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Abstract

This tutorial treats the fundamentals of polarization theory and polar

coding. Arıkan’s original results on binary source and channel polar-

ization methods are studied. Error probability and complexity analyses

are offered. The original results are generalized in several directions.

Early developments in the field are discussed, pointers to some of the

important work omitted from this tutorial are given.
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1

Introduction

Figure 1.1 depicts the setting for the fundamental problem in communi-

cation theory. A sender has K bits of information to send, which, after

appropriate processing, are transmitted through a noisy channel that

accepts input symbols one at a time and produces a sequence of output

symbols. The task of the communication engineer is to design an encod-

ing/decoding scheme that ensures that the K bits are (i) transmitted

in as few uses of the channel as possible, and (ii) correctly reproduced

at the receiver with as high a probability as desired. In [42], Shannon

showed that these seemingly conflicting requirements can be met simul-

taneously so long as K and N (the number of channel uses) are large

and K/N (called the rate of transmission) is below the capacity of the

channel.

Shannon’s proof of the channel coding theorem shows not only that

reliable communication at rates below capacity is possible, but also

that almost all encoding schemes, i.e., channel codes, with rates below

Fig. 1.1
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2 Introduction

channel capacity will perform well as long as optimal decoders are

used at the receiver. Unfortunately, optimal decoding is in general pro-

hibitively difficult — its complexity grows exponentially in the coding

length — and how to construct practical coding schemes, and especially

low-complexity decoders, is not immediately clear from Shannon’s cod-

ing theorem alone.

Significant progress has been made in the past sixty years toward

developing practical and capacity-achieving coding methods. The bulk

of the research effort to this end can be broadly divided into two groups:

algebraic coding and iterative coding. Research in algebraic coding was

motivated primarly by the recognition that for channels of practical

interest, the words of a code must be as different from each other as

possible in order to ensure their distinguishability at the receiver. Iter-

ative codes (e.g., Turbo codes and LDPC codes), on the other hand,

are designed to work well with a low-complexity decoding algorithm.

Despite remarkable advances in both fields, especially in iterative cod-

ing, finding codes that (i) operate at rates close to capacity, (ii) have

low computational complexity, and (iii) have provable reliability guar-

antees was an elusive goal until recently.1

Polar codes, invented recently by Arıkan [4], have all of these desir-

able properties. In particular,

• they achieve the symmetric capacity of all binary-input mem-

oryless channels. Consequently, they are capacity-achieving

for symmetric channels, which include several channel classes

of practical relevance such as the binary-input additive white

Gaussian noise channel, the binary symmetric channel, and

the binary erasure channel.
• they are low-complexity codes, and therefore are practical:

the time and space complexities of the encoding/decoding

algorithms Arıkan proposes in [4] are O(N logN), where N

is the blocklength.
• the block error probability of polar codes is roughly

O(2−
√
N ) [9]. This performance guarantee is analytical, and

is not only based on empirical evidence.

1See [12] for a historical account of the development of coding theory in general.
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1.1 Extremal Distributions and Polarization 3

• for symmetric channels, polar code construction is determin-

istic. That is, the above statements are true not only for

ensembles of codes, but also for individual polar codes. Fur-

ther, construction of polar codes can be accomplished with

time complexity O(N) and space complexity O(logN) [45].

The design philosophy of polar codes is fundamentally different from

those of both algebraic codes and iterative codes (although the codes

themselves are closely related to the algebraic Reed–Muller codes). It is

interesting to note that the invention of these codes is the culmination

of Arıkan’s efforts to improve the rates achievable by convolutional

codes and sequential decoding [6], a decoding method developed in the

late 1950s.

The technique underlying polar codes is ‘channel polarization’: cre-

ating extremal channels — those that are either noiseless or useless —

from mediocre ones. Soon after the publication of [4], Arıkan showed

that a similar technique can be used to construct optimal source codes

[5] — he calls this technique ‘source polarization’. It is clear in his work

that a single polarization principle underlies both techniques; channel

polarization and source polarization are specific applications of this

principle.

1.1 Extremal Distributions and Polarization

Suppose we are interested in guessing (i.e., decoding) the value of

a binary N -vector UN1 after observing a related random vector Y N
1 .

Here, UN1 may represent a codeword chosen randomly from a channel

code, and Y N
1 the output of a channel when UN1 is the input. Alterna-

tively, UN1 may be viewed as the output of a random source, and Y N
1

as side information about UN1 . In order to minimize the probability of

decoding error, one chooses the value of UN1 that maximizes2

p(uN1 | yN1 ) =

N∏
i=1

p(ui | yN1 ,ui−1
1 ).

