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Abstract

During the last two decades, concentration inequalities have been the

subject of exciting developments in various areas, including convex ge-

ometry, functional analysis, statistical physics, high-dimensional statis-

tics, pure and applied probability theory (e.g., concentration of mea-

sure phenomena in random graphs, random matrices, and percolation),

information theory, theoretical computer science, and learning theory.

This monograph focuses on some of the key modern mathematical tools

that are used for the derivation of concentration inequalities, on their

links to information theory, and on their various applications to com-

munications and coding. In addition to being a survey, this monograph

also includes various new recent results derived by the authors.

The first part of the monograph introduces classical concentration

inequalities for martingales, as well as some recent refinements and

extensions. The power and versatility of the martingale approach is

exemplified in the context of codes defined on graphs and iterative

decoding algorithms, as well as codes for wireless communication.

The second part of the monograph introduces the entropy method,

an information-theoretic technique for deriving concentration inequali-

ties. The basic ingredients of the entropy method are discussed first

in the context of logarithmic Sobolev inequalities, which underlie

the so-called functional approach to concentration of measure, and

then from a complementary information-theoretic viewpoint based on

transportation-cost inequalities and probability in metric spaces. Some

representative results on concentration for dependent random vari-

ables are briefly summarized, with emphasis on their connections to

the entropy method. Finally, we discuss several applications of the en-

tropy method to problems in communications and coding, including

strong converses, empirical distributions of good channel codes, and an

information-theoretic converse for concentration of measure.
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Introduction

1.1 An overview and a brief history

Concentration-of-measure inequalities provide bounds on the proba-

bility that a random variable X deviates from its mean, median or

other typical value x by a given amount. These inequalities have been

studied for several decades, with some fundamental and substantial

contributions during the last two decades. Very roughly speaking, the

concentration of measure phenomenon can be stated in the following

simple way: “A random variable that depends in a smooth way on many

independent random variables (but not too much on any of them) is es-

sentially constant” [1]. The exact meaning of such a statement clearly

needs to be clarified rigorously, but it often means that such a ran-

dom variable X concentrates around x in a way that the probability

of the event {|X − x| ≥ t}, for a given t > 0, decays exponentially in

t. Detailed treatments of the concentration of measure phenomenon,

including historical accounts, can be found, e.g., in [2, 3, 4, 5, 6, 7].

In recent years, concentration inequalities have been intensively

studied and used as a powerful tool in various areas. These include

convex geometry, functional analysis, statistical physics, dynamical sys-

tems, probability (random matrices, Markov processes, random graphs,

2



1.1. An overview and a brief history 3

percolation etc.), statistics, information theory, coding theory, learning

theory, and theoretical computer science. Several techniques have been

developed so far to prove concentration of measure inequalities. These

include:

• The martingale approach (see, e.g., [6, 8, 9], [10, Chapter 7],

[11, 12]), and its information-theoretic applications (see, e.g., [13]

and references therein, [14]). This methodology will be covered

in Chapter 2, which is focused on concentration inequalities for

discrete-time martingales with bounded differences, as well as on

some of their potential applications in information theory, cod-

ing and communications. A recent interesting avenue that follows

from the martingale-based concentration inequalities which are

introduced in Chapter 2 refers to their generalization to random

matrices (see, e.g., [15, 16]).

• The entropy method and logarithmic Sobolev inequalities (see,

e.g., [3, Chapter 5], [4] and references therein). This methodol-

ogy and its many remarkable links to information theory will be

considered in Chapter 3.

• Transportation-cost inequalities that originated from information

theory (see, e.g., [3, Chapter 6], [17], and references therein). This

methodology, which is closely related to the entropy method and

log-Sobolev inequalities, will be considered in Chapter 3.

• Talagrand’s inequalities for product measures (see, e.g., [1], [6,

Chapter 4], [7] and [18, Chapter 6]) and their links to informa-

tion theory [19]. These inequalities proved to be very useful in

combinatorial applications (such as the study of common and/or

increasing subsequences), in statistical physics, and in functional

analysis. We do not discuss Talagrand’s inequalities in detail.

• Stein’s method (or the method of exchangeable pairs) was re-

cently used to prove concentration inequalities (see, e.g., [20, 21,

22, 23, 24, 25, 26, 27, 28]).

• Concentration inequalities that follow from rigorous methods in

statistical physics (see, e.g., [29, 30, 31, 32, 33, 34, 35, 36]).
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• The so-called reverse Lyapunov inequalities were recently used

to derive concentration inequalities for multi-dimensional log-

concave distributions [37] (see also a related work in [38]).

The concentration inequalities in [37] imply an extension of the

Shannon–McMillan–Breiman strong ergodic theorem to the class

of discrete-time processes with log-concave marginals.

The last three items are not addressed in this monograph.

We now give a synopsis of some of the main ideas underlying the

martingale approach (Chapter 2) and the entropy method (Chapter 3).

