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Preface

The writing of this book started in 2018 as a small compendium written for
the course “Multiple Antenna Communications” at Link6ping University. The
initial goal was to cover a few crucial aspects not included in the course book
Fundamentals of Massive MIMO. The principle in the writing was to explain
the fundamentals of the topic with as simple mathematics as possible while
including all the practical insights we gathered as researchers in the field. For
each year that passed, the compendium became 50 pages longer. We added a
recap of the theoretical foundations that the topic builds on, practical aspects
often overlooked by academia (e.g., polarization), and additional concepts
needed in a prolonged version of the course given to doctoral students. During
the COVID-19 pandemic, lecture recordings from the course were uploaded
to YouTube, receiving thousands of views and many positive reviews. Hence,
when we both moved to the KTH Royal Institute of Technology in 2021-
2022 and stopped teaching the original course, we did not want to bury the
compendium in a digital folder. Instead, we decided to turn it into a complete
textbook that can be shared with an international audience.

As the original course’s syllabus no longer limited us, we could focus on
writing the definitive introductory book on multiple-input multiple-output
(MIMO) communications. A key motivation for us is that with the advent
of fifth-generation (5G) mobile networks, MIMO technology is everywhere:
each base station and mobile phone is equipped with antenna arrays capable
of transmitting/receiving signals with controllable directivity. This feature
leads to stronger signals, robustness against channel fading, and spatial multi-
plexing that can drastically raise data rates. This is only the beginning of the
MIMO saga because larger antenna arrays and higher frequency bands that
can accommodate more antennas in the same enclosure are envisioned for
future network generations. The MIMO technology affects the physical-layer
transmissions and changes how resource allocation and network optimization
are done. The same methodology also underpins emerging technologies such
as reconfigurable intelligent surfaces (RIS) and integrated sensing and commu-
nication (ISAC). Hence, we believe that anyone who will research or develop
future wireless communication systems must understand the fundamentals of
multiple antenna communications. The first textbooks on the topic were writ-
ten 25 years ago, and the basic theory remains valid; yet many recent insights
and methodologies are not covered in classic textbooks, new terminologies
and hardware architectures have arisen, and some old concepts are outdated.
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This incentivized us to spend two years finalizing this textbook, including
adding new chapters and numerous examples, exercises, and simulations that
can be reproduced using MATLAB code available on the book’s website.

How to Use This Book

This book is primarily written as the course material for a first-year graduate-
level course and builds on undergraduate courses on signals and systems,
linear algebra, probability theory, and digital communications. We believe the
book should also appeal to wireless engineers and researchers who want to
broaden their knowledge base and learn specific methods and algorithms.

Chapter 1 provides a high-level introduction and motivation to multiple
antenna communications. To ensure that the reader remembers the essential
results from the mentioned undergraduate courses, Chapter 2 summarizes the
theoretical foundations used in later chapters. The basics of point-to-point
MIMO communications between two transceivers equipped with multiple
antennas are provided in Chapter 3. The theory is then expanded for static
line-of-sight (LOS) channels in Chapter 4 and random non-LOS channels in
Chapter 5. Next, we consider multi-user MIMO channels in Chapter 6, where
a base station with multiple antennas serves multiple user devices. These
chapters constitute the core of the book and should be included when it is
used for teaching a course. If these chapters are too extensive, one can omit
Section 4.5 on planar antenna arrays, Section 4.6 on polarization, Section 5.5
on block-fading channels, and Section 5.6 on sparse multipath propagation.

The last three chapters are mostly independent and cover three different
topics. Chapter 7 extends the theory to wideband MIMO channels with or-
thogonal frequency-division multiplexing (OFDM). The chapter also describes
hybrid analog-digital implementation architectures and MIMO terminology
that one might encounter elsewhere. Chapter 8 covers the basics of direction-
of-arrival estimation, localization, and radar sensing using antenna arrays.
We explain how these array signal processing topics connect to the MIMO
communication theory from previous chapters. The book ends with Chapter
9, which covers reconfigurable surfaces consisting of multiple antenna-like
elements that can reflect signals in desirable ways to enhance communication
channels. The basic theory borrows much from that described in previous
chapters but comes with its characteristics and constraints.

We recommend solving exercises while reading the book. The answers are
available online, and a solution manual is provided to instructors who use the
book in their teaching—contact us to retrieve it.

This is an introductory book, so there are more advanced methodologies and
applications to learn. If you want to dig deeper into the topic, we recommend
the textbooks Massive MIMO Networks [1], Foundations of User-Centric
Cell-Free Massive MIMO [2], and Fundamentals of Massive MIMO [3].
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Chapter 1

Introduction and Motivation

The basic scenario in wireless communications is that of a transmit antenna
that radiates an electromagnetic waveform that spreads out and eventually is
measured by a receive antenna located at another geographical location. The
transmitted waveform is designed to carry information that can be extracted
by the receiver from its measured received signal. A combination of digital
modulation and channel coding is used to generate the waveform and encode
information into it, which is done in such a way that the receiver can extract
it even if the signal is attenuated and distorted.

There are many wireless technologies currently in use, such as the IEEE
802.11 technology family for WiFi, the IEEE 802.15.1 family for Bluetooth,
the 3GPP family with GSM/UMTS/LTE/NR for cellular (mobile) communi-
cations [4], [5], and the competing but somewhat outdated 3GPP2 family with
IS-95/CDMA2000/EV-DO. These technologies are based on open standards,
created in collaboration between companies that jointly decide on the basic
features but compete in building and selling commercial implementations.
Some standards are designed to replace previous standards, targeting the
same use cases. Other standards are optimized for different use cases—for
example, long-range versus short-range communications, high data rate versus
low power, or operation in licensed versus unlicensed frequency bands.

This chapter first introduces the fundamental concepts of signal power,
channel gain, and antenna directivity. Then the use of multiple antennas will
be motivated by outlining three main benefits this technology can provide.

1.1 Transmitted and Received Signal Power

In the technologies mentioned above, the transmit power P varies substantially
with the type of device, signal bandwidth, technology, and use case. The
cellular base stations deployed on rooftops and towers might transmit tens
of watts; for example, 40 W per 10 MHz of bandwidth is typical in 4G LTE
systems [6]. Base stations deployed closer to the potential users might only
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transmit a few hundred milliwatts; for example, 0.1 W is typical for WiFi
access points, and 0.4 W is a limit for local-area cellular base stations in 5G
NR [7]. A cell (mobile) phone typically radiates up to 0.1 W, and a short-range
Bluetooth transmitter might operate at only 1 mW = 0.001 W. The power
of a transmitter connected to an electrical grid is often limited by national
regulations, selected to enable coexistence between different wireless systems
and limit human exposure to strong electromagnetic fields. There are also
regulations on battery-powered user devices; however, the devices are also
subject to more practical limitations, such as keeping the power down to
alleviate the need for active cooling and make the battery last longer. While
the numbers mentioned above are the maximum power, battery-powered
devices can purposely reduce their power during transmission and turn the
transceivers on/off with time to save energy, especially when the data rate
the system supports is higher than the device requires for the moment.

Due to the large transmit power variations, a decibel scale is often used to
report the power numbers conveniently. In particular, the unit dBm is used
to report the ratio between the signal power and 1 mW in decibels (dB):

Signal
10logy, (W) dBm, (1.1)

where log((-) is the base-10 logarithm. This means that 1 mW is equal to
0dBm, 0.1 W is 20dBm, and 40 W is 46 dBm. We note that 10log,,(2) ~ 3,
10logy((4) =~ 6, and 10log;,(8) ~ 9. These approximations are often treated
as being exact in the communication literature. Hence, doubling the signal
power equals a 3dB increase.

Example 1.1. The decibel scale is generally used to measure the relative size
of two power values. Compare P, = 8 W and P, = 1 W using the dBm unit.

A direct computation based on (1.1) yields P; ~ 39 dBm and P, = 30dBm
because 101log;,(8/1073) ~ 39 and 10log;,(1/10~3) = 30. The ratio P, /P, is
equal to 8, which can be expressed in decibels as

P 8
10log,, (P;) = 10log,, (1) ~ 9dB. (1.2)

This ratio can also be computed as P; [dBm| — P; [dBm] ~ 39 — 30 = 9dB,
by first converting both numbers to dBm and then computing their difference.
Note that the difference between 39 dBm and 30dBm is expressed in dB,
although their individual units are dBm. While dBm measures an absolute
power value compared to 1 mW, dB is used to measure the relative ratio
between two specific power values. In this example, we can say that P is
9dB larger than Ps, or that P; is 8 times larger than Ps.

A transmit antenna radiates an electromagnetic signal waveform that
travels in all directions at the speed of light. The signal power is quickly
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Figure 1.1: An isotropic transmit antenna radiates a signal that spreads like an inflatable
sphere. At a propagation distance d in free space, the surface area of a sphere with radius d
is 4wd?. This area is typically huge compared to the area Ajso of an isotropic receive antenna;
thus, the receiver only captures a tiny fraction of the signal.

dispersed over the surrounding environment; thus, the power measured by a
receiving device is incredibly much smaller than the transmit power. One can
picture this as if the signal power exists on the surface of a balloon. As we
blow up the balloon, the radius of the balloon grows, and the surface area
becomes larger and larger, but the surface material also becomes thinner and
thinner. When the signal waveform has traveled a distance d in free space,
the signal power exists on a sphere with radius d, as illustrated in Figure 1.1.
The surface area is 47d?. If the power is equally distributed over the sphere’s
surface, the transmit antenna is said to be isotropic. This is also called a point
source. Isotropic antennas are impossible to build! but are used for theoretical
analysis and as a benchmark for other antennas by measuring how close to
isotropic a practical antenna is radiating its signals.

An elementary kind of signal waveform is the sinusoid illustrated in Fig-
ure 1.2. This is an oscillating periodic function of time with a frequency
denoted by f in this figure. The frequency represents the number of repeated
periods per second observed at a specific location and is measured in Hertz
(Hz). The period can be measured between two adjacent peaks observed in
time and is 1/f seconds. When a sinusoidal electromagnetic wave propagates
at the speed of light cm/s, at any given time instance, each period will cover
a spatial interval of length ¢/ f meters. This quantity is very important when

IThe radiated field from an antenna must satisfy the Helmholtz wave equation, which
originates from Maxwell’s equations. One can prove that an isotropic field does not do that.
Even if one could build an isotropic antenna, it is not practically useful since it must be connected
to transceiver hardware that generates wireless signals. This connection would block the wave
propagation in some directions.
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One period
P
Amplitude
T T T T
0 7 7 i 7 7 i Time [s]

Figure 1.2: A sinusoid is a signal waveform characterized by its amplitude and frequency f
[Hz]. The time period between two peaks is 1/f seconds.

analyzing how the wave interacts with objects in the surroundings, including
antennas. It is called the signal’s wavelength and will be denoted as A = ¢/ f.
The speed of light is 299 792458 m/s in free space (vacuum), but we will use
the close approximation ¢ = 3-108 m/s throughout this book to enable a simple
conversion between frequencies and wavelengths; for example, f = 3 GHz
gives A = 0.1 m.

The receive antenna converts the impinging electromagnetic waves into
an electric current and can thereby be used to collect signal power. The
power-capturing ability of an antenna is quantified by its effective area. It is
defined as the ratio of the power that the antenna can collect (in W) to the
power flur density of the incident wave (in W/m?) [8]. It can be proved that
a hypothetical lossless isotropic antenna must have the effective area

)\2
Ea
where X is the wavelength of the type of waveform the antenna was built for.
Since A = ¢/ f, the effective area in (1.3) can be equivalently expressed as

Ao = (1.3)

02

Aiso = T
47 f2

(1.4)
This means that the higher the signal’s frequency, the smaller the area of
the matching isotropic antenna. The word “effective” in the term “effective
area” refers to the following: Suppose a planar waveform travels in a given
direction, and you place a surface perpendicular to that direction to block a
part of the signal. The antenna captures power proportional to what would
pass through the surface if it has the specified effective area. This does not
mean a practical antenna must have that specific area, but it depends on the
hardware implementation and deployment.? For example, if the antenna is not

2The effective area of an aperture-type antenna is always less than or equal to its physical
area. The aperture efficiency, which is the ratio of the maximum effective area (over all directions)
to the physical area of an antenna, is an essential metric in antenna design [8].
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Receive antenna
with area A

SRR

Transmit Signal wave
antenna

Effective area A cos(p)

Figure 1.3: The effective area of a receive antenna is generally smaller than the antenna’s
physical area. The physical area is A in this figure. However, the effective area A cos(y) per-
pendicular to the direction that the signal propagates determines the received signal power.
Any non-isotropic antenna has a varying effective area for different angular directions ¢. The
maximum effective area among all rotations is used as the reference value when comparing
practical antennas of different kinds.

perpendicular to the direction in which the wave travels, the effective area is
smaller than the physical area of the antenna. This is illustrated in Figure 1.3,
where the receive antenna has the physical area A. Since the antenna is not
deployed perpendicularly to the direction that the signal is traveling, the
effective area is the projection of the physical antenna area in that direction.
In the figure, the antenna is rotated by an angle ¢ € [—7/2,7/2]; thus, the
effective area is A cos(y), which is smaller or equal to the physical area.

Example 1.2. Consider a lossless isotropic antenna designed for the wavelength
A=0.1m (f = 3GHz). What is the power captured by this antenna if the
power flux density of the incident electromagnetic wave is 50 uW /m??

The answer is the product of the effective area and the power flux density:

)\2
Ajgo - 50-107° = T 50 107%~3.98 1075 W. (1.5)
™

Suppose a so-called short dipole replaces the isotropic antenna. This
non-isotropic antenna captures different amounts of power depending on its
rotation with respect to the incident wave. The maximum effective area among
all rotations is used as the reference value when analyzing such an antenna.
If we measure the received power over different rotations and notice that
5.96 - 108 W is the maximum value, what is the maximum effective area?

The effective area Aqg is the ratio of the captured power to the power flux
density. In this case, it becomes

5.96 - 108
50 - 106

which is approximately 1.5 times larger than Ajg,.

Aeg = ~ 0.00119 m?, (1.6)

The black area in Figure 1.1 represents an isotropic receive antenna placed
on the surface area of the sphere; that is, perpendicular to the direction that
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the transmitted waveform is traveling outwards from the origin. If the receive
antenna is located at the distance d from the transmitter, its area Ajy, in
(1.3) should be compared with the total surface area Agppere(d) = 4md? of a
sphere with radius d. If Agphere(d) > Aiso, the fraction of the transmit power
that reaches the receive antenna is
Awo 2 X201 L
Agphere(d) — 4md2  (47)2 d2” (17)
The factor A?/(47)? is determined only by the wavelength, while the second
factor is inversely proportional to the square of the propagation distance. This
means that the signal power captured by the receive antenna decays rapidly
with the distance d. Note that this example assumes so-called free-space
propagation, which means there are no objects inside (or outside) the sphere
in Figure 1.1 that interact with the radiated waveform to increase or decrease
the received power. We will use this as the basic scenario in this book but
also cover some other scenarios. The expression in (1.7) is a special case of
the classical Friis’ transmission formula for free-space propagation [9], which
also applies to other types of antennas than isotropic.

The ratio in (1.7) is called the channel gain, while its inverse is called the
pathloss.® In this book, we often let the parameter 3 denote the channel gain.
This is a dimensionless parameter computed as the ratio between two areas.
To get a sense of the typical size of the channel gain, Figure 1.4 shows its
value as a function of the distance d for three different frequencies that are
relevant for wireless communications:

e f =1GHz with wavelength A = 0.3 m;
e f =3GHz with wavelength A = 0.1 m;
e [ =30GHz with wavelength A = 0.01 m.

Since the channel gains are generally tiny, they are presented in the decibel
scale in Figure 1.4; that is, the vertical axis presents

A2 A2
10 loglo Wﬁ =10 loglo (472 —20 ]‘Oglo(d) dB. (18)

m

)

The curves start at a 1 m distance, where the channel gain is —42dB at the
3 GHz frequency. When increasing the distance by a factor of 10, from 1m to
10 m, the channel gain reduces by 20dB to —62dB. Hence, if we divide the
transmit power into (roughly) one million parts, only one reaches the receive
antenna. As seen from the last term in (1.8), the channel gain reduces by
20 dB every time the distance increases by 10 times. Hence, another 20dB is
lost when the distance increases from 10 m to 100 m.

3Tt also happens that (1.7) is called the pathloss in the communication literature, so it is
vital to know the dimensionality of this type of term to understand which definition is used in a
particular text. Importantly, a wireless channel can only attenuate signals, so the channel gain
must be smaller than or equal to 1, while its inverse must be greater than or equal to 1.



1.1. Transmitted and Received Signal Power 7

-30 ‘

-40

1
(@18
o

|
D
o

Channel gain [dB]
%
o o

|
Ne)
o

-100

_110 I I I I
Distance [m]

Figure 1.4: The channel gain in (1.7) depends on the propagation distance d and the frequency
f of the waveform, assuming that different matching isotropic antennas are used when commu-
nicating at each of the considered frequencies. The channel gain is reported using the decibel
scale since the variations are huge.

Compared to communications at the 3 GHz frequency, the channel gain in
Figure 1.4 is larger when using the lower frequency 1 GHz and smaller when
using the higher frequency 30 GHz. This is purely due to the differences in
the effective area in (1.3) for the corresponding isotropic receive antennas,
which is proportional to A2. The waveforms are attenuated identically when
propagating in free space irrespective of the frequency; that is, the power
flux density is constant at the receiver location but is multiplied by different
effective areas depending on the frequency band. In particular, it is only
the first term in (1.8) that depends on the wavelength, while the distance-
dependent second term is the same for any wavelength.

Example 1.3. The channel gain with an isotropic receive antenna at f = 3 GHz
and the distance d = 10m is —62dB, as shown in Figure 1.4. What is the
corresponding channel gain if we replace the isotropic receive antenna with
another antenna whose effective area is twice as large? What is the channel
gain with this new antenna at a 100 m distance?

The channel gain is proportional to the effective area, as can be seen from
(1.7) where the effective area of an isotropic antenna is divided by the area of
a sphere. If we double the effective area, the channel gain is doubled, and in
the decibel scale, it becomes —62 + 3 = —59dB at the 10 m distance.

For the considered channel gain model in (1.8), there is a 20dB gain
reduction each time the distance increases by 10 times. Hence, the channel
gain with the new antenna at a 100 m distance is —59 — 20 = —79dB.
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- ¢ - ¢
Low-band Mid-band High-band
below 1 GHz 1-7GHz above 7 GHz

Figure 1.5: The radio frequency spectrum ranges from 3 kHz to 3000 GHz (i.e., 3 THz) and is
used for many different services. The spectrum used for wireless communications is commonly
divided into the low-band, mid-band, and high-band, as indicated in this figure. The high-band
range 24-300 GHz is referred to as the mmWave band since the wavelength ranges from 12 to
1mm. The range 300-3000 GHz is called the THz band.

The three exemplified frequencies were selected to represent the three
specific bands considered in 5G NR [10]. Most wireless communication systems
operate in the part of the electromagnetic frequency spectrum called the radio
spectrum, even if there are exceptions.* The radio spectrum ranges have
changed with time as the applications and hardware have evolved. According
to the 2020 regulations from the International Telecommunication Union (ITU)
[11], the radio spectrum consists of all frequencies from 3 kHz to 3000 GHz.
In the context of 5G NR, the spectrum is further divided into the low-band
containing carrier frequencies up to 1 GHz, the mid-band in the range 1-7 GHz,
and the high-band with frequencies above 7 GHz, as illustrated in Figure 1.5.°
The millimeter-wave (mmWave) band is a particularly prominent part of
the high-band spectrum and, strictly speaking, covers 30-300 GHz, where
the wavelength is between 10 and 1 mm. For practical reasons, the mmWave
band is typically said to start at 24 GHz since spectrum is available from that
frequency in some countries. Moreover, only mmWave bands below 100 GHz
are considered in 5G NR; thus, the range 100-300 GHz is often called the
sub-THz band by researchers who want to differentiate future technologies
from existing 5G solutions [13]. Finally, the range 300-3000 GHz is called the
THz band since this range can also be expressed as 0.3—3 THz.

It is commonly stated that the maximum coverage range of a wireless
communication system is longer in the low-band than in the high-band. This
statement is often correct, but it is not caused by the phenomenon illustrated in
Figure 1.4. Recall that we considered a free-space propagation model without
objects between the transmitter and receiver, where the power flux density is
independent of frequency. The differences in the free-space channel gains in
Figure 1.4 can be fully compensated for by increasing the effective area of the

4Two notable exceptions are free-space optical communication that uses visible or near-visible
light and sonic communication that uses audio waves.

5The convention of whether a frequency band is considered low or high shifts with time and
application; in particular, the low-band for cellular communications is known as the ultra-high
frequency band for radar, and some other radio applications [12].
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receive antenna; thus, it is the same irrespective of the signal’s frequency. In
particular, the channel gain definition in (1.7) becomes frequency-independent
if the area in the numerator is constant instead of proportional to A2. Since the
effective area of a single receive antenna reduces with increasing frequency, a
fair comparison between two frequency bands requires antenna configurations
with the same effective area in both bands. One way to achieve this in practice
is by using multiple receive antennas in the higher band so that their collective
effective area sums up to the same value as in the lower band. We will consider
this in detail later in this book.

The main reason low-band frequencies generally have a longer coverage
range is the signal behaviors in scenarios other than free-space propagation. In
terrestrial communications, there are many objects in the environment around
and between the transmitter and receiver. Signals with a lower frequency
range propagate better through and around such objects and are reflected off
walls more favorably. The signal absorption by atmospheric gases in the air
also increases with the frequency. For these reasons, base stations for wide-
area coverage typically use the low-band, while medium-range and local-area
networks use the mid-band. Short-range networks might use the mmWave
spectrum (or even the THz spectrum) in the high-band. Nevertheless, satellites
commonly use the high-band spectrum to communicate with the ground over
incredibly long distances. This works well if no blocking objects exist and the
antennas have large effective areas.

Despite the reduced range, there are two good reasons why new wireless
communication systems are gradually supporting higher frequency bands.
Firstly, large parts of the low-band and mid-band are already occupied by
existing wireless services, making it hard to launch new services there. Secondly,
there is generally more bandwidth available at higher carrier frequencies, and
we will see later that the data rates increase with the bandwidth. To give
some indicative numbers, a network operator might have licenses for 20 MHz
in the low-band, 100 MHz in the mid-band, and 1 GHz in the high-band.

The channel gain depends on the propagation distance d in typical terres-
trial communication scenarios, where the transmitting base station might be
deployed on a rooftop and the receiving user device is located in an urban city.
In that case, there is no unequivocal channel gain model because the wave
propagation depends on the exact geographical locations of buildings and
other large-scale objects. However, we can describe the average propagation
conditions by fitting a parametric channel gain model of the kind

B=1 (1;“)& (1.9)

to real-world channel measurements. The parameter « is called the pathloss
exponent while T is the channel gain at a 1 m reference distance. This para-
metric model is inspired by the free-space model in (1.7), which is obtained

by a =2and T = (Wﬁ = (%Gsz)Q because ¢/(1m) = 0.3 GHz.
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Example 1.4. The 3GPP technical report [6] presents channel gain models for
several propagation scenarios typical in cellular communications. For example,
in the non-line-of-sight urban microcell (UMi) scenario [6, Table B.1.2.1-1],
the channel gain is modeled (in decibel) as

d f
Bumi = —36.71ogy, (1m> —22.7 — 26log;, <1GHZ) dB. (1.10)

This model can be used for distances d in the range 10-2000 m and frequencies
f in the range 2-6 GHz. What are the values of @ and Y in this case, and
how does it differ from the free-space propagation case?

The distance-dependent term in (1.10) is —36.71log;o(d) = —101og;(d>:57);
thus, the pathloss exponent for this UMi channel is a = 3.67. Since the
exponent is larger than in free-space propagation (o = 2), the channel gain
decays more rapidly with the distance. This represents the fact that the
wireless signals must interact with objects in the environment to reach the
receiver.

The channel gain T at the reference distance of 1 m is given by the last
two terms in (1.10) and becomes T = 10_2'27(@)2'6. This parameter is
valid for specifying the pathloss model even if the UMi model should only be
used for d > 10 m. We notice that T decays with the frequency as f~2-¢. This
is faster than the f~2 behavior in free-space propagation, which is caused by
the isotropic receive antenna assumption. The extra decay describes how the
wireless signals interact less favorably with objects as the frequency increases.

Apart from the scaling behaviors, we can compare the channel gains
obtained at the minimum values d = 10 m and f = 2 GHz. The channel gain is
—67.2dB with the UMi model and —58.5 dB in free-space propagation; thus,
the UMi model consistently gives lower gains at all distances and frequencies.

1.1.1 Signal-to-Noise Ratio

Although the channel gains are typically tiny in wireless communications, many
existing systems operate efficiently. This is possible because what matters
is not the absolute amount of signal power received but its relative size
compared to the noise power in the receiver hardware (and the interference
power received from other concurrent transmissions).

We let 02 denote the noise power. It is computed as the product 02 = Ny B
of the noise power spectral density No W/Hz and the signal bandwidth B Hz.
The intuition behind this model is that the thermal noise in the receiver is a
white random process with the constant power spectral density Ny over all
frequencies, but the receiver hardware filters out the noise that lies outside
the signal band, thereby making the total noise power equal to Ny times
the signal bandwidth B. We will return to these modeling assumptions in
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(b) The SNR when using the UMi channel gain model in (1.10).

Figure 1.6: The SNR in (1.13) as a function of the propagation distance d for two different
channel gain models: free-space propagation and the non-line-of-sight UMi model. The setup is
defined by f = 3GHz, B = 10 MHz, and either P =10W, P=1W, or P =0.1W.

Section 2.3.2. The noise power spectral density depends on the temperature,
but the variations are small in most use cases. Therefore it is common to take
the number at room temperature (i.e., 20°C) and treat it as a constant:®

No = 10724 W/Hz. (1.11)

SThe actual noise power spectral density in wireless receivers is normally larger than the
number in (1.11) since the receiver hardware is amplifying the thermal noise. For example, the
practical noise power might be 4-8 dB higher than the theoretical lower limit in (1.11).
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When reporting noise powers in the decibel scale, using dBm, the formula is

NyB
o? = 10log,, <1mVV> — —174 + 10log,(B) dBm. (1.12)

The signal-to-noise ratio (SNR) is defined as

pPg _ Pp

SNR = o2 = NoB’ (1.13)
where we recall that P is the transmit power, § is the channel gain, and
02 = NyB is the noise power. The SNR is a dimensionless variable since it
is computed as the ratio of two powers. To get a sense of what the practical
range of SNR values is, Figure 1.6 shows the SNR in (1.13) in the decibel
scale as a function of the propagation distance. We consider a bandwidth of
B = 10MHz around the frequency f = 3 GHz and use either the free-space
channel gain model in (1.7) or the UMi channel gain model in (1.10). The
SNR can be many tens of decibels for very short distances (e.g., inside a
room). For practical distances in outdoor scenarios, we can expect an SNR
below 40 dB, particularly when using the non-line-of-sight UMi model, where
the channel gain decays more rapidly with the distance. If we reduce the
transmit power, the SNR curve is shifted downwards accordingly. Many other
phenomena affect the SNR, but as a rule-of-thumb, the SNR in a wireless
communication system is between —10dB and +40dB.

Example 1.5. Consider a communication setup where the SNR. is 30dB at a
400 m distance from the transmitter when using the free-space channel gain
in (1.7) with f = 3GHz (i.e., A = 0.1 m). What will be the new SNR at that
distance if we switch to using the UMi channel gain model in (1.10)?

Due to the linear relation between SNR and the channel gain in (1.13),
the SNR in the modified UMi setup is

PBuwmi _ PB Buwmi
NoB _ N.B B

SNRuymi = = 30 + 101log, (ﬁUﬁM) dB,  (1.14)

where 3 is the free-space channel gain from (1.7) and Sum; was defined in
(1.10). By inserting numbers into this expression, we obtain

0.1
SNRun = 30 — 36.7 log;(400) — 22.7 — 26 log;4(3) — 201og;, (4400)
’n’ .

~ —6.58 dB. (1.15)

This new SNR is 36.58 dB smaller (i.e., 4550 times smaller), which shows
that the SNR can vary greatly with the propagation conditions. Such large
variations can hardly be compensated for by increasing the transmit power.
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Figure 1.7: Since the base station (to the left) and the phone (to the right) have different
transmit powers, the areas where the SNR is above the minimum threshold that enables successful
communications will be different in the downlink and uplink. One way to deal with this problem
is to reduce the bandwidth in the uplink so that the SNR becomes the same as in the downlink.

As mentioned earlier in this chapter, the transmit power can vary signifi-
cantly between different devices, including those communicating with each
other using the same communication standard. In a cellular network, the base
station might transmit with 40 W, while the cell phone uses 0.1 W. This is a
difference of 40/0.1 = 400 ~ 26 dB, which implies that the SNR is 26 dB better
when transmitting in the downlink (from the base station to the phone) than
when transmitting in the uplink (from the phone to the base station) over the
same frequency band. It is necessary to communicate in both directions to
keep a cellular network operational, which makes the uplink transmission the
weakest link. A practical solution to this problem is to utilize only a fraction
of the bandwidth when the user transmits, which increases the SNR since the
noise power reduces. In other words, we put all the signal power into a narrower
range of frequencies. This principle is illustrated in Figure 1.7 by showing
the geographical area where a receiver would get an SNR above a certain
threshold required for successful communication (e.g., —10dB). The yellow
area for the downlink transmission with B = 10 MHz contains the phone;
thus, the downlink transmission will be successful. However, the red area for
the uplink transmission is substantially smaller and does not contain the base
station. The yellow and red areas use the same bandwidth of 10 MHz in the
uplink and downlink. However, if the phone only uses 10 MHz/400 = 25 kHz
of bandwidth, the blue uplink area is obtained, and it is as large as the yellow
downlink area. In practice, the bandwidth that is used by the phone can be
varied dynamically depending on how far from the base station the user is.

Another solution is to use different frequency bands in the uplink and
downlink. Suppose the base station and phone can use both the low-band and
the mid-band. It is then possible to let the phone transmit its signals in the
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low-band where the range is longer and there is less bandwidth, while the
base station transmits in the mid-band where the higher power compensates
for a shorter range and broader bandwidth. The 5G NR standard supports
this solution to enhance the coverage range of base stations. When wider
bandwidths in the mid-band (or high-band) are utilized only for downlink
transmission, the downlink data rates will be substantially higher than the
uplink data rates.

Example 1.6. Consider a phone that transmits 200 mW and that is connected
to a communication system with a bandwidth of B = 20 MHz. When using the
entire bandwidth, the uplink SNR is —30 dB. Suppose the uplink SNR must
be at least —10dB for the system to be operational. How much bandwidth
can the phone use?

The phone must reduce the uplink bandwidth so that the SNR increases
by —10 — (—30) = 20dB, which is 100 times more. Hence, at most, it can use
an uplink bandwidth of 20 MHz/100 = 200 kHz.

1.1.2 Fraunhofer Distance

The analysis has thus far been based on isotropic antennas, which is a hy-
pothetical concept, as noted earlier. This book is not focused on antenna
design or detailed modeling of individual antennas but on the phenomena,
benefits, and challenges that occur when having multiple antennas. However,
we will briefly describe a few fundamental antenna properties essential to un-
derstanding the connection between fixed directive antennas and the adaptive
directivity obtained using multiple antennas.

When we derived the channel gain equation for free-space propagation,
we used Figure 1.1, where the receive antenna is located on the surface of
a sphere because the transmitted signal spreads out as a sphere with an
increasing radius. This implies that the receive antenna must be curved to
fit on the surface area; otherwise, the transmitted signal will reach different
parts of the antenna at different times. Practical antennas are generally flat,
creating a mismatch that we will now analyze in detail. Figure 1.8 shows a flat
receive antenna perpendicular to the direction of the propagating wave. When
the spherical wavefront of the transmitted signal reaches the center of the
receive antenna, it has not yet reached its edges. As a result, the impinging
electric field will vary in phase and amplitude over the antenna surface. This
has consequences for the intercepted signal power, which can typically be
computed by integrating the power flux density of the impinging electric field
over the receive antenna’s surface. The maximum power is intercepted when
the impinging electric field is constant over the antenna, which happens in
the ideal case when the wavefront is planar and impinges perpendicularly.

When the propagation distance is sufficiently large compared to the antenna
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Figure 1.8: When a spherical wavefront approaches a flat receive antenna, there will be a
delay between when the wave reaches the antenna’s center and edge. This delay (or difference
in propagation distance) turns into a phase-shift. The phase-shift is small or large depending on
the relation between the distance d, the width a of the receive antenna, and the wavelength .

size, the spherical wavefront can be locally approximated as planar when
considering the power the antenna intercepts. If the distance is d from the
transmitter to the antenna’s center and the antenna’s width is a, then we can
compute the distance d’ from the transmitter to the antenna’s edges using
the Pythagorean theorem as

d = \/d2 + (g)Q - d\/l + (%)2. (1.16)

When a sinusoidal signal with the wavelength A needs to travel an extra
distance d’ — d to reach the edge, then there will be a phase difference of”

21 27 a2 L 2m a? _ ma?
- = (d,/u (ﬁ) —d) ~ (d+8d—d> = 1 [rad
(1.17)

between the signal received at the edge and the center. The simplified expres-
sion in (1.17) is obtained by using the Taylor approximation v1 + z2 ~ 1+ %
which is tight (the error is less than 0.05%) for 0 < z < 0.25. Since = a/(2d)
in this case, x < 0.25 implies we need to consider distances d > 2a. The phase
difference in (1.17) will never be zero, but it will be close to zero when the
propagation distance d is much larger than the width a of the antenna. It
is common to assume (somewhat arbitrarily) that the phase variations over
the antenna can be neglected if the maximum difference in (1.17) is no larger
than 7/8 radians (22.5 degrees) [14]. By following this convention, we get the
relation

T a2 2a2
- > > — .
32 1 = d> \ (1.18)

The impinging wavefront also varies in amplitude between the center and
the edge since the received signal amplitude is inversely proportional to the

"Suppose the signal sin(27 ft) is transmitted in Figure 1.8. The signal reaching the center
of the antenna is sin(2xwf(¢t — d/c)), while the signal reaching the edge of the antenna is
sin(27 f(t — d’/c)). The phase difference between these signals is 2n f(d’ — d)/c = 2w (d’ — d)/ .



16 Introduction and Motivation

distance. The relative difference is d’/d and this ratio is between 0.97 and 1
for distances d > 2a, because d = 2a gives

d d

1
_ /2 <o (1.19)

2a
2
Toyer)” Ve Y

Hence, if the distance between the transmitter and receiver is simultaneously
greater than 2a?/\ and 2a, we can neglect the spherical shape of the waveform
(when considering both the phase and amplitude) and compute channel gains
in the way previously described. In other words, we can treat the impinging
wave as a plane wave traveling in one angular direction and only depends on
time and the location along that direction; at any time instance, the wave
is constant within any given plane perpendicular to the direction of travel.®
The impinging wave is only approximately plane at the local level, observable
at the receiver, but remains spherical at the global level. This is similar to
how Earth appears flat to an observer on the ground, although it is curved.

The minimum distance in (1.18) is called the Fraunhofer distance and
is named after Joseph von Fraunhofer, who studied many electromagnetic
phenomena. It is occasionally also called the Rayleigh distance. The region
that lies beyond the Fraunhofer distance is known as the far-field of the
antenna. The Fraunhofer distance was derived based on two approximations
but is known to be a good rule-of-thumb. When the propagation distance d
is either smaller than 2a?/\ or 2a, we are in the near-field of the antenna.
The near-field can be divided into two parts. The radiative near-field is an
intermediate region where the propagation distance to the receiver is too short
to neglect the phase and/or amplitude variations over the receive antenna but
large enough to avoid direct hardware interaction between the transmitter
and receiver. The reactive near-field is closest to the transmitter and includes
additional electromagnetic effects such as evanescent waves and magnetic
induction. These are examples of electric and magnetic field components that
can only be observed near the transmitter, typically up to a maximum distance
of A/(2). Specific standards exist for near-field communication (NFC) that
are commonly used by smartphones and cards to enable short-range payments
and identification. This book, which focuses on radiated electromagnetic waves,
will not cover these technologies.

To shed light on how far away the far-field is, suppose the receive antenna
in Figure 1.8 has the length a = A for which 2a?/) and 2a are both equal to
2. Hence, if the receive antenna is at least 1 m from the isotropic transmit
antenna, we are guaranteed to be in the far-field for any frequency band
of interest in wireless communications (because the wavelength is typically
shorter than 0.5m). This condition is almost always satisfied.

8An ideal plane wave fills the infinitely large three-dimensional world (i.e., R?) and, thus,
cannot exist in practice. However, the impinging wave observed over an antenna of finite width
a will be perceived as being a finite-sized portion of a plane wave when d > 2a2/\.
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The Fraunhofer distance in (1.18) is truly wavelength-dependent, in con-
trast to the free-space channel gain in (1.7) whose wavelength-dependence
was caused by the assumption of having an isotropic receive antenna. The
distances d and d’ in Figure 1.8 are computed based on geometrical arguments
that do not involve the wavelength A. However, when the wave travels the
extra distance d’ — d to reach the edge, the wavelength determines how large
the resulting phase-shift is. For a fixed-sized antenna, the Fraunhofer distance
in (1.18) is inversely proportional to A, making it larger in the high-band than
in the low-band. However, suppose the antenna size is proportional to the
wavelength. In that case, we get the opposite behavior, as shown by the fact
that a = A gives the Fraunhofer distance 2\ proportional to A.

Example 1.7. What is the Fraunhofer distance when considering a rectangular
receive antenna with width a and height b7

Suppose d is the distance from the transmitter to the center of the antenna.
Following the same steps as before, we can compute the distance d’ to the
antenna’s corners as

d’:\/d2+(;)2+(2>2:d 1+(£l)2 (1.20)

where we have defined D = v/a? + b2 as the length of the diagonal of the
rectangular antenna. The difference d’ — d leads to the phase difference

o o D\? 2m D? D2
T —dy="aJ1+(2) —d|l =L (a+= —q) = d
N@=d = +(2d) ) ( "3 ) g 2

(1.21)
between the signals captured at the center and the corners, using the same
Taylor approximation as in (1.17). We recall that the Fraunhofer distance
is obtained when the phase difference is 7/8. Solving ZTD; = g for d yields
2D? /). The only difference from (1.18) is that D has replaced a. Generally
speaking, for any antenna shape, the Fraunhofer distance is 2D?/\ by letting
D be the largest distance between any two points on the antenna.

1.1.3 Antenna Directivity Gains

We will now move beyond isotropic antennas and provide the basic charac-
terization of antenna directivity. Practical transmit antennas radiate a larger
fraction of their power in some angular directions than others. The transmitted
signal will still propagate as a sphere with an expanding radius, as illustrated
in Figure 1.1, but the signal power is unequally distributed over the surface
area. We need a spherical coordinate system to specify the power distribution
over the sphere. There are different ways to define spherical coordinates. We
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use the definition in Figure 1.9 where a point at a distance d from the origin
is characterized by the azimuth angle ¢ € [—7,7) in the zy-plane and the
elevation angle 6§ € [—7/2,7/2]. Any point in the three-dimensional world can
be uniquely described using either conventional Cartesian coordinates (z,y, 2)
or the spherical coordinates (d, ¢, 8). The one-to-one mapping between these
coordinate systems can be defined as

x cos(¢) cos(6)
y| =d |sin(g) cos(0) | . (1.22)
z sin(6)

This relation makes it easy to compute the Cartesian coordinates (x,y, z) of
a point that is specified in spherical coordinates. The opposite transforma-
tion involves inverse trigonometric functions, and we must be careful when
computing the azimuth angle so it is not shifted incorrectly by +m.

Example 1.8. How can the point with the Cartesian coordinates (x,y, z) =
(3,4,5) be expressed using the spherical coordinates (d, ¢, 0)?
Using the relations in (1.22), we first obtain that

4y’ 4+ 22 =d° ( cos?(¢) cos?(8) + sin?(ip) cos®() + sin2(9)) =d? (1.23)

cos?(0)

Hence, we have d = /22 + y2 + 22 = /32 + 42 + 52 = 51/2. By using (1.22),
we can further notice that

y  dsin(p)cos(0)

E=—tt—"-=4 . 1.24

x  dcos(p)cos(d) an(p) (1:24)
We know that ¢ € [—7/2,7/2] since z is positive; thus, we obtain ¢ =
arctan(4/3) radians when solving for ¢. Lastly, we note that

z dsin(0)

— = tan(), (1.25)
Va2 +y? d\/cos2(go) cos2(6) + sin?(ip) cos?()

where we have utilized that cos(§) > 0 for § € [—7/2, 7 /2]. By solving for 6, we
obtain # = arctan(5/5) = arctan(1) = /4 radians. In summary, the spherical
coordinates of the given point are (d, o, #) = (5v/2, arctan(4/3), 7/4).

When transmitting with power P, the signal intensity at the point (d, ¢, 6)
is determined by the general power flux density function U(P,d, p, ) mea-
sured in W/m?. We will only consider the far-field (i.e., d larger than the
Fraunhofer distance) because then the angular distribution over the sphere
is approximately constant when we change the radius. This is not the case
in the near-field for various electromagnetic reasons. In the far-field, we can
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Figure 1.9: The directivity gain of an antenna is described using spherical coordinates. A
location on the surface area is determined by the distance d, the azimuth angle ¢ € [—7, 7),
and the elevation angle 6 € [—7/2, 7/2].

decompose the power flux density function as

P
—— ~——

Average power density Antenna gain

where the first term is the average power flux density at the given distance d in
W/m? (i.e., the transmit power divided by the surface area) and G(y, ) is the
antenna gain function. The antenna gain function describes how the radiated
power is distributed over azimuth angles ¢ € [—7,7) and elevation angles
0 € [-7/2,m/2]. A lossless isotropic antenna is represented by G(p,0) =1 for
all angles, often reported using the decibel scale as 0 dBi, where dBi stands
for decibels-isotropic (i.e., the gain relative to an isotropic antenna).

Any practical antenna has a varying antenna gain function larger than
0dBi for some angles and smaller for others. However, the average antenna
gain is identical to an isotropic antenna. This implies that all antenna gain
functions for lossless antennas must satisfy the condition®

T w/2
i/ / G(p,0)cos(0)000p =1, (1.27)
dr ) _» —7/2

where 47 is the surface area of the unit sphere and cos(0)900¢p is the area of
a surface element in the direction (¢, ) that appears when integrating over a
sphere using spherical coordinates. The cosine-term represents the fact that
there is less area near the north/south poles than along the equator.

9Power losses appear in practical antennas, in which case the left-hand side of (1.27) becomes
smaller than one.
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Example 1.9. To examine how the formula (1.27) is derived, we consider an
isotropic lossless antenna in the origin that transmits with power P. What is
the total power reaching the surface of a sphere with radius d?