2Throughout, we will denote probability distributions by p as long as their arguments

are lower case versions of the random variables they represent. For example, we will write
p(x,y | z) for pXY |Z(x,y | z), denoting the joint distribution of X and Y conditioned on Z.
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4 Introduction

There are two extremal cases in terms of the probability of decoding

error. First, if UN1 is a function of Y N
1 — i.e., if the above probability is

either 0 or 1 — then its value can always be guessed correctly. Second,

if UN1 is independent of Y N
1 and uniformly distributed, then all guesses

are equally good and will be correct with probability 1/2N . The first

of these cases is trivial provided that the function computations can be

done easily, and the second is hopeless.

A more interesting extremal case is one in which the conditional

distribution of UN1 is neither {0,1}-valued nor uniform, but it is polar-

ized in the sense that all distributions in the product formula above

are either {0,1}-valued or uniform. One can view this as a case where

all randomness in UN1 is concentrated in a subset of its components.

Clearly, one cannot in general correctly decode such a random vector

with high probability. On the other hand, decoding UN1 again becomes

trivial if one has prior knowledge of its random component. The polar-

ized structure in the probability distribution even suggests that UN1 can

be decoded successively : suppose, for the sake of argument, that the

odd-numbered factors in the product formula above are {0,1}-valued

distributions whereas the even-numbered factors are uniform. Then,

if one has prior knowledge of the even indices of UN1 , then the odd

indices can be determined in increasing order as follows. The decoder

first computes U1 as a function of Y N
1 , then produces U2 (which is

already available to it) then uses its knowledge of U1 and U2 to com-

pute U3 as a function of (Y N
1 ,U2

1 ), etc.

A realistic model of the input/output process of a noisy channel

or the output/side information process of a data source rarely fits this

description. On the other hand, one may attempt to transform the pro-

cess in question into one that does fit it. This is precisely the aim of

Arıkan’s polarization technique. In its original form, this technique con-

sists in combining two identically distributed binary random variables

so as to create two disparate random variables and repeating this oper-

ation several times to amplify the disparity, eventually approaching a

polarized set of random variables. We will see this technique along with

how to apply it to channel and source coding in Section 2. In Section 3

we will review the complexity of polar encoding, decoding, and code

construction. As we have already mentioned, the practical appeal of
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1.1 Extremal Distributions and Polarization 5

polar codes is due to the low complexity requirements of these tasks

along with provable reliability guarantees.

There has been considerable amount of research effort in polar-

ization theory and polar coding since the publication of [4] in 2009.

Arguably the main reason for this interest is the technique’s ease of

applicability to settings other than binary source and channel coding.

In the rest of this monograph (Sections 4–6), we will review some of

the main generalizations of the theory. We will begin in Section 4 by

studying how discrete memoryless processes of arbitrary alphabet sizes,

not just binary ones, can be polarized by recursive transforms. We will

see that this can be accomplished through a linear transform similar

to Arıkan’s when the alphabet size is prime. Interestingly, linear trans-

forms lose their ability to polarize all stationary memoryless processes

when the underlying alphabet size is not a prime number. There are,

however, non-linear transforms that do polarize all stationary memory-

less processes for all finite alphabet sizes. In Section 4.2 we will study

sufficient conditions for a recursive transform to polarize all such pro-

cesses, and give an example of a family of transforms that satisfy these

conditions for all finite alphabet sizes. The complexity and the error

probability behavior of codes obtained by such transforms will be as in

the binary case.

While the error probability guarantees of polar codes are unprece-

dented, it is of interest to know whether even stronger codes can be

obtained by combining more than two random variables in each recur-

sion of a polarizing construction. This study is undertaken in Section 5:

we will first show that a large class of recursive linear transforms that

combine several random variables at a time polarize memoryless pro-

cesses with prime alphabet sizes. We will then characterize how a single

recursion of a given polarizing transform affects error probability behav-

ior, from which results on the large-blocklength behavior follow easily.

The implications of this characterization are of a mixed nature: while

in the binary case one cannot improve on the O(2−
√
N ) error probabil-

ity decay by combining a small number of random variables at a time,

strong improvements become possible as the alphabet size grows.

In Section 6, we will make use of the polarization theorems of earlier

sections to study joint polarization of multiple processes. We will see
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6 Introduction

that recursive transforms, applied separately to multiple processes, not

only polarize the individual processes, but the correlations between

the processes are also polarized. These results will immediately lead

to polar coding theorems for two-user settings such as the separate

encoding of correlated sources and the multiple-access channel.
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[38] E. Şaşoğlu, “Polarization in the presence of memory,” in Proceedings of the
International Symposium on Information Theory, pp. 189–193, June 2010.
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