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Abstract

A wealth of material has been published over the past 30 years specifi-
cally related to the theory and technical aspects of property languages
and assertion-based techniques. However, as any field of study matures,
it becomes necessary to determine if the theories, algorithms, and con-
cepts have grown beyond the bounds of research to become an integral
solution to a problem in industry. To understand any solution, it is nec-
essary to understand the problem. For example, debugging, on average,
has grown to consume more than 60% of today’s ASIC and SoC ver-
ification effort. Clearly, this is a topic the industry must address, and
some organizations have done just that. Those that have adopted an
assertion-based verification (ABV) methodology have seen a significant
reduction in simulation debugging time (as much as 50% [1, 47]) due to
improved observability. Furthermore, organizations that have embraced
an ABV methodology are able to take advantage of more advanced ver-
ification techniques, such as formal property checking, thus improving
their overall verification quality and results. This paper examines the
application of ABV in today’s electronic design industry to address
specific challenges of poor observability and controllability during the
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verification process. Statistics illustrating successful application of both
low-level and high-level assertions are presented. While the process of
writing assertions is fairly well understood by those skilled in the art —
the process of creating higher-level assertion-based IP that must com-
municate with other components in a contemporary transaction-level
modeling (TLM) simulation environment, is not. Hence, this paper pro-
vides a set of steps (in a tutorial fashion) for creating assertion-based IP.
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1

Introduction

Ensuring functional correctness on RTL designs continues to pose one
of the greatest challenges for today’s ASIC and SoC design teams.
Very few project managers would disagree with this statement. In fact,
an often cited 2004 industry study by Collett International Research
revealed that 35% of the total ASIC development effort was spent in
verification [10]. In 2008, a Far West Research study (in conjunction
with Mentor Graphics) indicated the verification effort has risen to 46%
of the total ASIC development effort [20]. Furthermore, these indus-
try studies reveal that debugging is the fastest growing component of
verification, and that it consumes 60% of the total verification effort.
Unfortunately, with the increase in verification effort, the industry
has not experienced a measurable increase in quality of results. For
example, a Collett International Research study that focused on design
closure indicated that only 29% of projects developing ASICs were
able to achieve first silicon success. To make matters worse, the indus-
try is witnessing increasing pressure to shorten the overall ASIC and
SoC development cycle. Clearly, new design and verification techniques,
combined with a focus on maturing functional verification process

1
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2 Introduction

capabilities within an organization (and the industry as a whole) are
required.

Assertion-based verification (ABV), although certainly not an
end-all to the verification challenge, does directly address today’s
debugging problem, while providing an integration path for more
advanced forms of verification into the design flow (such as formal
property checking). This paper provides a survey of today’s ABV
landscape, ranging from industry case studies to today’s assertion
language standardization efforts, to emerging challenges and research
opportunities.

In addition, this paper directly addresses industry process issues
of developing assertion-based IP by introducing a systematic set of
planning and development steps. A detailed bus protocol example
is provided, which draws together the various concepts introduced
throughout the text while demonstrating an effective process for devel-
oping assertion and assertion-based verification IP.

1.1 What is an Assertion?

Alan Turing made the following observation over 50 years ago: “How
can one check a large routine in the sense of making sure that it’s
right? In order that the man who checks may not have too difficult
a task, the programmer should make a number of definite assertions
which can be checked individually, and from which the correctness of
the whole program easily flows [46].” In essence, this view is at the heart
of ABV.

Informally, an assertion is a statement of design intent that can
be used to specify design behavior. Assertions may specify internal
implementation design behaviors (such as a specific FIFO structure) or
external specification design behavior (such as a bus protocol or even
higher-level, end-to-end behavior that spans multiple design blocks).
One key characteristic of assertions is that they allow the user to
specify what the design is supposed to do at a high level of abstrac-
tion, without having to describe the details of how the design intent
is to be implemented. Thus, this abstract view of the design intent is
ideal for the verification process — whether we are specifying high-level
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1.2 Controllability and Observability 3

requirements or lower-level implementation behaviors — by means of
assertions.

Properties versus assertions: The recent flurry of interest in assertion-
based techniques has prompted considerable published research and
industry articles on the subject. Often, the authors of these publications
interchange the terms property and assertion, which leads to confusion.
For our discussion, a property is informally defined as follows:

Property — A statement of design intent.

