipelines. Packet forwarding in P4-
enabled switches is performed by table lookups and corresponding actions.
Figure 14 shows the procedure of packet forwarding in a P4-enabled switch.
An incoming packet is first handled by the parser. The parser handles only
the packet header, while buffering data in the packet. It extracts some fields
from the packet header based on the programmed parse graph.

The extracted header fields are then passed to the ingress match+action
tables consisting of lookup keys (e.g., IP addresses and MAC addresses), corre-

Figure 14: Packet forwarding process in P4 devices.

22 Misugi et al.

sponding actions (e.g., forward and drop), and parameters. The match+action
tables process the packet header according to the lookup keys and the actions,
which can be modified programmatically. Moreover, it determines an output
port and a queue into which the packet is placed. Then the packet header is
passed to the egress match+action tables, which can be also defined. After
processing the packet header there, the switch forwards the packet to the
selected output port.

6.2 Implementation of Network Slicing and MRC

In P4, incoming packets can be forwarded using user-defined headers. In order
to identify slices, we define a header named MySlice between the Ethernet
header and the IP header, as shown in Figure 15. The proto_id field is used
to identify whether the IP header follows the MySlice header. The slice field
is used to select a slice on which the packet is transmitted.

Figure 15: Structure of the MySlice header.

At a P4-enabled switch, an incoming packet is processed by the parser with
the following procedure. The parser first extracts the Ethernet header, and
then identifies whether the MySlice header is valid by checking the type field
of the Ethernet header. If the MySlice header is not valid, the parser extracts
the IP header to forward the packet with the use of a default routing table.
If the MySlice header is valid, the parser extracts it, and then identifies the
slice to be used for the packet transmission by checking the slice field of the
MySlice header. In our implementation, an individual routing table is created
for each slice in the P4-enabled switch. By processing the incoming packet
based on the MySlice header and the routing table, it is possible to forward
the packet to an appropriate output port corresponding to its slice.

Furthermore, in our implementation, routing tables for backup routing
configurations in addition to the normal routing configuration are created
for each slice as shown in Figure 16. After switching to a backup routing
configuration in the case of a failure, each P4-enabled switch needs to identify
the configuration to be used for forwarding incoming packets. To do so, we
use the Type Of Service (TOS) field in the IP header of the incoming packets,
which has been introduced in [16]. In the TOS field, the configuration ID
that indicates the backup routing configuration to be used is recorded. Each

Design of Multiple Routing Configurations Considering Load Distribution 23

Figure 16: Routing table for each slice and each backup routing configuration.

P4-enabled switch forwards the incoming packets according to the routing
table for the backup routing configuration corresponding to the configuration
ID.

6.3 Demonstration Experiments

In order to confirm our P4-based implementation, we conduct demonstration
experiments using Mininet [20]. We construct one substrate network and two
slices S1 and S2 as shown in Figure 3, where each node represents a P4-enabled
switch connected to one host (e.g., host 1 connects to switch 1).

We first confirm the operation of network slicing without failures. We
here check the behavior of packet forwarding with the MySlice header defined
in our implementation by analyzing packets using Scapy [25]. We assume
that packets are transmitted from host 1 to host 5 on slice 1, as shown in
Figure 17(a). In this case, host 1 sends packets with the slice field set to 1 in
the MySlice header. Figure 18 shows the header information of a transmitted
packet at sender host 1 and receiver host 5. From this figure, we observe that
the MySlice header is inserted between the Ethernet header and the IP header.
Each switch along the routing path recognizes the value of the slice field, and
processes the packets according to the routing table of slice 1. As a result, the
packets can arrive at receiver host 5.

Next, we assume that packets are transmitted from host 1 to host 5 on
slice 2. To do so, the slice field in the MySlice header of the packets is set to 2.
Switch 1 connected to host 1 recognizes that the slice field of the incoming
packets is 2 and refers to the routing table of slice 2. However, there is no
action in the routing table for the packets whose destination address is host
5 on slice 2 because slice 2 does not include switch 1 as shown in Figure 3.
Therefore, the packets are dropped at switch 1. We observed this behavior,
but we omit this result to save space on the paper. From these results, we

24 Misugi et al.

Figure 17: Routing path.

Figure 18: Header information of packets on slice 1.

Figure 19: Packets after switching the routing configuration.

conclude that the switches adequately process incoming packets based on the
routing tables configured for the slices.

Finally, we confirm the operation of the MRC with the backup routing
configurations for the slices. We assume that a failure of link (1, 2) occurs,
which is done by the “link down” command of Mininet. Under this assumption,
we send packets from host 1 to host 5 on slice 1. On the normal routing
configuration, the routing path is 1-2-5 as shown in Figure 17(a). However, the

Design of Multiple Routing Configurations Considering Load Distribution 25

path includes the failed link, so that the packets cannot arrive at host 5 on the
normal routing configuration. On the other hand, by using the appropriate
backup routing configuration illustrated in Figure 17(b), the packets whose
TOS is set to the corresponding value (1 in this example) can arrive at host
5 as shown in Figure 19. From these results, we can see that the proposed
method ensures routing paths in the case of a failure.

