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Preface

The writing of this book started in 2018 as a small compendium written for
the course “Multiple Antenna Communications” at Linköping University. The
initial goal was to cover a few crucial aspects not included in the course book
Fundamentals of Massive MIMO. The principle in the writing was to explain
the fundamentals of the topic with as simple mathematics as possible while
including all the practical insights we gathered as researchers in the field. For
each year that passed, the compendium became 50 pages longer. We added a
recap of the theoretical foundations that the topic builds on, practical aspects
often overlooked by academia (e.g., polarization), and additional concepts
needed in a prolonged version of the course given to doctoral students. During
the COVID-19 pandemic, lecture recordings from the course were uploaded
to YouTube, receiving thousands of views and many positive reviews. Hence,
when we both moved to the KTH Royal Institute of Technology in 2021-
2022 and stopped teaching the original course, we did not want to bury the
compendium in a digital folder. Instead, we decided to turn it into a complete
textbook that can be shared with an international audience.

As the original course’s syllabus no longer limited us, we could focus on
writing the definitive introductory book on multiple-input multiple-output
(MIMO) communications. A key motivation for us is that with the advent
of fifth-generation (5G) mobile networks, MIMO technology is everywhere:
each base station and mobile phone is equipped with antenna arrays capable
of transmitting/receiving signals with controllable directivity. This feature
leads to stronger signals, robustness against channel fading, and spatial multi-
plexing that can drastically raise data rates. This is only the beginning of the
MIMO saga because larger antenna arrays and higher frequency bands that
can accommodate more antennas in the same enclosure are envisioned for
future network generations. The MIMO technology affects the physical-layer
transmissions and changes how resource allocation and network optimization
are done. The same methodology also underpins emerging technologies such
as reconfigurable intelligent surfaces (RIS) and integrated sensing and commu-
nication (ISAC). Hence, we believe that anyone who will research or develop
future wireless communication systems must understand the fundamentals of
multiple antenna communications. The first textbooks on the topic were writ-
ten 25 years ago, and the basic theory remains valid; yet many recent insights
and methodologies are not covered in classic textbooks, new terminologies
and hardware architectures have arisen, and some old concepts are outdated.
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This incentivized us to spend two years finalizing this textbook, including
adding new chapters and numerous examples, exercises, and simulations that
can be reproduced using MATLAB code available on the book’s website.

How to Use This Book

This book is primarily written as the course material for a first-year graduate-
level course and builds on undergraduate courses on signals and systems,
linear algebra, probability theory, and digital communications. We believe the
book should also appeal to wireless engineers and researchers who want to
broaden their knowledge base and learn specific methods and algorithms.

Chapter 1 provides a high-level introduction and motivation to multiple
antenna communications. To ensure that the reader remembers the essential
results from the mentioned undergraduate courses, Chapter 2 summarizes the
theoretical foundations used in later chapters. The basics of point-to-point
MIMO communications between two transceivers equipped with multiple
antennas are provided in Chapter 3. The theory is then expanded for static
line-of-sight (LOS) channels in Chapter 4 and random non-LOS channels in
Chapter 5. Next, we consider multi-user MIMO channels in Chapter 6, where
a base station with multiple antennas serves multiple user devices. These
chapters constitute the core of the book and should be included when it is
used for teaching a course. If these chapters are too extensive, one can omit
Section 4.5 on planar antenna arrays, Section 4.6 on polarization, Section 5.5
on block-fading channels, and Section 5.6 on sparse multipath propagation.

The last three chapters are mostly independent and cover three different
topics. Chapter 7 extends the theory to wideband MIMO channels with or-
thogonal frequency-division multiplexing (OFDM). The chapter also describes
hybrid analog-digital implementation architectures and MIMO terminology
that one might encounter elsewhere. Chapter 8 covers the basics of direction-
of-arrival estimation, localization, and radar sensing using antenna arrays.
We explain how these array signal processing topics connect to the MIMO
communication theory from previous chapters. The book ends with Chapter
9, which covers reconfigurable surfaces consisting of multiple antenna-like
elements that can reflect signals in desirable ways to enhance communication
channels. The basic theory borrows much from that described in previous
chapters but comes with its characteristics and constraints.

We recommend solving exercises while reading the book. The answers are
available online, and a solution manual is provided to instructors who use the
book in their teaching—contact us to retrieve it.

This is an introductory book, so there are more advanced methodologies and
applications to learn. If you want to dig deeper into the topic, we recommend
the textbooks Massive MIMO Networks [1], Foundations of User-Centric
Cell-Free Massive MIMO [2], and Fundamentals of Massive MIMO [3].
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Chapter 1

Introduction and Motivation

The basic scenario in wireless communications is that of a transmit antenna
that radiates an electromagnetic waveform that spreads out and eventually is
measured by a receive antenna located at another geographical location. The
transmitted waveform is designed to carry information that can be extracted
by the receiver from its measured received signal. A combination of digital
modulation and channel coding is used to generate the waveform and encode
information into it, which is done in such a way that the receiver can extract
it even if the signal is attenuated and distorted.

There are many wireless technologies currently in use, such as the IEEE
802.11 technology family for WiFi, the IEEE 802.15.1 family for Bluetooth,
the 3GPP family with GSM/UMTS/LTE/NR for cellular (mobile) communi-
cations [4], [5], and the competing but somewhat outdated 3GPP2 family with
IS-95/CDMA2000/EV-DO. These technologies are based on open standards,
created in collaboration between companies that jointly decide on the basic
features but compete in building and selling commercial implementations.
Some standards are designed to replace previous standards, targeting the
same use cases. Other standards are optimized for different use cases—for
example, long-range versus short-range communications, high data rate versus
low power, or operation in licensed versus unlicensed frequency bands.

This chapter first introduces the fundamental concepts of signal power,
channel gain, and antenna directivity. Then the use of multiple antennas will
be motivated by outlining three main benefits this technology can provide.

1.1 Transmitted and Received Signal Power

In the technologies mentioned above, the transmit power P varies substantially
with the type of device, signal bandwidth, technology, and use case. The
cellular base stations deployed on rooftops and towers might transmit tens
of watts; for example, 40 W per 10 MHz of bandwidth is typical in 4G LTE
systems [6]. Base stations deployed closer to the potential users might only
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transmit a few hundred milliwatts; for example, 0.1 W is typical for WiFi
access points, and 0.4 W is a limit for local-area cellular base stations in 5G
NR [7]. A cell (mobile) phone typically radiates up to 0.1 W, and a short-range
Bluetooth transmitter might operate at only 1 mW = 0.001 W. The power
of a transmitter connected to an electrical grid is often limited by national
regulations, selected to enable coexistence between different wireless systems
and limit human exposure to strong electromagnetic fields. There are also
regulations on battery-powered user devices; however, the devices are also
subject to more practical limitations, such as keeping the power down to
alleviate the need for active cooling and make the battery last longer. While
the numbers mentioned above are the maximum power, battery-powered
devices can purposely reduce their power during transmission and turn the
transceivers on/off with time to save energy, especially when the data rate
the system supports is higher than the device requires for the moment.

Due to the large transmit power variations, a decibel scale is often used to
report the power numbers conveniently. In particular, the unit dBm is used
to report the ratio between the signal power and 1 mW in decibels (dB):

10 log10

(Signal power
1 mW

)
dBm, (1.1)

where log10(·) is the base-10 logarithm. This means that 1 mW is equal to
0 dBm, 0.1 W is 20 dBm, and 40 W is 46 dBm. We note that 10 log10(2) ≈ 3,
10 log10(4) ≈ 6, and 10 log10(8) ≈ 9. These approximations are often treated
as being exact in the communication literature. Hence, doubling the signal
power equals a 3 dB increase.

Example 1.1. The decibel scale is generally used to measure the relative size
of two power values. Compare P1 = 8 W and P2 = 1 W using the dBm unit.

A direct computation based on (1.1) yields P1 ≈ 39 dBm and P2 = 30 dBm
because 10 log10(8/10−3) ≈ 39 and 10 log10(1/10−3) = 30. The ratio P1/P2 is
equal to 8, which can be expressed in decibels as

10 log10

(
P1

P2

)
= 10 log10

(8
1

)
≈ 9 dB. (1.2)

This ratio can also be computed as P1 [dBm]− P2 [dBm] ≈ 39− 30 = 9 dB,
by first converting both numbers to dBm and then computing their difference.
Note that the difference between 39 dBm and 30 dBm is expressed in dB,
although their individual units are dBm. While dBm measures an absolute
power value compared to 1 mW, dB is used to measure the relative ratio
between two specific power values. In this example, we can say that P1 is
9 dB larger than P2, or that P1 is 8 times larger than P2.

A transmit antenna radiates an electromagnetic signal waveform that
travels in all directions at the speed of light. The signal power is quickly



1.1. Transmitted and Received Signal Power 3

d
Transmit
antenna

Receive antenna
with area Aiso

Figure 1.1: An isotropic transmit antenna radiates a signal that spreads like an inflatable
sphere. At a propagation distance d in free space, the surface area of a sphere with radius d
is 4πd2. This area is typically huge compared to the area Aiso of an isotropic receive antenna;
thus, the receiver only captures a tiny fraction of the signal.

dispersed over the surrounding environment; thus, the power measured by a
receiving device is incredibly much smaller than the transmit power. One can
picture this as if the signal power exists on the surface of a balloon. As we
blow up the balloon, the radius of the balloon grows, and the surface area
becomes larger and larger, but the surface material also becomes thinner and
thinner. When the signal waveform has traveled a distance d in free space,
the signal power exists on a sphere with radius d, as illustrated in Figure 1.1.
The surface area is 4πd2. If the power is equally distributed over the sphere’s
surface, the transmit antenna is said to be isotropic. This is also called a point
source. Isotropic antennas are impossible to build1 but are used for theoretical
analysis and as a benchmark for other antennas by measuring how close to
isotropic a practical antenna is radiating its signals.

An elementary kind of signal waveform is the sinusoid illustrated in Fig-
ure 1.2. This is an oscillating periodic function of time with a frequency
denoted by f in this figure. The frequency represents the number of repeated
periods per second observed at a specific location and is measured in Hertz
(Hz). The period can be measured between two adjacent peaks observed in
time and is 1/f seconds. When a sinusoidal electromagnetic wave propagates
at the speed of light cm/s, at any given time instance, each period will cover
a spatial interval of length c/f meters. This quantity is very important when

1The radiated field from an antenna must satisfy the Helmholtz wave equation, which
originates from Maxwell’s equations. One can prove that an isotropic field does not do that.
Even if one could build an isotropic antenna, it is not practically useful since it must be connected
to transceiver hardware that generates wireless signals. This connection would block the wave
propagation in some directions.
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0 1
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2
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3
f
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f
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f

6
f

One period

Time [s]

Amplitude

Figure 1.2: A sinusoid is a signal waveform characterized by its amplitude and frequency f
[Hz]. The time period between two peaks is 1/f seconds.

analyzing how the wave interacts with objects in the surroundings, including
antennas. It is called the signal’s wavelength and will be denoted as λ = c/f .
The speed of light is 299 792 458 m/s in free space (vacuum), but we will use
the close approximation c = 3·108 m/s throughout this book to enable a simple
conversion between frequencies and wavelengths; for example, f = 3 GHz
gives λ = 0.1 m.

The receive antenna converts the impinging electromagnetic waves into
an electric current and can thereby be used to collect signal power. The
power-capturing ability of an antenna is quantified by its effective area. It is
defined as the ratio of the power that the antenna can collect (in W) to the
power flux density of the incident wave (in W/m2) [8]. It can be proved that
a hypothetical lossless isotropic antenna must have the effective area

Aiso = λ2

4π , (1.3)

where λ is the wavelength of the type of waveform the antenna was built for.
Since λ = c/f , the effective area in (1.3) can be equivalently expressed as

Aiso = c2

4πf2 . (1.4)

This means that the higher the signal’s frequency, the smaller the area of
the matching isotropic antenna. The word “effective” in the term “effective
area” refers to the following: Suppose a planar waveform travels in a given
direction, and you place a surface perpendicular to that direction to block a
part of the signal. The antenna captures power proportional to what would
pass through the surface if it has the specified effective area. This does not
mean a practical antenna must have that specific area, but it depends on the
hardware implementation and deployment.2 For example, if the antenna is not

2The effective area of an aperture-type antenna is always less than or equal to its physical
area. The aperture efficiency, which is the ratio of the maximum effective area (over all directions)
to the physical area of an antenna, is an essential metric in antenna design [8].
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Signal waveTransmit
antenna

Receive antenna
with area A

φ

Effective area A cos(φ)

Figure 1.3: The effective area of a receive antenna is generally smaller than the antenna’s
physical area. The physical area is A in this figure. However, the effective area A cos(φ) per-
pendicular to the direction that the signal propagates determines the received signal power.
Any non-isotropic antenna has a varying effective area for different angular directions φ. The
maximum effective area among all rotations is used as the reference value when comparing
practical antennas of different kinds.

perpendicular to the direction in which the wave travels, the effective area is
smaller than the physical area of the antenna. This is illustrated in Figure 1.3,
where the receive antenna has the physical area A. Since the antenna is not
deployed perpendicularly to the direction that the signal is traveling, the
effective area is the projection of the physical antenna area in that direction.
In the figure, the antenna is rotated by an angle φ ∈ [−π/2, π/2]; thus, the
effective area is A cos(φ), which is smaller or equal to the physical area.

Example 1.2. Consider a lossless isotropic antenna designed for the wavelength
λ = 0.1 m (f = 3 GHz). What is the power captured by this antenna if the
power flux density of the incident electromagnetic wave is 50µW/m2?

The answer is the product of the effective area and the power flux density:

Aiso · 50 · 10−6 = λ2

4π · 50 · 10−6 ≈ 3.98 · 10−8 W. (1.5)

Suppose a so-called short dipole replaces the isotropic antenna. This
non-isotropic antenna captures different amounts of power depending on its
rotation with respect to the incident wave. The maximum effective area among
all rotations is used as the reference value when analyzing such an antenna.
If we measure the received power over different rotations and notice that
5.96 · 10−8 W is the maximum value, what is the maximum effective area?

The effective area Aeff is the ratio of the captured power to the power flux
density. In this case, it becomes

Aeff = 5.96 · 10−8

50 · 10−6 ≈ 0.00119 m2, (1.6)

which is approximately 1.5 times larger than Aiso.

The black area in Figure 1.1 represents an isotropic receive antenna placed
on the surface area of the sphere; that is, perpendicular to the direction that
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the transmitted waveform is traveling outwards from the origin. If the receive
antenna is located at the distance d from the transmitter, its area Aiso in
(1.3) should be compared with the total surface area Asphere(d) = 4πd2 of a
sphere with radius d. If Asphere(d) ≥ Aiso, the fraction of the transmit power
that reaches the receive antenna is

Aiso

Asphere(d) =
λ2

4π
4πd2 = λ2

(4π)2
1
d2 . (1.7)

The factor λ2/(4π)2 is determined only by the wavelength, while the second
factor is inversely proportional to the square of the propagation distance. This
means that the signal power captured by the receive antenna decays rapidly
with the distance d. Note that this example assumes so-called free-space
propagation, which means there are no objects inside (or outside) the sphere
in Figure 1.1 that interact with the radiated waveform to increase or decrease
the received power. We will use this as the basic scenario in this book but
also cover some other scenarios. The expression in (1.7) is a special case of
the classical Friis’ transmission formula for free-space propagation [9], which
also applies to other types of antennas than isotropic.

The ratio in (1.7) is called the channel gain, while its inverse is called the
pathloss.3 In this book, we often let the parameter β denote the channel gain.
This is a dimensionless parameter computed as the ratio between two areas.
To get a sense of the typical size of the channel gain, Figure 1.4 shows its
value as a function of the distance d for three different frequencies that are
relevant for wireless communications:

• f = 1 GHz with wavelength λ = 0.3 m;

• f = 3 GHz with wavelength λ = 0.1 m;

• f = 30 GHz with wavelength λ = 0.01 m.
Since the channel gains are generally tiny, they are presented in the decibel
scale in Figure 1.4; that is, the vertical axis presents

10 log10

(
λ2

(4π)2
1
d2

)
= 10 log10

(
λ2

(4π)2

)
− 20 log10(d) dB. (1.8)

The curves start at a 1 m distance, where the channel gain is −42 dB at the
3 GHz frequency. When increasing the distance by a factor of 10, from 1 m to
10 m, the channel gain reduces by 20 dB to −62 dB. Hence, if we divide the
transmit power into (roughly) one million parts, only one reaches the receive
antenna. As seen from the last term in (1.8), the channel gain reduces by
20 dB every time the distance increases by 10 times. Hence, another 20 dB is
lost when the distance increases from 10 m to 100 m.

3It also happens that (1.7) is called the pathloss in the communication literature, so it is
vital to know the dimensionality of this type of term to understand which definition is used in a
particular text. Importantly, a wireless channel can only attenuate signals, so the channel gain
must be smaller than or equal to 1, while its inverse must be greater than or equal to 1.
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Figure 1.4: The channel gain in (1.7) depends on the propagation distance d and the frequency
f of the waveform, assuming that different matching isotropic antennas are used when commu-
nicating at each of the considered frequencies. The channel gain is reported using the decibel
scale since the variations are huge.

Compared to communications at the 3 GHz frequency, the channel gain in
Figure 1.4 is larger when using the lower frequency 1 GHz and smaller when
using the higher frequency 30 GHz. This is purely due to the differences in
the effective area in (1.3) for the corresponding isotropic receive antennas,
which is proportional to λ2. The waveforms are attenuated identically when
propagating in free space irrespective of the frequency; that is, the power
flux density is constant at the receiver location but is multiplied by different
effective areas depending on the frequency band. In particular, it is only
the first term in (1.8) that depends on the wavelength, while the distance-
dependent second term is the same for any wavelength.

Example 1.3. The channel gain with an isotropic receive antenna at f = 3 GHz
and the distance d = 10 m is −62 dB, as shown in Figure 1.4. What is the
corresponding channel gain if we replace the isotropic receive antenna with
another antenna whose effective area is twice as large? What is the channel
gain with this new antenna at a 100 m distance?

The channel gain is proportional to the effective area, as can be seen from
(1.7) where the effective area of an isotropic antenna is divided by the area of
a sphere. If we double the effective area, the channel gain is doubled, and in
the decibel scale, it becomes −62 + 3 = −59 dB at the 10 m distance.

For the considered channel gain model in (1.8), there is a 20 dB gain
reduction each time the distance increases by 10 times. Hence, the channel
gain with the new antenna at a 100 m distance is −59− 20 = −79 dB.
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Low-band
below 1 GHz

Mid-band
1–7 GHz

High-band
above 7 GHz

mmWave
24–300 GHz

THz band
≥ 300 GHz

Figure 1.5: The radio frequency spectrum ranges from 3 kHz to 3000 GHz (i.e., 3 THz) and is
used for many different services. The spectrum used for wireless communications is commonly
divided into the low-band, mid-band, and high-band, as indicated in this figure. The high-band
range 24–300 GHz is referred to as the mmWave band since the wavelength ranges from 12 to
1 mm. The range 300–3000 GHz is called the THz band.

The three exemplified frequencies were selected to represent the three
specific bands considered in 5G NR [10]. Most wireless communication systems
operate in the part of the electromagnetic frequency spectrum called the radio
spectrum, even if there are exceptions.4 The radio spectrum ranges have
changed with time as the applications and hardware have evolved. According
to the 2020 regulations from the International Telecommunication Union (ITU)
[11], the radio spectrum consists of all frequencies from 3 kHz to 3000 GHz.
In the context of 5G NR, the spectrum is further divided into the low-band
containing carrier frequencies up to 1 GHz, the mid-band in the range 1–7 GHz,
and the high-band with frequencies above 7 GHz, as illustrated in Figure 1.5.5
The millimeter-wave (mmWave) band is a particularly prominent part of
the high-band spectrum and, strictly speaking, covers 30–300 GHz, where
the wavelength is between 10 and 1 mm. For practical reasons, the mmWave
band is typically said to start at 24 GHz since spectrum is available from that
frequency in some countries. Moreover, only mmWave bands below 100 GHz
are considered in 5G NR; thus, the range 100–300 GHz is often called the
sub-THz band by researchers who want to differentiate future technologies
from existing 5G solutions [13]. Finally, the range 300–3000 GHz is called the
THz band since this range can also be expressed as 0.3–3 THz.

It is commonly stated that the maximum coverage range of a wireless
communication system is longer in the low-band than in the high-band. This
statement is often correct, but it is not caused by the phenomenon illustrated in
Figure 1.4. Recall that we considered a free-space propagation model without
objects between the transmitter and receiver, where the power flux density is
independent of frequency. The differences in the free-space channel gains in
Figure 1.4 can be fully compensated for by increasing the effective area of the

4Two notable exceptions are free-space optical communication that uses visible or near-visible
light and sonic communication that uses audio waves.

5The convention of whether a frequency band is considered low or high shifts with time and
application; in particular, the low-band for cellular communications is known as the ultra-high
frequency band for radar, and some other radio applications [12].
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receive antenna; thus, it is the same irrespective of the signal’s frequency. In
particular, the channel gain definition in (1.7) becomes frequency-independent
if the area in the numerator is constant instead of proportional to λ2. Since the
effective area of a single receive antenna reduces with increasing frequency, a
fair comparison between two frequency bands requires antenna configurations
with the same effective area in both bands. One way to achieve this in practice
is by using multiple receive antennas in the higher band so that their collective
effective area sums up to the same value as in the lower band. We will consider
this in detail later in this book.

The main reason low-band frequencies generally have a longer coverage
range is the signal behaviors in scenarios other than free-space propagation. In
terrestrial communications, there are many objects in the environment around
and between the transmitter and receiver. Signals with a lower frequency
range propagate better through and around such objects and are reflected off
walls more favorably. The signal absorption by atmospheric gases in the air
also increases with the frequency. For these reasons, base stations for wide-
area coverage typically use the low-band, while medium-range and local-area
networks use the mid-band. Short-range networks might use the mmWave
spectrum (or even the THz spectrum) in the high-band. Nevertheless, satellites
commonly use the high-band spectrum to communicate with the ground over
incredibly long distances. This works well if no blocking objects exist and the
antennas have large effective areas.

Despite the reduced range, there are two good reasons why new wireless
communication systems are gradually supporting higher frequency bands.
Firstly, large parts of the low-band and mid-band are already occupied by
existing wireless services, making it hard to launch new services there. Secondly,
there is generally more bandwidth available at higher carrier frequencies, and
we will see later that the data rates increase with the bandwidth. To give
some indicative numbers, a network operator might have licenses for 20 MHz
in the low-band, 100 MHz in the mid-band, and 1 GHz in the high-band.

The channel gain depends on the propagation distance d in typical terres-
trial communication scenarios, where the transmitting base station might be
deployed on a rooftop and the receiving user device is located in an urban city.
In that case, there is no unequivocal channel gain model because the wave
propagation depends on the exact geographical locations of buildings and
other large-scale objects. However, we can describe the average propagation
conditions by fitting a parametric channel gain model of the kind

β = Υ
(1 m

d

)α
(1.9)

to real-world channel measurements. The parameter α is called the pathloss
exponent while Υ is the channel gain at a 1 m reference distance. This para-
metric model is inspired by the free-space model in (1.7), which is obtained
by α = 2 and Υ =

(λ/(1 m)
4π

)2 =
(0.3 GHz

4πf
)2 because c/(1 m) = 0.3 GHz.
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Example 1.4. The 3GPP technical report [6] presents channel gain models for
several propagation scenarios typical in cellular communications. For example,
in the non-line-of-sight urban microcell (UMi) scenario [6, Table B.1.2.1-1],
the channel gain is modeled (in decibel) as

βUMi = −36.7 log10

(
d

1 m

)
− 22.7− 26 log10

(
f

1 GHz

)
dB. (1.10)

This model can be used for distances d in the range 10–2000 m and frequencies
f in the range 2–6 GHz. What are the values of α and Υ in this case, and
how does it differ from the free-space propagation case?

The distance-dependent term in (1.10) is −36.7 log10(d) = −10 log10(d3.67);
thus, the pathloss exponent for this UMi channel is α = 3.67. Since the
exponent is larger than in free-space propagation (α = 2), the channel gain
decays more rapidly with the distance. This represents the fact that the
wireless signals must interact with objects in the environment to reach the
receiver.

The channel gain Υ at the reference distance of 1 m is given by the last
two terms in (1.10) and becomes Υ = 10−2.27(1 GHz

f

)2.6. This parameter is
valid for specifying the pathloss model even if the UMi model should only be
used for d ≥ 10 m. We notice that Υ decays with the frequency as f−2.6. This
is faster than the f−2 behavior in free-space propagation, which is caused by
the isotropic receive antenna assumption. The extra decay describes how the
wireless signals interact less favorably with objects as the frequency increases.

Apart from the scaling behaviors, we can compare the channel gains
obtained at the minimum values d = 10 m and f = 2 GHz. The channel gain is
−67.2 dB with the UMi model and −58.5 dB in free-space propagation; thus,
the UMi model consistently gives lower gains at all distances and frequencies.

1.1.1 Signal-to-Noise Ratio

Although the channel gains are typically tiny in wireless communications, many
existing systems operate efficiently. This is possible because what matters
is not the absolute amount of signal power received but its relative size
compared to the noise power in the receiver hardware (and the interference
power received from other concurrent transmissions).

We let σ2 denote the noise power. It is computed as the product σ2 = N0B
of the noise power spectral density N0 W/Hz and the signal bandwidth BHz.
The intuition behind this model is that the thermal noise in the receiver is a
white random process with the constant power spectral density N0 over all
frequencies, but the receiver hardware filters out the noise that lies outside
the signal band, thereby making the total noise power equal to N0 times
the signal bandwidth B. We will return to these modeling assumptions in
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(a) The SNR when using the free-space channel gain model in (1.7).

(b) The SNR when using the UMi channel gain model in (1.10).

Figure 1.6: The SNR in (1.13) as a function of the propagation distance d for two different
channel gain models: free-space propagation and the non-line-of-sight UMi model. The setup is
defined by f = 3 GHz, B = 10 MHz, and either P = 10 W, P = 1 W, or P = 0.1 W.

Section 2.3.2. The noise power spectral density depends on the temperature,
but the variations are small in most use cases. Therefore it is common to take
the number at room temperature (i.e., 20◦C) and treat it as a constant:6

N0 = 10−20.4 W/Hz. (1.11)
6The actual noise power spectral density in wireless receivers is normally larger than the

number in (1.11) since the receiver hardware is amplifying the thermal noise. For example, the
practical noise power might be 4-8 dB higher than the theoretical lower limit in (1.11).
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When reporting noise powers in the decibel scale, using dBm, the formula is

σ2 = 10 log10

(
N0B

1 mW

)
= −174 + 10 log10(B) dBm. (1.12)

The signal-to-noise ratio (SNR) is defined as

SNR = Pβ

σ2 = Pβ

N0B
, (1.13)

where we recall that P is the transmit power, β is the channel gain, and
σ2 = N0B is the noise power. The SNR is a dimensionless variable since it
is computed as the ratio of two powers. To get a sense of what the practical
range of SNR values is, Figure 1.6 shows the SNR in (1.13) in the decibel
scale as a function of the propagation distance. We consider a bandwidth of
B = 10 MHz around the frequency f = 3 GHz and use either the free-space
channel gain model in (1.7) or the UMi channel gain model in (1.10). The
SNR can be many tens of decibels for very short distances (e.g., inside a
room). For practical distances in outdoor scenarios, we can expect an SNR
below 40 dB, particularly when using the non-line-of-sight UMi model, where
the channel gain decays more rapidly with the distance. If we reduce the
transmit power, the SNR curve is shifted downwards accordingly. Many other
phenomena affect the SNR, but as a rule-of-thumb, the SNR in a wireless
communication system is between −10 dB and +40 dB.

Example 1.5. Consider a communication setup where the SNR is 30 dB at a
400 m distance from the transmitter when using the free-space channel gain
in (1.7) with f = 3 GHz (i.e., λ = 0.1 m). What will be the new SNR at that
distance if we switch to using the UMi channel gain model in (1.10)?

Due to the linear relation between SNR and the channel gain in (1.13),
the SNR in the modified UMi setup is

SNRUMi = PβUMi

N0B
= Pβ

N0B

βUMi

β
= 30 + 10 log10

(
βUMi

β

)
dB, (1.14)

where β is the free-space channel gain from (1.7) and βUMi was defined in
(1.10). By inserting numbers into this expression, we obtain

SNRUMi = 30− 36.7 log10(400)− 22.7− 26 log10(3)− 20 log10

( 0.1
4π · 400

)
≈ −6.58 dB. (1.15)

This new SNR is 36.58 dB smaller (i.e., 4550 times smaller), which shows
that the SNR can vary greatly with the propagation conditions. Such large
variations can hardly be compensated for by increasing the transmit power.
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Downlink coverage
(10 MHz)

Uplink coverage
(10 MHz)Uplink coverage

(25 kHz)
Figure 1.7: Since the base station (to the left) and the phone (to the right) have different
transmit powers, the areas where the SNR is above the minimum threshold that enables successful
communications will be different in the downlink and uplink. One way to deal with this problem
is to reduce the bandwidth in the uplink so that the SNR becomes the same as in the downlink.

As mentioned earlier in this chapter, the transmit power can vary signifi-
cantly between different devices, including those communicating with each
other using the same communication standard. In a cellular network, the base
station might transmit with 40 W, while the cell phone uses 0.1 W. This is a
difference of 40/0.1 = 400 ≈ 26 dB, which implies that the SNR is 26 dB better
when transmitting in the downlink (from the base station to the phone) than
when transmitting in the uplink (from the phone to the base station) over the
same frequency band. It is necessary to communicate in both directions to
keep a cellular network operational, which makes the uplink transmission the
weakest link. A practical solution to this problem is to utilize only a fraction
of the bandwidth when the user transmits, which increases the SNR since the
noise power reduces. In other words, we put all the signal power into a narrower
range of frequencies. This principle is illustrated in Figure 1.7 by showing
the geographical area where a receiver would get an SNR above a certain
threshold required for successful communication (e.g., −10 dB). The yellow
area for the downlink transmission with B = 10 MHz contains the phone;
thus, the downlink transmission will be successful. However, the red area for
the uplink transmission is substantially smaller and does not contain the base
station. The yellow and red areas use the same bandwidth of 10 MHz in the
uplink and downlink. However, if the phone only uses 10 MHz/400 = 25 kHz
of bandwidth, the blue uplink area is obtained, and it is as large as the yellow
downlink area. In practice, the bandwidth that is used by the phone can be
varied dynamically depending on how far from the base station the user is.

Another solution is to use different frequency bands in the uplink and
downlink. Suppose the base station and phone can use both the low-band and
the mid-band. It is then possible to let the phone transmit its signals in the
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low-band where the range is longer and there is less bandwidth, while the
base station transmits in the mid-band where the higher power compensates
for a shorter range and broader bandwidth. The 5G NR standard supports
this solution to enhance the coverage range of base stations. When wider
bandwidths in the mid-band (or high-band) are utilized only for downlink
transmission, the downlink data rates will be substantially higher than the
uplink data rates.

Example 1.6. Consider a phone that transmits 200 mW and that is connected
to a communication system with a bandwidth of B = 20 MHz. When using the
entire bandwidth, the uplink SNR is −30 dB. Suppose the uplink SNR must
be at least −10 dB for the system to be operational. How much bandwidth
can the phone use?

The phone must reduce the uplink bandwidth so that the SNR increases
by −10− (−30) = 20 dB, which is 100 times more. Hence, at most, it can use
an uplink bandwidth of 20 MHz/100 = 200 kHz.

1.1.2 Fraunhofer Distance

The analysis has thus far been based on isotropic antennas, which is a hy-
pothetical concept, as noted earlier. This book is not focused on antenna
design or detailed modeling of individual antennas but on the phenomena,
benefits, and challenges that occur when having multiple antennas. However,
we will briefly describe a few fundamental antenna properties essential to un-
derstanding the connection between fixed directive antennas and the adaptive
directivity obtained using multiple antennas.

When we derived the channel gain equation for free-space propagation,
we used Figure 1.1, where the receive antenna is located on the surface of
a sphere because the transmitted signal spreads out as a sphere with an
increasing radius. This implies that the receive antenna must be curved to
fit on the surface area; otherwise, the transmitted signal will reach different
parts of the antenna at different times. Practical antennas are generally flat,
creating a mismatch that we will now analyze in detail. Figure 1.8 shows a flat
receive antenna perpendicular to the direction of the propagating wave. When
the spherical wavefront of the transmitted signal reaches the center of the
receive antenna, it has not yet reached its edges. As a result, the impinging
electric field will vary in phase and amplitude over the antenna surface. This
has consequences for the intercepted signal power, which can typically be
computed by integrating the power flux density of the impinging electric field
over the receive antenna’s surface. The maximum power is intercepted when
the impinging electric field is constant over the antenna, which happens in
the ideal case when the wavefront is planar and impinges perpendicularly.

When the propagation distance is sufficiently large compared to the antenna
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Signal wavefront
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Figure 1.8: When a spherical wavefront approaches a flat receive antenna, there will be a
delay between when the wave reaches the antenna’s center and edge. This delay (or difference
in propagation distance) turns into a phase-shift. The phase-shift is small or large depending on
the relation between the distance d, the width a of the receive antenna, and the wavelength λ.

size, the spherical wavefront can be locally approximated as planar when
considering the power the antenna intercepts. If the distance is d from the
transmitter to the antenna’s center and the antenna’s width is a, then we can
compute the distance d′ from the transmitter to the antenna’s edges using
the Pythagorean theorem as

d′ =
√
d2 +

(a
2

)2
= d

√
1 +

( a
2d

)2
. (1.16)

When a sinusoidal signal with the wavelength λ needs to travel an extra
distance d′ − d to reach the edge, then there will be a phase difference of7

2π
λ

(d′ − d) = 2π
λ

(
d

√
1 +

( a
2d

)2
− d

)
≈ 2π

λ

(
d+ a2

8d − d
)

= πa2

4λd [rad]

(1.17)
between the signal received at the edge and the center. The simplified expres-
sion in (1.17) is obtained by using the Taylor approximation

√
1 + x2 ≈ 1+ x2

2
which is tight (the error is less than 0.05%) for 0 ≤ x ≤ 0.25. Since x = a/(2d)
in this case, x ≤ 0.25 implies we need to consider distances d ≥ 2a. The phase
difference in (1.17) will never be zero, but it will be close to zero when the
propagation distance d is much larger than the width a of the antenna. It
is common to assume (somewhat arbitrarily) that the phase variations over
the antenna can be neglected if the maximum difference in (1.17) is no larger
than π/8 radians (22.5 degrees) [14]. By following this convention, we get the
relation

π

8 ≥
πa2

4λd ⇒ d ≥ 2a2

λ
. (1.18)

The impinging wavefront also varies in amplitude between the center and
the edge since the received signal amplitude is inversely proportional to the

7Suppose the signal sin(2πft) is transmitted in Figure 1.8. The signal reaching the center
of the antenna is sin(2πf(t − d/c)), while the signal reaching the edge of the antenna is
sin(2πf(t− d′/c)). The phase difference between these signals is 2πf(d′ − d)/c = 2π(d′ − d)/λ.
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distance. The relative difference is d′/d and this ratio is between 0.97 and 1
for distances d ≥ 2a, because d = 2a gives

d

d′ = d√
d2 +

(
a
2
)2
≥ 2a√

4a2 +
(
a
2
)2

=
√

16
17 ≈ 0.97. (1.19)

Hence, if the distance between the transmitter and receiver is simultaneously
greater than 2a2/λ and 2a, we can neglect the spherical shape of the waveform
(when considering both the phase and amplitude) and compute channel gains
in the way previously described. In other words, we can treat the impinging
wave as a plane wave traveling in one angular direction and only depends on
time and the location along that direction; at any time instance, the wave
is constant within any given plane perpendicular to the direction of travel.8
The impinging wave is only approximately plane at the local level, observable
at the receiver, but remains spherical at the global level. This is similar to
how Earth appears flat to an observer on the ground, although it is curved.

The minimum distance in (1.18) is called the Fraunhofer distance and
is named after Joseph von Fraunhofer, who studied many electromagnetic
phenomena. It is occasionally also called the Rayleigh distance. The region
that lies beyond the Fraunhofer distance is known as the far-field of the
antenna. The Fraunhofer distance was derived based on two approximations
but is known to be a good rule-of-thumb. When the propagation distance d
is either smaller than 2a2/λ or 2a, we are in the near-field of the antenna.
The near-field can be divided into two parts. The radiative near-field is an
intermediate region where the propagation distance to the receiver is too short
to neglect the phase and/or amplitude variations over the receive antenna but
large enough to avoid direct hardware interaction between the transmitter
and receiver. The reactive near-field is closest to the transmitter and includes
additional electromagnetic effects such as evanescent waves and magnetic
induction. These are examples of electric and magnetic field components that
can only be observed near the transmitter, typically up to a maximum distance
of λ/(2π). Specific standards exist for near-field communication (NFC) that
are commonly used by smartphones and cards to enable short-range payments
and identification. This book, which focuses on radiated electromagnetic waves,
will not cover these technologies.

To shed light on how far away the far-field is, suppose the receive antenna
in Figure 1.8 has the length a = λ for which 2a2/λ and 2a are both equal to
2λ. Hence, if the receive antenna is at least 1 m from the isotropic transmit
antenna, we are guaranteed to be in the far-field for any frequency band
of interest in wireless communications (because the wavelength is typically
shorter than 0.5 m). This condition is almost always satisfied.

8An ideal plane wave fills the infinitely large three-dimensional world (i.e., R3) and, thus,
cannot exist in practice. However, the impinging wave observed over an antenna of finite width
a will be perceived as being a finite-sized portion of a plane wave when d ≥ 2a2/λ.
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The Fraunhofer distance in (1.18) is truly wavelength-dependent, in con-
trast to the free-space channel gain in (1.7) whose wavelength-dependence
was caused by the assumption of having an isotropic receive antenna. The
distances d and d′ in Figure 1.8 are computed based on geometrical arguments
that do not involve the wavelength λ. However, when the wave travels the
extra distance d′ − d to reach the edge, the wavelength determines how large
the resulting phase-shift is. For a fixed-sized antenna, the Fraunhofer distance
in (1.18) is inversely proportional to λ, making it larger in the high-band than
in the low-band. However, suppose the antenna size is proportional to the
wavelength. In that case, we get the opposite behavior, as shown by the fact
that a = λ gives the Fraunhofer distance 2λ proportional to λ.

Example 1.7. What is the Fraunhofer distance when considering a rectangular
receive antenna with width a and height b?

Suppose d is the distance from the transmitter to the center of the antenna.
Following the same steps as before, we can compute the distance d′ to the
antenna’s corners as

d′ =

√
d2 +

(a
2

)2
+
(
b

2

)2
= d

√
1 +

(
D

2d

)2
(1.20)

where we have defined D =
√
a2 + b2 as the length of the diagonal of the

rectangular antenna. The difference d′ − d leads to the phase difference

2π
λ

(d′ − d) = 2π
λ

d
√

1 +
(
D

2d

)2
− d

 ≈ 2π
λ

(
d+ D2

8d − d
)

= πD2

4λd [rad]

(1.21)
between the signals captured at the center and the corners, using the same
Taylor approximation as in (1.17). We recall that the Fraunhofer distance
is obtained when the phase difference is π/8. Solving πD2

4λd = π
8 for d yields

2D2/λ. The only difference from (1.18) is that D has replaced a. Generally
speaking, for any antenna shape, the Fraunhofer distance is 2D2/λ by letting
D be the largest distance between any two points on the antenna.

1.1.3 Antenna Directivity Gains

We will now move beyond isotropic antennas and provide the basic charac-
terization of antenna directivity. Practical transmit antennas radiate a larger
fraction of their power in some angular directions than others. The transmitted
signal will still propagate as a sphere with an expanding radius, as illustrated
in Figure 1.1, but the signal power is unequally distributed over the surface
area. We need a spherical coordinate system to specify the power distribution
over the sphere. There are different ways to define spherical coordinates. We
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use the definition in Figure 1.9 where a point at a distance d from the origin
is characterized by the azimuth angle φ ∈ [−π, π) in the xy-plane and the
elevation angle θ ∈ [−π/2, π/2]. Any point in the three-dimensional world can
be uniquely described using either conventional Cartesian coordinates (x, y, z)
or the spherical coordinates (d, φ, θ). The one-to-one mapping between these
coordinate systems can be defined asxy

z

 = d

cos(φ) cos(θ)
sin(φ) cos(θ)

sin(θ)

 . (1.22)

This relation makes it easy to compute the Cartesian coordinates (x, y, z) of
a point that is specified in spherical coordinates. The opposite transforma-
tion involves inverse trigonometric functions, and we must be careful when
computing the azimuth angle so it is not shifted incorrectly by ±π.

Example 1.8. How can the point with the Cartesian coordinates (x, y, z) =
(3, 4, 5) be expressed using the spherical coordinates (d, φ, θ)?

Using the relations in (1.22), we first obtain that

x2 + y2 + z2 = d2
(

cos2(φ) cos2(θ) + sin2(φ) cos2(θ)︸ ︷︷ ︸
cos2(θ)

+ sin2(θ)
)

= d2. (1.23)

Hence, we have d =
√
x2 + y2 + z2 =

√
32 + 42 + 52 = 5

√
2. By using (1.22),

we can further notice that
y

x
= d sin(φ) cos(θ)
d cos(φ) cos(θ) = tan(φ). (1.24)

We know that φ ∈ [−π/2, π/2] since x is positive; thus, we obtain φ =
arctan(4/3) radians when solving for φ. Lastly, we note that

z√
x2 + y2

= d sin(θ)

d
√

cos2(φ) cos2(θ) + sin2(φ) cos2(θ)
= tan(θ), (1.25)

where we have utilized that cos(θ) ≥ 0 for θ ∈ [−π/2, π/2]. By solving for θ, we
obtain θ = arctan(5/5) = arctan(1) = π/4 radians. In summary, the spherical
coordinates of the given point are (d, φ, θ) = (5

√
2, arctan(4/3), π/4).