For instance, the statement, grant0 and grant1 are mutually exclu-
sive is an example of a property, which is actually a partial specification
for an arbiter. Notice that we have not stated how we intend to use this
property during the verification process. For example, we might choose
to use this property as a constraint specification, which is a require-
ment on the environment, and assume the property during verification.
In this case, we want to eliminate traces from the verification tool that
violate our constraint. Or, we might choose to use this property as a
coverage specification, and cover the property such that the verification
tool notifies us at the particular point in which the coverage specifica-
tion holds on a trace. Or, we might choose to use the property as a
specification of design intent and assert that the property holds on all
traces produced by a verification tool.

For our discussion, an assertion is informally defined as follows:

Assertion — An implementation of a property that is evaluated or
executed by a tool to validate design intent.

Assertions are used as targets during the verification process (for
example, a checker for simulation or a proof obligation for formal) to
help us identify and isolate unexpected behavior.

1.2 Controllability and Observability

Fundamental to the discussion of ABV is understanding the concepts
of controllability and observability [13, 19]. Informally, controllability
refers to the ability to influence or activate an embedded finite state
machine, structure, or specific line of code within the design by stim-
ulating various input ports. Note that, while in theory a simulation
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4 Introduction

testbench has high controllability of the design model’s input ports
during verification, it can have very low controllability of an internal
structure within the model. Observability, in contrast, refers to the
ability to observe the effects of a specific internal finite state machine,
structure, or stimulated line of code. Thus, a testbench generally has
limited observability if it only observes the external ports of the design
model (because the internal signals and structures are often indirectly
hidden from the testbench).

To identify a design error using a simulation testbench approach,
the following conditions must hold:

1. The testbench must generate proper input stimulus to acti-
vate a design error.

2. The testbench must generate proper input stimulus to prop-
agate all effects resulting from the design error to an output
port.

It is possible, however, to set up a condition where the input stimulus
activates a design error that does not propagate to an observable output
port. In these cases, the first condition cited above applies; however,
the second condition is absent, as illustrated in Figure 1.1.

Embedding assertions in the design model increases observability. In
this way, the verification environment no longer depends on generating
input stimulus to propagate a design error to an observable port. Thus,

Fig. 1.1 Poor observability and controllability misses bugs.

Full text available at: http://dx.doi.org/10.1561/1000000013



1.3 Assertion Stakeholders 5

any improper or unexpected behavior can be caught closer to the source
of the design error, in terms of both time and location. Thus resulting
in an overall reduction of debugging time.

While embedded assertions help solve the observability challenge
in simulation, they do not help with the controllability challenge.
However, the existence of assertions within the flow does open up the
possibility for utilizing formal property checking to target critical or
high-value assertions, thus addressing the controllability challenge.

1.3 Assertion Stakeholders

Assertions added at any level of hierarchy (or abstractions) clearly
benefit verification by reducing debugging time while clarifying design
intent. Certainly multiple stakeholders within the design and verifica-
tion process can contribute to the assertion development process —
thus reducing ambiguities while improving observability.

Figure 1.2 illustrates a typical design refinement process through
various levels of abstraction and the stakeholders associated with each
level. Adoption of assertions in the industry, at the time of this writ-
ing, has predominately occurred within the block and module level.
They can be called implementation assertions. This adoption trend
is partially due to the lack of effective guidelines for assertion use at
higher levels of design hierarchy (or abstraction) and confusion about
which stakeholders should contribute to the assertion development
process.

Although an architect can contribute to the assertion development
effort by defining global properties (derived from the architecture and
micro-architectural specification) that must hold across multiple possi-
ble implementations, the design engineer contributes by writing internal
white-box assertions derived from the implementation. In addition, the
verification engineer contributes by developing assertions that specify
correct interface behavior between units and between blocks. The ver-
ification engineer also contributes by developing black-box, end-to-end
assertions across design components.

Although it is easy to identify the various stakeholders and roles
they play in the assertion development process, these stakeholders
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6 Introduction

Fig. 1.2 Stakeholders and levels of abstraction.

often lack a process for systematically developing their assertions.
In fact, a classic mistake many engineers make when first adopting
assertion-based techniques is to jump into coding assertions too soon —
without fully understanding the behavior they are trying to specify.
This ad hoc approach leads to incomplete (or incorrect) property sets
and non-reusable assertion-based IP. This problem can be addressed
by introducing a systematic process in which a natural language list of
properties is created prior to coding the assertion-based IP, as discussed
later in this paper.
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1.4 Assertions Within a Flow 7

1.4 Assertions Within a Flow

When applying assertion-based techniques, it is important to first
understand where they can be effectively applied. For example, in addi-
tion to the verification flow stakeholders, Figure 1.2 also illustrates a
typical design refinement process.