The power flux density function is U(P,d, p,0) = ﬁ with an isotropic
lossless transmit antenna. By integrating over the surface area of a sphere
with radius d, we obtain the total power as

P
Pt (d) = . 1.2
() ///1 [P ryrtar=d 4T (2% + y? + 22) S (1:28)

It is convenient first to transform the Cartesian coordinates into spherical
coordinates to evaluate the integral. The integral in (1.28) then becomes

" 1dt)
Pios(d 4 12527 900y (1.29)
T J—mJ—7/2

where there is no integral with respect to the distance since all points on the
sphere have the same distance d. The Jacobian determinant J(d, ¢, ) appears
due to the change of variables and is computed based on (1.22) as

[0d cos(p) cos(9)  ddcos(p)cos()  ddcos(p) cos()

d si o4 0 dd si & 0 dd si 0
J(d 0, 9) — det sm(gc)lcos( ) sm(ép) cos(6) sm(gg cos(0)

©
ddsin(6) 9ddsin(6) ddsin(6)
od Op 00

:cos(ap)cos(G) —dsin(y) cos(0) —dcos(cp)sin(&)])

= det | [sin(p)cos(f) dcos(p)cos(f) —dsin(p)sin(f)
sin(6) 0 d cos(0)

=d? ( cos?(ip) cos®(6) + sin?(ip) cos®(0)

cos3(0)

+ sin?(¢) cos(#) sin?(#) 4 cos?(¢) cos(8) sin’(6) )
cos(0) sin2(0)
= d? cos(6). (1.30)

After inserting J(d, ¢, 0) into the integral in (1.29), we obtain

P T /2
Pa(d) = - [ [ con(0)00dp = P (1.31)

This is equivalent to (1.27) for G(p,6) = 1, which is the gain of a lossless
isotropic antenna. If we consider an arbitrary lossless antenna, its gain function
G(p,0) also appears inside the integral, and we thereby obtain the general
condition in (1.27) for preserving the total transmit power.
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The antenna gain function G(y, 8) provides a complete description of the
angular variations in antenna gain. However, if the antenna is rotated perfectly
towards the receiver, it is sufficient to know the maximum gain

Gmax = max G(,0). (1.32)

®,
This value is typically used when categorizing and comparing practical an-
tennas. It is particularly common to represent the maximum gain in decibel

scale as

101log1 (Gmax) = max 10log,o (G(p,0)) [dBi]. (1.33)
®,

A simple example of a non-isotropic antenna gain function is

4dcos(p)cos(l), if p € [-m/2,7/2],0 € [-7/2,7/2],

(1.34)
0, elsewhere.

G(@7 9) = {
This antenna concentrates the radiated power in the direction ¢ = 6 = 0
where the maximum antenna gain is Gu.x = 4, which is usually reported
as 10log;(4) ~ 6 dBi. When varying the azimuth angle, the gain reduces as
cos(p) and reaches zero at ¢ = /2. The gain value is zero for ¢ € [—m, —7/2]
and ¢ € [r/2,7], which effectively means that the antenna only radiates
into one half-space. The gain variations are similar in the elevation domain.
In practice, this behavior can be achieved by a microstrip patch antenna,
consisting of a metal patch printed on a substrate that acts as a reflecting
ground plane. The maximum gain is then obtained perpendicularly to the
patch while there is (ideally) no signal radiated at the backside. Patch antennas
are extensively used in both mobile phones and base stations, thanks to their
compact size and weight. Exact antenna gain models can be found in textbooks
on antenna theory [8, Ch. 14], but (1.34) serves as a basic abstraction that
we call the cosine antenna.

Example 1.10. Verify that the cosine antenna satisfies the lossless antenna
condition in (1.27).
Direct computation based on the antenna gain expression in (1.34) yields

/ / G(¢,0) cos(0)000¢p = / 4 cos(¢p) cos?(0)000p
47T —nJ—m/ 4 —w/2J—m/2

1 /2 /2
= 7/ cos(np)&p/ cos?(0)00 = 1. (1.35)

™ J—7/2 —m/2

=2 =r/2

The antenna gain function of the cosine antenna is illustrated in Fig-
ure 1.10, where its values are plotted over the surface of a unit sphere. The
pattern illustrates how the radiated power is distributed over different angular
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Figure 1.10: The antenna gain of the cosine antenna in (1.34) is plotted over the unit sphere.
The pattern shows how the radiated power is distributed unequally over the angular directions,
with the maximum appearing at (z,y, z) = (1,0,0). The color shows the antenna gain in the
decibel scale compared to an isotropic antenna.

directions. The power is concentrated over half of the sphere and maximized
at its center. The maximum value is 6 dBi, while the average value is 0 dBi,
as is the case for all lossless antennas.

Figure 1.11 compares the antenna gain functions of a cosine antenna and
an isotropic antenna for § = 0 and different values of the azimuth angle .
The isotropic antenna has a constant gain value of 0 dBi, while the gain of the
cosine antenna ranges from 6 dBi to zero (—oo dBi). The total transmit power
is the same for both types of antennas, but the cosine antenna concentrates
the radiated power in specific directions. This means that a receiver located
in that direction will receive a stronger signal than when using an isotropic
antenna. Receivers in other directions will receive less power, and those at the
backside of the antenna receive nothing. Hence, depending on the receiver’s
location, the antenna gain variations can be either a benefit or a drawback.
Receivers located in directions where the curved solid curve in Figure 1.11
is above the dashed line will experience signal amplification compared to an
isotropic transmit antenna.

Antennas are reciprocal by nature, which means that the same antenna
gain is achieved when transmitting to a receiver in the direction (¢, #) and
when receiving a signal from that direction. Recall that the antenna gain
describes how much stronger/weaker the signal power is compared to the
reference case with an isotropic antenna. We stated in (1.3) that the effective
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Figure 1.11: The antenna gains observed in different azimuth angles ¢ € [—m,7) for the
elevation angle § = 0, when using the cosine antenna from (1.34) or an isotropic antenna.

area of a receiving isotropic antenna is A\?/(4r). Hence, if the antenna gain
function is G(¢p, 8) for another type of antenna, its effective area will be

)\2
Alp.0) = -G(v,0) (1.36)

when receiving a signal from direction (¢, 0).

To emphasize the relation between the antenna gain and effective area, we
return to Figure 1.3, which considered a receive antenna with the physical area
A that receives a signal from the azimuth angle . We previously concluded
that its effective area is Acos(p) for ¢ € [—n/2,7/2], but we implicitly
assumed the elevation angle was zero. When considering both angles, the
effective area becomes A(y, ) = Acos(p) cos(f) by the same arguments. If
we further assume (for the sake of argument) that the physical antenna area
is A=4A;, = ’\?2, then the relation in (1.36) between the effective area and
antenna gain becomes

A2 A2

— cos(ip) cos(f) = EG(%H) =  G(p,0) =4cos(p)cos(h) (1.37)
for ¢ € [-7/2,7/2] and 0 € [—m /2, 7/2]. This result coincides with the cosine
antenna in (1.34). Hence, we have found a way to tie the concepts together:
A patch antenna with a physical area that is 4 times larger than Ajs, has a 4
times higher maximum gain. The gain function varies according to a cosine
pattern since the patch looks smaller from non-perpendicular viewing angles.
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Example 1.11. There are many other cosine-type radiation patterns in the
field of antenna design than the one defined in (1.34). As an example, consider
the gain function

ccos(3yp) cos(8), if p € [-m/6,7/6],0 € [—7/2,7/2],

(1.38)
0, elsewhere.

G((pv 0) = {

If this antenna is known to be lossless, what should be the value of the scalar
¢ > 0?7 What is the maximum antenna gain?
The left-hand side of the lossless antenna condition in (1.27) becomes

/6
/ / G(p, ) cos(8)000p = —/ / cos(3¢p) cos?(0)000
-7 J—m/2 /6 J—m/2

/2
= /w/ﬁ cos(3<p)6cp/ﬂ/2 cos?(0)00 = ﬁ (1.39)

=2/3 =r/2

We notice that this value only becomes 1 if ¢ = 12. The maximum antenna
gain is achieved in the direction ¢ = 6 = 0 and is Giax = ¢ = 12.

1.1.4 Reuvisiting the Signal-to-Noise Ratio

We will now revisit the SNR calculation and Consider arbitrary antenna gains.

The SNR was defined in (1.13) as SNR = 1% and depends on the channel

gain 3. The channel gain in free-space propagatlon with isotropic transmit

and receive antennas was computed in (1.7) as ﬁ, where d is the distance.

We can generalize this expression for arbitrary antennas as [9]
)\2

b= (47d)?

Gt((pmat)Gr(@ragr% (140)
where Gy(p, 0) is the antenna gain function of the transmitter and G, (p, 6)
is the antenna gain function of the receiver. These functions are defined for
an arbitrary azimuth angle ¢ and elevation angle 6, but the functions are
evaluated in (1.40) for the angles (¢4, ;) at the transmitter that lead to the
receiver and the angles (¢, 6,) at the receiver that lead to the transmitter.
Figure 1.12 illustrates this setup and, particularly, makes the point that the
transmitter and receiver measure the angles based on their local coordinate
systems. The antenna gain functions can then have their peak values at
p = 0 = 0, irrespective of how the transmitter and receiver are rotated with
respect to each other.

It might seem strange to call (1.40) the channel gain when it also contains
the antenna gains at the transmitter and receiver. However, this is unavoidable
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Figure 1.12: The transmitter sees the receiver in the angular direction (¢, 6t), measured
using the transmitter’s local coordinate system. The receiver sees the transmitter in the angular
direction (¢r, 6:), measured using the receiver’s local coordinate system. These angles can be
used when evaluating the antenna gains in (1.40).

since the effective area of the receiver always determines the fraction of the
transmit power that is received, even when the transmitter is isotropic. One
must always make assumptions regarding the antenna gains to compute a
channel gain. Hence, the channel starts at the input to the transmit antenna
and ends at the output from the receive antenna.

The channel gain in (1.40) is an increasing function of the antenna gains
Gi(pt,0y) and Gy(py,0;), which gives the impression that it is preferable
to have strongly directive antennas in wireless communications. This is a
valid conclusion for fixed wireless links where the person that deploys the
transmitter and receiver can rotate the antennas so that the maximum gains
are achieved precisely at the angles (4, 0;) and (¢r, 6;). This is the case for
links between a geostationary satellite and receivers on the ground (e.g., using
parabolic dish antennas to receive television broadcasts) or for fixed wireless
broadband links where the customer has a fixed receive antenna at the outside
of its house pointing towards the nearest base station.

The situation is more complicated in mobile communications, as illustrated
in Figure 1.13, where a rooftop-mounted base station serves Receiver 1 and
Receiver 2. The receivers are mobile phones, and it is not reasonable to require
the users to hold their phones in precisely the right directions all the time.
Hence, nearly isotropic antennas are utilized in mobile devices to ensure that
almost the same SNR is achieved irrespective of how the device is rotated. The
transmitter in Figure 1.13 emits a signal with an antenna gain function that
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Figure 1.13: An example of a mobile communication scenario where the transmitting base
station has a directive antenna. The maximum antenna gain is achieved in the direction leading
to Receiver 1. The path leading to Receiver 2 experiences a weak antenna gain.

is illustrated to resemble that of a cosine antenna. Receiver 1 happens to be
located in the direction with the maximum antenna gain. In contrast, Receiver
2 is located behind a building and can only be reached if the wireless signals
are reflected off another building, as indicated in the figure. This receiver will
experience a low antenna gain since the transmitter’s gain function is low
in the angular direction leading to the receiver. This example pinpoints the
practical tradeoff between having a large maximum antenna gain and having a
wide coverage area (wide enough to cover all prospective users) when selecting
the antenna to be used at a base station.

Ideally, we would like to rotate the antenna gain function depending on
the receiver’s location, so we can always provide the maximum antenna gain.
This could be achieved by mechanically rotating the base station antenna, but
it is quite impractical since receivers can move rapidly. The preferred practical
solution is to use multiple antennas to rotate the directivity of transmitted
signals using the theory developed in later chapters of this book.

The free-space channel gain in (1.40) can also be expressed in terms of
the effective areas Ai(ps,6:) and A, (¢r, ;). By using the relation stated in
(1.36), an equivalent version of (1.40) is

Ay (‘Pta et)Ar(‘Pr? 9r>
(dX)? '

8= (1.41)
The impact of the antenna design and wavelength on the free-space channel
gain can be understood by inspecting (1.40) and (1.41). If the antenna gains
in (1.40) are constant as we reduce the wavelength A (i.e., increase the carrier
frequency), then the channel gain 3 will reduce proportionally to A2. This
reduces the SNR because the effective receive antenna area is reduced, so the
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receiver captures less power. This is manifested by the relationship between
area and gain in (1.36). On the other hand, if the effective areas in (1.41) are
constant as we reduce the wavelength, then the channel gain 8 will instead
increase proportionally to A2 when A is reduced. This results in an SNR
improvement because the antenna gains are increased; that is, the antennas
become more directive. This is beneficial if the transmit and receive antennas
are aligned to deliver the maximum antenna gains to the communication
system. In other words, the high-band can provide better channel conditions
in free-space propagation than the low-band, if we compare two systems with
equal-sized antennas that are perfectly aligned. This is one of the features
that fixed wireless links rely on (e.g., communication with geostationary
satellites). Using the high-band spectrum for mobile communications, where
the physical directions of the devices’ antennas change over time, requires
that the directivity can change accordingly to keep them directed toward the
base station. We will explore how this is achieved using multiple antennas.

Example 1.12. How does the SNR in free-space propagation depend on the
wavelength A if the base station has a fixed wavelength-independent effective
antenna area A (s, 6;) while the user device has an isotropic antenna?

The effective area of the isotropic receive antenna is A, (py,0;) = g. We
can compute the SNR using (1.41) as

P3 _ P At(@taet)Ar(%,ar): P At(‘ﬂtaat)
NoB NoB (dX)? NoB 4md?

SNR = (1.42)

This expression is independent of A since the two wavelength-dependent effects
are canceling out. The area of the receiver is proportional to A?, while the
gain of the transmit antenna is obtained from (1.36) as Gy(,0) = 35 A¢ (¢, 0),
which is inversely proportional to A?> when the area is fixed. Hence, if the
wavelength shrinks, the receiver becomes physically smaller but captures the
same signal power since the transmit antenna becomes more directive. The
same principle applies when the device transmits, but then the radiated signal
is isotropic and induces a frequency-independent power flux density on the
fixed-area receive antenna.

A general parametric channel gain model was defined in (1.9), as a function
of the pathloss exponent o and the channel gain T at a 1 m reference distance.
The parameter values are normally stated for isotropic antennas but can be
used along with other antennas by multiplying with the antenna gains:

=" (1:in) Gt(got; et)Gr((Prver)~ (143)
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1.2 Three Main Benefits of Having Multiple Antennas

This book will cover how using multiple antennas can improve the operation
of wireless communication systems. We have already provided some hints of
what the benefits could be in the context of mobile communications, where
the location and rotation of the transmitter /receiver change with time. In this
section, we will describe the three main categories of benefits that multiple
antenna communication systems have over conventional systems with a single
antenna at the transmitter and receiver. These benefits have been given several
different names over the years. In this book, we call them:

1. Beamforming gain;
2. Spatial multiplexing;
3. Spatial diversity.

These benefits will be introduced below, including a short historical expose,
and then covered in further detail in later chapters.

1.2.1 Beamforming Gain

The wireless telegraph was invented in the 1890s as the first system for
wireless communications. The technology used Morse code to transfer words
encoded as a sequence of “dots” and “dashes”, represented by transmitting
sinusoidal signal pulses of two different durations. The wireless telegraph
played an essential role during the First World War since it allowed for direct
communication between continents [15]. The distance from North America to
Europe is more than 5000 km; thus, if the channel gain is computed as in (1.7),
it would be much smaller than the values shown in Figure 1.4. To reach over
the oceans, the radio stations had to broadcast their signals with very high
transmit power (tens of kilowatts). Therefore, researchers started to look for
ways to achieve directive transmission and reception to reduce the transmit
power or to reach even further distances with the same power. This was
where multiple antenna communications appeared as a solution (in addition
to using directive antennas). Guglielmo Marconi made the first transatlantic
transmission in 1901 using two tall antenna poles in the United Kingdom
[16]. Karl Ferdinand Braun did an experiment using three antennas in 1905,
which he described publicly when he and Marconi shared the Nobel Prize in
Physics in 1909 [17]. Ernst F. W. Alexanderson filed a patent application in
1917 describing the first practical implementation of radio communications
[18]. The patent did not use the term beamforming but outlined all the same
benefits as will be described in this section. The implementation was analog
then, while current systems are digitally controlled. Some early field trials for
mobile communications in the 1990s are described in [19], [20].
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To exemplify the basic phenomenon that was discovered and utilized in the
early 1900s, we consider the transmission of a time-limited sinusoidal pulse

p(t) = {ﬁsin(%rft), if t € [0,T),

i (1.44)
0, otherwise,

where f is the frequency and the time duration is T =1/ f, for some integer
[ > 0. This means the pulse consists of [ full periods of the sine wave. The
power of this pulse is

T T
;/O p2(t)ot = ;/0 sin? (27 ft)Ot
2 T1 T cos(4m ft) _
=2 (/O 5at_/o 2815) —1,  (1.45)

where we utilize the trigonometric identity sin?(x) = (1 — cos(2z))/2 and
notice that the last integral is zero since we integrate over 2l periods.

The Morse code is transmitted using on-off keying, which means we switch
between transmitting the sinusoidal pulse Ap(t) with an amplitude A > 0 and
being silent. If we transmit the pulse with amplitude A, then the transmitted
signal power is computed as

7/ _ a2l /OTpQ(t)at:AQ. (1.46)

We notice that the signal power is proportional to the square of the pulse’s
amplitude. The received signal at some destination will be v/BAp(t), where
the channel gain § represents the signal propagation loss and can, for example,
be computed as described in (1.7) for free-space propagation with isotropic
antennas or in (1.43) for arbitrary antennas and propagation modeling. In
any case, the received signal power is A2, which is also proportional to A2.

Suppose the received signal is too weak for the receiver to decode the
Morse code accurately. If we want to increase the received signal power by
100 times (i.e., 20dB), we can increase the signal amplitude by a factor of 10,
from A to 10A. The transmitted signal power will then instead be

% /OT (104p(t))* 0t = (10A)2% /O L0 =1004%  (147)

This means we need to spend 100 times more transmit power to receive the
signal /B10Ap(t) that contains 100 times more power.

An alternative solution is to generate the original signal Ap(t) at 10
different transmit antennas. Each signal has a power of A? so this approach
requires a total transmit power of

_ 2
10 / )? 0t = 10A2. (1.48)
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We can then radiate these signals simultaneously from the multiple antennas
and let them add/superimpose constructively over the air. In this way, the
received signal will also be /B10Ap(t), but we only need to spend 10 times
more power, instead of 100 times more as in the single-antenna case. In other
words, if the destination requires a specific received signal power level to
decode the information successfully, we can satisfy that requirement using
only 1/10 of the power when using 10 transmit antennas instead of one.

In general, if we compare single-antenna transmission with transmission
from M antennas, we can reduce the total transmit power by a factor of 1/M
while keeping the received signal power constant. How is this possible? It
might seem that additional signal power is “magically” created when the M
transmitted signals are combined in the air. The simple yet physically accurate
explanation is that the transmission becomes spatially directed toward the
receiver. In other words, when observed at a distant receiver, the combination
of M transmitted signals looks like the signal emitted from a single “virtual”
antenna with high directivity; that is, a virtual antenna having an M times
higher antenna gain than the individual physical antennas had.

Figure 1.14 shows an array with M = 4 isotropic antennas deployed on a
line. The adjacent antennas are separated by half-a-wavelength: \/2 = ¢/(2f).
If all the antennas transmit the signal Ap(t) simultaneously, then each of the
emitted signal components will radiate as in the single-antenna case described
earlier. A superposition of the M signal components can be observed at every
point in space. The components have, generally, traveled different distances
to reach the considered point and, thus, are time-delayed differently.

Let us consider points many wavelengths away from the array (i.e., in its
far-field) so that the propagation distance is much larger than the distance
between the individual antennas. For any such point on the horizontal axis
in Figure 1.14, the distances to each antenna will be roughly the same. This
can be understood by considering the triangle in Figure 1.15, which has
corners at two different antennas and the considered receiver location along
the horizontal axis. Hence, the M signal components will be approximately
time-synchronized, and the received signal becomes M+/BAp(t). This is the
constructive interference behavior that we are looking for. However, for any
point on the vertical axis in Figure 1.14, the distances to the antennas differ by
integer multiples of A/2. This distance difference remains even if the considered
point of the receiver is far away. The corresponding time delay difference

between two adjacent antennas is an integer multiple of 7 = 2% = %, which
corresponds to a half period of the sine wave:
sin (27 f(t — 7)) = sin (27 ft — m) = —sin (27 ft). (1.49)

Hence, the signals emitted from two adjacent antennas cancel out along the
vertical direction, called destructive interference. The horizontal and vertical
axes represent the extreme cases, while partially constructive or destructive
interference can be observed elsewhere, as indicated in Figure 1.14.
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Figure 1.14: When transmitting the same signal from all the antennas in a one-dimensional
array, the signal components will propagate time-synchronously in the direction perpendicular
to the array, leading to constructive interference in the horizontal direction in this figure. On the
other hand, the signals will propagate non-synchronously in other directions leading to partially
constructive or fully destructive interference.
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Figure 1.15: If the distance A\/2 between the two transmit antennas is much smaller than the
propagation distances to the receive antenna, then we have approximately the same distance d
from both transmit antennas. If the antennas transmit the same signal, constructive interference
will occur at the receiver.
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Example 1.13. An array with M = 2 isotropic antennas is located at the
Cartesian coordinates (0, +X/4,0) and (0, —\/4,0), where A is the wavelength.
The sinusoidal pulse p(t) in (1.44) is transmitted from both antennas with
the amplitude A/v/2, so the total transmit power is A2. What is the received
power at a point with spherical coordinates (d, ¢, 0), assuming that d > A and
the channel gain 3 is the same from both transmit antennas to the receiver?
We let d; and do denote the distances to the receiver from the antennas
at (0,4X/4,0) and (0,—X\/4,0), respectively. The received signal becomes

V/BAsin <2§C (t—)>+fAsm< (t—dz>). (1.50)

Cc

By using the trigonometric identity sin(a) + sin(b) = 2sin (2£2) cos (%452),
(1.50) can be expressed as

2/BAsin (2:% - ;(dl + d2)> cos (;(dg — ). (1.51)

To determine its power, we need d; and dy. The Cartesian coordinates of the
receiver is (dcos(p),dsin(p),0). Since d > A, d; can be approximated as

dy = \/(dcos(ap) -0)2+ (dsin(gp) - 2) = \/d2 — d/\SlTn(@) + %j

. 2 . 2 .
:d\/l_)\sm(ap) A Nd_)\sm(ap) —|—>\—~d Asin(yp)

= ~d— 1.52
2d + 16d? 4 32d 4 (152)

by using that v/1 + 2 ~ 1+ 3 for 0 < x < 1. Similarly, d2 can be approximated
as dg ~ d + )‘Sln Asin(@) We can now approximate (1.51) as

V2B Asin <2;rc <t - i)) V2 cos (g sin(go)) , (1.53)

Received signal at distance d Angle-dependent multiplicative factor

with a single antenna

which is the product of the signal received with a single transmit antenna
and an angle-dependent factor that describes the constructive/destructive
interference. By integrating the square of (1.53) over one signal period and
utilizing that fol 2sin?(27t)0t = 1, we obtain the received signal power

P(y) = 2cos? (g sin(go)) BA?. (1.54)

The largest power 23A? is achieved if ¢ = 0 or ¢ = 7, as in Figure 1.14, which
is twice the received power compared to a single antenna using the same total
power. Destructive interference occurs when ¢ = +m/2 since cos(£7/2) = 0,
while half of the maximum power is received when ¢ = +7/6.



1.2. Three Main Benefits of Having Multiple Antennas 33

100 - -10 [dBm)]
-20
50
é -30
5
K »
<
7 -40
A
-50
-50
-100 : -60
-100 -50 0 50 100

Distance [m)]

Figure 1.16: The received signal power in different directions and distances when transmitting
1W from an isotropic antenna. The color shows the received signal power in dBm when using
(1.7) to compute the channel gain in free-space propagation with f = 3 GHz as the frequency.

We will now illustrate the constructive, partially constructive, and destruc-
tive interference behavior when using multiple antennas and compare it to the
single-antenna transmission case. Figure 1.16 shows how the signal power from
a single isotropic transmit antenna spreads out over an area of 200 x 200 m.
The transmitter is located in the origin and transmits a signal with 1 W of
power. The color shows the received signal power in dBm, and we use the
free-space model in (1.7) to compute the channel gain /5 at different distances.
We notice that the signal power spreads out identically in all directions and
decays with distance. If we rotate the figure around the origin, the pattern
remains the same, as expected when using an isotropic transmit antenna.

In contrast, a transmitter with an array of M = 10 isotropic antennas
is considered in Figure 1.17. The antennas are deployed along the vertical
axis with A/2 antenna spacing, as illustrated in Figure 1.14, and are centered
around the origin. Exactly the same signal is simultaneously transmitted from
all the antennas. Figure 1.17(a) considers the case when the total transmit
power is 0.1 W (i.e., scaled down as 1/M), which leads to 0.01 W per antenna.
Figure 1.17(b) considers the case when the total transmit power is 1 W (i.e.,
the same as in the single-antenna case); thus, the power per antenna is 0.1 W.
Although each antenna radiates its signal isotropically, the figure shows that
the combined effect is a directive signal in the two horizontal directions. Hence,
we create constructive and destructive interference patterns aligned with the
previous discussion related to Figure 1.14.

The constructive interference pattern in Figure 1.17 takes the shape of
a beam (also known as a lobe), and the antenna array is therefore said to



34 Introduction and Motivation

100 - -10 [dBm]
-20
50
é -30
)
8 O | ——
ay
o -40
A
-50
-50
-100 -60
-100 -50 0 50 100

Distance [m]

(a) M = 10 transmit antennas with a total transmit power of 0.1 W (0.01 W per antenna).
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(b) M = 10 transmit antennas with a total transmit power of 1 W (0.1 W per antenna).

Figure 1.17: The received signal power in different directions and at different distances, when
transmitting the same signal from M = 10 isotropic antennas located in the origin. The color
shows the received signal power in dBm when using (1.7) to compute the channel gain in
free-space propagation with f = 3 GHz as the signal frequency.



1.2. Three Main Benefits of Having Multiple Antennas 35

perform beamforming. There is a strong main beam along the horizontal axis,
but also several side-beams pointing in other directions, usually referred to as
side-lobes. By comparing Figure 1.16 and Figure 1.17(a), we can notice that a
receiver located in the direction of the beam (i.e., along the horizontal axis)
will receive the same power in both cases. However, the transmit power has
been reduced with a factor 1/M in Figure 1.17(a) so we can deliver the same
wireless communication service but save power. This is called an M-times
beamforming gain or array gain. Receivers in other directions will receive less
power when using multiple antennas because there is no magical appearance
of signal power but only a power redistribution from some angular directions
to other directions. In particular, no signal power is observed along the vertical
axis. Hence, beamforming can be both a blessing and a curse—it is helpful if
the main beam points in the direction preferred by the receiver and can be
detrimental otherwise. This issue resembles that of using directive antennas
(described earlier), but there is a crucial difference: an individual antenna has
a fixed antenna gain function, while the direction of the beam from an antenna
array can be controlled when using beamforming. The ability to change the
direction is often seen as an inherent part of the beamforming concept but it
has also been called adaptive beamforming. Various methods to point beams
toward the desired receivers are developed later in this book.

In Figure 1.17(b), the total transmit power is the same as in the single-
antenna case. The received signal power for a user located along the horizontal
axis is then M times stronger than in the single-antenna case. Hence, the
beamforming gain provides a stronger received signal for users that the beam
is pointed toward. There are many directions outside the main beam where
less power is received than in the single-antenna case.

The fact that beamforming distributes the transmit power unequally
between different angular directions is illustrated in Figure 1.18, where a
sphere is centered around the array. The color illustrates the received power
level at different points on the sphere relative to the maximum value. The
z-axis corresponds to the horizontal axis in the previous figures, the y-axis
corresponds to the vertical axis, while the z-axis was not visible before. As M
increases, the black stripe where the received signal power is high will contain
a larger and larger fraction of the transmit power but also become narrower. If
one would integrate over the sphere to sum up all the power, it would always
be equal to the total transmit power irrespective of the value of M.

In summary, the beamforming gain can be utilized to achieve an M times
higher SNR than in the single-antenna case using the same transmit power,
or it can be used to achieve the same SNR using M times less transmit power.
Although the example above considers transmission from M antennas to a
single-antenna receiver, the same gains can be achieved when transmitting
with one antenna to M receive antennas. We will study this in detail later in
this book. The beamforming distributes the transmit power unequally over
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Figure 1.18: The normalized received power on different parts of a sphere centered around an
array with M = 10 isotropic antennas, in the same setup as in Figure 1.17. The color shows
the normalized received power in dB-scale where the maximum value is 0dB. All distances are
normalized.

different angular directions, similar to a single directive antenna (compare
Figure 1.10 and Figure 1.18) but with the vital difference that the directivity
of an antenna array can be changed, as described next.

1.2.2 Spatial Multiplexing

Many wireless systems have more than one user and must multiplex their
communication services on the shared wireless channel. Traditionally, the
users are multiplexed by assigning non-overlapping time-frequency resources;
for example, different time intervals and/or frequency bands. The reason for
this system design is to avoid interference. If two signals are radiated with
equal power from an isotropic antenna at the same time and frequency, each
signal will propagate isotropically as illustrated in Figure 1.16. At every point
in space, a superposition of the two signals will be observed where the signals
remain equally strong. Each receiver is only interested in one of the two signals.
When measuring the corresponding communication quality, the ratio between
the desired signal’s power and the summation of the interfering signal’s power
plus the noise power is a common performance metric. This is known as the
signal-to-interference-plus-noise ratio (SINR) and is a generalization of the
SNR metric to situations with interference:

Received signal power

SINR = (1.55)

Received interference power + Noise power
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The SINR is always smaller than or equal to the SNR because we obtain
the SNR by removing the interference from the denominator in (1.55). The
interference is problematic when the SINR is much smaller than the SNR
and might severely limit communication performance. For example, when the
signal and interference powers in (1.55) are equally large, the SINR cannot
surpass 1. In contrast, the SNR values exemplified in Figure 1.6 can be many
orders-of-magnitude larger than one (e.g., 30 dB is 1000). This issue cannot be
addressed using a directive transmit antenna since both signals will be radiated
with the same directivity. The following example proves this mathematically.

Example 1.14. Consider an isotropic antenna that transmits to two receivers
with the same channel gain § € (0, 1]. It assigns power P; > 0 to receiver 1
and power P» > 0 to receiver 2. Suppose an SINR of 1 (i.e., 0dB) is needed
for reliable communication. Is it possible to select the powers P; and P so
that the transmitter can communicate to both receivers reliably?

If we let 2 > 0 denote the noise power, then we can use (1.55) to obtain
the SINR achieved by the first receiver:

P Py

SINR; = — . 1.56
T PB+o? P+ (1.56)

Similarly, the SINR achieved by the second receiver is

Pp P

SINR, = = i
‘T PB+? Pt

(1.57)

For jointly reliable communication to the two receivers, both SINR; and SINR,
must be greater than or equal to 1, which is equivalent to the conditions

0.2

o2
Py Zpl‘l'ﬁ. (1.59)

Since both inequalities require one power to be strictly larger than the other
one, they cannot be satisfied simultaneously. This happens even if the channel
gain is large, so 0%/f is small. Only in the hypothetical noise-free case of
0%/ = 0 can reliable communication be guaranteed for both receivers. Even
in that case, the common SINR cannot surpass 1. This is why single-antenna
systems avoid interference by letting the users take turns communicating.

Using multiple antennas fundamentally changes the situation since each
radiated signal can have a unique spatial directivity. Recall that Figure 1.17
illustrated a situation where a signal is focused along the horizontal axis,
so the signal vanishes entirely along the vertical axis. Hence, a device that
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is located in that direction will not observe any interference at all. With
this phenomenon in mind, the concept of spatial multiplering, also known
as space-division multiple access (SDMA), was conceived in the late 1980s
and early 1990s [21]-[24]. The key idea was to equip the base stations in
cellular networks with multiple antennas and exploit beamforming to suppress
interference between the users, thereby enabling efficient communications
where multiple users are using the same time and frequency resource. The
SDMA concept had been considered for satellite systems decades earlier [25].

Suppose p(t) is the signal transmitted to the receiver. When all the transmit
antennas emit this signal simultaneously, a particular pattern of constructive
and destructive interference is created, as exemplified in Figure 1.14. Other
patterns can be generated by emitting different signals from the antennas; in
particular, we can transmit a time-shifted copy of p(t), where we adapt the
time-shift to obtain constructive interference in any direction or at any point
of choice. The methodology of adaptive beamforming is to:

1. Measure the propagation time delays 7, ..., 7y from each of the M
transmit antennas to the intended receiver.

2. Compensate for the time delays by transmitting the signal p(t) earlier
from the more distant antennas in the array: x.,(t) = p(t + 7,,) is the
signal transmitted from the mth antenna.

3. All the signal components arrive at exactly the same time at the intended
receiver since the received signal is an attenuated version of

xi(t—m)+ ...+t —T1m)=pt+7m—71)+...+p{t+ 700 — Tr)
= Mp(t). (1.60)

Suppose we want to direct the signal towards a user located on the vertical
axis in Figure 1.14 instead of the horizontal axis. Since the antennas are
separated by a distance \/2, the geometry implies that each transmitted
signal becomes time-shifted by half a period compared to the signal from the
adjacent antenna. Hence, if we emit a signal already shifted by half a period,
the two effects cancel out at every point on the vertical axis. The result is
shown in Figure 1.19, where the main beams point along the vertical axis,
while the signal components cancel out along the horizontal axis. Apart from
the angular rotation of the beamforming, the general behavior is the same as
before: the beamforming gain from the M antennas can be either utilized to
achieve the same SNR as in the single-antenna case using M times less total
transmit power (as in Figure 1.19(a)) or achieve M times higher SNR (as in
Figure 1.19(b)) using the same total power.

The beamforming gain is once again achieved by redistributing the transmit
power between different angular directions. Figure 1.20 illustrates the received
power level at different points on a sphere centered around the array. The
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(a) M = 10 transmit antennas with a total transmit power of 0.1 W (0.01 W per antenna).
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(b) M = 10 transmit antennas with a total transmit power of 1 W (0.1 W per antenna).

Figure 1.19: The received signal power in different directions and at different distances, when
transmitting time-shifted signals from M = 10 isotropic antennas located in the origin. The time
shifts are selected to achieve constructive interference along the vertical axis. The color shows
the received signal power in dBm when using (1.7) to compute the channel gain in free-space
propagation, and f = 3 GHz is the signal frequency.
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Figure 1.20: The normalized received power on different parts of a sphere centered around an
array with M = 10 isotropic antennas, in the same setup as in Figure 1.19. The color shows the
normalized received power in dB-scale where the maximum value is 0 dB.

power is focused in one direction (the same pattern appears at the back
of the sphere that is not visible). As M increases, the black dot where the
received signal power is high will contain a larger and larger fraction of the
transmit power but also become smaller. Although the pattern on the sphere
differs from Figure 1.18, we can always obtain the original transmit power by
integrating over the sphere, to sum up all the radiated power.

How is this example related to spatial multiplexing? Suppose two users are
located in sufficiently different spatial directions. There will be low interference
if each user is located outside the other user’s main beam. Hence, these users
can be served at the same time and frequency while achieving a decent SINR
(much higher than that in the single-antenna case). Ideally, the data rate
becomes proportional to the number of users. If K users are served by spatial
multiplexing, then K times more data can be transmitted compared to the
single-user case if the beamforming deals with the interference. A basic setup
of spatial multiplexing is illustrated in Figure 1.21.

The term “interference” has two different meanings in this context. The
physical phenomenon of constructive/destructive interference determines how
the signal copies emitted from multiple antennas superimpose over the air to
form a directive beam. Moreover, when a signal reaches an unintended receiver,
it is called interference for different reasons, and the interfering signal’s power
is included in the denominator of the SINR. In the remainder of this book,
we will only use the term in the latter sense.
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Example 1.15. Two isotropic transmit antennas are deployed with a \/2 sep-
aration and transmit to two single-antenna receivers, located as in Figure 1.21.
The one-bit data intended for receiver k is represented by s; € {—1,1}, for
k =1,2. Tt is multiplied by the sinusoidal pulse in (1.44) before transmission.
Suppose both receivers need an SINR of 1 (i.e., 0dB) to reliably decode their
data and that 02/8 = 10=! W. Is it possible to select the transmit powers Py
and P, to enable reliable communication to both receivers simultaneously?

Since the distance to receiver 1 is identical for the two transmit antennas,
we can focus a beam towards this receiver by transmitting /Py /2s1p(t) from
both antennas, where the power P; is divided equally. To focus a beam on
receiver 2, the two antennas can transmit v/ Ps/2s2p(t) and v/ Ps/2s2p (t + %),
where the delay is selected to compensate for the propagation delay difference
of 2% The received signal at receiver 1 then becomes

y1(t) = 2@8119(15 — 7))+ @52 (p(t —7)+p (t + % — 7'1>> +w

Noise

Desired signal Interference from the second signal

= 2P1581p(t = 7'1) + n1<t), (1.61)

where 71 is propagation delay and n;(t¢) is the noise. The second equality
follows from that p (£ + 2= — 71) = —p(t — 1), as stated in (1.49).
The received signal at receiver 2 becomes

ya2(t) :@32<p(t —T21) +p (t + % — 7’272) )

:2p(t—7’211)
Py
+ ?/351 p(t —72,1) +p(t —T22) | +na(t), (1.62)
——
=0 Noise

where ngy(t) is the noise while 75 ;1 and 72 2 are the propagation delays from
the first and second transmit antenna, respectively. The interference vanishes
since o9 = To1 + 2% and p(t — 22) =p (t — 2% —T21) = —p(t — T2,1)-

Since there is no interference and s = s5 = 1, the SINRs at receiver 1
and receiver 2 respectively become

2P

o2

2P
P

SINR; = =20P;, SINR, = = 20P;. (1.63)
For jointly reliable communication to the two receivers, we need SINR; > 1
and SINRy > 1, which is equivalent to 20P; > 1 and 20P, > 1. We notice
that P, and P, can be selected independently and that both conditions are

satisfied if the powers are greater than or equal to 50 mW.
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Figure 1.21: Schematic illustration of spatial multiplexing where two users are served at the
same time and frequency, but their signals are transmitted using different beamforming. The
true beam patterns are those shown in Figure 1.17 and Figure 1.19.

The previous example substantiated the claim that we can communicate
simultaneously with two receivers thanks to the use of multiple antennas. This
was impossible in the single-antenna case analyzed in Example 1.14. In the
considered geometrical setup, the beamforming towards the receivers simulta-
neously maximizes their SINRs and SNRs since the receivers in Figure 1.21
are located in ideal perpendicular directions. When considering other receiver
locations, the beamforming that maximizes the SINR must balance achieving
a high SNR and avoiding interference. This corresponds to not directing each
main beam exactly onto its intended receiver but fine-tuning the beamforming
to balance between high signal power and low interference. These factors are
analyzed in detail later in this book.

Adaptive beamforming from an antenna array is a much more flexible
solution than using a single directive antenna. When serving a single user,
adaptive beamforming can steer the emitted signal precisely toward the
receiver, wherever it is. This is achieved electrically by time-delaying the signals
emitted by the individual antennas. The same effect could be achieved by
mechanically rotating a directive antenna. However, this is only an alternative
in free-space propagation where there is only a single path and not in the more
complicated non-line-of-sight propagation environments that often occur in
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practice. Moreover, an antenna array can simultaneously spatially multiplex
several users with different beamforming, while a directive antenna can only
transmit with one directivity at a time. The spatial multiplexing feature was
used in a few commercial networks in Southeast Asia in the early 2000s [26,
Example 10.1]. Tt is nowadays a widely supported feature in WiFi 5 (802.11ac)
[27] and 5G NR [5]. It will likely be a core feature also in future systems.

Spatial multiplexing was conceived when cellular networks were used for
voice communications. Hence, the network performance was characterized by
the number of user connections that could be multiplexed and how good the
network coverage was; the latter is the fraction of all spatial locations for which
the SNR is above the threshold required for the voice quality to be acceptable.
Both criteria could be improved by beamforming and spatial multiplexing of
users. When wireless technology began to transmit data packets primarily, the
data rate (bit/s) achieved by each user also became an important performance
metric. The spatial multiplexing concept was then extended to setups where a
single user device has multiple antennas [28]-[31], in which case one can assign
multiple beams to the same device, and send several parallel layers of data to
increase the data rate. The current wireless standards support a combination
of these single-user and multi-user features [5], [27]: spatial multiplexing of
many user devices and a few layers per device.

1.2.3 Spatial Diversity

In addition to increasing the SNR, using multiple antennas can improve
the reliability of a wireless communication system. Thus far, we have mainly
considered the free-space propagation scenario in Figure 1.1, in which there are
no reflections or scattering: the only signal component that reaches the receiver
is the one that has traveled along the direct path between the transmitter and
receiver. This can be a good channel model for wireless communications in
outer space but not for terrestrial systems where many reflecting/scattering
objects might exist. This leads to so-called multipath propagation.

To exemplify the basic impact of multipath propagation, suppose the
transmitter emits a pure sinusoidal signal x(t) = sin(27 ft), where f is the
frequency. We consider the setup in Figure 1.22, where the signal reaches the
receive antenna via two paths: the direct path has a distance d;, and the
reflected path has a distance dy. Since electromagnetic waves travel at the
speed of light ¢, the two distances correspond to the propagation time delays

T, = % = ;\l} fori=1,2, (1.64)
where A\ = ¢/ f is the wavelength. For the sake of argument, we disregard that
the two paths will have (slightly) different channel gains and omit the channel
gain parameters in this example to simplify the notation. Disregarding the
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Figure 1.22: A basic multipath channel with a direct and reflected path.

additive noise, the received signal y(t) can be expressed as
yt) =zt —m1)+z(t — 1) =sin 2rf(t — 7)) +sin (27 f(t — 72)), (1.65)

where each term is called a multipath component. Depending on the relationship
between the time delays 71, 72, the two multipath components in (1.65) can
either reinforce or cancel each other. Using a trigonometric identity'® we can
rewrite (1.65) as

y(t) = 208 (7 f (1 — 7)) sin <2wf (t _n ‘2”2», (1.66)

Amplitude
Delayed version of the signal

where 2 cos (7 f (11 — 72)) is the constant amplitude of the received signal and
sin(2m f(t — 0572)) = x(t — T47™2) is a version of the transmitted signal with
the average time delay. The constant amplitude can be rewritten as

2cos (mf(m1 — 72)) = 2 cos <7rf <dl - d2>) = 2 cos (wdl —_ d2> (1.67)

AfASf
by utilizing (1.64). We notice that this amplitude has a sign and can take any
value between —2 and +2 depending on the argument of the cosine function.
By comparing this amplitude with the unit amplitude achieved with only the
direct path, we notice that multipath propagation can be either a blessing or
a curse. In particular, if (dy — d3)/\ is an integer, then (1.67) becomes +2,
and we benefit from having two paths by getting twice the amplitude. This
happens because the signals received over the two paths have identical phases.
On the other hand, (1.67) is zero when d; and d differ by A\/2 (£ any integer
number of wavelengths), because then the signals received over the two paths
have opposite phases and their multipath components cancel out. When this
happens (exactly or approximately), the channel is said to be in a deep fade.

This phenomenon is illustrated in Figure 1.23, where the signless amplitude

2 ’cos (ﬂ%)‘ is shown. The key message is that a small change in the

distance difference d; — do can make the amplitude of the received signal either

10We use the fact that sin(¢) + sin(y) = 2 cos (45511)) sin (#)
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Figure 1.23: In the multipath example in Figure 1.22, the amplitude 2 |cos (ﬂ@) | of the
received signal varies rapidly as the difference in path distances changes.

grow or fade away. The interpretation of “small” is that the change happens
when the transmitter and/or receiver move a fraction of the wavelength; for
example, A/4 is the change in the path difference d; — ds that is needed to
move from the peak amplitude 2 to v/2 in Figure 1.23, which corresponds
to losing half the signal power (i.e., the channel gain reduces from 22 = 4 to

\/52 = 2). That distance is 2.5cm if f = 3 GHz and 2.5mm if f = 30 GHz.
These rapid channel changes are called multipath fading or small-scale fading.