When transmitting with power P , the signal intensity at the point (d, φ, θ)
is determined by the general power flux density function U(P, d, φ, θ) mea-
sured in W/m2. We will only consider the far-field (i.e., d larger than the
Fraunhofer distance) because then the angular distribution over the sphere
is approximately constant when we change the radius. This is not the case
in the near-field for various electromagnetic reasons. In the far-field, we can



1.1. Transmitted and Received Signal Power 19

x

y

z

φ

θ

d

(d, φ, θ)

Figure 1.9: The directivity gain of an antenna is described using spherical coordinates. A
location on the surface area is determined by the distance d, the azimuth angle φ ∈ [−π, π),
and the elevation angle θ ∈ [−π/2, π/2].

decompose the power flux density function as

U(P, d, φ, θ) = P

4πd2︸ ︷︷ ︸
Average power density

· G(φ, θ)︸ ︷︷ ︸
Antenna gain

, (1.26)

where the first term is the average power flux density at the given distance d in
W/m2 (i.e., the transmit power divided by the surface area) and G(φ, θ) is the
antenna gain function. The antenna gain function describes how the radiated
power is distributed over azimuth angles φ ∈ [−π, π) and elevation angles
θ ∈ [−π/2, π/2]. A lossless isotropic antenna is represented by G(φ, θ) = 1 for
all angles, often reported using the decibel scale as 0 dBi, where dBi stands
for decibels-isotropic (i.e., the gain relative to an isotropic antenna).

Any practical antenna has a varying antenna gain function larger than
0 dBi for some angles and smaller for others. However, the average antenna
gain is identical to an isotropic antenna. This implies that all antenna gain
functions for lossless antennas must satisfy the condition9

1
4π

∫ π

−π

∫ π/2

−π/2
G(φ, θ) cos(θ)∂θ∂φ = 1, (1.27)

where 4π is the surface area of the unit sphere and cos(θ)∂θ∂φ is the area of
a surface element in the direction (φ, θ) that appears when integrating over a
sphere using spherical coordinates. The cosine-term represents the fact that
there is less area near the north/south poles than along the equator.

9Power losses appear in practical antennas, in which case the left-hand side of (1.27) becomes
smaller than one.
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Example 1.9. To examine how the formula (1.27) is derived, we consider an
isotropic lossless antenna in the origin that transmits with power P . What is
the total power reaching the surface of a sphere with radius d?

The power flux density function is U(P, d, φ, θ) = P
4πd2 with an isotropic

lossless transmit antenna. By integrating over the surface area of a sphere
with radius d, we obtain the total power as

Ptot(d) =
∫∫∫
√
x2+y2+z2=d

P

4π(x2 + y2 + z2)∂x∂y∂z. (1.28)

It is convenient first to transform the Cartesian coordinates into spherical
coordinates to evaluate the integral. The integral in (1.28) then becomes

Ptot(d) = P

4π

∫ π

−π

∫ π/2

−π/2

|J(d, φ, θ)|
d2 ∂θ∂φ, (1.29)

where there is no integral with respect to the distance since all points on the
sphere have the same distance d. The Jacobian determinant J(d, φ, θ) appears
due to the change of variables and is computed based on (1.22) as

J(d, φ, θ) = det



∂d cos(φ) cos(θ)

∂d
∂d cos(φ) cos(θ)

∂φ
∂d cos(φ) cos(θ)

∂θ
∂d sin(φ) cos(θ)

∂d
∂d sin(φ) cos(θ)

∂φ
∂d sin(φ) cos(θ)

∂θ
∂d sin(θ)

∂d
∂d sin(θ)
∂φ

∂d sin(θ)
∂θ




= det

cos(φ) cos(θ) −d sin(φ) cos(θ) −d cos(φ) sin(θ)
sin(φ) cos(θ) d cos(φ) cos(θ) −d sin(φ) sin(θ)

sin(θ) 0 d cos(θ)


= d2

(
cos2(φ) cos3(θ) + sin2(φ) cos3(θ)︸ ︷︷ ︸

cos3(θ)

+ sin2(φ) cos(θ) sin2(θ) + cos2(φ) cos(θ) sin2(θ)︸ ︷︷ ︸
cos(θ) sin2(θ)

)
= d2 cos(θ). (1.30)

After inserting J(d, φ, θ) into the integral in (1.29), we obtain

Ptot(d) = P

4π

∫ π

−π

∫ π/2

−π/2
cos(θ)∂θ∂φ = P. (1.31)

This is equivalent to (1.27) for G(φ, θ) = 1, which is the gain of a lossless
isotropic antenna. If we consider an arbitrary lossless antenna, its gain function
G(φ, θ) also appears inside the integral, and we thereby obtain the general
condition in (1.27) for preserving the total transmit power.
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The antenna gain function G(φ, θ) provides a complete description of the
angular variations in antenna gain. However, if the antenna is rotated perfectly
towards the receiver, it is sufficient to know the maximum gain

Gmax = max
φ,θ

G(φ, θ). (1.32)

This value is typically used when categorizing and comparing practical an-
tennas. It is particularly common to represent the maximum gain in decibel
scale as

10 log10 (Gmax) = max
φ,θ

10 log10 (G(φ, θ)) [dBi]. (1.33)

A simple example of a non-isotropic antenna gain function is

G(φ, θ) =
{

4 cos(φ) cos(θ), if φ ∈ [−π/2, π/2], θ ∈ [−π/2, π/2],
0, elsewhere.

(1.34)

This antenna concentrates the radiated power in the direction φ = θ = 0
where the maximum antenna gain is Gmax = 4, which is usually reported
as 10 log10(4) ≈ 6 dBi. When varying the azimuth angle, the gain reduces as
cos(φ) and reaches zero at φ = ±π/2. The gain value is zero for φ ∈ [−π,−π/2]
and φ ∈ [π/2, π], which effectively means that the antenna only radiates
into one half-space. The gain variations are similar in the elevation domain.
In practice, this behavior can be achieved by a microstrip patch antenna,
consisting of a metal patch printed on a substrate that acts as a reflecting
ground plane. The maximum gain is then obtained perpendicularly to the
patch while there is (ideally) no signal radiated at the backside. Patch antennas
are extensively used in both mobile phones and base stations, thanks to their
compact size and weight. Exact antenna gain models can be found in textbooks
on antenna theory [8, Ch. 14], but (1.34) serves as a basic abstraction that
we call the cosine antenna.

Example 1.10. Verify that the cosine antenna satisfies the lossless antenna
condition in (1.27).

Direct computation based on the antenna gain expression in (1.34) yields

1
4π

∫ π

−π

∫ π/2

−π/2
G(φ, θ) cos(θ)∂θ∂φ = 1

4π

∫ π/2

−π/2

∫ π/2

−π/2
4 cos(φ) cos2(θ)∂θ∂φ

= 1
π

∫ π/2

−π/2
cos(φ)∂φ︸ ︷︷ ︸
=2

∫ π/2

−π/2
cos2(θ)∂θ︸ ︷︷ ︸

=π/2

= 1. (1.35)

The antenna gain function of the cosine antenna is illustrated in Fig-
ure 1.10, where its values are plotted over the surface of a unit sphere. The
pattern illustrates how the radiated power is distributed over different angular



22 Introduction and Motivation

[dBi]

Figure 1.10: The antenna gain of the cosine antenna in (1.34) is plotted over the unit sphere.
The pattern shows how the radiated power is distributed unequally over the angular directions,
with the maximum appearing at (x, y, z) = (1, 0, 0). The color shows the antenna gain in the
decibel scale compared to an isotropic antenna.

directions. The power is concentrated over half of the sphere and maximized
at its center. The maximum value is 6 dBi, while the average value is 0 dBi,
as is the case for all lossless antennas.

Figure 1.11 compares the antenna gain functions of a cosine antenna and
an isotropic antenna for θ = 0 and different values of the azimuth angle φ.
The isotropic antenna has a constant gain value of 0 dBi, while the gain of the
cosine antenna ranges from 6 dBi to zero (−∞ dBi). The total transmit power
is the same for both types of antennas, but the cosine antenna concentrates
the radiated power in specific directions. This means that a receiver located
in that direction will receive a stronger signal than when using an isotropic
antenna. Receivers in other directions will receive less power, and those at the
backside of the antenna receive nothing. Hence, depending on the receiver’s
location, the antenna gain variations can be either a benefit or a drawback.
Receivers located in directions where the curved solid curve in Figure 1.11
is above the dashed line will experience signal amplification compared to an
isotropic transmit antenna.

Antennas are reciprocal by nature, which means that the same antenna
gain is achieved when transmitting to a receiver in the direction (φ, θ) and
when receiving a signal from that direction. Recall that the antenna gain
describes how much stronger/weaker the signal power is compared to the
reference case with an isotropic antenna. We stated in (1.3) that the effective
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Figure 1.11: The antenna gains observed in different azimuth angles φ ∈ [−π, π) for the
elevation angle θ = 0, when using the cosine antenna from (1.34) or an isotropic antenna.

area of a receiving isotropic antenna is λ2/(4π). Hence, if the antenna gain
function is G(φ, θ) for another type of antenna, its effective area will be

A(φ, θ) = λ2

4πG(φ, θ) (1.36)

when receiving a signal from direction (φ, θ).
To emphasize the relation between the antenna gain and effective area, we

return to Figure 1.3, which considered a receive antenna with the physical area
A that receives a signal from the azimuth angle φ. We previously concluded
that its effective area is A cos(φ) for φ ∈ [−π/2, π/2], but we implicitly
assumed the elevation angle was zero. When considering both angles, the
effective area becomes A(φ, θ) = A cos(φ) cos(θ) by the same arguments. If
we further assume (for the sake of argument) that the physical antenna area
is A = 4Aiso = λ2

π , then the relation in (1.36) between the effective area and
antenna gain becomes

λ2

π
cos(φ) cos(θ) = λ2

4πG(φ, θ) ⇒ G(φ, θ) = 4 cos(φ) cos(θ) (1.37)

for φ ∈ [−π/2, π/2] and θ ∈ [−π/2, π/2]. This result coincides with the cosine
antenna in (1.34). Hence, we have found a way to tie the concepts together:
A patch antenna with a physical area that is 4 times larger than Aiso has a 4
times higher maximum gain. The gain function varies according to a cosine
pattern since the patch looks smaller from non-perpendicular viewing angles.



24 Introduction and Motivation

Example 1.11. There are many other cosine-type radiation patterns in the
field of antenna design than the one defined in (1.34). As an example, consider
the gain function

G(φ, θ) =
{
c cos(3φ) cos(θ), if φ ∈ [−π/6, π/6], θ ∈ [−π/2, π/2],
0, elsewhere.

(1.38)

If this antenna is known to be lossless, what should be the value of the scalar
c > 0? What is the maximum antenna gain?

The left-hand side of the lossless antenna condition in (1.27) becomes

1
4π

∫ π

−π

∫ π/2

−π/2
G(φ, θ) cos(θ)∂θ∂φ = c

4π

∫ π/6

−π/6

∫ π/2

−π/2
cos(3φ) cos2(θ)∂θ∂φ

= c

4π

∫ π/6

−π/6
cos(3φ)∂φ︸ ︷︷ ︸
=2/3

∫ π/2

−π/2
cos2(θ)∂θ︸ ︷︷ ︸

=π/2

= c

12 . (1.39)

We notice that this value only becomes 1 if c = 12. The maximum antenna
gain is achieved in the direction φ = θ = 0 and is Gmax = c = 12.

1.1.4 Revisiting the Signal-to-Noise Ratio

We will now revisit the SNR calculation and consider arbitrary antenna gains.
The SNR was defined in (1.13) as SNR = Pβ

N0B
and depends on the channel

gain β. The channel gain in free-space propagation with isotropic transmit
and receive antennas was computed in (1.7) as λ2

(4πd)2 , where d is the distance.
We can generalize this expression for arbitrary antennas as [9]

β = λ2

(4πd)2Gt(φt, θt)Gr(φr, θr), (1.40)

where Gt(φ, θ) is the antenna gain function of the transmitter and Gr(φ, θ)
is the antenna gain function of the receiver. These functions are defined for
an arbitrary azimuth angle φ and elevation angle θ, but the functions are
evaluated in (1.40) for the angles (φt, θt) at the transmitter that lead to the
receiver and the angles (φr, θr) at the receiver that lead to the transmitter.
Figure 1.12 illustrates this setup and, particularly, makes the point that the
transmitter and receiver measure the angles based on their local coordinate
systems. The antenna gain functions can then have their peak values at
φ = θ = 0, irrespective of how the transmitter and receiver are rotated with
respect to each other.

It might seem strange to call (1.40) the channel gain when it also contains
the antenna gains at the transmitter and receiver. However, this is unavoidable
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Figure 1.12: The transmitter sees the receiver in the angular direction (φt, θt), measured
using the transmitter’s local coordinate system. The receiver sees the transmitter in the angular
direction (φr, θr), measured using the receiver’s local coordinate system. These angles can be
used when evaluating the antenna gains in (1.40).

since the effective area of the receiver always determines the fraction of the
transmit power that is received, even when the transmitter is isotropic. One
must always make assumptions regarding the antenna gains to compute a
channel gain. Hence, the channel starts at the input to the transmit antenna
and ends at the output from the receive antenna.

The channel gain in (1.40) is an increasing function of the antenna gains
Gt(φt, θt) and Gr(φr, θr), which gives the impression that it is preferable
to have strongly directive antennas in wireless communications. This is a
valid conclusion for fixed wireless links where the person that deploys the
transmitter and receiver can rotate the antennas so that the maximum gains
are achieved precisely at the angles (φt, θt) and (φr, θr). This is the case for
links between a geostationary satellite and receivers on the ground (e.g., using
parabolic dish antennas to receive television broadcasts) or for fixed wireless
broadband links where the customer has a fixed receive antenna at the outside
of its house pointing towards the nearest base station.

The situation is more complicated in mobile communications, as illustrated
in Figure 1.13, where a rooftop-mounted base station serves Receiver 1 and
Receiver 2. The receivers are mobile phones, and it is not reasonable to require
the users to hold their phones in precisely the right directions all the time.
Hence, nearly isotropic antennas are utilized in mobile devices to ensure that
almost the same SNR is achieved irrespective of how the device is rotated. The
transmitter in Figure 1.13 emits a signal with an antenna gain function that
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Transmitter

Receiver 1
Receiver 2

Figure 1.13: An example of a mobile communication scenario where the transmitting base
station has a directive antenna. The maximum antenna gain is achieved in the direction leading
to Receiver 1. The path leading to Receiver 2 experiences a weak antenna gain.

is illustrated to resemble that of a cosine antenna. Receiver 1 happens to be
located in the direction with the maximum antenna gain. In contrast, Receiver
2 is located behind a building and can only be reached if the wireless signals
are reflected off another building, as indicated in the figure. This receiver will
experience a low antenna gain since the transmitter’s gain function is low
in the angular direction leading to the receiver. This example pinpoints the
practical tradeoff between having a large maximum antenna gain and having a
wide coverage area (wide enough to cover all prospective users) when selecting
the antenna to be used at a base station.

Ideally, we would like to rotate the antenna gain function depending on
the receiver’s location, so we can always provide the maximum antenna gain.
This could be achieved by mechanically rotating the base station antenna, but
it is quite impractical since receivers can move rapidly. The preferred practical
solution is to use multiple antennas to rotate the directivity of transmitted
signals using the theory developed in later chapters of this book.

The free-space channel gain in (1.40) can also be expressed in terms of
the effective areas At(φt, θt) and Ar(φr, θr). By using the relation stated in
(1.36), an equivalent version of (1.40) is

β = At(φt, θt)Ar(φr, θr)
(dλ)2 . (1.41)

The impact of the antenna design and wavelength on the free-space channel
gain can be understood by inspecting (1.40) and (1.41). If the antenna gains
in (1.40) are constant as we reduce the wavelength λ (i.e., increase the carrier
frequency), then the channel gain β will reduce proportionally to λ2. This
reduces the SNR because the effective receive antenna area is reduced, so the
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receiver captures less power. This is manifested by the relationship between
area and gain in (1.36). On the other hand, if the effective areas in (1.41) are
constant as we reduce the wavelength, then the channel gain β will instead
increase proportionally to λ−2 when λ is reduced. This results in an SNR
improvement because the antenna gains are increased; that is, the antennas
become more directive. This is beneficial if the transmit and receive antennas
are aligned to deliver the maximum antenna gains to the communication
system. In other words, the high-band can provide better channel conditions
in free-space propagation than the low-band, if we compare two systems with
equal-sized antennas that are perfectly aligned. This is one of the features
that fixed wireless links rely on (e.g., communication with geostationary
satellites). Using the high-band spectrum for mobile communications, where
the physical directions of the devices’ antennas change over time, requires
that the directivity can change accordingly to keep them directed toward the
base station. We will explore how this is achieved using multiple antennas.

Example 1.12. How does the SNR in free-space propagation depend on the
wavelength λ if the base station has a fixed wavelength-independent effective
antenna area At(φt, θt) while the user device has an isotropic antenna?

The effective area of the isotropic receive antenna is Ar(φr, θr) = λ2

4π . We
can compute the SNR using (1.41) as

SNR = Pβ

N0B
= P

N0B

At(φt, θt)Ar(φr, θr)
(dλ)2 = P

N0B

At(φt, θt)
4πd2 . (1.42)

This expression is independent of λ since the two wavelength-dependent effects
are canceling out. The area of the receiver is proportional to λ2, while the
gain of the transmit antenna is obtained from (1.36) as Gt(φ, θ) = 4π

λ2At(φ, θ),
which is inversely proportional to λ2 when the area is fixed. Hence, if the
wavelength shrinks, the receiver becomes physically smaller but captures the
same signal power since the transmit antenna becomes more directive. The
same principle applies when the device transmits, but then the radiated signal
is isotropic and induces a frequency-independent power flux density on the
fixed-area receive antenna.

A general parametric channel gain model was defined in (1.9), as a function
of the pathloss exponent α and the channel gain Υ at a 1 m reference distance.
The parameter values are normally stated for isotropic antennas but can be
used along with other antennas by multiplying with the antenna gains:

β = Υ
(1 m

d

)α
Gt(φt, θt)Gr(φr, θr). (1.43)
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1.2 Three Main Benefits of Having Multiple Antennas

This book will cover how using multiple antennas can improve the operation
of wireless communication systems. We have already provided some hints of
what the benefits could be in the context of mobile communications, where
the location and rotation of the transmitter/receiver change with time. In this
section, we will describe the three main categories of benefits that multiple
antenna communication systems have over conventional systems with a single
antenna at the transmitter and receiver. These benefits have been given several
different names over the years. In this book, we call them:

1. Beamforming gain;

2. Spatial multiplexing;

3. Spatial diversity.

These benefits will be introduced below, including a short historical expose,
and then covered in further detail in later chapters.

1.2.1 Beamforming Gain

The wireless telegraph was invented in the 1890s as the first system for
wireless communications. The technology used Morse code to transfer words
encoded as a sequence of “dots” and “dashes”, represented by transmitting
sinusoidal signal pulses of two different durations. The wireless telegraph
played an essential role during the First World War since it allowed for direct
communication between continents [15]. The distance from North America to
Europe is more than 5000 km; thus, if the channel gain is computed as in (1.7),
it would be much smaller than the values shown in Figure 1.4. To reach over
the oceans, the radio stations had to broadcast their signals with very high
transmit power (tens of kilowatts). Therefore, researchers started to look for
ways to achieve directive transmission and reception to reduce the transmit
power or to reach even further distances with the same power. This was
where multiple antenna communications appeared as a solution (in addition
to using directive antennas). Guglielmo Marconi made the first transatlantic
transmission in 1901 using two tall antenna poles in the United Kingdom
[16]. Karl Ferdinand Braun did an experiment using three antennas in 1905,
which he described publicly when he and Marconi shared the Nobel Prize in
Physics in 1909 [17]. Ernst F. W. Alexanderson filed a patent application in
1917 describing the first practical implementation of radio communications
[18]. The patent did not use the term beamforming but outlined all the same
benefits as will be described in this section. The implementation was analog
then, while current systems are digitally controlled. Some early field trials for
mobile communications in the 1990s are described in [19], [20].
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To exemplify the basic phenomenon that was discovered and utilized in the
early 1900s, we consider the transmission of a time-limited sinusoidal pulse

p(t) =
{√

2 sin(2πft), if t ∈ [0, T ],
0, otherwise,

(1.44)

where f is the frequency and the time duration is T = l/f , for some integer
l > 0. This means the pulse consists of l full periods of the sine wave. The
power of this pulse is

1
T

∫ T

0
p2(t)∂t = 2

T

∫ T

0
sin2(2πft)∂t

= 2
T

(∫ T

0

1
2∂t−

∫ T

0

cos(4πft)
2 ∂t

)
= 1, (1.45)

where we utilize the trigonometric identity sin2(x) = (1 − cos(2x))/2 and
notice that the last integral is zero since we integrate over 2l periods.

The Morse code is transmitted using on-off keying, which means we switch
between transmitting the sinusoidal pulse Ap(t) with an amplitude A > 0 and
being silent. If we transmit the pulse with amplitude A, then the transmitted
signal power is computed as

1
T

∫ T

0
(Ap(t))2

∂t = A2 1
T

∫ T

0
p2(t)∂t = A2. (1.46)

We notice that the signal power is proportional to the square of the pulse’s
amplitude. The received signal at some destination will be

√
βAp(t), where

the channel gain β represents the signal propagation loss and can, for example,
be computed as described in (1.7) for free-space propagation with isotropic
antennas or in (1.43) for arbitrary antennas and propagation modeling. In
any case, the received signal power is βA2, which is also proportional to A2.

Suppose the received signal is too weak for the receiver to decode the
Morse code accurately. If we want to increase the received signal power by
100 times (i.e., 20 dB), we can increase the signal amplitude by a factor of 10,
from A to 10A. The transmitted signal power will then instead be

1
T

∫ T

0
(10Ap(t))2

∂t = (10A)2 1
T

∫ T

0
p2(t)∂t = 100A2. (1.47)

This means we need to spend 100 times more transmit power to receive the
signal

√
β10Ap(t) that contains 100 times more power.

An alternative solution is to generate the original signal Ap(t) at 10
different transmit antennas. Each signal has a power of A2 so this approach
requires a total transmit power of

10 1
T

∫ T

0
(Ap(t))2

∂t = 10A2. (1.48)
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We can then radiate these signals simultaneously from the multiple antennas
and let them add/superimpose constructively over the air. In this way, the
received signal will also be

√
β10Ap(t), but we only need to spend 10 times

more power, instead of 100 times more as in the single-antenna case. In other
words, if the destination requires a specific received signal power level to
decode the information successfully, we can satisfy that requirement using
only 1/10 of the power when using 10 transmit antennas instead of one.

In general, if we compare single-antenna transmission with transmission
from M antennas, we can reduce the total transmit power by a factor of 1/M
while keeping the received signal power constant. How is this possible? It
might seem that additional signal power is “magically” created when the M
transmitted signals are combined in the air. The simple yet physically accurate
explanation is that the transmission becomes spatially directed toward the
receiver. In other words, when observed at a distant receiver, the combination
of M transmitted signals looks like the signal emitted from a single “virtual”
antenna with high directivity; that is, a virtual antenna having an M times
higher antenna gain than the individual physical antennas had.

Figure 1.14 shows an array with M = 4 isotropic antennas deployed on a
line. The adjacent antennas are separated by half-a-wavelength: λ/2 = c/(2f).
If all the antennas transmit the signal Ap(t) simultaneously, then each of the
emitted signal components will radiate as in the single-antenna case described
earlier. A superposition of the M signal components can be observed at every
point in space. The components have, generally, traveled different distances
to reach the considered point and, thus, are time-delayed differently.

Let us consider points many wavelengths away from the array (i.e., in its
far-field) so that the propagation distance is much larger than the distance
between the individual antennas. For any such point on the horizontal axis
in Figure 1.14, the distances to each antenna will be roughly the same. This
can be understood by considering the triangle in Figure 1.15, which has
corners at two different antennas and the considered receiver location along
the horizontal axis. Hence, the M signal components will be approximately
time-synchronized, and the received signal becomes M

√
βAp(t). This is the

constructive interference behavior that we are looking for. However, for any
point on the vertical axis in Figure 1.14, the distances to the antennas differ by
integer multiples of λ/2. This distance difference remains even if the considered
point of the receiver is far away. The corresponding time delay difference
between two adjacent antennas is an integer multiple of τ = λ

2c = 1
2f , which

corresponds to a half period of the sine wave:
sin (2πf(t− τ)) = sin (2πft− π) = − sin (2πft) . (1.49)

Hence, the signals emitted from two adjacent antennas cancel out along the
vertical direction, called destructive interference. The horizontal and vertical
axes represent the extreme cases, while partially constructive or destructive
interference can be observed elsewhere, as indicated in Figure 1.14.
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Figure 1.14: When transmitting the same signal from all the antennas in a one-dimensional
array, the signal components will propagate time-synchronously in the direction perpendicular
to the array, leading to constructive interference in the horizontal direction in this figure. On the
other hand, the signals will propagate non-synchronously in other directions leading to partially
constructive or fully destructive interference.
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Figure 1.15: If the distance λ/2 between the two transmit antennas is much smaller than the
propagation distances to the receive antenna, then we have approximately the same distance d
from both transmit antennas. If the antennas transmit the same signal, constructive interference
will occur at the receiver.
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Example 1.13. An array with M = 2 isotropic antennas is located at the
Cartesian coordinates (0,+λ/4, 0) and (0,−λ/4, 0), where λ is the wavelength.
The sinusoidal pulse p(t) in (1.44) is transmitted from both antennas with
the amplitude A/

√
2, so the total transmit power is A2. What is the received

power at a point with spherical coordinates (d, φ, 0), assuming that d≫ λ and
the channel gain β is the same from both transmit antennas to the receiver?

We let d1 and d2 denote the distances to the receiver from the antennas
at (0,+λ/4, 0) and (0,−λ/4, 0), respectively. The received signal becomes√

βA sin
(2πc
λ

(
t− d1

c

))
+
√
βA sin

(2πc
λ

(
t− d2

c

))
. (1.50)

By using the trigonometric identity sin(a) + sin(b) = 2 sin
(
a+b

2
)

cos
(
a−b

2
)
,

(1.50) can be expressed as

2
√
βA sin

(2πc
λ
t− π

λ
(d1 + d2)

)
cos
(π
λ

(d2 − d1)
)
. (1.51)

To determine its power, we need d1 and d2. The Cartesian coordinates of the
receiver is (d cos(φ), d sin(φ), 0). Since d≫ λ, d1 can be approximated as

d1 =

√
(d cos(φ)− 0)2 +

(
d sin(φ)− λ

4

)2
=

√
d2 − dλ sin(φ)

2 + λ2

42

= d

√
1− λ sin(φ)

2d + λ2

16d2 ≈ d−
λ sin(φ)

4 + λ2

32d ≈ d−
λ sin(φ)

4 (1.52)

by using that
√

1 + x ≈ 1+ x
2 for 0 ≤ x≪ 1. Similarly, d2 can be approximated

as d2 ≈ d+ λ sin(φ)
4 . We can now approximate (1.51) as

√
2βA sin

(2πc
λ

(
t− d

c

))
︸ ︷︷ ︸

Received signal at distance d
with a single antenna

√
2 cos

(π
2 sin(φ)

)
︸ ︷︷ ︸

Angle-dependent multiplicative factor

, (1.53)

which is the product of the signal received with a single transmit antenna
and an angle-dependent factor that describes the constructive/destructive
interference. By integrating the square of (1.53) over one signal period and
utilizing that

∫ 1
0 2 sin2(2πt)∂t = 1, we obtain the received signal power

P (φ) = 2 cos2
(π

2 sin(φ)
)
βA2. (1.54)

The largest power 2βA2 is achieved if φ = 0 or φ = π, as in Figure 1.14, which
is twice the received power compared to a single antenna using the same total
power. Destructive interference occurs when φ = ±π/2 since cos(±π/2) = 0,
while half of the maximum power is received when φ = ±π/6.
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[dBm]

Figure 1.16: The received signal power in different directions and distances when transmitting
1 W from an isotropic antenna. The color shows the received signal power in dBm when using
(1.7) to compute the channel gain in free-space propagation with f = 3 GHz as the frequency.

We will now illustrate the constructive, partially constructive, and destruc-
tive interference behavior when using multiple antennas and compare it to the
single-antenna transmission case. Figure 1.16 shows how the signal power from
a single isotropic transmit antenna spreads out over an area of 200× 200 m.
The transmitter is located in the origin and transmits a signal with 1 W of
power. The color shows the received signal power in dBm, and we use the
free-space model in (1.7) to compute the channel gain β at different distances.
We notice that the signal power spreads out identically in all directions and
decays with distance. If we rotate the figure around the origin, the pattern
remains the same, as expected when using an isotropic transmit antenna.

In contrast, a transmitter with an array of M = 10 isotropic antennas
is considered in Figure 1.17. The antennas are deployed along the vertical
axis with λ/2 antenna spacing, as illustrated in Figure 1.14, and are centered
around the origin. Exactly the same signal is simultaneously transmitted from
all the antennas. Figure 1.17(a) considers the case when the total transmit
power is 0.1 W (i.e., scaled down as 1/M), which leads to 0.01 W per antenna.
Figure 1.17(b) considers the case when the total transmit power is 1 W (i.e.,
the same as in the single-antenna case); thus, the power per antenna is 0.1 W.
Although each antenna radiates its signal isotropically, the figure shows that
the combined effect is a directive signal in the two horizontal directions. Hence,
we create constructive and destructive interference patterns aligned with the
previous discussion related to Figure 1.14.

The constructive interference pattern in Figure 1.17 takes the shape of
a beam (also known as a lobe), and the antenna array is therefore said to
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[dBm]

(a) M = 10 transmit antennas with a total transmit power of 0.1 W (0.01 W per antenna).

[dBm]

(b) M = 10 transmit antennas with a total transmit power of 1 W (0.1 W per antenna).

Figure 1.17: The received signal power in different directions and at different distances, when
transmitting the same signal from M = 10 isotropic antennas located in the origin. The color
shows the received signal power in dBm when using (1.7) to compute the channel gain in
free-space propagation with f = 3 GHz as the signal frequency.
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perform beamforming. There is a strong main beam along the horizontal axis,
but also several side-beams pointing in other directions, usually referred to as
side-lobes. By comparing Figure 1.16 and Figure 1.17(a), we can notice that a
receiver located in the direction of the beam (i.e., along the horizontal axis)
will receive the same power in both cases. However, the transmit power has
been reduced with a factor 1/M in Figure 1.17(a) so we can deliver the same
wireless communication service but save power. This is called an M -times
beamforming gain or array gain. Receivers in other directions will receive less
power when using multiple antennas because there is no magical appearance
of signal power but only a power redistribution from some angular directions
to other directions. In particular, no signal power is observed along the vertical
axis. Hence, beamforming can be both a blessing and a curse—it is helpful if
the main beam points in the direction preferred by the receiver and can be
detrimental otherwise. This issue resembles that of using directive antennas
(described earlier), but there is a crucial difference: an individual antenna has
a fixed antenna gain function, while the direction of the beam from an antenna
array can be controlled when using beamforming. The ability to change the
direction is often seen as an inherent part of the beamforming concept but it
has also been called adaptive beamforming. Various methods to point beams
toward the desired receivers are developed later in this book.

In Figure 1.17(b), the total transmit power is the same as in the single-
antenna case. The received signal power for a user located along the horizontal
axis is then M times stronger than in the single-antenna case. Hence, the
beamforming gain provides a stronger received signal for users that the beam
is pointed toward. There are many directions outside the main beam where
less power is received than in the single-antenna case.

The fact that beamforming distributes the transmit power unequally
between different angular directions is illustrated in Figure 1.18, where a
sphere is centered around the array. The color illustrates the received power
level at different points on the sphere relative to the maximum value. The
x-axis corresponds to the horizontal axis in the previous figures, the y-axis
corresponds to the vertical axis, while the z-axis was not visible before. As M
increases, the black stripe where the received signal power is high will contain
a larger and larger fraction of the transmit power but also become narrower. If
one would integrate over the sphere to sum up all the power, it would always
be equal to the total transmit power irrespective of the value of M .

In summary, the beamforming gain can be utilized to achieve an M times
higher SNR than in the single-antenna case using the same transmit power,
or it can be used to achieve the same SNR using M times less transmit power.
Although the example above considers transmission from M antennas to a
single-antenna receiver, the same gains can be achieved when transmitting
with one antenna to M receive antennas. We will study this in detail later in
this book. The beamforming distributes the transmit power unequally over
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[dB]

Figure 1.18: The normalized received power on different parts of a sphere centered around an
array with M = 10 isotropic antennas, in the same setup as in Figure 1.17. The color shows
the normalized received power in dB-scale where the maximum value is 0 dB. All distances are
normalized.

different angular directions, similar to a single directive antenna (compare
Figure 1.10 and Figure 1.18) but with the vital difference that the directivity
of an antenna array can be changed, as described next.

1.2.2 Spatial Multiplexing

Many wireless systems have more than one user and must multiplex their
communication services on the shared wireless channel. Traditionally, the
users are multiplexed by assigning non-overlapping time-frequency resources;
for example, different time intervals and/or frequency bands. The reason for
this system design is to avoid interference. If two signals are radiated with
equal power from an isotropic antenna at the same time and frequency, each
signal will propagate isotropically as illustrated in Figure 1.16. At every point
in space, a superposition of the two signals will be observed where the signals
remain equally strong. Each receiver is only interested in one of the two signals.
When measuring the corresponding communication quality, the ratio between
the desired signal’s power and the summation of the interfering signal’s power
plus the noise power is a common performance metric. This is known as the
signal-to-interference-plus-noise ratio (SINR) and is a generalization of the
SNR metric to situations with interference:

SINR = Received signal power
Received interference power + Noise power . (1.55)
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The SINR is always smaller than or equal to the SNR because we obtain
the SNR by removing the interference from the denominator in (1.55). The
interference is problematic when the SINR is much smaller than the SNR
and might severely limit communication performance. For example, when the
signal and interference powers in (1.55) are equally large, the SINR cannot
surpass 1. In contrast, the SNR values exemplified in Figure 1.6 can be many
orders-of-magnitude larger than one (e.g., 30 dB is 1000). This issue cannot be
addressed using a directive transmit antenna since both signals will be radiated
with the same directivity. The following example proves this mathematically.

Example 1.14. Consider an isotropic antenna that transmits to two receivers
with the same channel gain β ∈ (0, 1]. It assigns power P1 ≥ 0 to receiver 1
and power P2 ≥ 0 to receiver 2. Suppose an SINR of 1 (i.e., 0 dB) is needed
for reliable communication. Is it possible to select the powers P1 and P2 so
that the transmitter can communicate to both receivers reliably?

If we let σ2 > 0 denote the noise power, then we can use (1.55) to obtain
the SINR achieved by the first receiver:

SINR1 = P1β

P2β + σ2 = P1

P2 + σ2

β

. (1.56)

Similarly, the SINR achieved by the second receiver is

SINR2 = P2β

P1β + σ2 = P2

P1 + σ2

β

. (1.57)

For jointly reliable communication to the two receivers, both SINR1 and SINR2
must be greater than or equal to 1, which is equivalent to the conditions

P1 ≥ P2 + σ2

β
, (1.58)

P2 ≥ P1 + σ2

β
. (1.59)

Since both inequalities require one power to be strictly larger than the other
one, they cannot be satisfied simultaneously. This happens even if the channel
gain is large, so σ2/β is small. Only in the hypothetical noise-free case of
σ2/β = 0 can reliable communication be guaranteed for both receivers. Even
in that case, the common SINR cannot surpass 1. This is why single-antenna
systems avoid interference by letting the users take turns communicating.

Using multiple antennas fundamentally changes the situation since each
radiated signal can have a unique spatial directivity. Recall that Figure 1.17
illustrated a situation where a signal is focused along the horizontal axis,
so the signal vanishes entirely along the vertical axis. Hence, a device that
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is located in that direction will not observe any interference at all. With
this phenomenon in mind, the concept of spatial multiplexing, also known
as space-division multiple access (SDMA), was conceived in the late 1980s
and early 1990s [21]–[24]. The key idea was to equip the base stations in
cellular networks with multiple antennas and exploit beamforming to suppress
interference between the users, thereby enabling efficient communications
where multiple users are using the same time and frequency resource. The
SDMA concept had been considered for satellite systems decades earlier [25].

Suppose p(t) is the signal transmitted to the receiver. When all the transmit
antennas emit this signal simultaneously, a particular pattern of constructive
and destructive interference is created, as exemplified in Figure 1.14. Other
patterns can be generated by emitting different signals from the antennas; in
particular, we can transmit a time-shifted copy of p(t), where we adapt the
time-shift to obtain constructive interference in any direction or at any point
of choice. The methodology of adaptive beamforming is to:

1. Measure the propagation time delays τ1, . . . , τM from each of the M
transmit antennas to the intended receiver.

2. Compensate for the time delays by transmitting the signal p(t) earlier
from the more distant antennas in the array: xm(t) = p(t+ τm) is the
signal transmitted from the mth antenna.

3. All the signal components arrive at exactly the same time at the intended
receiver since the received signal is an attenuated version of

x1(t− τ1) + . . .+ xM (t− τM ) = p(t+ τ1 − τ1) + . . .+ p(t+ τM − τM )
= Mp(t). (1.60)

Suppose we want to direct the signal towards a user located on the vertical
axis in Figure 1.14 instead of the horizontal axis. Since the antennas are
separated by a distance λ/2, the geometry implies that each transmitted
signal becomes time-shifted by half a period compared to the signal from the
adjacent antenna. Hence, if we emit a signal already shifted by half a period,
the two effects cancel out at every point on the vertical axis. The result is
shown in Figure 1.19, where the main beams point along the vertical axis,
while the signal components cancel out along the horizontal axis. Apart from
the angular rotation of the beamforming, the general behavior is the same as
before: the beamforming gain from the M antennas can be either utilized to
achieve the same SNR as in the single-antenna case using M times less total
transmit power (as in Figure 1.19(a)) or achieve M times higher SNR (as in
Figure 1.19(b)) using the same total power.

The beamforming gain is once again achieved by redistributing the transmit
power between different angular directions. Figure 1.20 illustrates the received
power level at different points on a sphere centered around the array. The
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[dBm]

(a) M = 10 transmit antennas with a total transmit power of 0.1 W (0.01 W per antenna).

[dBm]

(b) M = 10 transmit antennas with a total transmit power of 1 W (0.1 W per antenna).

Figure 1.19: The received signal power in different directions and at different distances, when
transmitting time-shifted signals from M = 10 isotropic antennas located in the origin. The time
shifts are selected to achieve constructive interference along the vertical axis. The color shows
the received signal power in dBm when using (1.7) to compute the channel gain in free-space
propagation, and f = 3 GHz is the signal frequency.



40 Introduction and Motivation

[dB]

Figure 1.20: The normalized received power on different parts of a sphere centered around an
array with M = 10 isotropic antennas, in the same setup as in Figure 1.19. The color shows the
normalized received power in dB-scale where the maximum value is 0 dB.

power is focused in one direction (the same pattern appears at the back
of the sphere that is not visible). As M increases, the black dot where the
received signal power is high will contain a larger and larger fraction of the
transmit power but also become smaller. Although the pattern on the sphere
differs from Figure 1.18, we can always obtain the original transmit power by
integrating over the sphere, to sum up all the radiated power.

How is this example related to spatial multiplexing? Suppose two users are
located in sufficiently different spatial directions. There will be low interference
if each user is located outside the other user’s main beam. Hence, these users
can be served at the same time and frequency while achieving a decent SINR
(much higher than that in the single-antenna case). Ideally, the data rate
becomes proportional to the number of users. If K users are served by spatial
multiplexing, then K times more data can be transmitted compared to the
single-user case if the beamforming deals with the interference. A basic setup
of spatial multiplexing is illustrated in Figure 1.21.

The term “interference” has two different meanings in this context. The
physical phenomenon of constructive/destructive interference determines how
the signal copies emitted from multiple antennas superimpose over the air to
form a directive beam. Moreover, when a signal reaches an unintended receiver,
it is called interference for different reasons, and the interfering signal’s power
is included in the denominator of the SINR. In the remainder of this book,
we will only use the term in the latter sense.
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Example 1.15. Two isotropic transmit antennas are deployed with a λ/2 sep-
aration and transmit to two single-antenna receivers, located as in Figure 1.21.
The one-bit data intended for receiver k is represented by sk ∈ {−1, 1}, for
k = 1, 2. It is multiplied by the sinusoidal pulse in (1.44) before transmission.
Suppose both receivers need an SINR of 1 (i.e., 0 dB) to reliably decode their
data and that σ2/β = 10−1 W. Is it possible to select the transmit powers P1
and P2 to enable reliable communication to both receivers simultaneously?