The flow begins with a system specification, which is typically a
natural language properties document. There has been recent interest
in executable forms of system specification, such as UML [39]. The
first refinement of the system specification is often a system function
model to explore the proposed algorithm, which is often written in C or
C++. At this point, hardware–software partitioning and architectural
mapping decisions have not been made.

The system transaction-level model (TLM) is generally an untimed
(or partially timed) model that is created after architectural mapping.
This model is often used for firmware development, system and archi-
tectural performance analysis, and software development. Furthermore,
the TLM is often further refined into a bus cycle-accurate (BCA) model
as architectural decisions begin to gel.

RTL refinement occurs next. During this phase, the system is par-
titioned into multiple units. Each unit is partitioned into blocks. Each
block is partitioned into modules consisting of RTL code.

Certainly, a natural language list of properties can (and should)
be developed at all levels of abstraction. However, today’s assertion
language standards lack the proper formalism necessary to express
properties at all of the levels of abstraction illustrated in Figure 1.2.
For example, in an untimed TLM, one concurrent transaction might
overlap with a different transaction. That is, it can begin and end in
the middle execution of a different untimed transaction.

Existing assertion language standards lack the semantics (and syn-
tax) necessary to express assertions related to this type of transaction
behavior. Researchers have proposed solutions to the TLM assertion
specification problem, which might result in semantic and syntacti-
cal extensions to existing standards [14, 15, 16]. Today, successful
assertion specification in an industry setting occurs at and below the
BCA abstraction level, illustrated in Figure 1.2. Later in this paper,
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8 Introduction

techniques are presented for developing assertion-based IP that can
be reused in a transaction-level testbench using existing standards
by introducing what is essentially an abstraction converter between
a timed RTL model and untimed transaction environment.

1.5 ABV Discussion Preview

The remainder of this paper is organized as follows: In Section 2,
industry motivations for adopting ABV are presented. Included are
a number of successful case studies. Section 3 is focused on the recent
emergence of assertion language and library standards. As a founda-
tion for the assertion language discussion, a basic introduction to tem-
poral logic and extended regular expressions is presented, followed by
a brief introduction to IEEE Property Specification Language (PSL),
SystemVerilog Assertions (SVA), and the Open Verification Library
(OVL). Section 4 provides a tutorial for developing assertion-based IP
with a focus on contemporary simulation environments found in indus-
try. Section 5 integrates the concepts presented in all the previous sec-
tions into a demonstration on how to create assertion-based IP for a
simple nonpipelined bus protocol example. Finally, Section 6 provides
a summary discussion.

Full text available at: http://dx.doi.org/10.1561/1000000013



References

[1] Y. Abarbanel, I. Beer, L. Gluhovsky, S. Keidar, and Y. Wolfsthal, “FoCs —
Automatic generation of simulation checkers from formal specifications,” in
Proceedings of 12th International Conference Computer Aided Verification,
pp. 414–427, 2000.

[2] Accellera Standard OVL Library Reference Manual, www.accellera.org, 2008.
[3] ARM, AMBA specification version 2.0, 1999.
[4] R. Armoni, L. Fix, A. Flaisher, R. Gerth, B. Ginsburg, T. Kanza, A. Landver,

S. Mador-Haim, E. Singerman, A. Tiemeyer, M. Y. Vardi, and Y. Zbar, “The
Forspec temporal logic: A new temporal property-specification language,” in
TACAS’2002, LNCS, vol. 2280, pp. 296–311, 2002.

[5] I. Beer, S. Ben-David, and A. Landver, “On-the-fly model checking of RCTL
formulas,” in Computer Aided Verification, Proceedings of 10th International
Conference, Lecture Notes in Computer Science, vol. 1427, pp. 184–194,
Springer-Verlag, 1998.

[6] J. Bergeron, E. Cerny, A. Hunter, and A. Nightingale, Verification Methodology
Manual for SystemVerilog. Springer, 2006.