The described two-path scenario resembles the behavior that appeared
when transmitting from two different antennas in free-space propagation: the
emitted signals are received along two paths with different time delays. The
core difference is that with multiple transmit antennas, we can compensate
for the time delays at the transmitter side (this is what we call adaptive
beamforming). This is impossible in single-antenna multipath propagation
since the two signal copies originate from the same transmit antenna.

Since a slight movement of the transmitting and receiving devices can lead
to huge SNR fluctuations, multipath fading is a problematic phenomenon that
makes wireless communications fundamentally unreliable. When transmitting a
data packet, we must select a particular digital modulation and channel coding
scheme in advance. Based on this selection, the receiver needs a particular SNR
level during the transmission to decode the packet correctly. This level cannot
always be fulfilled when the SNR fluctuates after the modulation/coding has
been selected. When a packet cannot be decoded due to the channel being
in a deep fade, we say an outage has occurred. Interestingly, multiple receive
antennas can be used to protect communication against outages. Pioneering
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research on this topic was performed already in the 1930s by [32], [33], and
the mathematical analysis presented in this book dates back to the 1950s [34].
Multiple transmit antennas can also protect against fading, but this requires
more complex techniques, first developed in the 1990s [35]-[37]. In this section,
we will introduce the basic concepts and then return to the topic in Chapter 5.

Suppose a random variable models the channel between the transmit and
receive antennas: the communication works flawlessly with probability 1 — p,
while it breaks down entirely with probability p. Hence, an outage occurs with
probability p. This means that whenever you want to transmit a data packet,
the outage probability is p.

If we instead make use of two receive antennas and the channel to each
one of them is described by an independent random variable with the same
distribution as above, three random events can occur:

1. Both antennas have good channels, happening with probability (1 — p)?;

2. One antenna has a good channel, and the other antenna experiences an
outage, which happens with probability (1 — p)p + p(1 — p) = 2(1 — p)p;

3. Both antennas experience outages, which happens with probability p?.

It is only in the third case that the receiver cannot decode the data packet.
Hence, the outage probability is p? in this two-antenna setup.

By following the same logic, if we have M receive antennas and each one
experiences an outage with probability p, then the probability that all the
antennas are simultaneously experiencing outages is p™ (assuming that the
outage events occur independently for every antenna). This means that the
reliability of the communication system rapidly improves as we add more
receive antennas, known as spatial diversity. The name suggests that, at every
time instance, we utilize the spatial domain to combat fading; for example, by
only using those antennas that are located at spatial locations that currently
experience good channel conditions. The argument above applies when using
any antenna type. Directive antennas can be used to improve the SNR, but
they cannot be used to obtain spatial diversity; multiple antennas are needed
for that.!! However, the antenna array can be actively designed to extract as
much diversity as possible in a given propagation environment. This can be
achieved by deploying the antennas far apart, rotating their antenna gains
differently, and making them sensitive to waves with different polarization; the
overarching goal with this is to ensure that the antennas experience outage
events nearly independently so that the maximum diversity can be achieved.
The term antenna diversity is sometimes used to describe how spatial diversity
and antenna design are utilized jointly to achieve reliable communications.

1 Directive antennas might reduce the impact of multipath propagation, compared to isotropic
antennas since some multipath components can “disappear” because there are low antenna gains
in their directions. However, active exploitation of spatial diversity requires multiple antennas.
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Figure 1.24: The outage probability p™ as a function of the number of antennas for different
values of p, which is the probability that an arbitrary antenna observes an outage.

The benefit of spatial diversity is illustrated in Figure 1.24 for p = 0.5 and
p = 0.1. The vertical axis shows the outage probability using a logarithmic
scale, while the horizontal axis shows the number of antennas on a linear scale.
The figure demonstrates that the outage probability reduces rapidly when the
number of antennas increases. The slope of the curve becomes steeper when
p is smaller since the outage probability is 101log,,(p™) = 10M log,,(p) dB.
Hence, a single-antenna system that has a noticeable outage probability can
be greatly improved by adding additional antennas. We can never achieve
a zero-valued outage probability when p > 0, but suppose 102 = 0.001 is
acceptable in a practical system. The figure shows that it can be achieved using
3 antennas if p = 0.1 and 10 antennas if p = 0.5. The latter represents a very
unreliable channel, but it can be turned into a very reliable communication
system by using the spatial diversity provided by having many antennas.

Spatial diversity can also be utilized in the opposite scenario where the
transmitter has multiple antennas while the receiver has a single antenna. We
then must be mindful of both outage events for the channels between each
transmit antenna and the receiver and the risk that the signals emitted from
the antennas cancel over the air. A simple way to alleviate the latter issue is to
transmit from the antennas at different times or frequencies and then let the
receiver jointly process the received signals to retrieve the information without
any outage. This is inefficient since the same signal must be repeated several
times before the next signal can be transmitted. There are more efficient
solutions called space-time codes where multiple signals are repeated at the
same time in an intricate way that enables the receiver to exploit diversity.
We will describe these methods in Section 5.3.
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Example 1.16. There might be a correlation between the channel conditions
experienced at the different antennas of an array. In this example, we consider
a single-antenna transmitter and a receiver with an array of M antennas. We
let B,, denote an outage event at receive antenna m, and it occurs with the
marginal probability Pr{B,,} = p, for m = 1,..., M, as previously in this
section. The outage probability of the channel is the joint probability that
all antennas are experiencing an outage simultaneously: Pr{By,..., By }. It
equals the product p™ of the marginal probabilities when the outage events
are independent between the antennas but not if the events are correlated.

We assume that if one antenna experiences an outage, the conditional
probability for the other antennas changes to o € [0,1]. Hence, Pr{B;} = p
but Pr{Bz|B;} = o, which can be larger or smaller than p depending on the
value of p. The typical situation in practice is that o > p so that an outage at
antenna 1 increases the probability of an outage at the other antennas. What
is the outage probability Pr{By, ..., By} of this channel?

Based on the assumed correlation model, an outage event at antenna m,
given the information that the antennas 1,...,m — 1 experience outage, is

PI‘{BmlBl,...,Bmfl} = 0. (168)
We can then use the chain rule® for random events to compute

PI"{Bl7 ceey BM} = PI‘{Bl}PI‘{Bg, coo ;BMlBl}
= PI‘{Bl}Pr{BQ|B1}PI‘{B3, 000 ,BM|B1, BQ}

M
=...=Pr{Bi} [[ P{BulB1,...,Bm_1} =pe™ " (1.69)

m=2

If p = 1, so that an outage event at one antenna guarantees outages on all other
antennas, we get Pr{Bj,..., By} = p. There is no spatial diversity benefit
from having multiple antennas in this extreme case, but having the extra
antennas does not hurt. However, whenever ¢ < 1, the outage probability will
decay as o™ ~! when increasing the number of antennas. On a decibel scale, the
outage probability behaves as 101log;,(po™ ~1) = 10M log;,(0)+101og;4(p/0),
similar to the case with independent outage events. If we would add a new
curve to Figure 1.24 that represents this new scenario with correlated outages,
it will decay similarly to the existing curves, but the slope depends on the
correlation p rather than the marginal probability p. The key conclusion is
that the spatial diversity brought by having multiple antennas helps lower the
outage probability compared to the single-antenna case, even if the outage
events are correlated between the antennas.

oIf A and B are two random events, then the chain rule says that Pr{A, B} = Pr{A}Pr{B|A}.
The rule can be expanded by including more than two events and can then be applied repeatedly,
as done in (1.69).
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1.3 Exercises

Exercise 1.1. Since the power levels in wireless communications can be extremely
different, it is convenient to use decibel scales.

(a) What is 1 mW expressed in dBm?
(b) What is 30 dBm expressed in Watt?

(c) Suppose we transmit a signal with power Py = 20dBm and that 90dB is lost
on the way to the receiver. What is the received signal power P.x? Express the
answer in both dBm and mW.

(d) Suppose the noise power is NoB = —100dBm. What is the SNR P./(NoB) at
the receiver? What is the unit of the SNR?

Exercise 1.2. The SNR determines how much data can be transmitted per modulation
symbol in a wireless communication system. The system is not operational if the SNR is
below a specific value, in which case we are out-of-coverage. In this exercise, we consider
a system that is operational when the SNR is equal to or larger than —10dB.

(a) A single-antenna base station communicates with a single-antenna user device.
The base station transmits with 10 W and the device with 0.1 W. The channel
gain is —110dB, the bandwidth is 10 MHz, and the noise power spectral density
is 10717 W/Hz. Compute the SNRs achieved in the uplink and downlink.

(b) The computation in (a) reveals that the uplink SNR is below —10dB. Hence, the
system is not operational, even if the downlink SNR is above —10dB. This is a
common issue that can be resolved using multiple antennas at the base station.
How many antennas are needed in this case, if the SNR is proportional to the
number of antennas?

(¢) Can we instead change how much bandwidth that is used? If yes, explain how and
what the consequences will be. If no, explain why.

Exercise 1.3. The parametric channel gain model in (1.9) is entirely determined by the
channel gain values at two different distances. Suppose the channel gain is —100dB at
d=100m and —135dB at d = 1000 m.

(a) What are the values of the pathloss exponent o and the constant T7 Assume that
the measurements were made using isotropic antennas.

(b) Suppose the measurements were made using short dipoles with antenna gains
of 1.5 at the transmitter and the receiver. What are the values of the pathloss
exponent « and the constant Y7

Exercise 1.4. Consider a (hypothetical) antenna with the gain function
ccos(4p + m) cos(0), if p € [-37/8,—7/8],0 € [-7/2,7/2],
G(p,0) =  ccos(3p — m) cos(f), if ¢ € [7/6,7/2],0 € [—7/2,7/2], (1.70)
0, elsewhere,
where ¢ > 0 is a constant.

(a) If the antenna is lossless, what should be the value of ¢?

(b) What is the maximum effective area of this antenna, and for which angles (¢, 6)
is it achieved?
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Exercise 1.5. A single-antenna transmitter located at the point with Cartesian coordi-
nates (300,400,0) m communicates in free space with a single-antenna receiver located
in the origin. The transmit power is 20 dBm, the carrier frequency is f = 3 GHz, and
the bandwidth is B = 10 MHz. Due to noise amplification in the receiver hardware, the
noise power spectral density is NoF', where Ny is given in (1.11) and F = 4dB is called
the noise figure.

(a) What is the SNR if isotropic antennas are used?

(b) What is the SNR if antennas with the cosine gain function in (1.34) are used?
The transmit antenna achieves its maximum gain in the azimuth plane in the
negative y-axis direction, while the receive antenna achieves its maximum gain in
the positive y-axis direction. This setup is shown to the left in the figure below.

(¢) If the transmit antenna in (b) is rotated clockwise by /2 radians in the azimuth
plane, what is the SNR? This setup is shown to the right in the figure below. Note
that the antenna gain pattern in (1.34) should be rotated accordingly.

y A Transmitter y‘ Transmitter
4004 T 4004
} } '
Receiver 300 =z Receiver 300 =z

Exercise 1.6. Consider an isotropic transmit antenna and a flat receive antenna having
the width a. For simplicity, the antennas are located in the same two-dimensional plane,
and the geometry is similar to Figure 1.8 but rotated. The transmitter is located at the
origin (0,0). The receive antenna covers the line segment from (v/3d/2,d/2 — a/2) to
(v/3d/2,d/2 + a/2), where d is the propagation distance to the center (v/3d/2,d/2) of
the receive antenna.

(a) Suppose d > a and the transmitted signal has wavelength A. What are the
approximate phase differences between the signal received at the center and the
signals received at the two corners?

(b) Suppose d = %, which is the Fraunhofer distance defined in (1.18). What is the
maximum phase difference between two points on the receive antenna? Is this

value in line with the definition of the Fraunhofer distance?

Exercise 1.7. Consider a transmitter with an array of M = 3 isotropic antennas located
at the Cartesian coordinates (A\/4,0,—X/2), (0,—X/3,0), and (0,0, A/2), where X is the
wavelength. The transmitted signal from the mth antenna is zm, (t) = Ap(t + 7mm) where
p(t) is the sine pulse in (1.44). We want to maximize the received signal power at the
spherical coordinate (d, ¢, 0), where d > X\. What values of the delays 71, 72, and 73 can
be selected? Is the solution unique?
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Exercise 1.8. A transmitter equipped with M = 2 antennas communicates with a
single-antenna receiver. The propagation time delays from the first and second antennas
are denoted by 71 and 72, respectively. The transmitter compensates for these delays
by transmitting the signal z, (t) = Amp(t + Tm) from the mth antenna, for m = 1,2,
where A;, > 0 is the amplitude and p(¢) is the sine pulse in (1.44). The total transmit
power is A? + A2.

(a) Suppose the channel gains to the receiver are the same for both antennas and
denoted by 3. If the total transmit power must be equal to P, what values of A;
and As maximize the received signal power?

(b) Suppose the channel gains from the first and second antenna are denoted by 1
and (2, respectively. If the total transmit power must be equal to P, what values
of A; and As should be selected to maximize the received signal power?

(c¢) If B1 > B2, which antenna will transmit with the highest power according to the
answer in (b)?

Exercise 1.9. Consider a transmitter with two isotropic antennas that emit the same
signal Ap(t), where A is the amplitude and p(t) is the sine pulse in (1.44). The antennas
are located at the Cartesian coordinates (0,yo,0) and (0, —yo,0), for some value of
yo > 0. We are interested in receiver locations with spherical coordinates (d, ¢, 0) that
are at a large but fixed distance d > yo from the transmitter but have varying azimuth
angle ¢. The channel gain § is the same from both antennas to any of these points.

(a) What is the minimum value of yo for which destructive interference occurs at
(d, ,0) for at least one ¢ € [—m, m)?

(b) For what range of yo values will constructive interference occur at (d, ¢, 0) for six
different values of ¢ € [—m,m)?

Exercise 1.10. Consider a transmitter array with two isotropic antennas having the
Cartesian coordinates (0, A/4,0) and (0, —\/4,0), respectively. These antennas jointly
transmit signals to two receivers located at the spherical coordinates (d,0,0) and
(d,7/3,0), respectively. The distance d is large, so the channel gain 3 is the same
between any transmit antenna and receive antenna. The time-limited pulse in (1.44)
is used to carry the two symbols s1,s2 € {—1,1} intended for the two receivers. To
beamform towards the first receiver, both transmit antennas send v/P;s1p(t) using some
power P;. Moreover, to beamform towards the second receiver, the two antennas transmit
VPasap(t) and /Pasap(t + %:/3)), respectively, using some power P». Suppose that
0?/B = 107 W. Is it possible to select the powers P; and P, so that both receivers
achieve an SINR of 10 dB? If yes, give an example of how it can be done.

Exercise 1.11. Communication systems that operate in the mmWave and sub-THz bands
are sensitive to signal blockage by the human body, which might lower the received
power by more than 20 dB. To circumvent this issue, a handheld device can be built with
antennas at different sides (e.g., at the top and on the right side) to make it unlikely
that they are all blocked simultaneously by the user.

(a) Consider a device with two antennas. The outage probability of one antenna is p.
However, if one antenna is in outage, the outage probability of the other antenna
reduces to ¢ < p thanks to the antenna placement. What is the probability that
both antennas are in outage simultaneously?

(b) How much larger is the outage probability with independent outage events com-
pared to the probability in (a)?



Chapter 2

Theoretical Foundations

This book is dedicated to analyzing multiple antenna communication systems,
and we will rely on methods from linear algebra, probability theory, signal
processing, and information theory. This chapter will describe the key results
from these fields that we will utilize in later chapters, using the notation and
terminology used in the remainder of this book. The reader is expected to
be familiar with these general topics since the chapter mainly summarizes
essential results, and we refer to other textbooks for an in-depth introduction.
The focus is on complex numbers and how they enter into the aforementioned
theory when developing concise models of communication systems.

2.1 Complex Numbers and Algebra

Complex numbers naturally appear when analyzing communication systems,
for example, since the frequency representation of signals and systems is
generally complex. The fundamental component of complex numbers is the
imaginary unit, which we denote j = \/—1. Note that the letter “j” is used in
electrical engineering instead of the letter “i” commonly used in the mathe-
matical literature to not confuse it with the letter used for electrical currents.
We let C denote the set of all complex numbers. Any complex number

¢ € C can be decomposed as
c=a-+jb (2.1)

for some real numbers a,b € R. In this case, a is the real part of ¢, while b is
the imaginary part of c. We will let 3(-) be the function that outputs the real
part of its input, while J(+) is the function that outputs the imaginary part.
Hence, if ¢ = a + jb, it follows that R(c) = a and S(c) = b.

The representation in (2.1) is called the Cartesian form. Instead of de-
composing a complex number c in its real and imaginary part, we can use
the polar form to decompose it using the magnitude and argument. More
precisely,

¢ = |c|eare©) (2.2)
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where |c| = va? +b? > 0 is the magnitude (also known as absolute value),
describing the length of the vector [a,b]", and the argument arg(c) € [—m, )
is the angle of that vector in R?. The polar form contains Fuler’s number
e ~ 2.71828 and makes use of the complex exponential function

e = cos(z) + jsin(x), (2.3)

where the real and imaginary parts contain the cosine and sine of the argument
z € R, respectively. This relation is known as FEuler’s formula.

The different ways to represent a complex number are illustrated in Fig-
ure 2.1. From the definition of the sine and cosine functions, we can also
establish the relation

¢ = |c| cos (arg(c)) +j || sin (arg(c)) (2.4)

=a —b

between the Cartesian and polar forms. Hence, when considering signals, ||
can represent the magnitude/amplitude while arg(c) can represent the phase.

The complex conjugate is a vital operation when considering complex
numbers. The complex conjugate of ¢ = a + jb is denoted as ¢* and computed
by switching the sign of the imaginary part: ¢* = a — jb. This is equivalent to
switching the sign of the argument: ¢* = |c|e728(¢), Note that

cc* = (a+jb)(a — jb) = a® + jab — jab — j*b* = a* + b* = |c|*. (2.5)

Hence, we can compute the squared magnitude of a complex number by
multiplying it with its complex conjugate. We can also extract the real and
imaginary parts by adding ¢ and ¢* with different scaling factors:

%(c—f—c*):%(a—kjb—ka—jb):a:%(c), (2.6)
j12(c—c*)—j12(a+jb—a+jb)—b—%(c). (2.7)

The complex exponential function is the essential building block to create
sinusoids oscillating at a specified frequency f.. If z is replaced by 27 f.t in
(2.3), we obtain the complex exponential e/2™fct = cos(27 f.t) + jsin(27 fet),
where ¢ represents time. By following the procedure in (2.6) and (2.7), we can
extract the real and imaginary parts as

1

. 1 . .

cos(2m fut) = R (eﬂ’ffcf) = ST g e, (2.8)

sin(2r fot) = § (ei%fct) = Loonsa = L jomsr (2.9)
¢ 2 2

The unique aspect of the complex exponential is that it only contains the
frequency f., and no other frequencies. Since the cosine and sine functions
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Imaginary part

’/\ arg(c) Real part
’ [

Figure 2.1: The complex number ¢ can be equivalently represented by two real-valued numbers.
The Cartesian form is ¢ = R(c) + jS(c), with the real part R(c) and imaginary part S(c). The
polar form is ¢ = |c|ei?™8(¢) | where |¢| is the magnitude and arg(c) is the argument.

are created as linear combinations of both e?™/< and e 127/t these signals
are said to contain both the positive frequency f. and the negative frequency
—fe. Any real-valued signal contains a range of positive frequencies and
the corresponding negative ones. We will continue to study the frequency
representation of signals in Sections 2.3 and 2.8.

Example 2.1. Let ¢ = a + jb be an arbitrary complex number. Show that the
sinusoid a cos(t) + bsin(t) with the time variable ¢ can be written as a single
cosine function, using the polar form ¢ = |c|el2r8(),

The sinusoid can be rewritten as

acos(t) 4+ bsin(t) = RN ((cos(t) + jsin(t)) (a — jb))
=R (ejtc*) — %R (€jt|cle—j arg(C)) _ |C|§R (ej(t—arg(c)))
= |¢| cos (t — arg(c)) . (2.10)

This shows how the amplitude and phase of a sinusoid can be represented by a
complex number, which is a primary reason for using them in communications.

2.1.1 Vector Analysis

Vectors and matrices are commonly used when describing systems with multi-
ple antennas, where each entry is related to one of the antennas. The entries
will be complex in most of the chapters of this book. Thus, we will briefly
review the foundational linear algebra results in the complex domain.
An M-dimensional vector containing the complex entries x1,...,xp € C
can be expressed as
z1

(2.11)

»
|

Tn
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Second entry

I\

[l X

x/[|x|l First entry
>

Figure 2.2: The complex vector x has a length determined by the norm ||x||. The unit-length
vector x/||x|| points in the same direction as x.

We denote vectors using lower-case bold-faced letters, such as x. The entries
are expressed using the same letter and a subscript indicating the entry
number, such as x,, for the mth entry of x. Since the vector belongs to the
M-dimensional complex vector space CM | we can write that x € CM.

A vector x has a norm that describes the distance between the origin and
the point x in the vector space. Since it describes the length, it can be viewed
as the generalization of the magnitude to vectors. The Euclidean norm is
denoted by ||x|| and is computed as

x| = \/vall2 otz = (2.12)
By using the norm, we can decompose the vector as
X
x= x| - (2.13)
x|
~—~—

Length Direction

where the second term is the length-one vector pointing in the same direction
as x. Figure 2.2 illustrates how an arbitrary vector x is described by its
length /norm ||x|| and the direction x/||x||. There will be occasions in this
book where we want to select two vectors that point in the same direction
but have different norms, in which case we can utilize this decomposition.

All the vectors in this book are column matrices, meaning they have
one column and multiple rows. When dealing with matrices, one can switch
the meaning of rows and columns using the operation called transpose. The
transpose of an arbitrary vector x is denoted as x™. For example, the transpose
of (2.11) is

T

X :[Il J,‘M], (214)

which is a row matrix containing the same entries.
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When dealing with complex vectors, there is another type of transpose
that also includes the complex conjugate operation:

x" = [z} ... a2y (2.15)

This will be called the conjugate transpose in this book but is also known
as the Hermitian transpose, which explains the letter *. A third operation
that we will use is the complex conjugation of a vector (or matrix), which is
defined as taking the complex conjugate of the individual entries:

x=: . (2.16)

Thg
The conjugate transpose is simply a combination of the conventional transpose
and the conjugation, x" = (x™)*, but it is so commonly occurring in complex

vector analysis that it deserves its own notation.
The inner product (or dot product) between two M-dimensional complex

vectors x and y = [y1, ..., ynm]" is defined using the conjugate transpose as
M
x'y = Z Ty Ym.- (2.17)
m=1

The magnitude |x"y| of the inner product becomes larger the more similar
the directions of the two vectors are and smaller when the directions are very
different. This statement can be quantified by the Cauchy-Schwarz inequality,
which states that

"y | < [Ix][[lyll (2.18)

with equality if and only if x and y are parallel (i.e., x = ¢y for some non-zero
¢ € C). The upper bound is the product of the lengths of the two vectors.
Figure 2.3 illustrates how the inner product varies depending on the directions
of the vectors, with the parallel vectors x,y; achieving the upper bound in
the Cauchy-Schwarz inequality and orthogonal vectors x,ys having an inner
product equal to zero. The latter vectors span a two-dimensional plane in the
M-dimensional vector space and are separated by 90° in that plane.

Example 2.2. Suppose we are given a vector x € CM and can select the

vector y € CM freely. Which selections will maximize or minimize ‘T;ﬁ'l ?
The minimum is 0 and achieved for any vector y that is orthogonal to x.

The Cauchy-Schwarz inequality implies that the maximum is obtained for

y = ¢x for any non-zero ¢ € C.

When one of the vectors has a unit length, the inner product can also be
interpreted as an orthogonal projection onto that vector. Suppose x has unit
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(Orthogonal to x)
ys3

(Parallel to x)

Figure 2.3: The magnitude of the inner product |x'y;| between two vectors depends on how
similar their directions are. Parallel vectors give the largest value and achieve the upper bound in
the Cauchy-Schwarz inequality in (2.18): [x"y1| = ||x]|||y1]|. Orthogonal vectors give xy3 =0,
while other vectors give a number in between zero and the upper bound.

x (with length ||x|| = 1)
Yorojx = (x"y)x

Figure 2.4: If x is a unit-length vector, the inner product x"y is tightly connected to the
orthogonal projection of y onto x. The orthogonal projection is yproj,x = (x"y)x and has the
length |x"y]|.

length (i.e., ||x|| = 1) and let y be any other vector of the same dimension.
The magnitude |x"y| of their inner product is also the length of the vector

Yproj.x = (X"y)x, (2.19)
which is the orthogonal projection of y onto the direction pointed out by x.
This projection is illustrated in Figure 2.4. From this example, we can notice
that only the part of y that is parallel to x will affect the inner product; thus,
there are many different vectors y that have the same inner product with x.
It can also be proved that yproj x is orthogonal to y — yproj x-
A special case where the upper bound is achieved is when the inner product
is computed between x and itself:

M M
x"x = Z Ty, Ty = Z |Zm]? = ||x]|%, (2.20)
m=1 m=1

where the last equality follows from (2.12). Hence, the squared norm of a
vector x can be computed using the inner product. This is a generalization
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of (2.5), where we computed the squared magnitude of a complex number by
multiplying it with its complex conjugate.

By utilizing (2.20), the squared norm of the summation of two arbitrary
vectors x and y (of the same dimension) can be expanded as

[x +y|° =x"x + y"y + x"y + y"x
= [Ix|I” + lyl]* + 2R(x"y) (2.21)

by utilizing the fact that x"y and y"x have the same real part but imaginary
parts with opposite signs.

Example 2.3. Consider a set of K unit-length vectors x;,...,xx € CM that
are mutually orthogonal, where K < M. Compute the squared norm of the
K .

vector y = Y ;"4 ¢xXg, where c1,...,cx € C are scalar coefficients.
From the provided information, we have ||xx|| =1, for k =1,..., K, and
Xy X = 0, for k # m. We use these properties to expand the squared norm as

K K K
ly|? = y'y = Z CrXp Z CmXm = Z ler)? xix, + Z chcm XpXm
k=1 m=1 k=1 —~  k=1m=1 5
=lxxkl2=1 mtk
K
= el (2.22)
k=1

We notice that |ly||? is the summation of the squared coefficients, which
determine the length of y in each of the K orthogonal directions xi,...,Xk.

The summation of vectors, multiplied by scalar coefficients, is known as a
linear combination. If x1,...,xx € CM are K vectors and ¢y, ...,cx € C are
K scalar coefficients, then the linear combination of the vectors using those

coefficients is
K

C1X1 + CoXg + ...+ XK = Z CLX). (2.23)
k=1

This concept is helpful in making geometrical comparisons of vectors in
high-dimensional situations where we cannot draw them on paper.

Definition 2.1. The vectors x1,Xo,...,Xx are said to be linearly independent
if the system of equations

C1X1 +CoXg + ...+ cgxg =0 (2.24)

only has the solution ¢; = ... = cx = 0. If additional non-zero solutions exist,
the vectors are said to be linearly dependent.
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Any two vectors are linearly independent except if they are entirely parallel;
thus, linear independence is a broader condition than orthogonality. For
example, we can pick any two of yi, y2, and ys in Figure 2.3 and get a
set of linearly independent vectors. However, the set of all three vectors in
the figure is linearly dependent because ys points partially in the direction
of y; and partially in the direction of y3. This is a typical situation when
considering two-dimensional vectors, as in the figure: if we pick more than two
vectors, they must always be linearly dependent because they share the same
two dimensions. More generally, any set of more than M vectors that are
M-dimensional must be linearly dependent, but we can find a set with exactly
M linearly independent vectors. Moreover, any set of pairwise orthogonal
vectors can be shown to be linearly independent.

Example 2.4. Consider the vector y = Z,]c\/le cLXy, constructed using the mu-
tually orthogonal unit-length vectors x1,...,xy € CM and scalar coefficients
c1,---,¢cm € C. Let yprojx,, denote the orthogonal projection of y onto x,,,
which is the mth of the unit-length vectors. . What are the squared norms of
Yproj,x., and the residual vector y — yproj ..

The vector yprojx,, is computed similarly to (2.19) as

M
Vprojxm = (Xin¥) Xm = (Z Ck XXk )Xm = CXom- (2.25)

Hence, we obtain ||yproj,x., [|> = |cm|?, which is the squared coefficient associ-
ated with x,,. The squared norm of the residual y — yproj.x,, becomes

2

M 2 M M
Hy — Yoroj,x.m ”2 = Z CkXE — CmXm = chxk = Z'ckPa (226)
k=1 k=1 k=1
k#m k#m
which is the sum of all the other squared coefficients.
We notice that [[yprojx. |2 + [V — ¥projn I© = [l¥]|°, which is a conse-

quence of the fact that yprojx,, is orthogonal to y — ¥proj,x., -

An orthonormal basis in CM is a set of M vectors by, ..., by, that satisfies
the following two conditions:

1. The vectors are mutually orthogonal, so that their inner products are
bi'b; = 0 for any choice of 4,5 € {1,..., M} such that ¢ # j;

2. The vectors have length one so that their norm is ||b;|| = 1 for all
ie{l,...,M}.
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There are many examples of orthonormal bases. One way of constructing
it is to let b; be 1 in entry ¢ and zeros elsewhere. For M = 4, this results in

1 0 0 0
0 1 0 0

bi=y|s ba=|y|, bs=|;|, bi=], (2.27)
0 0 0 1

A common reason for defining an orthonormal basis is that any other vector
x € CM can be written as a linear combination of the M basis vectors:
X = Ei\il ¢ib; for some coefficients ¢y, ..., cpr. This follows from the fact that
any set of M + 1 vectors is linearly dependent in CM.

2.1.2 Matrix Analysis

A vector is a special case of a matrix. An M x K matrix has M rows and
K columns, and contains M K entries. Let h,, 1 € C denote the entry at the
mth row in the kth column. The full matrix can then be expressed as

h1 1 e hl,K

H=| @ . o (2.28)
hM71 hM,K

We denote matrices using upper-case bold-faced letters, such as H. The space
of all complex matrices of size M x K is denoted as CM*X:; thus, we can write
that H € CM*X_ The transpose and conjugate transpose are computed as

hii ... hwma i1 - hua
H =| : |, HY=| I (2.29)

hik .. hax T

respectively. Note that H" is obtained by flipping the matrix over its diagonal,
while H" is obtained by both flipping the matrix and replacing each entry by
its complex conjugate. Both operations change the dimensions of the matrix:
H"™ and H" belong to the space CK*M with all complex K x M matrices.
Only in the square matrix case of M = K is the dimensionality unchanged.

The columns of a matrix are important when analyzing its properties. Let
hy,..., hx denote the K columns of an M x K matrix H. We notice that
each column is an M-dimensional vector. The matriz-vector product between
the matrix H and a K-dimensional vector ¢ = [c1, ..., ck]" is denoted as He
and is an M-dimensional vector computed as

hiici+ ...+ hi ek
Hc = =c1hy+...+cxhg. (230)

hM’lcl + ...+ hM,KcK
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This is the linear combination of the column vectors of H using the corre-
sponding entries of ¢ as coefficients. Hence, the directions of the columns will
determine which directions the vector Hc can have. In particular, we can
never get a vector that is orthogonal to all the columns of H.

A square matrix where all the off-diagonal entries are zero is called a
diagonal matriz. If the diagonal of an M x M diagonal matrix D contains

the entries dy,...,dys, then the matrix is
d 0 ... 0
D= 0 da (2.31)
: : -0
0 ... 0 du
and will be written in short form as D = diag(dy, ..., dn).

A diagonal matrix with only ones on the diagonal is known as an identity
matriz. We will denote the M x M identity matrix as I;. The columns of an
identity matrix are an orthonormal basis in CM | as exemplified in (2.27).

Non-diagonal square matrices can be transformed into diagonal matrices by
a process known as diagonalization. We will summarize this process because
it reveals several key properties of matrices, starting with the eigenvalues.

Definition 2.2. Consider an M x M matrix A and a non-zero vector u € CM.
If
Au = )u (2.32)

for some scalar A € C, then u is an eigenvector of A with A\ being the
corresponding eigenvalue.

The output of the matrix-vector product Au is generally a rotated and
stretched version of u. The unique property of an eigenvector u is that it is
only stretched by the scalar factor A (the eigenvalue). Two different matrices
generally have different eigenvectors and eigenvalues.

Each M-dimensional matrix has M eigenvalues, which can be denoted
as Ai,...,Ay. There are two matrix operations that directly expose the
eigenvalues. The first operation is the trace tr(A) that is defined as the sum
of the diagonal entries of A, but also has the property

tr(A) = ]zwj Am. (2.33)
m=1

The second operation is the determinant det(A), which has a complicated
definition and can be computed in multiple ways but satisfies the property
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Hence, the trace and determinant are the sum and product of the eigenvalues,
respectively. The determinant is zero whenever one of the eigenvalues is zero.
The eigenvalue definition Au = Au in (2.32) is equivalent to (A — Ay )u =
0, which means that A — A\I; must have a zero-valued eigenvalue. Hence,
det(A — AI;) = 0 and we can use this equation to identify the eigenvalue A.
More generally, the characteristic polynomial of a matrix A is expressed as

det(A — M) = (A1 — A)(Aa — A) -+ (Aps — A), (2.35)

where A is the variable and the determinant plays an essential role. All the
M eigenvalues are roots of the characteristic polynomial and vice versa. The
same eigenvalue can appear multiple times in the characteristic polynomial.

Example 2.5. What are the eigenvalues of the 2 x 2 matrix

A= [g _ﬂ? (2.36)

The characteristic polynomial of this matrix is

det (A — \I,) = det ([iA _3_3 AD = (4—X)(=3-)) - 5(-2)

=X -_-2=(X+1)(x—2), (2.37)

where we utilized the property that the determinant of a 2 x 2 is the product
of the diagonal entries minus the product of the off-diagonal entries. The
roots to the characteristic polynomial are Ay = —1 and A\ = 2, which are also
the eigenvalues of A.

The rank of an M x K matrix equals the maximum number of linearly
independent columns the matrix has. The rank is also equal to the maximum
number of linearly independent rows. The rank can take any value between 0
and min(M, K); that is, the minimum of M and K. In the case of an M x M
square matrix, the rank is greater than or equal to the number of non-zero
eigenvalues. In fact, the rank is usually equal to the number of non-zero
eigenvalues for the square matrices appearing in communications, but one can
create counterexamples where this is not the case. Later in this section, we
will provide additional conditions that guarantee equivalence.

Recall from (2.30) that the matrix-vector product He is computed as a
linear combination of the columns of H with coefficients from c. Suppose we
want to create a set Hcy, Heo, ... of linearly independent vectors (or even
mutually orthogonal vectors) by multiplying H by different vectors ¢y, co, ...
The rank of H limits how many such vectors we can create. The rank property
will be utilized in later chapters to quantify how many parallel data streams
we can transmit over a communication channel, where the matrix dimensions
represent antennas and/or frequency bands.
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Example 2.6. Let cy,...,cx € CX be K linearly independent vectors. For
an arbitrary matrix H € CK*X that has rank r satisfying » < K, show that
Hcq,...,Hck cannot be linearly independent.

Since the rank of H is r < K and the number of non-zero eigenvalues is
smaller than or equal to the rank, H must have at least K — r zero-valued
eigenvalues. Consequently, there must exist an eigenvector x # 0 satisfying
Hx = 0. Since cy, . .., ck are linearly independent, any such non-zero x € CX
can be expressed as 25:1 agc for some selection of the coefficients, with not
all o being zero. Inserting x = Z,Ile agcy into Hx = 0, we obtain

K K
H (Z akck> = Z OékHCk = 0. (238)
k=1 k=1

According to Definition 2.1, Hey, ..., Hck are linearly independent if and
only if the above linear system of equations (with respect to aq,...,ax € C)
only has the solution a; = ... = ag = 0. However, for a non-zero eigenvector
x, we should have at least one non-zero oy, which implies Hcy,..., Hcg
cannot be linearly independent if the rank of H is strictly less than K.

Square matrices can be factorized and diagonalized using the eigenvalues
and eigenvectors. For brevity, we will only present this eigendecomposition in
the special case of symmetric matrices, which are defined as follows.

Definition 2.3. A matrix A is Hermitian if A = A",

Only square matrices can be Hermitian, and the condition A = A" implies
a specific symmetry: the entries at the opposite sides of the diagonals have
the same real part, while the imaginary parts have the same magnitude
but opposite signs. The symmetry implies that any eigenvalue of A must
satisfy A = A*, which only holds if the imaginary part is zero. Hence, all the
eigenvalues of Hermitian matrices must be real-valued. One common type of
matrix that satisfies the Hermitian property is covariance matrices, which will
be described later in this chapter. Before considering the eigendecomposition
of Hermitian matrices, we will define one more type of matrix.

Definition 2.4. A matrix U € CM*M is ynitary if U"U = I, and UU" = 1,,.
The former implies that the columns of U are mutually orthogonal, while the
latter implies that the rows are mutually orthogonal.

A unitary matrix’s column vectors are an orthonormal basis in CM. We
notice that the conjugate transpose U" of a unitary matrix U acts as a matriz
inverse because their multiplication results in an identity matrix. This is
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the matrix extension of how 1/u is the inverse of the scalar u because their
multiplication is 1. If the eigenvectors of a Hermitian matrix are placed as
the columns of a matrix, it will be a unitary matrix.

Lemma 2.1. Any Hermitian M x M matrix A can be factorized as
A =UDU", (2.39)

where U is a unitary M x M matrix containing the unit-length eigenvectors
as columns and D = diag(Aq, ..., Ay ) is a diagonal matrix containing the
corresponding real-valued eigenvalues.

The factorization in (2.39) is known as the eigendecomposition. For a Her-
mitian matrix, the rank is exactly equal to the number of non-zero eigenvalues.
If we let uy,...,up denote the columns of U (i.e., the eigenvectors), then we
can also express (2.39) as

M
A= Z AU U, (2.40)
m=1

Hence, the matrix is the summation of the eigenvalues multiplied by the
respective eigenvectors. This property can be utilized to diagonalize the
matrix. More precisely, we can rearrange (2.39) as

U"AU =D (2.41)

by utilizing the properties of unitary matrices. This shows how the Hermitian
matrix A can be transformed into the diagonal matrix D with eigenvalues by
multiplying with the matrix U containing the eigenvectors.

Non-Hermitian square matrices can also be diagonalized, but the notation
is more complicated, and one can find special cases where it is not possible.
Since we will not utilize those results, we will not cover them here.

If all the eigenvalues of a Hermitian matrix A are non-zero, then the matrix
is invertible. This implies that there exists a matrix denoted as A~! with the
property that AA~! = A~!A = I,;. By utilizing the eigendecomposition in
(2.39), we can notice that the inverse can be computed as

A~!' =UD'U", (2.42)

where D! = diag(A;',...,\;}). Hence, the inverse matrix has the same
eigenvectors but reciprocal eigenvalues.

If all the eigenvalues of a Hermitian matrix A are non-negative, then the
matrix is said to be positive semi-definite. The reason is that x" Ax > 0 for
all vectors x of matching dimension, because (2.40) implies that x"Ax =
Z%:l Am | x|? which only has non-negative terms. For such matrices, we
can define the square root of the matrix as follows.
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Lemma 2.2. Any Hermitian M x M matrix A that is also positive semi-
definite has a square root defined as

A2 = UD'?2Uu", (2.43)

using the notation from Lemma 2.1 with DY/2 = diag(v/A1, ..., vAar). The
square root A'/2 is also Hermitian and satisfies the property A/2A/2 = A.

If all the eigenvalues of the Hermitian matrix A are strictly positive, then
the matrix is said to be positive definite. In this case, both the matrix and its
square root are invertible. The inverse square root is denoted as

A~Y2 —UuD~/2Uun, (2.44)
where D™1/2 = diag(1/v/A1, ..., 1/vV ).
Example 2.7. Consider a Hermitian matrix A € CM*M with the eigende-

composition

A =UDU". (2.45)
What is the eigendecomposition of B = A + eI, if € > 07
Since U is a unitary matrix (i.e., UU" =1,), we can express B as

B =A + Iy, = UDU" + cUU" = U(D + I;) U", (2.46)

which has the correct structure to be its eigendecomposition. Hence, adding
a scaled identity matrix to A does not change the eigenvectors, but all the
eigenvalues are increased by the scaling factor e.

The following matriz inversion lemma can be helpful when analyzing
expressions containing invertible matrices.

Lemma 2.3. Consider the matrices A € CM>*M B ¢ CM*N C ¢ CNV*N,
and D € CV*M_ The following identity holds if all the involved inverses exist:

(A+BCD) !=A"'-A"'BDA'B+C!)"'DA L (2.47)
A special case of this lemma, known as the rank-one update formula, is

obtained when A is an invertible Hermitian matrix, C=1,B=x€ CM is a
vector, and D = x™:

1
(A. + XXH)il = 1&71 — mAilxxHAil. (248)
If we multiply the expression in (2.48) by x from the right, we obtain
1
(A +xx")"1x = A 'x (2.49)

1+x9A-1x ’
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which shows that the vectors A~!x and (A + xx")~!x are equal except for
the scaling factor 1 + x" A~1x. This property will be utilized in this book
when analyzing different signal processing methods.

Consider two matrices A € CM*K and B € CK*M having opposite
dimensions, which means that it is feasible to compute both the matrix
products AB and BA. A matrix identity similar to the matrix inversion
lemma is

(AB+1y) "A=(AB+1I)) "A(BA +1Ix)(BA +1Ig)""
—(AB+1y) ' (AB+1y)A (BA+1Ig)"
—ABA+Ig), (2.50)

where the matrix A is moved from one side of the inverse to the other side. The
content of the inverse is also changing and, interestingly, the identity matrix
changes dimension. There is a deeper matrix algebraic property enabling this
result. The eigenvalues of AB and BA are always the same, except that the
bigger of these matrices has |M — K| extra eigenvalues that are equal to zero.
This can be proved as follows. We let u denote an arbitrary eigenvector of
AB associated with the eigenvalue A, so that ABu = Au. It then follows that
Bu is an eigenvector of BA with the same eigenvalue A because

ABu = B(\u) = B(ABu) = BA(Bu). (2.51)

One can further prove that the eigenvalue multiplicity is the same. A conse-
quence is that we can switch the matrix order in the trace function as

tr(AB) = tr(BA) (2.52)

because the sum of the eigenvalues is the same for AB and BA. Another
consequence is Sylvester’s determinant theorem

det (AB + IM) = det (BA + IK) , (253)

which holds because the identity matrix adds one to all the eigenvalues, and
the determinant then multiplies them together. The matrix identities in (2.52)
and (2.53) will be used repeatedly in this book.