7 Conclusion

In this paper, we proposed a load-balanced fast failure recovery method based
on MRC in communications using network slicing. The proposed method
constructs backup routing paths for each slice by applying MRC only with a
small number of physical nodes and links. By doing so, the proposed method
can avoid making inefficient detour paths for each slice. Through numerical
experiments, we showed the effectiveness of the proposed method. In addition,
we implemented our proposed method with P4. Through demonstration
experiments, we confirmed our P4-based implementation of the proposed
method. In this paper, we focused on the behavior of our proposed method after
a failure occurrence. As future work, we will consider further implementation
including failure detection and route selection at each router to examine the
performance such as failure recovery time in our implementation.

References

[1] I. Afolabi, T. Taleb, K. Samdanis, A. Ksentini, and H. Flinck, “Network
Slicing and Softwarization: A Survey on Principles, Enabling Technolo-
gies, and Solutions,” IEEE Communications Surveys & Tutorials, 20(3),
2018, 2429–53.

[2] M. Ahuja and Y. Zhu, “An Efficient Distributed Algorithm for Finding
Articulation Points, Bridges, and Biconnected Components in Asyn-
chronous Networks,” in The Ninth Conference on Foundations of Software
Technology and Theoretical Computer Science, 1989, 99–108.

[3] J. Ali, G.-M. Lee, B.-H. Roh, D. K. Ryu, and G. Park, “Software-
Defined Networking Approaches for Link Failure Recovery: A Survey,”
Sustainability, 12(10), 2020.

[4] A. Baumgartner, T. Bauschert, A. M. C. A. Koster, and V. S. Reddy,
“Optimisation Models for Robust and Survivable Network Slice De-
sign: A Comparative Analysis,” in 2017 IEEE Global Communications
Conference (GLOBECOM), 2017, 1–7.

26 Misugi et al.

[5] G. Bianchi, M. Bonola, A. Capone, and C. Cascone, “OpenState: Pro-
gramming Platform-Independent Stateful Openflow Applications Inside
the Switch,” ACM SIGCOMM Computer Communication Review, 44(2),
2014, 44–51.

[6] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming Protocol-Independent Packet Processors,” ACM SIG-
COMM Computer Communication Review, 44(3), 2014, 87–95.

[7] C. Cascone, D. Sanvito, L. Pollini, A. Capone, and B. Sanso, “Fast
Failure Detection and Recovery in SDN with Stateful Data Plane,”
International Journal of Network Management, 27(2), 2017, e1957.

[8] Y.-W. Chen, L.-H. Yen, W.-C. Wang, C.-A. Chuang, Y.-S. Liu, and C.-C.
Tseng, “P4-Enabled Bandwidth Management,” in 2019 20th Asia-Pacific
Network Operations and Management Symposium (APNOMS), 2019,
1–5.

[9] M. Chiesa, R. Sedar, G. Antichi, M. Borokhovich, A. Kamisiński, G.
Nikolaidis, and S. Schmid, “PURR: A Primitive for Reconfigurable Fast
Reroute: Hope for the Best and Program for the Worst,” in the 15th
International Conference on Emerging Networking Experiments And
Technologies, 2019, 1–14.

[10] C.-Y. Chu, K. Xi, M. Luo, and H. J. Chao, “Congestion-Aware Single Link
Failure Recovery in Hybrid SDN Networks,” in 2015 IEEE Conference
on Computer Communications (INFOCOM), 2015, 1086–94.

[11] G. Cong and D. Bader, “An Experimental Study of Parallel Biconnected
Components Algorithms on Symmetric Multiprocessors (SMPs),” in
19th IEEE International Parallel and Distributed Processing Symposium,
2005.

[12] X. Foukas, G. Patounas, A. Elmokashfi, and M. K. Marina, “Network
Slicing in 5G: Survey and Challenges,” IEEE Communications Magazine,
55(5), 2017, 94–100.

[13] M. Goyal, M. Soperi, E. Baccelli, G. Choudhury, A. Shaikh, H. Hosseini,
and K. Trivedi, “Improving Convergence Speed and Scalability in OSPF:
A Survey,” IEEE Communications Surveys & Tutorials, 14(2), 2012,
443–63.

[14] X. Guo, N. Liu, X. Hou, S. Gao, and H. Zhou, “An Efficient NDN
Routing Mechanism Design in P4 Environment,” in 2021 2nd Information
Communication Technologies Conference, 2021, 28–33.

[15] L. He, P. Kuang, Y. Liu, G. Ren, and J. Yang, “Towards Securing
Duplicate Address Detection Using P4,” Computer Networks, 198, 2021,
108323.

Design of Multiple Routing Configurations Considering Load Distribution 27

[16] K. Hirata and T. Tachibana, “Implementation of Multiple Routing
Configurations on Software-Defined Networks with P4,” in 2019 Asia-
Pacific Signal and Information Processing Association Annual Summit
and Conference (APSIPA ASC), 2019, 13–6.