Since the distance to receiver 1 is identical for the two transmit antennas,
we can focus a beam towards this receiver by transmitting

√
P1/2s1p(t) from

both antennas, where the power P1 is divided equally. To focus a beam on
receiver 2, the two antennas can transmit

√
P2/2s2p(t) and

√
P2/2s2p

(
t+ λ

2c
)
,

where the delay is selected to compensate for the propagation delay difference
of λ

2c . The received signal at receiver 1 then becomes

y1(t) = 2
√
P1

2 βs1p(t− τ1)︸ ︷︷ ︸
Desired signal

+
√
P2

2 βs2

(
p(t− τ1) + p

(
t+ λ

2c − τ1

))
︸ ︷︷ ︸

Interference from the second signal

+n1(t)︸ ︷︷ ︸
Noise

=
√

2P1βs1p(t− τ1) + n1(t), (1.61)

where τ1 is propagation delay and n1(t) is the noise. The second equality
follows from that p

(
t+ λ

2c − τ1
)

= −p(t− τ1), as stated in (1.49).
The received signal at receiver 2 becomes

y2(t) =
√
P2

2 βs2

(
p(t− τ2,1) + p

(
t+ λ

2c − τ2,2

)
︸ ︷︷ ︸

=2p(t−τ2,1)

)

+
√
P1

2 βs1

(
p(t− τ2,1) + p (t− τ2,2)︸ ︷︷ ︸

=0

)
+ n2(t)︸ ︷︷ ︸

Noise

, (1.62)

where n2(t) is the noise while τ2,1 and τ2,2 are the propagation delays from
the first and second transmit antenna, respectively. The interference vanishes
since τ2,2 = τ2,1 + λ

2c and p(t− τ2,2) = p
(
t− λ

2c − τ2,1
)

= −p(t− τ2,1).
Since there is no interference and s2

1 = s2
2 = 1, the SINRs at receiver 1

and receiver 2 respectively become

SINR1 = 2P1β

σ2 = 20P1, SINR2 = 2P2β

σ2 = 20P2. (1.63)

For jointly reliable communication to the two receivers, we need SINR1 ≥ 1
and SINR2 ≥ 1, which is equivalent to 20P1 ≥ 1 and 20P2 ≥ 1. We notice
that P1 and P2 can be selected independently and that both conditions are
satisfied if the powers are greater than or equal to 50 mW.
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User 2

User 1
Transmitter
with multiple
antennas

Figure 1.21: Schematic illustration of spatial multiplexing where two users are served at the
same time and frequency, but their signals are transmitted using different beamforming. The
true beam patterns are those shown in Figure 1.17 and Figure 1.19.

The previous example substantiated the claim that we can communicate
simultaneously with two receivers thanks to the use of multiple antennas. This
was impossible in the single-antenna case analyzed in Example 1.14. In the
considered geometrical setup, the beamforming towards the receivers simulta-
neously maximizes their SINRs and SNRs since the receivers in Figure 1.21
are located in ideal perpendicular directions. When considering other receiver
locations, the beamforming that maximizes the SINR must balance achieving
a high SNR and avoiding interference. This corresponds to not directing each
main beam exactly onto its intended receiver but fine-tuning the beamforming
to balance between high signal power and low interference. These factors are
analyzed in detail later in this book.

Adaptive beamforming from an antenna array is a much more flexible
solution than using a single directive antenna. When serving a single user,
adaptive beamforming can steer the emitted signal precisely toward the
receiver, wherever it is. This is achieved electrically by time-delaying the signals
emitted by the individual antennas. The same effect could be achieved by
mechanically rotating a directive antenna. However, this is only an alternative
in free-space propagation where there is only a single path and not in the more
complicated non-line-of-sight propagation environments that often occur in
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practice. Moreover, an antenna array can simultaneously spatially multiplex
several users with different beamforming, while a directive antenna can only
transmit with one directivity at a time. The spatial multiplexing feature was
used in a few commercial networks in Southeast Asia in the early 2000s [26,
Example 10.1]. It is nowadays a widely supported feature in WiFi 5 (802.11ac)
[27] and 5G NR [5]. It will likely be a core feature also in future systems.

Spatial multiplexing was conceived when cellular networks were used for
voice communications. Hence, the network performance was characterized by
the number of user connections that could be multiplexed and how good the
network coverage was; the latter is the fraction of all spatial locations for which
the SNR is above the threshold required for the voice quality to be acceptable.
Both criteria could be improved by beamforming and spatial multiplexing of
users. When wireless technology began to transmit data packets primarily, the
data rate (bit/s) achieved by each user also became an important performance
metric. The spatial multiplexing concept was then extended to setups where a
single user device has multiple antennas [28]–[31], in which case one can assign
multiple beams to the same device, and send several parallel layers of data to
increase the data rate. The current wireless standards support a combination
of these single-user and multi-user features [5], [27]: spatial multiplexing of
many user devices and a few layers per device.

1.2.3 Spatial Diversity

In addition to increasing the SNR, using multiple antennas can improve
the reliability of a wireless communication system. Thus far, we have mainly
considered the free-space propagation scenario in Figure 1.1, in which there are
no reflections or scattering: the only signal component that reaches the receiver
is the one that has traveled along the direct path between the transmitter and
receiver. This can be a good channel model for wireless communications in
outer space but not for terrestrial systems where many reflecting/scattering
objects might exist. This leads to so-called multipath propagation.

To exemplify the basic impact of multipath propagation, suppose the
transmitter emits a pure sinusoidal signal x(t) = sin(2πft), where f is the
frequency. We consider the setup in Figure 1.22, where the signal reaches the
receive antenna via two paths: the direct path has a distance d1, and the
reflected path has a distance d2. Since electromagnetic waves travel at the
speed of light c, the two distances correspond to the propagation time delays

τi = di
c

= di
λf

for i = 1, 2, (1.64)

where λ = c/f is the wavelength. For the sake of argument, we disregard that
the two paths will have (slightly) different channel gains and omit the channel
gain parameters in this example to simplify the notation. Disregarding the
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Direct path, distance d1

Reflected path,
distance d2

Transmit antenna Receive antenna

Figure 1.22: A basic multipath channel with a direct and reflected path.

additive noise, the received signal y(t) can be expressed as

y(t) = x(t− τ1) + x(t− τ2) = sin (2πf(t− τ1)) + sin (2πf(t− τ2)) , (1.65)

where each term is called a multipath component. Depending on the relationship
between the time delays τ1, τ2, the two multipath components in (1.65) can
either reinforce or cancel each other. Using a trigonometric identity10 we can
rewrite (1.65) as

y(t) = 2 cos (πf(τ1 − τ2))︸ ︷︷ ︸
Amplitude

sin
(

2πf
(
t− τ1 + τ2

2

))
︸ ︷︷ ︸

Delayed version of the signal

, (1.66)

where 2 cos (πf(τ1 − τ2)) is the constant amplitude of the received signal and
sin(2πf(t− τ1+τ2

2 )) = x(t− τ1+τ2
2 ) is a version of the transmitted signal with

the average time delay. The constant amplitude can be rewritten as

2 cos (πf(τ1 − τ2)) = 2 cos
(
πf

(
d1

λf
− d2

λf

))
= 2 cos

(
π
d1 − d2

λ

)
(1.67)

by utilizing (1.64). We notice that this amplitude has a sign and can take any
value between −2 and +2 depending on the argument of the cosine function.
By comparing this amplitude with the unit amplitude achieved with only the
direct path, we notice that multipath propagation can be either a blessing or
a curse. In particular, if (d1 − d2)/λ is an integer, then (1.67) becomes ±2,
and we benefit from having two paths by getting twice the amplitude. This
happens because the signals received over the two paths have identical phases.
On the other hand, (1.67) is zero when d1 and d2 differ by λ/2 (± any integer
number of wavelengths), because then the signals received over the two paths
have opposite phases and their multipath components cancel out. When this
happens (exactly or approximately), the channel is said to be in a deep fade.

This phenomenon is illustrated in Figure 1.23, where the signless amplitude
2
∣∣∣cos

(
π d1−d2

λ

)∣∣∣ is shown. The key message is that a small change in the
distance difference d1−d2 can make the amplitude of the received signal either

10We use the fact that sin(ϕ) + sin(ψ) = 2 cos
(
ϕ−ψ

2

)
sin
(
ϕ+ψ

2

)
.
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Figure 1.23: In the multipath example in Figure 1.22, the amplitude 2
∣∣cos

(
π d1−d2

λ

)∣∣ of the
received signal varies rapidly as the difference in path distances changes.

grow or fade away. The interpretation of “small” is that the change happens
when the transmitter and/or receiver move a fraction of the wavelength; for
example, λ/4 is the change in the path difference d1 − d2 that is needed to
move from the peak amplitude 2 to

√
2 in Figure 1.23, which corresponds

to losing half the signal power (i.e., the channel gain reduces from 22 = 4 to√
22 = 2). That distance is 2.5 cm if f = 3 GHz and 2.5 mm if f = 30 GHz.

These rapid channel changes are called multipath fading or small-scale fading.
The described two-path scenario resembles the behavior that appeared

when transmitting from two different antennas in free-space propagation: the
emitted signals are received along two paths with different time delays. The
core difference is that with multiple transmit antennas, we can compensate
for the time delays at the transmitter side (this is what we call adaptive
beamforming). This is impossible in single-antenna multipath propagation
since the two signal copies originate from the same transmit antenna.

Since a slight movement of the transmitting and receiving devices can lead
to huge SNR fluctuations, multipath fading is a problematic phenomenon that
makes wireless communications fundamentally unreliable. When transmitting a
data packet, we must select a particular digital modulation and channel coding
scheme in advance. Based on this selection, the receiver needs a particular SNR
level during the transmission to decode the packet correctly. This level cannot
always be fulfilled when the SNR fluctuates after the modulation/coding has
been selected. When a packet cannot be decoded due to the channel being
in a deep fade, we say an outage has occurred. Interestingly, multiple receive
antennas can be used to protect communication against outages. Pioneering
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research on this topic was performed already in the 1930s by [32], [33], and
the mathematical analysis presented in this book dates back to the 1950s [34].
Multiple transmit antennas can also protect against fading, but this requires
more complex techniques, first developed in the 1990s [35]–[37]. In this section,
we will introduce the basic concepts and then return to the topic in Chapter 5.

Suppose a random variable models the channel between the transmit and
receive antennas: the communication works flawlessly with probability 1− p,
while it breaks down entirely with probability p. Hence, an outage occurs with
probability p. This means that whenever you want to transmit a data packet,
the outage probability is p.

If we instead make use of two receive antennas and the channel to each
one of them is described by an independent random variable with the same
distribution as above, three random events can occur:

1. Both antennas have good channels, happening with probability (1− p)2;

2. One antenna has a good channel, and the other antenna experiences an
outage, which happens with probability (1− p)p+ p(1− p) = 2(1− p)p;

3. Both antennas experience outages, which happens with probability p2.

It is only in the third case that the receiver cannot decode the data packet.
Hence, the outage probability is p2 in this two-antenna setup.

By following the same logic, if we have M receive antennas and each one
experiences an outage with probability p, then the probability that all the
antennas are simultaneously experiencing outages is pM (assuming that the
outage events occur independently for every antenna). This means that the
reliability of the communication system rapidly improves as we add more
receive antennas, known as spatial diversity. The name suggests that, at every
time instance, we utilize the spatial domain to combat fading; for example, by
only using those antennas that are located at spatial locations that currently
experience good channel conditions. The argument above applies when using
any antenna type. Directive antennas can be used to improve the SNR, but
they cannot be used to obtain spatial diversity; multiple antennas are needed
for that.11 However, the antenna array can be actively designed to extract as
much diversity as possible in a given propagation environment. This can be
achieved by deploying the antennas far apart, rotating their antenna gains
differently, and making them sensitive to waves with different polarization; the
overarching goal with this is to ensure that the antennas experience outage
events nearly independently so that the maximum diversity can be achieved.
The term antenna diversity is sometimes used to describe how spatial diversity
and antenna design are utilized jointly to achieve reliable communications.

11Directive antennas might reduce the impact of multipath propagation, compared to isotropic
antennas since some multipath components can “disappear” because there are low antenna gains
in their directions. However, active exploitation of spatial diversity requires multiple antennas.
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Figure 1.24: The outage probability pM as a function of the number of antennas for different
values of p, which is the probability that an arbitrary antenna observes an outage.

The benefit of spatial diversity is illustrated in Figure 1.24 for p = 0.5 and
p = 0.1. The vertical axis shows the outage probability using a logarithmic
scale, while the horizontal axis shows the number of antennas on a linear scale.
The figure demonstrates that the outage probability reduces rapidly when the
number of antennas increases. The slope of the curve becomes steeper when
p is smaller since the outage probability is 10 log10(pM ) = 10M log10(p) dB.
Hence, a single-antenna system that has a noticeable outage probability can
be greatly improved by adding additional antennas. We can never achieve
a zero-valued outage probability when p > 0, but suppose 10−3 = 0.001 is
acceptable in a practical system. The figure shows that it can be achieved using
3 antennas if p = 0.1 and 10 antennas if p = 0.5. The latter represents a very
unreliable channel, but it can be turned into a very reliable communication
system by using the spatial diversity provided by having many antennas.

Spatial diversity can also be utilized in the opposite scenario where the
transmitter has multiple antennas while the receiver has a single antenna. We
then must be mindful of both outage events for the channels between each
transmit antenna and the receiver and the risk that the signals emitted from
the antennas cancel over the air. A simple way to alleviate the latter issue is to
transmit from the antennas at different times or frequencies and then let the
receiver jointly process the received signals to retrieve the information without
any outage. This is inefficient since the same signal must be repeated several
times before the next signal can be transmitted. There are more efficient
solutions called space-time codes where multiple signals are repeated at the
same time in an intricate way that enables the receiver to exploit diversity.
We will describe these methods in Section 5.3.
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Example 1.16. There might be a correlation between the channel conditions
experienced at the different antennas of an array. In this example, we consider
a single-antenna transmitter and a receiver with an array of M antennas. We
let Bm denote an outage event at receive antenna m, and it occurs with the
marginal probability Pr{Bm} = p, for m = 1, . . . ,M , as previously in this
section. The outage probability of the channel is the joint probability that
all antennas are experiencing an outage simultaneously: Pr{B1, . . . , BM}. It
equals the product pM of the marginal probabilities when the outage events
are independent between the antennas but not if the events are correlated.

We assume that if one antenna experiences an outage, the conditional
probability for the other antennas changes to ϱ ∈ [0, 1]. Hence, Pr{B1} = p
but Pr{B2|B1} = ϱ, which can be larger or smaller than p depending on the
value of ϱ. The typical situation in practice is that ϱ ≥ p so that an outage at
antenna 1 increases the probability of an outage at the other antennas. What
is the outage probability Pr{B1, . . . , BM} of this channel?

Based on the assumed correlation model, an outage event at antenna m,
given the information that the antennas 1, . . . ,m− 1 experience outage, is

Pr{Bm|B1, . . . , Bm−1} = ϱ. (1.68)

We can then use the chain rulea for random events to compute

Pr{B1, . . . , BM} = Pr{B1}Pr{B2, . . . , BM |B1}
= Pr{B1}Pr{B2|B1}Pr{B3, . . . , BM |B1, B2}

= . . . = Pr{B1}
M∏
m=2

Pr{Bm|B1, . . . , Bm−1} = pϱM−1. (1.69)

If ϱ = 1, so that an outage event at one antenna guarantees outages on all other
antennas, we get Pr{B1, . . . , BM} = p. There is no spatial diversity benefit
from having multiple antennas in this extreme case, but having the extra
antennas does not hurt. However, whenever ϱ < 1, the outage probability will
decay as ϱM−1 when increasing the number of antennas. On a decibel scale, the
outage probability behaves as 10 log10(pϱM−1) = 10M log10(ϱ)+10 log10(p/ϱ),
similar to the case with independent outage events. If we would add a new
curve to Figure 1.24 that represents this new scenario with correlated outages,
it will decay similarly to the existing curves, but the slope depends on the
correlation ϱ rather than the marginal probability p. The key conclusion is
that the spatial diversity brought by having multiple antennas helps lower the
outage probability compared to the single-antenna case, even if the outage
events are correlated between the antennas.

aIf A and B are two random events, then the chain rule says that Pr{A,B} = Pr{A}Pr{B|A}.
The rule can be expanded by including more than two events and can then be applied repeatedly,
as done in (1.69).
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1.3 Exercises

Exercise 1.1. Since the power levels in wireless communications can be extremely
different, it is convenient to use decibel scales.

(a) What is 1 mW expressed in dBm?
(b) What is 30 dBm expressed in Watt?
(c) Suppose we transmit a signal with power Ptx = 20 dBm and that 90 dB is lost

on the way to the receiver. What is the received signal power Prx? Express the
answer in both dBm and mW.

(d) Suppose the noise power is N0B = −100 dBm. What is the SNR Prx/(N0B) at
the receiver? What is the unit of the SNR?

Exercise 1.2. The SNR determines how much data can be transmitted per modulation
symbol in a wireless communication system. The system is not operational if the SNR is
below a specific value, in which case we are out-of-coverage. In this exercise, we consider
a system that is operational when the SNR is equal to or larger than −10 dB.

(a) A single-antenna base station communicates with a single-antenna user device.
The base station transmits with 10 W and the device with 0.1 W. The channel
gain is −110 dB, the bandwidth is 10 MHz, and the noise power spectral density
is 10−17 W/Hz. Compute the SNRs achieved in the uplink and downlink.

(b) The computation in (a) reveals that the uplink SNR is below −10 dB. Hence, the
system is not operational, even if the downlink SNR is above −10 dB. This is a
common issue that can be resolved using multiple antennas at the base station.
How many antennas are needed in this case, if the SNR is proportional to the
number of antennas?

(c) Can we instead change how much bandwidth that is used? If yes, explain how and
what the consequences will be. If no, explain why.

Exercise 1.3. The parametric channel gain model in (1.9) is entirely determined by the
channel gain values at two different distances. Suppose the channel gain is −100 dB at
d = 100 m and −135 dB at d = 1000 m.

(a) What are the values of the pathloss exponent α and the constant Υ? Assume that
the measurements were made using isotropic antennas.

(b) Suppose the measurements were made using short dipoles with antenna gains
of 1.5 at the transmitter and the receiver. What are the values of the pathloss
exponent α and the constant Υ?

Exercise 1.4. Consider a (hypothetical) antenna with the gain function

G(φ, θ) =


c cos(4φ+ π) cos(θ), if φ ∈ [−3π/8,−π/8], θ ∈ [−π/2, π/2],
c cos(3φ− π) cos(θ), if φ ∈ [π/6, π/2], θ ∈ [−π/2, π/2],
0, elsewhere,

(1.70)

where c > 0 is a constant.

(a) If the antenna is lossless, what should be the value of c?
(b) What is the maximum effective area of this antenna, and for which angles (φ, θ)

is it achieved?
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Exercise 1.5. A single-antenna transmitter located at the point with Cartesian coordi-
nates (300, 400, 0) m communicates in free space with a single-antenna receiver located
in the origin. The transmit power is 20 dBm, the carrier frequency is f = 3 GHz, and
the bandwidth is B = 10 MHz. Due to noise amplification in the receiver hardware, the
noise power spectral density is N0F , where N0 is given in (1.11) and F = 4 dB is called
the noise figure.

(a) What is the SNR if isotropic antennas are used?
(b) What is the SNR if antennas with the cosine gain function in (1.34) are used?

The transmit antenna achieves its maximum gain in the azimuth plane in the
negative y-axis direction, while the receive antenna achieves its maximum gain in
the positive y-axis direction. This setup is shown to the left in the figure below.

(c) If the transmit antenna in (b) is rotated clockwise by π/2 radians in the azimuth
plane, what is the SNR? This setup is shown to the right in the figure below. Note
that the antenna gain pattern in (1.34) should be rotated accordingly.

Transmitter Transmitter

Receiver Receiver300 300

400 400

x x

y y

Exercise 1.6. Consider an isotropic transmit antenna and a flat receive antenna having
the width a. For simplicity, the antennas are located in the same two-dimensional plane,
and the geometry is similar to Figure 1.8 but rotated. The transmitter is located at the
origin (0, 0). The receive antenna covers the line segment from (

√
3d/2, d/2 − a/2) to

(
√

3d/2, d/2 + a/2), where d is the propagation distance to the center (
√

3d/2, d/2) of
the receive antenna.

(a) Suppose d ≫ a and the transmitted signal has wavelength λ. What are the
approximate phase differences between the signal received at the center and the
signals received at the two corners?

(b) Suppose d = 2a2

λ
, which is the Fraunhofer distance defined in (1.18). What is the

maximum phase difference between two points on the receive antenna? Is this
value in line with the definition of the Fraunhofer distance?

Exercise 1.7. Consider a transmitter with an array of M = 3 isotropic antennas located
at the Cartesian coordinates (λ/4, 0,−λ/2), (0,−λ/3, 0), and (0, 0, λ/2), where λ is the
wavelength. The transmitted signal from the mth antenna is xm(t) = Ap(t+ τm) where
p(t) is the sine pulse in (1.44). We want to maximize the received signal power at the
spherical coordinate (d, φ, θ), where d ≫ λ. What values of the delays τ1, τ2, and τ3 can
be selected? Is the solution unique?
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Exercise 1.8. A transmitter equipped with M = 2 antennas communicates with a
single-antenna receiver. The propagation time delays from the first and second antennas
are denoted by τ1 and τ2, respectively. The transmitter compensates for these delays
by transmitting the signal xm(t) = Amp(t+ τm) from the mth antenna, for m = 1, 2,
where Am ≥ 0 is the amplitude and p(t) is the sine pulse in (1.44). The total transmit
power is A2

1 +A2
2.

(a) Suppose the channel gains to the receiver are the same for both antennas and
denoted by β. If the total transmit power must be equal to P , what values of A1
and A2 maximize the received signal power?

(b) Suppose the channel gains from the first and second antenna are denoted by β1
and β2, respectively. If the total transmit power must be equal to P , what values
of A1 and A2 should be selected to maximize the received signal power?

(c) If β1 > β2, which antenna will transmit with the highest power according to the
answer in (b)?

Exercise 1.9. Consider a transmitter with two isotropic antennas that emit the same
signal Ap(t), where A is the amplitude and p(t) is the sine pulse in (1.44). The antennas
are located at the Cartesian coordinates (0, y0, 0) and (0,−y0, 0), for some value of
y0 ≥ 0. We are interested in receiver locations with spherical coordinates (d, φ, 0) that
are at a large but fixed distance d ≫ y0 from the transmitter but have varying azimuth
angle φ. The channel gain β is the same from both antennas to any of these points.

(a) What is the minimum value of y0 for which destructive interference occurs at
(d, φ, 0) for at least one φ ∈ [−π, π)?

(b) For what range of y0 values will constructive interference occur at (d, φ, 0) for six
different values of φ ∈ [−π, π)?

Exercise 1.10. Consider a transmitter array with two isotropic antennas having the
Cartesian coordinates (0, λ/4, 0) and (0,−λ/4, 0), respectively. These antennas jointly
transmit signals to two receivers located at the spherical coordinates (d, 0, 0) and
(d, π/3, 0), respectively. The distance d is large, so the channel gain β is the same
between any transmit antenna and receive antenna. The time-limited pulse in (1.44)
is used to carry the two symbols s1, s2 ∈ {−1, 1} intended for the two receivers. To
beamform towards the first receiver, both transmit antennas send

√
P1s1p(t) using some

power P1. Moreover, to beamform towards the second receiver, the two antennas transmit√
P2s2p(t) and

√
P2s2p(t+ λ sin(π/3)

2c ), respectively, using some power P2. Suppose that
σ2/β = 10−1 W. Is it possible to select the powers P1 and P2 so that both receivers
achieve an SINR of 10 dB? If yes, give an example of how it can be done.

Exercise 1.11. Communication systems that operate in the mmWave and sub-THz bands
are sensitive to signal blockage by the human body, which might lower the received
power by more than 20 dB. To circumvent this issue, a handheld device can be built with
antennas at different sides (e.g., at the top and on the right side) to make it unlikely
that they are all blocked simultaneously by the user.

(a) Consider a device with two antennas. The outage probability of one antenna is p.
However, if one antenna is in outage, the outage probability of the other antenna
reduces to ϱ < p thanks to the antenna placement. What is the probability that
both antennas are in outage simultaneously?

(b) How much larger is the outage probability with independent outage events com-
pared to the probability in (a)?



Chapter 2

Theoretical Foundations

This book is dedicated to analyzing multiple antenna communication systems,
and we will rely on methods from linear algebra, probability theory, signal
processing, and information theory. This chapter will describe the key results
from these fields that we will utilize in later chapters, using the notation and
terminology used in the remainder of this book. The reader is expected to
be familiar with these general topics since the chapter mainly summarizes
essential results, and we refer to other textbooks for an in-depth introduction.
The focus is on complex numbers and how they enter into the aforementioned
theory when developing concise models of communication systems.

2.1 Complex Numbers and Algebra

Complex numbers naturally appear when analyzing communication systems,
for example, since the frequency representation of signals and systems is
generally complex. The fundamental component of complex numbers is the
imaginary unit, which we denote j =

√
−1. Note that the letter “j” is used in

electrical engineering instead of the letter “i” commonly used in the mathe-
matical literature to not confuse it with the letter used for electrical currents.

We let C denote the set of all complex numbers. Any complex number
c ∈ C can be decomposed as

c = a+ jb (2.1)
for some real numbers a, b ∈ R. In this case, a is the real part of c, while b is
the imaginary part of c. We will let ℜ(·) be the function that outputs the real
part of its input, while ℑ(·) is the function that outputs the imaginary part.
Hence, if c = a+ jb, it follows that ℜ(c) = a and ℑ(c) = b.

The representation in (2.1) is called the Cartesian form. Instead of de-
composing a complex number c in its real and imaginary part, we can use
the polar form to decompose it using the magnitude and argument. More
precisely,

c = |c|ej arg(c), (2.2)
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where |c| =
√
a2 + b2 ≥ 0 is the magnitude (also known as absolute value),

describing the length of the vector [a, b]T, and the argument arg(c) ∈ [−π, π)
is the angle of that vector in R2. The polar form contains Euler’s number
e ≈ 2.71828 and makes use of the complex exponential function

ejx = cos(x) + j sin(x), (2.3)

where the real and imaginary parts contain the cosine and sine of the argument
x ∈ R, respectively. This relation is known as Euler’s formula.

The different ways to represent a complex number are illustrated in Fig-
ure 2.1. From the definition of the sine and cosine functions, we can also
establish the relation

c = |c| cos (arg(c))︸ ︷︷ ︸
=a

+j |c| sin (arg(c))︸ ︷︷ ︸
=b

(2.4)

between the Cartesian and polar forms. Hence, when considering signals, |c|
can represent the magnitude/amplitude while arg(c) can represent the phase.

The complex conjugate is a vital operation when considering complex
numbers. The complex conjugate of c = a+ jb is denoted as c∗ and computed
by switching the sign of the imaginary part: c∗ = a− jb. This is equivalent to
switching the sign of the argument: c∗ = |c|e−j arg(c). Note that

cc∗ = (a+ jb)(a− jb) = a2 + jab− jab− j2b2 = a2 + b2 = |c|2. (2.5)

Hence, we can compute the squared magnitude of a complex number by
multiplying it with its complex conjugate. We can also extract the real and
imaginary parts by adding c and c∗ with different scaling factors:

1
2(c+ c∗) = 1

2(a+ jb+ a− jb) = a = ℜ(c), (2.6)
1
j2(c− c∗) = 1

j2(a+ jb− a+ jb) = b = ℑ(c). (2.7)

The complex exponential function is the essential building block to create
sinusoids oscillating at a specified frequency fc. If x is replaced by 2πfct in
(2.3), we obtain the complex exponential ej2πfct = cos(2πfct) + j sin(2πfct),
where t represents time. By following the procedure in (2.6) and (2.7), we can
extract the real and imaginary parts as

cos(2πfct) = ℜ
(
ej2πfct

)
= 1

2e
j2πfct + 1

2e
−j2πfct, (2.8)

sin(2πfct) = ℑ
(
ej2πfct

)
= 1

j2e
j2πfct − 1

j2e
−j2πfct. (2.9)

The unique aspect of the complex exponential is that it only contains the
frequency fc, and no other frequencies. Since the cosine and sine functions
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c

|c|

arg(c)

ℜ(c)

ℑ(c)

Real part

Imaginary part

Figure 2.1: The complex number c can be equivalently represented by two real-valued numbers.
The Cartesian form is c = ℜ(c) + jℑ(c), with the real part ℜ(c) and imaginary part ℑ(c). The
polar form is c = |c|ej arg(c), where |c| is the magnitude and arg(c) is the argument.

are created as linear combinations of both ej2πfct and e−j2πfct, these signals
are said to contain both the positive frequency fc and the negative frequency
−fc. Any real-valued signal contains a range of positive frequencies and
the corresponding negative ones. We will continue to study the frequency
representation of signals in Sections 2.3 and 2.8.

Example 2.1. Let c = a+ jb be an arbitrary complex number. Show that the
sinusoid a cos(t) + b sin(t) with the time variable t can be written as a single
cosine function, using the polar form c = |c|ej arg(c).

The sinusoid can be rewritten as

a cos(t) + b sin(t) = ℜ ((cos(t) + j sin(t)) (a− jb))

= ℜ
(
ejtc∗) = ℜ

(
ejt|c|e−j arg(c)

)
= |c|ℜ

(
ej(t−arg(c))

)
= |c| cos (t− arg(c)) . (2.10)

This shows how the amplitude and phase of a sinusoid can be represented by a
complex number, which is a primary reason for using them in communications.

2.1.1 Vector Analysis

Vectors and matrices are commonly used when describing systems with multi-
ple antennas, where each entry is related to one of the antennas. The entries
will be complex in most of the chapters of this book. Thus, we will briefly
review the foundational linear algebra results in the complex domain.

An M -dimensional vector containing the complex entries x1, . . . , xM ∈ C
can be expressed as

x =

 x1
...
xM

 . (2.11)
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x∥x∥
1

x/∥x∥ First entry

Second entry

Figure 2.2: The complex vector x has a length determined by the norm ∥x∥. The unit-length
vector x/∥x∥ points in the same direction as x.

We denote vectors using lower-case bold-faced letters, such as x. The entries
are expressed using the same letter and a subscript indicating the entry
number, such as xm for the mth entry of x. Since the vector belongs to the
M -dimensional complex vector space CM , we can write that x ∈ CM .

A vector x has a norm that describes the distance between the origin and
the point x in the vector space. Since it describes the length, it can be viewed
as the generalization of the magnitude to vectors. The Euclidean norm is
denoted by ∥x∥ and is computed as

∥x∥ =
√
|x1|2 + . . .+ |xM |2 =

√√√√ M∑
m=1
|xm|2. (2.12)

By using the norm, we can decompose the vector as

x = ∥x∥︸︷︷︸
Length

· x
∥x∥︸︷︷︸

Direction

, (2.13)

where the second term is the length-one vector pointing in the same direction
as x. Figure 2.2 illustrates how an arbitrary vector x is described by its
length/norm ∥x∥ and the direction x/∥x∥. There will be occasions in this
book where we want to select two vectors that point in the same direction
but have different norms, in which case we can utilize this decomposition.

All the vectors in this book are column matrices, meaning they have
one column and multiple rows. When dealing with matrices, one can switch
the meaning of rows and columns using the operation called transpose. The
transpose of an arbitrary vector x is denoted as xT. For example, the transpose
of (2.11) is

xT =
[
x1 . . . xM

]
, (2.14)

which is a row matrix containing the same entries.
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When dealing with complex vectors, there is another type of transpose
that also includes the complex conjugate operation:

xH =
[
x∗

1 . . . x∗
M

]
. (2.15)

This will be called the conjugate transpose in this book but is also known
as the Hermitian transpose, which explains the letter H. A third operation
that we will use is the complex conjugation of a vector (or matrix), which is
defined as taking the complex conjugate of the individual entries:

x∗ =

 x
∗
1
...
x∗
M

 . (2.16)

The conjugate transpose is simply a combination of the conventional transpose
and the conjugation, xH = (xT)∗, but it is so commonly occurring in complex
vector analysis that it deserves its own notation.

The inner product (or dot product) between two M -dimensional complex
vectors x and y = [y1, . . . , yM ]T is defined using the conjugate transpose as

xHy =
M∑
m=1

x∗
mym. (2.17)

The magnitude |xHy| of the inner product becomes larger the more similar
the directions of the two vectors are and smaller when the directions are very
different. This statement can be quantified by the Cauchy-Schwarz inequality,
which states that

|xHy| ≤ ∥x∥∥y∥ (2.18)
with equality if and only if x and y are parallel (i.e., x = cy for some non-zero
c ∈ C). The upper bound is the product of the lengths of the two vectors.
Figure 2.3 illustrates how the inner product varies depending on the directions
of the vectors, with the parallel vectors x,y1 achieving the upper bound in
the Cauchy-Schwarz inequality and orthogonal vectors x,y3 having an inner
product equal to zero. The latter vectors span a two-dimensional plane in the
M -dimensional vector space and are separated by 90◦ in that plane.

Example 2.2. Suppose we are given a vector x ∈ CM and can select the
vector y ∈ CM freely. Which selections will maximize or minimize |xHy|

∥y∥ ?
The minimum is 0 and achieved for any vector y that is orthogonal to x.

The Cauchy-Schwarz inequality implies that the maximum is obtained for
y = cx for any non-zero c ∈ C.

When one of the vectors has a unit length, the inner product can also be
interpreted as an orthogonal projection onto that vector. Suppose x has unit
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x

y1

y2

y3

(Orthogonal to x)

(Parallel to x)

Figure 2.3: The magnitude of the inner product |xHyi| between two vectors depends on how
similar their directions are. Parallel vectors give the largest value and achieve the upper bound in
the Cauchy-Schwarz inequality in (2.18): |xHy1| = ∥x∥∥y1∥. Orthogonal vectors give xHy3 = 0,
while other vectors give a number in between zero and the upper bound.

x (with length ∥x∥ = 1)

yproj,x = (xHy)x

y

Figure 2.4: If x is a unit-length vector, the inner product xHy is tightly connected to the
orthogonal projection of y onto x. The orthogonal projection is yproj,x = (xHy)x and has the
length |xHy|.

length (i.e., ∥x∥ = 1) and let y be any other vector of the same dimension.
The magnitude |xHy| of their inner product is also the length of the vector

yproj,x = (xHy)x, (2.19)
which is the orthogonal projection of y onto the direction pointed out by x.
This projection is illustrated in Figure 2.4. From this example, we can notice
that only the part of y that is parallel to x will affect the inner product; thus,
there are many different vectors y that have the same inner product with x.
It can also be proved that yproj,x is orthogonal to y− yproj,x.

A special case where the upper bound is achieved is when the inner product
is computed between x and itself:

xHx =
M∑
m=1

x∗
mxm =

M∑
m=1
|xm|2 = ∥x∥2, (2.20)

where the last equality follows from (2.12). Hence, the squared norm of a
vector x can be computed using the inner product. This is a generalization
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of (2.5), where we computed the squared magnitude of a complex number by
multiplying it with its complex conjugate.

By utilizing (2.20), the squared norm of the summation of two arbitrary
vectors x and y (of the same dimension) can be expanded as

∥x + y∥2 = xHx + yHy + xHy + yHx
= ∥x∥2 + ∥y∥2 + 2ℜ(xHy) (2.21)

by utilizing the fact that xHy and yHx have the same real part but imaginary
parts with opposite signs.

Example 2.3. Consider a set of K unit-length vectors x1, . . . ,xK ∈ CM that
are mutually orthogonal, where K ≤M . Compute the squared norm of the
vector y =

∑K
k=1 ckxk, where c1, . . . , cK ∈ C are scalar coefficients.

From the provided information, we have ∥xk∥ = 1, for k = 1, . . . ,K, and
xH
kxm = 0, for k ̸= m. We use these properties to expand the squared norm as

∥y∥2 = yHy =
K∑
k=1

c∗
kxH

k

K∑
m=1

cmxm =
K∑
k=1
|ck|2 xH

kxk︸ ︷︷ ︸
=∥xk∥2=1

+
K∑
k=1

K∑
m=1
m ̸=k

c∗
kcm xH

kxm︸ ︷︷ ︸
=0

=
K∑
k=1
|ck|2. (2.22)

We notice that ∥y∥2 is the summation of the squared coefficients, which
determine the length of y in each of the K orthogonal directions x1, . . . ,xK .

The summation of vectors, multiplied by scalar coefficients, is known as a
linear combination. If x1, . . . ,xK ∈ CM are K vectors and c1, . . . , cK ∈ C are
K scalar coefficients, then the linear combination of the vectors using those
coefficients is

c1x1 + c2x2 + . . .+ cKxK =
K∑
k=1

ckxk. (2.23)

This concept is helpful in making geometrical comparisons of vectors in
high-dimensional situations where we cannot draw them on paper.

Definition 2.1. The vectors x1,x2, . . . ,xK are said to be linearly independent
if the system of equations

c1x1 + c2x2 + . . .+ cKxK = 0 (2.24)

only has the solution c1 = . . . = cK = 0. If additional non-zero solutions exist,
the vectors are said to be linearly dependent.
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Any two vectors are linearly independent except if they are entirely parallel;
thus, linear independence is a broader condition than orthogonality. For
example, we can pick any two of y1, y2, and y3 in Figure 2.3 and get a
set of linearly independent vectors. However, the set of all three vectors in
the figure is linearly dependent because y2 points partially in the direction
of y1 and partially in the direction of y3. This is a typical situation when
considering two-dimensional vectors, as in the figure: if we pick more than two
vectors, they must always be linearly dependent because they share the same
two dimensions. More generally, any set of more than M vectors that are
M -dimensional must be linearly dependent, but we can find a set with exactly
M linearly independent vectors. Moreover, any set of pairwise orthogonal
vectors can be shown to be linearly independent.

Example 2.4. Consider the vector y =
∑M
k=1 ckxk, constructed using the mu-

tually orthogonal unit-length vectors x1, . . . ,xM ∈ CM and scalar coefficients
c1, . . . , cM ∈ C. Let yproj,xm denote the orthogonal projection of y onto xm,
which is the mth of the unit-length vectors. . What are the squared norms of
yproj,xm and the residual vector y− yproj,xm?

The vector yproj,xm is computed similarly to (2.19) as

yproj,xm = (xH
my) xm =

(
M∑
k=1

ck xH
mxk︸ ︷︷ ︸

=

{
1, m = k

0, m ̸= k

)
xm = cmxm. (2.25)

Hence, we obtain ∥yproj,xm∥2 = |cm|2, which is the squared coefficient associ-
ated with xm. The squared norm of the residual y− yproj,xm becomes

∥y− yproj,xm∥
2 =

∥∥∥∥∥
M∑
k=1

ckxk − cmxm

∥∥∥∥∥
2

=

∥∥∥∥∥∥∥∥
M∑
k=1
k ̸=m

ckxk

∥∥∥∥∥∥∥∥
2

=
M∑
k=1
k ̸=m

|ck|2, (2.26)

which is the sum of all the other squared coefficients.
We notice that ∥yproj,xm∥2 + ∥y− yproj,xm∥

2 = ∥y∥2, which is a conse-
quence of the fact that yproj,xm is orthogonal to y− yproj,xm .

An orthonormal basis in CM is a set of M vectors b1, . . . ,bM that satisfies
the following two conditions:

1. The vectors are mutually orthogonal, so that their inner products are
bH
i bj = 0 for any choice of i, j ∈ {1, . . . ,M} such that i ̸= j;

2. The vectors have length one so that their norm is ∥bi∥ = 1 for all
i ∈ {1, . . . ,M}.
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There are many examples of orthonormal bases. One way of constructing
it is to let bi be 1 in entry i and zeros elsewhere. For M = 4, this results in

b1 =


1
0
0
0

 , b2 =


0
1
0
0

 , b3 =


0
0
1
0

 , b4 =


0
0
0
1

 . (2.27)

A common reason for defining an orthonormal basis is that any other vector
x ∈ CM can be written as a linear combination of the M basis vectors:
x =

∑M
i=1 cibi for some coefficients c1, . . . , cM . This follows from the fact that

any set of M + 1 vectors is linearly dependent in CM .

2.1.2 Matrix Analysis

A vector is a special case of a matrix. An M ×K matrix has M rows and
K columns, and contains MK entries. Let hm,k ∈ C denote the entry at the
mth row in the kth column. The full matrix can then be expressed as

H =

 h1,1 . . . h1,K
... . . . ...

hM,1 . . . hM,K

 . (2.28)

We denote matrices using upper-case bold-faced letters, such as H. The space
of all complex matrices of size M ×K is denoted as CM×K ; thus, we can write
that H ∈ CM×K . The transpose and conjugate transpose are computed as

HT =

h1,1 . . . hM,1
... . . . ...

h1,K . . . hM,K

 , HH =

h
∗
1,1 . . . h∗

M,1
... . . . ...

h∗
1,K . . . h∗

M,K

 , (2.29)

respectively. Note that HT is obtained by flipping the matrix over its diagonal,
while HH is obtained by both flipping the matrix and replacing each entry by
its complex conjugate. Both operations change the dimensions of the matrix:
HT and HH belong to the space CK×M with all complex K ×M matrices.
Only in the square matrix case of M = K is the dimensionality unchanged.

The columns of a matrix are important when analyzing its properties. Let
h1, . . . ,hK denote the K columns of an M ×K matrix H. We notice that
each column is an M -dimensional vector. The matrix-vector product between
the matrix H and a K-dimensional vector c = [c1, . . . , cK ]T is denoted as Hc
and is an M -dimensional vector computed as

Hc =

 h1,1c1 + . . .+ h1,KcK
...

hM,1c1 + . . .+ hM,KcK

 = c1h1 + . . .+ cKhK . (2.30)
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This is the linear combination of the column vectors of H using the corre-
sponding entries of c as coefficients. Hence, the directions of the columns will
determine which directions the vector Hc can have. In particular, we can
never get a vector that is orthogonal to all the columns of H.