Consider the two vectors x = [x1,za,...,zp|" and y = [y1,Y2, ..., YK]",
which might have different dimensions. The Kronecker product between these
vectors is defined as

ry

T2y
xQy=| . |, (2.54)

TMY.
which is an M K-dimensional vector. The first K entries contain x1 multiplied
by each of the entries of y, the next K entries contain xo multiplied by each
of the entries of y, etc. The Kronecker product is closely related to the outer
product yx™ between the same vectors. One obtains the Kronecker product
by stacking the columns of yx™ into a single vector.
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2.2  Probability Theory

This book will use random variables to describe signals, noise, and commu-
nication channels. Any continuous random variable z is entirely determined
by its probability density function (PDF), which we denote by fi(x). This
function determines how the probability mass is distributed over all possible
realizations. The realizations of the random variable take values in some
sample set ), which is typically the real space R or the complex space C. The
probability of obtaining a realization in a subset A C Q of the sample set is
the integral of the PDF over that subset:

Priz c A} = /A fo(@)0z. (2.55)

When considering complex random variables, the integral in (2.55) should

be interpreted as a double-integral over the real and imaginary parts. The

PDF fi(z) is non-negative for all z € © and the total probability is one:

Jo fx(x)0x = 1. Hence, the probability Pr{z € A} is between zero and one.
Based on the PDF, we can compute the (arithmetic) mean

E{x}:/ﬂxfx(x)ax, (2.56)

which is also known as the expected value, first moment, and average. The
variability is often measured by computing the squared deviation |z — E{x}|?
from the mean and taking its mean. It is denoted Var{z} and computed as

Var{z} = E{|z — E{z}]"} = E{ja]"} — [E{z}[>. (2.57)

This is known as the wvariance or second moment, and it measures how large
variations from the mean we can expect to observe when generating many
realizations. It is essential to use magnitudes in (2.57) when the random
variable takes complex values. If the random variable has zero mean, then
(2.57) shows that the variance coincides with the quadratic mean computed as

E{|z]?} = /ﬂ (2 ()0 (2.58)

It is common in the probability theory literature to use a different notation
for the random variable and its realizations; for example, x for the variable
and x as the realization. In this book, we have instead chosen to use the same
notation but write out what is considered in each context.

Definition 2.5. The random variables x and y are statistically independent if
their joint PDF fy ,(x,y) can be factorized as

fx,y(xay) = fx(x)fy(y)v (2'59)
where fi(z) and f,(y) are their individual PDFs, called marginal PDFs.
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This independence concept is entirely different from the linear indepen-
dence of vectors in Definition 2.1. Statistical independence of random variables
implies that the realization of z will not affect the realization of y whatsoever,
which happens in practice when the variables are associated with different
sources of randomness. For example, in communications, the variable rep-
resenting random data from the transmitter is typically independent of the
variable representing random thermal noise in the receiver hardware.

We will now consider L independent realizations of the same random
variable, which can be thought of as having L independent and identically
distributed random variables (i.e., with the same marginal PDF), and generate
one realization from each of them. Suppose we compute the arithmetic average
of these realizations. In that case, we will obtain a value close to the mean in
(2.56), at least under the technical condition that the variance is finite. This
result can be formalized mathematically as the following law of large numbers.

Lemma 2.4. Let z1,...,x1 be a sequence of L independent and identically
distributed random variables with mean E{z;} = u and finite variance o for
1 =1,..., L. The arithmetic sample average % ZiL:1 x; satisfies

L
.1
ngréo 7 ;xi — (2.60)

We will utilize this lemma when studying the impact of random variables
on communication performance and also as a way to approximate an unknown
mean value using multiple realizations from the random variable.

The variance measures the average squared deviation, which has a different
unit than the original variable (i.e., it is squared). The square root /Var{z}
of the variance can be utilized to understand better how large deviations from
the mean are likely to occur. This measure is called the standard deviation,
and whenever the variance is finite, most random realizations will occur within
a few standard deviations from the mean. The exact characteristics depend
on the distribution of the random variable, but the following worst-case result
known as Chebyshev’s inequality can be established.

Lemma 2.5. Consider a random variable x with mean E{z} = p and finite
standard deviation o = /Var{z}. For any constant k£ > 0, it holds that

1
Pr{lz — p| > ko} < =k (2.61)

Suppose we insert k = 2 or K = 3 into Lemma 2.5. In that case, the
inequality says that the probability of obtaining realizations that are more
than two or three standard deviations from the mean is smaller than 0.25 and
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Sx(z)

95% of all realizations
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Figure 2.5: The PDF of the zero-mean Gaussian distribution & ~ AN(0,0?) with the standard
deviation indicated. If another mean value is considered, the PDF is shifted to be centered
around it. 95% of all realizations occur between —20 and 20.

0.11, respectively:

0.25 ifk=2,

) (2.62)
0.11 if k= 3.

Pr{|z — pu| > ko} < {

Since Chebyshev’s inequality provides an upper bound on the probability of
obtaining realizations further than k£ standard deviations from the mean, most
random distributions have a much smaller probability than that. In other
words, Chebyshev’s inequality characterizes the worst-case situation of having
a distribution with a high probability of realizations far from the mean.

2.2.1 Gaussian Distribution

A common example is a Gaussian random variable, which is denoted as
x ~ N(u,0?) and has the PDF

) = e (263)

€T) = € 20 . .
* V2o

This distribution has the mean E{z} = p, variance Var{z} = E{(z—u)?} = o2,
and standard deviation \/Var{z} = o. The PDF is illustrated in Figure 2.5
and is symmetric around the mean value. When the mean is zero, and the
variance is one, we have a standard Gaussian distribution.
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The Gaussian distribution is also known as the normal distribution since
it has become the norm to utilize it as an approximation of other random
distributions. A contributing factor is the following classical result, called the
central limit theorem.

Lemma 2.6. Let z1,...,x1 be a sequence of L real-valued independent and
identically distributed random variables with zero mean and finite variance
2. As L — oo, the distribution of

L
1
> (2.64)
VLo i

converges to a standard Gaussian distribution N (0, 1).

The interpretation of this theorem is that the summation of a set of
independent and identically distributed random variables tends to be approxi-
mately Gaussian distributed, with the approximation error being smaller the
more variables are considered. This property is often used in communications
to motivate that the noise in the receiver hardware is Gaussian distributed
(because the random motion of many electrons creates it) and that wireless
channels behave as Gaussian distributed when they contain many propagation
paths, which will be considered later in this book.

The scaling factor 1/v/ Lo? in (2.64) was selected so that the variance of
the quantity becomes one, instead of going to zero or infinity when adding
L terms and letting L — oco. However, any scaling factor can be utilized
along with Lemma 2.6 if the central limit theorem is merely used to motivate
that the summation of a finite number of independent random variables is
approximately Gaussian distributed. For example, the law of large numbers in
Lemma 2.4 considered the sample average and when combined with Lemma 2.6,
we obtain

1 L . o2

where the notation ~ means approximately distributed as. The variance in
(2.65) goes to zero as L — oo, which implies that the sample average converges
to the mean u, as previously stated in the law of large numbers. The added
benefit of (2.65) is that it also suggests that the variance goes to zero as 1/L
and that the deviation from the mean is approximately Gaussian distributed.

The Gaussian distribution has unbounded support (i.e., we can get ar-
bitrarily large positive or negative realizations), but the probability mass is
concentrated around the mean. In fact, it is much more concentrated than the
worst-case situation determined by Chebyshev’s inequality. The probabilities
of obtaining realizations that are beyond one, two, or three standard deviations
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away from the mean value are

o 2 032 ifk=1,
Pr{lz — | > ko) = 1 / 30~ 005 ifk=2, (2.66)
\/ 2
—ho V2mo 0.003 if k= 3.

Hence, only 5% of all realizations are beyond two standard deviations from
the mean, while (2.62) states that it can be the case for up to 25% of all
realizations when considering an arbitrary random distribution. Figure 2.5
illustrates that 95% of all realizations appear from —2c0 to 20.

2.2.2 Complex Gaussian Distribution

We will now consider the complex generalization of the Gaussian distribution.
Suppose a,b ~ N(0,02/2) are two independent Gaussian variables, each
having zero mean and variance 02/2. The complex variable z = a + jb will
then have a complex Gaussian distribution. We denote it as 2 ~ N¢(0, 0?)

and the PDF is ) i
||
fx(w) = —5e 7. (2.67)

2
o
This distribution has the mean E{z} = 0 and variance

Var{z} = E{|z|*} = E{a® + b*} = 02, (2.68)

where the real and imaginary parts each contribute with 02/2. The PDF in
(2.67) is illustrated in Figure 2.6 and has the classical shape of a Gaussian
distribution but in two dimensions. There are other types of complex Gaussian
distributions than the one described above. To be precise, we have defined
what is known as the circularly symmetric complexr Gaussian distribution. The
circular symmetry refers to the fact that if # ~ Ng(0,02), then e has the
same distribution for any value of ¢ € R. In other words, the distribution
does not change when applying a phase-shift. This property can be proved by
noticing that f,(z) = fi(ze/¥) for the PDF in (2.67). The circular symmetry
implies that we can rotate the PDF in the complex plane without changing
its shape, as seen from Figure 2.6. Looking at the mean value, the circular
symmetry implies E{x} = E{zel¥} = ¢/¥E{z}, which only holds for all ) € R
if E{z} = 0. Hence, all circularly symmetric distributions have zero means. The
circular symmetry follows from the assumptions of having independent and
identically distributed real and imaginary parts. One can define other complex
Gaussian distributions that do not satisfy these conditions, but these are not
considered in this book. We will refer to the circularly symmetric complex
Gaussian distribution as the complex Gaussian distribution for brevity.
Multiplying a complex Gaussian distribution with a constant ¢ € C will
change the variance but not the shape of the distribution. Suppose =z ~
Nc(0,0?) and recall that the variance can be computed as E{|z|?} = o2 since



72 Theoretical Foundations
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Figure 2.6: The PDF of the circularly symmetric complex Gaussian distribution & ~ N¢(0, 1).
The real and imaginary parts are statistically independent and jointly Gaussian distributed
with identical variance.

the variable has zero mean. The random variable cx will, therefore, have the
variance E{|cz|*} = |c[?E{|z|*} = |c|?c. This implies that cx ~ N¢(0,|c[*c?).

2.2.3 Covariance and Conditional Distribution

Multiple random variables can affect a communication system, some inde-
pendent (see Definition 2.5) and others statistically dependent. Consider the
two independent random variables v ~ N¢(0,02) and w ~ N¢(0,02). The
summation of these variables is also complex Gaussian distributed and has a
variance that is the summation of the individual variances:

z=v+w~Nc(0,02+02). (2.69)

Although v and w are independent variables, z is clearly dependent on both.

The variance concept can be extended to measure the covariance between
two random variables. For two arbitrary random variables z and v, the
covariance is defined as

E{(z = E{z})(v — E{v})"} = E{z0"} — E{z}E{v"}, (2.70)

where the complex conjugate is important when the variables are complex.
The variables are said to be uncorrelated if the covariance is zero, while a non-
zero covariance measures how strongly the random realization of one variable
affects the realization of the other variable. Independent random variables are
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always uncorrelated, but the converse might not hold: uncorrelated variables
can still influence each others’ realizations but in more subtle ways.
The covariance in (2.70) can be both positive and negative, and takes values

between —y/Var{z}Var{v} and /Var{z}Var{v}. The bounds are achieved

when the two variables are equal except for a negative/positive scaling factor.

Example 2.8. What is the covariance between z and v, defined in (2.69)?
Direct computation based on the covariance definition in (2.70) yields

E{(z — E{z})(v — E{v})*} = E{zv*} = E{vv*} + E{wv*} = 02, (2.71)

where the last equality follows from the fact that E{wv*} = E{w}E{v*} =0
since w and v are independent. The non-zero covariance demonstrates that z
and v are dependent random variables and implies that their realizations are
statistically connected, which is logical since z = v + w.

Suppose we can observe z but want to know the value of v. We are then
interested in the conditional PDF f,,(v|2) of v given the realization of z. If
we know the opposite conditional PDF f,,(z|v), we can compute f,,(v|2)
using Bayes’ theorem:

fa(2[v) fu(v)
f2(2) '

This rule says that f,,(v|z) and f,,(z|v) are equal up to the scaling factor
fu(v)/ f2(2). We can compute this factor using the marginal PDFs of z and v.

foiz(vlz) = (2.72)

Example 2.9. Determine the conditional PDFs f,,(z|v) and f,,(v|z) that
relate the random variables v and z that were defined in (2.69).
If we know v, then z — v = w ~ N¢(0,02). This implies that

1 lz=v|?
- 2
fap(2v) = —5e 7w . (2.73)
o2,
We can now compute f,,(v|z) using Bayes’ theorem in (2.72):
lz=vl? lv|?
1 752 T o2 2 2 2
5 € w o —5€ v 0.2 +O.2 _lz=v|®  |v| + |z]|
Fup(v]z) = == . R N T R
vz =12 To2o2
1 e 02402 vYw
m(o3+03)
2., 2 2 2
2, -2 _oitad o3
o+ o e |t
— Do T u, T (2.74)
w202,

This conditional PDF resembles that of the complex Gaussian distribution.
7505,
o2+02

2
In particular, v — 0_517%302 ~ N¢ (0, ) when z is known.
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2.2.4 Multivariate Complex Gaussian Distribution

A random vector can be created by taking a collection of M random scalar

variables z1,..., x5 and collecting them in a vector
T
x=|1]. (2.75)
TM

This is also known as a multivariate random variable, and the mean is denoted
as E{x}. The variance of the individual entries and the covariance between
any pair of entries is captured by the covariance matriz Cov{x} defined as

Cov{x} = E{(x — E{x})(x — E{x})"}. (2.76)

If we take the conjugate (Hermitian) transpose of this expression, we will get
the same expression, which shows that all covariance matrices are Hermitian
matrices (see Definition 2.3). The covariance matrix is also positive semi-
definite because, for any deterministic y € CM, it holds that

y"Cov{x}y = E{y" (x — E{x})(x ~ E{x})"y} = E {|y"(x ~ E{x})} > 0.
(2.77)
The correlation matriz is similarly defined as E{xx"} without subtracting the
mean. This implies that a deterministic vector x has a zero-valued covariance
matrix but xx" as its correlation matrix. Hence, the covariance matrix is a
better measure of the amount of randomness in the considered vector.
Suppose the M variables are independent and identically distributed
complex Gaussian variables with variance o?; that is, x,, ~ N¢(0,02) for

m = 1,...,M. The mean value is E{x} = 0 since each of the individual
variables has a zero mean. Moreover, the covariance matrix is
Cov{x} = E{(x — E{x})(x — E{x})"} = E{xx"} = 0’1}, (2.78)

where the diagonal entries are the variances of the individual entries and
the zero-valued off-diagonal entries represent that the independent variables
have zero covariance. This multivariate complex Gaussian distribution with
independent entries is denoted as

x ~ Ng(0,0°Tyy). (2.79)

This distribution is often utilized to model receiver noise in communication
systems. It is then referred to as white Gaussian noise, where the color (or lack
thereof) indicates the independence of the entries. Following Definition 2.5,
the PDF of x is the product of M marginal PDFs of the kind in (2.67):

fo) = T e = e (2.80)
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In this book, we will also consider a complex Gaussian random vector
with correlated entries, in which case the covariance matrix is not an identity
matrix. We can create such a matrix by starting from a K-length unit-variance
complex Gaussian random vector with independent entries x ~ N¢(0,Ik)
and an M x K deterministic matrix A with M < K. We can then create an
M-length complex Gaussian random vector x by computing the product

x = AX, (2.81)

irrespective of whether M and K are the same or different. This new random
vector has zero mean since

E{x} = AE{x} = 0. (2.82)
el

The covariance matrix can be computed as

Cov{x} = E{(x - E{x})(x - E{x})"} = E{xx"}
= AR{XXx"} A" = AA". (2.83)
——

=Ix

Hence, the random vector created by the product in (2.81) is distributed as
x ~ Ng(0, AA™). This example shows how we can create a correlated complex
Gaussian vector x from a complex Gaussian vector X with independent entries
by multiplying with a matrix, which will happen later in this book.

Example 2.10. Show that if X ~ Ng(0,Ix), then x = Ux has the same
distribution if U € CE*K is a unitary matrix.

The vector x is created as in (2.81) with A = U. The corresponding
covariance matrix is computed in (2.83) and becomes AA" = UU" = I
since U is unitary. It follows that x ~ N¢ (0, I ), which is the same distribution
as X has. The conclusion is that a vector with uncorrelated complex Gaussian
entries retains its distribution when multiplied by a unitary matrix.

In general, we can define the correlated multivariate complex Gaussian
distribution

x ~ Nc(0,R) (2.84)

for an arbitrary positive definite covariance matrix R. The special case

considered above correspond to R = AA". The PDF is given by

o) = WMdit(R)e—xHRl& (2.85)

Such correlated complex Gaussian vectors are circularly symmetric since
fx(x) = fx(x€¥) for any constant phase-shift 1.
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An important property of complex Gaussian random vectors is that the
joint PDF in (2.85) reduces to the one for independent entries in (2.80) if we
insert the diagonal covariance matrix R = 02I,;. Hence, it is sufficient to
assume that all the entries of x are uncorrelated (i.e., the off-diagonal entries
of R are zero) to get statistical independence as a side-effect. This property
follows from the shape of the multivariate complex Gaussian distribution
and does generally not hold for other random distributions. We will use this
property repeatedly in the book.

Lemma 2.7. If two random variables are jointly complex Gaussian distributed
and uncorrelated, the variables are also statistically independent.

When exposed to a correlated complex Gaussian random vector x, removing
the correlation through signal processing can sometimes be helpful. Since
the covariance matrix R in (2.84) is positive definite, its square root R!/2
(computed as in Lemma 2.2) is invertible and its inverse will be denoted as
R~1/2. Let us define the random variable n = R~1/2x. It is complex Gaussian
distributed with zero mean and the covariance matrix

Cov{n} = E{(n — E{n})(n — E{n})"} = E{nn"}
=R V2E{xx"} R"Y2 =1. (2.86)
——

=R

Hence, n = R~1/2x ~ Nc(0,157) has uncorrelated entries, which are also
statistically independent thanks to Lemma 2.7. This procedure of removing
correlation from a random vector is known as whitening, particularly when
dealing with Gaussian noise. A noise vector with correlated entries is called
colored noise, and the whitening procedure transforms it into white noise, as
defined in (2.79). The theory developed in this book will be based on the
assumption of having white noise, but it can also be applied in the presence
of colored noise by adding a whitening step at the receiver.

Example 2.11. What is the PDF of a multivariate real Gaussian distribution?

If 2, ~ N (ptm,0?) for m =1,..., M are independent variables, then the
PDF of x = [z1,...,xp]" is We_(x_”)T(x_“)/@"Q). We obtain this
expression by taking the product of M PDFs of the kind in (2.63) and defining
© = [p1,...,un]". When the variables are correlated with the covariance

matrix R, the resulting PDF is

1 = TRT (x—p)
2

o ) e (2.87)

Fulx) = (2m) ¥

We denote such a real Gaussian distribution as x ~ N (u, R).
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2.2.5 Rayleigh, Exponential, and X2 Distribution

The PDF of a complex random variable & determines how the magnitude
|z| and the argument arg(z) are distributed. These components are generally
correlated, but if x is complex Gaussian, the circular symmetry implies
that they are independent. In wireless communications, we are particularly
interested in the magnitude since it can describe the amplitude of a signal.
We denote the magnitude as y = |z| > 0 and the argument as ¢ = arg(z) €
[, ), so that & = yel¥. Since the PDF of the complex Gaussian distribution
in (2.67) is defined using the Cartesian form = = R(x) + jS(z), a change of
variables to the polar form consists of two steps: replacing the old variables
with the new variables, followed by the multiplication with the magnitude of
the Jacobian determinant, |J(y,1)|. We can compute the latter term based

on the definition of Jacobian matrices as
Oycos(p)  Oysin(v)
B ]
det ( [63} COZé(’lZ}) Jy Sig(w)] > ‘

BE):;(JC) 89{;(:}0)
det | | onle)  05{w) = o in

% o

o ([0 veastn) )| =ttt ) =
(2.88)

| (y, ¥)| =

Using this method, we can rewrite the PDF in (2.67) of the complex Gaussian
distribution as a function of the magnitude and argument:

2

Fow(y, ) = Lo % (2.89)

mo2

4

for y > 0 while it is zero for y < 0. Since the PDF does not depend on 1, we
can conclude that 4 is uniformly distributed between —7 and 7 (or any other
interval of length 27) and independent of y. We can compute the marginal
distribution of the magnitude as

g 2 u?
K = | Balyw)dw="Je 7 fory >0, (2.90)

This PDF characterizes the variations in the magnitude of a complex Gaussian
random variable. It matches with what is known as the Rayleigh distribution.
Just as the complex Gaussian distribution is characterized by its variance o2,
the Rayleigh distribution is characterized by a scale parameter. For the PDF
in (2.90), the scale parameter can be identified to be o/y/2 and, thus, we can
express the distribution of the magnitude as y ~ Rayleigh(c/v/2). The PDF
with ¢ = 1 is illustrated in Figure 2.7. When a communication channel is
complex Gaussian distributed, it is referred to as Rayleigh fading since the
magnitude is Rayleigh distributed. We will return to this later in the book.
When analyzing the SNR of a communication system, we are not interested
in the amplitude y = |z| but its square y? = |z|? (the SNR is a ratio between
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the signal power and noise power). Let us denote this random variable as
z = yy2. We can obtain the PDF of z by following the same two steps as above:
replace the y in (2.90) with \/z and then multiply by the magnitude of the
Jacobian determinant |J(z)|, which is |0y/0z| = 1/(24/z) in this case. Using
this method, we obtain

fo2) = =e 57 for z >0, (2.91)
g

while it is zero for z < 0. This PDF characterizes the variations in the squared
magnitude of a complex Gaussian random variable. It matches what is known
as the exponential distribution. This distribution is generally characterized
by a so-called rate parameter, which in this case equals 1/02. Hence, we can
express the distribution of the squared magnitude as z ~ Exp(1/0?). The
PDF with 02 = 1 is illustrated in Figure 2.7.

A useful property of the exponential distribution is that

E{z"} = nl(c®)" (2.92)
for any positive integer n, where n! denotes the factorial.
Example 2.12. Suppose z ~ N¢(0,02). What are the mean, quadratic mean,
and variance of |x|??

Since z = |z|?> ~ Exp(1/0?), we can utilize the property in (2.92) to
compute the mean, quadratic mean, and variance of |z|? as follows:

E{|z]*} = E{z} = o2, (2.93)
E {|z|*} = E {z*} = 20*, (2.94)
Var {|o2} = E{|z[*} — (E{|2]})* = o*. (2.95)

We can also utilize the property in (2.92) when computing mean values that
involve an M-dimensional complex Gaussian random vector with independent
entries: X = [z1,...,2m]|" ~ Ng(0,0%Iy). Since 2, = |2,m|? ~ Exp(1/0?) for
m=1,..., M, we can compute mean, quadratic mean, and variance of the
squared norm ||x||? as follows:

E {|Ix|*} = Z E{zm} = Mo?, (2.96)

E{”XH4} =E <zj\i:1 Zm) Z E{Z }"’ Z ZE{Zm}E{Zn}

m=1n=1
n#m

=2Mc* + M(M —1)o?0* = (M? + M)o* (2.97)
Var {||x|2} = E{|lx||*} - (E{|IxI*})* = Mc*. (2.98)
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Figure 2.7: Examples of the PDFs of the Rayleigh distribution, exponential distribution, and
x2-distribution.

These results were obtained by utilizing the fact that [|x||* = Zf\n/le Zm
is the sum of M independent random variables with identical exponential
distribution. By utilizing the fact that the PDF of a sum of independent
random variables is the convolution of the marginal PDFs, one can show that
the squared norm has the PDF

—Z
:L,Mfle o2

foHz(x) = m for x > 0, (2.99)
while it is zero for < 0. This distribution is often referred to as the y2-
distribution in the communication literature and denoted as x2(2M ), where
2M is called the degrees of freedom since ||x||? is the sum of 2M squared real
Gaussian variables. However, formally speaking, it is only in the special case
of 02 = 2 that one obtains that random distribution. Hence, we will refer to
(2.99) as the scaled x?-distribution in this book. The mean Mo? of ||x||? was
computed in (2.96), while the variance Mo* was computed in (2.98). If we set
M =1, then the x?(2M)-distribution reduces to the exponential distribution.
The PDF with M =2 and 02 = 1 is illustrated in Figure 2.7.

2.2.6 Cumulative Distribution Function

It is common to compare the realization of a real-valued random variable
with a threshold when analyzing the performance of a communication system.
Suppose the random variable is = and the threshold is a, then the probability
Pr{z < a} of x taking realizations smaller than or equal to a is important.
To characterize how its value depends on the threshold, we can define the
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Figure 2.8: The CDF of the Rayleigh distribution for 62 = 1, where the 25% percentile, median,
and 75% percentile points are marked.

cumulative distribution function (CDF) Fy(a) as
Fi(a) = Pr{z < a} = / f(a)0w, (2.100)

which is computed by integrating the PDF from its lower limit (generally
from —oo, but we can start from 0 for positive random variables) to a. The
CDF is a monotonically increasing function of a since we are integrating the
non-negative PDF f,(z) over an increasing interval. Moreover, it only takes
values between 0 and 1, which equal the probability of the event Pr{z < a}.
The CDF provides a full characterization of the random distribution, just
as the PDF does; for example, the PDF can be retained from the CDF by
computing the first-order derivative:

2 Efa) = fula). (2.101)
The value of a for which Fi(a) = 0.5 is known as the median of the
distribution because it is equally likely to obtain a realization above and below
it. If the CDF is strictly increasing and continuous, the inverse CDF F_(y)
exists and is called the percentile function. We can then compute the median
as F,71(0.5). The point F1(0.25) is called the 25% percentile since 25% of
all random realizations are below it, while the point F,1(0.75) is called the
75% percentile since 75% of all random realizations are below it (and 25% are
above it). The small and large percentiles are of interest when analyzing a
random variable’s worst-case and best-case realizations.
Figure 2.8 shows the CDF of the Rayleigh distribution for 6% = 1. The
horizontal axis emphasizes the 25% percentile point /In(4/3) where the CDF
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is 0.25, the median /In(2) where the CDF is 0.5, and the 75% percentile
point /In(4) where the CDF is 0.75. Many different CDF curves can be
drawn through these three points; thus, the entire CDF is required to obtain
a complete statistical characterization of the Rayleigh distribution. The CDF
and percentiles used in the figure are computed as follows.

Example 2.13. Consider the Rayleigh distribution 2 ~ Rayleigh(c/v/2) in
(2.90). What CDF and percentile function does it have?

12
The PDF is fi(x) = 22e” 2% for > 0, thus the CDF becomes

F(a) = —e 20r = |:—62:| —l=pg (2.102)
00 0
The percentile function F, !(y) can be obtained by inverting the CDF in
(2.102) as

a? a2 a
y=1l—-e¢ o2 = 1l—y=e¢ 2 = In(l-y) =—-——
o

= F '(y) =a=o04/In () (2.103)

We can use this function to identify any percentile of the distribution;
for example, the median is F,!(0.5) = o+/In(2), the 25% percentile is
F71(0.25) = 0+/In(4/3), and the 75% percentile is F_1(0.75) = o+/In(4).

These values are indicated on the horizontal axis in Figure 2.8 for o2 = 1.

2.2.7 Random Process

A random continuous-time signal z(t) is called a random process and is a
generalization of a multivariate random variable. More precisely, if we take
samples of a random process at the M time instances t1,...,¢5; and collect
them in a vector
(t)
: , (2.104)
x(tar)
then we obtain a multivariate random variable.

The random processes considered in this book are wide-sense stationary,
which means that the random distribution is constant over time. Three specific
properties are satisfied for such processes. Firstly, the mean value p = E{z(t)}
does not depend on the time ¢. Secondly, the variance 02 = E{|z(¢) — u|?} also
does not depend on the time t. The third property relates to how the random
process is correlated in time, measured by the autocorrelation function. The
correlation between the samples at time ¢; and s should only depend on the
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time lag to —t1; between the samples and not on their individual values. Hence,
the autocorrelation function of a wide-sense stationary process is denoted as

r(ts — t1) = E{a(t)z* (t2)}. (2.105)

A white random process changes so rapidly with the time that x(¢1)
and x(t2) are only correlated when t; = to. This is represented by the
autocorrelation function

T(tg — t1> = 65<t2 - tl), (2106)

where ¢ = |u|? + 02 is called the power spectral density and §(t) is the Dirac
delta function.

A complexr Gaussian random process has the property that the vector in
(2.104) becomes a multivariate complex Gaussian distribution, irrespective
of the time instances at which the samples are taken. The noise in wireless
communications is often modeled as a white complex Gaussian random process.

2.3 Signal Modeling

Wireless communication systems transfer data by utilizing electromagnetic
stgnals. These signals propagate from the transmitter to the receiver over
an analog wireless channel that acts as a system that filters the signal. This
section provides the fundamental connection between the physical continuous-
time signal models and the simple discrete-time models used in later book
sections. We will use standard results from signals-and-systems theory to
establish the connection.

Suppose we are allowed to communicate using a real-valued passband
signal with bandwidth B centered around a carrier frequency f.. For example,
a typical scenario in the first 5G deployments is f. = 3 GHz and B = 100 MHz.
The passband assumption implies that B < 2f. so that the signal does not
contain the near-zero frequency range. In practice, we typically have B < f¢,
as in the given example. Let the transmitted signal be denoted as z;,(t), where
t € R is the continuous time variable and the subscript p indicates it is a
passband signal. The amplitude spectrum of such a signal is sketched in
Figure 2.9(a). The signal z,(t) is real-valued; thus, the spectrum is symmetric
for positive and negative frequencies.

Wireless channels generally have time-varying properties, for example, due
to the movement of the transmitter, receiver, or objects in the propagation
environment. However, we can divide the transmission into blocks such that
the channel is (approximately) time-invariant within each block. Following
that approach, we assume that the wireless channel can be represented by a
linear time-invariant (LTI) system. A key property of such systems is that
the filtering is entirely determined by the real-valued impulse response gy (t).
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Figure 2.9: Sketch of a real-valued passband signal z,(t) with center frequency f. and
bandwidth B that can be communicated over a wireless channel, and the equivalent complex-
valued baseband signal z(¢) that can be communicated over the complex baseband representation
of the channel. The mathematical relation between the two signals is given in (2.111).

In particular, the output signal v, (t) is the convolution between the input
signal and impulse response:

o0

0plt) = g0+ 20)(8) = | gplw)zp(t — w)ou. (2.107)

— 00

The impulse response must satisfy the technical condition [~ |g,(t)|0t < oo
for (2.107) to hold, but this is always the case in wireless communications
since otherwise, one could receive more signal energy than was transmitted.

The input-output relation in (2.107) is illustrated in Figure 2.10(a). We
will later add the transmitter and receiver hardware to this model, including
the additive noise, but we will first reformulate the basic relation.

2.3.1 Complex Baseband Representation

To avoid making the communication system design dependent on a particular
value of f., the signal processing algorithms used in wireless communications
are developed for an equivalent baseband system where the signals are centered
around the zero frequency. If we take the spectrum of the passband signal
in Figure 2.9(a) and downshift it to the baseband, we obtain the equivalent
signal z(t) whose amplitude spectrum is illustrated in Figure 2.9(b). This is
called the complex baseband representation of the signal in Figure 2.9(a). If
the hardware is designed to generate baseband signals of this type, we can
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Channel

2p(t) * gp(t) + Up(t) = (gp * 2p)(t)

(a) Relation between the transmitted and received passband signals.

Equivalent channel

2(t) == g(t) P v(t) = (g% 2)(t)

(b) Equivalent relation using complex-baseband signals.

Figure 2.10: Block diagrams of the input-output relations when transmitting a signal over
a wireless channel. The practical system transmits passband signals but can be equivalently
represented in the complex baseband.

modulate the signals up to different carrier frequencies at different times (e.g.,
a mobile phone supports many bands so that it can be used worldwide).

We can establish a mathematical connection between z,(t) and z(¢) in the
frequency domain by utilizing the Fourier transform F{-}. The frequency-
domain representation of an arbitrary continuous-time signal a(t) is defined
as

A(f) = Flat)} = /_o:o a(t)e 2 1ot (2.108)

The Fourier transform is generally complex-valued, but it is conjugate sym-
metric if the signal a(t) is real-valued: A*(—f) = A(f). This is proved as

AN = ([ aweiron) = [ amenion=a(p), (2109
where the last equality follows from that a(t) = a*(t) for real-valued signals.

The frequency-domain representations of the passband signal and baseband
signal respectively become Z,(f) = F{z,(t)} and Z(f) = F{z(t)} when using
the Fourier transform. We can then express the relation shown in Figure 2.9
as

Z(f B fc) + Z*(_f B fc)

The scaling factor 1/y/2 ensures that the passband and baseband signals
have the same energy; that is, [*_|Z,(f)|?0f = [0 |Z(f)|?0f. By taking

the inverse Fourier transform of both 81des of (2. 110) it follows that the
time-domain signals z,(t) and z(t) are related as

(2.110)

B 2(t)el?mfet o *(t)ei2mfet
Zp(t) - \/i
= V2R <z(t)612“fct) . (2.111)
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We notice that the amplitude spectrum of z(¢) in Figure 2.9(b) is not symmetric
for positive and negative frequencies, which implies that it is a complex-valued
signal. Any real-valued passband signal z,(¢) with bandwidth B can be
equivalently represented by a complex-valued signal z(¢) with bandwidth B/2
according to (2.111). The bandwidth is halved, but there are instead both real
and imaginary signal dimensions. The signal z(¢) has the same total energy as
2p(t), meaning that [*_[z(t)[20t = [*7_|2,(t)[|?0t, but the energy is moved
to different frequencies.!

Next, we would like to find a complex baseband representation of the entire
output-input relation in (2.107), so we can abstract away the carrier frequency
and only analyze the baseband. To this end, we let G,(f) = F{gp(t)} denote
the frequency response of the system, which determines how the channel filters
different frequencies of the input signal. By taking the Fourier transform of
both sides of (2.107) and utilizing (2.110), we obtain

Tp(f) = Flop(t)} = Gp(f) Zp(f)
Z(f — fc) + Z*(ff — fc)
=G
Go(NZ(f— fo)+G(=HZ*(—f — fe
L GlZU S F CUNT T 0Dy
V2

The last equality in (2.112) follows the fact that G,(f) = G;(—f) for real-
valued systems. Since (2.110) and (2.111) provide a general connection between
a passband signal and its equivalent complex-baseband signal, we can define
the received signal v(t) in the complex baseband and relate it to the received
passband signal as

vp(t) = R (V2u(t)e ) (2.113)

Tp(f) _ .F{’Up(t)} — T(f - fc) "i;/’;*(_f — fc)7

where Y(f) = F{v(t)}. By comparing (2.112) with (2.114), we can identify
the Fourier transform of the received baseband signal as

T(f=fo) =Go(N)Z(f = fo) = T()=GCp(f+[)Z(f). (2.115)

Taking the inverse Fourier transform of (2.115) yields

(2.114)

[ee]

w(t) = (g # 2)(t) = / g(u)=(t — u)du, (2.116)

— 00
where the complex baseband representation of the system has the frequency
response G(f) = Gp(f + f.) and impulse response

g(t) = gp(t)e e, (2.117)

L1f the total signal energy is infinite, we can compare the signal powers and conclude that

T
these are equal. The power of a signal a(t) is computed as limp_, o % f—T la(t)|20t.
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We identify (2.116) as an equivalent way to describe a continuous-time com-
munication channel in the complex baseband. The input-output relation is
illustrated in Figure 2.10(b). Note that the complex-baseband terminology only
refers to the signals: we have taken the passband signal z,(t) and downshifted
it to the complex-baseband signal z(t). In contrast, the impulse responses
in wireless communications are neither passband nor baseband filters. In
fact, the wireless medium supports communication at any frequency and
bandwidth, and causes varying attenuation and delays to signals in different
bands. However, by sending signals confined to a specific frequency range
[fc — B/2, fo + B/2], we are only using the corresponding part of the wireless
medium. In contrast, other systems can use different parts simultaneously.
The only difference between g(¢) in (2.117) and the original impulse response
gp(t) is that it has been downshifted along the frequency axis so that the
channel filters the signal in an equivalent manner.

Without loss of generality, we will consider the complex baseband in the
remainder of this book, except at a few places where we model the impulse
response gp(t) of a particular wireless channel and then use (2.117) to obtain
the equivalent impulse response in the complex baseband.

2.3.2 From Continuous Time to Discrete Time

Digital data is described by a sequence of bits. In digital communications, these
bits are further represented by a discrete data sequence {z[l]} of symbols
selected based on the bits, where the integer [ is the discrete time index.
The symbols are selected from the complex set C, such that z[l] € C. More
precisely, a modulation and channel coding scheme is utilized to decide how
many bits each symbol represents and how much redundancy is introduced to
enable error correction in the receiver. We need to create a continuous-time
signal z(t) that contains the data symbols {z[l]} and can be transmitted as
an analog electromagnetic wave over the wireless channel. This is achieved by
pulse-amplitude modulation (PAM). We will not explain all the underlying
theory but focus on the properties needed to derive the discrete-time model
we will use in the remainder of the book.

The essence of PAM is that each of the symbols {x[l]} is multiplied by a
continuous-time pulse and then transmitted one after the other. We consider
PAM with the ideal sinc-pulse?

p(t) = VBsine(Bt) = @%, (2.118)
which has the Fourier transform
P(f) = Fip(t)} = {1/ VB IS B

0, if |f| > B/2. (2.119)

2In the communications and signal processing literature, the sinc function is defined as
sinc(t) = sin(nt)/(wt) for t # 0 and sinc(0) = 1. Other definitions exist in other contexts.
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This baseband pulse has bandwidth B/2, can be used as an ideal lowpass
filter in the frequency domain, and has unit energy: [0 |P(f)|?0f = 1. An
illustration of these functions is provided in Figure 2.11. The sinc-function
sinc(t) oscillates in the time domain with a linearly reducing amplitude and
zero-crossings when t is a non-zero integer. Hence, \/Esinc(Bt) has zero-
crossing when ¢ is a non-zero integer divided by B. We will exploit this feature
to transmit a new data symbol z[l] every 1/B seconds while keeping them
separable at the receiver. Any pulse function with these zero-crossings is
said to satisfy the Nyquist criterion and could be used instead of the sinc-
function, but one can prove that the feasible alternatives have a strictly larger
bandwidth than B/2. The bandwidth of the transmitted signal will match that
of the pulse; thus, we will consider PAM using the most bandwidth-efficient
pulse in this book. If we increase B, then v/Bsinc(Bt) will be compressed in
the time domain (i.e., having more zero-crossings per second so we can send
more data symbols), while it will expand in the frequency domain.
When using PAM, the continuous-time complex-baseband signal is

(t) = i x[k;]p<t—g>, (2.120)

k=—o00

where we notice that a new symbol is transmitted every 1/B seconds and
multiplied by a time-delayed version of p(t). It is common to refer to 1/B as
the symbol time and B as the symbol rate (in addition to being the bandwidth).
Notably, B complex-valued symbols are transmitted per second, and more
bandwidth leads to a shorter time between the symbols. The PAM procedure
is tightly connected to the Nyquist-Shannon sampling theorem [38, Th. 1],
which can be stated for complex signals as follows [39, Sec. 2.8].

Lemma 2.8. If a complex-valued continuous-time signal z(t) only contains
frequencies in an interval smaller than B Hz, it is entirely determined by a
series of samples spaced 1/B seconds apart.

Two commonly considered frequency intervals that satisfy this condition
are —B/2 < f < B/2 and —B/2 < f < B/2, which can be written in short
form as (—=B/2, B/2| and [-B/2, B/2), respectively. The interval shrinks to
(—B/2, B/2) for real-valued signals since such signals always contain the same
positive and negative frequencies. The intuition behind the sampling theorem
is that the largest frequency (in magnitude) determines how rapidly the signal
can change. If the largest frequency is B/2 or —B/2 (but not both), then the
fastest signal components have a period of 2/B. We can uniquely capture all
signal variations if we sample the signal twice per period (i.e., at a sampling
rate of B Hz). This specific sampling rate is known as the Nyquist rate and
gives rise to B samples per second. It is also called the critical sampling rate
to signify that it is fully acceptable to sample the signal more densely, but it
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Figure 2.11: The unit-energy sinc function v/ Bsinc(Bt) is shown in the time domain in (a),
while the Fourier transform is shown in (b).

is critically important not to sample more sparsely in time because that will
create ambiguity; that is, multiple signals can give rise to the same samples,
which is known as aliasing. We are transmitting data at the Nyquist rate in
digital communications, and it is the corresponding signal samples that we call
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“symbols” and select to represent information bits.? Since we are dealing with
a complex-valued baseband signal, the B samples are also complex-valued.

Figure 2.12(a) shows the pulses that are utilized for transmitting three
subsequent symbols in PAM: p(t) = v/Bsinc(Bt), p(t — 1/B), and p(t — 2/B).
More precisely, p(t) is multiplied by z[0], p(t — 1/B) is multiplied by z[1],
and p(t — 2/B) is multiplied by z[2], and then summed up to create z(t).
The symbol values become the amplitudes of the respective pulses, which
explains why PAM stands for pulse-amplitude modulation. Figure 2.12(b)
exemplifies the resulting PAM signal z(t) in (2.120) with «[0] = 1, z[1] = 0.5,
and z[2] = —0.5 (and z[k] = 0 for all other k). We notice that the duration
of each pulse is much larger than the symbol time; thus, each symbol affects
the shape of z(t) in a relatively broad time interval. This is an unavoidable
side-effect of using pulses with as little bandwidth as possible. Nevertheless,
we have z(k/B) = p(0)z[k] = v/ Bxz[k] since the pulses are designed to have
zero-crossings at all non-zero integers divided by B. This can be observed in
Figure 2.12(b) where z(t) intersects the peak values of the respective pulses.

We have now designed a transmitter that maps the discrete-time symbol
sequence {z[l]} to a continuous-time signal z(¢) that can be transmitted over
the complex-baseband system. The transmitter operation is illustrated in
Figure 2.13, where it is attached to the channel from Figure 2.10(b).

Next, we will design a receiver that can extract the transmitted discrete-
time signals by taking samples of the received signal. The main complication
is that thermal noise is added to v(t) in the receiver hardware due to the
random motion of free electrons caused by thermal agitation. We model the
noise by a white circularly symmetric complex Gaussian random process w(t)
with constant power spectral density No W/Hz for all (relevant) frequencies.*
The Gaussian distribution can be motivated by the central limit theorem
in Lemma 2.6 since the random motion of many electrons gives rise to
approximately Gaussian randomness. By adding the noise to the channel
output v(t) in (2.116), we obtain

(t) = v(t) + w(t) = (g % 2)(t) + w(t)

> k] (g*p) <t - Z) +w(t), (2.121)

k=—00

3The sampling rate must be strictly larger than the Nyquist rate if a signal that contains
the frequencies £B/2 should be identifiable after sampling. This can be seen from the fact that
Nyquist sampling of a sine signal results in all samples being zero because they are taken every
time the signal crosses zero. Practical communication signals are never perfectly bandlimited;
thus, oversampling is often utilized to avoid aliasing and enable digital filtering that deals with
the out-of-band signal components. These implementation details are beyond the scope of this
book, where we consider ideal pulses and sampling at the Nyquist rate for conceptual simplicity.