The Azuma–Hoeffding inequality, as is introduced in Chapter 2, is

by now a well-known tool to establish concentration results for discrete-

time bounded-difference martingales. It is due to Hoeffding [9], who

proved this inequality for a sum of independent and bounded ran-

dom variables, and to Azuma [8], who later extended it to bounded-

difference martingales. This inequality was introduced into the com-

puter science literature by Shamir and Spencer [39], who used it to

prove concentration of the chromatic number for random graphs around

its expected value (the chromatic number of a graph is defined as the

minimal number of colors required to color all the vertices of this graph

such that no two adjacent vertices have the same color). Shamir and

Spencer [39] established concentration of the chromatic number for the

so-called Erdös–Rényi ensemble of random graphs, where an arbitrary

pair of vertices is connected by an edge with probability p ∈ (0, 1), inde-

pendently of all other edges. Note that the concentration result in [39]

was established without knowing the expected value of the chromatic

number over this ensemble. This approach has been imported into cod-

ing theory in [40], [41] and [42], especially for exploring concentration

of measure phenomena pertaining to codes defined on graphs and it-

erative message-passing decoding algorithms. The last decade has seen

an ever-expanding use of the Azuma–Hoeffding inequality for proving

concentration inequalities in coding theory (see, e.g., [13] and refer-

ences therein). All these concentration inequalities serve in general to

justify theoretically the ensemble approach to codes defined on graphs;

nevertheless, much stronger concentration of measure phenomena are

observed in practice.
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Let f : Rn
→ R be a function that has bounded differences, i.e., the

value of f changes by a bounded amount whenever any of its n input

variables is changed arbitrarily while others are held fixed. A common

method for proving concentration of such a function of n independent

random variables around its expected value E[f ] revolves around the so-

called McDiarmid’s inequality or the “independent bounded-differences

inequality” [6]. This inequality, as is introduced in Chapter 2, was orig-

inally proved via the martingale approach [6]. Although the proof of

McDiarmid’s inequality has some similarity to the proof of the Azuma–

Hoeffding inequality, the bounded-difference assumption on f that is

used for the derivation of the former inequality yields an improvement

in the exponent by a factor of 4. Nice applications of martingale-based

concentration inequalities in discrete mathematics and random graphs,

based on the Azuma–Hoeffding and McDiarmid inequalities, are exem-

plified in [6, Section 3], [10, Chapter 7], [13] and [18, Chapters 1, 2].

In spite of the large variety of problems where concentration of

measure phenomena can be asserted via the martingale approach, as

pointed out by Talagrand [1], “for all its qualities, the martingale

method has a great drawback: it does not seem to yield results of op-

timal order in several key situations. In particular, it seems unable to

obtain even a weak version of concentration of measure phenomenon in

Gaussian space.” In Chapter 3 of this monograph, we focus on another

set of techniques, fundamentally rooted in information theory, that pro-

vide very strong concentration inequalities. These powerful techniques,

commonly referred to as the entropy method, have originated in the

work of Michel Ledoux [43], who found an alternative route to a class

of concentration inequalities for product measures originally derived

by Talagrand [7] using an ingenious inductive technique. Specifically,

Ledoux noticed that the well-known Chernoff bounding technique,

which bounds the deviation probability of the form P(|X − x̄| > t),

for an arbitrary t > 0, in terms of the moment-generating function

(MGF) E[exp(λX)], can be combined with the so-called logarithmic

Sobolev inequalities, which can be used to control the MGF in terms of

the relative entropy.

Perhaps the best-known log-Sobolev inequality, first explicitly re-
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ferred to as such by Leonard Gross [44], pertains to the standard Gaus-

sian distribution in Euclidean space R
n, and bounds the relative en-

tropy D(P‖Gn) between an arbitrary probability distribution P on

R
n and the standard Gaussian measure Gn by an “energy-like” quan-

tity related to the squared norm of the gradient of the density of P

w.r.t. Gn. By a clever analytic argument which he attributed to an

unpublished note by Ira Herbst, Gross has used his log-Sobolev in-

equality to show that the logarithmic MGF Λ(λ) = lnE[exp(λU)] of

U = f(Xn), where Xn
∼ Gn and f : Rn

→ R is an arbitrary sufficiently

smooth function with ‖∇f‖ ≤ 1, can be bounded as Λ(λ) ≤ λ2/2.

This bound then yields the optimal Gaussian concentration inequality

P (|f(Xn)− E[f(Xn)]| > t) ≤ 2 exp
(
−t2/2

)
for Xn

∼ Gn and t > 0.

(It should be pointed out that the Gaussian log-Sobolev inequality has

a curious history, and it seems to have been discovered independently

in various equivalent forms by several people, e.g., by Stam [45] in the

context of information theory, and by Federbush [46] in the context of

mathematical quantum field theory. Through the work of Stam [45],

the Gaussian log-Sobolev inequality has been linked to several other

information-theoretic notions, such as the concavity of entropy power

[47, 48, 49, 50].)