A square matrix where all the off-diagonal entries are zero is called a
diagonal matrix. If the diagonal of an M ×M diagonal matrix D contains
the entries d1, . . . , dM , then the matrix is

D =


d1 0 . . . 0

0 d2
. . . ...

...
... . . . 0

0 . . . 0 dM

 (2.31)

and will be written in short form as D = diag(d1, . . . , dM ).
A diagonal matrix with only ones on the diagonal is known as an identity

matrix . We will denote the M ×M identity matrix as IM . The columns of an
identity matrix are an orthonormal basis in CM , as exemplified in (2.27).

Non-diagonal square matrices can be transformed into diagonal matrices by
a process known as diagonalization. We will summarize this process because
it reveals several key properties of matrices, starting with the eigenvalues.

Definition 2.2. Consider an M ×M matrix A and a non-zero vector u ∈ CM .
If

Au = λu (2.32)
for some scalar λ ∈ C, then u is an eigenvector of A with λ being the
corresponding eigenvalue.

The output of the matrix-vector product Au is generally a rotated and
stretched version of u. The unique property of an eigenvector u is that it is
only stretched by the scalar factor λ (the eigenvalue). Two different matrices
generally have different eigenvectors and eigenvalues.

Each M -dimensional matrix has M eigenvalues, which can be denoted
as λ1, . . . , λM . There are two matrix operations that directly expose the
eigenvalues. The first operation is the trace tr(A) that is defined as the sum
of the diagonal entries of A, but also has the property

tr(A) =
M∑
m=1

λm. (2.33)

The second operation is the determinant det(A), which has a complicated
definition and can be computed in multiple ways but satisfies the property

det(A) = λ1 · λ2 · . . . · λM . (2.34)
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Hence, the trace and determinant are the sum and product of the eigenvalues,
respectively. The determinant is zero whenever one of the eigenvalues is zero.

The eigenvalue definition Au = λu in (2.32) is equivalent to (A−λIM )u =
0, which means that A − λIM must have a zero-valued eigenvalue. Hence,
det(A− λIM ) = 0 and we can use this equation to identify the eigenvalue λ.

More generally, the characteristic polynomial of a matrix A is expressed as
det(A− λIM ) = (λ1 − λ)(λ2 − λ) · · · (λM − λ), (2.35)

where λ is the variable and the determinant plays an essential role. All the
M eigenvalues are roots of the characteristic polynomial and vice versa. The
same eigenvalue can appear multiple times in the characteristic polynomial.

Example 2.5. What are the eigenvalues of the 2× 2 matrix

A =
[
4 −2
5 −3

]
? (2.36)

The characteristic polynomial of this matrix is

det (A− λI2) = det
([

4− λ −2
5 −3− λ

])
= (4− λ)(−3− λ)− 5(−2)

= λ2 − λ− 2 = (λ+ 1)(λ− 2), (2.37)

where we utilized the property that the determinant of a 2× 2 is the product
of the diagonal entries minus the product of the off-diagonal entries. The
roots to the characteristic polynomial are λ1 = −1 and λ2 = 2, which are also
the eigenvalues of A.

The rank of an M ×K matrix equals the maximum number of linearly
independent columns the matrix has. The rank is also equal to the maximum
number of linearly independent rows. The rank can take any value between 0
and min(M,K); that is, the minimum of M and K. In the case of an M ×M
square matrix, the rank is greater than or equal to the number of non-zero
eigenvalues. In fact, the rank is usually equal to the number of non-zero
eigenvalues for the square matrices appearing in communications, but one can
create counterexamples where this is not the case. Later in this section, we
will provide additional conditions that guarantee equivalence.

Recall from (2.30) that the matrix-vector product Hc is computed as a
linear combination of the columns of H with coefficients from c. Suppose we
want to create a set Hc1,Hc2, . . . of linearly independent vectors (or even
mutually orthogonal vectors) by multiplying H by different vectors c1, c2, . . .
The rank of H limits how many such vectors we can create. The rank property
will be utilized in later chapters to quantify how many parallel data streams
we can transmit over a communication channel, where the matrix dimensions
represent antennas and/or frequency bands.
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Example 2.6. Let c1, . . . , cK ∈ CK be K linearly independent vectors. For
an arbitrary matrix H ∈ CK×K that has rank r satisfying r < K, show that
Hc1, . . . ,HcK cannot be linearly independent.

Since the rank of H is r < K and the number of non-zero eigenvalues is
smaller than or equal to the rank, H must have at least K − r zero-valued
eigenvalues. Consequently, there must exist an eigenvector x ̸= 0 satisfying
Hx = 0. Since c1, . . . , cK are linearly independent, any such non-zero x ∈ CK
can be expressed as

∑K
k=1 αkck for some selection of the coefficients, with not

all αk being zero. Inserting x =
∑K
k=1 αkck into Hx = 0, we obtain

H
(

K∑
k=1

αkck

)
=

K∑
k=1

αkHck = 0. (2.38)

According to Definition 2.1, Hc1, . . . ,HcK are linearly independent if and
only if the above linear system of equations (with respect to α1, . . . , αK ∈ C)
only has the solution α1 = . . . = αK = 0. However, for a non-zero eigenvector
x, we should have at least one non-zero αk, which implies Hc1, . . . ,HcK
cannot be linearly independent if the rank of H is strictly less than K.

Square matrices can be factorized and diagonalized using the eigenvalues
and eigenvectors. For brevity, we will only present this eigendecomposition in
the special case of symmetric matrices, which are defined as follows.

Definition 2.3. A matrix A is Hermitian if A = AH.

Only square matrices can be Hermitian, and the condition A = AH implies
a specific symmetry: the entries at the opposite sides of the diagonals have
the same real part, while the imaginary parts have the same magnitude
but opposite signs. The symmetry implies that any eigenvalue of A must
satisfy λ = λ∗, which only holds if the imaginary part is zero. Hence, all the
eigenvalues of Hermitian matrices must be real-valued. One common type of
matrix that satisfies the Hermitian property is covariance matrices, which will
be described later in this chapter. Before considering the eigendecomposition
of Hermitian matrices, we will define one more type of matrix.

Definition 2.4. A matrix U ∈ CM×M is unitary if UHU = IM and UUH = IM .
The former implies that the columns of U are mutually orthogonal, while the
latter implies that the rows are mutually orthogonal.

A unitary matrix’s column vectors are an orthonormal basis in CM . We
notice that the conjugate transpose UH of a unitary matrix U acts as a matrix
inverse because their multiplication results in an identity matrix. This is
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the matrix extension of how 1/u is the inverse of the scalar u because their
multiplication is 1. If the eigenvectors of a Hermitian matrix are placed as
the columns of a matrix, it will be a unitary matrix.

Lemma 2.1. Any Hermitian M ×M matrix A can be factorized as

A = UDUH, (2.39)

where U is a unitary M ×M matrix containing the unit-length eigenvectors
as columns and D = diag(λ1, . . . , λM ) is a diagonal matrix containing the
corresponding real-valued eigenvalues.

The factorization in (2.39) is known as the eigendecomposition. For a Her-
mitian matrix, the rank is exactly equal to the number of non-zero eigenvalues.
If we let u1, . . . ,uM denote the columns of U (i.e., the eigenvectors), then we
can also express (2.39) as

A =
M∑
m=1

λmumuH
m. (2.40)

Hence, the matrix is the summation of the eigenvalues multiplied by the
respective eigenvectors. This property can be utilized to diagonalize the
matrix. More precisely, we can rearrange (2.39) as

UHAU = D (2.41)

by utilizing the properties of unitary matrices. This shows how the Hermitian
matrix A can be transformed into the diagonal matrix D with eigenvalues by
multiplying with the matrix U containing the eigenvectors.

Non-Hermitian square matrices can also be diagonalized, but the notation
is more complicated, and one can find special cases where it is not possible.
Since we will not utilize those results, we will not cover them here.

If all the eigenvalues of a Hermitian matrix A are non-zero, then the matrix
is invertible. This implies that there exists a matrix denoted as A−1 with the
property that AA−1 = A−1A = IM . By utilizing the eigendecomposition in
(2.39), we can notice that the inverse can be computed as

A−1 = UD−1UH, (2.42)

where D−1 = diag(λ−1
1 , . . . , λ−1

M ). Hence, the inverse matrix has the same
eigenvectors but reciprocal eigenvalues.

If all the eigenvalues of a Hermitian matrix A are non-negative, then the
matrix is said to be positive semi-definite. The reason is that xHAx ≥ 0 for
all vectors x of matching dimension, because (2.40) implies that xHAx =∑M
m=1 λm|uH

mx|2 which only has non-negative terms. For such matrices, we
can define the square root of the matrix as follows.
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Lemma 2.2. Any Hermitian M ×M matrix A that is also positive semi-
definite has a square root defined as

A1/2 = UD1/2UH, (2.43)

using the notation from Lemma 2.1 with D1/2 = diag(
√
λ1, . . . ,

√
λM ). The

square root A1/2 is also Hermitian and satisfies the property A1/2A1/2 = A.

If all the eigenvalues of the Hermitian matrix A are strictly positive, then
the matrix is said to be positive definite. In this case, both the matrix and its
square root are invertible. The inverse square root is denoted as

A−1/2 = UD−1/2UH, (2.44)

where D−1/2 = diag(1/
√
λ1, . . . , 1/

√
λM ).

Example 2.7. Consider a Hermitian matrix A ∈ CM×M with the eigende-
composition

A = UDUH. (2.45)
What is the eigendecomposition of B = A + ϵIM if ϵ > 0?

Since U is a unitary matrix (i.e., UUH = IM ), we can express B as

B = A + ϵIM = UDUH + ϵUUH = U (D + ϵIM ) UH, (2.46)

which has the correct structure to be its eigendecomposition. Hence, adding
a scaled identity matrix to A does not change the eigenvectors, but all the
eigenvalues are increased by the scaling factor ϵ.

The following matrix inversion lemma can be helpful when analyzing
expressions containing invertible matrices.

Lemma 2.3. Consider the matrices A ∈ CM×M , B ∈ CM×N , C ∈ CN×N ,
and D ∈ CN×M . The following identity holds if all the involved inverses exist:

(A + BCD)−1 = A−1 −A−1B(DA−1B + C−1)−1DA−1. (2.47)

A special case of this lemma, known as the rank-one update formula, is
obtained when A is an invertible Hermitian matrix, C = 1, B = x ∈ CM is a
vector, and D = xH:

(A + xxH)−1 = A−1 − 1
1 + xHA−1xA−1xxHA−1. (2.48)

If we multiply the expression in (2.48) by x from the right, we obtain

(A + xxH)−1x = 1
1 + xHA−1xA−1x, (2.49)
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which shows that the vectors A−1x and (A + xxH)−1x are equal except for
the scaling factor 1 + xHA−1x. This property will be utilized in this book
when analyzing different signal processing methods.

Consider two matrices A ∈ CM×K and B ∈ CK×M having opposite
dimensions, which means that it is feasible to compute both the matrix
products AB and BA. A matrix identity similar to the matrix inversion
lemma is

(AB + IM )−1 A = (AB + IM )−1 A (BA + IK) (BA + IK)−1

= (AB + IM )−1 (AB + IM ) A (BA + IK)−1

= A (BA + IK)−1
, (2.50)

where the matrix A is moved from one side of the inverse to the other side. The
content of the inverse is also changing and, interestingly, the identity matrix
changes dimension. There is a deeper matrix algebraic property enabling this
result. The eigenvalues of AB and BA are always the same, except that the
bigger of these matrices has |M −K| extra eigenvalues that are equal to zero.
This can be proved as follows. We let u denote an arbitrary eigenvector of
AB associated with the eigenvalue λ, so that ABu = λu. It then follows that
Bu is an eigenvector of BA with the same eigenvalue λ because

λBu = B(λu) = B(ABu) = BA(Bu). (2.51)
One can further prove that the eigenvalue multiplicity is the same. A conse-
quence is that we can switch the matrix order in the trace function as

tr(AB) = tr(BA) (2.52)
because the sum of the eigenvalues is the same for AB and BA. Another
consequence is Sylvester’s determinant theorem

det (AB + IM ) = det (BA + IK) , (2.53)
which holds because the identity matrix adds one to all the eigenvalues, and
the determinant then multiplies them together. The matrix identities in (2.52)
and (2.53) will be used repeatedly in this book.

Consider the two vectors x = [x1, x2, . . . , xM ]T and y = [y1, y2, . . . , yK ]T,
which might have different dimensions. The Kronecker product between these
vectors is defined as

x⊗ y =


x1y
x2y

...
xMy

 , (2.54)

which is an MK-dimensional vector. The first K entries contain x1 multiplied
by each of the entries of y, the next K entries contain x2 multiplied by each
of the entries of y, etc. The Kronecker product is closely related to the outer
product yxT between the same vectors. One obtains the Kronecker product
by stacking the columns of yxT into a single vector.
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2.2 Probability Theory
This book will use random variables to describe signals, noise, and commu-
nication channels. Any continuous random variable x is entirely determined
by its probability density function (PDF), which we denote by fx(x). This
function determines how the probability mass is distributed over all possible
realizations. The realizations of the random variable take values in some
sample set Ω, which is typically the real space R or the complex space C. The
probability of obtaining a realization in a subset A ⊂ Ω of the sample set is
the integral of the PDF over that subset:

Pr{x ∈ A} =
∫

A
fx(x)∂x. (2.55)

When considering complex random variables, the integral in (2.55) should
be interpreted as a double-integral over the real and imaginary parts. The
PDF fx(x) is non-negative for all x ∈ Ω and the total probability is one:∫

Ω fx(x)∂x = 1. Hence, the probability Pr{x ∈ A} is between zero and one.
Based on the PDF, we can compute the (arithmetic) mean

E{x} =
∫

Ω
xfx(x)∂x, (2.56)

which is also known as the expected value, first moment, and average. The
variability is often measured by computing the squared deviation |x− E{x}|2
from the mean and taking its mean. It is denoted Var{x} and computed as

Var{x} = E{|x− E{x}|2} = E{|x|2} − |E{x}|2. (2.57)

This is known as the variance or second moment, and it measures how large
variations from the mean we can expect to observe when generating many
realizations. It is essential to use magnitudes in (2.57) when the random
variable takes complex values. If the random variable has zero mean, then
(2.57) shows that the variance coincides with the quadratic mean computed as

E{|x|2} =
∫

Ω
|x|2fx(x)∂x. (2.58)

It is common in the probability theory literature to use a different notation
for the random variable and its realizations; for example, x for the variable
and x as the realization. In this book, we have instead chosen to use the same
notation but write out what is considered in each context.

Definition 2.5. The random variables x and y are statistically independent if
their joint PDF fx,y(x, y) can be factorized as

fx,y(x, y) = fx(x)fy(y), (2.59)

where fx(x) and fy(y) are their individual PDFs, called marginal PDFs.
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This independence concept is entirely different from the linear indepen-
dence of vectors in Definition 2.1. Statistical independence of random variables
implies that the realization of x will not affect the realization of y whatsoever,
which happens in practice when the variables are associated with different
sources of randomness. For example, in communications, the variable rep-
resenting random data from the transmitter is typically independent of the
variable representing random thermal noise in the receiver hardware.

We will now consider L independent realizations of the same random
variable, which can be thought of as having L independent and identically
distributed random variables (i.e., with the same marginal PDF), and generate
one realization from each of them. Suppose we compute the arithmetic average
of these realizations. In that case, we will obtain a value close to the mean in
(2.56), at least under the technical condition that the variance is finite. This
result can be formalized mathematically as the following law of large numbers.

Lemma 2.4. Let x1, . . . , xL be a sequence of L independent and identically
distributed random variables with mean E{xi} = µ and finite variance σ2 for
i = 1, . . . , L. The arithmetic sample average 1

L

∑L
i=1 xi satisfies

lim
L→∞

1
L

L∑
i=1

xi = µ. (2.60)

We will utilize this lemma when studying the impact of random variables
on communication performance and also as a way to approximate an unknown
mean value using multiple realizations from the random variable.

The variance measures the average squared deviation, which has a different
unit than the original variable (i.e., it is squared). The square root

√
Var{x}

of the variance can be utilized to understand better how large deviations from
the mean are likely to occur. This measure is called the standard deviation,
and whenever the variance is finite, most random realizations will occur within
a few standard deviations from the mean. The exact characteristics depend
on the distribution of the random variable, but the following worst-case result
known as Chebyshev’s inequality can be established.

Lemma 2.5. Consider a random variable x with mean E{x} = µ and finite
standard deviation σ =

√
Var{x}. For any constant k > 0, it holds that

Pr{|x− µ| ≥ kσ} ≤ 1
k2 . (2.61)

Suppose we insert k = 2 or k = 3 into Lemma 2.5. In that case, the
inequality says that the probability of obtaining realizations that are more
than two or three standard deviations from the mean is smaller than 0.25 and



2.2. Probability Theory 69

0 σ 2σ 3σ−σ−2σ−3σ

fx(x)

95% of all realizations

Figure 2.5: The PDF of the zero-mean Gaussian distribution x ∼ N (0, σ2) with the standard
deviation indicated. If another mean value is considered, the PDF is shifted to be centered
around it. 95% of all realizations occur between −2σ and 2σ.

0.11, respectively:

Pr{|x− µ| ≥ kσ} ≤
{

0.25 if k = 2,
0.11 if k = 3.

(2.62)

Since Chebyshev’s inequality provides an upper bound on the probability of
obtaining realizations further than k standard deviations from the mean, most
random distributions have a much smaller probability than that. In other
words, Chebyshev’s inequality characterizes the worst-case situation of having
a distribution with a high probability of realizations far from the mean.

2.2.1 Gaussian Distribution

A common example is a Gaussian random variable, which is denoted as
x ∼ N (µ, σ2) and has the PDF

fx(x) = 1√
2πσ2

e− (x−µ)2

2σ2 . (2.63)

This distribution has the mean E{x} = µ, variance Var{x} = E{(x−µ)2} = σ2,
and standard deviation

√
Var{x} = σ. The PDF is illustrated in Figure 2.5

and is symmetric around the mean value. When the mean is zero, and the
variance is one, we have a standard Gaussian distribution.
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The Gaussian distribution is also known as the normal distribution since
it has become the norm to utilize it as an approximation of other random
distributions. A contributing factor is the following classical result, called the
central limit theorem.

Lemma 2.6. Let x1, . . . , xL be a sequence of L real-valued independent and
identically distributed random variables with zero mean and finite variance
σ2. As L→∞, the distribution of

1√
Lσ2

L∑
i=1

xi (2.64)

converges to a standard Gaussian distribution N (0, 1).

The interpretation of this theorem is that the summation of a set of
independent and identically distributed random variables tends to be approxi-
mately Gaussian distributed, with the approximation error being smaller the
more variables are considered. This property is often used in communications
to motivate that the noise in the receiver hardware is Gaussian distributed
(because the random motion of many electrons creates it) and that wireless
channels behave as Gaussian distributed when they contain many propagation
paths, which will be considered later in this book.

The scaling factor 1/
√
Lσ2 in (2.64) was selected so that the variance of

the quantity becomes one, instead of going to zero or infinity when adding
L terms and letting L → ∞. However, any scaling factor can be utilized
along with Lemma 2.6 if the central limit theorem is merely used to motivate
that the summation of a finite number of independent random variables is
approximately Gaussian distributed. For example, the law of large numbers in
Lemma 2.4 considered the sample average and when combined with Lemma 2.6,
we obtain

1
L

L∑
i=1

xi ∼̇ N
(
µ,
σ2

L

)
, (2.65)

where the notation ∼̇ means approximately distributed as. The variance in
(2.65) goes to zero as L→∞, which implies that the sample average converges
to the mean µ, as previously stated in the law of large numbers. The added
benefit of (2.65) is that it also suggests that the variance goes to zero as 1/L
and that the deviation from the mean is approximately Gaussian distributed.

The Gaussian distribution has unbounded support (i.e., we can get ar-
bitrarily large positive or negative realizations), but the probability mass is
concentrated around the mean. In fact, it is much more concentrated than the
worst-case situation determined by Chebyshev’s inequality. The probabilities
of obtaining realizations that are beyond one, two, or three standard deviations
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away from the mean value are

Pr{|x− µ| ≥ kσ} = 1−
∫ kσ

−kσ

1√
2πσ2

e− x2
2σ2 ∂x ≈


0.32 if k = 1,
0.05 if k = 2,
0.003 if k = 3.

(2.66)

Hence, only 5% of all realizations are beyond two standard deviations from
the mean, while (2.62) states that it can be the case for up to 25% of all
realizations when considering an arbitrary random distribution. Figure 2.5
illustrates that 95% of all realizations appear from −2σ to 2σ.

2.2.2 Complex Gaussian Distribution

We will now consider the complex generalization of the Gaussian distribution.
Suppose a, b ∼ N (0, σ2/2) are two independent Gaussian variables, each
having zero mean and variance σ2/2. The complex variable x = a + jb will
then have a complex Gaussian distribution. We denote it as x ∼ NC(0, σ2)
and the PDF is

fx(x) = 1
πσ2 e

− |x|2

σ2 . (2.67)

This distribution has the mean E{x} = 0 and variance

Var{x} = E{|x|2} = E{a2 + b2} = σ2, (2.68)

where the real and imaginary parts each contribute with σ2/2. The PDF in
(2.67) is illustrated in Figure 2.6 and has the classical shape of a Gaussian
distribution but in two dimensions. There are other types of complex Gaussian
distributions than the one described above. To be precise, we have defined
what is known as the circularly symmetric complex Gaussian distribution. The
circular symmetry refers to the fact that if x ∼ NC(0, σ2), then xejψ has the
same distribution for any value of ψ ∈ R. In other words, the distribution
does not change when applying a phase-shift. This property can be proved by
noticing that fx(x) = fx(xejψ) for the PDF in (2.67). The circular symmetry
implies that we can rotate the PDF in the complex plane without changing
its shape, as seen from Figure 2.6. Looking at the mean value, the circular
symmetry implies E{x} = E{xejψ} = ejψE{x}, which only holds for all ψ ∈ R
if E{x} = 0. Hence, all circularly symmetric distributions have zero means. The
circular symmetry follows from the assumptions of having independent and
identically distributed real and imaginary parts. One can define other complex
Gaussian distributions that do not satisfy these conditions, but these are not
considered in this book. We will refer to the circularly symmetric complex
Gaussian distribution as the complex Gaussian distribution for brevity.

Multiplying a complex Gaussian distribution with a constant c ∈ C will
change the variance but not the shape of the distribution. Suppose x ∼
NC(0, σ2) and recall that the variance can be computed as E{|x|2} = σ2 since
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Figure 2.6: The PDF of the circularly symmetric complex Gaussian distribution x ∼ NC(0, 1).
The real and imaginary parts are statistically independent and jointly Gaussian distributed
with identical variance.

the variable has zero mean. The random variable cx will, therefore, have the
variance E{|cx|2} = |c|2E{|x|2} = |c|2σ2. This implies that cx ∼ NC(0, |c|2σ2).

2.2.3 Covariance and Conditional Distribution

Multiple random variables can affect a communication system, some inde-
pendent (see Definition 2.5) and others statistically dependent. Consider the
two independent random variables v ∼ NC(0, σ2

v) and w ∼ NC(0, σ2
w). The

summation of these variables is also complex Gaussian distributed and has a
variance that is the summation of the individual variances:

z = v + w ∼ NC(0, σ2
v + σ2

w). (2.69)

Although v and w are independent variables, z is clearly dependent on both.
The variance concept can be extended to measure the covariance between

two random variables. For two arbitrary random variables z and v, the
covariance is defined as

E{(z − E{z})(v − E{v})∗} = E{zv∗} − E{z}E{v∗}, (2.70)

where the complex conjugate is important when the variables are complex.
The variables are said to be uncorrelated if the covariance is zero, while a non-
zero covariance measures how strongly the random realization of one variable
affects the realization of the other variable. Independent random variables are
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always uncorrelated, but the converse might not hold: uncorrelated variables
can still influence each others’ realizations but in more subtle ways.

The covariance in (2.70) can be both positive and negative, and takes values
between −

√
Var{z}Var{v} and

√
Var{z}Var{v}. The bounds are achieved

when the two variables are equal except for a negative/positive scaling factor.

Example 2.8. What is the covariance between z and v, defined in (2.69)?
Direct computation based on the covariance definition in (2.70) yields

E{(z − E{z})(v − E{v})∗} = E{zv∗} = E{vv∗}+ E{wv∗} = σ2
v, (2.71)

where the last equality follows from the fact that E{wv∗} = E{w}E{v∗} = 0
since w and v are independent. The non-zero covariance demonstrates that z
and v are dependent random variables and implies that their realizations are
statistically connected, which is logical since z = v + w.

Suppose we can observe z but want to know the value of v. We are then
interested in the conditional PDF fv|z(v|z) of v given the realization of z. If
we know the opposite conditional PDF fz|v(z|v), we can compute fv|z(v|z)
using Bayes’ theorem:

fv|z(v|z) =
fz|v(z|v)fv(v)

fz(z)
. (2.72)

This rule says that fv|z(v|z) and fz|v(z|v) are equal up to the scaling factor
fv(v)/fz(z). We can compute this factor using the marginal PDFs of z and v.

Example 2.9. Determine the conditional PDFs fz|v(z|v) and fv|z(v|z) that
relate the random variables v and z that were defined in (2.69).

If we know v, then z − v = w ∼ NC(0, σ2
w). This implies that

fz|v(z|v) = 1
πσ2

w

e
− |z−v|2

σ2
w . (2.73)

We can now compute fv|z(v|z) using Bayes’ theorem in (2.72):

fv|z(v|z) =
1

πσ2
w
e

− |z−v|2

σ2
w

1
πσ2

v
e

− |v|2

σ2
v

1
π(σ2

v+σ2
w)e

− |z|2

σ2
v+σ2

w

= σ2
v + σ2

w

πσ2
vσ

2
w

e
− |z−v|2

σ2
w

− |v|2

σ2
v

+ |z|2

σ2
v+σ2

w

= σ2
v + σ2

w

πσ2
vσ

2
w

e
−σ2

v+σ2
w

σ2
vσ

2
w

∣∣∣v− σ2
v

σ2
v+σ2

w
z

∣∣∣2
. (2.74)

This conditional PDF resembles that of the complex Gaussian distribution.
In particular, v − σ2

v

σ2
v+σ2

w
z ∼ NC

(
0, σ2

vσ
2
w

σ2
v+σ2

w

)
when z is known.
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2.2.4 Multivariate Complex Gaussian Distribution

A random vector can be created by taking a collection of M random scalar
variables x1, . . . , xM and collecting them in a vector

x =

 x1
...
xM

 . (2.75)

This is also known as a multivariate random variable, and the mean is denoted
as E{x}. The variance of the individual entries and the covariance between
any pair of entries is captured by the covariance matrix Cov{x} defined as

Cov{x} = E{(x− E{x})(x− E{x})H}. (2.76)

If we take the conjugate (Hermitian) transpose of this expression, we will get
the same expression, which shows that all covariance matrices are Hermitian
matrices (see Definition 2.3). The covariance matrix is also positive semi-
definite because, for any deterministic y ∈ CM , it holds that

yHCov{x}y = E{yH(x− E{x})(x− E{x})Hy} = E
{
|yH(x− E{x})|2

}
≥ 0.
(2.77)

The correlation matrix is similarly defined as E{xxH} without subtracting the
mean. This implies that a deterministic vector x has a zero-valued covariance
matrix but xxH as its correlation matrix. Hence, the covariance matrix is a
better measure of the amount of randomness in the considered vector.

Suppose the M variables are independent and identically distributed
complex Gaussian variables with variance σ2; that is, xm ∼ NC(0, σ2) for
m = 1, . . . ,M . The mean value is E{x} = 0 since each of the individual
variables has a zero mean. Moreover, the covariance matrix is

Cov{x} = E{(x− E{x})(x− E{x})H} = E{xxH} = σ2IM , (2.78)

where the diagonal entries are the variances of the individual entries and
the zero-valued off-diagonal entries represent that the independent variables
have zero covariance. This multivariate complex Gaussian distribution with
independent entries is denoted as

x ∼ NC(0, σ2IM ). (2.79)

This distribution is often utilized to model receiver noise in communication
systems. It is then referred to as white Gaussian noise, where the color (or lack
thereof) indicates the independence of the entries. Following Definition 2.5,
the PDF of x is the product of M marginal PDFs of the kind in (2.67):

fx(x) =
M∏
m=1

1
πσ2 e

− |xm|2

σ2 = 1
(πσ2)M e− ∥x∥2

σ2 . (2.80)
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In this book, we will also consider a complex Gaussian random vector
with correlated entries, in which case the covariance matrix is not an identity
matrix. We can create such a matrix by starting from a K-length unit-variance
complex Gaussian random vector with independent entries x̃ ∼ NC(0, IK)
and an M ×K deterministic matrix A with M ≤ K. We can then create an
M -length complex Gaussian random vector x by computing the product

x = Ax̃, (2.81)

irrespective of whether M and K are the same or different. This new random
vector has zero mean since

E{x} = AE{x̃}︸ ︷︷ ︸
=0

= 0. (2.82)

The covariance matrix can be computed as

Cov{x} = E{(x− E{x})(x− E{x})H} = E{xxH}
= AE{x̃x̃H}︸ ︷︷ ︸

=IK

AH = AAH. (2.83)

Hence, the random vector created by the product in (2.81) is distributed as
x ∼ NC(0,AAH). This example shows how we can create a correlated complex
Gaussian vector x from a complex Gaussian vector x̃ with independent entries
by multiplying with a matrix, which will happen later in this book.

Example 2.10. Show that if x̃ ∼ NC(0, IK), then x = Ux̃ has the same
distribution if U ∈ CK×K is a unitary matrix.

The vector x is created as in (2.81) with A = U. The corresponding
covariance matrix is computed in (2.83) and becomes AAH = UUH = IK
since U is unitary. It follows that x ∼ NC(0, IK), which is the same distribution
as x̃ has. The conclusion is that a vector with uncorrelated complex Gaussian
entries retains its distribution when multiplied by a unitary matrix.

In general, we can define the correlated multivariate complex Gaussian
distribution

x ∼ NC(0,R) (2.84)
for an arbitrary positive definite covariance matrix R. The special case
considered above correspond to R = AAH. The PDF is given by

fx(x) = 1
πM det(R)e

−xHR−1x. (2.85)

Such correlated complex Gaussian vectors are circularly symmetric since
fx(x) = fx(xejψ) for any constant phase-shift ψ.
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An important property of complex Gaussian random vectors is that the
joint PDF in (2.85) reduces to the one for independent entries in (2.80) if we
insert the diagonal covariance matrix R = σ2IM . Hence, it is sufficient to
assume that all the entries of x are uncorrelated (i.e., the off-diagonal entries
of R are zero) to get statistical independence as a side-effect. This property
follows from the shape of the multivariate complex Gaussian distribution
and does generally not hold for other random distributions. We will use this
property repeatedly in the book.

Lemma 2.7. If two random variables are jointly complex Gaussian distributed
and uncorrelated, the variables are also statistically independent.

When exposed to a correlated complex Gaussian random vector x, removing
the correlation through signal processing can sometimes be helpful. Since
the covariance matrix R in (2.84) is positive definite, its square root R1/2

(computed as in Lemma 2.2) is invertible and its inverse will be denoted as
R−1/2. Let us define the random variable n = R−1/2x. It is complex Gaussian
distributed with zero mean and the covariance matrix

Cov{n} = E{(n− E{n})(n− E{n})H} = E{nnH}
= R−1/2 E{xxH}︸ ︷︷ ︸

=R

R−1/2 = IM . (2.86)

Hence, n = R−1/2x ∼ NC(0, IM ) has uncorrelated entries, which are also
statistically independent thanks to Lemma 2.7. This procedure of removing
correlation from a random vector is known as whitening, particularly when
dealing with Gaussian noise. A noise vector with correlated entries is called
colored noise, and the whitening procedure transforms it into white noise, as
defined in (2.79). The theory developed in this book will be based on the
assumption of having white noise, but it can also be applied in the presence
of colored noise by adding a whitening step at the receiver.

Example 2.11. What is the PDF of a multivariate real Gaussian distribution?
If xm ∼ N (µm, σ2) for m = 1, . . . ,M are independent variables, then the

PDF of x = [x1, . . . , xM ]T is 1
(2πσ2)M/2 e

−(x−µ)T(x−µ)/(2σ2). We obtain this
expression by taking the product of M PDFs of the kind in (2.63) and defining
µ = [µ1, . . . , µM ]T. When the variables are correlated with the covariance
matrix R, the resulting PDF is

fx(x) = 1
(2π)M2

√
det(R)

e− (x−µ)TR−1(x−µ)
2 . (2.87)

We denote such a real Gaussian distribution as x ∼ N (µ,R).
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2.2.5 Rayleigh, Exponential, and χ2 Distribution

The PDF of a complex random variable x determines how the magnitude
|x| and the argument arg(x) are distributed. These components are generally
correlated, but if x is complex Gaussian, the circular symmetry implies
that they are independent. In wireless communications, we are particularly
interested in the magnitude since it can describe the amplitude of a signal.
We denote the magnitude as y = |x| ≥ 0 and the argument as ψ = arg(x) ∈
[−π, π), so that x = yejψ. Since the PDF of the complex Gaussian distribution
in (2.67) is defined using the Cartesian form x = ℜ(x) + jℑ(x), a change of
variables to the polar form consists of two steps: replacing the old variables
with the new variables, followed by the multiplication with the magnitude of
the Jacobian determinant, |J(y, ψ)|. We can compute the latter term based
on the definition of Jacobian matrices as

|J(y, ψ)| =
∣∣∣∣∣det

([
∂ℜ(x)
∂y

∂ℑ(x)
∂y

∂ℜ(x)
∂ψ

∂ℑ(x)
∂ψ

])∣∣∣∣∣ =
∣∣∣∣∣det

([
∂y cos(ψ)

∂y
∂y sin(ψ)

∂y
∂y cos(ψ)

∂ψ
∂y sin(ψ)

∂ψ

])∣∣∣∣∣
=
∣∣∣∣det

([
cos(ψ) sin(ψ)
−y sin(ψ) y cos(ψ)

])∣∣∣∣ = y
(
cos2(ψ) + sin2(ψ)

)
= y.

(2.88)

Using this method, we can rewrite the PDF in (2.67) of the complex Gaussian
distribution as a function of the magnitude and argument:

fy,ψ(y, ψ) = y

πσ2 e
− y2

σ2 (2.89)

for y ≥ 0 while it is zero for y < 0. Since the PDF does not depend on ψ, we
can conclude that ψ is uniformly distributed between −π and π (or any other
interval of length 2π) and independent of y. We can compute the marginal
distribution of the magnitude as

fy(y) =
∫ π

−π
fy,ψ(y, ψ)∂ψ = 2y

σ2 e
− y2

σ2 for y ≥ 0. (2.90)

This PDF characterizes the variations in the magnitude of a complex Gaussian
random variable. It matches with what is known as the Rayleigh distribution.
Just as the complex Gaussian distribution is characterized by its variance σ2,
the Rayleigh distribution is characterized by a scale parameter. For the PDF
in (2.90), the scale parameter can be identified to be σ/

√
2 and, thus, we can

express the distribution of the magnitude as y ∼ Rayleigh(σ/
√

2). The PDF
with σ = 1 is illustrated in Figure 2.7. When a communication channel is
complex Gaussian distributed, it is referred to as Rayleigh fading since the
magnitude is Rayleigh distributed. We will return to this later in the book.

When analyzing the SNR of a communication system, we are not interested
in the amplitude y = |x| but its square y2 = |x|2 (the SNR is a ratio between
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the signal power and noise power). Let us denote this random variable as
z = y2. We can obtain the PDF of z by following the same two steps as above:
replace the y in (2.90) with

√
z and then multiply by the magnitude of the

Jacobian determinant |J(z)|, which is |∂y/∂z| = 1/(2
√
z) in this case. Using

this method, we obtain

fz(z) = 1
σ2 e

− z
σ2 for z ≥ 0, (2.91)

while it is zero for z < 0. This PDF characterizes the variations in the squared
magnitude of a complex Gaussian random variable. It matches what is known
as the exponential distribution. This distribution is generally characterized
by a so-called rate parameter, which in this case equals 1/σ2. Hence, we can
express the distribution of the squared magnitude as z ∼ Exp(1/σ2). The
PDF with σ2 = 1 is illustrated in Figure 2.7.

A useful property of the exponential distribution is that

E{zn} = n!(σ2)n (2.92)

for any positive integer n, where n! denotes the factorial.

Example 2.12. Suppose x ∼ NC(0, σ2). What are the mean, quadratic mean,
and variance of |x|2?

Since z = |x|2 ∼ Exp(1/σ2), we can utilize the property in (2.92) to
compute the mean, quadratic mean, and variance of |x|2 as follows:

E
{
|x|2

}
= E{z} = σ2, (2.93)

E
{
|x|4

}
= E

{
z2} = 2σ4, (2.94)

Var
{
|x|2

}
= E

{
|x|4

}
−
(
E
{
|x|2

})2 = σ4. (2.95)

We can also utilize the property in (2.92) when computing mean values that
involve an M -dimensional complex Gaussian random vector with independent
entries: x = [x1, . . . , xM ]T ∼ NC(0, σ2IM ). Since zm = |xm|2 ∼ Exp(1/σ2) for
m = 1, . . . ,M , we can compute mean, quadratic mean, and variance of the
squared norm ∥x∥2 as follows:

E
{
∥x∥2} =

M∑
m=1

E{zm} = Mσ2, (2.96)

E
{
∥x∥4} = E


(

M∑
m=1

zm

)2 =
M∑
m=1

E
{
z2
m

}
+

M∑
m=1

M∑
n=1
n ̸=m

E{zm}E{zn}

= 2Mσ4 +M(M − 1)σ2σ2 = (M2 +M)σ4, (2.97)

Var
{
∥x∥2} = E

{
∥x∥4}− (E{∥x∥2})2 = Mσ4. (2.98)
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Figure 2.7: Examples of the PDFs of the Rayleigh distribution, exponential distribution, and
χ2-distribution.

These results were obtained by utilizing the fact that ∥x∥2 =
∑M
m=1 zm

is the sum of M independent random variables with identical exponential
distribution. By utilizing the fact that the PDF of a sum of independent
random variables is the convolution of the marginal PDFs, one can show that
the squared norm has the PDF

f∥x∥2(x) = xM−1e− x
σ2

(σ2)M (M − 1)! for x ≥ 0, (2.99)

while it is zero for x < 0. This distribution is often referred to as the χ2-
distribution in the communication literature and denoted as χ2(2M), where
2M is called the degrees of freedom since ∥x∥2 is the sum of 2M squared real
Gaussian variables. However, formally speaking, it is only in the special case
of σ2 = 2 that one obtains that random distribution. Hence, we will refer to
(2.99) as the scaled χ2-distribution in this book. The mean Mσ2 of ∥x∥2 was
computed in (2.96), while the variance Mσ4 was computed in (2.98). If we set
M = 1, then the χ2(2M)-distribution reduces to the exponential distribution.
The PDF with M = 2 and σ2 = 1 is illustrated in Figure 2.7.

2.2.6 Cumulative Distribution Function

It is common to compare the realization of a real-valued random variable
with a threshold when analyzing the performance of a communication system.
Suppose the random variable is x and the threshold is a, then the probability
Pr{x ≤ a} of x taking realizations smaller than or equal to a is important.
To characterize how its value depends on the threshold, we can define the
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Figure 2.8: The CDF of the Rayleigh distribution for σ2 = 1, where the 25% percentile, median,
and 75% percentile points are marked.

cumulative distribution function (CDF) Fx(a) as

Fx(a) = Pr{x ≤ a} =
∫ a

−∞
fx(x)∂x, (2.100)

which is computed by integrating the PDF from its lower limit (generally
from −∞, but we can start from 0 for positive random variables) to a. The
CDF is a monotonically increasing function of a since we are integrating the
non-negative PDF fx(x) over an increasing interval. Moreover, it only takes
values between 0 and 1, which equal the probability of the event Pr{x ≤ a}.
The CDF provides a full characterization of the random distribution, just
as the PDF does; for example, the PDF can be retained from the CDF by
computing the first-order derivative:

∂

∂x
Fx(x) = fx(x). (2.101)

The value of a for which Fx(a) = 0.5 is known as the median of the
distribution because it is equally likely to obtain a realization above and below
it. If the CDF is strictly increasing and continuous, the inverse CDF F−1

x (y)
exists and is called the percentile function. We can then compute the median
as F−1

x (0.5). The point F−1
x (0.25) is called the 25% percentile since 25% of

all random realizations are below it, while the point F−1
x (0.75) is called the

75% percentile since 75% of all random realizations are below it (and 25% are
above it). The small and large percentiles are of interest when analyzing a
random variable’s worst-case and best-case realizations.

Figure 2.8 shows the CDF of the Rayleigh distribution for σ2 = 1. The
horizontal axis emphasizes the 25% percentile point

√
ln(4/3) where the CDF
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is 0.25, the median
√

ln(2) where the CDF is 0.5, and the 75% percentile
point

√
ln(4) where the CDF is 0.75. Many different CDF curves can be

drawn through these three points; thus, the entire CDF is required to obtain
a complete statistical characterization of the Rayleigh distribution. The CDF
and percentiles used in the figure are computed as follows.