4A practical signal cannot have a constant power spectral density for all frequencies because
then it will have infinite power. Hence, we assume that the power spectral density is constant
for all relevant frequencies to consider in wireless communications but can drop to zero for other
frequencies to keep the power finite (this happens in practice for extremely large frequencies).
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Figure 2.12: The PAM signal z(t) defined in (2.120) uses time-shifted pulses, as illustrated in
(a) for p(t) = v/ Bsinc(Bt). These pulses are multiplied by different symbol values and summed
up to create z(t), as shown in (b)
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Transmitter w(t) Receiver

i

Figure 2.13: The transmitter of a communication system generates a continuous-time signal
z(t) from the discrete-time symbol sequence {z[l]}, using PAM. The receiver is undoing this
operation by lowpass filtering (to suppress noise) and sampling. The channel in the middle is
the same as in Figure 2.10(b).

where the last equality follows from (2.120). The additive noise is spread over
all frequencies, while the desired signal v(t) is bandlimited to |f| < B/2 by
design. Hence, we can remove the out-of-band noise by lowpass filtering ()
without affecting the desired signal.® The sinc-pulse p(t) defined in (2.118)
and (2.119) is an ideal lowpass filter that can be used for this purpose. We
will filter p(t) by p(t) and take samples of the output at the same rate as the
symbols are transmitted; that is, one sample every 1/B seconds. We denote
the time instances of the samples as ¢t = [/ B, where [ is the integer sample
index, and thereby obtain the sampled received signal

yll) = (o) (8)]

t=Il/B
.- k
= k;@ﬂ’d (p*g*p) (t — B) o + (p * w)(t))t:l/B
= l—k
= z[k](p* g *p) ( =5~ | +nll; 2.122
k_z_:oo[](pgp)(3> ] (2.122)

where the discrete-time noise n[l] can be shown (see Exercise 2.5) to be
complex Gaussian distributed and independent for different I:

nfl] = (pew) (t) |~ Nc(0, No). (2.123)
t=1/B
We have now derived the discrete-time system model (2.122) that determines
how the sampled received signal y[l] depends on the input symbol sequence
{z[k]}. Hence, we can abstract away the notationally complicated continuous-
time description of the communication system and only consider discrete-time
models in the remainder of this book.

2.3.3 Basic Wireless Channel Modeling

Wireless channels have a particular structure that we can utilize to simplify
the system model: the received signal is a summation of several attenuated and

5This operation is also necessary in practice to filter out interference from other wireless
systems operating in neighboring frequency bands.
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Figure 2.14: The passband channel model in (2.124) consists of L components with different
attenuation «; and delay 7;. This figure illustrates how these components can be connected to
different propagation paths.

delayed copies of the transmitted signal (i.e., a superposition of echos). Suppose
the received signal consists of L copies, each having an attenuation «; € [0, 1]
and a delay 7; > 0 seconds, for ¢ = 1,..., L. The receiver synchronizes its
clock to the transmitter by delaying it by > 0 seconds to compensate for
the propagation delays. The receiver will then observe a superposition of L
signal copies that are delayed by 7, —n € R, for ¢ = 1,..., L. We can write
the impulse response of the channel in the passband as

L
gp(t) = D_aid(t +n— ) (2.124)

and it then follows from (2.117) that the equivalent impulse response in the
complex baseband is

L
g(t) = e PTI5(t 4 — 7). (2.125)
i=1
Figure 2.14 illustrates how the L copies can be connected to different prop-
agation paths in the environment. The delay of a path is closely related to
the length of the corresponding path, while the attenuation is determined by
the distance that the signal has traveled (as in free-space propagation) and
which objects the signal has interacted with along the way. Note that the
impulse response in the complex baseband contains additional phase-shifts
that depend on the carrier frequency.
The channel g(t) appears in (2.122) as the convolution (p*g*p)(t) sampled
at time ¢ = 2%, For the model in (2.125), this convolution term becomes

L

(P*g*p)(t) = e T (pup)(t+n—7) (2.126)
=1
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by utilizing the fact® that the convolution between an arbitrary function f(t)
and the delayed Dirac delta function e 527f<t§(¢t —7) is equal to e 2™ /e™ f(t —7),
where 7 = 7, —n and f(t) = (p*p)(t) in this case. We further notice that
(p * p)(t) = sinc(Bt) since the Fourier transform of (p * p)(t) is

f{<p*p><t>}:P<f>P<f>={f§’ W< B2 g 197

0, if|f|> B2,

which coincides with the Fourier transform of sinc(Bt). By utilizing this
property and (2.126), we can simplify (2.122) as

oo L
yll] = Z x[k] Zaie_j%f“(”_”)sinc((l —k)+B(n—m)) +n[l]. (2.128)

k=—o00 =1

2.3.4 Discrete Memoryless Channel Model

The received signal y[l] in (2.128) at time ! depends on multiple transmitted
symbols, as can be seen by the summation over k. Since the symbols were
transmitted one after the other, the channel has created the intersymbol
interference. This happens when the L paths in our channel model have
widely different lengths/delays so that a symbol that reaches the receiver over
a short path arrives at the same time as a previous symbol arrives over a
longer path. Another way to view it is that the received signal y[l] is not
only containing the latest transmitted symbol z[l] but also has a memory of
previously transmitted symbols (and potentially future symbols due to the
non-causal sinc-pulse). The memory effect is undesired and can be combatted
in various ways. We will identify a condition for when the memory vanishes.

If all the channel components have roughly the same delay, we can synchro-
nize the receiver by selecting 7 such that B(n — 7;) =~ 0 for all i. To alleviate
the channel memory, we want the following approximation to hold:

1, ifl=k,

: (2.129)
0, ifl#k.

sine((l — k) + B(n — 7;)) ~ sinc(l — k) = {

Since we can always make this approximation tight by selecting a sufficiently
small bandwidth B, this is known as the narrowband signal assumption. This
result follows from two assumptions that we have made. First, p(t) was selected
to be the pulse in the PAM since it satisfies the Nyquist criterion; that is,
(px p)(l/B) is zero for all integers [ except [ = 0. Second, the narrowband
assumption implies that the channel will not tamper with the Nyquist criterion.
We stress that the narrowband assumption is valid for large bandwidths in
environments with tiny path delay differences (or only one path).

6The convolution is computed as ffooo e 12 fet§(y — 1) f(t — u)ou = e 27 feT f(t — T) by
using the sifting property of the Dirac delta function.
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Figure 2.15: A discrete memoryless SISO channel with input z[l] and output y[l] = h-z[l] +n[l],
where [ is a discrete time index, h is the channel response, and n|l] is the independent complex
Gaussian receiver noise.

By inserting (2.129) into (2.128), the system model simplifies to

yll] = Z zlk Z e 2 fe(ri=Mgine(l — k) + nli]
+n[l], (2.130)

where [ is a discrete-time index, and the channel is now represented by

L
h=> " aje i2rfelrimn), (2.131)
i=1

From now on, we will refer to h € C as the channel response and note that
B = |h|? is the channel gain described in Chapter 1. In some parts of this
book, we will utilize h as an arbitrary channel response, while there are other
parts where we will utilize and generalize the specific structure in (2.131).

Interestingly, we can represent the entire continuous-time communication
system in Figure 2.13 by the simple equation (2.130). This is called the symbol-
sampled discrete-time representation of the channel and will be used in the
remainder of this book without loss of generality. A block diagram for this
channel is given in Figure 2.15, where we also stress that this is a single-input
single-output (SISO) channel with one input to the channel and one output.

The type of channel in (2.130) is also known as a discrete memoryless
channel since the received signal y[l] only depends on one transmitted signal
z[l] and one independent noise realization n[l]; there is no memory of previous
time instances or impact from later time instances. For this reason, we can
just as well drop the time index [ and get the system model

y=h-z+n. (2.132)

When designing the input signal x, we often treat it as a random variable. We
will let ¢ denote the average signal energy per symbol (which is a measure of
signal power), which implies E{|x|?} = ¢. The system in (2.132) is also known
as an additive white Gaussian noise (AWGN) channel.
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2.4 Performance Metrics

This section explains how much information can be transmitted reliably over
the discrete memoryless channel in (2.132). We consider the transmission of a
finite-sized data packet that represents a particular piece of information (e.g.,
an image, a text document, a piece of a video, or a control command). In this
book, we use the words information and data interchangeably because we
consider transferring bits from a transmitter to a receiver, while abstracting
away what those bits might represent. However, we stress that data generally
refers to the raw sequence of bits considered within a communication system,
while information is the application-level interpretation of these bits.
A data packet is characterized by the following;:

e How many symbols the packet contains, which is the number of times
we will transmit over the channel in (2.132);

o How many data bits each of these symbols represent, determined by the
modulation and coding scheme;

e How large the probability of incorrect decoding is at the receiver.

When transmitting a packet containing a small number of symbols, the proba-
bility of incorrect decoding is a major concern. Hence, a common performance
metric is the symbol error probability (also called the symbol error rate), which
is the probability that an arbitrary symbol z[l] is decoded incorrectly. This
metric has many variations, such as the bit error probability and packet error
probability. The values of these error probabilities depend on the choice of the
modulation and coding scheme, and the SNR of the channel. In each case, one
can derive exact or approximate error probability expressions, which often
contain the Gaussian Q-function due to the Gaussian noise.

Letting each symbol describe many data bits is desirable, but the error
probability increases when more bits are represented. Hence, there is a tradeoff
between low error probability and many data bits per symbol. This tradeoff
is non-trivial when transmitting packets with a small number of symbols. It
typically boils down to selecting a non-zero target error probability based
on experiments (e.g., 0.01) and then selecting the “best” modulation and
coding scheme that satisfies that target from a predefined list of schemes.
When an error occurs, we need to retransmit the packet. This tradeoff is
illustrated in Figure 2.16(a), where there are few errors when transmitting a
few bit/symbol and many errors when transmitting many bit/symbol. The
gradual color change shows how the error probability increases gradually.

In contrast, when transmitting a packet with many symbols, the error
probability can be made negligible by selecting the proper modulation and
coding scheme, which renders the error metric superfluous. The “right” scheme
should operate close to, but below, the channel capacity. Claude Shannon
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Figure 2.16: The packet error probability increases the more bits are transmitted per symbol.
When the packet is small, then there is a gradual transition between a few and many errors,
as shown in (a). However, when the packet is large, the transition is concentrated in a small
interval around the channel capacity C.

defined the capacity in the seminal paper [40] from 1948, therefore, it is also
known as the Shannon capacity. Figure 2.16(b) illustrates the essence of this
result, namely that the transition between having few and many errors in the
transmission happens in a small interval around a value C' bit/symbol called
the capacity when the packet is large. It can be formally defined as follows.

Definition 2.6. The channel capacity of a given channel is the highest number
of bits per symbol that can be communicated with arbitrarily low error
probability as the number of symbols in the packet approaches infinity.

The interpretation of the channel capacity is that we can communicate
without error when sending long sequences of symbols, if we carefully select
how many bits each symbol represents. This implies that the gradual colored
transition interval shown in Figure 2.16(b) vanishes asymptotically so that
we get a sudden shift between no errors when operating below the capacity C'
and many errors when operating above the capacity. In this context, “long”
means (at least) 10000 symbols [41], which takes 1ms to transmit when
using B = 10 MHz. This is relatively short in practice; thus, many wireless
communication systems operate very close to the capacity. Since one of the
core motivating factors of multiple antenna communications is to transmit a
large amount of data in a way that is faster and/or requires less power than
in single-antenna communications, it is natural to adopt the channel capacity
as the performance metric in this book. That said, methods to achieve high
capacity with multiple antennas coincide, to a large extent, with methods
that provide low error probabilities when transmitting small data packets.

The unknown randomness of the noise must be combatted to achieve
reliable (error-free) communications. When sending long sequences of sym-
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bols, many independent realizations of the noise will be observed, and the
uncertainty can be averaged out if we code the data in the right way. The
channel capacity determines how much data can be coded into the sequence
of symbols while enabling the noise effect to average out.

2.4.1 Basic Capacity Results

Since the capacity represents the highest number of bits per symbol that can
be communicated without errors, any “bit per symbol” value between zero
and the capacity can also be used without errors. Each such number is called
an achievable data rate, an achievable rate, or a rate.

Definition 2.7. An achievable data rate is a positive number below the channel
capacity. It is possible to communicate at this rate with arbitrarily low error
probability as the number of symbols in the packet approaches infinity.

Although the capacity is of primary interest, there are situations where
the capacity is unknown. Therefore, it is crucial to find achievable data rates
that can be used to communicate without error.

The channel capacity can be rigorously defined for any communication
channel, but we refer to [40] and [42] for the general details. This book only
considers the general concept of discrete memoryless channels. For such a
channel that takes the data symbol = as input and produces y as output, the
channel capacity takes the following form as proved in [38], [40], [42].

Theorem 2.1. Consider a discrete memoryless channel with input € C and
output y € C, which are two random variables specified by the conditional
PDF fyx(y|z). The channel capacity is

€ = max (H(y) ~ H(y]z). (2.133)

where the maximum is taken with respect to all distributions fx(x) of the
input that are considered feasible. The differential entropy H(y) is defined as

Hy) = — / ok () 5 )o (2.134)

using the marginal distribution fy(y) = [, c¢ fyx(yl2) fu(2)0x of y and the
conditional differential entropy H(y|z) is defined as

Hylz) = — / . / g (elylo) o) f@)omdy.  (2.135)

We note that all the integrals in Theorem 2.1 are computed over the entire
complex plane, which is the same as considering a double integral where both
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Figure 2.17: The left circle (green) represents the random variable z and the right circle (red)
represents the random variable y. The circle areas match the respective differential entropies
H(z) and H(y), while the intersection is the mutual information Z(x;y) that can be computed
in the two ways described in (2.137). The capacity is the maximum mutual information; that is,
the information that is contained in both the transmitted signal z and the received signal y.

the real and imaginary parts are integrated from —oo to +00. The capacity
in (2.133) is given by the difference between two terms: H(y) — H(y|x). The
differential entropy H(y) measures our surprisal when observing a realization
of the random variable y at the receiver, which also measures the amount
of unknown information that the variable conveys. The differential entropy
can take any value from —oco to +o00, where a larger value implies a larger
surprisal. Similarly, H(y|x) measures the amount of additional information
we obtain by observing y if we already know z. It holds that H(y) > H(y|z)
since observing x cannot increase our surprisal when we later observe y, but
it can usually reduce the surprisal substantially. Hence, H(y) — H(y|z) > 0
and the channel capacity must be greater than or equal to zero.

More generally, the differential entropy of a sequence x1, ...,z of random
variables can be expressed using the following chain rule:

L
H(xy,....op) =Y H(mlrr,... 2-0). (2.136)
=1

Since the conditioning cannot increase the surprisal, the Ith term in the sum
can be upper bounded by H(z;). It follows that H(z1,...,2z1) < i, H(z),
where equality is achieved if and only if the random variables are independent.

Figure 2.17 shows a Venn diagram where the circles represent the random
variables x and y, and their areas equal the respective differential entropies
H(z) and H(y). The intersection between the circles determines the ability to
extract information about the transmitted signal  from observing the received
signal y. The area of the intersection is H(y) — H(y|x). If we select the input
distribution f,(z) to maximize this area, then it equals the channel capacity C
in Theorem 2.1. There is an important statistical symmetry in this figure, which
implies that the intersection area can also be expressed as H(z)—H(z|y). This
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expression has an intuitive interpretation: The entropy/uncertainty about the
transmitted signal 2 minus the entropy/uncertainty remaining after observing
the received signal y. The difference is the knowledge that we learned from our
observation. It is called the mutual information since it measures the common
information contained in the random variables, and we can denote it as

L(x;y) = M(y) — H(y|w)
=H(z) — H(z|y). (2.137)

The capacity is the maximum mutual information that can be achieved.

Example 2.14. What is the channel capacity if  and y are independent?

In this case, the conditional PDF that determines the capacity reduces to
Jyx(lz) = fy(y), which is the marginal PDF of the output y. The conditional
differential entropy in (2.135) can now be computed as

Holr) == [ [ toma (5 1) )9y
—— [ lon (500 [ f@oe=HE).  (2139)
yeC z€eC

—_———
=1
The capacity in (2.133) becomes zero in this case since H(y) = H(y|z), so
there is no intersection between the circles in the Venn diagram in Figure 2.17.
Consequently, the ability to transfer information lies in the correlation between
the random variables at the input and output of the channel.

To compute the capacity in (2.133), we need to identify the PDF f,(z)
of the input x that maximizes H(y) — H(y|x). This is the same as finding
an optimal modulation and coding scheme. Theorem 2.1 says we can only
select distributions that are “considered feasible”, so we must specify some
requirements on x. It is common to consider all distributions for which
the symbol power E{|z|?} is upper limited by a constant representing the
maximum power. To find the optimal PDF, we need the following key result
that says which distribution maximizes our surprisal [42], [1, Lemma B.20].

Lemma 2.9. For any continuous random variable z € C with E{|z|?} = p,
the differential entropy of z is upper bounded as
H(z) < logy(emp), (2.139)

where e &~ 2.71828 is Euler’s number. Equality is achieved in (2.139) if and
only if z ~ N¢(0, p); that is, the complex Gaussian distribution has the largest
possible differential entropy.
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For the kind of discrete memoryless channel in (2.132) and Figure 2.15,
we have y = hx + n, where h is a deterministic scalar, n ~ N¢(0, Np), and
the signal = has the symbol power E{|z|*} = ¢. Hence, the feasible input
distributions are all f,(z) that satisfy E{|x|?} = ¢. The choice of input
distribution only affects H(y) because x is known in H(y|x), thus we want to
select the distribution of z to maximize #(y). Since the signal and noise are
independent, we obtain

E{|y|*} = E{|z|*}|h|* + E{|n|*} = q|h|* + No. (2.140)
We can utilize the result in (2.139) to conclude that
H(y) <log, (em(q|h|* + No)) (2.141)

with equality if and only if y ~ N¢(0, q|h|? + Np). This maximum entropy
is achieved when z ~ N¢(0,q); thus, we have found the input distribution
corresponding to the maximum in the capacity expression in (2.133). This is
called the capacity-achieving input distribution.

To obtain a closed-form capacity expression, it remains to compute H(y|z).
When z is known, the only randomness that remains in y = hx + n is that of
the noise n ~ N¢(0, Ny) since h is deterministic, thus

H(ylx) = H(n) = log, (erNy) , (2.142)
where the last equality follows from Lemma 2.9. As a final step, we notice
that
glh|?

. 2.143
§) (1)

We can summarize the capacity of an AWGN channel as follows.

C = log, (em(g|h|* + No)) — log, (e Ng) = log, (1 +

Corollary 2.1. Consider the discrete memoryless channel in Figure 2.15 with
input € C and output y € C given by

y=h-z+mn, (2.144)

where n ~ Ng(0, Np) is independent noise. Suppose the input distribution
is feasible whenever the symbol power satisfies E{|z[*} < g and h € C is a
constant known at the output. The channel capacity is

2
alf ) bit /symbol (2.145)
No

C = log, (1 +
and is achieved when the input is distributed as z ~ N¢(0, q).

The channel capacity in (2.145) is expressed in bit per symbol, but many
equivalent units appear in the communication literature: bit per sample, bit
per channel use, bit/s/Hz, and bit per complex degree of freedom.



2.4. Performance Metrics 101

The complex Gaussian input distribution creates a continuous signal
constellation, where the transmitted signal x can take any value in C. We
will transmit packets containing N symbols to showcase how a capacity-
achieving system operates. For a capacity of C bit/symbol, we can convey
NC data bits per packet. Hence, 2V¢ different potential data sequences
can be communicated. We then need to create a codebook containing 2V¢
different symbol sequences, and each is called a codeword and represents one
of the 2V¢ data sequences. When we want to transfer a packet containing
specific data, we transmit the corresponding codeword from the codebook.
The receiver’s task is determining which of the 2V¢ codewords was most likely
to have been transmitted. With the capacity-achieving complex Gaussian
input distribution, each codeword is generated by taking N independent
and identically distributed (i.i.d.) realizations from N¢(0, g). This is called a
Gaussian codebook. The codebook generation is done once and for all when
designing the communication system. The codewords must be stored in the
transmitter to enable encoding (i.e., transmitting the correct codeword) and
in the receiver to facilitate decoding (i.e., identifying which codeword was
sent). More precise details can be found in [42, Ch. 10]. Since the channel
capacity is achieved as the packet length N — oo, this communication method
is impractical since the complexity of finding the correct codeword and the
storage requirements for the codewords grow exponentially with N.

In practice, the capacity-achieving system operation is approximated by
imposing a structure that alleviates the need for storing the codewords and
simplifies the encoding/decoding. It is common to utilize a discrete signal
constellation where each symbol = can only take values on a square grid
containing 2¢ points, where C is the closest even integer above C'. This is
called quadrature amplitude modulation (QAM). To not attempt transferring
more data than the capacity allows, only a subset of 2V ¢ symbol sequences
among the 2V¢ possible sequences is utilized, where the ratio C' / C is called
the coding rate. The subset is selected by a channel coding scheme designed
to minimize the risk of mixing up the selected sequences at the receiver side
(i.e., minimizing the probability of decoding error).

To give a concrete example, the 5G NR standard utilizes the modulation
formats 4-QAM, 16-QAM, 64-QAM, and 256-QAM along with the low-density
parity-check (LDPC) coding scheme, where the coding is designed to operate
close to the capacity while enabling efficient encoding and decoding.” Fig-
ure 2.18 exemplifies 28 predefined combinations of modulation and coding
schemes (MCSs) from [43, Table 5.1.3.1-2], where the first column is an index
that the transmitter and receiver can use when agreeing upon which combi-
nation to utilize. The second column describes the modulation format, the
third column is the coding rate, and the fourth column is the number of bits
per symbol. If the channel capacity would be 4 bit/symbol, then we should

"Polar codes are also used in 5G NR but for transmission of small blocks.
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’ Index ‘ Modulation format | Coding rate ‘ bit /symbol ‘

0 4-QAM 0.12 0.24
1 4 QAM 0.19 0.38
2 4-QAM 0.30 0.60
3 4-QAM 0.44 0.88
4 4-QAM 0.59 1.18
5 16-QAM 0.37 1.48
6 16-QAM 0.42 1.70
7 16-QAM 0.48 1.91
8 16-QAM 0.54 2.16
9 16-QAM 0.60 2.41
10 16-QAM 0.64 2.57
11 64-QAM 0.46 2.73
12 64-QAM 0.50 3.03
13 64-QAM 0.55 3.32
14 64-QAM 0.60 3.61
15 64-QAM 0.65 3.90
16 64-QAM 0.70 4.21
17 64-QAM 0.75 4.52
18 64-QAM 0.80 1.82
19 64-QAM 0.86 5.12
20 256-QAM 0.67 5.33
21 256-QAM 0.69 5.55
22 256-QAM 0.74 5.89
23 256-QAM 0.78 6.23
24 256-QAM 0.82 6.57
25 256-QAM 0.86 6.91
26 256-QAM 0.90 7.16
27 256-QAM 0.93 7.41

Figure 2.18: The list of 28 MCS combinations utilized in the 5G NR standard. The list is
adapted from [43, Table 5.1.3.1-2].
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search the table for the closest but smaller number, which in this case is index
15 that provides 3.9 bit /symbol. Hence, 64-QAM should be used to transmit
log,(64) = 6 codeword bits per symbol, whereof a fraction 0.65 contains data
bits, resulting in 6 - 0.65 = 3.9 bit/symbol. We will not consider any of these
specific details in the remainder of this book but utilize the channel capacity
as the performance metric while keeping in mind that there are practical ways
to communicate at data rates close to the capacity.

We can rewrite the capacity expression in (2.145) taking the following
three facts into account:

1. B symbols are transmitted per second;
2. The channel gain is 3 = |h|?;

3. The symbol power ¢ is measured in energy per symbol. It can be expressed
as ¢ = P/B, where P is the transmit power in Watt and B is the number
of symbols per second.

The first fact means we can multiply (2.145) with B to change the unit from
bit/symbol to bit/s. This is why the unit bit/symbol is also equivalent to the
unit bit/s/Hz. The latter two facts can be used to make changes of variables,
leading to

Pp

We notice that the channel capacity is given by the bandwidth multiplied by
the base-two logarithm of one plus

Pp

N:
SNR BN

(2.147)

that was previously stated in (1.13). Hence, the channel capacity is tightly
connected to the SNR, just as many other communication performance metrics.

2.5 Estimation Theory

The goal of estimation is to compute a good approximate value of an unknown
parameter based on measurements. The estimation procedure is particularly
challenging when the measurements are limited and noisy. There are two
main subfields of estimation theory [44]. In classical estimation, the unknown
variable is deterministic and, thus, has the same constant value forever. In
Bayesian estimation, the unknown variable is instead a realization of a random
variable with a known statistical distribution (also known as the prior).

In wireless communications, the transmission of very large data packets is
implicitly assumed whenever the channel capacity is used as the performance
metric. Hence, unknown variables that are constant throughout the transmis-
sion are relatively easy to estimate; for example, a negligibly small preamble
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can be attached to the packet to obtain the necessary measurements. In
contrast, unknown variables that take different values during the transmission
must be estimated using few measurements because there is insufficient time
to make extensive measurements. This can be modeled as if the unknown
variable takes different realizations from the same random variable at different
times. For this reason, Bayesian estimation will mostly be considered in this
book. It is generally assumed that the statistics are known, but Section 2.6
describes how they can be estimated in practice.

The general principle is that we want to compute an estimate of a realization
h of a random variable. The available information is an observation y connected
statistically with the unknown variable. More precisely, we have measured the
current value of y and know the conditional PDF f, (h|y) of h given the value
of y. There is a rich theory for Bayesian estimation of both real and complex
variables and different ways of measuring what is a good approximate value
[44]. We will only consider the mean-squared error (MSE) as the performance
metric for the estimation.

Definition 2.8. Consider a random variable h € C and let h(y) denote an
arbitrary estimator of h based on the observation y € C. The estimation error
is h — h(y) and the MSE is defined as

MSE,, :E{|h—fz(y)|2}, (2.148)

by taking the average squared estimation error.

Lemma 2.10. The estimator that minimizes the MSE in (2.148) is called the
minimum mean-squared error (MMSE) estimator. It can be computed as

hnssise(s) = E(hly} = [ iy (hly)oh (2.149)

where fy,(h|y) is the conditional PDF of h given the observation y.

The MMSE estimator is the conditional mean of i given y. By definition,
it minimizes the variance of the estimation error. Since the estimator depends
on the conditional PDF f,(hly), it will be different depending on how A is
distributed. The integral in (2.149) cannot be computed analytically in general,
so it must be evaluated numerically. The Gaussian case is an exception.

2.5.1 MMSE Estimation of Complex Gaussian Variables

We are particularly interested in the memoryless channel model in (2.132),
which we restate as

y=h-z+n, n~Nc(0,Np). (2.150)
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Suppose the channel response A is unknown and should be estimated. We can
then select the transmitted signal = as a deterministic number known at both
the transmitter and receiver, so that only h is unknown in the product i - x
in (2.150). We also know the distribution of the additive complex Gaussian
noise n, but the realization is unknown. The goal is to compute the MMSE
estimate of h based on the observation y obtained at the receiver.

We consider the case when the channel is complex Gaussian distributed:

h ~ Nc(0, B). (2.151)

To compute the MMSE estimator in (2.149), we must first determine the
conditional PDF f,,(hly). This problem resembles the one considered in
Section 2.2.3. If we divide all terms in (2.150) by x, we obtain

1 1
“y = h + -n, (2.152)
NI AN
=z =v =w

which is of the same form as (2.69) but with 02 = 3 and 02, = Ny/|x|. Hence,
we can utilize (2.74) to obtain

N, B+|]:|02 h B Y ’ 2 2
_ B+ ‘$‘02 s 1:02 Bt ];]*02 - _ B|.Z‘|2+N0 7B|Zﬁ‘NT)NO hiﬁ‘\aﬁ;JrNOy
fh\y(h|y)_ N, € Il Il - € .
Wﬁﬁ 7B No
(2.153)

The MMSE estimate is the mean value of this conditional PDF. By comparing
(2.153) with the PDF of a complex Gaussian distribution, we notice that

Bx* BNo
h— 7ﬂ|x|2+N0yNNC (0, ﬁSL’Q—f—No) (2.154)

when y is known. Hence, the conditional mean value is E{h|y} = [ﬂ%ﬁ%y
The variance 2N in (2.154) is the MSE of the estimate.
Blz|2+No

Lemma 2.11. Consider the estimation of h ~ N¢(0, 3) from the observation
y = h-z+n, when the signal z € C is known and n ~ N¢(0, Np) is independent
noise. The MMSE estimator of h is

Bz

h =y 2.155
The corresponding minimum MSE is
N
MSE,, = BNo (2.156)

,8|£C|2 +N0.
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Among all possible estimators that utilize the observation y and the channel
statistics, the MMSE estimator minimizes the MSE. The MMSE estimate in
(2.155) will be expressed as h later in this book without explicitly specifying
what observation it is based on and which type of estimate it is.

We notice that this MMSE estimate is a linear function ay of the observa-
tion gy, which is scaled by the factor a = ﬁi% to obtain the estimate that
is closest to the true value of h in the MSE sense. For this reason, the estima-
tor in Lemma 2.11 is sometimes referred to as the linear MMSE (LMMSE)
estimator; that is, the estimator that obtains the lowest MSE among all linear
estimators. While it is formally correct to use that terminology, the naming
devalues its properties by giving the wrong impression that there might exist
better estimators that are non-linear functions of y. Hence, in the remainder
of this book, we will call (2.155) the MMSE estimator.

A useful benefit of the expression in (2.155) is that we can directly generate
random realizations of h without first generating realizations of y, h, and n.
Since y ~ N¢(0, B|z|* + Np), it follows that

2 2(,.|2
7 z 2 _ Ealtd
h ~ Ng¢ (0, 'WWJ (B +N0)> =N (07 B|z|? +No>
= Nc (0,8 —MSEy,) . (2.157)

Moreover, the estimation error h = h — h is distributed as
h ~ N¢ (0, MSE},) (2.158)

with the MSE in (2.156) being the variance since
Var {h} =E{|A*} =E{|h - h"} = MSE,. (2.159)

The estimate and estimation error are statistically independent, which can be
seen from the fact that they are complex Gaussian distributed and uncorrelated.
Their variances add up to that of the original unknown variable h: Var{lAz} +
Var{h} = 8 — MSE}, + MSE;, = 3. This showcases how the MMSE estimator
extracts all useful information from the observation y so that the error term
only contains information that was not observed. Consequently, the estimation
error is also statistically independent of the observed signal .

Intuitively, the estimation quality should be better when the factor hx in
(2.150) is much larger than the noise term when comparing their magnitudes.
If we let |z| — oo, it follows that the MSE in (2.156) goes to zero and that
the estimate’s variance in (2.157) approaches 3. This means we can estimate
the channel without error when the SNR is large.

The MSE in (2.156) is an increasing function of /3, so we should expect
larger estimation errors when estimating a variable with a large variance
compared to a small variance. However, it is the relative size of the estimation
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error that matters in many contexts, and it is quantified by the normalized
MSE (NMSE) that is computed as

E{|h—H"} s N,
E{f} 5N 100

NMSE;, =

The NMSE is a decreasing function of 3, so it is easier to estimate a variable

with a large variance than a small one as it stands out more from the noise.
We have now described how to estimate the channel coefficient h. The

next example shows how to estimate signals using the MMSE estimator.

Example 2.15. Suppose we want to estimate the data signal z ~ N¢(0, q)
from the received signal
y=h-z+mn, (2.161)

where h € C is a known constant channel and n ~ N¢ (0, Ny) is independent
noise. What is the MSE if the MMSE estimator is used? Use the MSE
expression to compute the mutual information Z(x;y).

The MMSE estimation problem is the same as in Lemma 2.11, except that
x and h have interchanged the roles of being known and unknown. We can
denote the MMSE estimate as . By making the variable substitutions g — ¢
and x — h in (2.156), the MSE when estimating = becomes

qNo

MSE, = ———.
q|h|* + No

(2.162)
The error is independent of # and distributed as Z = x — & ~ N¢(0, MSE,).

The mutual information in (2.137) is equal to H(x)—H(z|y) and Lemma 2.9
states that H(z) = log,(emq) since the signal is complex Gaussian distributed
with variance ¢. It further holds that

H(zly) = H(z — 2|y) = H(Z|y) = logy(emMSE,), (2.163)

where the first equality follows from subtracting the MMSE estimate from
2, which can be done without changing the entropy since y is known. The
last equality follows from noticing that the estimation error is independent
of y and complex Gaussian distributed with variance MSE,. The mutual
information can finally be computed as

H(z) — H(x|y) = logy(emq) — log,(emMSE,,)

h 2
= log, (1\45}3) = log, (1 + qlvl ) . (2.164)

This is an alternative way of computing the capacity in (2.145).
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2.5.2 LMMSE Estimation of Arbitrarily Distributed Variables

We will now consider LMMSE estimation when the received signal is y =
h - x + n as before, but the unknown variable i and the noise n might not
be Gaussian distributed. An LMMSE estimator has the form & = ay, where
a is selected to minimize the MSE. The MSE is a function of a¢ and can be
minimized by equating the first-order derivative to zero:®

9 712
0= 5 B{F} =5
This sufficient and necessary condition for selecting a is called the orthogonality
principle: E{hy } =0. The mterpretatlon is that the scaling factor a must
be designed so that the error term h = h — h is uncorrelated with the
received signal y; that is, there is no useful information left that can be
extracted using linear methods. It follows from the orthogonality principle
that E{hh*} = E{hy*}a* = 0, which implies that the estimate and estimation
error are uncorrelated random variables. In the special case where the estimate
and estimation error are complex Gaussian distributed (which happens when
h and n are Gaussian, as in the last section), it follows from Lemma 2.7 that
the uncorrelated variables h and h are also independent random variables. In
the general non-Gaussian case, the estimate and error are only uncorrelated.
The orthogonality principle can be used to find the LMMSE estimator,
which we will show through an example.

(h —ay)(h — ay)*} = ~E{hy"}. (2.165)

Example 2.16. Use the orthogonality principle to derive the LMMSE estima-
tor of h given the received signal y = h - z + n. Assume that E{h} = E{n} =
E{hn*} = 0, E{|h|?} = B, and E{|n|?} = Nq.

An arbitrary linear estimator has the form h = ay. We need to find the
value of a that satisfies the orthogonality principle E{ﬁy*} =0:

0=E{hy*} =E{(h—ay)y*} =E {hy"} - aE {|y|}. (2.166)
By solving for a in (2.166), we obtain
_ E{hy*} _ E {h (hz +n)"} _ E{|h\2}x* + E{hn"} _ Bx*
E{ult  E{lha+nf}  E{pP}zR+E{nP} Alel*+No
(2.167)

by utilizing that h and n are uncorrelated. In summary, the LMMSE estimator
is h = ay with a given in (2.167). It coincides with the MMSE estimator in
(2.155) for complex Gaussian variables with the specified variances.

8Since a is a complex-valued parameter, we compute the Wirtinger derivative 8(3* =

%(ama) +izaay (a>) which includes the derivatives with respect to #(a) and I(a).
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The derivation of the LMMSE estimator only used the mean, variance, and
covariance of h and n. This implies that the LMMSE estimator is the same
irrespectively of the exact distribution of A and n, as long as the mean and
(co)variance are as specified. On the other hand, the general MMSE estimator
utilizes the complete statistical distributions and will not only change in the
non-Gaussian case but likely be harder to derive analytically. The equivalence
between the MMSE and LMMSE estimators only holds in the Gaussian case,
so the MMSE estimator must give a strictly smaller MSE in non-Gaussian
cases. This implies that estimating Gaussian variables that are observed in
Gaussian noise is the hardest situation, which is aligned with the fact that
the Gaussian distribution maximizes the differential entropy.

We have established the following result regarding the LMMSE estimator
when A is not necessarily Gaussian distributed.

Lemma 2.12. Consider the estimation of i from the observation y = h-z +n,
when the signal x € C is known and n is noise with zero mean and variance
Ny. Suppose the variable h has zero mean, variance (3, and is uncorrelated
with the noise (i.e., E{An*} = 0). The LMMSE estimator of h is

o Bx*
h =—q. 2.168
LMMSE () Blz[? —|—N0y ( )
The corresponding minimum MSE is
BNo
MSE, = ———. 2.169
h ,8|£E|2 - N() ( )

2.6 Monte Carlo Methods for Statistical Inference

The previous section described how to estimate the realization of a random
variable from noisy observations. An underlying assumption was that the
statistics are known, but, in practice, we must also have a mechanism to
acquire the statistics. In this section, we will describe how the statistical
properties of functions of random variables can be inferred. The statistics
might determine the performance of a communication system or an estimator.
There are many categories of methods that can be utilized for this purpose. We
will consider Monte Carlo methods that use random samples of the underlying
variables and process them to infer the unknown deterministic quantities. We
will estimate the mean value of a function of random variables, estimate the
error probability of a system that performs a task either resulting in success
or error, and estimate the CDF of a random variable. Particular attention
will be given to quantifying the estimation precision, which is essential when
drawing conclusions based on the outcome of statistical inference.
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2.6.1 Estimating the Mean Value

Consider a real-valued random variable x with the PDF f,(z) and mean value
denoted as pu. We recall from (2.56) that the mean value is defined as

w=E{z} = /_0; x fx(x)0z. (2.170)

There are many situations where this integral cannot be computed analytically,
and then we have to resort to numerical methods for computing an approximate
value of . One example is the Monte Carlo method that takes L independent
samples x1,...,xr, from the random distribution and uses them to estimate
. Two properties are essential when designing the estimator: accuracy and
precision. An estimator jiy, is accurate if its mean is equal to the value to be
estimated (i.e., E{fir} = E{x} = p) and it is precise if its variance Var{fi } is
small. The sample average is an accurate (also known as unbiased) estimator
of E{z} and is computed as

1
fip = z;x (2.171)

where the subscript denotes the number of samples. We only need a way to
generate independent samples to compute this estimate, while the PDF can
be unknown. The motivation behind using the sample average in (2.171) is
the law of large numbers in Lemma 2.4, which says that the sample average
approaches the statistical mean when the number of samples L goes to infinity:

far — E{z} as L — occ. (2.172)

The only required condition for the convergence is that the variance Var{z}
of the random variable must be finite. To see the reason for that, we can
compute the variance of the sample average as

1 L 1 & Var{z}
Var{ir} = ﬁVar Z:L‘Z =13 ZVar {z;} = 7 (2.173)
i=1 i=1

where the second equality utilizes the fact that the samples are independent.
The variance in (2.173) reduces proportionally to 1/L when the number of
samples increases, starting from the original variance value. Hence, as long
as the original value is finite, the variance of the sample average goes to zero
as L — oo. Furthermore, the standard deviation is the square root of the
variance and becomes \/Var{z}/L, which goes to zero proportionally to 1/v/L
when increasing the number of samples.

Depending on the application, the number of samples, L, should be selected
to achieve an estimate with the desired precision. Since the Monte Carlo
method uses random samples, we can only guarantee the precision in a
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probabilistic sense; that is, we can make sure that the estimation error |fiy, — |
is smaller than some specified error tolerance § > 0 with the (high) probability
1 —¢, where € > 0 is the (small) probability that the requirement is unsatisfied.
In other words, we want to find L such that

Priliy —pl <6} =Pr{p—0 < fip <p+d}
=Pr{ir—0<pu<pr+d}>1—g¢, (2.174)

Confidence interval

where the third expression is known as a confidence interval with confidence
level 1 — €. It says that a fraction 1 — € of all realizations of the estimator fip,
are so close to the true value yu that it lies between jiy, — § and iy + 6. It is
common to begin by specifying € to reach a desired confidence level and then
either determine how large J becomes in a given experimental setup (i.e., for a
given L) or design the experiment (i.e., select L) to reach a desired value of 4.

We can utilize Chebyshev’s inequality from Lemma 2.5 to derive an upper
bound on how many samples are needed to satisfy (2.174) for given € and 4.
However, the result will be overly conservative since it considers the worst-case
random distribution. Since we consider the summation of L independent and
identically distributed realizations, the central limit theorem implies that jiy,
is approximately Gaussian distributed, as previously stated in (2.65). Hence,
we can utilize that distribution when characterizing the required number
of samples. Recall from (2.66) that 95% of all realizations are within two
standard deviations from the mean value. If we set ¢ = 0.05 and want to
guarantee an estimation error smaller than J, then we need

Var{z} <5 = > 4Var{x}.

2
L - 9?2

(2.175)

For example, if Var{z} = 1 and we want a precision of 6 = 0.1, then at least
L = 400 samples are required to satisfy that requirement with 95% probability.
The variance might also be unknown, in which case an approximation of it
can be utilized when determining the number of samples.

Figure 2.19 exemplifies how the Monte Carlo method can be utilized to
estimate the mean value o = 1 of z ~ Exp(1), which has an exponential
distribution. The number of samples, L, is shown on the horizontal axis, and
the vertical axis shows potential estimates of u. Figure 2.19(a) and (b) show
how the value of ji;, progresses in two different experiments where we add
more and more samples to the estimator. The shaded area between the dashed
lines shows the (approximate) confidence interval around fiy, where u exists
with 95% probability. It is computed using the Gaussian approximation. The
width of this interval reduces as 1/v/L when L increases because the width is
proportional to the standard deviation. In both experiments, the estimator
fluctuates, but the general trend is that more samples lead to a better estimate



112 Theoretical Foundations

2 \
......... Exact 1%
, Estimate fif
i — = .Confidence interval
1.5 'I‘ I J
o :“' k.
= 1 S
= S AN A @ m e e oA m——
> ~ e -
T L MENE e e
< -
)
= )
0.5 |
1
1
1
O 1 I I I I
0 200 400 600 800 1000
Number of samples (L)
(a) Experiment 1.
2 \
1 15 ) (S, Exact 1%
] Estimate fi,
15 r — = .Confidence interval |
o) l \
= \"\“‘
g 1 .‘.'\“- RN N M~ o 2 s v P P o P s P Y T T
% ............................ T T et e R P L L T e
() .--_4-8\-——_-_'._‘----- _____
=
0.5 i
1
{
1
O 1 I I I I
0 200 400 600 800 1000

Number of samples (L)

(b) Experiment 2.

Figure 2.19: Example of estimation of the mean p = 1 of a random variable with exponential
distribution using the Monte Carlo method. The value of iy, is shown as a function of L in two
different experiments. The 95% confidence interval is indicated, as well as the true value.
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of u. Nevertheless, Experiment 2 shows that even with L = 1000 samples, the
exact 4 might be outside the confidence interval.

Instead of resorting to taking random samples, as in the Monte Carlo
method, one can approximate the integral in (2.170) in a deterministic manner
by approximating the integrand z f,(z) as a piecewise constant function. This
is called a Riemann sum and the approximation error can then be bounded
in a non-probabilistic manner, but it only works if the PDF f,(z) is known.
In contrast, the Monte Carlo method is convenient in practical situations
where the PDF is unknown. For example, suppose the random variable x
is obtained as a function of some multi-variate random variable y; that is,
z = a(y) where a(-) can be any deterministic function. In this case, the PDF
of x might be hard to characterize, even if the PDF of y is known. The Monte
Carlo method can even be utilized when y has an unknown PDF| as long
as samples from this random variable can be obtained from measurements.
In wireless communications, y might be the randomness occurring in the
propagation environment, while a(-) could be a complicated function that
determines the communication performance.

Under these circumstances, we can still obtain an approximation of the
mean value by following the following procedure:

1. Determine the required number of samples L;
2. Draw L independent samples y1, ...,y of the random variable y;

3. Compute the L corresponding samples of the random variable z, denoted
as x; = a(y;) fori=1,...,L;

4. Compute the sample average jif, = % 25:1 x; to estimate p = E{z}.

The samples must be generated independently and from the same distribu-
tion. Otherwise, the sample average might not converge to the correct number
or not converge at all as L increases. These conditions put constraints on the
methodology used when gathering the samples. One should, for example, be
careful when merging measurements taken at different points in time, with
different equipment, or at different locations. Computer simulations are robust
against some of these effects but can nevertheless be affected by correlation in
the (pseudo)random number generator (e.g., if multiple computers generate
samples using the same random seed), limited arithmetic precision, other
processes running in the same hardware, etc.