[17] A. Kvalbein, A. F. Hansen, T. Cicic, S. Gjessing, and O. Lysne, “Multiple
Routing Configurations for Fast IP Network Recovery,” IEEE/ACM
Transactions on Networking, 17(2), 2009, 473–86.

[18] L. Leydesdorff, “Clusters and Maps of Science Journals Based on Bi-
connected Graphs in Journal Citation Reports,” Journal of Documenta-
tion, 60(4), 2004, 371–427.

[19] Y.-D. Lin, H.-Y. Teng, C.-R. Hsu, C.-C. Liao, and Y.-C. Lai, “Fast
Failover and Switchover for Link Failures and Congestion in Software
Defined Networks,” in 2016 IEEE International Conference on Commu-
nications (ICC), 2016, 1–6.

[20] “Mininet,” http://mininet.org.
[21] T. Misugi, K. Hirata, and T. Tachibana, “Implementation of a Fast

Failure Recovery Method Considering Load Distribution for Network
Slicing,” in 2021 Asia-Pacific Signal and Information Processing Asso-
ciation Annual Summit and Conference (APSIPA ASC), 2021, 1895–
8.

[22] H. Miura, K. Hirata, and T. Tachibana, “P4-Based Design of Fast Failure
Recovery for Software-Defined Networks,” Computer Networks, 216, 2022,
109274.

[23] P. M. Mohan and M. Gurusamy, “Resilient VNF Placement for Service
Chain Embedding in Diversified 5G Network Slices,” in 2019 IEEE
Global Communications Conference (GLOBECOM), 2019, 1–6.

[24] F. Paolucci, F. Civerchia, A. Sgambelluri, A. Giorgetti, F. Cugini, and
P. Castoldi, “P4 Edge Node Enabling Stateful Traffic Engineering and
Cyber Security,” Journal of Optical Communications and Networking,
11(1), 2019, A84–A95.

[25] “Scapy,” https://scapy.net.
[26] R. Sedar, M. Borokhovich, M. Chiesa, G. Antichi, and S. Schmid, “Sup-

porting Emerging Applications with Low-Latency Failover in P4,” in 2018
Workshop on Networking for Emerging Applications and Technologies,
2018, 52–7.

[27] S. Sharma, D. Staessens, D. Colle, M. Pickavet, and P. Demeester,
“OpenFlow: Meeting Carrier-Grade Recovery Requirements,” Computer
Communications, 36(6), 2013, 656–65.

[28] S. Vassilaras, L. Gkatzikis, N. Liakopoulos, I. N. Stiakogiannakis, M.
Qi, L. Shi, L. Liu, M. Debbah, and G. S. Paschos, “The Algorithmic
Aspects of Network Slicing,” IEEE Communications Magazine, 55(8),
2017, 112–9.

http://mininet.org
https://scapy.net

28 Misugi et al.

[29] S.-Y. Wang, H.-W. Hu, and Y.-B. Lin, “Design and Implementation
of TCP-Friendly Meters in P4 Switches,” IEEE/ACM Transactions on
Networking, 28(4), 2020, 1885–98.

[30] Y. Wang, S. Feng, H. Guo, X. Qiu, and H. An, “A Single-Link Fail-
ure Recovery Approach based on Resource Sharing and Performance
Prediction in SDN,” IEEE Access, 7, 2019, 174750–63.

[31] R. Wen, G. Feng, J. Tang, T. Q. S. Quek, G. Wang, W. Tan, and S.
Qin, “On Robustness of Network Slicing for Next-Generation Mobile
Networks,” IEEE Transactions on Communications, 67(1), 2019, 430–44.

[32] S. Wijethilaka and M. Liyanage, “Survey on Network Slicing for Internet
of Things Realization in 5G Networks,” IEEE Communications Surveys
& Tutorials, 23(2), 2021, 957–94.

[33] J. Xu, S. Xie, and J. Zhao, “P4Neighbor: Efficient Link Failure Recovery
with Programmable Switches,” IEEE Transactions on Network and
Service Management, 18(1), 2021, 388–401.

[34] G. Zhang, S. Gao, J. Yue, and Z. Zhao, “A Service Protection Mechanism
Impelemented on P4 by Packet Replication,” in 2021 2nd Information
Communication Technologies Conference, 2021, 1–5.

[35] Q. Zhang, O. Ayoub, J. Wu, F. Musumeci, G. Li, and M. Tornatore,
“Progressive Slice Recovery with Guaranteed Slice Connectivity After
Massive Failures,” IEEE/ACM Transactions on Networking, 30(2), 2022,
826–39.

	Introduction
	Related Works
	Outline of Background Technologies
	Network Slicing
	Multiple Routing Configurations (MRC)

	Proposed Method
	System Model
	Application of MRC to Slices
	Background and Overview
	Articulation Point Detection
	Procedure of the Proposed Method

	Numerical Experiments
	Model
	Results

	Implementation Demonstration with P4
	The Concept of P4
	Implementation of Network Slicing and MRC
	Demonstration Experiments

	Conclusion