[7] D. Bustan and J. Havlicek, “Some complexity results for SystemVerilog asser-
tions,” in CAV 2006 Conference Proceedings, pp. 205–218, CAV, July 2006.

[8] E. M. Clarke and E. A. Emerson, “Design and synthesis of synchronization
skeletons using branching time temporal logic,” in Proceedings of Workshop on
Logic of Programs, Lecture Notes in Computer Science, vol. 131, pp. 52–71,
Springer-Verlag, 1981.

[9] E. M. Clarke, O. Grumberg, and D. Peled, Model Checking. The MIT Press,
2000.

95

Full text available at: http://dx.doi.org/10.1561/1000000013



96 References

[10] R. Collett, “2004 IC/ASIC functional verification study,” Industry Report from
Collett International Research, p. 34, 2004.

[11] P. Dasgupta, A Roadmap for Formal Property Verification. Springer, 2006.
[12] S. Dellacherie, H. Foster, E. Marschner, S. Ruah, and S. Smith, “Tutorial:

Assertion-Based Verification,” 40th Design Automation Conference, 2003.
[13] S. Devadas, A. Ghosh, and K. Keutzer, “An observability-based code coverage

metric for functional simulation,” in Proceedings of the 33rd Design Automation
Conference, pp. 418–425, 1996.

[14] W. Ecker, V. Esen, and M. Hull, “Execution semantics and formalisms for
multi-abstraction TLM assertions,” Proceedings of MEMOCODE, 2006.

[15] W. Ecker, V. Esen, M. Hull, T. Steininger, and M. Velten, “Requirements and
concepts for transaction level assertions,” ICCD, 2006.

[16] W. Ecker, V. Esen, T. Steininger, M. Velten, and M. Hull, “Interactive presen-
tation: Implementation of a transaction level assertion framework in SystemC,”
DATE 2007, pp. 894–899, 2007.

[17] C. Eisner and D. Fisman, A Practical Introduction to PSL. Springer, 2006.
[18] E. A. Emerson and J. Y. Halpern, “‘Sometimes’ and ‘not never’ revisited: on

branching versus linear time temporal logic,” Journal of the ACM, vol. 33,
no. 1, pp. 151–178, 1986.

[19] F. Fallah, S. Devadas, and K. Keutzer, “OCCOM: Efficient computation of
observability-based code coverage metrics for functional simulation,” in Pro-
ceedings of the 35th Design Automation Conference, pp. 152–157, 1998.

[20] FarWest Research 2008 industry study in conjunction with Mentor Graphics,
2008.

[21] H. Foster and C. Coelho, “Assertions targeting a diverse set of verification
tools,” in Proceedings of International HDL Conference, 2001.

[22] H. Foster, A. Krolnik, and D. Lacey, Assertion-Based Design. Kluwer Academic
Publishers, Second ed., 2004.

[23] H. Foster, K. Larsen, and M. Turpin, “Introducing the new accellera open
verification library standard,” in Proceedings of DVCon, 2006.

[24] H. Foster, L. Loh, B. Rabii, and V. Singhal, “Guidelines for creating a formal
verification testplan,” in Proceedings of DVCon, 2006.

[25] M. Glasser, A. Rose, T. Fitzpatrick, D. Rich, and H. Foster, “The verification
cookbook,” http://www.mentor.com/go/cookbook, 2007.

[26] M. J. C. Gordon, “Validating the PSL/Sugar semantics using automated rea-
soning,” in Formal Aspects of Computing, vol. 15, pp. 406–421, Springer-Verlag,
London, December 2003.

[27] F. Haque, J. Michelson, and K. Khan, The Art of Verification with SystemVer-
ilog Assertions, Verification Central. First ed., 2006.

[28] IEEE Standard 1800-2005 SystemVerilog: Unified Hardware Design, Specifica-
tion and Verification Language, IEEE, Inc., New York, NY, USA, 2005.

[29] IEEE Standard 1850-2005 Property Specification Language (PSL), IEEE, Inc.,
New York, NY, USA, 2005.

[30] International Technology Roadmap for Semiconductors, 2003 Report,
www.itrs.net/reports.html.

Full text available at: http://dx.doi.org/10.1561/1000000013



References 97

[31] H. Iwashita and T. Nakata, “Forward model checking techniques oriented to
buggy designs,” International Conference on Computer Aided Design, ICCAD,
1997.