If the same L samples are utilized to estimate multiple quantities, then
their respective estimation errors will be correlated, leading to undiscoverable
systematic errors. As an example, suppose we want to use the Monte Carlo
method to compute the MSE % in (2.156) of the MMSE estimator

for a range of different signal strengths |z|?. This might be the only way of
determining the MSE in situations where it cannot be computed analytically.
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Figure 2.20: Example of estimation of MSE in (2.156) with 8 = Ny = 1 using the Monte Carlo
method with L = 100 samples. Independent samples must be utilized when estimating different
points on the curve, otherwise, systematic errors occur.

According to (2.159), the MSE is equal to E{|h — h|?}, where h is the desired
variable and h is its MMSE estimate. To compute this mean using the Monte
Carlo method, we should generate L independent realizations of |h — il|2 and
compute the sample mean. For any non-zero value of |z|?, we can generate L
independent realizations of h and the noise n, then compute the observation
y = hx + n, and finally compute |h — ﬁ\z using (2.155).

Figure 2.20 shows the exact MSE and estimated MSE for § = Ny = 1 and
varying signal strength |z|?. Since there are many points on the estimated
curves, we can implement the Monte Carlo method in different ways: a) we can
generate L = 100 independent samples of h and n and then utilize this set to
estimate every point on the curve (by varying |z|2 when computing |h — h|?);
b) each point on the curve is estimated using L new independent realizations
of h and n. From a programming perspective, the difference is whether the
L samples are generated before the for-loop that goes through each value
of |z|? or if L new samples are generated in each iteration of the loop. The
blue curve is generated in the former way, where the same realizations are
utilized to estimate every point. This results in a smooth curve that gives
the impression of being highly accurate, but this is deceiving, as seen from
the gap to the exact curve. The fact that the same randomness is used when
estimating every point leads to such unnoticeable systematic errors because
the estimation errors are correlated. The latter approach is recommended:
generate L new independent samples for every value of |x|?, which was done
when generating the red curve. This curve is not smooth, showcasing the
limited precision obtained when only using L = 100 samples in the Monte
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Carlo method. In summary, to obtain an estimate of the curve that is both
precise (i.e., smooth) and accurate (i.e., without systematic errors), we must
use an even larger number of samples generated independently for every point
on the curve.

2.6.2 Estimating the Error Probability

Another common problem in communications is computing the error proba-
bility or its converse, the success probability. For instance, we might design a
communication protocol to convey messages over a random channel and want
to determine the probability that a message is received in error. The more
complicated the protocol and communication channel are, the smaller the
chance that we can compute the error probability analytically. However, we
can use Monte Carlo methods to estimate the error probability. Since there
are only two possible outcomes—success or error—the randomness can be
modeled by a Bernoulli distribution, which is a random variable z with two
outcomes: the value 1 with probability p and the value 0 with probability
1 — p. The mean is E{x} = p and the variance is Var{z} = p(1 — p).

Suppose we associate the outcome 1 of the Bernoulli distribution with an
error, then our goal is to obtain an estimate p of the mean p, representing
the error probability. Hence, we can follow the same procedure as in the
previous section: Generate L independent samples 1, ..., x of the Bernoulli
distribution and then use the sample average % ZiLzl x; as the estimate of p.
Each sample can be obtained from one independent trial of the communication
protocol by determining whether an error occurred or not. This is a feasible
approach, but the main practical hurdle is determining the number of samples
that need to be taken. The error probabilities in communication systems can
range between 0.1 and 10~9, which require very different error tolerances and
numbers of samples when being estimated.

Suppose we select the error tolerance proportionally to p as § = ap, where
a € [0,1] is the relative error tolerance. The goal is then to find an estimate
pr. that falls into the interval [(1 — a)p, (1 + «)p] with high certainty. By
substituting this value of ¢ into (2.175), we need
o AVar{z}  4p(l—p) _ 4(1 —p)

= (2.176)

L
52 a2p? a2p

samples to satisfy the tolerance with 95% certainty. This value depends on p,
so we need a good sense of the (worst-case) error probability when selecting
L, which severely limits its applicability. However, one important observation
can be made from (2.176): if p is much smaller than one, then (1—p)/p~1/p
and the required number of samples is inversely proportional to p. Hence, the
more unlikely an error is to occur, the more samples are needed to obtain
an accurate estimate, which is rather intuitive. A classical rule-of-thumb is
that L > 10/p samples are needed to obtain a rough estimate of p [45], which
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implies that we need L = 1000 if p = 1072 and L = 10° if p = 10~°. Using at
least L > 100/p samples is recommended to get a precise estimate.

There is an alternative estimation approach that is particularly well suited
for estimating error probabilities without requiring prior knowledge when
determining the sample size [46]: We generate independent samples repeatedly
until we have gathered Leypor errors, where Lepor > 2 is a predefined constant.
The number of successful samples Lgyccess that are observed before we reach
Lerror errors is a random variable that has the negative binomial distribution.

Based on a random realization of Lgyccess, We can estimate p as

Lerror - ]-
Lsuccess + Lerror -1 .

p= (2.177)

This estimator is unbiased (i.e., E{p} = p) and is also the one minimizing the
error variance [47]. The standard deviation of this estimator is approximately
/v Lerror — 2 when p is small, thus it is proportional to p and reduces roughly
as 1/v/Lerror- Suppose p is relatively large, in the sense that 1 — p cannot
be approximated as 1. Then the standard deviation is larger because we
gather errors too quickly to reach a sufficient total number Lgyccess + Lerror Of
measurements to get an accurate estimate.

A classical rule-of-thumb is to make measurements until we have observed
Lerror = 10 errors [46], which gives a rough estimate of p with a standard
deviation of roughly p/ V/8 ~ 0.35p when p is small. To get a precise estimate
with a smaller standard deviation, observing at least Le..or = 100 errors is
recommended. In those cases, the —1 terms in (2.177) can be neglected.

Figure 2.21 exemplifies the error probability p as a function of the SNR.
The true relationis p = 1— e~ SR in this example, which is a formula that will
be derived in Chapter 5. In addition to showing the exact curve, Figure 2.21
also shows estimated curves obtained using the two approaches described
above. The blue curve uses L = 10000 samples and provides excellent estimates
for p > 1072 and decent estimates for 107* < p < 1073, as predicted by the
first rule-of-thumb. The curve then vanishes since there are too few samples to
measure any error events; whenever less than ten errors have been observed,
we should discard the result as unreliable (recall the second rule-of-thumb).
The red curve uses the alternative approach of running the simulation until
Lerror = 100 has been observed. This curve provides accurate estimates of p
for all the considered SNR values.

In summary, to avoid selecting L in advance, we can estimate the error
probability p by counting the number of successes that occurred before we
reached a predefined number of errors. The number of samples to gather is
then determined dynamically and increases linearly with the true value of
p. This approach is particularly useful when a complicated communication
protocol is used so the error probability cannot be determined analytically.
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Figure 2.21: Example of estimation of the error probability curve p = 1 — e SNR using the
Monte Carlo method, by either using 10000 random samples or running the simulation until
100 errors have been observed.

2.6.3 Empirical Cumulative Distribution Function

In addition to estimating the mean value of a random variable from observa-
tions, we can estimate its entire distribution. In this section, we will estimate
the CDF, defined in (2.100), which fully characterizes the random distribu-
tion. Suppose we obtain L independent samples x1, ...,z from a random
distribution with the CDF F,(a). For a given value a, the CDF represents
the probability of obtaining a realization below or equal to the threshold a.
Hence, we can estimate Fy(a) by counting the fraction of the L samples that
is lower than or equal to a. This estimator can be defined as

L
A 1
Fxr(a) = ;nga, (2.178)
by utilizing the indicator function
1, ifx<a
Lica =1 - 2.179
= {0, if z > a. ( )

We can treat Fx 1,(a) as an estimate of the entire CDF and call it the empirical
cumulative distribution function (eCDF'). The true CDF might be a continuous
function, but the eCDF is always a piecewise constant function. It will look
like a staircase with L steps, each having a vertical height of 1/L but varying
horizontal widths that determine the shape of the estimated curve.

The eCDF converges to the true CDF as L goes to infinity, and the con-
vergence can be proved in various ways. For example, we can prove pointwise
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convergence by comparing F,(a) to its estimate I x,r.(a) for any given point
a. For a random z, the indicator function I,<, will output a random variable
with a Bernoulli distribution that gives 1 with probability F(a) and 0 with
probability 1 — Fy(a). As discussed in the previous section, such a random
variable has the mean F,(a) and variance Fy(a)(1 — Fx(a)). Hence, ﬁ’XyL(a) is
the sample average of L independent Bernoulli variables having that mean
and variance. The mean of Fx ;(a) is the true CDF value Fi(a) and the
variance can be determined using (2.173) as

L
Var { Fx 1(a)} = é > Var (I, <o} = Fx(a)(lL_ Ela) — (9.180)

The variance goes to zero as L — oo, which is the property used by the law
of large numbers to establish asymptotic convergence to the mean. When L is
large but finite, the central limit theorem implies that ny 1 (a) is approximately
Gaussian distributed with mean Fy(a) and variance Fy(a)(1 — Fy(a))/L. We
recall from Section 2.2.1 that 95% of all realizations of a Gaussian random
variable are within two standard deviations from the mean.

The precision of the eCDF varies over the curve, reflected by the fact that
the standard deviation \/Fy(a)(1 — Fy(a))/L depends on Fy(a). The largest
value appears at the median where Fy(a) = 0.5. However, it might be more
important to consider the relative deviation from the true CDF value. If we
divide the standard deviation by Fy(a), we obtain /(1 — Fx(a))/(LFx(a))
and it is maximized as Fy(a) — 0. This reveals that it is hardest to precisely
approximate the lower-left tail of the curve because very few samples appear
in that tail, and small deviations are large in the relative sense. When selecting
the number of samples L in a practical experiment, one can either target a
desired precision in the crucial parts of the CDF curve (e.g., center or tails)
or run the simulation until a visually smooth eCDF curve is obtained.

Figure 2.22 considers the estimation of the CDF of z ~ Rayleigh(1/v/2).
The analytical CDF expression Fy(z) =1 — e~ of this Rayleigh distribution
was provided in (2.102). The red curve shows the eCDF obtained using L = 100
independent samples of the random variable. The eCDF has the same general
shape as the true CDF but fluctuates between being well aligned with it
and deviating. The estimation errors are correlated along the curve since
the same L samples are utilized to estimate all the points on the curve, but
this property is unavoidable when computing an eCDF. The 95% confidence
interval around the eCDF (obtained using the Gaussian approximation) is
also shown in the figure. This interval is relatively wide, which shows that
more than 100 samples are needed to obtain a precise eCDF. The staircase
shape of the eCDF is particularly evident in the lower tail, where there are
too few samples to estimate the precise shape of the CDF.

The precision is essential when comparing different random variables based
on estimates of their respective distributions. For example, we might obtain
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Figure 2.22: The CDF Fy(z) =1— e~ ofa Rayleigh distributed random variable is compared
with the eCDF obtained using L = 100 samples from the distribution. The approximate 95%
confidence interval is indicated as a reference.
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Figure 2.23: The eCDFs and confidence intervals of y ~ Rayleigh(1/4/2) and z ~ Rayleigh(1),
based on L = 1000 samples from each distribution.

measurements of the performance variations in two different communication
systems and plot their respective eCDFs to determine which system is prefer-
able. For the sake of argument, Figure 2.23 shows the eCDFs obtained by
L = 1000 samples from y ~ Rayleigh(1/v/2) and z ~ Rayleigh(1), respec-
tively. The two eCDFs are different, but most importantly, the 95% confidence
intervals (also shown in the figure) are different and mostly non-overlapping.
Whenever that happens, we can make meaningful comparisons of the eCDFs.
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Since Fy.r,(x) > Fyz r(x) for most values of z (i.e., the y-curve is above the
z-curve), we can conclude that the system represented by y is likely to provide
smaller performance values. For example, y is smaller than 1 with probability
Fy.1(1) ~ 0.6, while z is smaller than 1 with probability F (1) ~ 0.4. If
it is preferable to have a large value, the system represented by z should be
selected. The only uncertainty occurs in the lower left tail, where the confi-
dence intervals partially overlap. When this happens, we can only conclude
that their performance is so similar that we cannot tell the systems apart
with statistical significance. This issue can be mitigated by increasing L to
improve the precision (i.e., reduce the standard deviation).

2.7 Detection Theory

Detection theory provides a structured way to determine which event occurred
among a finite number of possibilities based on probabilistic observations. It
is commonly used in several areas, particularly radar signal processing and
communications [48]. The task of the detector is to determine which event has
happened by processing the observed signal and exploiting prior information
regarding the received signal’s characteristics and statistics. The events are
mutually exclusive, and each is called a hypothesis under testing. Due to this
terminology, detection theory is also known as hypothesis testing [48].

To exemplify the basics, we consider a fire-alarm sensor that measures the
smoke density in its surroundings. If there is smoke, it sends a wireless message
representing “1”. If there is no smoke, the sensor does not transmit anything,
representing the message “0”. A wireless receiver monitors the transmission
and wants to detect the message. Regardless of what message is sent, noise
is added to the received signal. Hence, the receiver should use the received
signal to determine if there is a non-zero signal or only noise. There are two
events in this example: i) there is no smoke, and ii) there is smoke. Since there
are two possibilities, we call this a binary hypothesis test.

In binary hypothesis testing, it is common to let the null hypothesis repre-
sent the case when the event of interest does not happen. It is denoted as Hj.
The opposite hypothesis is denoted as H1 and called the alternative hypothesis.
Mathematically, we can express the corresponding detection problem as

Ho : y=n, (2.181)
Hy : y=1+n, (2.182)

where the detector determines if “1” is transmitted or not by observing y
and exploiting any other prior information, such as the statistical models of
(2.181) and (2.182). In this section, we will assume that the additive noise
is distributed as n ~ N(0,0%). The goal of detection theory is to select
a detection performance metric and then develop the detection rule (i.e.,
selection rule between Ho and H1) that optimizes that metric. In the example
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Figure 2.24: The PDF of the received signal y under two hypotheses Hg and Hi. Under the
null hypothesis Ho, the signal is distributed as y ~ A(0,0.5) whereas it holds that y ~ A (1,0.5)
under the alternative hypothesis .

above, the metric is the probability of making an incorrect detection, and the
goal is to minimize it. If the a priori probabilities of transmitting 1 or nothing
are defined and known, they can be used to minimize the error.

Figure 2.24 shows the PDFs of the received signal y under the null hy-
pothesis Hy and the alternative hypothesis Hi. Under H, it follows that
y = n ~ N(0,0?), whereas under H; we have y = 1 +n ~ N(1,0%). The
figure shows the case when o2 = 0.5. Suppose we use a detector of the form

. if y >
q= M ity =7, (2.183)
%07 1fy<77

where there is a threshold ~ that determines when to select each hypothesis.
The two PDFs in Figure 2.24 intersect at y = 1/2, which will also happen for
other values of o2. Hence, if we select the threshold as v = 1/2, the detection
rule in (2.183) will select the hypothesis most likely to have generated the
received observation y. This threshold divides the decision region symmetrically
into two parts, as illustrated by the red dashed line in Figure 2.25. This
threshold maximizes the probability of making a correct detection if the
two events are equally likely, which is seemingly a good performance metric.
However, it is not the only metric of practical importance. Three other
important metrics are:

e The detection probability, Pp, which is the correct detection probability
when the event of interest happens, i.e., under hypothesis H;

e The false alarm probability, Pra, which is the wrong detection probability
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when the event of interest did not happen, i.e., under hypothesis H;

e The missing probability, Py = 1— Pp, which is the wrong detection
probability when the event happens, i.e., under hypothesis H;.

In Figure 2.25(a), the yellow and purple shaded regions represent the
detection probability, Pp, and 1 — Pga, respectively (i.e., the areas under the
curves equal the probabilities). When hypothesis #H; is true, we detect the
event correctly when the received signal is greater than the threshold v = 1/2,
which happens with the probability Pp. On the other hand, when hypothesis
Ho is true, we detect the event correctly when the received signal is below the
threshold, which happens with the probability 1 — Pga. Figure 2.25(b) shows
the probabilities of false detection. When H; is true, but the noise takes a big
negative realization so that the received signal is below the threshold, we miss
the event, and the resulting probability is Py = 1 — Pp. When H, is true, but
the noise takes a big positive realization so that the received signal is above
the threshold, a false alarm occurs. The associated probability is Pga .

It is good to have high values of Pp (corresponding to low values of Py)
and low values of Pga, but there is unfortunately always a tradeoff between
these metrics. To illustrate this, we increase the threshold value to v =1 in
Figure 2.26. As shown in Figure 2.26(a), the correct detection probability
when there is no transmitted signal (i.e., Hy is true) increases compared to
the last figure. Similarly, the false alarm probability decreases, as shown in
Figure 2.26(b). However, this improvement is associated with a decrease in
Pp since a larger threshold makes it less likely to make the correct detection
decision when there a signal is transmitted (i.e., H; is true). Moreover, the
missing probability Pyy = 1 — Pp increases when Pp decreases.

The fact that there are multiple conflicting design objectives implies that
we need to actively design the decision rule for every detection application,
even if the underlying mathematical models are the same. For example, a
fire-alarm sensor might be designed to have a very high detection probability,
Pp, since missing the event of interest can be dangerous. On the other hand,
a radar surveillance system might be designed to have a very low false alarm
probability, so it only identifies large objects.

The hypothesis testing we have considered so far assumed that the PDF
of the received signal is fully known for all the hypotheses, which is known as
simple hypothesis testing. For example, in the previous example, we know that
y ~ N(0,0.5) when H, is true, whereas y ~ N (1,0.5) when H; is true. We will
focus on simple hypothesis testing in this book. Another class of problems is
composite hypothesis tests in which there are unknown deterministic parameters
or random variables with unknown distributions. An example of this is the
detection problem in (2.181)—(2.182) when the noise variance o2 is unknown;
the PDF of y is unknown for all the hypotheses because we only know the
Gaussian shape but not the associated variance.
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(b) The wrong detection probability under Hg is Prpa (the area of the yellow region), while it is
1 — Pp under H; (the area of the purple region).

Figure 2.25: The probabilities of correct and incorrect detection under the hypotheses Ho and
H1 when the detection threshold is 1/2. The dashed red line shows the corresponding detection
boundary. The areas of the shaded regions represent the respective probabilities.
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(b) The wrong detection probability under Hg is Prpa (the area of the yellow region), while it is
1 — Pp under H; (the area of the purple region).

Figure 2.26: The probabilities of correct and wrong detection under the hypotheses Hp and
7H1 when the detection threshold is 1. The dashed red line shows the corresponding detection
boundary. The areas of the shaded regions represent the respective probabilities.
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Example 2.17. Consider the binary hypothesis test

Ho : y=n, (2.184)
Hi : y=z+n, (2.185)

where x ~ N¢(0, P) is the transmitted signal under the hypothesis H; and
n ~ Ng(0,0?) is independent receiver noise. The random signal x is unknown
at the detector, but the transmit power P and noise variance o2 are known.
Is this a simple or composite hypothesis test?

We need to determine if the PDF of the received signal y is known
under all hypotheses. When H, is true, it follows that y ~ N¢(0,02) so the
distribution is known. When H; is true, it follows that y ~ N¢(0, P + 02) so
this distribution is also known. Hence, we have the full knowledge of the PDF
of the received signal in both cases, which implies that this hypothesis test
belongs to the “simple” category.

In the following sections, we will consider two approaches to simple hy-
pothesis testing. The fundamental difference is whether the occurrences of the
different events are modeled statistically or not.

2.7.1 Bayesian Detection

In the Bayesian detection approach, we assume that the occurrence of each
hypothesis can be modeled statistically and has a specific probability. This
approach is particularly useful when the underlying events happen repeatedly
so that statistics can be inferred as described in Section 2.6, and the detector
will be applied many times so that its average performance is essential.
Consider a binary hypothesis test where Pr{H,} and Pr{#;} denote the
probabilities that the hypotheses Hy and H; take place, respectively. In the
detection problems where we know these probabilities (e.g., communication
tasks where the messages are designed to be equally likely), it is of interest to
minimize the error probability, which is defined as

P, = Pr{Ho} Pr{H = H,|Ho} +Pr{H1} Pr{#H = Ho|H1}, (2.186)
—
=Ppa =Py=1-Pp

where the conditional probability Pr{# = H,|Ho} is the probability of detect-
ing the hypothesis H; when Hj is true, which we previously called the false
alarm probability, Ppa. Similarly, Pr{# = Ho|H,} is the conditional proba-
bility of selecting the hypothesis o when H; is true, which we previously
called the missing probability, P,y = 1 — Pp. The detector that minimizes the
error probability, P, is as follows [48, Ch. 3].
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Lemma 2.13. The detector that minimizes the error probability in (2.186)
selects the hypothesis H; if

Fyirn (y[Ha) o Pr{#Ho} _ .
Fymo (WIHo) — Pr{Ha}

where fy3, (y|H1) and fyj3, (y|Ho) denote the conditional PDFs of the re-
ceived signal y when H; and Hg are true, respectively.

(2.187)

The ratio of the conditional PDFs on the left-hand side of (2.187) is
called the likelihood ratio. The detector that minimizes P, compares it to the
threshold ~, which is the ratio of the a priori probabilities of the hypotheses.
The threshold is 1 when the hypotheses are equally likely. On the other hand,
when hypothesis H; is more likely, then v is smaller to decrease the missing
probability, Py, since its contribution to (2.186) is more dominant compared
to the false alarm probability. When hypothesis H is more likely, the optimal
v is greater than 1 to force Ppa to become smaller.

Example 2.18. Consider the binary hypothesis test in (2.181). For a given
value of v = Pr{#o}/Pr{H;}, derive the Bayesian detector that minimizes
the error probability. What are Pp and Pga for this detector?

The received signal y is distributed as y ~ N (1,0?) when H; is true. On
the other hand, it is distributed as y ~ N(0,02%) when H, is true. Inserting
the respective Gaussian distributions from (2.63) into the likelihood ratio in
(2.187), we obtain the minimum P, detector as

- - Qe*% 6—7(2;12)2
m—yz27iln ——— | = In(v)
y—12 v 1
= f%qtrﬂ >In(y) = y202ln(7)+§, (2.188)

where we used the fact that In(v) is a monotonically increasing function of
~v > 0, so it can be applied to both sides of the inequality without changing
the inequality sign. By using the notation 7/ = o2 In(v) + 3, the detection
probability is associated with the event y > +' and computed as

e 1 (=12
P:/ (y|H1) By = e~y 2.189
D » fy|H (y| 1) Y \/W Y ( )

Similarly, the false alarm probability is associated with the event y > +' and
is computed using fy|%, (y|Ho) as

0o 2
Ppp = / e 202 0y. (2.190)
g
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In Figure 2.27, we show the missing probability (Py = 1 — Pp), the false
alarm probability (Pga), and the error probability (P,) for the considered
binary hypothesis test, as a function of the threshold . The curves are
generated using the formulas derived in Example 2.18. In Figure 2.27(a), we
consider equally likely hypotheses (i.e., Pr{#Ho} = Pr{H;} = 3). The Py-
curve increases with ~, while the Ppa-curve decreases. The error probability
is a weighted sum of these metrics, so it goes down and then up again when
v increases. The threshold that minimizes P, is v = Pr{Ho}/Pr{H1} = 1,
which is denoted by a cross in the figure. We notice that the optimal threshold
occurs where Py = Pra, which can be proved analytically. As the threshold
increases beyond 1, Ppa decreases but Py increases faster, which leads to an
increased error probability P.. If ~v instead becomes smaller than 1, then Py
decreases but Pgp increases faster, leading to an increased error probability.

In Figure 2.27(b), we set Pr{H1} = % and Pr{#,} = 2, which leads to
the optimal threshold v = Pr{Ho}/Pr{#;} = 2. The figure confirms that the
minimum error probability is obtained when v = 2. Ppy is less than Py at this
point, which is expected since the contribution of Pra to the error probability
in (2.186) is more dominant since it is multiplied by Pr{#g}, which is larger
than Pr{?#;} that is multiplied by Py.

2.7.2 Neyman-Pearson Detection

There are situations when prior information about the hypothesis probabilities
is unavailable, either because the statistics are hard to obtain or because the
events only occur once, so statistical modeling is not viable. We can then
follow the Neyman-Pearson detection approach where a priori probabilities
of the hypotheses are not considered. This approach is common in radar
applications; for example, in target detection, it is hard to set a probability
for the existence of a target. Instead, a desired value of Ppp = « is set, and
the detector is designed to maximize Pp under the condition that Ppa = a.
The detector that maximizes the detection probability in such a constrained
detection problem is as follows [48, Ch. 3].

Lemma 2.14. The detector that maximizes the detection probability, Pp,
under the constraint that Pra = « selects the hypothesis H; if

Fyira (yHa)

D W) (2.191)
fy\’Ho (y|HO)
where the threshold « is selected to satisfy
P = ﬁY\Hl(yIH1)> fy"HO (y[Ho) Oy = a. (2.192)

Pyl WTH0) =7
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Figure 2.27: The missing probability (Pyr), the false alarm probability (Pga ), and the error
probability (P.) as a function of the threshold v for the binary hypothesis test in Example 2.18
with 02 = 0.5. The cross shows the threshold from Lemma 2.13 that minimizes the error

probability: v = Pr{Ho}/Pr{H1}.
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Example 2.19. Consider the binary hypothesis test in (2.181). Derive the
Neyman-Pearson detector that satisfies Pra = . What is Pp for this detector?

The condition in (2.191) appeared already in the Bayesian detector but
for a predefined value of v. We now need to find the value that gives equality
in (2.192). If we rewrite this condition in the way previously done in (2.188),
our goal becomes to find the value of 4/ that results in Ppa = «. This value
is found by solving the equation

> 1 y2 ’}/I
PFA:a:/ e 220y=1-—F <>, 2.193

¥ W "\o ( )
where F|(y) denotes the CDF of the standard Gaussian distribution with
zero mean and variance 1. Since the CDF of a continuous random variable is
an invertible function, we can solve for 4’'/¢ and obtain 7' = o F, (1 — a).
In conclusion, the Neyman-Pearson detector selects the hypothesis #H; if
y > oF; ' (1—«) and selects H otherwise. If we insert that value into (2.189),
we obtain the detection probability

o 1 (y—1)2
P, :/ e 22 Qy=1—F,(F,'(1—a)—0c71Y), (2.194
. oFy_l(l—a) vV 2mo? Y y( v ( ) ) ( )

where we made a change of integration variable from y to (y — 1)/0 when
obtaining the final result.

We can use the Neyman-Pearson detector to handle the binary hypothesis
test in (2.181), using the formulas derived in Example 2.19. Figure 2.28 shows
how the detection probability, Pp, varies with the SNR. Three different false
alarm probabilities are considered: o = 107!, o = 1072, and @ = 107°. Since
the signal of interest is 1 under H;, the SNR is defined as SNR = 1/02. The
detection probability improves as the SNR increases for any given value of
Pra. We notice that Pp is higher when the false alarm probability is set to a
higher value. This is expected since the challenge in detection is to handle
uncertain cases. If we select H; for most of these cases, we get a high value of
Pp but also many false alarms. When the desired value of Pga is smaller, a
higher SNR is needed to achieve the same Pp.

2.8 Frequency Domain and Discrete Fourier Transform

Wireless signals can be equivalently represented in the time domain and
frequency domain. The Fourier transform was used earlier in this chapter to
obtain the frequency-domain representation of continuous-time signals. In
this section, we will describe the mathematical transformation between these
domains for discrete signals. In particular, we will define the discrete Fourier
transform (DFT) and describe how it can be utilized to analyze the frequency
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Figure 2.28: The detection probability, Pp, versus the SNR = 1/52, for three different values
of Ppa. The Neyman-Pearson detector is used for the binary hypothesis test in Example 2.19.

content of a sampled time-domain signal of finite length. In communication
systems that operate over a large bandwidth, it is common to insert the data
content into the frequency-domain representation of the signal instead of the
time-domain representation. The reason can be to efficiently handle channels
that change substantially over the signal bandwidth. We will provide key
results regarding the DFT and inverse DFT (IDFT) that will be utilized in
later chapters.

Consider an S-length sequence x[0], ..., x[S — 1] with samples of a time-
domain signal. The DFT of this sequence is a sequence x[0],...,X[S — 1] of
equal length that describes the frequency-domain content and is given by

S—1
X[v] = Fa{x[s]} = \% D xlsle 25 for v =0,...,§—1.  (2.195)
s=0

The constant 1/+/S in (2.195) ensures that the energy is the same in both the
time-domain sequence and the corresponding frequency-domain sequence:

S—1 S—1
> IxsllP =) Ikl (2.196)

which is known as Parseval’s relation. Many other textbooks omit this scaling
factor, which results in an energy mismatch that must be compensated for
when taking the IDFT. However, the scaling factor is vital in communications
since the signal energy is constrained, and we want to be able to measure it
over both time and frequency. The IDFT of the sequence x[0],...,x[S — 1] is
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computed as
xls] = Fy Hxlv] Z [v]e?™v/S for s =0,...,8 -1 (2.197)
and returns the original time-domain sequence.

The DFT is a linear transform, which can be seen by defining the S x S
DFT matriz

1 1 1 1
2 51
1 |1 s vg Uyg
Fs=——|. . . . . : (2.198)
NERE : : : :
1 S—1 2(5-1) (S=1)(S-1)
vZ vg . Ug

where vg = e7127/5. We can use Fg to write the DFT in (2.195) in vec-
tor/matrix form as
x[0] x[0]
XS —1] x[S —1]

=X =X

or more concisely as x = Fgx. The DFT matrix is unitary (i.e., FiFg =
FsF§ = Ig), thus the IDFT can be obtained from (2.199) by multiplying
with the IDFT matriz F'é from the left-hand side:

x = Flix. (2.200)

The columns of F% are an orthonormal basis in C¥ since the DFT matrix is
unitary. Any signal vector x is spanned by this basis, and the basis vectors
can be shown to represent a set of specific signal frequencies.

2.8.1 Interpretation of Signal Frequencies

Any S-length signal can be represented by a vector x = [x[0],...,x[S—1]]* €
C*. The IDFT formula in (2.200) shows that this vector can also be represented
as a linear combination of the columns of F§ with the coefficients given by the
DFT vector x. The columns of F take the role of an orthonormal basis in C°
and are not selected arbitrarily but to represent different signal frequencies. If

we count the columns of F§ from 0 to S — 1, then column v € {0,...,5 — 1}
is
1 250
(v§)” e %51
1 (U%V)* _ L ergu'Q

7 | =75 (2.201)

() FEPRY
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This basis vector contains S equal-spaced samples of the complex exponential
ej%TV'l, with the normalized frequency v/S and the integer sample times
[ =0,1,...,5 — 1. The frequency is normalized in the sense that the time
between the samples is unspecified. Suppose the discrete samples are obtained
from a complex exponential €27/t with the frequency fHz and time variable
t € R. In that case, we need to know the sampling rate (samples/second) to
connect the normalized frequency to the original frequency.

We considered the normalized frequencies v/S € {0, ..., (S—1)/S} between
0 and 1 when computing the IDFT in (2.197), but we can as well consider
another interval of length 1. The reason is that the complex exponential 75
is a periodic function of v. In particular, we obtain the same column in (2.201)
with v/S and v/S + n for any integer n because

ej27r(§+n) Ao €J 2”” leJQTrnl 6127”’ -l
~——
=1

(2.202)

when [ is an integer. Since positive and negative frequencies often come in
pairs in practical signals (e.g., in the complex baseband representation), it is
common to consider a symmetric frequency interval such as f € [-B/2, B/2),
where the upper limit is excluded so that the Nyquist-Shannon sampling
theorem stated in Lemma 2.8 is satisfied. Hence, utilizing the normalized
frequency interval f € [~1/2,1/2) that is also symmetric around zero can be
convenient. There is then a simple bijective mapping where the sampling of a
signal with the original frequency f results in the normalized frequency

=
f=% (2.203)

when the sampling rate is B sample/second. Half of the normalized frequencies

n [—1/2,1/2) are negative, and the concept of negative frequencies might
seem illogical but is fundamentally important. The complex exponentials with
the positive normalized frequency v/S and with the negative counterpart
—v/S only differ by a complex conjugate:

j2meg (eJ%Tvl)* (2.204)

e*J

Hence, the real parts are equal, while the imaginary parts have opposite signs.
Euler’s formula in (2.3) can be utilized to create any discrete-time Slnus01dal
signal Wlth the normalized frequency v/S as a linear combination of el 5l
and e 175, ; for example, we can create the cosine and sine signals as

2 Y 1 i 74

cos (gy > *612 ‘Tt +5e S (2.205)
2 1 T

sin (gy : l) = Q—jel%'l - Q—je—l%". (2.206)

This is why we need pairs of positive and negative frequencies to synthesize
arbitrary signals using the IDFT.
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Figure 2.29: Illustration of how the positive range v/S € {0,...,(S — 1)/S} of normalized
frequencies can be turned into the symmetric range in (2.207) with both positive and negative
frequencies through a cyclic shift. S = 10 samples are considered in this example.

Example 2.20. Which are the S normalized frequencies f € [~1/2,1/2) that
the IDFT utilizes?

The columns of the IDFT matrix are generated by the normalized fre-
quencies v/S € {0,...,(S —1)/S}. The lower half is in the intended range
[0,1/2), while the upper half is in the interval [1/2,1) that is larger than 1/2.
We can use the periodicity property from (2.202) to subtract 1 from these
normalized frequencies and obtain an equivalent representation in the range
[-1/2,0). The IDFT is therefore synthesizing signals using the following S
normalized frequencies f between —1/2 and 1/2:

f{H Lgl @11}

S ) ) S Sv 3 S
— =1 if S is even,

:{ ? X 2 Sl L i 6 is odd (2.207)
—54—@,,5—@ 1 1S O s

where the operator [-] returns the closest integer larger than or equal to its
argument. The first and last frequencies differ for even and odd values of S.

Figure 2.29 shows how to switch from the range v/S € {0,...,(S —1)/S}
of positive normalized frequencies to the symmetric range in (2.207) with
both positive and negative frequencies. This is achieved through a cyclic shift
where the upper half is moved to the beginning. The figure shows the case
of S = 10, which is an even number, so 1/2 is one of the original normalized
frequencies (this will not happen if S is odd). This frequency is equivalent to
1/2 —1 = —1/2, so we can put it in either the beginning or the end of the
symmetric range. We follow the convention of starting with —1/2 so that the
cyclic shift divides the range into two equal halves and shifts their order.

Figure 2.30(a) shows the real and imaginary parts of %5 for v = 5 and
S = 7. The curves are drawn as a function of a continuous variable [, but the
samples obtained at the integer times I = 0,...,6 are marked with circles.
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When the DFT is applied to these 7 time-domain samples, we obtain the
vector x = [0,...,0, V7, 0] where only the sixth entry corresponding to v =5
is non-zero. The normalized frequency is v/S = 5/7, which is not within the
interval [—1/2,1/2) but can be identically represented within that range by
f=5/7T—1= —2/7. Figure 2.30(b) shows the DFT representation of the
signal using the set of normalized frequencies from (2.207) that are within the
desired interval [—1/2,1/2).

Figure 2.31 illustrates how the IDFT formula x = Fix in (2.200) syn-
thesizes the time-domain signal by showing how each column of F§ contains
samples of a complex exponential with a different frequency. The time axis
points downwards, with positive values to the left of the vertical lines. We
consider S = 7 as in the last figure. The curves in the first four columns are
obtained for the positive normalized frequencies 0, 1/7, 2/7, and 3/7. The
curves in the last three columns are obtained using the negative frequencies
—3/7, —=2/7, and —1/7, which are equivalent to the normalized frequencies
4/7,5/7, and 6/7 that are outside the range [—1/2,1/2). The color coding
identifies the columns that oscillate at the same frequency except for a different
sign, leading to the same real parts but inverted imaginary parts.

The considered time-domain signal x and its DFT x are sequences of the
same finite length S, but the DFT and IDFT definitions can be easily extended
into infinite sequences. The IDFT formula in (2.197) can be evaluated for any
integer s, but the sequence is S-periodic since x[s + 5] = eH2™5/Sy[s] = x[s]
follows by the fact that eX275¥/S = 1. This can be pictured by considering
Figure 2.31 and adding additional rows to the matrix by extending the
oscillating curves up and down. No additional frequencies would be added to
the signal when doing that. Similarly, for any integer v, the DFT in (2.195)
satisfies x[v + S] = eT279/9y[v] = x[v] since eT2755/5 = 1. This frequency-
domain periodicity is the property we utilized when shifting the interval of
normalized frequencies from [0,1) to [-1/2,1/2).

In summary, any S-length signal vector x can be expressed as a linear
combination of (samples from) complex exponentials having the S normalized
frequencies stated in (2.207). This is why the DFT gives a frequency-domain
representation, and the coefficients of the linear combination are stored in the
DFT vector x.

2.8.2 Finite Impulse Response Filters

The discrete-time representation of a communication system might contain
the filtering of a signal sequence by a finite impulse response (FIR) filter,
which might represent the communication channel in a discrete time. A causal
discrete-time FIR filter of order T provides the output signal

y[k] = h[0]x[k] + h[1]x[k — 1] + ...+ R[T]x[k — T, (2.208)
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Figure 2.30: The signal ¢5 ! withv =5and § = 7 is sampled at the integer times

1 =0,1,...,6. The time-domain representation is shown in (a), and the frequency-domain
representation is shown in (b) using the set of normalized frequencies from (2.207).
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Figure 2.31: The IDFT formula in (2.200) is illustrated with a connection to the complex
exponentials that are sampled to obtain the entries of Fg The solid lines show the real parts,
the dashed lines show the imaginary parts, the dotted vertical lines show the time axis, and the
stars show the sampling points.

where x[k] is the input signal and h[0], ..., h[T] is the (T + 1)-length discrete
impulse response that characterizes the filter. Figure 2.32 illustrates the
filtering operation in (2.208). The individual terms h[k]| are often called taps,
and the entire filter can be referred to as a tapped delay line since the output
contains delayed copies of the input multiplied by different taps.

When the signal sequence x[0], ..., x[S —1] is sent as input to an FIR filter
of order T' < S, the output (2.208) can be expressed as a linear convolution
(denoted by *) between the input sequence and the impulse response:

ylk] = (h*x)[k] = ZTj hlylk—€ fork=0,...,5—1. (2.209)
£=0

This equation also depends on the T signal values x[—T1, ..., x[—1] sent
before the actual transmission began. This is a major issue if we want to
identify all input signal values from the output sequence y[0],...,y[S — 1]
because there are S + T parameters to identify but only S observations.
Hence, controlling the content of the extra T signal values is desirable to avoid
transient effects where unknown signals are mixed with the intended ones
to create an ill-posed signal identification problem. A simple solution is to
actively send a prefiz containing x[—T],..., x[—1] into the FIR filter before
the actual intended transmission of x[0], ..., x[S — 1] begins. The prefix can
be designed in different ways under the constraint that it is not introducing
any additional unknown signal values: we can only handle S unknowns when
having S observations. One option is to use a silent prefix represented by
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x[K] Delay Delay W' '> Delay W

h[0] h[1] h[2] h[T]

--- y[k]

Figure 2.32: A block diagram of a discrete-time FIR filter of order T', which takes x[k] as
input and provides y[k] as output.

x[—1] = ... = x[-T] = 0, so the corresponding terms vanish from (2.209).
This prefix has the benefit of not increasing the total signal energy but has
the drawback that we must design an inverse filter based on the channel
taps to recover the input signal sequence. As will soon become apparent, a
more convenient option is to add a cyclic prefic where we use values from
the end of the sequence: x[—1] = x[S — 1], x[-2] = x[S — 2], and so on until
X[—T] = x[S — T]. This option has the important consequence that the input
signal sequence will appear to be periodic, in the sense that the received signal
in (2.209) can be expressed as

T
= Z hl€x[k —

_Zh [(k —Omoas] = (h®x)[k] fork=0,...,5—1, (2.210)

where “mod S” is the modulo operation that adds S to & — £ whenever
needed to get a value between 0 and S — 1. Even if the FIR filter performs a
linear convolution, the addition of the cyclic prefix makes the output signal
mathematically equivalent to a cyclic convolution between h[0],...,h[T] and
an infinite S-periodic extension of x[0],...,x[S — 1]. Recall that S-length
sequences behave as S-periodic sequences when analyzed using the DFT, so
this is the property that we want to maintain by adding the cyclic prefix. It
is called cyclic (or circular) convolution since the modulo operation provides
indices from the end of the signal sequence when k — £ is negative; for example,
<_1)modS =5-1, <_2)modS =5 -2, etc.
The DFT of the output y[0],...,y[S — 1] can be expressed as

S—-1 T

1 S—1 . )
73 Z y[s]e—ﬂﬂsl//s Z Z h S]e—JQﬂ'SV/S

sOEO

T S—-1-¢ ) )
Z Z h mods]e—JQW(’L-’-é)V/S (2211)
Z 0 i=—¢
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by changing the summation index from s to i = s — £. We can further rewrite
the expression by adding S to all negative values of ¢ and exploiting the cyclic
signal structure, which results in

T 1 S S—1—-¢
:Zh[£]< Z X[(D)mod s]e /S Z x| _J27m//s> —j27lv/S
= VS\.Z,
Z: g_ g Xli]emi2m(i=SHr/s
T ) s 1 |
= 2 M Z jJe12miv/S, (2.212)
£=0
f_l[u] ]

where the equality follows by using that e275¥/S = 1 since v is an integer.

The final expression in (2.212) shows that y[v] is the product between the
DFT of the input signal and frequency response of the FIR filter, defined as

T
= > h[e P™/S for y=0,...,8— 1. (2.213)

The frequency response is defined similarly to the DFT of a signal, except for
the lack of a 1//S scaling factor.® The property we derived above is known
as the cyclic convolution theorem.

Lemma 2.15. Let y[k] = (h ® x)[k] denote the S-length sequence obtained
by cyclic convolution between the sequence x[0],...,x[S — 1] and the FIR
filter A[0],...,h[T] with order T' < S. The DFT of y[k] is given by

ylv] = hv]x[v] forv=0,...,8 —1, (2.214)

where x[v] is the DFT in (2.195) and h[v] is the frequency response in (2.213).

This lemma states that the DFT of a cyclic convolution between a signal
sequence and the impulse response of a filter is the product of the respective
frequency-domain representations. This is the discrete counterpart of the
(perhaps) more widely used property that the continuous Fourier transform of
the convolution between two functions is the product of the Fourier transforms
of the respective functions. The practical consequence of this lemma is that
we identify the DFT of the input signal sequence by computing the DFT of
the output signal sequence and then simply dividing 7[v] in (2.214) by h[v].

9Many textbooks omit the 1/\/§ factor when defining the DFT to achieve symmetry between
how signals and impulse response are transformed to the frequency domain. As mentioned
earlier, the drawback of that convention is that the signal energy will differ between the time
and frequency domains, which we circumvent by using (2.195) for the DFT of a signal and
(2.213) for the frequency response of an FIR filter.
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The DFT operation is the same irrespective of the channel taps, which makes
it convenient to implement in hardware. We will return to this in Section 7.1.1
when considering orthogonal frequency-division multiplexing (OFDM).