In a nutshell, the entropy method takes this idea and applies it

beyond the Gaussian case. In abstract terms, log-Sobolev inequali-

ties are functional inequalities that relate the relative entropy be-

tween an arbitrary distribution Q w.r.t. the distribution P of inter-

est to some “energy functional” of the density f = dQ/dP . If one

is interested in studying concentration properties of some function

U = f(Z) with Z ∼ P , the core of the entropy method consists in

applying an appropriate log-Sobolev inequality to the tilted distribu-

tions P (λf) with dP (λf)/dP ∝ exp(λf). Provided the function f is

well-behaved in the sense of having bounded “energy,” one can use the

Herbst argument to pass from the log-Sobolev inequality to the bound

lnE[exp(λU)] ≤ cλ2/(2C), where c > 0 depends only on the distribu-

tion P , while C > 0 is determined by the energy content of f . While

there is no general technique for deriving log-Sobolev inequalities, there

are nevertheless some underlying principles that can be exploited for
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that purpose. We discuss some of these principles in Chapter 3. More

information on log-Sobolev inequalities can be found in several excel-

lent monographs and lecture notes [3, 5, 51, 52, 53], as well as in recent

papers [54, 55, 56, 57, 58] and references therein.

Around the same time that Michel Ledoux first introduced the en-

tropy method [43], Katalin Marton showed in a breakthrough paper [59]

that one can bypass functional inequalities and work directly on the

level of probability measures (see also the survey paper [60], presented

at the 2013 Shannon Award Lecture). More specifically, Marton has

shown that Gaussian concentration bounds can be deduced from the

so-called transportation-cost inequalities. These inequalities, discussed

in detail in Section 3.4, relate information-theoretic quantities, such

as the relative entropy, to a certain class of distances between prob-

ability measures on the metric space where the random variables of

interest are defined. These so-called Wasserstein distances have been

the subject of intense research activity that touches upon probabil-

ity theory, functional analysis, dynamical systems, partial differential

equations, statistical physics, and differential geometry. A great deal of

information on this field of optimal transportation can be found in two

books by Cédric Villani — [61] offers a concise and fairly elementary

introduction, while a more recent monograph [62] is a lot more de-

tailed and encyclopedic. Multiple connections between optimal trans-

portation, concentration of measure, and information theory are also

explored in [17, 19, 63, 64, 65, 66, 67]. Note that Wasserstein distances

have been also used in information theory in the context of lossy source

coding [68, 69, 70].

The first explicit invocation of concentration inequalities in an

information-theoretic context appears in the work of Ahlswede et

al. [71, 72]. These authors have shown that a certain delicate prob-

abilistic inequality, which was referred to as the “blowing up lemma”,

and which we now (thanks to the contributions by Marton [59, 73])

recognize as a Gaussian concentration bound in the Hamming space,

can be used to derive strong converses for a wide variety of information-

theoretic problems, including multi-terminal scenarios. The importance

of sharp concentration inequalities for characterizing fundamental lim-
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its of coding schemes in information theory is evident from the recent

flurry of activity on finite-blocklength analysis of source and channel

codes (see, e.g., [74, 75, 76, 77, 78, 79, 80, 81]). Thus, it is timely to

revisit the use of concentration-of-measure ideas in information theory

from a modern perspective. We hope that our treatment, which, above

all, aims to distill the core information-theoretic ideas underlying the

study of concentration of measure, will be helpful to researchers in

information theory and related fields.

1.2 A reader’s guide

This monograph is mainly focused on the interplay between concen-

tration of measure and information theory, as well as applications to

problems related to information theory, communications and coding.

For this reason, it is primarily aimed at researchers and graduate stu-

dents working in these fields. The necessary mathematical background

is real analysis, elementary functional analysis, and a first graduate

course in probability theory and stochastic processes. As a refresher

textbook for this mathematical background, the reader is referred, e.g.,

to [82].

Chapter 2 on the martingale approach is structured as follows: Sec-

tion 2.1 lists key definitions pertaining to discrete-time martingales,

while Section 2.2 presents several basic inequalities (including the cel-

ebrated Azuma–Hoeffding and McDiarmid inequalities) that form the

basis of the martingale approach to concentration of measure. Sec-

tion 2.3 focuses on several refined versions of the Azuma–Hoeffding in-

equality under additional moment conditions. Section 2.4 discusses the

connections of the concentration inequalities introduced in Section 2.3

to classical limit theorems of probability theory, including the central

limit theorem for martingales, the moderate deviations principle for

i.i.d. real-valued random variables, and the suitability of the concen-

tration inequalities derived in Chapter 2 for some structured functions

of discrete-time Markov chains. Section 2.5 forms the second part of

Chapter 2, applying the concentration inequalities from Sections 2.2

and 2.3 to information theory and some related topics. Section 2.6 con-

cludes with a summary of the chapter.
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