Example 2.13. Consider the Rayleigh distribution x ∼ Rayleigh(σ/
√

2) in
(2.90). What CDF and percentile function does it have?

The PDF is fx(x) = 2x
σ2 e

− x2
σ2 for x ≥ 0, thus the CDF becomes

Fx(a) =
∫ a

0

2x
σ2 e

− x2
σ2 ∂x =

[
−e− x2

σ2

]a
0

= 1− e− a2
σ2 . (2.102)

The percentile function F−1
x (y) can be obtained by inverting the CDF in

(2.102) as

y = 1− e− a2
σ2 ⇒ 1− y = e− a2

σ2 ⇒ ln(1− y) = −a
2

σ2

⇒ F−1
x (y) = a = σ

√
ln
( 1

1− y

)
. (2.103)

We can use this function to identify any percentile of the distribution;
for example, the median is F−1

x (0.5) = σ
√

ln(2), the 25% percentile is
F−1

x (0.25) = σ
√

ln(4/3), and the 75% percentile is F−1
x (0.75) = σ

√
ln(4).

These values are indicated on the horizontal axis in Figure 2.8 for σ2 = 1.

2.2.7 Random Process

A random continuous-time signal x(t) is called a random process and is a
generalization of a multivariate random variable. More precisely, if we take
samples of a random process at the M time instances t1, . . . , tM and collect
them in a vector  x(t1)

...
x(tM )

 , (2.104)

then we obtain a multivariate random variable.
The random processes considered in this book are wide-sense stationary,

which means that the random distribution is constant over time. Three specific
properties are satisfied for such processes. Firstly, the mean value µ = E{x(t)}
does not depend on the time t. Secondly, the variance σ2 = E{|x(t)−µ|2} also
does not depend on the time t. The third property relates to how the random
process is correlated in time, measured by the autocorrelation function. The
correlation between the samples at time t1 and t2 should only depend on the
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time lag t2− t1 between the samples and not on their individual values. Hence,
the autocorrelation function of a wide-sense stationary process is denoted as

r(t2 − t1) = E{x(t1)x∗(t2)}. (2.105)

A white random process changes so rapidly with the time that x(t1)
and x(t2) are only correlated when t1 = t2. This is represented by the
autocorrelation function

r(t2 − t1) = cδ(t2 − t1), (2.106)

where c = |µ|2 + σ2 is called the power spectral density and δ(t) is the Dirac
delta function.

A complex Gaussian random process has the property that the vector in
(2.104) becomes a multivariate complex Gaussian distribution, irrespective
of the time instances at which the samples are taken. The noise in wireless
communications is often modeled as a white complex Gaussian random process.

2.3 Signal Modeling

Wireless communication systems transfer data by utilizing electromagnetic
signals. These signals propagate from the transmitter to the receiver over
an analog wireless channel that acts as a system that filters the signal. This
section provides the fundamental connection between the physical continuous-
time signal models and the simple discrete-time models used in later book
sections. We will use standard results from signals-and-systems theory to
establish the connection.

Suppose we are allowed to communicate using a real-valued passband
signal with bandwidth B centered around a carrier frequency fc. For example,
a typical scenario in the first 5G deployments is fc = 3 GHz and B = 100 MHz.
The passband assumption implies that B < 2fc so that the signal does not
contain the near-zero frequency range. In practice, we typically have B ≪ fc,
as in the given example. Let the transmitted signal be denoted as zp(t), where
t ∈ R is the continuous time variable and the subscript p indicates it is a
passband signal. The amplitude spectrum of such a signal is sketched in
Figure 2.9(a). The signal zp(t) is real-valued; thus, the spectrum is symmetric
for positive and negative frequencies.

Wireless channels generally have time-varying properties, for example, due
to the movement of the transmitter, receiver, or objects in the propagation
environment. However, we can divide the transmission into blocks such that
the channel is (approximately) time-invariant within each block. Following
that approach, we assume that the wireless channel can be represented by a
linear time-invariant (LTI) system. A key property of such systems is that
the filtering is entirely determined by the real-valued impulse response gp(t).



2.3. Signal Modeling 83

Frequency

Amplitude spectrum of zp(t)

B

+fc−fc
(a) Real-valued passband signal with bandwidth B.

Frequency

Amplitude spectrum of z(t)

B/2

0
(b) Complex-valued baseband signal with bandwidth B/2.

Figure 2.9: Sketch of a real-valued passband signal zp(t) with center frequency fc and
bandwidth B that can be communicated over a wireless channel, and the equivalent complex-
valued baseband signal z(t) that can be communicated over the complex baseband representation
of the channel. The mathematical relation between the two signals is given in (2.111).

In particular, the output signal υp(t) is the convolution between the input
signal and impulse response:

υp(t) = (gp ∗ zp)(t) =
∫ ∞

−∞
gp(u)zp(t− u)∂u. (2.107)

The impulse response must satisfy the technical condition
∫∞

−∞ |gp(t)|∂t <∞
for (2.107) to hold, but this is always the case in wireless communications
since otherwise, one could receive more signal energy than was transmitted.

The input-output relation in (2.107) is illustrated in Figure 2.10(a). We
will later add the transmitter and receiver hardware to this model, including
the additive noise, but we will first reformulate the basic relation.

2.3.1 Complex Baseband Representation

To avoid making the communication system design dependent on a particular
value of fc, the signal processing algorithms used in wireless communications
are developed for an equivalent baseband system where the signals are centered
around the zero frequency. If we take the spectrum of the passband signal
in Figure 2.9(a) and downshift it to the baseband, we obtain the equivalent
signal z(t) whose amplitude spectrum is illustrated in Figure 2.9(b). This is
called the complex baseband representation of the signal in Figure 2.9(a). If
the hardware is designed to generate baseband signals of this type, we can
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gp(t)zp(t)

Channel

υp(t) = (gp ∗ zp)(t)

(a) Relation between the transmitted and received passband signals.

g(t)z(t)

Equivalent channel

υ(t) = (g ∗ z)(t)

(b) Equivalent relation using complex-baseband signals.

Figure 2.10: Block diagrams of the input-output relations when transmitting a signal over
a wireless channel. The practical system transmits passband signals but can be equivalently
represented in the complex baseband.

modulate the signals up to different carrier frequencies at different times (e.g.,
a mobile phone supports many bands so that it can be used worldwide).

We can establish a mathematical connection between zp(t) and z(t) in the
frequency domain by utilizing the Fourier transform F{·}. The frequency-
domain representation of an arbitrary continuous-time signal a(t) is defined
as

A(f) = F{a(t)} =
∫ ∞

−∞
a(t)e−j2πft∂t. (2.108)

The Fourier transform is generally complex-valued, but it is conjugate sym-
metric if the signal a(t) is real-valued: A∗(−f) = A(f). This is proved as

A∗(−f) =
(∫ ∞

−∞
a(t)e−j2π(−f)t∂t

)∗
=
∫ ∞

−∞
a∗(t)e−j2πft∂t = A(f), (2.109)

where the last equality follows from that a(t) = a∗(t) for real-valued signals.
The frequency-domain representations of the passband signal and baseband

signal respectively become Zp(f) = F{zp(t)} and Z(f) = F{z(t)} when using
the Fourier transform. We can then express the relation shown in Figure 2.9
as

Zp(f) = Z(f − fc) + Z∗(−f − fc)√
2

. (2.110)

The scaling factor 1/
√

2 ensures that the passband and baseband signals
have the same energy; that is,

∫∞
−∞ |Zp(f)|2∂f =

∫∞
−∞ |Z(f)|2∂f . By taking

the inverse Fourier transform of both sides of (2.110), it follows that the
time-domain signals zp(t) and z(t) are related as

zp(t) = z(t)ej2πfct + z∗(t)e−j2πfct

√
2

=
√

2ℜ
(
z(t)ej2πfct

)
. (2.111)
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We notice that the amplitude spectrum of z(t) in Figure 2.9(b) is not symmetric
for positive and negative frequencies, which implies that it is a complex-valued
signal. Any real-valued passband signal zp(t) with bandwidth B can be
equivalently represented by a complex-valued signal z(t) with bandwidth B/2
according to (2.111). The bandwidth is halved, but there are instead both real
and imaginary signal dimensions. The signal z(t) has the same total energy as
zp(t), meaning that

∫∞
−∞ |z(t)|

2∂t =
∫∞

−∞ |zp(t)|2∂t, but the energy is moved
to different frequencies.1

Next, we would like to find a complex baseband representation of the entire
output-input relation in (2.107), so we can abstract away the carrier frequency
and only analyze the baseband. To this end, we let Gp(f) = F{gp(t)} denote
the frequency response of the system, which determines how the channel filters
different frequencies of the input signal. By taking the Fourier transform of
both sides of (2.107) and utilizing (2.110), we obtain

Υp(f) = F{υp(t)} = Gp(f)Zp(f)

= Gp(f)Z(f − fc) + Z∗(−f − fc)√
2

=
Gp(f)Z(f − fc) +G∗

p(−f)Z∗(−f − fc)
√

2
. (2.112)

The last equality in (2.112) follows the fact that Gp(f) = G∗
p(−f) for real-

valued systems. Since (2.110) and (2.111) provide a general connection between
a passband signal and its equivalent complex-baseband signal, we can define
the received signal υ(t) in the complex baseband and relate it to the received
passband signal as

υp(t) = ℜ
(√

2υ(t)ej2πfct
)
, (2.113)

Υp(f) = F{υp(t)} = Υ(f − fc) + Υ∗(−f − fc)√
2

, (2.114)

where Υ(f) = F{υ(t)}. By comparing (2.112) with (2.114), we can identify
the Fourier transform of the received baseband signal as

Υ(f − fc) = Gp(f)Z(f − fc) ⇒ Υ(f) = Gp(f + fc)Z(f). (2.115)

Taking the inverse Fourier transform of (2.115) yields

υ(t) = (g ∗ z)(t) =
∫ ∞

−∞
g(u)z(t− u)∂u, (2.116)

where the complex baseband representation of the system has the frequency
response G(f) = Gp(f + fc) and impulse response

g(t) = gp(t)e−j2πfct. (2.117)
1If the total signal energy is infinite, we can compare the signal powers and conclude that

these are equal. The power of a signal a(t) is computed as limT→∞
1

2T

∫ T
−T |a(t)|2∂t.
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We identify (2.116) as an equivalent way to describe a continuous-time com-
munication channel in the complex baseband. The input-output relation is
illustrated in Figure 2.10(b). Note that the complex-baseband terminology only
refers to the signals: we have taken the passband signal zp(t) and downshifted
it to the complex-baseband signal z(t). In contrast, the impulse responses
in wireless communications are neither passband nor baseband filters. In
fact, the wireless medium supports communication at any frequency and
bandwidth, and causes varying attenuation and delays to signals in different
bands. However, by sending signals confined to a specific frequency range
[fc −B/2, fc +B/2], we are only using the corresponding part of the wireless
medium. In contrast, other systems can use different parts simultaneously.
The only difference between g(t) in (2.117) and the original impulse response
gp(t) is that it has been downshifted along the frequency axis so that the
channel filters the signal in an equivalent manner.

Without loss of generality, we will consider the complex baseband in the
remainder of this book, except at a few places where we model the impulse
response gp(t) of a particular wireless channel and then use (2.117) to obtain
the equivalent impulse response in the complex baseband.

2.3.2 From Continuous Time to Discrete Time

Digital data is described by a sequence of bits. In digital communications, these
bits are further represented by a discrete data sequence {x[l]} of symbols
selected based on the bits, where the integer l is the discrete time index.
The symbols are selected from the complex set C, such that x[l] ∈ C. More
precisely, a modulation and channel coding scheme is utilized to decide how
many bits each symbol represents and how much redundancy is introduced to
enable error correction in the receiver. We need to create a continuous-time
signal z(t) that contains the data symbols {x[l]} and can be transmitted as
an analog electromagnetic wave over the wireless channel. This is achieved by
pulse-amplitude modulation (PAM). We will not explain all the underlying
theory but focus on the properties needed to derive the discrete-time model
we will use in the remainder of the book.

The essence of PAM is that each of the symbols {x[l]} is multiplied by a
continuous-time pulse and then transmitted one after the other. We consider
PAM with the ideal sinc-pulse2

p(t) =
√
Bsinc(Bt) =

√
B

sin(πBt)
πBt

, (2.118)

which has the Fourier transform

P (f) = F{p(t)} =
{

1/
√
B, if |f | ≤ B/2,

0, if |f | > B/2.
(2.119)

2In the communications and signal processing literature, the sinc function is defined as
sinc(t) = sin(πt)/(πt) for t ̸= 0 and sinc(0) = 1. Other definitions exist in other contexts.
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This baseband pulse has bandwidth B/2, can be used as an ideal lowpass
filter in the frequency domain, and has unit energy:

∫∞
−∞ |P (f)|2∂f = 1. An

illustration of these functions is provided in Figure 2.11. The sinc-function
sinc(t) oscillates in the time domain with a linearly reducing amplitude and
zero-crossings when t is a non-zero integer. Hence,

√
Bsinc(Bt) has zero-

crossing when t is a non-zero integer divided by B. We will exploit this feature
to transmit a new data symbol x[l] every 1/B seconds while keeping them
separable at the receiver. Any pulse function with these zero-crossings is
said to satisfy the Nyquist criterion and could be used instead of the sinc-
function, but one can prove that the feasible alternatives have a strictly larger
bandwidth than B/2. The bandwidth of the transmitted signal will match that
of the pulse; thus, we will consider PAM using the most bandwidth-efficient
pulse in this book. If we increase B, then

√
Bsinc(Bt) will be compressed in

the time domain (i.e., having more zero-crossings per second so we can send
more data symbols), while it will expand in the frequency domain.

When using PAM, the continuous-time complex-baseband signal is

z(t) =
∞∑

k=−∞
x[k] p

(
t− k

B

)
, (2.120)

where we notice that a new symbol is transmitted every 1/B seconds and
multiplied by a time-delayed version of p(t). It is common to refer to 1/B as
the symbol time and B as the symbol rate (in addition to being the bandwidth).
Notably, B complex-valued symbols are transmitted per second, and more
bandwidth leads to a shorter time between the symbols. The PAM procedure
is tightly connected to the Nyquist-Shannon sampling theorem [38, Th. 1],
which can be stated for complex signals as follows [39, Sec. 2.8].

Lemma 2.8. If a complex-valued continuous-time signal z(t) only contains
frequencies in an interval smaller than BHz, it is entirely determined by a
series of samples spaced 1/B seconds apart.

Two commonly considered frequency intervals that satisfy this condition
are −B/2 < f ≤ B/2 and −B/2 ≤ f < B/2, which can be written in short
form as (−B/2, B/2] and [−B/2, B/2), respectively. The interval shrinks to
(−B/2, B/2) for real-valued signals since such signals always contain the same
positive and negative frequencies. The intuition behind the sampling theorem
is that the largest frequency (in magnitude) determines how rapidly the signal
can change. If the largest frequency is B/2 or −B/2 (but not both), then the
fastest signal components have a period of 2/B. We can uniquely capture all
signal variations if we sample the signal twice per period (i.e., at a sampling
rate of BHz). This specific sampling rate is known as the Nyquist rate and
gives rise to B samples per second. It is also called the critical sampling rate
to signify that it is fully acceptable to sample the signal more densely, but it
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(a) Time domain.

(b) Frequency domain.

Figure 2.11: The unit-energy sinc function
√
Bsinc(Bt) is shown in the time domain in (a),

while the Fourier transform is shown in (b).

is critically important not to sample more sparsely in time because that will
create ambiguity; that is, multiple signals can give rise to the same samples,
which is known as aliasing. We are transmitting data at the Nyquist rate in
digital communications, and it is the corresponding signal samples that we call
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“symbols” and select to represent information bits.3 Since we are dealing with
a complex-valued baseband signal, the B samples are also complex-valued.

Figure 2.12(a) shows the pulses that are utilized for transmitting three
subsequent symbols in PAM: p(t) =

√
Bsinc(Bt), p(t− 1/B), and p(t− 2/B).

More precisely, p(t) is multiplied by x[0], p(t − 1/B) is multiplied by x[1],
and p(t − 2/B) is multiplied by x[2], and then summed up to create z(t).
The symbol values become the amplitudes of the respective pulses, which
explains why PAM stands for pulse-amplitude modulation. Figure 2.12(b)
exemplifies the resulting PAM signal z(t) in (2.120) with x[0] = 1, x[1] = 0.5,
and x[2] = −0.5 (and x[k] = 0 for all other k). We notice that the duration
of each pulse is much larger than the symbol time; thus, each symbol affects
the shape of z(t) in a relatively broad time interval. This is an unavoidable
side-effect of using pulses with as little bandwidth as possible. Nevertheless,
we have z(k/B) = p(0)x[k] =

√
Bx[k] since the pulses are designed to have

zero-crossings at all non-zero integers divided by B. This can be observed in
Figure 2.12(b) where z(t) intersects the peak values of the respective pulses.

We have now designed a transmitter that maps the discrete-time symbol
sequence {x[l]} to a continuous-time signal z(t) that can be transmitted over
the complex-baseband system. The transmitter operation is illustrated in
Figure 2.13, where it is attached to the channel from Figure 2.10(b).

Next, we will design a receiver that can extract the transmitted discrete-
time signals by taking samples of the received signal. The main complication
is that thermal noise is added to υ(t) in the receiver hardware due to the
random motion of free electrons caused by thermal agitation. We model the
noise by a white circularly symmetric complex Gaussian random process w(t)
with constant power spectral density N0 W/Hz for all (relevant) frequencies.4
The Gaussian distribution can be motivated by the central limit theorem
in Lemma 2.6 since the random motion of many electrons gives rise to
approximately Gaussian randomness. By adding the noise to the channel
output υ(t) in (2.116), we obtain

µ(t) = υ(t) + w(t) = (g ∗ z)(t) + w(t)

=
∞∑

k=−∞
x[k] (g ∗ p)

(
t− k

B

)
+ w(t), (2.121)

3The sampling rate must be strictly larger than the Nyquist rate if a signal that contains
the frequencies ±B/2 should be identifiable after sampling. This can be seen from the fact that
Nyquist sampling of a sine signal results in all samples being zero because they are taken every
time the signal crosses zero. Practical communication signals are never perfectly bandlimited;
thus, oversampling is often utilized to avoid aliasing and enable digital filtering that deals with
the out-of-band signal components. These implementation details are beyond the scope of this
book, where we consider ideal pulses and sampling at the Nyquist rate for conceptual simplicity.

4A practical signal cannot have a constant power spectral density for all frequencies because
then it will have infinite power. Hence, we assume that the power spectral density is constant
for all relevant frequencies to consider in wireless communications but can drop to zero for other
frequencies to keep the power finite (this happens in practice for extremely large frequencies).
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(a) Three subsequent pulses in PAM.

(b) Example of PAM for x[0] = 1, x[1] = 0.5, and x[2] = −0.5.

Figure 2.12: The PAM signal z(t) defined in (2.120) uses time-shifted pulses, as illustrated in
(a) for p(t) =

√
Bsinc(Bt). These pulses are multiplied by different symbol values and summed

up to create z(t), as shown in (b).
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+

Transmitter Receiver

x[l] y[l]g(t)
z(t) υ(t) µ(t)

w(t)

PAM Lowpass

Figure 2.13: The transmitter of a communication system generates a continuous-time signal
z(t) from the discrete-time symbol sequence {x[l]}, using PAM. The receiver is undoing this
operation by lowpass filtering (to suppress noise) and sampling. The channel in the middle is
the same as in Figure 2.10(b).

where the last equality follows from (2.120). The additive noise is spread over
all frequencies, while the desired signal υ(t) is bandlimited to |f | ≤ B/2 by
design. Hence, we can remove the out-of-band noise by lowpass filtering µ(t)
without affecting the desired signal.5 The sinc-pulse p(t) defined in (2.118)
and (2.119) is an ideal lowpass filter that can be used for this purpose. We
will filter µ(t) by p(t) and take samples of the output at the same rate as the
symbols are transmitted; that is, one sample every 1/B seconds. We denote
the time instances of the samples as t = l/B, where l is the integer sample
index, and thereby obtain the sampled received signal

y[l] = (p ∗ µ)(t)
∣∣∣
t=l/B

=
∞∑

k=−∞
x[k] (p ∗ g ∗ p)

(
t− k

B

) ∣∣∣∣
t=l/B

+ (p ∗ w)(t)
∣∣∣
t=l/B

=
∞∑

k=−∞
x[k](p ∗ g ∗ p)

(
l − k
B

)
+ n[l], (2.122)

where the discrete-time noise n[l] can be shown (see Exercise 2.5) to be
complex Gaussian distributed and independent for different l:

n[l] = (p ∗ w) (t)
∣∣∣
t=l/B

∼ NC(0, N0). (2.123)

We have now derived the discrete-time system model (2.122) that determines
how the sampled received signal y[l] depends on the input symbol sequence
{x[k]}. Hence, we can abstract away the notationally complicated continuous-
time description of the communication system and only consider discrete-time
models in the remainder of this book.

2.3.3 Basic Wireless Channel Modeling

Wireless channels have a particular structure that we can utilize to simplify
the system model: the received signal is a summation of several attenuated and

5This operation is also necessary in practice to filter out interference from other wireless
systems operating in neighboring frequency bands.
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α3δ(t+η−τ3)

α2δ(t+η−τ2)

α1δ(t+η−τ1)

Figure 2.14: The passband channel model in (2.124) consists of L components with different
attenuation αi and delay τi. This figure illustrates how these components can be connected to
different propagation paths.

delayed copies of the transmitted signal (i.e., a superposition of echos). Suppose
the received signal consists of L copies, each having an attenuation αi ∈ [0, 1]
and a delay τi ≥ 0 seconds, for i = 1, . . . , L. The receiver synchronizes its
clock to the transmitter by delaying it by η ≥ 0 seconds to compensate for
the propagation delays. The receiver will then observe a superposition of L
signal copies that are delayed by τi − η ∈ R, for i = 1, . . . , L. We can write
the impulse response of the channel in the passband as

gp(t) =
L∑
i=1

αiδ(t+ η − τi) (2.124)

and it then follows from (2.117) that the equivalent impulse response in the
complex baseband is

g(t) =
L∑
i=1

αie
−j2πfctδ(t+ η − τi). (2.125)

Figure 2.14 illustrates how the L copies can be connected to different prop-
agation paths in the environment. The delay of a path is closely related to
the length of the corresponding path, while the attenuation is determined by
the distance that the signal has traveled (as in free-space propagation) and
which objects the signal has interacted with along the way. Note that the
impulse response in the complex baseband contains additional phase-shifts
that depend on the carrier frequency.

The channel g(t) appears in (2.122) as the convolution (p∗g∗p)(t) sampled
at time t = l−k

B . For the model in (2.125), this convolution term becomes

(p ∗ g ∗ p)(t) =
L∑
i=1

αie
−j2πfc(τi−η)(p ∗ p)(t+ η − τi) (2.126)
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by utilizing the fact6 that the convolution between an arbitrary function f(t)
and the delayed Dirac delta function e−j2πfctδ(t−τ) is equal to e−j2πfcτf(t−τ),
where τ = τi − η and f(t) = (p ∗ p)(t) in this case. We further notice that
(p ∗ p)(t) = sinc(Bt) since the Fourier transform of (p ∗ p)(t) is

F {(p ∗ p)(t)} = P (f)P (f) =
{

1
B , if |f | ≤ B/2,
0, if |f | > B/2,

(2.127)

which coincides with the Fourier transform of sinc(Bt). By utilizing this
property and (2.126), we can simplify (2.122) as

y[l] =
∞∑

k=−∞
x[k]

L∑
i=1

αie
−j2πfc(τi−η)sinc

(
(l − k) +B(η − τi)

)
+ n[l]. (2.128)

2.3.4 Discrete Memoryless Channel Model

The received signal y[l] in (2.128) at time l depends on multiple transmitted
symbols, as can be seen by the summation over k. Since the symbols were
transmitted one after the other, the channel has created the intersymbol
interference. This happens when the L paths in our channel model have
widely different lengths/delays so that a symbol that reaches the receiver over
a short path arrives at the same time as a previous symbol arrives over a
longer path. Another way to view it is that the received signal y[l] is not
only containing the latest transmitted symbol x[l] but also has a memory of
previously transmitted symbols (and potentially future symbols due to the
non-causal sinc-pulse). The memory effect is undesired and can be combatted
in various ways. We will identify a condition for when the memory vanishes.

If all the channel components have roughly the same delay, we can synchro-
nize the receiver by selecting η such that B(η − τi) ≈ 0 for all i. To alleviate
the channel memory, we want the following approximation to hold:

sinc
(
(l − k) +B(η − τi)

)
≈ sinc(l − k) =

{
1, if l = k,

0, if l ̸= k.
(2.129)

Since we can always make this approximation tight by selecting a sufficiently
small bandwidth B, this is known as the narrowband signal assumption. This
result follows from two assumptions that we have made. First, p(t) was selected
to be the pulse in the PAM since it satisfies the Nyquist criterion; that is,
(p ∗ p)(l/B) is zero for all integers l except l = 0. Second, the narrowband
assumption implies that the channel will not tamper with the Nyquist criterion.
We stress that the narrowband assumption is valid for large bandwidths in
environments with tiny path delay differences (or only one path).

6The convolution is computed as
∫∞

−∞ e−j2πfcuδ(u − τ)f(t − u)∂u = e−j2πfcτf(t − τ) by
using the sifting property of the Dirac delta function.
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+h

n[l]

y[l]x[l]

Figure 2.15: A discrete memoryless SISO channel with input x[l] and output y[l] = h ·x[l]+n[l],
where l is a discrete time index, h is the channel response, and n[l] is the independent complex
Gaussian receiver noise.

By inserting (2.129) into (2.128), the system model simplifies to

y[l] =
∞∑

k=−∞
x[k]

L∑
i=1

αie
−j2πfc(τi−η)sinc(l − k) + n[l]

= h · x[l] + n[l], (2.130)

where l is a discrete-time index, and the channel is now represented by

h =
L∑
i=1

αie
−j2πfc(τi−η). (2.131)

From now on, we will refer to h ∈ C as the channel response and note that
β = |h|2 is the channel gain described in Chapter 1. In some parts of this
book, we will utilize h as an arbitrary channel response, while there are other
parts where we will utilize and generalize the specific structure in (2.131).

Interestingly, we can represent the entire continuous-time communication
system in Figure 2.13 by the simple equation (2.130). This is called the symbol-
sampled discrete-time representation of the channel and will be used in the
remainder of this book without loss of generality. A block diagram for this
channel is given in Figure 2.15, where we also stress that this is a single-input
single-output (SISO) channel with one input to the channel and one output.

The type of channel in (2.130) is also known as a discrete memoryless
channel since the received signal y[l] only depends on one transmitted signal
x[l] and one independent noise realization n[l]; there is no memory of previous
time instances or impact from later time instances. For this reason, we can
just as well drop the time index l and get the system model

y = h · x+ n. (2.132)

When designing the input signal x, we often treat it as a random variable. We
will let q denote the average signal energy per symbol (which is a measure of
signal power), which implies E{|x|2} = q. The system in (2.132) is also known
as an additive white Gaussian noise (AWGN) channel.
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2.4 Performance Metrics

This section explains how much information can be transmitted reliably over
the discrete memoryless channel in (2.132). We consider the transmission of a
finite-sized data packet that represents a particular piece of information (e.g.,
an image, a text document, a piece of a video, or a control command). In this
book, we use the words information and data interchangeably because we
consider transferring bits from a transmitter to a receiver, while abstracting
away what those bits might represent. However, we stress that data generally
refers to the raw sequence of bits considered within a communication system,
while information is the application-level interpretation of these bits.

A data packet is characterized by the following:

• How many symbols the packet contains, which is the number of times
we will transmit over the channel in (2.132);

• How many data bits each of these symbols represent, determined by the
modulation and coding scheme;

• How large the probability of incorrect decoding is at the receiver.

When transmitting a packet containing a small number of symbols, the proba-
bility of incorrect decoding is a major concern. Hence, a common performance
metric is the symbol error probability (also called the symbol error rate), which
is the probability that an arbitrary symbol x[l] is decoded incorrectly. This
metric has many variations, such as the bit error probability and packet error
probability. The values of these error probabilities depend on the choice of the
modulation and coding scheme, and the SNR of the channel. In each case, one
can derive exact or approximate error probability expressions, which often
contain the Gaussian Q-function due to the Gaussian noise.

Letting each symbol describe many data bits is desirable, but the error
probability increases when more bits are represented. Hence, there is a tradeoff
between low error probability and many data bits per symbol. This tradeoff
is non-trivial when transmitting packets with a small number of symbols. It
typically boils down to selecting a non-zero target error probability based
on experiments (e.g., 0.01) and then selecting the “best” modulation and
coding scheme that satisfies that target from a predefined list of schemes.
When an error occurs, we need to retransmit the packet. This tradeoff is
illustrated in Figure 2.16(a), where there are few errors when transmitting a
few bit/symbol and many errors when transmitting many bit/symbol. The
gradual color change shows how the error probability increases gradually.

In contrast, when transmitting a packet with many symbols, the error
probability can be made negligible by selecting the proper modulation and
coding scheme, which renders the error metric superfluous. The “right” scheme
should operate close to, but below, the channel capacity. Claude Shannon
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(a) Small packet.

(b) Large packet.
Figure 2.16: The packet error probability increases the more bits are transmitted per symbol.
When the packet is small, then there is a gradual transition between a few and many errors,
as shown in (a). However, when the packet is large, the transition is concentrated in a small
interval around the channel capacity C.

defined the capacity in the seminal paper [40] from 1948, therefore, it is also
known as the Shannon capacity. Figure 2.16(b) illustrates the essence of this
result, namely that the transition between having few and many errors in the
transmission happens in a small interval around a value C bit/symbol called
the capacity when the packet is large. It can be formally defined as follows.

Definition 2.6. The channel capacity of a given channel is the highest number
of bits per symbol that can be communicated with arbitrarily low error
probability as the number of symbols in the packet approaches infinity.

The interpretation of the channel capacity is that we can communicate
without error when sending long sequences of symbols, if we carefully select
how many bits each symbol represents. This implies that the gradual colored
transition interval shown in Figure 2.16(b) vanishes asymptotically so that
we get a sudden shift between no errors when operating below the capacity C
and many errors when operating above the capacity. In this context, “long”
means (at least) 10000 symbols [41], which takes 1 ms to transmit when
using B = 10 MHz. This is relatively short in practice; thus, many wireless
communication systems operate very close to the capacity. Since one of the
core motivating factors of multiple antenna communications is to transmit a
large amount of data in a way that is faster and/or requires less power than
in single-antenna communications, it is natural to adopt the channel capacity
as the performance metric in this book. That said, methods to achieve high
capacity with multiple antennas coincide, to a large extent, with methods
that provide low error probabilities when transmitting small data packets.

The unknown randomness of the noise must be combatted to achieve
reliable (error-free) communications. When sending long sequences of sym-
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bols, many independent realizations of the noise will be observed, and the
uncertainty can be averaged out if we code the data in the right way. The
channel capacity determines how much data can be coded into the sequence
of symbols while enabling the noise effect to average out.

2.4.1 Basic Capacity Results

Since the capacity represents the highest number of bits per symbol that can
be communicated without errors, any “bit per symbol” value between zero
and the capacity can also be used without errors. Each such number is called
an achievable data rate, an achievable rate, or a rate.

Definition 2.7. An achievable data rate is a positive number below the channel
capacity. It is possible to communicate at this rate with arbitrarily low error
probability as the number of symbols in the packet approaches infinity.

Although the capacity is of primary interest, there are situations where
the capacity is unknown. Therefore, it is crucial to find achievable data rates
that can be used to communicate without error.

The channel capacity can be rigorously defined for any communication
channel, but we refer to [40] and [42] for the general details. This book only
considers the general concept of discrete memoryless channels. For such a
channel that takes the data symbol x as input and produces y as output, the
channel capacity takes the following form as proved in [38], [40], [42].

Theorem 2.1. Consider a discrete memoryless channel with input x ∈ C and
output y ∈ C, which are two random variables specified by the conditional
PDF fy|x(y|x). The channel capacity is

C = max
fx(x)

(
H(y)−H(y|x)

)
, (2.133)

where the maximum is taken with respect to all distributions fx(x) of the
input that are considered feasible. The differential entropy H(y) is defined as

H(y) = −
∫
y∈C

log2
(
fy(y)

)
fy(y)∂y (2.134)

using the marginal distribution fy(y) =
∫
x∈C fy|x(y|x)fx(x)∂x of y and the

conditional differential entropy H(y|x) is defined as

H(y|x) = −
∫
y∈C

∫
x∈C

log2
(
fy|x(y|x)

)
fy|x(y|x)fx(x)∂x∂y. (2.135)

We note that all the integrals in Theorem 2.1 are computed over the entire
complex plane, which is the same as considering a double integral where both
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H(x) H(y)

H(x|y) I(x; y) H(y|x)

Figure 2.17: The left circle (green) represents the random variable x and the right circle (red)
represents the random variable y. The circle areas match the respective differential entropies
H(x) and H(y), while the intersection is the mutual information I(x; y) that can be computed
in the two ways described in (2.137). The capacity is the maximum mutual information; that is,
the information that is contained in both the transmitted signal x and the received signal y.

the real and imaginary parts are integrated from −∞ to +∞. The capacity
in (2.133) is given by the difference between two terms: H(y)−H(y|x). The
differential entropy H(y) measures our surprisal when observing a realization
of the random variable y at the receiver, which also measures the amount
of unknown information that the variable conveys. The differential entropy
can take any value from −∞ to +∞, where a larger value implies a larger
surprisal. Similarly, H(y|x) measures the amount of additional information
we obtain by observing y if we already know x. It holds that H(y) ≥ H(y|x)
since observing x cannot increase our surprisal when we later observe y, but
it can usually reduce the surprisal substantially. Hence, H(y)−H(y|x) ≥ 0
and the channel capacity must be greater than or equal to zero.

More generally, the differential entropy of a sequence x1, . . . , xL of random
variables can be expressed using the following chain rule:

H(x1, . . . , xL) =
L∑
l=1
H(xl|x1, . . . , xl−1). (2.136)

Since the conditioning cannot increase the surprisal, the lth term in the sum
can be upper bounded by H(xl). It follows that H(x1, . . . , xL) ≤

∑L
l=1H(xl),

where equality is achieved if and only if the random variables are independent.
Figure 2.17 shows a Venn diagram where the circles represent the random

variables x and y, and their areas equal the respective differential entropies
H(x) and H(y). The intersection between the circles determines the ability to
extract information about the transmitted signal x from observing the received
signal y. The area of the intersection is H(y)−H(y|x). If we select the input
distribution fx(x) to maximize this area, then it equals the channel capacity C
in Theorem 2.1. There is an important statistical symmetry in this figure, which
implies that the intersection area can also be expressed as H(x)−H(x|y). This
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expression has an intuitive interpretation: The entropy/uncertainty about the
transmitted signal x minus the entropy/uncertainty remaining after observing
the received signal y. The difference is the knowledge that we learned from our
observation. It is called the mutual information since it measures the common
information contained in the random variables, and we can denote it as

I(x; y) = H(y)−H(y|x)
= H(x)−H(x|y). (2.137)

The capacity is the maximum mutual information that can be achieved.

Example 2.14. What is the channel capacity if x and y are independent?
In this case, the conditional PDF that determines the capacity reduces to

fy|x(y|x) = fy(y), which is the marginal PDF of the output y. The conditional
differential entropy in (2.135) can now be computed as

H(y|x) = −
∫
y∈C

∫
x∈C

log2
(
fy(y)

)
fy(y)fx(x)∂x∂y

= −
∫
y∈C

log2
(
fy(y)

)
fy(y)∂y

∫
x∈C

fx(x)∂x︸ ︷︷ ︸
=1

= H(y). (2.138)

The capacity in (2.133) becomes zero in this case since H(y) = H(y|x), so
there is no intersection between the circles in the Venn diagram in Figure 2.17.
Consequently, the ability to transfer information lies in the correlation between
the random variables at the input and output of the channel.

To compute the capacity in (2.133), we need to identify the PDF fx(x)
of the input x that maximizes H(y) − H(y|x). This is the same as finding
an optimal modulation and coding scheme. Theorem 2.1 says we can only
select distributions that are “considered feasible”, so we must specify some
requirements on x. It is common to consider all distributions for which
the symbol power E{|x|2} is upper limited by a constant representing the
maximum power. To find the optimal PDF, we need the following key result
that says which distribution maximizes our surprisal [42], [1, Lemma B.20].

Lemma 2.9. For any continuous random variable z ∈ C with E{|z|2} = p,
the differential entropy of z is upper bounded as

H(z) ≤ log2(eπp), (2.139)

where e ≈ 2.71828 is Euler’s number. Equality is achieved in (2.139) if and
only if z ∼ NC(0, p); that is, the complex Gaussian distribution has the largest
possible differential entropy.
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For the kind of discrete memoryless channel in (2.132) and Figure 2.15,
we have y = hx + n, where h is a deterministic scalar, n ∼ NC(0, N0), and
the signal x has the symbol power E{|x|2} = q. Hence, the feasible input
distributions are all fx(x) that satisfy E{|x|2} = q. The choice of input
distribution only affects H(y) because x is known in H(y|x), thus we want to
select the distribution of x to maximize H(y). Since the signal and noise are
independent, we obtain

E{|y|2} = E{|x|2}|h|2 + E{|n|2} = q|h|2 +N0. (2.140)

We can utilize the result in (2.139) to conclude that

H(y) ≤ log2
(
eπ(q|h|2 +N0)

)
(2.141)

with equality if and only if y ∼ NC(0, q|h|2 + N0). This maximum entropy
is achieved when x ∼ NC(0, q); thus, we have found the input distribution
corresponding to the maximum in the capacity expression in (2.133). This is
called the capacity-achieving input distribution.

To obtain a closed-form capacity expression, it remains to compute H(y|x).
When x is known, the only randomness that remains in y = hx+ n is that of
the noise n ∼ NC(0, N0) since h is deterministic, thus

H(y|x) = H(n) = log2 (eπN0) , (2.142)

where the last equality follows from Lemma 2.9. As a final step, we notice
that

C = log2
(
eπ(q|h|2 +N0)

)
− log2 (eπN0) = log2

(
1 + q|h|2

N0

)
. (2.143)

We can summarize the capacity of an AWGN channel as follows.

Corollary 2.1. Consider the discrete memoryless channel in Figure 2.15 with
input x ∈ C and output y ∈ C given by

y = h · x+ n, (2.144)

where n ∼ NC(0, N0) is independent noise. Suppose the input distribution
is feasible whenever the symbol power satisfies E{|x|2} ≤ q and h ∈ C is a
constant known at the output. The channel capacity is

C = log2

(
1 + q|h|2

N0

)
bit/symbol (2.145)

and is achieved when the input is distributed as x ∼ NC(0, q).

The channel capacity in (2.145) is expressed in bit per symbol, but many
equivalent units appear in the communication literature: bit per sample, bit
per channel use, bit/s/Hz, and bit per complex degree of freedom.
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The complex Gaussian input distribution creates a continuous signal
constellation, where the transmitted signal x can take any value in C. We
will transmit packets containing N symbols to showcase how a capacity-
achieving system operates. For a capacity of C bit/symbol, we can convey
NC data bits per packet. Hence, 2NC different potential data sequences
can be communicated. We then need to create a codebook containing 2NC
different symbol sequences, and each is called a codeword and represents one
of the 2NC data sequences. When we want to transfer a packet containing
specific data, we transmit the corresponding codeword from the codebook.
The receiver’s task is determining which of the 2NC codewords was most likely
to have been transmitted. With the capacity-achieving complex Gaussian
input distribution, each codeword is generated by taking N independent
and identically distributed (i.i.d.) realizations from NC(0, q). This is called a
Gaussian codebook. The codebook generation is done once and for all when
designing the communication system. The codewords must be stored in the
transmitter to enable encoding (i.e., transmitting the correct codeword) and
in the receiver to facilitate decoding (i.e., identifying which codeword was
sent). More precise details can be found in [42, Ch. 10]. Since the channel
capacity is achieved as the packet length N →∞, this communication method
is impractical since the complexity of finding the correct codeword and the
storage requirements for the codewords grow exponentially with N .

In practice, the capacity-achieving system operation is approximated by
imposing a structure that alleviates the need for storing the codewords and
simplifies the encoding/decoding. It is common to utilize a discrete signal
constellation where each symbol x can only take values on a square grid
containing 2C̃ points, where C̃ is the closest even integer above C. This is
called quadrature amplitude modulation (QAM). To not attempt transferring
more data than the capacity allows, only a subset of 2NC symbol sequences
among the 2NC̃ possible sequences is utilized, where the ratio C/C̃ is called
the coding rate. The subset is selected by a channel coding scheme designed
to minimize the risk of mixing up the selected sequences at the receiver side
(i.e., minimizing the probability of decoding error).