We can also establish a matrix-vector representation of the FIR filter. If
we begin by considering the cyclic convolution in (2.210) and assume T = 3
(for brevity), we can connect the S outputs with the S inputs as

RO 0 ... ... ... 0 h@3 A2 AQ]

Rl RO O ... ... ... 0 &3 A2

hi2) R[] RO] O ... ... ... h[3]

R3] A2 R[] RO] O ... ... ... 0

y[0] P . x[0]

ss 1| 2 hL2 R RIO] 0 \i5 1]
— 0 h[3] h[2] h[1] hl0] O© =

0 KB AR2] RO A0] O

0 .0 A3 h[2 K] A[0]]

=Cy

(2.215)

which can be written in short form as y = Cpx. The filtering is carried out
by the S x S matrix called Cj, where each row contains all the channel taps
but shifted cyclically one entry to the right for each row. This kind of matrix
is known as a circulant matriz and can be created for any value of T' < S.
Any such matrix can be viewed as the matrix representation of the cyclic
convolution that an FIR filter carries out when the input has a cyclic prefix.

Another matrix-vector representation can be established by considering
the frequency-domain expression in (2.214), which we can write as

0 ROl 0 ... 0 0

] _ . : X

: = 9 HH f' : : (2.216)
gls — 1] o0 X[ —1]

h

or in short form as y = Djx. We notice that Dj is a diagonal matrix
containing the frequency response of the FIR filter. We can connect the time-
domain representation in (2.215) and the frequency-domain representation
in (2.216) using the DFT matrix Fg. We known from (2.199) that x = Fgx,
which also implies that y = Fgy. By substituting these expressions into
(2.216), we obtain

Fgy = DBFSX = y= FgDBst. (2.217)
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Figure 2.33: The complex exponential signal in (2.219) travels along the z-axis and the signal
at time ¢ = 0 is shown. The wavelength X is the spatial interval between two peaks. The spatial
frequency 1/ is the number of wavelengths that fit into one meter.

By comparing (2.217) with (2.215), we notice that the circulant matrix Cy,
can be alternatively expressed as

C, = FiD;Fg. (2.218)

Since Dy, is a diagonal matrix and Fg is a unitary matrix, we recognize
(2.218) as the eigendecomposition of Cp; it has the same structure as in
Lemma 2.1, except that the eigenvalues can be complex in this case since
C}, is not Hermitian. The eigenvalues are the entries h[0],...,h[S — 1] of the
frequency response of the filter, while the eigenvectors are the columns of the
IDFT matrix F%. Since this result holds for any circular convolution, we can
conclude that the DFT matrix diagonalizes any circulant matrix.

2.8.3 Temporal and Spatial Frequencies

The DFT was introduced in this section to study the temporal frequencies
contained in a time-varying signal, but there is another related concept: spatial
frequencies. When an electromagnetic signal propagates through free space,
it can be observed simultaneously at many spatial locations, but it will be
delayed differently depending on how far it has traveled from the signal source.
Suppose the complex exponential signal e?7fc* = cos(2n f.t) + jsin(27 f.t)
with the temporal frequency f. is emitted from a source located in the origin,
as illustrated in Figure 2.33. The signal observed at the spatial location z > 0
along the positive z-axis at the time ¢ is

2 fe(t=%) — gi2mfet o—i35E (2.219)

where z/c is the propagation delay, ¢ is the speed of light, and the wavelength
at the carrier frequency is denoted by A = ¢/ f.. For a given communication
system, the carrier frequency is predetermined, while the wavelength might
change depending on the speed of light, which is reduced in some propagation
media compared to its maximum value 299 792 458 m/s obtained in free space
(i.e., vacuum). We will treat ¢ as equal to the maximum in this book since
the waves reach the receiver through the air. The factor e/?"/<t in (2.219)
determines the temporal signal variations while the factor e %% determines
the spatial variations. At time ¢t = 0, the signal observed along the x-axis is

27 2 2
e 15" = cos (;\Tx) — jsin (;\Tx) ) (2.220)
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which is a periodic function that repeats itself every A meters, thus the spatial
frequency is 1/), representing the number of periods per meter. The spatial
frequency is also called the wavenumber, but we will use the spatial frequency
terminology in this book to highlight that signals obtained in the time and
space domains can be studied using the same methods (e.g., the sampling
theorem and filtering). Spatial frequencies can be positive and negative, but
the convention is that there is a minus sign in the complex exponential as
in (2.220) when the spatial frequency is positive. In this way, the positive
temporal frequency f. gives rise to the positive spatial frequency 1/A. In this
example, the spatial frequency is the same at any time t since the wave is
shifted to the right as it travels along the line. This follows from the fact that
the time variable ¢ and spatial variable x affect different factors in (2.219).

The temporal frequency f. and the spatial frequency 1/\ are closely related
in wireless signaling (they only differ by a factor ¢), but there is a distinct
conceptual difference. One way to separate the concepts is to consider a
video recording of wave propagation (e.g., ocean waves). A video contains
a sequence of frames (pictures shown at different times), and each frame
consists of colored pixels at different screen locations. The temporal frequency
describes how the wave observed at a particular pixel evolves with time. In
contrast, the spatial frequency describes how the waves at a particular time
instance oscillate between the pixels in the current frame. The fundamental
relation between temporal and spatial frequency breaks down when static
objects are introduced in the propagation environment. In that case, the
temporal frequency remains the same, but the waves change directions when
interacting with the objects, changing the spatial frequency observed along
the given line. The connection also breaks down when observing the wave
along a line that is not parallel to the direction the wave travels.

Figure 2.34 shows how the sinusoid cos(27f.t) propagates radially in
two dimensions from a transmitter located in the origin, where the coloring
describes its value. The signal observed at the point (x,y) at time ¢ is

cos <27rfC (t — m)) = cos (27ch25 _ m)

c A
_ %ejQTrfCtefj%ri\’Iz;'yz i %eijchtejQTri\’wQ;'yQ’
(2.221)

which is obtained similarly to (2.219) but with the propagation distance
computed as \/x? + y2. We also used Euler’s formula as in (2.8) to express the
cosine as two complex exponentials, which reveals that the considered signal
contains the spatial frequencies 1/\ and —1/\. The figure shows this signal
at time t = 0, and we observe that the pattern is invariant to radial rotations
since the signal propagates equally in all angular directions. The distance
between two adjacent peaks in any radial direction equals the wavelength A.
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Figure 2.34: A sinusoidal wave propagates radially from a transmitter located in the origin.
The middle figure shows the signal at different locations at ¢ = 0. The upper and lower figures
show how the signals observed along two lines contain different spatial frequencies.
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At the bottom of the figure, the waveform observed along the black line is
shown. This line covers the positive x-axis, a radial direction from the origin.
At time t = 0, we observe a sinusoid cos(25%) with the wavelength A and the
spatial frequencies £1/A. The signal observed along the blue line is shown at
the top of the figure. This signal appears aperiodic and contains a broader
range of spatial frequencies. The reason is that the wave propagation is not
aligned with the direction of the line. The distance between the adjacent
peaks varies but is larger than A, which indicates that the observed signal

only contains spatial frequencies in the range [—1/X,1/)].

There are two main messages from this example. Firstly, the spatial
frequencies of the signal observed along a given line segment depend on the
location of the source. Hence, the observed signal can be used to identify the
source location or at least its angular direction. This estimation problem will
be considered in later chapters. Secondly, the observed signal has the original
spatial frequencies £1/\ when considering a line drawn in the same direction
as the wave propagation, while smaller spatial frequencies (in the magnitude
sense) are observed when the direction of the line is not aligned with the
wave propagation. Suppose we insert B = 2/ into the sampling theorem in
Lemma 2.8. In that case, it states that we can capture all useful information
from any signal containing spatial frequencies in the range [—1/\,1/)\) by
taking samples spaced 1/B = \/2 apart. Hence, for any of the considered
lines, measuring the signal at locations spaced apart by A/2 is sufficient.
This principle will guide us later when designing antenna arrays. Strictly
speaking, the spacing between the sampling locations should be smaller than
A/2, because the cosine signal contains both the spatial frequencies —1/\
and 1/A. Aliasing might appear when sampling precisely at the Nyquist rate,
which we will discuss further in Chapter 4. We will also show that an antenna
array’s ability to distinguish between signals arriving from different directions
is determined by its ability to separate the spatial frequencies of these signals.

The DFT can be applied to samples obtained at the same time but at
different spatial locations. It will then reveal the spatial frequencies present in
the spatial signal samples. An example of this is shown in Figure 2.35, where
we take samples from the upper and lower curves in Figure 2.34. The S = 10
sample points per curve are indicated by circles in that previous figure and
are spaced apart by A/2, as suggested by the sampling theorem. Since we are
taking spatial samples, the DFT computes the normalized spatial frequencies.
Figure 2.35(a) shows the DFT of the blue upper curve in Figure 2.34, which
contains a wide range of spatial frequencies since the waveform is sampled in a
dimension that is not aligned with the direction of the propagating waveform.
Since the original signal is real-valued, there is a symmetry between the
positive and negative spatial frequencies. Figure 2.35(b) shows the DFT of
the black signal, which only contains the normalized frequency —1/2 = 1/2.
A single point in the DFT represents both frequencies due to the aliasing that
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Figure 2.35: The DFTs of the spatially sampled waveforms from the upper and lower curves
of Figure 2.34. In this case, the DFT describes spatial frequencies, and the figures show the
magnitudes (i.e., absolute values) since the DFTs can be complex-valued.

can appear when sampling precisely at the Nyquist rate. However, from the
preceding discussion, we know that the signal only contains spatial frequencies
smaller or equal to 1/); the fastest changes always occur in the direction the
wave propagates. When combined with the prior knowledge that the signal is
real-valued, it is possible to reconstruct the original signal in this special case.
Since the spatial sampling rate is 2/ samples per meter, the true spatial
frequencies are :l:%% = :I:%, as anticipated from the previous discussion.
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2.9 Exercises

Exercise 2.1. Consider two orthogonal vectors x;1 € CM and x, € CM.

(a) What is the projection ¥proj,x;,x» of another vector y € C™ onto the space spanned
by x1 and x2? Hint: Express the projection as yproj,x;,xs = @1X1 + aax2 and find
the coefficients a1, a2 € C that make the residual vector ¥y — yproj,x;,x, Orthogonal
to x1 and Xo.

(b) Generalize the result from (a) to the case where we project y onto the space that
is spanned by the L < M orthogonal vectors x1,...,x;, € CM. Show that we
can write the projection as Yproj xi,....x;, = Py and obtain an expression for the
projection matriz P.

,,,,,

Exercise 2.2. Let x ~ N¢(0,Ix) and y ~ N¢(0,R) be M-dimensional complex Gaussian
random vectors. Moreover, let z = [21,...,2zm]" be a random vector with independent
and identically distributed entries z,, ~ Exp(1/3) for m =1,..., M.
(a) Compute E{|v"y|?} for a given deterministic vector v = [v1, ..., va]T € CM.
(b) Compute E{|v"z|?} for a given deterministic vector v = [v1,...,vnm]T € CM.

(c) Compute Var{||Ax|?*} where A € C¥** is a deterministic matrix with K > M.
Each column of A has a norm equal to 2 and is orthogonal to the other columns.

Exercise 2.3. When using PAM, the continuous-time complex-baseband signal can be
expressed as in (2.120), which we repeat here as

A1) = i m[k]p(t—%). (2.222)

k=—o0
The Nyquist criterion says that z(n/B) = Az[n], where A # 0 is an arbitrary constant. It

can be equivalently expressed by multiplying z(t) by the impulse train ) > 6(t—r/B)
and equating it to the impulse train weighted by the desired symbols:

2(t) i 5 (t - %) =A i 2[r]6 (t - %) . (2.223)

T=—00 T=—00

(a) By taking the Fourier transform of both sides of (2.223), derive the condition that
the Fourier transform of the pulse must satisfy

B f: P(f-rB)=A (2.224)

rT=—00

for the Nyquist criterion to hold. Hint: Use the fact that the Fourier transform of
the impulse train is given by F{> > _ §(t —r/B)} =By >~ _ &(f —rB).

(b) Verify that the sinc pulse is the most bandwidth-efficient pulse that satisfies the
Nyquist criterion using the condition in (2.224).

(c) Determine whether the Nyquist criterion holds or not for the so-called raised-cosine
pulse (with roll-off factor 0.5) that has the Fourier transform

if|fl< %,
(1+sin (Z)) if 2 < \{lg 3B, (2.225)
if [f] > 27,

P(f) =

O o =
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Exercise 2.4. Consider the LTI system in Figure 2.10(a) with the impulse response

t—T/2 1, if0<t<T,
t) = rect = 2.226
9 (1) < T ) {07 otherwise. ( )

The input signal z(¢) is arbitrary and the complex-baseband equivalent input signal is
denoted as z(t).

(a) Find the complex-baseband representation of the output signal vy (t) in terms of
z(t) and the carrier frequency f; by first filtering the signal in the passband and
then downshifting vy (¢) to the complex baseband.

(b) Compare the result obtained in (a) with the one obtained by first transforming
the input signal z,(¢) to the complex baseband and then filtering it with the
equivalent complex-baseband filter from (2.117).

Exercise 2.5. Consider the noise samples n[l] in (2.123), where w(t) is a white circularly
symmetric complex Gaussian random process with the constant power-spectral density
Ny and p(t) is the sinc-pulse defined in (2.118).

(a) Prove that the variance of n[l] is No.

(b) Prove that the noise samples n[l] and n[m] obtained from (2.123) for [ # m are
independent. Hint: Use the identity

/ sinc(l — t)sinc(m — t)0t = 0, (2.227)

oo

which holds for any integers [ and m such that [ # m.
Exercise 2.6. Consider the linear observation model
z = Av +n, (2.228)

where v € C¥ and n € CM are independent random vectors. Their entries are in-
dependent and identically distributed with zero mean and unit variance. The matrix
A € CM*E ig deterministic. Hence, the covariance matrices of v and z are E{vv"} = I
and E{zz"} = AA"™ + I, respectively. The LMMSE estimate of v based on the
observation z is

v=A" (AA" 4 1y) 'z (2.229)

(a) Verify the orthogonality principle E{vz"} = E{(v — ¥)z"} = 0 for the given
LMMSE estimator.

(b) Suppose v ~ N¢(0,Ix) and n ~ Nc(0,Ia). Show that the LMMSE estimator
in (2.229) is also the MMSE estimator by verifying that A" (AAH + IM)_1 z
is the mean of the conditional PDF f,,(v|z). Hint: Use the matrix identity

1

det (AA" +1y) = det (A"A +1x) = and the identity in

det((AHAHK)*l)
(2.50).
(c¢) Find the MMSE estimate of v ~ N¢(0,I5/) based on the alternative observation

y=v+ec, (2.230)

where ¢ ~ N¢(0, C) is the independent noise with an invertible covariance matrix
C. Hint: Use whitening and then (2.229).
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Exercise 2.7. Consider a narrowband channel with L paths. The channel response is
modeled according to (2.131) as

L
h= Z e 2 felmimm), (2.231)
=1

(a) Is |h| dependent of the value of n?

(b) Suppose there are L = 2 paths and a1 = a2 = 1. For which values of 71 and 72 is
|h| maximized? For which values is |h| minimized?

(c) Define ¢; = 27 f.(m; —n) and assume that it is a uniformly distributed random
variable between —m and 7. Compute E{|h|?} assuming that a1, ..., ar are deter-
ministic, while 1, ..., are mutually independent. Hint: Use that E{e 7%} = 0.

(d) Redo (c) under the assumption that au,...,ar are also independent random
variables, uniformly distributed between 0 and 1.

Exercise 2.8. Consider the complex-valued AWGN channel y = x + n with B samples
per second. Its capacity is Blog,(1 + P/(BNp)), which follows from (2.146) with g = 1.
Decompose the channel into two real-valued AWGN channels.

(a) Are the two real-valued AWGN channels independent?
(b) How many samples per second do we have for each of the two channels?

(c) Suppose we transmit with a power of P > 0 Watt and place all the power in only
one of the two real-valued AWGN channels. What is the capacity expressed in
bits per second?

(d) Is the result in (c) higher or lower than the capacity of the complex-valued AWGN
channel?

Exercise 2.9. A friend claims we can double the capacity (in bit/s) by doubling the
bandwidth. Is this correct? If yes, use the capacity formula to prove it. If no, explain
what else needs to be done to achieve twice the capacity.

Exercise 2.10. The received signal power reduces with the propagation distance d. This
can be modeled as T (%)a P using the parametric channel gain model in (1.9), where
P is the transmit power, a > 1 is the pathloss exponent, and T > 0 is a constant

propagation loss.

(a) Suppose the channel is modeled as in (2.144). How can we select h to get the right
received signal power? What is the resulting capacity expression?

(b) Consider B = 10 MHz, Ng = —174dBm, P = 30dBm, T = —37dB, and o = 3.7.
What is the SNR for a user at the distance d = 200m? What is the capacity (in
bit/s)?

(¢) What will the capacity be for a user at the distance 4d? How can the transmit
power be scaled to achieve the same capacity as in (b)?

(d) What will the capacity be for a user at the distance d/27 How can the transmit
power be scaled to achieve the same capacity as in (b)?
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Exercise 2.11. The capacity of the discrete memoryless channel y = h -z + n is achieved
by the input signal = ~ N¢(0, g), as proved in Corollary 2.1. Suppose we instead send two
independent signals over the channel: 1 ~ N¢(0,¢1) and z2 ~ N¢(0, g2). The resulting
received signal is

y=nh-(z14+z2) +n, (2.232)

where n ~ N¢(0, Np) is independent complex Gaussian noise. What is the corresponding
channel capacity, which is achieved by selecting g1, g2 to maximize the mutual information
H(y) — H(y|z1,x2) under the constraint g1 + g2 < g7

Exercise 2.12. Consider a random variable z with zero mean and variance o2. We want
to estimate o2 from the L independent random realizations of z, which are denoted

z1,...,25. The following estimator is utilized:
L 2
. i1 |7l
52 = 2 }1( i (2.233)

where K is a pre-determined scalar.

(a) For which value of K is the considered estimator unbiased? Is the answer dependent
on the specific distribution of x?

(b) For which value of K will the considered estimator achieve the minimum MSE?
Is the answer dependent on more than the mean and variance of 7 What is the
MSE-minimizing value of K if z ~ N¢(0,02)?

Exercise 2.13. Consider the binary hypothesis test

Ho : yll=nl], 1=1,...,L, (2.234)
Hy : oylll=1+nll), 1=1,...,L, (2.235)

where the detector decides whether “1” is transmitted or not by observing multiple
received signals y[l]. Unlike the hypothesis test in (2.181), L consecutive received signals
are considered. The real-valued noise samples n[l] are independent and identically
distributed as n[l] ~ N(0,0?), for [ =1,..., L.

(a) For a given value of v = Pr{#H.}/Pr{Ho}, derive the Bayesian detector that
minimizes the error probability. What are Pp and Pra for this detector? Hint:
The answers are integral expressions.

(b) For a given value of Pra = «, derive the Neyman-Pearson detector that maximizes
the detection probability, Po. What is Pp for this detector?

Exercise 2.14. Consider the continuous-time signal z(u) = 2 cos(200mu) + 3 sin(6007u),
which is sampled to obtain the S = 7-length sequence x[s] = z(s/B), for s =0,...,6.
What is the DFT of the sequence x[s] when the sampling rate is B = 700 samples/s?

Exercise 2.15. Prove Parseval’s relation in (2.196) using the unitary property of the
DFT matrix Fg.
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Exercise 2.16. Suppose the S-length sequence a = [a[0],...,a[S — 1]]" has the DFT

a = [a[0],...,a[S — 1]]". Consider the S x S circulant matrix defined similar to (2.215)
al0] alS—1] alsS—-2] ... ... afl]
all] al0] als—-1] ... al3] a[2]

Ca= : . - S ol (2.236)
als—1 ... L a)

but for the DFT sequence. We further define a diagonal matrix containing the time-
domain sequence a:

a0 0 ... 0
p,— |0 U s (2.237)
S 0
0 ... 0 alS—-1]

(a) Derive a decomposition of Cjz in terms of D, and the DFT matrix Fg similar to
(2.218). Hint: Switch the roles of the sequences in time and frequency. From the
structure of the DFT matrix, it holds that F§ = Fg and F§ = F§.

(b) Consider another S-length sequence b = [b[0],...,b[S — 1]]" which has the DFT
b = [b[0],...,b[S — 1]]*. Prove that the DFT of the sequence a[k]b[k] (for k =
0,...,5—1)is given by (@a®b)[v]/v/S (for v =0,..., S — 1) by using the obtained
decomposition of Cz and the properties of Fg. Hint: The kth entry of the S-length
vector Dyb is a[k — 1]b[k — 1].

27k

(c) For the given sequences alk] = €10 | b[k] = eje)l:er7 for k =0,...,9, verify that the
DFT of the sequence a[k]b[k] is given by (@ ® b)[v]/+/S.

Exercise 2.17. The signal z(t) = cos(27 f1t) is modulated to the carrier frequency f. by
computing zp,(t) = x(t) cos(27 fct), where fo > fi.
(a) Which positive and negative (temporal) frequencies does xp, () contain?

(b) The signal z,(t) is radiated from an antenna located in the origin and propagates
at the speed of light ¢. Which spatial frequencies can be observed along the y-axis?

(¢) What happens to the temporal and spatial frequencies if the signal propagates
through a medium where the propagation speed v is smaller than ¢ (i.e., the speed
of light in free space)?



Chapter 3

Capacity of Point-to-Point MIMQO Channels

In this chapter, we will characterize the channel capacity in memoryless point-
to-point scenarios where one transmitter communicates with one receiver
without impacting other systems. We will distinguish between four cases:

1. Single-input single-output (SISO) channel: The transmitter and receiver
have one antenna each.

2. Single-input multiple-output (SIMO) channel: The transmitter has one
antenna and the receiver has multiple antennas.

3. Multiple-input single-output (MISO) channel: The transmitter has mul-
tiple antennas and the receiver has one antenna.

4. Multiple-input multiple-output (MIMO) channel: Both the transmitter
and receiver have multiple antennas.

These cases are illustrated in Figure 3.1. The capacity of the SISO channel
was derived and discussed in Section 2.4.1. This chapter will generalize the
theory to capture the other three cases, one after the other. The results will
be utilized in the remainder of the book to study specific communication
scenarios and channel conditions.

3.1 Impact of Power and Bandwidth on the Capacity

Before introducing multiple antennas, we will return to the channel capacity
for SISO channels in (2.146) and shed some light on how it depends on the
transmit power P and the bandwidth B. The purpose is to understand how
the capacity can be improved. For notational convenience, we now explicitly
write the capacity in (2.146) as a function C'(P, B) of these variables:

C(P,B) = Blog, (1 + Bi@g) bit/s. (3.1)
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Transmitter |, _T r_ ool Receiver

(a) Point-to-point SISO channel.

Transmitter | __ _T Receiver

i

(b) Point-to-point SIMO channel.

Transmitter |, -T / r_ N Receiver

(c) Point-to-point MISO channel.

-1 r.

Transmitter |, _T t ool Receiver

. 1.

(d) Point-to-point MIMO channel.

Figure 3.1: The four kinds of point-to-point communication channels where the transmitter
and receiver have either one or multiple antennas.
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Since the capacity involves a logarithm, it is useful to notice that

logy (1 + 2) ~ logy(e)z  if z =~ 0, (3.2)
log, (14 2) &~ logy(z) if 2> 0, (3.3)

where e ~ 2.71828 is Euler’s number. The expression in (3.2) is the first-order
Taylor approximation of log,(1 + z) around z = 0. Since log,y(1 + z) with the
SNR z = BP—]\% appears in the capacity expression (3.1), (3.2) and (3.3) will
help us to understand the capacity behavior at low and high SNR, respectively.

The notions of low/high SNRs can be interpreted as follows.

Example 3.1. For which ranges of z > 0 will the approximations of log,(1+ 2)
in (3.2) and (3.3) lead to absolute errors that are smaller than 0.17

The low SNR approximation log,(1 + z) ~ log,(e)z in (3.2) is based on a
first-order Taylor approximation, and it can be written in an exact form as

2

logy(1 + 2) = logy(e)z — 10g2(6)2(1ZT¢L)2 for some 0 <a <z,  (3.4)
where the second term is known as the Lagrange error bound. The absolute
approximation error can be upper bounded using (3.4) as

22 < log,(e) 22’

214a)? = 2

} logy (1 + 2) — logQ(e)z| = log,(e) (3.5)
where the last step follows from setting a = 0 to get the largest possible error.
Based on this upper bound, the absolute error is smaller than 0.1 when

1 0.2
82(¢) 2 c 01 = < ~ 037~ —43dB.  (3.6)
9 logz(e)

We can find the exact solution by solving log,(e)z — logs(1 + 2) < 0.1 numeri-
cally, which results in the somewhat larger range z < 0.42 ~ —3.8dB.

For the high SNR approximation log,(1+2) = log,(2) in (3.3), the absolute
error is log, (14 2) —logy(2) = log,(1+1/2). To guarantee log,(141/2) < 0.1,
we should have

> sor 7 ~ 1393~ 11.4dB. (3.7)

When varying the transmit power P, we notice that C(P, B) is a mono-
tonically increasing function of P. It starts at C'(0, B) = 0 and then grows
linearly with P when the SNR BP—A’% is small. We can utilize (3.2) to obtain

P P
o~ logale) (3.8)

at low SNR, which is independent of the bandwidth.

C (P, B) =~ Blog,(e)
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Figure 3.2: The capacity behavior in a single-antenna system when changing the transmit
power P, for B = 10 MHz and 8/No = 10° Hz/W.

When the SNR is large, the capacity only grows logarithmically with an
increasing P due to (3.3). There is no upper limit on how large capacity
we can achieve by increasing P, but the capacity growth is slow when we
have reached the logarithmic growth rate at high SNR. Figure 3.2 illustrates
these behaviors by showing C(P, B) as a function of P for B = 10 MHz and
B/Ny = 10° Hz/W. The capacity grows linearly with P in the low SNR region,
while the logarithmic behavior appears in the high SNR region.

Example 3.2. Consider the capacity in (3.1) in a scenario where P and B
have been selected such that PS/(BNy) = 1. Suppose we change the transmit
power from P to cP for some scalar ¢ > 0. Which values of ¢ will double and
quadruple the capacity (compared to ¢ =1)?

The capacity in (3.1) becomes C = Blog,(1+1) = B under the assumption
that P3/(BNo) = 1 (i.e., when ¢ = 1). Our first target is to double the capacity
to 2B by increasing the transmit power to ¢P. This means that

cPp
BNy

Blog2(1—|— ):2B(:>10g2(1+c):2<:)c:22—1:3. (3.9)

Hence, we need to triple the transmit power to double the capacity.
Next, we want to find the value of ¢ that gives the capacity 4B:

cPp
BNy

Blog, <1+ )—4B<:>log2(1—|—c)—4<:>c—24—1—15. (3.10)

Hence, we must transmit 15 times more power to quadruple the capacity.
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Figure 3.3: The capacity behavior in a single-antenna system when changing the bandwidth
B, for PB/Ng = 5-10°% Hz.

When varying the bandwidth B, we notice that C'(P, B) is a monotonically
increasing function also of this variable, which can be shown by taking the first
derivative and proving that it is positive. The capacity starts at C(P,0) =0,
which can be shown by takmg the limit B — 0. This represents a high SNR
region where the SNR 53~ — oo, but the performance is anyway low due to
the small bandwidth. ThlS ‘also implies that the capacity grows almost linearly
when increasing B in the high SNR region since the factor in front of the
logarithm in (3.1) grows linearly. However, the logarithm is almost unaffected
by a small change in B at high SNR. If we instead consider the case when B

is large, we can utilize that we operate in the low SNR region where ; 13 is
small, thus
Pg Pg
C(P,B) ~ Blogy(e) 5~ BN, = log, (e )N0 . (3.11)

One can prove that C(P, B) — logg(e)%? as B — oo, so there is an upper
limit on how high capacity we can achieve when having a huge bandwidth.
The reason is that the fixed transmit power P needs to be divided over the
bandwidth, leading to a gradually lower SNR when using more bandwidth.
This is directly seen from the signal energy per symbol ¢ = P/B used in
Corollary 2.1. Figure 3.3 illustrates these behaviors by showing C(P, B) as a
function of B for PB3/Ny = 5 - 106 Hz. The capacity grows linearly with B in
the high SNR region but converges to an upper limit in the low SNR region.

With these behaviors in mind, we can conclude how to improve the channel
capacity most efficiently in different cases. If we have a system that operates
in the high SNR region, the capacity grows linearly with the bandwidth B but
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relatively slowly with the power P. Since changes in the bandwidth greatly
impact the capacity, the high SNR region is called the bandwidth-limited
region. In contrast, if we have a system that operates in the low SNR region,
the capacity grows linearly with the power, while the bandwidth has little
impact. Since changes in the power strongly impact the capacity, the low SNR
region is called the power-limited region. Alternatively, we can increase both
P and B while keeping their ratio P/B fixed. In that case, the SNR BP—I\B,O is
constant, and the capacity (3.1) will always be linearly increasing, irrespective
of the SNR value. The intuition is that we get more symbols per second, and
each can carry the same amount of information since we keep the energy per
symbol constant by increasing the transmit power at the same pace as we
increase the bandwidth (i.e., the number of symbols per second). For example,
if we need to double the capacity of a system, we can achieve that using twice
the power and twice the bandwidth. If the original system operates in the
power-limited region, we can achieve almost the same capacity gain by only
doubling the power. On the other hand, if the original system operates in the
bandwidth-limited region, we can achieve almost the same capacity gain by
only doubling the bandwidth. However, in general, we need to increase both
the power and bandwidth to achieve a significant capacity gain.

3.2 Capacity of SIMO Channels

We now know how the channel capacity is affected by power and bandwidth.
To maximize the capacity, the communication systems should be designed to
use the maximum available transmit power and bandwidth. This is rather
obvious and has been the standard practice for decades. The purpose of
multiple antenna communications is to design systems to further enhance the
capacity without requiring more transmit power and bandwidth resources.

It is vital to notice that it is not the transmit power P that determines
the channel capacity but the received power Pg. If we want to achieve a
higher received power, we can increase P. Alternatively, we can use multiple
receive antennas to capture a larger share of the transmitted power, thereby
increasing . This case will be considered in this section, where the goal is to
characterize the channel capacity when having multiple receive antennas.

A channel with one transmit antenna and multiple receive antennas is
called a SIMO channel; see Figure 3.1(b). We denote the number of receive
antennas as M. The channel to each receive antenna can be modeled as before,
using the discrete memoryless channel model in (2.130). However, the channel
responses will generally differ for every antenna, and the additive noise is
statistically independent since it is created by randomness in the receiver
hardware connected to the respective receive antennas. Hence, the received
signal at the mth receive antenna is given by

Ym[l] = hmx[l] + np[l], for m=1,..., M, (3.12)
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Figure 3.4: A discrete memoryless SIMO channel with the input z[l] and M outputs ym[l] =
hmzl] + nm(l], for m =1,..., M, where [ is a discrete time index, h., is the channel response to
the mth receive antenna, and n,,[l] is the independent Gaussian receiver noise at that antenna.

where z[l] is the transmitted signal, [ is the discrete time index, h,, is the
channel response, and n,,[l] ~ N¢(0, Np) is the independent receiver noise.
Note that the transmitted signal is the same for all m, while all other variables
have an antenna index. A block diagram of this discrete memoryless SIMO
channel is shown in Figure 3.4. Since this is a memoryless channel, we can
just as well neglect the time index [ and write the channel in (3.12) as

Ym = A - T+ Ny, for m=1,... M. (3.13)

Instead of representing the transmission over the SIMO channel using the M
equations in (3.13), it is convenient to represent the entire system model in
vector form as

y=hz+n (3.14)

by defining the M-dimensional received signal vector y, the channel vector h,
and the noise vector n:

Y1 hi n
S, n=| . (3.15)

YM ha N

y=|:|, h=

The geometric relation between these vectors is illustrated in Figure 3.5. The
received signal vector y is the summation of two vectors: hxz and n. The
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Figure 3.5: The received signal vector y is the summation of the noise vector n and the channel
vector h that is multiplied by the data signal x.

former is a vector that points in the same direction as the channel vector h
but is scaled by the unknown data signal x. The latter is the noise vector
with independent entries distributed as N¢ (0, Ng). We can express the entire
distribution as n ~ N¢(0, NoI,/) using the multivariate notation introduced in
Section 2.2.4, where Cov{n} = NyI,/ is the covariance matrix. The direction
n/||n|| of the noise vector is uniformly distributed over all possible directions.
The word “direction” refers to the geometry in the M-dimensional vector
space CM where these vectors reside. There is no simple connection to physical
directions in our three-dimensional world, but we will return to the physical
modeling of channels in Chapter 4.

The receiver wants to detect the data signal x based on the received signal
y. Since the received signal is a vector and the data signal is a scalar, the
detection algorithm must somehow include a projection of y onto a scalar
that we call Z. The projection should make & as similar to = as possible, and
there should be no information loss in the projection. In general, a vector
projection is carried out by selecting a unit-length vector w and computing
the inner product & = w"y. This scalar represents how far in the direction w
that y points; that is, # is the (orthogonal) projection of y onto w. The vector
w is called the receive combining vector when dealing with SIMO channels,
and it can also be called the detection vector or receive beamforming vector.

We want to find the capacity of the SIMO channel in (3.14). As a first
step, we will compute an achievable data rate for an arbitrary w and then
identify the best projection, which is the one that gives the channel capacity.
We notice that

& =w"y = w'hz + w'n, (3.16)
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where w"h is a scalar and w"n ~ N¢(0, Ny) is the component of the noise
that points in the direction of w.! Hence, (3.16) is effectively a memoryless
SISO channel of the kind in (2.130) with y = & and h = w"h. It then follows
from Corollary 2.1 that an achievable data rate is

Hh 2
log, (1 —+ (]|V;’V> bit/symbol, (3.17)
0

where ¢ = E{|z|?} = P/B denotes the energy per symbol, which we will
refer to as the symbol power in the remainder of this book. This variable is
proportional to the transmit power P, so when we later optimize the symbol
powers of multiple data streams, this is identical to optimizing the transmit
powers (measured in Watt, i.e., energy per second).

The value in (3.17) depends on how we select the unit-length vector w.
Recall that the Cauchy-Schwarz inequality in (2.18) states that

[w"h|* < [w]?||h|* = || (3.18)
——
=1
with equality if and only if w and h are parallel. Hence, we can maximize the

SNR w in (3.17) by selecting the unit-length vector

h

that is parallel to h. By inserting (3.19) into (3.17), we obtain the achievable

data rate )
gl/hll

log, (1 +

The receive combining vector in (3.19) is called mazimum-ratio combining
(MRC) since it maximizes the SNR. It has also been called the matched filter
since the combining vector is effectively matched to the channel. Recall from
Figure 2.4 that the inner product with a unit-length vector can be interpreted
as an orthogonal projection onto that vector. In this case, we take the received
signal vector y and project it onto a unit-length version of the channel vector
h, as illustrated in Figure 3.6. Since the received signal contains the data
signal with the form hz, the projection will not remove any part of the data
signal. The projection will, however, remove the parts of the noise vector
n that point in other directions than h. This noise suppression approach is
conceptually similar to the lowpass filtering in Figure 2.13, where the receiver
removes the noise in the part of the frequency domain where there is no signal.
In the case of MRC, we instead remove noise from the part of the spatial
domain where there is no signal.

) bit/symbol. (3.20)

ISince win is the weighted sum of independent complex Gaussian distributed random
variables, it is also complex Gaussian distributed. Since the mean is zero, the variance is
computed as Var{w'n} = E{|w™n|?} = wiE{nn"}w = Now"I,w = No||w|? = Np.
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-

Figure 3.6: To achieve the SIMO capacity, we should use MRC to project the received signal
y orthogonally onto the channel vector h. The data-bearing vector hz is unaffected by this
projection, but the parts of the noise that gave y another direction will be removed.

In estimation theory, % is called the sufficient statistics for estimating x
since the projection removes only parts of the independent noise. Since MRC
is the optimal projection, the achievable data rate in (3.20) is the channel
capacity of the SIMO channel.

Corollary 3.1. Consider the discrete memoryless point-to-point SIMO channel
in Figure 3.4 with the input € C and output y € CM given by

y =hz +n, (3.21)

where n ~ N¢ (0, NoI,y) is independent noise. Suppose the input distribution
is feasible whenever the symbol power satisfies E{|z|?} < ¢ and h € CM is a
constant vector known at the output. The channel capacity is

g|/h|?
Ny

C = log, (1 - ) bit /symbol (3.22)

and is achieved when the input is distributed as z ~ N¢(0, q).

When comparing the SIMO capacity expression in (3.22) with the SISO
capacity in (2.145), we notice that the only difference is the channel gain. Tt
is |h|? in the SISO case and has now been replaced by ||h|? = Zf\le | |?,
which is the summation of the individual channel gains to all the M receive
antennas. Hence, using multiple receive antennas leads to a beamforming gain
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compared to having a single antenna. For example, if h,, = hform =1,..., M,
then ||h||? = M|h|? and the SNR will grow proportionally to the number of
antennas. This is the beamforming gain introduced in Section 1.2.1, and it
can be either used to get a larger SNR, or we can reduce g by a factor 1/||h||?
to get the same SNR as in the single-antenna case using less transmit power.

As explained in Section 2.4.1, we can express the symbol power as ¢ = P/B
and multiply the capacity expression in (3.22) by B to change the unit to
bit/s. This leads to the alternative SIMO channel capacity expression

_ P|h|J .
C = Blog, <1 + BN, > bit/s. (3.23)

Example 3.3. Consider a SIMO system with M antennas and h = /B[1 ... 1]".
What is the capacity Csimo? Determine the relative capacity gain Csmvo/Csiso
compared with the capacity Csigo of the corresponding SISO system.

The capacity of this SIMO system is computed using (3.23) as

P|hlf? PMp :
Csmio = Blog, (1 4 BN, ) = Blog, | 1+ BN, bit/s (3.24)

since ||[h|2 = S=M_ |hy|? = M in this case. The corresponding SISO system
with M = 1 has the capacity

Pp :
Csiso = Blog, (1 + BNO) bit /s. (3.25)

The SIMO system provides an M times larger SNR than the SISO system.
Using the low-SNR approximation in (3.2), the relative capacity gain becomes

Csivo . Blogs(e) 1133%06

Csiso B logQ(e)BP—J\B,O

=M, (3.26)

which grows linearly with the number of antennas and equals the beamforming
gain. Using (3.3), the relative capacity gain at high SNR is approximated as

PMB
CSIMO - BIOg2 ( BNy ) 1 IOgQ(M)

Csiso Blog, (LBJ N m.

(3.27)

The relative capacity gain only grows logarithmically at high SNR. The
absolute difference becomes Csnvo — Csiso ~ Blog, (M) at high SNR.

In summary, since the beamforming gain increases the received power, the
most significant relative capacity gain is achieved in the power-limited region
where the SNR is low, while the gain is small in the bandwidth-limited region.
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3.2.1 Alternative Combining Vectors

The derivation of MRC relied on the assumption that w is a unit-length
vector, but this condition can be relaxed without changing the final result.
For the matter of argument, suppose we select w = ch for some arbitrary
scaling factor ¢ # 0. Substituting this vector into (3.16) yields

T=w'y=c" h"h z+ ¢*h'n , (3.28)
=|[Ih? ~Ne(0,]c|?||h][*No)
which is a SISO channel with A = c*||h||> and noise with the variance

|c|?||h||?No. Tt follows from Corollary 2.1 that an achievable data rate is

glc?|/h]* ) ( ql\h||2> .
lo (1 + ———=—] =1lo 1+ —=— bit /symbol, 3.29
82 |c|2|h]|2No &2 Ny /sy (3.29)

which equals the capacity in (3.22). Hence, any combining vector parallel to
h can be utilized to achieve the capacity.

In practical implementations, it might be desirable to identify the value of
¢ that minimizes the MSE between the transmitted signal x and its estimate
2 = ¢*||h||?z + ¢*h"n in (3.28):

E{|e - 22} = B {|2(1 - ¢"|[n]?) - ¢"h*n|*}
CE{Jo} [1 - I + E{|e'h"n]*}
=q (1+[c[In]|* = clh]* — ")) + |c[*|[h]* N

®

N,
allll* + No|[b|) + - 120 | (3.30)

2
R E— ‘ ( —_

q|h[]* + No [ + No’
where (a) follows from utilizing the independence between the signal x and
the noise n (which both have zero mean), while (b) follows from completing
the squares with respect to the variable c. Since the first term in (3.30) is
quadratic, it cannot be negative. Hence, the MSE is minimized by selecting ¢
to make the first term equal to zero, which is achieved by ¢ = . This
results in the alternative MRC vector

q
al[h[[*+No

q
w=——J _h
q|h[|*> + No

that will simultaneously achieve the capacity and minimize the MSE between
the transmitted data symbol and the receiver’s estimate Z. This is a suitable
scaling factor since many decoding algorithms use Euclidean distances between
constellation points and received signals when determining the likelihood of
different symbols being transmitted, which is aligned with the MSE being
the average squared Euclidean distance. The capacity can be achieved using
MRC with any scaling factor ¢ # 0 because the capacity expression implicitly
assumes an optimal receiver, which can compensate for any scaling factor. In
general, any receiver processing that is invertible has no impact on capacity.

(3.31)
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Example 3.4. Suppose the received signal is y = hx + n as earlier in this
section, but the noise is colored in the sense that n ~ Ng(0, C). What is the
LMMSE estimate of  given the received signal?

The LMMSE estimator concept was described in Section 2.5.2. It obtains
an estimate of x through a linear operation: Z = w"y. Hence, we need to find
the combining vector w that minimizes the MSE, which can be expressed as

E{|lz — £|2} = E{|x(1 —w'h) —WHn|2}

@ E{Jaf?}1 - w"h? + E {|w"n|?}
=q (1 + w"hh"w — w"h — h"w) + w"Cw

=q+w" (¢ghh" + C)w —w" ¢h —¢h" w, (3.32)
S — —~
=B =a —aH

where (a) follows from utilizing that the signal and noise are independent. By
using the notation a and B introduced in (3.32), we can rewrite the MSE as

E{|lz — 2°} = ¢ + w"Bw — w'a — a"w
=g—a"B'a+ (w-B 'a)"B(w - B 'a) (3.33)

by completing the squares with respect to the vector w. The last term is then
a quadratic form that attains its minimum value of zero if w = B~ 'a. We
can utilize the matrix identity in (2.49) to rewrite the expression as

_ q
~ ¢h"C-lh+1

This vector is called LMMSE combining since it minimizes the MSE. It
can also be proved to be the capacity-achieving combining scheme for the
considered channel. LMMSE combining reduces to the MRC vector in (3.31)
in the special case of C = Nyl;. The LMMSE combining terminology is
usually only used when it differs from conventional MRC; that is, when there
is colored noise or interference, which we will come across later in the book.
Otherwise, it is referred to as MRC, as earlier in this section.

w=B"la=¢q(¢ghh"+C) 'h C 'h. (3.34)

3.3 Capacity of MISO Channels

We will now consider the opposite scenario of a channel with multiple transmit
antennas and a single receive antenna, known as a MISO channel; see Fig-
ure 3.1(c). To emphasize the similarities with the SIMO case considered in the
previous section, we consider the case when the transmitter and receiver from
the SIMO channel have exchanged their roles. Hence, we assume there are M
transmit antennas, and the channel response from the transmit antenna m to
the receive antenna is denoted by h,,.
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y[l]

zum(l] * har

Figure 3.7: A discrete memoryless MISO channel with the inputs zp,[l] for m =1,..., M
and output y[l] = Ele hmxm[l] + n[l], where [ is a discrete time index, hy, is the channel
response from transmit antenna m, and nl] is the independent complex Gaussian receiver noise.