[32] M. Kantrowitz and L. Noack, “I’m done simulating; Now what? Verification
coverage analysis and correctness checking of the DECchip 21164 alpha micro-
processor,” Proceedings of Design Automation Conference, pp. 325–330, 1996.

[33] A. Krolnik, Cyrix M3 Phase 1 Report. Cyrix Inc. internal report, 1998.
[34] A. Krolnik, Cyrix M3 Phase 2 Report. Cyrix Inc. internal report, 1999.
[35] T. Kropf, Introduction to Formal Hardware Verification. Springer, 1998.
[36] J. Long and A. Seawright, “Synthesizing SVA local variables for formal verifi-

cation,” in Proceedings of the 44th Design Automation Conference, DAC 2007,
pp. 75–80, 2007.

[37] J. Long, A. Seawright, and H. Foster, “SVA local variable coding guidelines for
efficient use,” in Proceedings of DVCon, 2007.

[38] E. Marschner and H. Foster, “Assertion-based verification,” in EDA for IC
System Design, Verification, and Testing (Electronic Design Automation for
Integrated Circuits Handbook), (L. Scheffer, L. Lavagno, and G. Martin, eds.),
CRC Press, 2006.

[39] G. Martin, “UML for embedded systems specification and design: motivation
and overview,” Proceedings of Design, Automation and Test in Europe, 2002.

[40] Open Verification Methodology (OVM), http://www.ovmworld.org/.
[41] OSCI TLM-1.0 Transaction Level Modeling Standard, SystemC kit with

whitepaper available on http://www.systemc.org/.
[42] A. Piziali, Functional Verification Coverage Measurement and Analysis. Kluwer

Academic Publishers, 2004.
[43] A. Pnueli, “The temporal logic of programs,” in Proceedings of 18th IEEE

Symposium on Foundation of Computer Science, pp. 46–57, 1977.
[44] V. Singhal, Coverage: The link between SIMULATION and FORMAL, 2006

discussion by Oski Technology, http://oskitech.com/papers/coverage-0506.pdf.
[45] S. Taylor, M. Quinn, D. Brown, N. Dohm, S. Hildebrandt, J. Huggins, and

C. Ramey, “Functional verification of a multiple-issue out-of-order, superscalar
alpha processor — the DEC Alpha 21264 microprocessort,” Proceedings of
Design Automation Conference, pp. 638–643, 1998.

[46] A. Turing, in Report of a Conference on High Speed Automatic Calculating
Machines, pp. 67–69, University of Mathematical Laboratory, Cambridge, 1949.

[47] B. Turumella and M. Sharma, “Assertion-based verification of a 32 thread
SPARCTM CMT microprocessor,” in Proceedings of the 45th Design Automa-
tion Conference, DAC 2008, pp. 256–261, 2008.

[48] M. Y. Vardi, “Branching vs linear time: Final showdown,” in Proceedings of
7th International Conference on Tolls and Algorithms for the Construction and
Analysis of Systems (TACAS 2001), LNCS, vol. 23, Springer, 2001.

[49] M. Y. Vardi and P. Wolper, “Reasoning about infinite computations,” Infor-
mation and Computation, vol. 115, no. 1, pp. 1–37, 1994.

[50] P. Wolper, “Temporal logic can be more expressive,” Information and Control,
vol. 56, no. 1/2, pp. 72–99, 1983.

Full text available at: http://dx.doi.org/10.1561/1000000013


	Introduction
	What is an Assertion?
	Controllability and Observability
	Assertion Stakeholders
	Assertions Within a Flow
	ABV Discussion Preview

	Industry Adoption of ABV
	The Productivity Gap
	Industry ABV Case Studies
	Enabling Advanced Functional Verification

	Assertion Languages and Libraries
	Reasoning About Behavior
	Assertion Language Standards
	Property Specification Language (PSL)
	SystemVerilog Assertions (SVA)
	Open Verification Library (OVL)

	Creating Assertion IP
	Guiding Principles
	Development Steps
	Assertion-Based IP Architecture

	Bus Protocol Assertion IP Example
	Block Diagram Interface Description
	Overview Description
	Natural Language Properties
	Formalize Properties
	Functional Coverage Properties
	Encapsulate Properties

	ABV Within a Flow
	ABV and Coverage Closure
	Assertions and Measuring Proof Progress
	Addressing Formal ABV Complexity
	Summary

	References