To give a concrete example, the 5G NR standard utilizes the modulation
formats 4-QAM, 16-QAM, 64-QAM, and 256-QAM along with the low-density
parity-check (LDPC) coding scheme, where the coding is designed to operate
close to the capacity while enabling efficient encoding and decoding.7 Fig-
ure 2.18 exemplifies 28 predefined combinations of modulation and coding
schemes (MCSs) from [43, Table 5.1.3.1-2], where the first column is an index
that the transmitter and receiver can use when agreeing upon which combi-
nation to utilize. The second column describes the modulation format, the
third column is the coding rate, and the fourth column is the number of bits
per symbol. If the channel capacity would be 4 bit/symbol, then we should

7Polar codes are also used in 5G NR but for transmission of small blocks.
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Index Modulation format Coding rate bit/symbol

0 4-QAM 0.12 0.24
1 4-QAM 0.19 0.38
2 4-QAM 0.30 0.60
3 4-QAM 0.44 0.88
4 4-QAM 0.59 1.18
5 16-QAM 0.37 1.48
6 16-QAM 0.42 1.70
7 16-QAM 0.48 1.91
8 16-QAM 0.54 2.16
9 16-QAM 0.60 2.41
10 16-QAM 0.64 2.57
11 64-QAM 0.46 2.73
12 64-QAM 0.50 3.03
13 64-QAM 0.55 3.32
14 64-QAM 0.60 3.61
15 64-QAM 0.65 3.90
16 64-QAM 0.70 4.21
17 64-QAM 0.75 4.52
18 64-QAM 0.80 4.82
19 64-QAM 0.86 5.12
20 256-QAM 0.67 5.33
21 256-QAM 0.69 5.55
22 256-QAM 0.74 5.89
23 256-QAM 0.78 6.23
24 256-QAM 0.82 6.57
25 256-QAM 0.86 6.91
26 256-QAM 0.90 7.16
27 256-QAM 0.93 7.41

Figure 2.18: The list of 28 MCS combinations utilized in the 5G NR standard. The list is
adapted from [43, Table 5.1.3.1-2].
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search the table for the closest but smaller number, which in this case is index
15 that provides 3.9 bit/symbol. Hence, 64-QAM should be used to transmit
log2(64) = 6 codeword bits per symbol, whereof a fraction 0.65 contains data
bits, resulting in 6 · 0.65 = 3.9 bit/symbol. We will not consider any of these
specific details in the remainder of this book but utilize the channel capacity
as the performance metric while keeping in mind that there are practical ways
to communicate at data rates close to the capacity.

We can rewrite the capacity expression in (2.145) taking the following
three facts into account:

1. B symbols are transmitted per second;

2. The channel gain is β = |h|2;

3. The symbol power q is measured in energy per symbol. It can be expressed
as q = P/B, where P is the transmit power in Watt and B is the number
of symbols per second.

The first fact means we can multiply (2.145) with B to change the unit from
bit/symbol to bit/s. This is why the unit bit/symbol is also equivalent to the
unit bit/s/Hz. The latter two facts can be used to make changes of variables,
leading to

C = B log2

(
1 + Pβ

BN0

)
bit/s. (2.146)

We notice that the channel capacity is given by the bandwidth multiplied by
the base-two logarithm of one plus

SNR = Pβ

BN0
(2.147)

that was previously stated in (1.13). Hence, the channel capacity is tightly
connected to the SNR, just as many other communication performance metrics.

2.5 Estimation Theory

The goal of estimation is to compute a good approximate value of an unknown
parameter based on measurements. The estimation procedure is particularly
challenging when the measurements are limited and noisy. There are two
main subfields of estimation theory [44]. In classical estimation, the unknown
variable is deterministic and, thus, has the same constant value forever. In
Bayesian estimation, the unknown variable is instead a realization of a random
variable with a known statistical distribution (also known as the prior).

In wireless communications, the transmission of very large data packets is
implicitly assumed whenever the channel capacity is used as the performance
metric. Hence, unknown variables that are constant throughout the transmis-
sion are relatively easy to estimate; for example, a negligibly small preamble
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can be attached to the packet to obtain the necessary measurements. In
contrast, unknown variables that take different values during the transmission
must be estimated using few measurements because there is insufficient time
to make extensive measurements. This can be modeled as if the unknown
variable takes different realizations from the same random variable at different
times. For this reason, Bayesian estimation will mostly be considered in this
book. It is generally assumed that the statistics are known, but Section 2.6
describes how they can be estimated in practice.

The general principle is that we want to compute an estimate of a realization
h of a random variable. The available information is an observation y connected
statistically with the unknown variable. More precisely, we have measured the
current value of y and know the conditional PDF fh|y(h|y) of h given the value
of y. There is a rich theory for Bayesian estimation of both real and complex
variables and different ways of measuring what is a good approximate value
[44]. We will only consider the mean-squared error (MSE) as the performance
metric for the estimation.

Definition 2.8. Consider a random variable h ∈ C and let ĥ(y) denote an
arbitrary estimator of h based on the observation y ∈ C. The estimation error
is h− ĥ(y) and the MSE is defined as

MSEh = E
{
|h− ĥ(y)|2

}
, (2.148)

by taking the average squared estimation error.

Lemma 2.10. The estimator that minimizes the MSE in (2.148) is called the
minimum mean-squared error (MMSE) estimator. It can be computed as

ĥMMSE(y) = E{h|y} =
∫
h∈C

hfh|y(h|y)∂h (2.149)

where fh|y(h|y) is the conditional PDF of h given the observation y.

The MMSE estimator is the conditional mean of h given y. By definition,
it minimizes the variance of the estimation error. Since the estimator depends
on the conditional PDF fh|y(h|y), it will be different depending on how h is
distributed. The integral in (2.149) cannot be computed analytically in general,
so it must be evaluated numerically. The Gaussian case is an exception.

2.5.1 MMSE Estimation of Complex Gaussian Variables

We are particularly interested in the memoryless channel model in (2.132),
which we restate as

y = h · x+ n, n ∼ NC(0, N0). (2.150)
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Suppose the channel response h is unknown and should be estimated. We can
then select the transmitted signal x as a deterministic number known at both
the transmitter and receiver, so that only h is unknown in the product h · x
in (2.150). We also know the distribution of the additive complex Gaussian
noise n, but the realization is unknown. The goal is to compute the MMSE
estimate of h based on the observation y obtained at the receiver.

We consider the case when the channel is complex Gaussian distributed:

h ∼ NC(0, β). (2.151)

To compute the MMSE estimator in (2.149), we must first determine the
conditional PDF fh|y(h|y). This problem resembles the one considered in
Section 2.2.3. If we divide all terms in (2.150) by x, we obtain

1
x
y︸︷︷︸

=z

= h︸︷︷︸
=v

+ 1
x
n︸︷︷︸

=w

, (2.152)

which is of the same form as (2.69) but with σ2
v = β and σ2

w = N0/|x|2. Hence,
we can utilize (2.74) to obtain

fh|y(h|y)=
β+ N0

|x|2

πβ N0
|x|2

e
−
β+ N0

|x|2

β
N0

|x|2

∣∣∣∣h− β

β+ N0
|x|2

y
x

∣∣∣∣2
= β|x|2+N0

πβN0
e

−β|x|2+N0
βN0

∣∣∣h− βx∗

β|x|2+N0
y

∣∣∣2
.

(2.153)

The MMSE estimate is the mean value of this conditional PDF. By comparing
(2.153) with the PDF of a complex Gaussian distribution, we notice that

h− βx∗

β|x|2 +N0
y ∼ NC

(
0, βN0

β|x|2 +N0

)
(2.154)

when y is known. Hence, the conditional mean value is E{h|y} = βx∗

β|x|2+N0
y.

The variance βN0
β|x|2+N0

in (2.154) is the MSE of the estimate.

Lemma 2.11. Consider the estimation of h ∼ NC(0, β) from the observation
y = h·x+n, when the signal x ∈ C is known and n ∼ NC(0, N0) is independent
noise. The MMSE estimator of h is

ĥMMSE(y) = βx∗

β|x|2 +N0
y. (2.155)

The corresponding minimum MSE is

MSEh = βN0

β|x|2 +N0
. (2.156)
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Among all possible estimators that utilize the observation y and the channel
statistics, the MMSE estimator minimizes the MSE. The MMSE estimate in
(2.155) will be expressed as ĥ later in this book without explicitly specifying
what observation it is based on and which type of estimate it is.

We notice that this MMSE estimate is a linear function ay of the observa-
tion y, which is scaled by the factor a = βx∗

β|x|2+N0
to obtain the estimate that

is closest to the true value of h in the MSE sense. For this reason, the estima-
tor in Lemma 2.11 is sometimes referred to as the linear MMSE (LMMSE)
estimator ; that is, the estimator that obtains the lowest MSE among all linear
estimators. While it is formally correct to use that terminology, the naming
devalues its properties by giving the wrong impression that there might exist
better estimators that are non-linear functions of y. Hence, in the remainder
of this book, we will call (2.155) the MMSE estimator.

A useful benefit of the expression in (2.155) is that we can directly generate
random realizations of ĥ without first generating realizations of y, h, and n.
Since y ∼ NC(0, β|x|2 +N0), it follows that

ĥ ∼ NC

(
0,
∣∣∣∣ βx∗

β|x|2 +N0

∣∣∣∣2 (β|x|2 +N0)
)

= NC

(
0, β2|x|2

β|x|2 +N0

)
= NC (0, β −MSEh) . (2.157)

Moreover, the estimation error h̃ = h− ĥ is distributed as

h̃ ∼ NC(0,MSEh) (2.158)

with the MSE in (2.156) being the variance since

Var
{
h̃
}

= E
{
|h̃|2

}
= E

{∣∣h− ĥ∣∣2} = MSEh. (2.159)

The estimate and estimation error are statistically independent, which can be
seen from the fact that they are complex Gaussian distributed and uncorrelated.
Their variances add up to that of the original unknown variable h: Var{ĥ}+
Var{h̃} = β −MSEh + MSEh = β. This showcases how the MMSE estimator
extracts all useful information from the observation y so that the error term
only contains information that was not observed. Consequently, the estimation
error is also statistically independent of the observed signal y.

Intuitively, the estimation quality should be better when the factor hx in
(2.150) is much larger than the noise term when comparing their magnitudes.
If we let |x| → ∞, it follows that the MSE in (2.156) goes to zero and that
the estimate’s variance in (2.157) approaches β. This means we can estimate
the channel without error when the SNR is large.

The MSE in (2.156) is an increasing function of β, so we should expect
larger estimation errors when estimating a variable with a large variance
compared to a small variance. However, it is the relative size of the estimation
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error that matters in many contexts, and it is quantified by the normalized
MSE (NMSE) that is computed as

NMSEh =
E
{∣∣h− ĥ∣∣2}
E
{
|h|2

} = MSEh
β

= N0

β|x|2 +N0
. (2.160)

The NMSE is a decreasing function of β, so it is easier to estimate a variable
with a large variance than a small one as it stands out more from the noise.

We have now described how to estimate the channel coefficient h. The
next example shows how to estimate signals using the MMSE estimator.

Example 2.15. Suppose we want to estimate the data signal x ∼ NC(0, q)
from the received signal

y = h · x+ n, (2.161)
where h ∈ C is a known constant channel and n ∼ NC(0, N0) is independent
noise. What is the MSE if the MMSE estimator is used? Use the MSE
expression to compute the mutual information I(x; y).

The MMSE estimation problem is the same as in Lemma 2.11, except that
x and h have interchanged the roles of being known and unknown. We can
denote the MMSE estimate as x̂. By making the variable substitutions β → q
and x→ h in (2.156), the MSE when estimating x becomes

MSEx = qN0

q|h|2 +N0
. (2.162)

The error is independent of x̂ and distributed as x̃ = x− x̂ ∼ NC(0,MSEx).
The mutual information in (2.137) is equal toH(x)−H(x|y) and Lemma 2.9

states that H(x) = log2(eπq) since the signal is complex Gaussian distributed
with variance q. It further holds that

H(x|y) = H(x− x̂|y) = H(x̃|y) = log2(eπMSEx), (2.163)

where the first equality follows from subtracting the MMSE estimate from
x, which can be done without changing the entropy since y is known. The
last equality follows from noticing that the estimation error is independent
of y and complex Gaussian distributed with variance MSEx. The mutual
information can finally be computed as

H(x)−H(x|y) = log2(eπq)− log2(eπMSEx)

= log2

(
q

MSEx

)
= log2

(
1 + q|h|2

N0

)
. (2.164)

This is an alternative way of computing the capacity in (2.145).
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2.5.2 LMMSE Estimation of Arbitrarily Distributed Variables

We will now consider LMMSE estimation when the received signal is y =
h · x + n as before, but the unknown variable h and the noise n might not
be Gaussian distributed. An LMMSE estimator has the form ĥ = ay, where
a is selected to minimize the MSE. The MSE is a function of a and can be
minimized by equating the first-order derivative to zero:8

0 = ∂

∂a∗E
{
|h̃|2

}
= ∂

∂a∗E{(h− ay)(h− ay)∗} = −E{h̃y∗}. (2.165)

This sufficient and necessary condition for selecting a is called the orthogonality
principle: E{h̃y∗} = 0. The interpretation is that the scaling factor a must
be designed so that the error term h̃ = h − ĥ is uncorrelated with the
received signal y; that is, there is no useful information left that can be
extracted using linear methods. It follows from the orthogonality principle
that E{h̃ĥ∗} = E{h̃y∗}a∗ = 0, which implies that the estimate and estimation
error are uncorrelated random variables. In the special case where the estimate
and estimation error are complex Gaussian distributed (which happens when
h and n are Gaussian, as in the last section), it follows from Lemma 2.7 that
the uncorrelated variables ĥ and h̃ are also independent random variables. In
the general non-Gaussian case, the estimate and error are only uncorrelated.

The orthogonality principle can be used to find the LMMSE estimator,
which we will show through an example.

Example 2.16. Use the orthogonality principle to derive the LMMSE estima-
tor of h given the received signal y = h · x+ n. Assume that E{h} = E{n} =
E{hn∗} = 0, E{|h|2} = β, and E{|n|2} = N0.

An arbitrary linear estimator has the form ĥ = ay. We need to find the
value of a that satisfies the orthogonality principle E{h̃y∗} = 0:

0 = E
{
h̃y∗

}
= E {(h− ay) y∗} = E {hy∗} − aE

{
|y|2

}
. (2.166)

By solving for a in (2.166), we obtain

a = E{hy∗}
E {|y|2}

=
E
{
h (hx+ n)∗}

E
{
|hx+ n|2

} =
E
{
|h|2

}
x∗ + E{hn∗}

E
{
|h|2

}
|x|2 + E

{
|n|2

} = βx∗

β|x|2 +N0

(2.167)

by utilizing that h and n are uncorrelated. In summary, the LMMSE estimator
is ĥ = ay with a given in (2.167). It coincides with the MMSE estimator in
(2.155) for complex Gaussian variables with the specified variances.

8Since a is a complex-valued parameter, we compute the Wirtinger derivative ∂
∂a∗ =

1
2 ( ∂
∂ℜ(a) + j ∂

∂ℑ(a) ), which includes the derivatives with respect to ℜ(a) and ℑ(a).
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The derivation of the LMMSE estimator only used the mean, variance, and
covariance of h and n. This implies that the LMMSE estimator is the same
irrespectively of the exact distribution of h and n, as long as the mean and
(co)variance are as specified. On the other hand, the general MMSE estimator
utilizes the complete statistical distributions and will not only change in the
non-Gaussian case but likely be harder to derive analytically. The equivalence
between the MMSE and LMMSE estimators only holds in the Gaussian case,
so the MMSE estimator must give a strictly smaller MSE in non-Gaussian
cases. This implies that estimating Gaussian variables that are observed in
Gaussian noise is the hardest situation, which is aligned with the fact that
the Gaussian distribution maximizes the differential entropy.

We have established the following result regarding the LMMSE estimator
when h is not necessarily Gaussian distributed.

Lemma 2.12. Consider the estimation of h from the observation y = h ·x+n,
when the signal x ∈ C is known and n is noise with zero mean and variance
N0. Suppose the variable h has zero mean, variance β, and is uncorrelated
with the noise (i.e., E{hn∗} = 0). The LMMSE estimator of h is

ĥLMMSE(y) = βx∗

β|x|2 +N0
y. (2.168)

The corresponding minimum MSE is

MSEh = βN0

β|x|2 +N0
. (2.169)

2.6 Monte Carlo Methods for Statistical Inference

The previous section described how to estimate the realization of a random
variable from noisy observations. An underlying assumption was that the
statistics are known, but, in practice, we must also have a mechanism to
acquire the statistics. In this section, we will describe how the statistical
properties of functions of random variables can be inferred. The statistics
might determine the performance of a communication system or an estimator.
There are many categories of methods that can be utilized for this purpose. We
will consider Monte Carlo methods that use random samples of the underlying
variables and process them to infer the unknown deterministic quantities. We
will estimate the mean value of a function of random variables, estimate the
error probability of a system that performs a task either resulting in success
or error, and estimate the CDF of a random variable. Particular attention
will be given to quantifying the estimation precision, which is essential when
drawing conclusions based on the outcome of statistical inference.
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2.6.1 Estimating the Mean Value

Consider a real-valued random variable x with the PDF fx(x) and mean value
denoted as µ. We recall from (2.56) that the mean value is defined as

µ = E{x} =
∫ ∞

−∞
xfx(x)∂x. (2.170)

There are many situations where this integral cannot be computed analytically,
and then we have to resort to numerical methods for computing an approximate
value of µ. One example is the Monte Carlo method that takes L independent
samples x1, . . . , xL from the random distribution and uses them to estimate
µ. Two properties are essential when designing the estimator: accuracy and
precision. An estimator µ̂L is accurate if its mean is equal to the value to be
estimated (i.e., E{µ̂L} = E{x} = µ) and it is precise if its variance Var{µ̂L} is
small. The sample average is an accurate (also known as unbiased) estimator
of E{x} and is computed as

µ̂L = 1
L

L∑
i=1

xi, (2.171)

where the subscript denotes the number of samples. We only need a way to
generate independent samples to compute this estimate, while the PDF can
be unknown. The motivation behind using the sample average in (2.171) is
the law of large numbers in Lemma 2.4, which says that the sample average
approaches the statistical mean when the number of samples L goes to infinity:

µ̂L → E{x} as L→∞. (2.172)

The only required condition for the convergence is that the variance Var{x}
of the random variable must be finite. To see the reason for that, we can
compute the variance of the sample average as

Var {µ̂L} = 1
L2Var

{
L∑
i=1

xi

}
= 1
L2

L∑
i=1

Var {xi} = Var{x}
L

, (2.173)

where the second equality utilizes the fact that the samples are independent.
The variance in (2.173) reduces proportionally to 1/L when the number of
samples increases, starting from the original variance value. Hence, as long
as the original value is finite, the variance of the sample average goes to zero
as L → ∞. Furthermore, the standard deviation is the square root of the
variance and becomes

√
Var{x}/L, which goes to zero proportionally to 1/

√
L

when increasing the number of samples.
Depending on the application, the number of samples, L, should be selected

to achieve an estimate with the desired precision. Since the Monte Carlo
method uses random samples, we can only guarantee the precision in a
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probabilistic sense; that is, we can make sure that the estimation error |µ̂L−µ|
is smaller than some specified error tolerance δ > 0 with the (high) probability
1− ϵ, where ϵ > 0 is the (small) probability that the requirement is unsatisfied.
In other words, we want to find L such that

Pr {|µ̂L − µ| ≤ δ} = Pr {µ− δ ≤ µ̂L ≤ µ+ δ}
= Pr {µ̂L − δ ≤ µ ≤ µ̂L + δ}︸ ︷︷ ︸

Confidence interval

≥ 1− ϵ, (2.174)

where the third expression is known as a confidence interval with confidence
level 1− ϵ. It says that a fraction 1− ϵ of all realizations of the estimator µ̂L
are so close to the true value µ that it lies between µ̂L − δ and µ̂L + δ. It is
common to begin by specifying ϵ to reach a desired confidence level and then
either determine how large δ becomes in a given experimental setup (i.e., for a
given L) or design the experiment (i.e., select L) to reach a desired value of δ.

We can utilize Chebyshev’s inequality from Lemma 2.5 to derive an upper
bound on how many samples are needed to satisfy (2.174) for given ϵ and δ.
However, the result will be overly conservative since it considers the worst-case
random distribution. Since we consider the summation of L independent and
identically distributed realizations, the central limit theorem implies that µ̂L
is approximately Gaussian distributed, as previously stated in (2.65). Hence,
we can utilize that distribution when characterizing the required number
of samples. Recall from (2.66) that 95% of all realizations are within two
standard deviations from the mean value. If we set ϵ = 0.05 and want to
guarantee an estimation error smaller than δ, then we need

2

√
Var{x}
L

≤ δ ⇒ L ≥ 4Var{x}
δ2 . (2.175)

For example, if Var{x} = 1 and we want a precision of δ = 0.1, then at least
L = 400 samples are required to satisfy that requirement with 95% probability.
The variance might also be unknown, in which case an approximation of it
can be utilized when determining the number of samples.

Figure 2.19 exemplifies how the Monte Carlo method can be utilized to
estimate the mean value µ = 1 of x ∼ Exp(1), which has an exponential
distribution. The number of samples, L, is shown on the horizontal axis, and
the vertical axis shows potential estimates of µ. Figure 2.19(a) and (b) show
how the value of µ̂L progresses in two different experiments where we add
more and more samples to the estimator. The shaded area between the dashed
lines shows the (approximate) confidence interval around µ̂L where µ exists
with 95% probability. It is computed using the Gaussian approximation. The
width of this interval reduces as 1/

√
L when L increases because the width is

proportional to the standard deviation. In both experiments, the estimator
fluctuates, but the general trend is that more samples lead to a better estimate
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(a) Experiment 1.

(b) Experiment 2.

Figure 2.19: Example of estimation of the mean µ = 1 of a random variable with exponential
distribution using the Monte Carlo method. The value of µ̂L is shown as a function of L in two
different experiments. The 95% confidence interval is indicated, as well as the true value.
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of µ. Nevertheless, Experiment 2 shows that even with L = 1000 samples, the
exact µ might be outside the confidence interval.

Instead of resorting to taking random samples, as in the Monte Carlo
method, one can approximate the integral in (2.170) in a deterministic manner
by approximating the integrand xfx(x) as a piecewise constant function. This
is called a Riemann sum and the approximation error can then be bounded
in a non-probabilistic manner, but it only works if the PDF fx(x) is known.
In contrast, the Monte Carlo method is convenient in practical situations
where the PDF is unknown. For example, suppose the random variable x
is obtained as a function of some multi-variate random variable y; that is,
x = a(y) where a(·) can be any deterministic function. In this case, the PDF
of x might be hard to characterize, even if the PDF of y is known. The Monte
Carlo method can even be utilized when y has an unknown PDF, as long
as samples from this random variable can be obtained from measurements.
In wireless communications, y might be the randomness occurring in the
propagation environment, while a(·) could be a complicated function that
determines the communication performance.

Under these circumstances, we can still obtain an approximation of the
mean value by following the following procedure:

1. Determine the required number of samples L;

2. Draw L independent samples y1, . . . ,yL of the random variable y;

3. Compute the L corresponding samples of the random variable x, denoted
as xi = a(yi) for i = 1, . . . , L;

4. Compute the sample average µ̂L = 1
L

∑L
i=1 xi to estimate µ = E{x}.

The samples must be generated independently and from the same distribu-
tion. Otherwise, the sample average might not converge to the correct number
or not converge at all as L increases. These conditions put constraints on the
methodology used when gathering the samples. One should, for example, be
careful when merging measurements taken at different points in time, with
different equipment, or at different locations. Computer simulations are robust
against some of these effects but can nevertheless be affected by correlation in
the (pseudo)random number generator (e.g., if multiple computers generate
samples using the same random seed), limited arithmetic precision, other
processes running in the same hardware, etc.

If the same L samples are utilized to estimate multiple quantities, then
their respective estimation errors will be correlated, leading to undiscoverable
systematic errors. As an example, suppose we want to use the Monte Carlo
method to compute the MSE βN0

β|x|2+N0
in (2.156) of the MMSE estimator

for a range of different signal strengths |x|2. This might be the only way of
determining the MSE in situations where it cannot be computed analytically.
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Figure 2.20: Example of estimation of MSE in (2.156) with β = N0 = 1 using the Monte Carlo
method with L = 100 samples. Independent samples must be utilized when estimating different
points on the curve, otherwise, systematic errors occur.

According to (2.159), the MSE is equal to E{|h− ĥ|2}, where h is the desired
variable and ĥ is its MMSE estimate. To compute this mean using the Monte
Carlo method, we should generate L independent realizations of |h− ĥ|2 and
compute the sample mean. For any non-zero value of |x|2, we can generate L
independent realizations of h and the noise n, then compute the observation
y = hx+ n, and finally compute |h− ĥ|2 using (2.155).

Figure 2.20 shows the exact MSE and estimated MSE for β = N0 = 1 and
varying signal strength |x|2. Since there are many points on the estimated
curves, we can implement the Monte Carlo method in different ways: a) we can
generate L = 100 independent samples of h and n and then utilize this set to
estimate every point on the curve (by varying |x|2 when computing |h− ĥ|2);
b) each point on the curve is estimated using L new independent realizations
of h and n. From a programming perspective, the difference is whether the
L samples are generated before the for-loop that goes through each value
of |x|2 or if L new samples are generated in each iteration of the loop. The
blue curve is generated in the former way, where the same realizations are
utilized to estimate every point. This results in a smooth curve that gives
the impression of being highly accurate, but this is deceiving, as seen from
the gap to the exact curve. The fact that the same randomness is used when
estimating every point leads to such unnoticeable systematic errors because
the estimation errors are correlated. The latter approach is recommended:
generate L new independent samples for every value of |x|2, which was done
when generating the red curve. This curve is not smooth, showcasing the
limited precision obtained when only using L = 100 samples in the Monte
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Carlo method. In summary, to obtain an estimate of the curve that is both
precise (i.e., smooth) and accurate (i.e., without systematic errors), we must
use an even larger number of samples generated independently for every point
on the curve.

2.6.2 Estimating the Error Probability

Another common problem in communications is computing the error proba-
bility or its converse, the success probability. For instance, we might design a
communication protocol to convey messages over a random channel and want
to determine the probability that a message is received in error. The more
complicated the protocol and communication channel are, the smaller the
chance that we can compute the error probability analytically. However, we
can use Monte Carlo methods to estimate the error probability. Since there
are only two possible outcomes—success or error—the randomness can be
modeled by a Bernoulli distribution, which is a random variable x with two
outcomes: the value 1 with probability p and the value 0 with probability
1− p. The mean is E{x} = p and the variance is Var{x} = p(1− p).

Suppose we associate the outcome 1 of the Bernoulli distribution with an
error, then our goal is to obtain an estimate p̂ of the mean p, representing
the error probability. Hence, we can follow the same procedure as in the
previous section: Generate L independent samples x1, . . . , xL of the Bernoulli
distribution and then use the sample average 1

L

∑L
i=1 xi as the estimate of p.

Each sample can be obtained from one independent trial of the communication
protocol by determining whether an error occurred or not. This is a feasible
approach, but the main practical hurdle is determining the number of samples
that need to be taken. The error probabilities in communication systems can
range between 0.1 and 10−9, which require very different error tolerances and
numbers of samples when being estimated.

Suppose we select the error tolerance proportionally to p as δ = αp, where
α ∈ [0, 1] is the relative error tolerance. The goal is then to find an estimate
p̂L that falls into the interval [(1 − α)p, (1 + α)p] with high certainty. By
substituting this value of δ into (2.175), we need

L ≥ 4Var{x}
δ2 = 4p(1− p)

α2p2 = 4(1− p)
α2p

(2.176)

samples to satisfy the tolerance with 95% certainty. This value depends on p,
so we need a good sense of the (worst-case) error probability when selecting
L, which severely limits its applicability. However, one important observation
can be made from (2.176): if p is much smaller than one, then (1− p)/p ≈ 1/p
and the required number of samples is inversely proportional to p. Hence, the
more unlikely an error is to occur, the more samples are needed to obtain
an accurate estimate, which is rather intuitive. A classical rule-of-thumb is
that L ≥ 10/p samples are needed to obtain a rough estimate of p [45], which



116 Theoretical Foundations

implies that we need L = 1000 if p = 10−2 and L = 106 if p = 10−5. Using at
least L ≥ 100/p samples is recommended to get a precise estimate.

There is an alternative estimation approach that is particularly well suited
for estimating error probabilities without requiring prior knowledge when
determining the sample size [46]: We generate independent samples repeatedly
until we have gathered Lerror errors, where Lerror ≥ 2 is a predefined constant.
The number of successful samples Lsuccess that are observed before we reach
Lerror errors is a random variable that has the negative binomial distribution.
Based on a random realization of Lsuccess, we can estimate p as

p̂ = Lerror − 1
Lsuccess + Lerror − 1 . (2.177)

This estimator is unbiased (i.e., E{p̂} = p) and is also the one minimizing the
error variance [47]. The standard deviation of this estimator is approximately
p/
√
Lerror − 2 when p is small, thus it is proportional to p and reduces roughly

as 1/
√
Lerror. Suppose p is relatively large, in the sense that 1 − p cannot

be approximated as 1. Then the standard deviation is larger because we
gather errors too quickly to reach a sufficient total number Lsuccess +Lerror of
measurements to get an accurate estimate.

A classical rule-of-thumb is to make measurements until we have observed
Lerror = 10 errors [46], which gives a rough estimate of p with a standard
deviation of roughly p/

√
8 ≈ 0.35p when p is small. To get a precise estimate

with a smaller standard deviation, observing at least Lerror = 100 errors is
recommended. In those cases, the −1 terms in (2.177) can be neglected.

Figure 2.21 exemplifies the error probability p as a function of the SNR.
The true relation is p = 1−e− 1

SNR in this example, which is a formula that will
be derived in Chapter 5. In addition to showing the exact curve, Figure 2.21
also shows estimated curves obtained using the two approaches described
above. The blue curve uses L = 10000 samples and provides excellent estimates
for p ≥ 10−3 and decent estimates for 10−4 ≤ p ≤ 10−3, as predicted by the
first rule-of-thumb. The curve then vanishes since there are too few samples to
measure any error events; whenever less than ten errors have been observed,
we should discard the result as unreliable (recall the second rule-of-thumb).
The red curve uses the alternative approach of running the simulation until
Lerror = 100 has been observed. This curve provides accurate estimates of p
for all the considered SNR values.

In summary, to avoid selecting L in advance, we can estimate the error
probability p by counting the number of successes that occurred before we
reached a predefined number of errors. The number of samples to gather is
then determined dynamically and increases linearly with the true value of
p. This approach is particularly useful when a complicated communication
protocol is used so the error probability cannot be determined analytically.



2.6. Monte Carlo Methods for Statistical Inference 117

Figure 2.21: Example of estimation of the error probability curve p = 1 − e− 1
SNR using the

Monte Carlo method, by either using 10000 random samples or running the simulation until
100 errors have been observed.

2.6.3 Empirical Cumulative Distribution Function

In addition to estimating the mean value of a random variable from observa-
tions, we can estimate its entire distribution. In this section, we will estimate
the CDF, defined in (2.100), which fully characterizes the random distribu-
tion. Suppose we obtain L independent samples x1, . . . , xL from a random
distribution with the CDF Fx(a). For a given value a, the CDF represents
the probability of obtaining a realization below or equal to the threshold a.
Hence, we can estimate Fx(a) by counting the fraction of the L samples that
is lower than or equal to a. This estimator can be defined as

F̂X,L(a) = 1
L

L∑
i=1

Ixi≤a, (2.178)

by utilizing the indicator function

Ix≤a =
{

1, if x ≤ a,
0, if x > a.

(2.179)

We can treat F̂X,L(a) as an estimate of the entire CDF and call it the empirical
cumulative distribution function (eCDF). The true CDF might be a continuous
function, but the eCDF is always a piecewise constant function. It will look
like a staircase with L steps, each having a vertical height of 1/L but varying
horizontal widths that determine the shape of the estimated curve.

The eCDF converges to the true CDF as L goes to infinity, and the con-
vergence can be proved in various ways. For example, we can prove pointwise
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convergence by comparing Fx(a) to its estimate F̂X,L(a) for any given point
a. For a random x, the indicator function Ix≤a will output a random variable
with a Bernoulli distribution that gives 1 with probability Fx(a) and 0 with
probability 1 − Fx(a). As discussed in the previous section, such a random
variable has the mean Fx(a) and variance Fx(a)(1−Fx(a)). Hence, F̂X,L(a) is
the sample average of L independent Bernoulli variables having that mean
and variance. The mean of F̂X,L(a) is the true CDF value Fx(a) and the
variance can be determined using (2.173) as

Var
{
F̂X,L(a)

}
= 1
L2

L∑
i=1

Var {Ixi≤a} = Fx(a)(1− Fx(a))
L

. (2.180)

The variance goes to zero as L→∞, which is the property used by the law
of large numbers to establish asymptotic convergence to the mean. When L is
large but finite, the central limit theorem implies that F̂X,L(a) is approximately
Gaussian distributed with mean Fx(a) and variance Fx(a)(1− Fx(a))/L. We
recall from Section 2.2.1 that 95% of all realizations of a Gaussian random
variable are within two standard deviations from the mean.

The precision of the eCDF varies over the curve, reflected by the fact that
the standard deviation

√
Fx(a)(1− Fx(a))/L depends on Fx(a). The largest

value appears at the median where Fx(a) = 0.5. However, it might be more
important to consider the relative deviation from the true CDF value. If we
divide the standard deviation by Fx(a), we obtain

√
(1− Fx(a))/(LFx(a))

and it is maximized as Fx(a)→ 0. This reveals that it is hardest to precisely
approximate the lower-left tail of the curve because very few samples appear
in that tail, and small deviations are large in the relative sense. When selecting
the number of samples L in a practical experiment, one can either target a
desired precision in the crucial parts of the CDF curve (e.g., center or tails)
or run the simulation until a visually smooth eCDF curve is obtained.

Figure 2.22 considers the estimation of the CDF of x ∼ Rayleigh(1/
√

2).
The analytical CDF expression Fx(x) = 1− e−x2 of this Rayleigh distribution
was provided in (2.102). The red curve shows the eCDF obtained using L = 100
independent samples of the random variable. The eCDF has the same general
shape as the true CDF but fluctuates between being well aligned with it
and deviating. The estimation errors are correlated along the curve since
the same L samples are utilized to estimate all the points on the curve, but
this property is unavoidable when computing an eCDF. The 95% confidence
interval around the eCDF (obtained using the Gaussian approximation) is
also shown in the figure. This interval is relatively wide, which shows that
more than 100 samples are needed to obtain a precise eCDF. The staircase
shape of the eCDF is particularly evident in the lower tail, where there are
too few samples to estimate the precise shape of the CDF.

The precision is essential when comparing different random variables based
on estimates of their respective distributions. For example, we might obtain
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Figure 2.22: The CDF Fx(x) = 1−e−x2 of a Rayleigh distributed random variable is compared
with the eCDF obtained using L = 100 samples from the distribution. The approximate 95%
confidence interval is indicated as a reference.
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Figure 2.23: The eCDFs and confidence intervals of y ∼ Rayleigh(1/
√

2) and z ∼ Rayleigh(1),
based on L = 1000 samples from each distribution.

measurements of the performance variations in two different communication
systems and plot their respective eCDFs to determine which system is prefer-
able. For the sake of argument, Figure 2.23 shows the eCDFs obtained by
L = 1000 samples from y ∼ Rayleigh(1/

√
2) and z ∼ Rayleigh(1), respec-

tively. The two eCDFs are different, but most importantly, the 95% confidence
intervals (also shown in the figure) are different and mostly non-overlapping.
Whenever that happens, we can make meaningful comparisons of the eCDFs.
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Since F̂Y,L(x) ≥ F̂Z,L(x) for most values of x (i.e., the y-curve is above the
z-curve), we can conclude that the system represented by y is likely to provide
smaller performance values. For example, y is smaller than 1 with probability
F̂Y,L(1) ≈ 0.6, while z is smaller than 1 with probability F̂Z,L(1) ≈ 0.4. If
it is preferable to have a large value, the system represented by z should be
selected. The only uncertainty occurs in the lower left tail, where the confi-
dence intervals partially overlap. When this happens, we can only conclude
that their performance is so similar that we cannot tell the systems apart
with statistical significance. This issue can be mitigated by increasing L to
improve the precision (i.e., reduce the standard deviation).

2.7 Detection Theory

Detection theory provides a structured way to determine which event occurred
among a finite number of possibilities based on probabilistic observations. It
is commonly used in several areas, particularly radar signal processing and
communications [48]. The task of the detector is to determine which event has
happened by processing the observed signal and exploiting prior information
regarding the received signal’s characteristics and statistics. The events are
mutually exclusive, and each is called a hypothesis under testing. Due to this
terminology, detection theory is also known as hypothesis testing [48].

To exemplify the basics, we consider a fire-alarm sensor that measures the
smoke density in its surroundings. If there is smoke, it sends a wireless message
representing “1”. If there is no smoke, the sensor does not transmit anything,
representing the message “0”. A wireless receiver monitors the transmission
and wants to detect the message. Regardless of what message is sent, noise
is added to the received signal. Hence, the receiver should use the received
signal to determine if there is a non-zero signal or only noise. There are two
events in this example: i) there is no smoke, and ii) there is smoke. Since there
are two possibilities, we call this a binary hypothesis test.

In binary hypothesis testing, it is common to let the null hypothesis repre-
sent the case when the event of interest does not happen. It is denoted as H0.
The opposite hypothesis is denoted as H1 and called the alternative hypothesis.
Mathematically, we can express the corresponding detection problem as

H0 : y = n, (2.181)
H1 : y = 1 + n, (2.182)

where the detector determines if “1” is transmitted or not by observing y
and exploiting any other prior information, such as the statistical models of
(2.181) and (2.182). In this section, we will assume that the additive noise
is distributed as n ∼ N (0, σ2). The goal of detection theory is to select
a detection performance metric and then develop the detection rule (i.e.,
selection rule between H0 and H1) that optimizes that metric. In the example
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Figure 2.24: The PDF of the received signal y under two hypotheses H0 and H1. Under the
null hypothesis H0, the signal is distributed as y ∼ N (0, 0.5) whereas it holds that y ∼ N (1, 0.5)
under the alternative hypothesis H1.

above, the metric is the probability of making an incorrect detection, and the
goal is to minimize it. If the a priori probabilities of transmitting 1 or nothing
are defined and known, they can be used to minimize the error.

Figure 2.24 shows the PDFs of the received signal y under the null hy-
pothesis H0 and the alternative hypothesis H1. Under H0 it follows that
y = n ∼ N (0, σ2), whereas under H1 we have y = 1 + n ∼ N (1, σ2). The
figure shows the case when σ2 = 0.5. Suppose we use a detector of the form

Ĥ =
{
H1, if y ≥ γ,
H0, if y < γ,

(2.183)

where there is a threshold γ that determines when to select each hypothesis.
The two PDFs in Figure 2.24 intersect at y = 1/2, which will also happen for
other values of σ2. Hence, if we select the threshold as γ = 1/2, the detection
rule in (2.183) will select the hypothesis most likely to have generated the
received observation y. This threshold divides the decision region symmetrically
into two parts, as illustrated by the red dashed line in Figure 2.25. This
threshold maximizes the probability of making a correct detection if the
two events are equally likely, which is seemingly a good performance metric.
However, it is not the only metric of practical importance. Three other
important metrics are:

• The detection probability, PD, which is the correct detection probability
when the event of interest happens, i.e., under hypothesis H1;

• The false alarm probability, PFA, which is the wrong detection probability
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when the event of interest did not happen, i.e., under hypothesis H0;

• The missing probability, PM = 1−PD, which is the wrong detection
probability when the event happens, i.e., under hypothesis H1.

In Figure 2.25(a), the yellow and purple shaded regions represent the
detection probability, PD, and 1− PFA, respectively (i.e., the areas under the
curves equal the probabilities). When hypothesis H1 is true, we detect the
event correctly when the received signal is greater than the threshold γ = 1/2,
which happens with the probability PD. On the other hand, when hypothesis
H0 is true, we detect the event correctly when the received signal is below the
threshold, which happens with the probability 1− PFA. Figure 2.25(b) shows
the probabilities of false detection. When H1 is true, but the noise takes a big
negative realization so that the received signal is below the threshold, we miss
the event, and the resulting probability is PM = 1−PD. When H0 is true, but
the noise takes a big positive realization so that the received signal is above
the threshold, a false alarm occurs. The associated probability is PFA.

It is good to have high values of PD (corresponding to low values of PM)
and low values of PFA, but there is unfortunately always a tradeoff between
these metrics. To illustrate this, we increase the threshold value to γ = 1 in
Figure 2.26. As shown in Figure 2.26(a), the correct detection probability
when there is no transmitted signal (i.e., H0 is true) increases compared to
the last figure. Similarly, the false alarm probability decreases, as shown in
Figure 2.26(b). However, this improvement is associated with a decrease in
PD since a larger threshold makes it less likely to make the correct detection
decision when there a signal is transmitted (i.e., H1 is true). Moreover, the
missing probability PM = 1− PD increases when PD decreases.

The fact that there are multiple conflicting design objectives implies that
we need to actively design the decision rule for every detection application,
even if the underlying mathematical models are the same. For example, a
fire-alarm sensor might be designed to have a very high detection probability,
PD, since missing the event of interest can be dangerous. On the other hand,
a radar surveillance system might be designed to have a very low false alarm
probability, so it only identifies large objects.

The hypothesis testing we have considered so far assumed that the PDF
of the received signal is fully known for all the hypotheses, which is known as
simple hypothesis testing. For example, in the previous example, we know that
y ∼ N (0, 0.5) when H0 is true, whereas y ∼ N (1, 0.5) when H1 is true. We will
focus on simple hypothesis testing in this book. Another class of problems is
composite hypothesis tests in which there are unknown deterministic parameters
or random variables with unknown distributions. An example of this is the
detection problem in (2.181)–(2.182) when the noise variance σ2 is unknown;
the PDF of y is unknown for all the hypotheses because we only know the
Gaussian shape but not the associated variance.
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(a) The correct detection probability under H0 is 1 − PFA (the area of the purple region), while it is
PD under H1 (the area of the yellow region).
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(b) The wrong detection probability under H0 is PFA (the area of the yellow region), while it is
1 − PD under H1 (the area of the purple region).