The channel from each transmit antenna to the receive antenna can be
described by the discrete memoryless channel model in (2.130), but when we
put it all together, we get the received signal

yll] = hmam[l] +nll], (3.35)

where [ is the discrete time index, x.,,[l] is the transmitted signal from antenna
m, hy, is the channel response from transmit antenna m, and n[l] ~ N¢ (0, No)
is the receiver noise. A block diagram of this discrete memoryless MISO
channel is shown in Figure 3.7. Notice that there is only a single noise term
and that the signal contributions h,,z.,[l] from the different antennas are
added together (superimposed) by the wireless channel. This makes the setup
analytically different from the SIMO case. Since (3.35) is a memoryless channel,
we can just as well neglect the time index and write the channel as

M
y= Z R Ty + 1. (3.36)

m=1
To derive the channel capacity, it will be helpful to use the vector notation
I h1
x=1|:1], h=]|:11], (3.37)
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where x is the signal vector and h is the channel vector. With this notation,
we can rewrite the system model in (3.36) as

y=h"x+n. (3.38)

Two different types of transposes were defined in Section 2.1.1 to be used
when dealing with complex vectors and matrices: the conventional transpose
T that flips a matrix over its diagonal and the conjugate transpose ™ that
both flips the matrix and replaces each entry with its complex conjugate.
The conjugate transpose is probably the most common when dealing with
complex vectors/matrices due to its connection to the inner product and norm.
Nevertheless, it is a conventional transpose on h in (3.38) because the physical
channels do not give rise to any complex conjugation.? Recall from (2.17) that
the inner product between two arbitrary complex-valued vectors a and b of
the same dimension is computed as a™b using the conjugate transpose. Hence,
the term h™x in (3.38) is an inner product between h* and x.

The M-dimensional signal vector x should be selected to send data to the
receiver. Since the receiver only observes the scalar y, it can only estimate one
scalar data-bearing signal based on its observation.? Hence, we can, without
loss of optimality, select the signal vector as

X = pZ, (3.39)

where p is an M-dimensional unit-length vector and z is the data signal
having the symbol power E{|Z|?} = ¢. The vector p is called the precoding
vector or transmit beamforming vector, and the unit-length requirement means
that the total symbol power of the transmitted signal is

E{|x/*} =E{@Elfl2} =E{lz]"} =¢, (3.40)

independently of how many antennas are used. This effectively means that
the more transmit antennas are used, the less power is transmitted from each
one of the antennas. By substituting (3.39) into (3.38), we obtain

y=h"pZ +n, (3.41)

where h™p is a scalar. This scalar is the inner product between the conjugate
h* of the channel and the precoding vector p. Hence, (3.41) is effectively

2Many other textbooks on multiple antenna communications, however, write (3.38) as
y = h¥x + n since the use of a conjugate transpose makes the analysis/notation slightly simpler.
The downside with that approach is that the obtained algorithms cannot be directly applied to
a practical system, but we must first compensate for the conjugation.

31t is theoretically possible to send more than one data-bearing signal to a single-antenna
receiver, but it can be proved that this will not increase the capacity of the system since the
channel will add these signals together when taking the inner product hTx.
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p

] Projection of h*

Length: |h™p|

Figure 3.8: A MISO channel projects the channel vector h* onto the unit-length precoding
vector p, and it is |h"Tp| that determines the SNR. Hence, if the precoding vector p is not
parallel to the channel vector h*, the SNR will be the same as if a shorter channel vector |h"p|p
parallel to p was used.

a memoryless SISO channel of the kind in (2.130) with A = h™p and noise
variance Ny. It then follows from Corollary 2.1 that an achievable data rate is

hT 2
log, (1 + M) bit,/symbol. (3.42)
No

To obtain the channel capacity, it remains to identify the precoding vector
that maximizes (3.42), which corresponds to maximizing |h™p|?. As in the
last section, we can utilize the Cauchy-Schwarz inequality from (2.18), which
states that

h*p[* < [b*]? |Ip|? = ||h? (3.43)

——
=1

with equality if and only if h* and p are parallel. Note that |h*||? = ||h|?
since the conjugate only changes the phase of the entries, not their magnitudes.

Hence, we can maximize the SNR w in (3.42) by selecting the precoding
vector as
p= (3.44)
[[h|’ '
which is a unit-length vector parallel to h*. This precoding gives the achievable

data rate )
glhl|

log, (1 + N,

The precoding vector in (3.44) is called mazimum-ratio transmission (MRT)
since it maximizes the SNR. It has also been called conjugate beamforming
since the precoding vector is selected based on the complex conjugate of the
channel vector. This selection of the precoding vector is intuitive if we look at
it geometrically as in Figure 3.8: |h™p| is the length of the effective channel
vector that is obtained when orthogonally projecting h* onto p. This vector
has only the same length as h* (i.e., same norm) when h* and p are parallel,

> bit /symbol. (3.45)
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which is the case with MRT. For the matter of argument, suppose we select
another precoding vector p that is not parallel to h*. The component of
this precoding vector that is orthogonal to the conjugate of the channel (in
the vector space C) will vanish when taking the inner product h™p and
the corresponding transmit power is lost. In conclusion, MRT is the optimal
precoding and the channel capacity is the achievable data rate in (3.45).

Corollary 3.2. Consider the discrete memoryless point-to-point MISO channel
in Figure 3.7 with the input x € CM and output y € C given by

y=h"x+n, (3.46)

where n ~ N¢(0, Ny) is independent noise. Suppose the input distribution is
feasible whenever the symbol power satisfies E{||x||?} < ¢ and h € CM is a
constant vector known at the output. The channel capacity is

g|[h?

C = log, (1 + ) bit/symbol (3.47)

and is achieved when the input is x = [jr2 with z ~ Nc(0, g).

Comparing the MISO channel capacity in (3.47) with the capacity expres-
sion in (3.22) of the corresponding SIMO channel, we notice that these are
identical. Hence, the benefit of transmitting from M antennas is that the
channel gain ||h[|2 = YM_ |h,,|? becomes the sum of the channel gains of
the individual antennas. If h,, = h for m = 1,..., M, then ||h||?> = M|h|? and
the SNR is precisely proportional to the number of antennas. This gain is
achieved by directing the transmission towards the receiver, as illustrated in
Figure 1.17 and Figure 1.19. Another similarity is that the capacity-achieving
combining and precoding vectors, called MRC and MRT, respectively, are
equal except for a complex conjugate:

w=p". (3.48)

In fact, MRT and MRC process the channel vector identically, so the conjugate
in (3.48) is merely due to notational differences: the combining vector is applied
as w'h with a conjugate transpose, while the precoding vector is applied as
h™p without a conjugate so it needs to be placed in p beforehand.

Even if the channel capacities are equal, there are essential differences
between the SIMO and MISO channels. When transmitting from M antennas
to a single-antenna receiver, the transmit power is directed towards that
receiver, as illustrated in Figure 1.17 and Figure 1.19. MRT basically selects
the time delays of the different signals to achieve constructive interference
at the point of the receiver; thus, the radiated signal resembles that of a
directive transmit antenna but with the critical difference that the directivity
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is adapted to the channel. The precoding and directivity of the transmission
will change when the channel changes, which cannot happen when using a
directive antenna. In contrast, when a single-antenna device transmits to a
receiver equipped with M antennas, the emitted signal propagates isotropically
as illustrated in Figure 1.16 (or according to some other fixed antenna gain
function, such as the one in Figure 1.10). Each receive antenna observes one
component of the signal in additive noise with variance Ny. MRC combines
the signal components constructively, while the noise components are neither
constructively nor destructively combined, so the resulting noise term w"n
still has variance Ny. The combining creates a spatially directive reception
resembling that of a directive receive antenna but with the vital difference
that the directivity is adapted to the direction of the arriving signal.

Example 3.5. Is the MRT vector p = ﬁ unique, or are there capacity-
achieving alternatives similar to the alternative MRC vectors in Section 3.2.17

The precoding vector is selected under the constraint that ||p|| = 1, which
ensures that the symbol power equals the power of the signal z. This is a
crucial difference from the selection of combining vectors, which can be scaled
arbitrarily since the scaling factor affects the signal and noise identically.
However, there is still some flexibility in the MRT vector. The derivation in
(3.43) is based on the Cauchy-Schwartz inequality where the maximum value
is achieved when h* and p are parallel. All the unit-norm vectors that satisfy
this condition are MRT vectors and can be expressed as p = e”’ﬁ, where

the common phase-shift ¢ € [—7, 7) can be selected arbitrarily.

MRT effectively turns a MISO channel into a SISO channel with an
improved SNR, and the same applies when using MRC in SIMO channels.
Hence, in practice, the data encoding and decoding can be carried out like in
SISO systems. For example, Figure 2.18 gave an example of 28 data rates that
can be achieved by selecting different MCS combinations in 5G NR. When the
capacity has been computed using the expressions provided in this chapter,
we can identify the closest smaller data rate in the table and use that MCS.
The same table can be utilized irrespective of how many antennas are utilized
or whether it is a SIMO or MISO channel. In fact, a base station can hide the
fact that it is equipped with multiple antennas from the user devices, which
has the positive side-effect that one can add beamforming functionalities into
existing systems without changing the fundamental communication protocols.

As explained in Section 2.4.1, we can also express the symbol power as
g = P/B and multiply the capacity expression in (3.47) with B to change the
unit to bit/s. This leads to the alternative but equivalent way to write the
capacity of a MISO channel as

P|hl?
BN,

C = Blog, <1 + ) bit/s. (3.49)
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Example 3.6. Suppose we would transmit the signal x = p1Z; + p2Z2, where
pP1, P2 are two unit-norm precoding vectors and Zp,Zs ~ Ng(0,q/2) are
independent data signals containing half the power. How large data rate can
we achieve over a MISO channel? Can we achieve the capacity?

The received signal in (3.38) now becomes

Yy = hT(pli’l 4 pz.fg) +n=h"p1z1 + h"pazs + n. (3.50)

We need to detect the signal 1 under the independent additive distortion
h™pyZs+n ~ Ng(0, 2||h™p2||? + No) with both interference from Z; and noise.
Since 2 is unknown, it is indistinguishable from the noise, and we can achieve
a data rate similar to (3.42) but by using the noise variance |h™ps|* + No:

g7y ||?

Ri=log, |1+ ++—~—F77——
2( 3h7p2l* + No

> bit/symbol. (3.51)
Now when we have decoded the data contained in z1, we know the term h™p;x
in (3.50) and can subtract it from the received signal: y—h"p;Z; = h™paZa+n.
This residual received signal is of the kind in (3.41), and the data rate that
we can achieve when extracting the data contained in z is

[h"ps |

q
Ry = log, <1 + 2 N ) bit/symbol. (3.52)
0

The total data rate of this system is

g9 h*T 2 q i 2
R1 + Ry = log, <1 + 2||p1||> + log, <1+ 2||p2||>

2h™p2|? + No No
o 2|b"p1|* + £[h7p2|” + No £[|h™p2||> + No
? |hTp2* + No No
q h* 2_|_g hT 2
~ 1og; (1 A e )
2|h|* + §|h) q||h?
<log, 1+ % = log, (1 - N) . (3.53)
0 0

where the upper bound is achieved by recalling that MRT with p; = p = ﬁ
has the largest inner product with the conjugate of the channel vector. The
rate expression in (3.53) coincides with the capacity in (3.47). Hence, we
have identified an alternative way to achieve the capacity, but it is more
complicated since we transmit two independent data signals and decode them
sequentially. Hence, the solution in Corollary 3.2 is preferable.
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xx|l] o [rr2r >y l]

Figure 3.9: A discrete memoryless MIMO channel with the inputs z[l] for k =1,..., K and
outputs ym[l] = Eszl P kT[] + nm[l] for m = 1,..., M, where [ is a discrete-time index,
R,k is the channel response from transmit antenna k to receive antenna m, and n.,[l] is the
independent complex Gaussian receiver noise at receive antenna m.

3.4 Capacity of MIMO Channels

We will conclude this chapter by considering the most general point-to-point
scenario: the MIMO channel illustrated in Figure 3.1(d). We assume there are
K transmit antennas and M receive antennas; thus, we need two indices to
denote each channel response: h,, , € C is the channel response from transmit
antenna k to receive antenna m, for k = 1,...,K and m = 1,..., M. By
modeling the channel between each transmit antenna and receive antenna
using the discrete memoryless channel model in (2.130), the received signal
at antenna m becomes

K
ymll] = Z ho gkl +np(l], form=1,... M, (3.54)
k=1

where [ is the discrete time index, x[l] is the transmitted signal from antenna k,
and n, (1] ~ Nc(0, No) is the receiver noise that is independent across antennas.
A block diagram of the MIMO channel in (3.54) is shown in Figure 3.9. Note
that the SISO, SIMO, and MISO channels are all special cases of the MIMO
channel considered in this section.

To derive the MIMO channel capacity, we need to utilize all the M received
signals y1[1], . . ., yar[{] for joint signal detection, which calls for a vector/matrix
representation of (3.54). If we use the memoryless channel property to drop
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n

x—»xa—»(i)—»y

Figure 3.10: A discrete memoryless MIMO channel with vector input x € CX and vector
output y € CM . The channel is characterized by the M x K channel matrix H and the receiver
noise vector n € C™ | which contains M independent complex Gaussian variables. This block
diagram is equivalent to the one in Figure 3.9 but uses the vector/matrix notation.

the time index [, the complete received signal at an arbitrary time instance is

Y _25:1 hy kg ni
= +
K
Ym > k1 Pk nm
_h171 Ce hl,K T ni
= : ; e (3.55)
_hM71 hM,K TK nar

This system model can be written in a concise matrix form as
y=Hx+n (3.56)

by defining the M x K channel matrix

h171 Ce hl,K
H=| i - (3.57)
hara R,k
and the vectors
(A x1 ni
Ymr TK nyg

Note that the transmitted data signal vector x is K-dimensional since there are
K transmit antennas, while the received signal vector y and the noise vector n
are M-dimensional since there are M receive antennas. Since the noise terms
are independent, the noise vector n has the distribution n ~ N¢(0, NoIyy).
Figure 3.10 shows a block diagram of (3.56) that is equivalent to Figure 3.9
but uses the matrix/vector notation, which makes it more concise.

The main goal of this section is to compute the channel’s capacity from x
to y under a constraint on the maximum symbol power. We let ¢ denote the
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total symbol power of all antennas, which implies that E{|x||?} = ¢ where
the mean is computed since the data signal vector x is random. The matrix
form in (3.56) invites to apply linear algebra results to determine how the
transmitter and receiver should process their signals. We will use the following
matrix factorization, called the singular-value decomposition (SVD) [49].

Lemma 3.1. Every complex M x K matrix H can be factorized as
H=UXV" (3.59)

where U is a unitary® M x M matrix containing the eigenvectors of HH",
V is a unitary K x K matrix containing the eigenvectors of H"H, and X
is a rectangular M x K diagonal matrix® with the real numbers s; > ... >
Smin(M,K) = 0 on the diagonal.

¢Unitary matrices are described in Definition 2.4.
YA rectangular diagonal matrix of size M x K can be viewed as a diagonal matrix of size
min(M, K) x min(M, K) that has been appended with zeros to become an M X K matrix.

The SVD can factorize an arbitrary matrix using two specific unitary
matrices, U and V, whose columns are called the left and right singular vectors.
The non-negative numbers s1, ..., Spin(am, k) are assumed to be ordered in
decreasing order and are called the singular values of H.

Example 3.7. Compute HH" and H"H using the SVD of H from (3.59).
How are eigenvalues of HH" and H"H related to the singular values of H?
We can express HH" using the SVD of H from (3.59) as

HH" = UX V" (UZV")" = US V'V 3"U" = USE"UY, (3.60)
——
=Ix

where we utilized that V is a unitary matrix. We notice that %" is a diagonal
matrix, thus, UXX"U™" fits the eigendecomposition form in Lemma 2.1. Hence,
U contains the orthonormal eigenvectors of HH" and the M x M diagonal
matrix 33" contains the real-valued eigenvalues s% > ... > sfmn( M,K) >0,
and an additional M —min(M, K) zero-valued eigenvalues if M > min(M, K).
Similarly, we can express H"H using the SVD of H from (3.59) as

H"'H = (UZV")"UZV" = VE'U"U VY = VI EVY (3.61)
——
=

which we identify as the eigendecomposition of H*H. The unitary matrix V
contains the orthonormal eigenvectors and the K x K diagonal matrix X"3
contains the real-valued eigenvalues, which are s3 > ... > anin( ) > 0 and
the additional KX — min(M, K) zero eigenvalues if K — min(M, K) > 0.
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The SVD can be viewed as a generalization of the conventional eigende-
composition and can be used to diagonalize any matrix. In contrast, only
some square matrices can be diagonalized using the eigendecomposition. For
Hermitian square matrices, the SVD coincides with the eigendecomposition in
Lemma 2.1, in the sense that U = V contains the eigenvectors and 3 contains
the corresponding eigenvalues.

The last example demonstrates a way to derive the singular values of H:

1. Compute either HH" or H"H (preferably the one resulting in the
smallest matrix dimensions) and call it A;

2. Compute the eigenvalues of A by finding the roots to its characteristic
polynomial det(A — AI);

3. Obtain the singular values by taking the square root of the eigenvalues.

The SVD has the same structure for any matrix but with different values
in U, 3, and V. To derive the MIMO channel capacity, we specifically utilize
the SVD H = UX V" to the channel matrix in (3.57). Suppose the transmitter
creates its transmit signal as x = VX for some X, while the receiver processes
its received signal y by multiplying it with U™ to obtain y = U"y. It then
follows that

y = U"Hx 4+ U"n
=U"UXV"Vx + U"n
= Y% +n, (3.62)

where we defined n = U"n ~ Ng(0, NoI/) and notice that this “rotated”
noise vector has the same distribution as n.* The last equality in (3.62)
utilizes that U"U = I; and V'V = I for unitary matrices. The proposed
transmitter and receiver processing is non-destructive, meaning that we can
get y back by computing Uy (since UU" = I,;). In contrast, any vector
x can be expressed as VX by selecting x = V"x. Hence, there is no loss of
information when going from (3.56) to (3.62), and the channel capacities must
be identical. However, (3.62) will be more convenient to analyze since X is a
(rectangular) diagonal matrix.

Let r denote the number of non-zero singular values of 3, which is equal to
the rank of ¥ (and H). This means that s; > 0, ..., s, > 0 while the remaining
singular values are zero. It follows that » < min(M, K) since H has min(M, K)
singular values. If » < min(M, K), it holds that s,;1 = ... = Spin(a,x) = 0.
By utilizing r and the fact that X is a rectangular diagonal matrix, we can
write (3.62) in scalar form as

_ {Skl‘k—i—nk, iftk=1,...,n,
Y =

~ ) (3.63)
Nk, ifk=r+1,...,M,

4This can be proved by computing the covariance matrix of n as Cov{n} = E{nn"} =
UME{nn"}U = NoU"I,;U = NoL,;.
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(a) The transmitter and receiver processing that diagonalizes the MIMO channel.
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(b) An equivalent representation with r parallel SISO channels.

Figure 3.11: By utilizing the SVD H = UX VY of the MIMO channel matrix, the transmitter
and receiver can process the signals as shown in (a) to achieve r parallel SISO channels as shown
in (b). The channel response in each parallel channel is a non-zero singular value of H.

for k =1,..., M. Notice that the entries in (3.63) can be denoted in vector
form as follows: y = [y1,...,9m)", X = [Z1,...,Zk|", and 0 = [ny,...,np]".

Interestingly, each of the first r received signals g in (3.63) only depends
on one channel response s obtained from the SVD, one transmitted signal
parameter T, and one independent noise variable ny. Hence, we can interpret
the first row of (3.63) as being r parallel discrete memoryless SISO channels
useful for communication. The processing that turns the MIMO channel into
r parallel SISO channels is illustrated in Figure 3.11.

If M > r, there are M —r additional received signals ¢,11, ...,y in (3.63)
that only contain the independent noise variables n,41,...,7as. This happens
especially when M > K since r cannot be larger than min(M, K) = K; thus,
the transmitter sends a K-dimensional signal, while the receiver obtains a
higher-dimensional received signal where the extra dimensions contain no
signal information. We might also have r < min(M, K) when the channel
matrix is rank-deficient so that we have fewer than min(M, K) useful parallel
channels between the transmitter and receiver. The M — r received signals
in (3.63) that only contain noise are not helpful for communication and are
disregarded in the remainder of this chapter without loss of optimality.
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Example 3.8. Consider a discrete memoryless MIMO channel with the channel
matrix H € C5*4. The eigenvalues of the matrix HH" are \; = 3, \y = 2.1,
A3 = 1.7, and Ay = A5 = Ag = 0. What is the rank r of H? What are the
expressions of the r useful parallel SISO channels?

The singular values of H equals the square roots of the min(M, K) = 4
largest eigenvalues of HH". Hence, s; = VA1 = V3, s2 = V2 = V2.1,
s3 =13 = V1.7, and s4 = v/As = 0. The rank of H is r = 3 since there are
three non-zero singular values. In this case, we have r < min(M, K).

By substituting the three non-zero singular values into (3.63), we obtain the
following r = 3 parallel SISO channels that can be used for data transmission:

U = V3% + 71, U2 =V21Ty+ng, U3 =V1.7Z35+ 7. (3.64)

It remains to compute the joint capacity of the r parallel channels in (3.63).
We know from Corollary 2.1 how to compute the channel capacity of one
such channel, but we cannot directly use this result to deal with the parallel
channels in (3.63) since there is one thing that couples them: the transmitter

has a total symbol power ¢ that it must divide between 1, ..., Zx, and we
need to find the optimal way to do this.
As a first step, we let ¢1,...,qx denote the symbol power of each of

these signals, such that E{|Zx|?} = qx. These K power variables must be
non-negative. It then follows that®

K K
¢ =E{|Ix[1*} = E{Ix|*} = D> _E{la*} =D ax- (3.65)
k=1 h=1

For any given values of ¢q,..., ¢k, the maximum data rate is the sum of the
capacities of the individual channels, each obtained using Corollary 2.1:5
- k53
> log, <1 + N’“) . (3.66)
k=1 0
Since this expression only depends on the power variables ¢1, . .., g, the values
that we assign to g,11,...,qx for the unused dimensions will not affect the
data rate. Hence, we can set ¢,41 = ... = qx = 0 so that all the available

power can be used for the r parallel SISO channels between the transmitter
and receiver. The channel capacity of the MIMO channel is obtained by
maximizing (3.66) with respect to the allocation of power over qi,..., ¢,

5Note that ||x||? = x"x = XIVHIVR = X% = ||%||2 since V is a unitary matrix.

6This step utilizes the fact that the transmitted signals Z1,...,Zk are independent. Hence,
the received signals y1, ...,y are also independent, which is a property that follows from the
fact that the noise terms 71, ..., 7ips are independent in (3.63), so there is no reason to introduce
any statistical dependence between the parallel channels. More precisely, the differential entropy
of y is maximized when its entries are independent.
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under the constraint that the total symbol power is ¢:

T 2
- ausk
¢= %ZOI’I}-E?(}(,«EO: ’; 10g2 (1 + No ) . (367)
Z K =q
k=1

To obtain the MIMO channel capacity, it remains to derive the capacity-
achieving values of the power variables. Some power variables might be zero
at the optimal solution to (3.67). For the sake of argument, suppose we know
that Ny € {1,...,r} of the variables are non-zero. We can then be sure that
q1>0,...,qnv, >0and gy, y1 = ... = ¢ = 0, because s1,...,sy, are the
largest singular values.” In this case, we observe that

Zlog2(1+q”> Zlog2< q]’ka)
_Zlog2< ) Zlogg( +Qk> (3.68)

where only the second term depends on the power variables and is the one
that should be maximized. This term can be upper bounded by utilizing the
following classical inequality of arithmetic and geometric means.

Lemma 3.2. For any set of n real positive numbers x1, ..., z, it holds that
<! zn: (3.69)
YVey oo, < — T- .
1 n k
The equality in (3.69) holds if and only if 1 = ... = z,,.

We now apply Lemma 3.2 to the second term in (3.68) to obtain

Zlogz < + Qk> =log, | [] (20 + Qk)
k=1 9k
0
= Nylog, [ 7} H(2+Qk) < Ny log, MZ(82+(]1¢>
k=1 "k k=1 "k
Ny
1 Ny
=Nylogy | — ¢+ > — | |, (3.70)
2 N+ }; 8124:

If this was not the case, we would have g = 0 for some k < N4 and ¢; > 0 for some
i > N4. Since s > s;, we can switch the power between g and g;, thereby getting a higher
capacity. That is impossible if we start from the power allocation that maximizes (3.67) and,
hence, we must only use the N largest singular values at the solution.
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where the last equality follows from the fact that chv; qr = q due to the
constraint in (3.67). The upper bound in (3.70) is independent of the opti-
mization variables. We can achieve this upper bound if the power variables
are selected to achieve equality in the inequality of arithmetic and geometric
means. From Lemma 3.2 we know that this happens if % + q1, takes the same
value for k =1,..., Ny. If we call this common value u Nk+ > 0, it follows from
]s\'—io + qr = pn, that we should select the symbol powers to satisfy

N,
qk:uN+—S—20 fork=1,...,N;. (3.71)
k

Moreover, the common value must be

Ny
1 Ny
,UN+ N+ q + 3:1 i
Ny
1 N
=L -y 20 (3.72)

since this is the argument of the logarithm on the right-hand side of (3.70).
We have now determined how to compute the optimal symbol powers if
we know that exactly Ny power values will be non-zero. The remaining issue
is that the value of Ny is not known in advance. As we increase N, we
maximize an expression in (3.68) with additional terms and power variables.
This might give the impression that the data rate will increase with N,
but we must recall that N, equals the number of channels we provide with
non-zero power. Some SISO channels might have such small singular values
that it is not helpful to allocate any power to them, even if we can. This can
be observed from the optimized expression for g in (3.71), which becomes
negative for k = N if S%\’+ is so small that No/s?\,+ is larger than pyn, . We
should reduce N; when that happens. On other hand, if we select Ny too
small, then py, — JSV—%) > 0 not only for k € {1,..., N4} but also for k = N, +1.

This indicates that we should increase N to find the solution.
The final solution is to select the capacity-achieving symbol powers as

N,
qk—max<,u—820,0>,k—l,...,r, (3.73)
k

where we choose the value of 1 € {p1,...,p,} that results in ;g = q.
This condition only applies when choosing the value p = py, that gives
exactly N4 non-zero powers, while all other options will assign too little or
too much power. We have now proved the following MIMO capacity.
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Theorem 3.1. Consider the discrete memoryless point-to-point MIMO channel
in Figure 3.10 with the input x € CX and output y € CM given by

y =Hx +n, (3.74)

where n ~ N¢ (0, NoI,y) is independent noise. Suppose the input distribution
is feasible whenever the symbol power satisfies E{||x||?} < ¢. Let H € CM*K
be a constant matrix known at the input and output with r non-zero singular

values s1,...,s,. The channel capacity is
qopt
C=>»1 1+ 2% bit bol 3.75
S (1) o o
where
opt NO
¢ = max u—s—z,O , k=1,...,r (3.76)
k

and the variable y is selected to make > ;_; ¢*" = q.

The capacity is achieved by the input distribution x ~ N (0, VQOP'VH),
where QPt = diag(¢S", ..., ¢, 0,...,0) is a K x K diagonal matrix and V
contains the ordered right singular vectors of H.

We have now proved that the transmitter should select the data signal
x to have a covariance matrix Cov{x} = VQ°P*V" where V contains the
right singular vectors of the channel matrix H, as defined in Lemma 3.1. This
optimal choice diagonalizes the point-to-point MIMO channel into r parallel
SISO channels with the channel gains s2 for k = 1,...,r. Recall that s is
the kth singular value of the channel matrix H. The singular values were
defined in Lemma 3.1 to be in decreasing order, which implies that s; is the
“strongest” channel and s, is the “weakest” channel with non-zero gain. This
fact is also reflected in how the transmitter allocates its transmit power over
the parallel channels. Suppose we know the optimal Value of u in (3.76). If

@— 2 > 0, then the transmitter allocates the power qk = pu— =2 to the kth
parallel channel. Otherwise, it allocates no power to this channel. qk = 0.
Since the singular values are in decreasing order, it follows that
N N, N
S <S5 <. <= (3.77)
57 55 52
and, therefore,
N Ny N
,uf—0>,uf—> ,u——o (3.78)
2 s3 52

Hence, a capacity-achieving transmitter allocates more power to a channel with
a stronger gain than a weaker one. It might also put qOpt = 0 to some of the
weakest channels, even if the channel gain is non-zero. Two properties govern
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Figure 3.12: The optimal power allocation for a point-to-point MIMO channel can be described
as filling a tank with a volume of water corresponding to the total symbol power gq. The height
of each segment of the bottom of the tank is inversely proportional to the channel gain.

the behavior. Logically, stronger channels should be allocated more power
than weaker channels. However, the capacity expression in (3.75) contains the

logarithmic function log, (1 + gk ;—%) We recall from Section 3.1 that it grows

linearly with ¢ as qk;—% log,(e) when the SNR is small, but then grows at
a slower and slower pace; therefore, it eventually becomes preferable to also
allocate power to weaker channels (with smaller s7 values) because these can
initially deliver a linear capacity growth, even if the slope is weaker.

This optimal power allocation solution is called water-filling since the
implementation can be illustrated by filling a tank with an uneven bottom
with water. This is illustrated in Figure 3.12 for the case of r = 4. The
bottom is divided into four equal-sized segments representing each parallel
channel. The segment related to channel k has a height of Ny/s?, and the
power allocated to this channel is the water that is above it. When we pour
water into the tank, it will first be allocated to the strongest channel. We
continue pouring water until the water volume is q. If ¢ > No/s3 — No/s?, the
water level will eventually reach a point where also the second channel is used.
As we continue pouring water into the tank, the first and second channels
will receive an equal share of the additional water until the point where also
the third channel is activated. In the example shown in Figure 3.12, the total
symbol power ¢ is divided over the three strongest channels, while the fourth
channel is not used, although it has a non-zero channel gain (i.e., the height
of the bottom is finite).
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Figure 3.13: The rates achieved by the two parallel channels from Example 3.9 when optimal
water-filling power allocation is used. When the weaker channel 2 begins to be used, it contributes
equally much to the capacity growth as the stronger channel 1.

Example 3.9. Consider a MIMO channel with 7 = 2, s3/Ng = 1, and s3/Ng =
1/4. How is the transmit power allocated when using water-filling?

According to the water-filling expression in (3.76), we will select ¢5** > 0 if
p— s3/Nog = — 4 > 0, which implies that the water level must be 4 > 4. By
contrast, for u € [1,4], we assign all power to the strongest channel, resulting
in q?P" =y — s3/Nyg = u— 1 € [0,3]. In the range p > 4 where both channels
are used, they contribute equally to the capacity growth because

opt 92 2 2
Q. Sn\ _ No\ sz ) _ sz
log, (1 N > = log, <1 + (u ) > No) = logy(p) + log, <No>

(3.79)
increases with p in the same way regardless of the index k.
Figure 3.13 illustrates this behavior as a function of the total symbol power
q, which is normalized in the sense of being dimensionless in this example. We
notice that the rate of channel 1 grows rapidly in the beginning. However, for
q > 3, we allocate the additional power ¢ — 3 equally among the two channels,
and this results in rate curves for the two channels that grow equally fast.

The two extreme cases of the water-filling power allocation are illustrated
in Figure 3.14. If the symbol power is low, only the strongest channel will
be used, as shown in Figure 3.14(a). If the power is high, the total symbol
power will be allocated over all the r parallel channels. The stronger channels
are always allocated more power than the weaker channels, but the relative
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(a) Low power. (b) High power.

Figure 3.14: Illustration of the water-filling power allocation at low and high power: (a) Only
the strongest channel is used when the power is low. (b) All channels are used when the power
is high, and the power allocation becomes almost equal.

difference gradually disappears. In fact, we get an asymptotically equal power
allocation of ¢/r per channel as ¢ — oo. Notice that when we say “high” or
“low” power in this context, it typically means that the SNR is high or low.
As mentioned earlier, it is the fact that the logarithm grows slowly at higher
SNRs that motivates the water-filling power allocation to use more than one
channel when the strongest channel has reached a high SNR.

The variable r is called the multiplexing gain of the point-to-point MIMO
channel since it represents the number of parallel data streams the channel
supports with non-zero channel gain. This is an important performance
indicator when the water-filling power allocation assigns non-zero power to
all the r channels (e.g., at high SNR) because then the MIMO capacity is
roughly r times larger than the capacity of a corresponding SISO channel.

To demonstrate how the multiplexing gain can greatly increase the capacity,
we will compare a SISO channel with |h|?> = 1 with a SIMO/MISO channel
with [|h||> = M and a MIMO channel with M = K in which all entries of the
channel matrix H also have unit magnitude. The singular values of this MIMO
channel will satisfy 22/[:1 st = tr(H"H) = MK = M?, but their individual
values will vary depending on how we select the phases of the individual
entries in H. Let us consider an “ideal” MIMO channel where all singular
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Figure 3.15: The capacity in the MIMO, SIMO/MISO, and SISO cases over an ideal channel
where all entries have unit magnitude and all singular values of H are equal. The MIMO capacity
is M logy(1 4+ SNR), the SIMO/MISO capacity is logy (1 + MSNR), and the SISO capacity is
logy (1 + SNR).

values are equal: s = ... = sy = VM. The MIMO capacity in (3.75) then
becomes
a@"'sq q
C = Z log, (1 + Ny > = M log, (1 + No) (3.80)

since 7 = M, s7 = M, and equal power allocation qopt = q/M is optimal. The
value in (3.80) is exactly M times larger than the corresponding SISO capacity
logy(1+ 7-) in (2.145). Moreover, the SIMO/MISO capacity is logy (14 M &)
in this example. The key difference from (3.80) is that the factor M appears
inside the logarithm instead of in front of the logarithm. This makes a huge
difference when the SNR is large; the multiplexing gain is greatly preferred
over a beamforming gain since the capacity grows linearly with M instead of
logarithmically. The multiplexing gain is also called the pre-log factor since it
appears in front of the logarithm in the capacity expression.

We show the capacities in Figure 3.15 as a function of SNR = <& for
r = M = 4. Note that the SNR is shown in the decibel scale. The lowest curve
is the SISO case, which represents the baseline performance. The SIMO/MISO
case gives a curve with the same shape as in the SISO case, but it is shifted
to the left by 6dB, due to the beamforming gain of M = 4. The MIMO
case gives the same capacity as the SIMO/MISO case at low SNR (when the

8Equal singular values can be achieved by letting H be a unitary matrix that is scaled by a
factor v/ M, which leads to an SVD with 3 = v/M1I,;. Two concrete examples are when H is a
Hadamard matrix or a properly scaled discrete Fourier transform matrix. Section 4.4.3 describes
a way to deploy practical antenna arrays to achieve equal singular values.
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logarithm is approximately a linear function), but then it grows much faster
with the SNR thanks to the multiplexing gain. More precisely, the slope of
the curve is r = 4 times steeper; therefore, the performance gain of having a
MIMO channel becomes larger the higher the SNR becomes.

Example 3.10. Consider a point-to-point MIMO channel where the channel
matrix has the singular values: s; = 1, so = %, S3 = %, and s4 = i. The
optimal water-filling power allocation is used.

(a) If ¢/No = 2, what is the optimal power allocation?

(b) For which values of q/Ny are all singular values assigned non-zero power?
(c) If /Ny = 434, what is the optimal water-filling power allocation?

(a) We can notice from Figure 3.12 that only the strongest channel s; is
utilized if ¢ < No/s% — No/s? = 22Ny — Ny = 3Ny. This is the case when
q = 2Ny, thus the power allocation is g1 = ¢ = 2Ny and g2 = g3 = q4 = 0.

(b) All the parallel SISO channels are allocated non-zero power when the
water height p is above the height of the fourth segment in Figure 3.12. The
breaking point occurs at i = Ny/s% = 16Ny, in which case the total power is

2

4
g = ( _ ) = 4p — Ny — 4Ng — 9N — 16Ny = 34Np.  (3.81)
=1 &

Hence, the four singular values are assigned non-zero power when q/Ny > 34.

(c) All the channels are utilized since q/Ny = 434 > 34. After filling the
tank with the water volume 34Ny, the remaining 434Ny — 34Ny is divided
equally among the four channels. An additional 100Ny of water is added to
each segment, resulting in the new water height i = 116/ Ny. The optimal
power allocation is ¢ = i — Ng = 115Ny, g2 = pu — 4Ng = 112Ny, g3 =
i — 9Ny = 107Ny, and g4 = &t — 16Ny = 100Ng. This allocation is almost
equal, which is expected when the transmit power is high.

In (3.80) and the last example, we assumed the MIMO channel matrix has
the full rank min(M, K). The multiplexing gain r is generally upper bounded
as r < min(M, K). Hence, there is no need to transmit more parallel data
streams than the minimum of the number of transmit and receive antennas.
This explains why only one data stream was sent over the SIMO and MISO
channels we considered earlier in this chapter. In some cases, r is strictly
smaller than min(M, K), so we have a lower multiplexing gain than in the
ideal case. If the singular values are very different, we need a huge SNR
before the water-filling power allocation uses all r channels. It is only then
that the entire multiplexing gain is helpful in practice. For a given channel
matrix and power level, the effective multiplexing gain N, (i.e., the number
of non-zero power variables) is more indicative of the multiplexing behavior.
Even if N, = 1, having multiple antennas on both sides of the channel is
beneficial because the singular value s; grows the more antennas are used.
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Example 3.11. Consider a point-to-point MIMO system with the total symbol
power ¢, noise variance is Ny, and the channel matrix

11
H-— [1 1] . (3.82)
What is the channel capacity Cyivo? Compare it with the MISO channel
capacity Chiso obtained when only one of the receive antennas is used.

We begin by computing the singular values of H, which are the square
roots of the eigenvalues of

= -2 9 589

The eigenvalues can be obtained by solving characteristic polynomial equation

0 = det (HH" — M) :det([zg)\ ZEAD =(2-)N)*-4, (3.84)

from which we obtain A\; = 4 and A\; = 0. Hence, the singular values of H are
s1 = v4 =2 and sy = 0. The rank is » = 1, which is also the multiplexing
gain. Since there is only one non-zero singular value, assigning all power to it
is optimal: ¢ = ¢ and g = 0. This results in the MIMO channel capacity

4
Cmyivo = logy (1 + Nq> bit /symbol. (3.85)
0

When the receiver only uses a single antenna, we obtain a MISO channel
with the channel vector h = [1,1]" being one of the columns of H. The
corresponding MISO channel capacity is obtained from (3.47) as

2
Criso = logy (1+ ~L|h|? ) =1logy (1+ <L) bit/symbol.  (3.86)
A% Ah

The MIMO channel obtains a beamforming gain of M K = 4, while the MISO
channel only achieves a beamforming gain of K = 2. Hence, the MIMO
channel has a distinct benefit even when the multiplexing gain is r = 1.

We will now take a closer look at the water-filling power allocation. The
variable u represents the water level in Figure 3.12. Recall that this variable
equals py, in (3.72) for some Ni € {1,...,r}. For each potential value of N
we can verify if = pv, indeed gives N non-zero powers in (3.76); nothing

more and nothing less. This implies that we must have py, — 812\7 o >0 and
N

+
HN, — ?L < 0. Only one value of N, satisfies both conditions because the
Ni+1

water level is always between two consecutive segments in Figure 3.12. Hence,
the recipe for computing the optimal water level is as follows.
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Corollary 3.3. The optimal water level is

M1, ifﬂl_ls%o<07

2 _ 0 _ No >
e 0 8 g 20 e
forN+€{2 =1},
Loy if p, — =2 >0,

where py, is given in (3.72) for Ny € {1,...,r}.

Since only one of the r possible values of p in Corollary 3.3 has conditions
that hold, one way to implement the water-filling power allocation is to start
with computing p, and check if the condition in (3.87) holds. If not, we
compute p,-_1 and check if its condition holds. We continue until we find one
u for which the conditions in (3.87) hold, and this is the optimal solution.

Example 3.12. Consider a point-to-point MIMO channel with the » = 7 non-
zero singular values s1 = 1, s = %, S3 = %, S4 = %, S5 = \%, S = V%’
and s; = \/%73' What is the water-filling power allocation if ¢/Ny = 237
We must identify the optimal water level to find the capacity-achieving
power allocation. Corollary 3.3 provides the options uq, ..., u7, along with
their respective optimality conditions. We begin by computing p7 using (3.72):
Ny
7

71
+—(14+3+5+6+7+10+16) = 7N0. (3.88)

N

M7 =

We notice that py — NO = 71N0 — 16Ny # 0, thus, the condition in (3.87) is

not satisfied. We contlnue by computing ug using (3.72), which results in

N 55
%+?0(1+3+5+6+7+10) = No. (3.89)
We notice that pug — M =5 2> No — 16Ny < 0 but pg — % =3 2 No — 10Np % 0,
SO g is not satlsfymg its optlmahty conditions in (3. 87) Next, we compute

No
5

fis =

+=2(14345+6+7)=9N,. (3.90)

M5 =

(SRS

We note that us — % = 9Ny — 10Ny < 0 and ps — % = 9Ny — TNy > 0,

hence, the optimality “conditions in Corollary 3.3 are satisfied. Since only one

water level satisfies its conditions, there is no need to consider p, ..., 4.
In conclusion, N, = 5, and us = 9Ny is the optimal water level. Substi-

tuting these values into (3.76), we obtain the Water filling power allocation
opt — 8N0, q2 _ 6N0, qut — 4N0, qut — 3]\]07 q5 — 2N07 opt _ opt —0.
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In practical systems, we cannot operate at arbitrary capacity values but
only those achievable by predefined MCS combinations; for example, those
listed in Table 2.18 for 5G NR. For stream k € {1,...,r}, we should select an
MCS delivering a number of bits per symbol that is close to but smaller than

the capacity logy(1 + %) of that stream. The r streams will generally use
different MCSs. The water-filling solution is not optimal when considering
this mapping between the continuous channel capacity and the discrete set of
data rates supported by the available MCS combinations. In particular, one
can sometimes modify the power allocation to push some streams to the next
row in the table (i.e., achieve a larger data rate) without reducing the other
ones. This principle is called mercury/water-filling and is described in [50].

3.4.1 Geometric Interpretation of MIMO Transmission

We will now provide a basic physical interpretation of how we achieve the
MIMO capacity. Let us write the K x K matrix V from the SVD of the
channel matrix as V = [vq,...,vk], where vy is the kth column. To achieve
the capacity, the transmitter sends the signal vector

K
x=VX =Y vy, (3.91)
k=1
which consists of K data signals Z1, ..., Zx, each being multiplied by a column

vy from V that acts as a precoding vector. This is a generalization of the
MISO setup in (3.39) where we only sent one data signal multiplied by
one precoding vector. We call this type of transmission spatial multiplexing
since we send (up to) K signals simultaneously, but with different spatial
directivity determined by the precoding vectors. These vectors are mutually
orthogonal since V'V = Ik but might be assigned different symbol powers
since Ty ~ Ng(0,qx) for k =1,..., K. We call V the precoding matriz.
Similarly, let us write the M x M matrix U from the SVD as U =
[uy,...,up], where u,, is the mth column. When the receiver computes
y = Uy, it obtains
u'y
y=1: | (3.92)
ujy
which can be interpreted as applying M different receive combining vectors, in
the same way as we did with one combining vector in the SIMO case in (3.16).
The receive combining vectors are mutually orthogonal since U"U = I,.
Since the precoding vecto