Figure 2.25: The probabilities of correct and incorrect detection under the hypotheses H0 and
H1 when the detection threshold is 1/2. The dashed red line shows the corresponding detection
boundary. The areas of the shaded regions represent the respective probabilities.
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(a) The correct detection probability under H0 is 1 − PFA (the area of the purple region), while it is
PD under H1 (the area of the yellow region).
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(b) The wrong detection probability under H0 is PFA (the area of the yellow region), while it is
1 − PD under H1 (the area of the purple region).

Figure 2.26: The probabilities of correct and wrong detection under the hypotheses H0 and
H1 when the detection threshold is 1. The dashed red line shows the corresponding detection
boundary. The areas of the shaded regions represent the respective probabilities.
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Example 2.17. Consider the binary hypothesis test

H0 : y = n, (2.184)
H1 : y = x+ n, (2.185)

where x ∼ NC(0, P ) is the transmitted signal under the hypothesis H1 and
n ∼ NC(0, σ2) is independent receiver noise. The random signal x is unknown
at the detector, but the transmit power P and noise variance σ2 are known.
Is this a simple or composite hypothesis test?

We need to determine if the PDF of the received signal y is known
under all hypotheses. When H0 is true, it follows that y ∼ NC(0, σ2) so the
distribution is known. When H1 is true, it follows that y ∼ NC(0, P + σ2) so
this distribution is also known. Hence, we have the full knowledge of the PDF
of the received signal in both cases, which implies that this hypothesis test
belongs to the “simple” category.

In the following sections, we will consider two approaches to simple hy-
pothesis testing. The fundamental difference is whether the occurrences of the
different events are modeled statistically or not.

2.7.1 Bayesian Detection

In the Bayesian detection approach, we assume that the occurrence of each
hypothesis can be modeled statistically and has a specific probability. This
approach is particularly useful when the underlying events happen repeatedly
so that statistics can be inferred as described in Section 2.6, and the detector
will be applied many times so that its average performance is essential.
Consider a binary hypothesis test where Pr{H0} and Pr{H1} denote the
probabilities that the hypotheses H0 and H1 take place, respectively. In the
detection problems where we know these probabilities (e.g., communication
tasks where the messages are designed to be equally likely), it is of interest to
minimize the error probability, which is defined as

Pe = Pr{H0}Pr{Ĥ = H1|H0}︸ ︷︷ ︸
=PFA

+Pr{H1}Pr{Ĥ = H0|H1}︸ ︷︷ ︸
=PM=1−PD

, (2.186)

where the conditional probability Pr{Ĥ = H1|H0} is the probability of detect-
ing the hypothesis H1 when H0 is true, which we previously called the false
alarm probability, PFA. Similarly, Pr{Ĥ = H0|H1} is the conditional proba-
bility of selecting the hypothesis H0 when H1 is true, which we previously
called the missing probability, PM = 1− PD. The detector that minimizes the
error probability, Pe is as follows [48, Ch. 3].
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Lemma 2.13. The detector that minimizes the error probability in (2.186)
selects the hypothesis H1 if

fy|H1 (y|H1)
fy|H0 (y|H0) ≥

Pr{H0}
Pr{H1}

= γ (2.187)

where fy|H1 (y|H1) and fy|H0 (y|H0) denote the conditional PDFs of the re-
ceived signal y when H1 and H0 are true, respectively.

The ratio of the conditional PDFs on the left-hand side of (2.187) is
called the likelihood ratio. The detector that minimizes Pe compares it to the
threshold γ, which is the ratio of the a priori probabilities of the hypotheses.
The threshold is 1 when the hypotheses are equally likely. On the other hand,
when hypothesis H1 is more likely, then γ is smaller to decrease the missing
probability, PM, since its contribution to (2.186) is more dominant compared
to the false alarm probability. When hypothesis H0 is more likely, the optimal
γ is greater than 1 to force PFA to become smaller.

Example 2.18. Consider the binary hypothesis test in (2.181). For a given
value of γ = Pr{H0}/Pr{H1}, derive the Bayesian detector that minimizes
the error probability. What are PD and PFA for this detector?

The received signal y is distributed as y ∼ N (1, σ2) when H1 is true. On
the other hand, it is distributed as y ∼ N (0, σ2) when H0 is true. Inserting
the respective Gaussian distributions from (2.63) into the likelihood ratio in
(2.187), we obtain the minimum Pe detector as

1√
2πσ2 e

− (y−1)2

2σ2

1√
2πσ2 e

− y2
2σ2

≥ γ ⇒ ln

e− (y−1)2

2σ2

e− y2
2σ2

 ≥ ln(γ)

⇒ −(y − 1)2

2σ2 + y2

2σ2 ≥ ln(γ) ⇒ y ≥ σ2 ln(γ) + 1
2 , (2.188)

where we used the fact that ln(γ) is a monotonically increasing function of
γ ≥ 0, so it can be applied to both sides of the inequality without changing
the inequality sign. By using the notation γ′ = σ2 ln(γ) + 1

2 , the detection
probability is associated with the event y ≥ γ′ and computed as

PD =
∫ ∞

γ′
fy|H1 (y|H1) ∂y = 1√

2πσ2
e− (y−1)2

2σ2 ∂y. (2.189)

Similarly, the false alarm probability is associated with the event y ≥ γ′ and
is computed using fy|H0 (y|H0) as

PFA =
∫ ∞

γ′

1√
2πσ2

e− y2

2σ2 ∂y. (2.190)
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In Figure 2.27, we show the missing probability (PM = 1− PD), the false
alarm probability (PFA), and the error probability (Pe) for the considered
binary hypothesis test, as a function of the threshold γ. The curves are
generated using the formulas derived in Example 2.18. In Figure 2.27(a), we
consider equally likely hypotheses (i.e., Pr{H0} = Pr{H1} = 1

2). The PM-
curve increases with γ, while the PFA-curve decreases. The error probability
is a weighted sum of these metrics, so it goes down and then up again when
γ increases. The threshold that minimizes Pe is γ = Pr{H0}/Pr{H1} = 1,
which is denoted by a cross in the figure. We notice that the optimal threshold
occurs where PM = PFA, which can be proved analytically. As the threshold
increases beyond 1, PFA decreases but PM increases faster, which leads to an
increased error probability Pe. If γ instead becomes smaller than 1, then PM
decreases but PFA increases faster, leading to an increased error probability.

In Figure 2.27(b), we set Pr{H1} = 1
3 and Pr{H0} = 2

3 , which leads to
the optimal threshold γ = Pr{H0}/Pr{H1} = 2. The figure confirms that the
minimum error probability is obtained when γ = 2. PFA is less than PM at this
point, which is expected since the contribution of PFA to the error probability
in (2.186) is more dominant since it is multiplied by Pr{H0}, which is larger
than Pr{H1} that is multiplied by PM.

2.7.2 Neyman-Pearson Detection

There are situations when prior information about the hypothesis probabilities
is unavailable, either because the statistics are hard to obtain or because the
events only occur once, so statistical modeling is not viable. We can then
follow the Neyman-Pearson detection approach where a priori probabilities
of the hypotheses are not considered. This approach is common in radar
applications; for example, in target detection, it is hard to set a probability
for the existence of a target. Instead, a desired value of PFA = α is set, and
the detector is designed to maximize PD under the condition that PFA = α.
The detector that maximizes the detection probability in such a constrained
detection problem is as follows [48, Ch. 3].

Lemma 2.14. The detector that maximizes the detection probability, PD,
under the constraint that PFA = α selects the hypothesis H1 if

fy|H1 (y|H1)
fy|H0 (y|H0) ≥ γ, (2.191)

where the threshold γ is selected to satisfy

PFA =
∫
fy|H1

(y|H1)
fy|H0

(y|H0) ≥γ
fy|H0 (y|H0) ∂y = α. (2.192)
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(a) Pr{H0} = Pr{H1} = 1
2 and the optimal threshold is γ = 1.

(b) Pr{H0} = 2Pr{H1} = 2
3 and the optimal threshold is γ = 2.

Figure 2.27: The missing probability (PM), the false alarm probability (PFA), and the error
probability (Pe) as a function of the threshold γ for the binary hypothesis test in Example 2.18
with σ2 = 0.5. The cross shows the threshold from Lemma 2.13 that minimizes the error
probability: γ = Pr{H0}/Pr{H1}.
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Example 2.19. Consider the binary hypothesis test in (2.181). Derive the
Neyman-Pearson detector that satisfies PFA = α. What is PD for this detector?

The condition in (2.191) appeared already in the Bayesian detector but
for a predefined value of γ. We now need to find the value that gives equality
in (2.192). If we rewrite this condition in the way previously done in (2.188),
our goal becomes to find the value of γ′ that results in PFA = α. This value
is found by solving the equation

PFA = α =
∫ ∞

γ′

1√
2πσ2

e− y2

2σ2 ∂y = 1− Fy

(
γ′

σ

)
, (2.193)

where Fy(y) denotes the CDF of the standard Gaussian distribution with
zero mean and variance 1. Since the CDF of a continuous random variable is
an invertible function, we can solve for γ′/σ and obtain γ′ = σF−1

y (1 − α).
In conclusion, the Neyman-Pearson detector selects the hypothesis H1 if
y ≥ σF−1

y (1−α) and selects H0 otherwise. If we insert that value into (2.189),
we obtain the detection probability

PD =
∫ ∞

σF−1
y (1−α)

1√
2πσ2

e− (y−1)2

2σ2 ∂y = 1− Fy
(
F−1

y (1− α)− σ−1) , (2.194)

where we made a change of integration variable from y to (y − 1)/σ when
obtaining the final result.

We can use the Neyman-Pearson detector to handle the binary hypothesis
test in (2.181), using the formulas derived in Example 2.19. Figure 2.28 shows
how the detection probability, PD, varies with the SNR. Three different false
alarm probabilities are considered: α = 10−1, α = 10−3, and α = 10−5. Since
the signal of interest is 1 under H1, the SNR is defined as SNR = 1/σ2. The
detection probability improves as the SNR increases for any given value of
PFA. We notice that PD is higher when the false alarm probability is set to a
higher value. This is expected since the challenge in detection is to handle
uncertain cases. If we select H1 for most of these cases, we get a high value of
PD but also many false alarms. When the desired value of PFA is smaller, a
higher SNR is needed to achieve the same PD.

2.8 Frequency Domain and Discrete Fourier Transform

Wireless signals can be equivalently represented in the time domain and
frequency domain. The Fourier transform was used earlier in this chapter to
obtain the frequency-domain representation of continuous-time signals. In
this section, we will describe the mathematical transformation between these
domains for discrete signals. In particular, we will define the discrete Fourier
transform (DFT) and describe how it can be utilized to analyze the frequency
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Figure 2.28: The detection probability, PD, versus the SNR = 1/σ2, for three different values
of PFA. The Neyman-Pearson detector is used for the binary hypothesis test in Example 2.19.

content of a sampled time-domain signal of finite length. In communication
systems that operate over a large bandwidth, it is common to insert the data
content into the frequency-domain representation of the signal instead of the
time-domain representation. The reason can be to efficiently handle channels
that change substantially over the signal bandwidth. We will provide key
results regarding the DFT and inverse DFT (IDFT) that will be utilized in
later chapters.

Consider an S-length sequence χ[0], . . . , χ[S − 1] with samples of a time-
domain signal. The DFT of this sequence is a sequence χ̄[0], . . . , χ̄[S − 1] of
equal length that describes the frequency-domain content and is given by

χ̄[ν] = Fd{χ[s]} = 1√
S

S−1∑
s=0

χ[s]e−j2πsν/S for ν = 0, . . . , S − 1. (2.195)

The constant 1/
√
S in (2.195) ensures that the energy is the same in both the

time-domain sequence and the corresponding frequency-domain sequence:

S−1∑
s=0
|χ[s]|2 =

S−1∑
ν=0
|χ̄[ν]|2, (2.196)

which is known as Parseval’s relation. Many other textbooks omit this scaling
factor, which results in an energy mismatch that must be compensated for
when taking the IDFT. However, the scaling factor is vital in communications
since the signal energy is constrained, and we want to be able to measure it
over both time and frequency. The IDFT of the sequence χ̄[0], . . . , χ̄[S − 1] is
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computed as

χ[s] = F−1
d {χ̄[ν]} = 1√

S

S−1∑
ν=0

χ̄[ν]ej2πsν/S for s = 0, . . . , S − 1 (2.197)

and returns the original time-domain sequence.
The DFT is a linear transform, which can be seen by defining the S × S

DFT matrix

FS = 1√
S


1 1 1 . . . 1
1 υS υ2

S . . . υS−1
S

...
...

...
...

...
1 υS−1

S υ
2(S−1)
S . . . υ

(S−1)(S−1)
S

 , (2.198)

where υS = e−j2π/S . We can use FS to write the DFT in (2.195) in vec-
tor/matrix form as  χ̄[0]

...
χ̄[S − 1]


︸ ︷︷ ︸

=χ̄

= FS

 χ[0]
...

χ[S − 1]


︸ ︷︷ ︸

=χ

, (2.199)

or more concisely as χ̄ = FSχ. The DFT matrix is unitary (i.e., FH
SFS =

FSFH
S = IS), thus the IDFT can be obtained from (2.199) by multiplying

with the IDFT matrix FH
S from the left-hand side:

χ = FH
Sχ̄. (2.200)

The columns of FH
S are an orthonormal basis in CS since the DFT matrix is

unitary. Any signal vector χ is spanned by this basis, and the basis vectors
can be shown to represent a set of specific signal frequencies.

2.8.1 Interpretation of Signal Frequencies

Any S-length signal can be represented by a vector χ = [χ[0], . . . , χ[S−1]]T ∈
CS . The IDFT formula in (2.200) shows that this vector can also be represented
as a linear combination of the columns of FH

S with the coefficients given by the
DFT vector χ̄. The columns of FH

S take the role of an orthonormal basis in CS
and are not selected arbitrarily but to represent different signal frequencies. If
we count the columns of FH

S from 0 to S − 1, then column ν ∈ {0, . . . , S − 1}
is

1√
S



1
(υνS)∗

(υ2ν
S )∗

...(
υ

(S−1)ν
S

)∗

 = 1√
S


ej 2πν

S ·0

ej 2πν
S ·1

ej 2πν
S ·2

...
ej 2πν

S ·(S−1)

 . (2.201)
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This basis vector contains S equal-spaced samples of the complex exponential
ej 2πν

S ·l, with the normalized frequency ν/S and the integer sample times
l = 0, 1, . . . , S − 1. The frequency is normalized in the sense that the time
between the samples is unspecified. Suppose the discrete samples are obtained
from a complex exponential ej2πft with the frequency f Hz and time variable
t ∈ R. In that case, we need to know the sampling rate (samples/second) to
connect the normalized frequency to the original frequency.

We considered the normalized frequencies ν/S ∈ {0, . . . , (S−1)/S} between
0 and 1 when computing the IDFT in (2.197), but we can as well consider
another interval of length 1. The reason is that the complex exponential ej 2πν

S ·l

is a periodic function of ν. In particular, we obtain the same column in (2.201)
with ν/S and ν/S + n for any integer n because

ej2π( νS+n)·l = ej 2πν
S ·l ej2πnl︸ ︷︷ ︸

=1

= ej 2πν
S ·l (2.202)

when l is an integer. Since positive and negative frequencies often come in
pairs in practical signals (e.g., in the complex baseband representation), it is
common to consider a symmetric frequency interval such as f ∈ [−B/2, B/2),
where the upper limit is excluded so that the Nyquist-Shannon sampling
theorem stated in Lemma 2.8 is satisfied. Hence, utilizing the normalized
frequency interval f̄ ∈ [−1/2, 1/2) that is also symmetric around zero can be
convenient. There is then a simple bijective mapping where the sampling of a
signal with the original frequency f results in the normalized frequency

f̄ = f

B
(2.203)

when the sampling rate is B sample/second. Half of the normalized frequencies
in [−1/2, 1/2) are negative, and the concept of negative frequencies might
seem illogical but is fundamentally important. The complex exponentials with
the positive normalized frequency ν/S and with the negative counterpart
−ν/S only differ by a complex conjugate:

e−j 2πν
S ·l =

(
ej 2πν

S ·l
)∗
. (2.204)

Hence, the real parts are equal, while the imaginary parts have opposite signs.
Euler’s formula in (2.3) can be utilized to create any discrete-time sinusoidal
signal with the normalized frequency ν/S as a linear combination of ej 2πν

S ·l

and e−j 2πν
S ·l; for example, we can create the cosine and sine signals as

cos
(2πν

S
· l
)

= 1
2e

j 2πν
S ·l + 1

2e
−j 2πν

S ·l, (2.205)

sin
(2πν

S
· l
)

= 1
2je

j 2πν
S ·l − 1

2je
−j 2πν

S ·l. (2.206)

This is why we need pairs of positive and negative frequencies to synthesize
arbitrary signals using the IDFT.



2.8. Frequency Domain and Discrete Fourier Transform 133

Normalized frequency ν
S

: 0 1
S

S
2 −1
S

1
2

S−1
S

Move negative frequencies

ν
S

: 0 1
S

− 1
2

S
2 −1
S

− 1
S

Figure 2.29: Illustration of how the positive range ν/S ∈ {0, . . . , (S − 1)/S} of normalized
frequencies can be turned into the symmetric range in (2.207) with both positive and negative
frequencies through a cyclic shift. S = 10 samples are considered in this example.

Example 2.20. Which are the S normalized frequencies f̄ ∈ [−1/2, 1/2) that
the IDFT utilizes?

The columns of the IDFT matrix are generated by the normalized fre-
quencies ν/S ∈ {0, . . . , (S − 1)/S}. The lower half is in the intended range
[0, 1/2), while the upper half is in the interval [1/2, 1) that is larger than 1/2.
We can use the periodicity property from (2.202) to subtract 1 from these
normalized frequencies and obtain an equivalent representation in the range
[−1/2, 0). The IDFT is therefore synthesizing signals using the following S
normalized frequencies f̄ between −1/2 and 1/2:

f̄ ∈
{⌈

S
2
⌉

S
− 1, . . . ,− 1

S
, 0, 1

S
, . . . ,

⌈
S
2
⌉
− 1
S

}

=
{
−1

2 , . . . ,
1
2 −

1
S if S is even,

−1
2 + 1

2S , . . . ,
1
2 −

1
2S if S is odd,

(2.207)

where the operator ⌈·⌉ returns the closest integer larger than or equal to its
argument. The first and last frequencies differ for even and odd values of S.

Figure 2.29 shows how to switch from the range ν/S ∈ {0, . . . , (S − 1)/S}
of positive normalized frequencies to the symmetric range in (2.207) with
both positive and negative frequencies. This is achieved through a cyclic shift
where the upper half is moved to the beginning. The figure shows the case
of S = 10, which is an even number, so 1/2 is one of the original normalized
frequencies (this will not happen if S is odd). This frequency is equivalent to
1/2 − 1 = −1/2, so we can put it in either the beginning or the end of the
symmetric range. We follow the convention of starting with −1/2 so that the
cyclic shift divides the range into two equal halves and shifts their order.

Figure 2.30(a) shows the real and imaginary parts of ej 2πν
S ·l for ν = 5 and

S = 7. The curves are drawn as a function of a continuous variable l, but the
samples obtained at the integer times l = 0, . . . , 6 are marked with circles.
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When the DFT is applied to these 7 time-domain samples, we obtain the
vector χ̄ = [0, . . . , 0,

√
7, 0]T where only the sixth entry corresponding to ν = 5

is non-zero. The normalized frequency is ν/S = 5/7, which is not within the
interval [−1/2, 1/2) but can be identically represented within that range by
f̄ = 5/7 − 1 = −2/7. Figure 2.30(b) shows the DFT representation of the
signal using the set of normalized frequencies from (2.207) that are within the
desired interval [−1/2, 1/2).

Figure 2.31 illustrates how the IDFT formula χ = FH
Sχ̄ in (2.200) syn-

thesizes the time-domain signal by showing how each column of FH
S contains

samples of a complex exponential with a different frequency. The time axis
points downwards, with positive values to the left of the vertical lines. We
consider S = 7 as in the last figure. The curves in the first four columns are
obtained for the positive normalized frequencies 0, 1/7, 2/7, and 3/7. The
curves in the last three columns are obtained using the negative frequencies
−3/7, −2/7, and −1/7, which are equivalent to the normalized frequencies
4/7, 5/7, and 6/7 that are outside the range [−1/2, 1/2). The color coding
identifies the columns that oscillate at the same frequency except for a different
sign, leading to the same real parts but inverted imaginary parts.

The considered time-domain signal χ and its DFT χ̄ are sequences of the
same finite length S, but the DFT and IDFT definitions can be easily extended
into infinite sequences. The IDFT formula in (2.197) can be evaluated for any
integer s, but the sequence is S-periodic since χ[s±S] = e±j2πSν/Sχ[s] = χ[s]
follows by the fact that e±j2πSν/S = 1. This can be pictured by considering
Figure 2.31 and adding additional rows to the matrix by extending the
oscillating curves up and down. No additional frequencies would be added to
the signal when doing that. Similarly, for any integer ν, the DFT in (2.195)
satisfies χ̄[ν ± S] = e∓j2πsS/Sχ̄[ν] = χ̄[ν] since e∓j2πsS/S = 1. This frequency-
domain periodicity is the property we utilized when shifting the interval of
normalized frequencies from [0, 1) to [−1/2, 1/2).

In summary, any S-length signal vector χ can be expressed as a linear
combination of (samples from) complex exponentials having the S normalized
frequencies stated in (2.207). This is why the DFT gives a frequency-domain
representation, and the coefficients of the linear combination are stored in the
DFT vector χ̄.

2.8.2 Finite Impulse Response Filters

The discrete-time representation of a communication system might contain
the filtering of a signal sequence by a finite impulse response (FIR) filter,
which might represent the communication channel in a discrete time. A causal
discrete-time FIR filter of order T provides the output signal

y[k] = h[0]χ[k] + h[1]χ[k − 1] + . . .+ h[T ]χ[k − T ], (2.208)
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(a) The time-domain representation of ej 2πν
S

·l with samples taken at l = 0, 1, . . . , 6.

(b) The DFT representation of ej 2πν
S

·l using normalized frequencies.

Figure 2.30: The signal ej 2πν
S

·l with ν = 5 and S = 7 is sampled at the integer times
l = 0, 1, . . . , 6. The time-domain representation is shown in (a), and the frequency-domain
representation is shown in (b) using the set of normalized frequencies from (2.207).
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χ̄[0]

χ̄[1]

χ̄[2]

χ̄[3]

χ̄[4]

χ̄[5]

χ̄[6]

Time
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Figure 2.31: The IDFT formula in (2.200) is illustrated with a connection to the complex
exponentials that are sampled to obtain the entries of FH

S . The solid lines show the real parts,
the dashed lines show the imaginary parts, the dotted vertical lines show the time axis, and the
stars show the sampling points.

where χ[k] is the input signal and h[0], . . . , h[T ] is the (T + 1)-length discrete
impulse response that characterizes the filter. Figure 2.32 illustrates the
filtering operation in (2.208). The individual terms h[k] are often called taps,
and the entire filter can be referred to as a tapped delay line since the output
contains delayed copies of the input multiplied by different taps.

When the signal sequence χ[0], . . . , χ[S−1] is sent as input to an FIR filter
of order T < S, the output (2.208) can be expressed as a linear convolution
(denoted by ∗) between the input sequence and the impulse response:

y[k] = (h ∗ χ)[k] =
T∑
ℓ=0

h[ℓ]χ[k − ℓ] for k = 0, . . . , S − 1. (2.209)

This equation also depends on the T signal values χ[−T ], . . . , χ[−1] sent
before the actual transmission began. This is a major issue if we want to
identify all input signal values from the output sequence y[0], . . . , y[S − 1]
because there are S + T parameters to identify but only S observations.
Hence, controlling the content of the extra T signal values is desirable to avoid
transient effects where unknown signals are mixed with the intended ones
to create an ill-posed signal identification problem. A simple solution is to
actively send a prefix containing χ[−T ], . . . , χ[−1] into the FIR filter before
the actual intended transmission of χ[0], . . . , χ[S − 1] begins. The prefix can
be designed in different ways under the constraint that it is not introducing
any additional unknown signal values: we can only handle S unknowns when
having S observations. One option is to use a silent prefix represented by
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+ ++

χ[k]

y[k]

h[0] h[1] h[2] h[T ]

Delay Delay Delay

Figure 2.32: A block diagram of a discrete-time FIR filter of order T , which takes χ[k] as
input and provides y[k] as output.

χ[−1] = . . . = χ[−T ] = 0, so the corresponding terms vanish from (2.209).
This prefix has the benefit of not increasing the total signal energy but has
the drawback that we must design an inverse filter based on the channel
taps to recover the input signal sequence. As will soon become apparent, a
more convenient option is to add a cyclic prefix where we use values from
the end of the sequence: χ[−1] = χ[S − 1], χ[−2] = χ[S − 2], and so on until
χ[−T ] = χ[S − T ]. This option has the important consequence that the input
signal sequence will appear to be periodic, in the sense that the received signal
in (2.209) can be expressed as

y[k] =
T∑
ℓ=0

h[ℓ]χ[k − ℓ]

=
T∑
ℓ=0

h[ℓ]χ[(k − ℓ)modS ] = (h⊛ χ)[k] for k = 0, . . . , S − 1, (2.210)

where “modS” is the modulo operation that adds S to k − ℓ whenever
needed to get a value between 0 and S − 1. Even if the FIR filter performs a
linear convolution, the addition of the cyclic prefix makes the output signal
mathematically equivalent to a cyclic convolution between h[0], . . . , h[T ] and
an infinite S-periodic extension of χ[0], . . . , χ[S − 1]. Recall that S-length
sequences behave as S-periodic sequences when analyzed using the DFT, so
this is the property that we want to maintain by adding the cyclic prefix. It
is called cyclic (or circular) convolution since the modulo operation provides
indices from the end of the signal sequence when k− ℓ is negative; for example,
(−1)modS = S − 1, (−2)modS = S − 2, etc.

The DFT of the output y[0], . . . , y[S − 1] can be expressed as

ȳ[ν] = 1√
S

S−1∑
s=0

y[s]e−j2πsν/S = 1√
S

S−1∑
s=0

T∑
ℓ=0

h[ℓ]χ[(s− ℓ)modS ]e−j2πsν/S

= 1√
S

T∑
ℓ=0

S−1−ℓ∑
i=−ℓ

h[ℓ]χ[(i)modS ]e−j2π(i+ℓ)ν/S (2.211)
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by changing the summation index from s to i = s− ℓ. We can further rewrite
the expression by adding S to all negative values of i and exploiting the cyclic
signal structure, which results in

ȳ[ν] =
T∑
ℓ=0

h[ℓ] 1√
S

( −1∑
i=−ℓ

χ[(i)modS ]e−j2πiν/S

︸ ︷︷ ︸
=
∑S−1

i=S−ℓ
χ[i]e−j2π(i−S)ν/S

+
S−1−ℓ∑
i=0

χ[i]e−j2πiν/S

)
e−j2πℓν/S

=
T∑
ℓ=0

h[ℓ]e−j2πℓν/S

︸ ︷︷ ︸
h̄[ν]

1√
S

S−1∑
i=0

χ[i]e−j2πiν/S

︸ ︷︷ ︸
=χ̄[ν]

, (2.212)

where the equality follows by using that ej2πSν/S = 1 since ν is an integer.
The final expression in (2.212) shows that ȳ[ν] is the product between the
DFT of the input signal and frequency response of the FIR filter, defined as

h̄[ν] =
T∑
ℓ=0

h[ℓ]e−j2πℓν/S for ν = 0, . . . , S − 1. (2.213)

The frequency response is defined similarly to the DFT of a signal, except for
the lack of a 1/

√
S scaling factor.9 The property we derived above is known

as the cyclic convolution theorem.

Lemma 2.15. Let y[k] = (h⊛ χ)[k] denote the S-length sequence obtained
by cyclic convolution between the sequence χ[0], . . . , χ[S − 1] and the FIR
filter h[0], . . . , h[T ] with order T < S. The DFT of y[k] is given by

ȳ[ν] = h̄[ν]χ̄[ν] for ν = 0, . . . , S − 1, (2.214)

where χ̄[ν] is the DFT in (2.195) and h̄[ν] is the frequency response in (2.213).

This lemma states that the DFT of a cyclic convolution between a signal
sequence and the impulse response of a filter is the product of the respective
frequency-domain representations. This is the discrete counterpart of the
(perhaps) more widely used property that the continuous Fourier transform of
the convolution between two functions is the product of the Fourier transforms
of the respective functions. The practical consequence of this lemma is that
we identify the DFT of the input signal sequence by computing the DFT of
the output signal sequence and then simply dividing ȳ[ν] in (2.214) by h̄[ν].

9Many textbooks omit the 1/
√
S factor when defining the DFT to achieve symmetry between

how signals and impulse response are transformed to the frequency domain. As mentioned
earlier, the drawback of that convention is that the signal energy will differ between the time
and frequency domains, which we circumvent by using (2.195) for the DFT of a signal and
(2.213) for the frequency response of an FIR filter.
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The DFT operation is the same irrespective of the channel taps, which makes
it convenient to implement in hardware. We will return to this in Section 7.1.1
when considering orthogonal frequency-division multiplexing (OFDM).

We can also establish a matrix-vector representation of the FIR filter. If
we begin by considering the cyclic convolution in (2.210) and assume T = 3
(for brevity), we can connect the S outputs with the S inputs as

 y[0]
...

y[S − 1]


︸ ︷︷ ︸

=y

=



h[0] 0 . . . . . . . . . 0 h[3] h[2] h[1]
h[1] h[0] 0 . . . . . . . . . 0 h[3] h[2]
h[2] h[1] h[0] 0 . . . . . . . . . 0 h[3]
h[3] h[2] h[1] h[0] 0 . . . . . . . . . 0

0 . . . . . . . . . . . . . . . . . . . . . ...
... . . . h[3] h[2] h[1] h[0] 0 . . . ...
... . . . 0 h[3] h[2] h[1] h[0] 0

...
... . . . . . . 0 h[3] h[2] h[1] h[0] 0
0 . . . . . . . . . 0 h[3] h[2] h[1] h[0]


︸ ︷︷ ︸

=Ch

 χ[0]
...

χ[S − 1]


︸ ︷︷ ︸

=χ

,

(2.215)
which can be written in short form as y = Chχ. The filtering is carried out
by the S × S matrix called Ch, where each row contains all the channel taps
but shifted cyclically one entry to the right for each row. This kind of matrix
is known as a circulant matrix and can be created for any value of T < S.
Any such matrix can be viewed as the matrix representation of the cyclic
convolution that an FIR filter carries out when the input has a cyclic prefix.

Another matrix-vector representation can be established by considering
the frequency-domain expression in (2.214), which we can write as

 ȳ[0]
...

ȳ[S − 1]


︸ ︷︷ ︸

=ȳ

=


h̄[0] 0 . . . 0

0 h̄[1] . . . ...
... . . . . . . 0
0 . . . 0 h̄[S − 1]


︸ ︷︷ ︸

=Dh̄

 χ̄[0]
...

χ̄[S − 1]


︸ ︷︷ ︸

=χ̄

(2.216)

or in short form as ȳ = Dh̄χ̄. We notice that Dh̄ is a diagonal matrix
containing the frequency response of the FIR filter. We can connect the time-
domain representation in (2.215) and the frequency-domain representation
in (2.216) using the DFT matrix FS . We known from (2.199) that χ̄ = FSχ,
which also implies that ȳ = FSy. By substituting these expressions into
(2.216), we obtain

FSy = Dh̄FSχ ⇒ y = FH
SDh̄FSχ. (2.217)
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Figure 2.33: The complex exponential signal in (2.219) travels along the x-axis and the signal
at time t = 0 is shown. The wavelength λ is the spatial interval between two peaks. The spatial
frequency 1/λ is the number of wavelengths that fit into one meter.

By comparing (2.217) with (2.215), we notice that the circulant matrix Ch

can be alternatively expressed as

Ch = FH
SDh̄FS . (2.218)

Since Dh̄ is a diagonal matrix and FS is a unitary matrix, we recognize
(2.218) as the eigendecomposition of Ch; it has the same structure as in
Lemma 2.1, except that the eigenvalues can be complex in this case since
Ch is not Hermitian. The eigenvalues are the entries h̄[0], . . . , h̄[S − 1] of the
frequency response of the filter, while the eigenvectors are the columns of the
IDFT matrix FH

S . Since this result holds for any circular convolution, we can
conclude that the DFT matrix diagonalizes any circulant matrix.

2.8.3 Temporal and Spatial Frequencies

The DFT was introduced in this section to study the temporal frequencies
contained in a time-varying signal, but there is another related concept: spatial
frequencies. When an electromagnetic signal propagates through free space,
it can be observed simultaneously at many spatial locations, but it will be
delayed differently depending on how far it has traveled from the signal source.
Suppose the complex exponential signal ej2πfct = cos(2πfct) + j sin(2πfct)
with the temporal frequency fc is emitted from a source located in the origin,
as illustrated in Figure 2.33. The signal observed at the spatial location x ≥ 0
along the positive x-axis at the time t is

ej2πfc(t−x
c ) = ej2πfcte−j 2πx

λ , (2.219)

where x/c is the propagation delay, c is the speed of light, and the wavelength
at the carrier frequency is denoted by λ = c/fc. For a given communication
system, the carrier frequency is predetermined, while the wavelength might
change depending on the speed of light, which is reduced in some propagation
media compared to its maximum value 299 792 458 m/s obtained in free space
(i.e., vacuum). We will treat c as equal to the maximum in this book since
the waves reach the receiver through the air. The factor ej2πfct in (2.219)
determines the temporal signal variations while the factor e−j 2πx

λ determines
the spatial variations. At time t = 0, the signal observed along the x-axis is

e−j 2πx
λ = cos

(2π
λ
x

)
− j sin

(2π
λ
x

)
, (2.220)
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which is a periodic function that repeats itself every λ meters, thus the spatial
frequency is 1/λ, representing the number of periods per meter. The spatial
frequency is also called the wavenumber , but we will use the spatial frequency
terminology in this book to highlight that signals obtained in the time and
space domains can be studied using the same methods (e.g., the sampling
theorem and filtering). Spatial frequencies can be positive and negative, but
the convention is that there is a minus sign in the complex exponential as
in (2.220) when the spatial frequency is positive. In this way, the positive
temporal frequency fc gives rise to the positive spatial frequency 1/λ. In this
example, the spatial frequency is the same at any time t since the wave is
shifted to the right as it travels along the line. This follows from the fact that
the time variable t and spatial variable x affect different factors in (2.219).

The temporal frequency fc and the spatial frequency 1/λ are closely related
in wireless signaling (they only differ by a factor c), but there is a distinct
conceptual difference. One way to separate the concepts is to consider a
video recording of wave propagation (e.g., ocean waves). A video contains
a sequence of frames (pictures shown at different times), and each frame
consists of colored pixels at different screen locations. The temporal frequency
describes how the wave observed at a particular pixel evolves with time. In
contrast, the spatial frequency describes how the waves at a particular time
instance oscillate between the pixels in the current frame. The fundamental
relation between temporal and spatial frequency breaks down when static
objects are introduced in the propagation environment. In that case, the
temporal frequency remains the same, but the waves change directions when
interacting with the objects, changing the spatial frequency observed along
the given line. The connection also breaks down when observing the wave
along a line that is not parallel to the direction the wave travels.

Figure 2.34 shows how the sinusoid cos(2πfct) propagates radially in
two dimensions from a transmitter located in the origin, where the coloring
describes its value. The signal observed at the point (x, y) at time t is

cos
(

2πfc

(
t−

√
x2 + y2

c

))
= cos

(
2πfct−

2π
√
x2 + y2

λ

)

= 1
2e

j2πfcte−j2π
√
x2+y2
λ + 1

2e
−j2πfctej2π

√
x2+y2
λ ,

(2.221)

which is obtained similarly to (2.219) but with the propagation distance
computed as

√
x2 + y2. We also used Euler’s formula as in (2.8) to express the

cosine as two complex exponentials, which reveals that the considered signal
contains the spatial frequencies 1/λ and −1/λ. The figure shows this signal
at time t = 0, and we observe that the pattern is invariant to radial rotations
since the signal propagates equally in all angular directions. The distance
between two adjacent peaks in any radial direction equals the wavelength λ.
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Figure 2.34: A sinusoidal wave propagates radially from a transmitter located in the origin.
The middle figure shows the signal at different locations at t = 0. The upper and lower figures
show how the signals observed along two lines contain different spatial frequencies.
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At the bottom of the figure, the waveform observed along the black line is
shown. This line covers the positive x-axis, a radial direction from the origin.
At time t = 0, we observe a sinusoid cos(2πx

λ ) with the wavelength λ and the
spatial frequencies ±1/λ. The signal observed along the blue line is shown at
the top of the figure. This signal appears aperiodic and contains a broader
range of spatial frequencies. The reason is that the wave propagation is not
aligned with the direction of the line. The distance between the adjacent
peaks varies but is larger than λ, which indicates that the observed signal
only contains spatial frequencies in the range [−1/λ, 1/λ].

There are two main messages from this example. Firstly, the spatial
frequencies of the signal observed along a given line segment depend on the
location of the source. Hence, the observed signal can be used to identify the
source location or at least its angular direction. This estimation problem will
be considered in later chapters. Secondly, the observed signal has the original
spatial frequencies ±1/λ when considering a line drawn in the same direction
as the wave propagation, while smaller spatial frequencies (in the magnitude
sense) are observed when the direction of the line is not aligned with the
wave propagation. Suppose we insert B = 2/λ into the sampling theorem in
Lemma 2.8. In that case, it states that we can capture all useful information
from any signal containing spatial frequencies in the range [−1/λ, 1/λ) by
taking samples spaced 1/B = λ/2 apart. Hence, for any of the considered
lines, measuring the signal at locations spaced apart by λ/2 is sufficient.
This principle will guide us later when designing antenna arrays. Strictly
speaking, the spacing between the sampling locations should be smaller than
λ/2, because the cosine signal contains both the spatial frequencies −1/λ
and 1/λ. Aliasing might appear when sampling precisely at the Nyquist rate,
which we will discuss further in Chapter 4. We will also show that an antenna
array’s ability to distinguish between signals arriving from different directions
is determined by its ability to separate the spatial frequencies of these signals.

The DFT can be applied to samples obtained at the same time but at
different spatial locations. It will then reveal the spatial frequencies present in
the spatial signal samples. An example of this is shown in Figure 2.35, where
we take samples from the upper and lower curves in Figure 2.34. The S = 10
sample points per curve are indicated by circles in that previous figure and
are spaced apart by λ/2, as suggested by the sampling theorem. Since we are
taking spatial samples, the DFT computes the normalized spatial frequencies.
Figure 2.35(a) shows the DFT of the blue upper curve in Figure 2.34, which
contains a wide range of spatial frequencies since the waveform is sampled in a
dimension that is not aligned with the direction of the propagating waveform.
Since the original signal is real-valued, there is a symmetry between the
positive and negative spatial frequencies. Figure 2.35(b) shows the DFT of
the black signal, which only contains the normalized frequency −1/2 = 1/2.
A single point in the DFT represents both frequencies due to the aliasing that
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(a) DFT of the upper curve in Figure 2.34.

(b) DFT of the lower curve in Figure 2.34.

Figure 2.35: The DFTs of the spatially sampled waveforms from the upper and lower curves
of Figure 2.34. In this case, the DFT describes spatial frequencies, and the figures show the
magnitudes (i.e., absolute values) since the DFTs can be complex-valued.

can appear when sampling precisely at the Nyquist rate. However, from the
preceding discussion, we know that the signal only contains spatial frequencies
smaller or equal to 1/λ; the fastest changes always occur in the direction the
wave propagates. When combined with the prior knowledge that the signal is
real-valued, it is possible to reconstruct the original signal in this special case.
Since the spatial sampling rate is 2/λ samples per meter, the true spatial
frequencies are ±1

2
2
λ = ± 1

λ , as anticipated from the previous discussion.
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2.9 Exercises

Exercise 2.1. Consider two orthogonal vectors x1 ∈ CM and x2 ∈ CM .
(a) What is the projection yproj,x1,x2 of another vector y ∈ CM onto the space spanned

by x1 and x2? Hint: Express the projection as yproj,x1,x2 = α1x1 + α2x2 and find
the coefficients α1, α2 ∈ C that make the residual vector y − yproj,x1,x2 orthogonal
to x1 and x2.

(b) Generalize the result from (a) to the case where we project y onto the space that
is spanned by the L < M orthogonal vectors x1, . . . ,xL ∈ CM . Show that we
can write the projection as yproj,x1,...,xL = Py and obtain an expression for the
projection matrix P.

Exercise 2.2. Let x ∼ NC(0, IM ) and y ∼ NC(0,R) be M -dimensional complex Gaussian
random vectors. Moreover, let z = [z1, . . . , zM ]T be a random vector with independent
and identically distributed entries zm ∼ Exp(1/3) for m = 1, . . . ,M .

(a) Compute E{|vHy|2} for a given deterministic vector v = [v1, . . . , vM ]T ∈ CM .
(b) Compute E{|vHz|2} for a given deterministic vector v = [v1, . . . , vM ]T ∈ CM .
(c) Compute Var{∥Ax∥2} where A ∈ CK×M is a deterministic matrix with K ≥ M .

Each column of A has a norm equal to 2 and is orthogonal to the other columns.

Exercise 2.3. When using PAM, the continuous-time complex-baseband signal can be
expressed as in (2.120), which we repeat here as

z(t) =
∞∑

k=−∞

x[k] p
(
t− k

B

)
. (2.222)

The Nyquist criterion says that z(n/B) = Ax[n], where A ̸= 0 is an arbitrary constant. It
can be equivalently expressed by multiplying z(t) by the impulse train

∑∞
r=−∞ δ(t−r/B)

and equating it to the impulse train weighted by the desired symbols:

z(t)
∞∑

r=−∞

δ
(
t− r

B

)
= A

∞∑
r=−∞

x[r]δ
(
t− r

B

)
. (2.223)

(a) By taking the Fourier transform of both sides of (2.223), derive the condition that
the Fourier transform of the pulse must satisfy

B

∞∑
r=−∞

P (f − rB) = A (2.224)

for the Nyquist criterion to hold. Hint: Use the fact that the Fourier transform of
the impulse train is given by F{

∑∞
r=−∞ δ(t− r/B)} = B

∑∞
r=−∞ δ(f − rB).

(b) Verify that the sinc pulse is the most bandwidth-efficient pulse that satisfies the
Nyquist criterion using the condition in (2.224).

(c) Determine whether the Nyquist criterion holds or not for the so-called raised-cosine
pulse (with roll-off factor 0.5) that has the Fourier transform

P (f) =


1 if |f | ≤ B

4 ,
1
2

(
1 + sin

( 2π|f |
B

))
if B

4 < |f | ≤ 3B
4 ,

0 if |f | > 3B
4 .

(2.225)
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Exercise 2.4. Consider the LTI system in Figure 2.10(a) with the impulse response

gp(t) = rect
(
t− T/2
T

)
=
{

1, if 0 ≤ t ≤ T,

0, otherwise.
(2.226)

The input signal zp(t) is arbitrary and the complex-baseband equivalent input signal is
denoted as z(t).

(a) Find the complex-baseband representation of the output signal υp(t) in terms of
z(t) and the carrier frequency fc by first filtering the signal in the passband and
then downshifting υp(t) to the complex baseband.

(b) Compare the result obtained in (a) with the one obtained by first transforming
the input signal zp(t) to the complex baseband and then filtering it with the
equivalent complex-baseband filter from (2.117).

Exercise 2.5. Consider the noise samples n[l] in (2.123), where w(t) is a white circularly
symmetric complex Gaussian random process with the constant power-spectral density
N0 and p(t) is the sinc-pulse defined in (2.118).

(a) Prove that the variance of n[l] is N0.
(b) Prove that the noise samples n[l] and n[m] obtained from (2.123) for l ̸= m are

independent. Hint: Use the identity∫ ∞

−∞
sinc(l − t)sinc(m− t)∂t = 0, (2.227)

which holds for any integers l and m such that l ̸= m.

Exercise 2.6. Consider the linear observation model

z = Av + n, (2.228)

where v ∈ CK and n ∈ CM are independent random vectors. Their entries are in-
dependent and identically distributed with zero mean and unit variance. The matrix
A ∈ CM×K is deterministic. Hence, the covariance matrices of v and z are E{vvH} = IK
and E{zzH} = AAH + IM , respectively. The LMMSE estimate of v based on the
observation z is

v̂ = AH
(
AAH + IM

)−1 z. (2.229)

(a) Verify the orthogonality principle E{ṽzH} = E{(v − v̂)zH} = 0 for the given
LMMSE estimator.

(b) Suppose v ∼ NC(0, IK) and n ∼ NC(0, IM ). Show that the LMMSE estimator
in (2.229) is also the MMSE estimator by verifying that AH

(
AAH + IM

)−1 z
is the mean of the conditional PDF fv|z(v|z). Hint: Use the matrix identity
det
(
AAH + IM

)
= det

(
AHA + IK

)
= 1

det
(
(AHA+IK)−1

) and the identity in

(2.50).
(c) Find the MMSE estimate of v ∼ NC(0, IM ) based on the alternative observation

y = v + c, (2.230)

where c ∼ NC(0,C) is the independent noise with an invertible covariance matrix
C. Hint: Use whitening and then (2.229).



2.9. Exercises 147

Exercise 2.7. Consider a narrowband channel with L paths. The channel response is
modeled according to (2.131) as

h =
L∑
i=1

αie
−j2πfc(τi−η). (2.231)

(a) Is |h| dependent of the value of η?
(b) Suppose there are L = 2 paths and α1 = α2 = 1. For which values of τ1 and τ2 is

|h| maximized? For which values is |h| minimized?
(c) Define ψi = 2πfc(τi − η) and assume that it is a uniformly distributed random

variable between −π and π. Compute E{|h|2} assuming that α1, . . . , αL are deter-
ministic, while ψ1, . . . , ψL are mutually independent. Hint: Use that E{e−jψi} = 0.

(d) Redo (c) under the assumption that α1, . . . , αL are also independent random
variables, uniformly distributed between 0 and 1.

Exercise 2.8. Consider the complex-valued AWGN channel y = x+ n with B samples
per second. Its capacity is B log2(1 + P/(BN0)), which follows from (2.146) with β = 1.
Decompose the channel into two real-valued AWGN channels.

(a) Are the two real-valued AWGN channels independent?
(b) How many samples per second do we have for each of the two channels?
(c) Suppose we transmit with a power of P > 0 Watt and place all the power in only

one of the two real-valued AWGN channels. What is the capacity expressed in
bits per second?

(d) Is the result in (c) higher or lower than the capacity of the complex-valued AWGN
channel?

Exercise 2.9. A friend claims we can double the capacity (in bit/s) by doubling the
bandwidth. Is this correct? If yes, use the capacity formula to prove it. If no, explain
what else needs to be done to achieve twice the capacity.

Exercise 2.10. The received signal power reduces with the propagation distance d. This
can be modeled as Υ

(
1 m
d

)α
P using the parametric channel gain model in (1.9), where

P is the transmit power, α > 1 is the pathloss exponent, and Υ > 0 is a constant
propagation loss.

(a) Suppose the channel is modeled as in (2.144). How can we select h to get the right
received signal power? What is the resulting capacity expression?

(b) Consider B = 10 MHz, N0 = −174 dBm, P = 30 dBm, Υ = −37 dB, and α = 3.7.
What is the SNR for a user at the distance d = 200 m? What is the capacity (in
bit/s)?

(c) What will the capacity be for a user at the distance 4d? How can the transmit
power be scaled to achieve the same capacity as in (b)?

(d) What will the capacity be for a user at the distance d/2? How can the transmit
power be scaled to achieve the same capacity as in (b)?
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Exercise 2.11. The capacity of the discrete memoryless channel y = h · x+ n is achieved
by the input signal x ∼ NC(0, q), as proved in Corollary 2.1. Suppose we instead send two
independent signals over the channel: x1 ∼ NC(0, q1) and x2 ∼ NC(0, q2). The resulting
received signal is

y = h · (x1 + x2) + n, (2.232)

where n ∼ NC(0, N0) is independent complex Gaussian noise. What is the corresponding
channel capacity, which is achieved by selecting q1, q2 to maximize the mutual information
H(y) − H(y|x1, x2) under the constraint q1 + q2 ≤ q?

Exercise 2.12. Consider a random variable x with zero mean and variance σ2. We want
to estimate σ2 from the L independent random realizations of x, which are denoted
x1, . . . , xL. The following estimator is utilized:

σ̂2
L =

∑L

i=1 |xi|2

K
, (2.233)

where K is a pre-determined scalar.

(a) For which value of K is the considered estimator unbiased? Is the answer dependent
on the specific distribution of x?

(b) For which value of K will the considered estimator achieve the minimum MSE?
Is the answer dependent on more than the mean and variance of x? What is the
MSE-minimizing value of K if x ∼ NC(0, σ2)?

Exercise 2.13. Consider the binary hypothesis test

H0 : y[l] = n[l], l = 1, . . . , L, (2.234)
H1 : y[l] = 1 + n[l], l = 1, . . . , L, (2.235)

where the detector decides whether “1” is transmitted or not by observing multiple
received signals y[l]. Unlike the hypothesis test in (2.181), L consecutive received signals
are considered. The real-valued noise samples n[l] are independent and identically
distributed as n[l] ∼ N (0, σ2), for l = 1, . . . , L.

(a) For a given value of γ = Pr{H1}/Pr{H0}, derive the Bayesian detector that
minimizes the error probability. What are PD and PFA for this detector? Hint:
The answers are integral expressions.

(b) For a given value of PFA = α, derive the Neyman-Pearson detector that maximizes
the detection probability, PD. What is PD for this detector?

Exercise 2.14. Consider the continuous-time signal x(u) = 2 cos(200πu) + 3 sin(600πu),
which is sampled to obtain the S = 7-length sequence χ[s] = x(s/B), for s = 0, . . . , 6.
What is the DFT of the sequence χ[s] when the sampling rate is B = 700 samples/s?

Exercise 2.15. Prove Parseval’s relation in (2.196) using the unitary property of the
DFT matrix FS .
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Exercise 2.16. Suppose the S-length sequence a = [a[0], . . . , a[S − 1]]T has the DFT
ā = [ā[0], . . . , ā[S − 1]]T. Consider the S × S circulant matrix defined similar to (2.215)
as

Cā =


ā[0] ā[S − 1] ā[S − 2] . . . . . . ā[1]
ā[1] ā[0] ā[S − 1] . . . ā[3] ā[2]

...
. . . . . . . . . . . .

...
ā[S − 1] . . . . . . . . . . . . ā[0]

 , (2.236)

but for the DFT sequence. We further define a diagonal matrix containing the time-
domain sequence a:

Da =


a[0] 0 . . . 0

0 a[1]
. . .

...
...

. . . . . . 0
0 . . . 0 a[S − 1]

 . (2.237)

(a) Derive a decomposition of Cā in terms of Da and the DFT matrix FS similar to
(2.218). Hint: Switch the roles of the sequences in time and frequency. From the
structure of the DFT matrix, it holds that FT

S = FS and FH
S = F∗

S .
(b) Consider another S-length sequence b = [b[0], . . . , b[S − 1]]T which has the DFT

b̄ = [b̄[0], . . . , b̄[S − 1]]T. Prove that the DFT of the sequence a[k]b[k] (for k =
0, . . . , S− 1) is given by (ā⊛ b̄)[ν]/

√
S (for ν = 0, . . . , S− 1) by using the obtained

decomposition of Cā and the properties of FS . Hint: The kth entry of the S-length
vector Dab is a[k − 1]b[k − 1].

(c) For the given sequences a[k] = ej 2πk
10 , b[k] = ej 6πk

10 , for k = 0, . . . , 9, verify that the
DFT of the sequence a[k]b[k] is given by (ā⊛ b̄)[ν]/

√
S.

Exercise 2.17. The signal x(t) = cos(2πf1t) is modulated to the carrier frequency fc by
computing xp(t) = x(t) cos(2πfct), where fc > f1.

(a) Which positive and negative (temporal) frequencies does xp(t) contain?
(b) The signal xp(t) is radiated from an antenna located in the origin and propagates

at the speed of light c. Which spatial frequencies can be observed along the y-axis?
(c) What happens to the temporal and spatial frequencies if the signal propagates

through a medium where the propagation speed υ is smaller than c (i.e., the speed
of light in free space)?



Chapter 3

Capacity of Point-to-Point MIMO Channels

In this chapter, we will characterize the channel capacity in memoryless point-
to-point scenarios where one transmitter communicates with one receiver
without impacting other systems. We will distinguish between four cases:

1. Single-input single-output (SISO) channel: The transmitter and receiver
have one antenna each.

2. Single-input multiple-output (SIMO) channel: The transmitter has one
antenna and the receiver has multiple antennas.

3. Multiple-input single-output (MISO) channel: The transmitter has mul-
tiple antennas and the receiver has one antenna.

4. Multiple-input multiple-output (MIMO) channel: Both the transmitter
and receiver have multiple antennas.

These cases are illustrated in Figure 3.1. The capacity of the SISO channel
was derived and discussed in Section 2.4.1. This chapter will generalize the
theory to capture the other three cases, one after the other. The results will
be utilized in the remainder of the book to study specific communication
scenarios and channel conditions.

3.1 Impact of Power and Bandwidth on the Capacity

Before introducing multiple antennas, we will return to the channel capacity
for SISO channels in (2.146) and shed some light on how it depends on the
transmit power P and the bandwidth B. The purpose is to understand how
the capacity can be improved. For notational convenience, we now explicitly
write the capacity in (2.146) as a function C(P,B) of these variables:

C(P,B) = B log2

(
1 + Pβ

BN0

)
bit/s. (3.1)
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Transmitter Receiver

(a) Point-to-point SISO channel.

Transmitter Receiver

(b) Point-to-point SIMO channel.

Transmitter Receiver

(c) Point-to-point MISO channel.

Transmitter Receiver

(d) Point-to-point MIMO channel.

Figure 3.1: The four kinds of point-to-point communication channels where the transmitter
and receiver have either one or multiple antennas.
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Since the capacity involves a logarithm, it is useful to notice that

log2(1 + z) ≈ log2(e)z if z ≈ 0, (3.2)
log2(1 + z) ≈ log2(z) if z ≫ 0, (3.3)

where e ≈ 2.71828 is Euler’s number. The expression in (3.2) is the first-order
Taylor approximation of log2(1 + z) around z = 0. Since log2(1 + z) with the
SNR z = Pβ

BN0
appears in the capacity expression (3.1), (3.2) and (3.3) will

help us to understand the capacity behavior at low and high SNR, respectively.
The notions of low/high SNRs can be interpreted as follows.

Example 3.1. For which ranges of z ≥ 0 will the approximations of log2(1+z)
in (3.2) and (3.3) lead to absolute errors that are smaller than 0.1?

The low SNR approximation log2(1 + z) ≈ log2(e)z in (3.2) is based on a
first-order Taylor approximation, and it can be written in an exact form as

log2(1 + z) = log2(e)z − log2(e) z2

2(1 + a)2 for some 0 ≤ a ≤ z, (3.4)

where the second term is known as the Lagrange error bound. The absolute
approximation error can be upper bounded using (3.4) as

∣∣ log2(1 + z)− log2(e)z
∣∣ = log2(e) z2

2(1 + a)2 ≤
log2(e)

2 z2, (3.5)

where the last step follows from setting a = 0 to get the largest possible error.
Based on this upper bound, the absolute error is smaller than 0.1 when

log2(e)
2 z2 ≤ 0.1 ⇒ z ≤

√
0.2

log2(e) ≈ 0.37 ≈ −4.3 dB. (3.6)

We can find the exact solution by solving log2(e)z− log2(1 + z) ≤ 0.1 numeri-
cally, which results in the somewhat larger range z ⪅ 0.42 ≈ −3.8 dB.

For the high SNR approximation log2(1+z) ≈ log2(z) in (3.3), the absolute
error is log2(1+z)− log2(z) = log2(1+1/z). To guarantee log2(1+1/z) ≤ 0.1,
we should have

z ≥ 1
20.1 − 1 ≈ 13.93 ≈ 11.4 dB. (3.7)

When varying the transmit power P , we notice that C(P,B) is a mono-
tonically increasing function of P . It starts at C(0, B) = 0 and then grows
linearly with P when the SNR Pβ

BN0
is small. We can utilize (3.2) to obtain

C(P,B) ≈ B log2(e) Pβ
BN0

= log2(e)Pβ
N0

(3.8)

at low SNR, which is independent of the bandwidth.
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� Low SNR region

6

High SNR region

Figure 3.2: The capacity behavior in a single-antenna system when changing the transmit
power P , for B = 10 MHz and β/N0 = 106 Hz/W.

When the SNR is large, the capacity only grows logarithmically with an
increasing P due to (3.3). There is no upper limit on how large capacity
we can achieve by increasing P , but the capacity growth is slow when we
have reached the logarithmic growth rate at high SNR. Figure 3.2 illustrates
these behaviors by showing C(P,B) as a function of P for B = 10 MHz and
β/N0 = 106 Hz/W. The capacity grows linearly with P in the low SNR region,
while the logarithmic behavior appears in the high SNR region.

Example 3.2. Consider the capacity in (3.1) in a scenario where P and B
have been selected such that Pβ/(BN0) = 1. Suppose we change the transmit
power from P to cP for some scalar c > 0. Which values of c will double and
quadruple the capacity (compared to c = 1)?

The capacity in (3.1) becomes C = B log2(1+1) = B under the assumption
that Pβ/(BN0) = 1 (i.e., when c = 1). Our first target is to double the capacity
to 2B by increasing the transmit power to cP . This means that

B log2

(
1 + cPβ

BN0

)
= 2B ⇔ log2(1 + c) = 2⇔ c = 22 − 1 = 3. (3.9)

Hence, we need to triple the transmit power to double the capacity.
Next, we want to find the value of c that gives the capacity 4B:

B log2

(
1 + cPβ

BN0

)
= 4B ⇔ log2(1 + c) = 4⇔ c = 24 − 1 = 15. (3.10)

Hence, we must transmit 15 times more power to quadruple the capacity.
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Asymptotic limit

� High SNR region

6

Low SNR region

Figure 3.3: The capacity behavior in a single-antenna system when changing the bandwidth
B, for Pβ/N0 = 5 · 106 Hz.

When varying the bandwidth B, we notice that C(P,B) is a monotonically
increasing function also of this variable, which can be shown by taking the first
derivative and proving that it is positive. The capacity starts at C(P, 0) = 0,
which can be shown by taking the limit B → 0. This represents a high SNR
region where the SNR Pβ

BN0
→∞, but the performance is anyway low due to

the small bandwidth. This also implies that the capacity grows almost linearly
when increasing B in the high SNR region since the factor in front of the
logarithm in (3.1) grows linearly. However, the logarithm is almost unaffected
by a small change in B at high SNR. If we instead consider the case when B
is large, we can utilize that we operate in the low SNR region where Pβ

BN0
is

small, thus

C(P,B) ≈ B log2(e) Pβ
BN0

= log2(e)Pβ
N0

. (3.11)

One can prove that C(P,B) → log2(e)PβN0
as B → ∞, so there is an upper

limit on how high capacity we can achieve when having a huge bandwidth.
The reason is that the fixed transmit power P needs to be divided over the
bandwidth, leading to a gradually lower SNR when using more bandwidth.
This is directly seen from the signal energy per symbol q = P/B used in
Corollary 2.1. Figure 3.3 illustrates these behaviors by showing C(P,B) as a
function of B for Pβ/N0 = 5 · 106 Hz. The capacity grows linearly with B in
the high SNR region but converges to an upper limit in the low SNR region.

With these behaviors in mind, we can conclude how to improve the channel
capacity most efficiently in different cases. If we have a system that operates
in the high SNR region, the capacity grows linearly with the bandwidth B but
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relatively slowly with the power P . Since changes in the bandwidth greatly
impact the capacity, the high SNR region is called the bandwidth-limited
region. In contrast, if we have a system that operates in the low SNR region,
the capacity grows linearly with the power, while the bandwidth has little
impact. Since changes in the power strongly impact the capacity, the low SNR
region is called the power-limited region. Alternatively, we can increase both
P and B while keeping their ratio P/B fixed. In that case, the SNR Pβ

BN0
is

constant, and the capacity (3.1) will always be linearly increasing, irrespective
of the SNR value. The intuition is that we get more symbols per second, and
each can carry the same amount of information since we keep the energy per
symbol constant by increasing the transmit power at the same pace as we
increase the bandwidth (i.e., the number of symbols per second). For example,
if we need to double the capacity of a system, we can achieve that using twice
the power and twice the bandwidth. If the original system operates in the
power-limited region, we can achieve almost the same capacity gain by only
doubling the power. On the other hand, if the original system operates in the
bandwidth-limited region, we can achieve almost the same capacity gain by
only doubling the bandwidth. However, in general, we need to increase both
the power and bandwidth to achieve a significant capacity gain.

3.2 Capacity of SIMO Channels

We now know how the channel capacity is affected by power and bandwidth.
To maximize the capacity, the communication systems should be designed to
use the maximum available transmit power and bandwidth. This is rather
obvious and has been the standard practice for decades. The purpose of
multiple antenna communications is to design systems to further enhance the
capacity without requiring more transmit power and bandwidth resources.

It is vital to notice that it is not the transmit power P that determines
the channel capacity but the received power Pβ. If we want to achieve a
higher received power, we can increase P . Alternatively, we can use multiple
receive antennas to capture a larger share of the transmitted power, thereby
increasing β. This case will be considered in this section, where the goal is to
characterize the channel capacity when having multiple receive antennas.

A channel with one transmit antenna and multiple receive antennas is
called a SIMO channel; see Figure 3.1(b). We denote the number of receive
antennas as M . The channel to each receive antenna can be modeled as before,
using the discrete memoryless channel model in (2.130). However, the channel
responses will generally differ for every antenna, and the additive noise is
statistically independent since it is created by randomness in the receiver
hardware connected to the respective receive antennas. Hence, the received
signal at the mth receive antenna is given by

ym[l] = hmx[l] + nm[l], for m = 1, . . . ,M, (3.12)
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hM

nM [l]

yM [l]

h1

n1[l]

y1[l]

h2

n2[l]

y2[l]
x[l]

Figure 3.4: A discrete memoryless SIMO channel with the input x[l] and M outputs ym[l] =
hmx[l] +nm[l], for m = 1, . . . ,M , where l is a discrete time index, hm is the channel response to
the mth receive antenna, and nm[l] is the independent Gaussian receiver noise at that antenna.

where x[l] is the transmitted signal, l is the discrete time index, hm is the
channel response, and nm[l] ∼ NC(0, N0) is the independent receiver noise.
Note that the transmitted signal is the same for all m, while all other variables
have an antenna index. A block diagram of this discrete memoryless SIMO
channel is shown in Figure 3.4. Since this is a memoryless channel, we can
just as well neglect the time index l and write the channel in (3.12) as

ym = hm · x+ nm, for m = 1, . . . ,M. (3.13)

Instead of representing the transmission over the SIMO channel using the M
equations in (3.13), it is convenient to represent the entire system model in
vector form as

y = hx+ n (3.14)
by defining the M -dimensional received signal vector y, the channel vector h,
and the noise vector n:

y =

 y1
...
yM

 , h =

 h1
...
hM

 , n =

 n1
...
nM

 . (3.15)

The geometric relation between these vectors is illustrated in Figure 3.5. The
received signal vector y is the summation of two vectors: hx and n. The
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y = hx+ n

hx

h

n

Figure 3.5: The received signal vector y is the summation of the noise vector n and the channel
vector h that is multiplied by the data signal x.

former is a vector that points in the same direction as the channel vector h
but is scaled by the unknown data signal x. The latter is the noise vector
with independent entries distributed as NC(0, N0). We can express the entire
distribution as n ∼ NC(0, N0IM ) using the multivariate notation introduced in
Section 2.2.4, where Cov{n} = N0IM is the covariance matrix. The direction
n/∥n∥ of the noise vector is uniformly distributed over all possible directions.
The word “direction” refers to the geometry in the M -dimensional vector
space CM where these vectors reside. There is no simple connection to physical
directions in our three-dimensional world, but we will return to the physical
modeling of channels in Chapter 4.

The receiver wants to detect the data signal x based on the received signal
y. Since the received signal is a vector and the data signal is a scalar, the
detection algorithm must somehow include a projection of y onto a scalar
that we call x̂. The projection should make x̂ as similar to x as possible, and
there should be no information loss in the projection. In general, a vector
projection is carried out by selecting a unit-length vector w and computing
the inner product x̂ = wHy. This scalar represents how far in the direction w
that y points; that is, x̂ is the (orthogonal) projection of y onto w. The vector
w is called the receive combining vector when dealing with SIMO channels,
and it can also be called the detection vector or receive beamforming vector.

We want to find the capacity of the SIMO channel in (3.14). As a first
step, we will compute an achievable data rate for an arbitrary w and then
identify the best projection, which is the one that gives the channel capacity.
We notice that

x̂ = wHy = wHhx+ wHn, (3.16)
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where wHh is a scalar and wHn ∼ NC(0, N0) is the component of the noise
that points in the direction of w.1 Hence, (3.16) is effectively a memoryless
SISO channel of the kind in (2.130) with y = x̂ and h = wHh. It then follows
from Corollary 2.1 that an achievable data rate is

log2

(
1 + q|wHh|2

N0

)
bit/symbol, (3.17)

where q = E{|x|2} = P/B denotes the energy per symbol, which we will
refer to as the symbol power in the remainder of this book. This variable is
proportional to the transmit power P , so when we later optimize the symbol
powers of multiple data streams, this is identical to optimizing the transmit
powers (measured in Watt, i.e., energy per second).

The value in (3.17) depends on how we select the unit-length vector w.
Recall that the Cauchy-Schwarz inequality in (2.18) states that

|wHh|2 ≤ ∥w∥2︸ ︷︷ ︸
=1

∥h∥2 = ∥h∥2 (3.18)

with equality if and only if w and h are parallel. Hence, we can maximize the
SNR q|wHh|2

N0
in (3.17) by selecting the unit-length vector

w = h
∥h∥ (3.19)

that is parallel to h. By inserting (3.19) into (3.17), we obtain the achievable
data rate

log2

(
1 + q∥h∥2

N0

)
bit/symbol. (3.20)

The receive combining vector in (3.19) is called maximum-ratio combining
(MRC) since it maximizes the SNR. It has also been called the matched filter
since the combining vector is effectively matched to the channel. Recall from
Figure 2.4 that the inner product with a unit-length vector can be interpreted
as an orthogonal projection onto that vector. In this case, we take the received
signal vector y and project it onto a unit-length version of the channel vector
h, as illustrated in Figure 3.6. Since the received signal contains the data
signal with the form hx, the projection will not remove any part of the data
signal. The projection will, however, remove the parts of the noise vector
n that point in other directions than h. This noise suppression approach is
conceptually similar to the lowpass filtering in Figure 2.13, where the receiver
removes the noise in the part of the frequency domain where there is no signal.
In the case of MRC, we instead remove noise from the part of the spatial
domain where there is no signal.

1Since wHn is the weighted sum of independent complex Gaussian distributed random
variables, it is also complex Gaussian distributed. Since the mean is zero, the variance is
computed as Var{wHn} = E{|wHn|2} = wHE{nnH}w = N0wHIMw = N0∥w∥2 = N0.
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hx

y

Length: |hHy|
∥h∥

Projection

Figure 3.6: To achieve the SIMO capacity, we should use MRC to project the received signal
y orthogonally onto the channel vector h. The data-bearing vector hx is unaffected by this
projection, but the parts of the noise that gave y another direction will be removed.

In estimation theory, hHy
∥h∥ is called the sufficient statistics for estimating x

since the projection removes only parts of the independent noise. Since MRC
is the optimal projection, the achievable data rate in (3.20) is the channel
capacity of the SIMO channel.

Corollary 3.1. Consider the discrete memoryless point-to-point SIMO channel
in Figure 3.4 with the input x ∈ C and output y ∈ CM given by

y = hx+ n, (3.21)

where n ∼ NC(0, N0IM ) is independent noise. Suppose the input distribution
is feasible whenever the symbol power satisfies E{|x|2} ≤ q and h ∈ CM is a
constant vector known at the output. The channel capacity is

C = log2

(
1 + q∥h∥2

N0

)
bit/symbol (3.22)

and is achieved when the input is distributed as x ∼ NC(0, q).

When comparing the SIMO capacity expression in (3.22) with the SISO
capacity in (2.145), we notice that the only difference is the channel gain. It
is |h|2 in the SISO case and has now been replaced by ∥h∥2 =

∑M
m=1 |hm|2,

which is the summation of the individual channel gains to all the M receive
antennas. Hence, using multiple receive antennas leads to a beamforming gain
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compared to having a single antenna. For example, if hm = h for m = 1, . . . ,M ,
then ∥h∥2 = M |h|2 and the SNR will grow proportionally to the number of
antennas. This is the beamforming gain introduced in Section 1.2.1, and it
can be either used to get a larger SNR, or we can reduce q by a factor 1/∥h∥2

to get the same SNR as in the single-antenna case using less transmit power.
As explained in Section 2.4.1, we can express the symbol power as q = P/B

and multiply the capacity expression in (3.22) by B to change the unit to
bit/s. This leads to the alternative SIMO channel capacity expression

C = B log2

(
1 + P∥h∥2

BN0

)
bit/s. (3.23)

Example 3.3. Consider a SIMO system withM antennas and h =
√
β[1 . . . 1]T.

What is the capacity CSIMO? Determine the relative capacity gain CSIMO/CSISO
compared with the capacity CSISO of the corresponding SISO system.

The capacity of this SIMO system is computed using (3.23) as

CSIMO = B log2

(
1 + P∥h∥2

BN0

)
= B log2

(
1 + PMβ

BN0

)
bit/s (3.24)

since ∥h∥2 =
∑M
m=1 |hm|2 = Mβ in this case. The corresponding SISO system

with M = 1 has the capacity

CSISO = B log2

(
1 + Pβ

BN0

)
bit/s. (3.25)

The SIMO system provides an M times larger SNR than the SISO system.
Using the low-SNR approximation in (3.2), the relative capacity gain becomes

CSIMO

CSISO
≈
B log2(e)PMβ

BN0

B log2(e) Pβ
BN0

= M, (3.26)

which grows linearly with the number of antennas and equals the beamforming
gain. Using (3.3), the relative capacity gain at high SNR is approximated as

CSIMO

CSISO
≈
B log2

(
PMβ
BN0

)
B log2

(
Pβ
BN0

) = 1 + log2(M)
log2

(
Pβ
BN0

) . (3.27)

The relative capacity gain only grows logarithmically at high SNR. The
absolute difference becomes CSIMO − CSISO ≈ B log2(M) at high SNR.

In summary, since the beamforming gain increases the received power, the
most significant relative capacity gain is achieved in the power-limited region
where the SNR is low, while the gain is small in the bandwidth-limited region.
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3.2.1 Alternative Combining Vectors

The derivation of MRC relied on the assumption that w is a unit-length
vector, but this condition can be relaxed without changing the final result.
For the matter of argument, suppose we select w = ch for some arbitrary
scaling factor c ̸= 0. Substituting this vector into (3.16) yields

x̂ = wHy = c∗ hHh︸︷︷︸
=∥h∥2

x+ c∗hHn︸ ︷︷ ︸
∼NC(0,|c|2∥h∥2N0)

, (3.28)

which is a SISO channel with h = c∗∥h∥2 and noise with the variance
|c|2∥h∥2N0. It follows from Corollary 2.1 that an achievable data rate is

log2

(
1 + q|c|2∥h∥4

|c|2∥h∥2N0

)
= log2

(
1 + q∥h∥2

N0

)
bit/symbol, (3.29)

which equals the capacity in (3.22). Hence, any combining vector parallel to
h can be utilized to achieve the capacity.

In practical implementations, it might be desirable to identify the value of
c that minimizes the MSE between the transmitted signal x and its estimate
x̂ = c∗∥h∥2x+ c∗hHn in (3.28):

E{|x− x̂|2} = E
{∣∣x(1− c∗∥h∥2)− c∗hHn

∣∣2}
(a)= E{|x|2}

∣∣1− c∗∥h∥2∣∣2 + E{|c∗hHn|2}
= q

(
1 + |c|2∥h∥4 − c∥h∥2 − c∗∥h∥2)+ |c|2∥h∥2N0

(b)=
∣∣∣∣c− q

q∥h∥2 +N0

∣∣∣∣2 (q∥h∥4 +N0∥h∥2)+ qN0

q∥h∥2 +N0
, (3.30)

where (a) follows from utilizing the independence between the signal x and
the noise n (which both have zero mean), while (b) follows from completing
the squares with respect to the variable c. Since the first term in (3.30) is
quadratic, it cannot be negative. Hence, the MSE is minimized by selecting c
to make the first term equal to zero, which is achieved by c = q

q∥h∥2+N0
. This

results in the alternative MRC vector

w = q

q∥h∥2 +N0
h (3.31)

that will simultaneously achieve the capacity and minimize the MSE between
the transmitted data symbol and the receiver’s estimate x̂. This is a suitable
scaling factor since many decoding algorithms use Euclidean distances between
constellation points and received signals when determining the likelihood of
different symbols being transmitted, which is aligned with the MSE being
the average squared Euclidean distance. The capacity can be achieved using
MRC with any scaling factor c ̸= 0 because the capacity expression implicitly
assumes an optimal receiver, which can compensate for any scaling factor. In
general, any receiver processing that is invertible has no impact on capacity.
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Example 3.4. Suppose the received signal is y = hx + n as earlier in this
section, but the noise is colored in the sense that n ∼ NC(0,C). What is the
LMMSE estimate of x given the received signal?

The LMMSE estimator concept was described in Section 2.5.2. It obtains
an estimate of x through a linear operation: x̂ = wHy. Hence, we need to find
the combining vector w that minimizes the MSE, which can be expressed as

E
{
|x− x̂|2

}
= E

{
|x(1−wHh)−wHn|2

}
(a)= E{|x|2}|1−wHh|2 + E

{
|wHn|2

}
= q (1 + wHhhHw−wHh− hHw) + wHCw
= q + wH (qhhH + C)︸ ︷︷ ︸

=B

w−wH qh︸︷︷︸
=a

− qhH︸︷︷︸
=aH

w, (3.32)

where (a) follows from utilizing that the signal and noise are independent. By
using the notation a and B introduced in (3.32), we can rewrite the MSE as

E
{
|x− x̂|2

}
= q + wHBw−wHa − aHw
= q − aHB−1a + (w−B−1a)HB(w−B−1a) (3.33)

by completing the squares with respect to the vector w. The last term is then
a quadratic form that attains its minimum value of zero if w = B−1a. We
can utilize the matrix identity in (2.49) to rewrite the expression as

w = B−1a = q (qhhH + C)−1 h = q

qhHC−1h + 1C−1h. (3.34)

This vector is called LMMSE combining since it minimizes the MSE. It
can also be proved to be the capacity-achieving combining scheme for the
considered channel. LMMSE combining reduces to the MRC vector in (3.31)
in the special case of C = N0IM . The LMMSE combining terminology is
usually only used when it differs from conventional MRC; that is, when there
is colored noise or interference, which we will come across later in the book.
Otherwise, it is referred to as MRC, as earlier in this section.

3.3 Capacity of MISO Channels

We will now consider the opposite scenario of a channel with multiple transmit
antennas and a single receive antenna, known as a MISO channel; see Fig-
ure 3.1(c). To emphasize the similarities with the SIMO case considered in the
previous section, we consider the case when the transmitter and receiver from
the SIMO channel have exchanged their roles. Hence, we assume there are M
transmit antennas, and the channel response from the transmit antenna m to
the receive antenna is denoted by hm.
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Figure 3.7: A discrete memoryless MISO channel with the inputs xm[l] for m = 1, . . . ,M
and output y[l] =

∑M

m=1 hmxm[l] + n[l], where l is a discrete time index, hm is the channel
response from transmit antenna m, and n[l] is the independent complex Gaussian receiver noise.

The channel from each transmit antenna to the receive antenna can be
described by the discrete memoryless channel model in (2.130), but when we
put it all together, we get the received signal

y[l] =
M∑
m=1

hmxm[l] + n[l], (3.35)

where l is the discrete time index, xm[l] is the transmitted signal from antenna
m, hm is the channel response from transmit antenna m, and n[l] ∼ NC(0, N0)
is the receiver noise. A block diagram of this discrete memoryless MISO
channel is shown in Figure 3.7. Notice that there is only a single noise term
and that the signal contributions hmxm[l] from the different antennas are
added together (superimposed) by the wireless channel. This makes the setup
analytically different from the SIMO case. Since (3.35) is a memoryless channel,
we can just as well neglect the time index and write the channel as

y =
M∑
m=1

hmxm + n. (3.36)

To derive the channel capacity, it will be helpful to use the vector notation

x =

 x1
...
xM

 , h =

 h1
...
hM

 , (3.37)
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where x is the signal vector and h is the channel vector. With this notation,
we can rewrite the system model in (3.36) as

y = hTx + n. (3.38)

Two different types of transposes were defined in Section 2.1.1 to be used
when dealing with complex vectors and matrices: the conventional transpose
T that flips a matrix over its diagonal and the conjugate transpose H that
both flips the matrix and replaces each entry with its complex conjugate.
The conjugate transpose is probably the most common when dealing with
complex vectors/matrices due to its connection to the inner product and norm.
Nevertheless, it is a conventional transpose on h in (3.38) because the physical
channels do not give rise to any complex conjugation.2 Recall from (2.17) that
the inner product between two arbitrary complex-valued vectors a and b of
the same dimension is computed as aHb using the conjugate transpose. Hence,
the term hTx in (3.38) is an inner product between h∗ and x.

The M -dimensional signal vector x should be selected to send data to the
receiver. Since the receiver only observes the scalar y, it can only estimate one
scalar data-bearing signal based on its observation.3 Hence, we can, without
loss of optimality, select the signal vector as

x = px̄, (3.39)

where p is an M -dimensional unit-length vector and x̄ is the data signal
having the symbol power E{|x̄|2} = q. The vector p is called the precoding
vector or transmit beamforming vector, and the unit-length requirement means
that the total symbol power of the transmitted signal is

E{∥x∥2} = E{∥p∥2︸ ︷︷ ︸
=1

|x̄|2} = E{|x̄|2} = q, (3.40)

independently of how many antennas are used. This effectively means that
the more transmit antennas are used, the less power is transmitted from each
one of the antennas. By substituting (3.39) into (3.38), we obtain

y = hTpx̄+ n, (3.41)

where hTp is a scalar. This scalar is the inner product between the conjugate
h∗ of the channel and the precoding vector p. Hence, (3.41) is effectively

2Many other textbooks on multiple antenna communications, however, write (3.38) as
y = hHx +n since the use of a conjugate transpose makes the analysis/notation slightly simpler.
The downside with that approach is that the obtained algorithms cannot be directly applied to
a practical system, but we must first compensate for the conjugation.

3It is theoretically possible to send more than one data-bearing signal to a single-antenna
receiver, but it can be proved that this will not increase the capacity of the system since the
channel will add these signals together when taking the inner product hTx.
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h∗

p

Length: |hTp|

Projection of h∗

Figure 3.8: A MISO channel projects the channel vector h∗ onto the unit-length precoding
vector p, and it is |hTp| that determines the SNR. Hence, if the precoding vector p is not
parallel to the channel vector h∗, the SNR will be the same as if a shorter channel vector |hTp|p
parallel to p was used.

a memoryless SISO channel of the kind in (2.130) with h = hTp and noise
variance N0. It then follows from Corollary 2.1 that an achievable data rate is

log2

(
1 + q|hTp|2

N0

)
bit/symbol. (3.42)

To obtain the channel capacity, it remains to identify the precoding vector
that maximizes (3.42), which corresponds to maximizing |hTp|2. As in the
last section, we can utilize the Cauchy-Schwarz inequality from (2.18), which
states that

|hTp|2 ≤ ∥h∗∥2 ∥p∥2︸ ︷︷ ︸
=1

= ∥h∥2 (3.43)

with equality if and only if h∗ and p are parallel. Note that ∥h∗∥2 = ∥h∥2

since the conjugate only changes the phase of the entries, not their magnitudes.
Hence, we can maximize the SNR q|hTp|2

N0
in (3.42) by selecting the precoding

vector as
p = h∗

∥h∥ , (3.44)

which is a unit-length vector parallel to h∗. This precoding gives the achievable
data rate

log2

(
1 + q∥h∥2

N0

)
bit/symbol. (3.45)

The precoding vector in (3.44) is called maximum-ratio transmission (MRT)
since it maximizes the SNR. It has also been called conjugate beamforming
since the precoding vector is selected based on the complex conjugate of the
channel vector. This selection of the precoding vector is intuitive if we look at
it geometrically as in Figure 3.8: |hTp| is the length of the effective channel
vector that is obtained when orthogonally projecting h∗ onto p. This vector
has only the same length as h∗ (i.e., same norm) when h∗ and p are parallel,
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which is the case with MRT. For the matter of argument, suppose we select
another precoding vector p that is not parallel to h∗. The component of
this precoding vector that is orthogonal to the conjugate of the channel (in
the vector space CM ) will vanish when taking the inner product hTp and
the corresponding transmit power is lost. In conclusion, MRT is the optimal
precoding and the channel capacity is the achievable data rate in (3.45).

Corollary 3.2. Consider the discrete memoryless point-to-point MISO channel
in Figure 3.7 with the input x ∈ CM and output y ∈ C given by

y = hTx + n, (3.46)

where n ∼ NC(0, N0) is independent noise. Suppose the input distribution is
feasible whenever the symbol power satisfies E{∥x∥2} ≤ q and h ∈ CM is a
constant vector known at the output. The channel capacity is

C = log2

(
1 + q∥h∥2

N0

)
bit/symbol (3.47)

and is achieved when the input is x = h∗

∥h∥ x̄ with x̄ ∼ NC(0, q).

Comparing the MISO channel capacity in (3.47) with the capacity expres-
sion in (3.22) of the corresponding SIMO channel, we notice that these are
identical. Hence, the benefit of transmitting from M antennas is that the
channel gain ∥h∥2 =

∑M
m=1 |hm|2 becomes the sum of the channel gains of

the individual antennas. If hm = h for m = 1, . . . ,M , then ∥h∥2 = M |h|2 and
the SNR is precisely proportional to the number of antennas. This gain is
achieved by directing the transmission towards the receiver, as illustrated in
Figure 1.17 and Figure 1.19. Another similarity is that the capacity-achieving
combining and precoding vectors, called MRC and MRT, respectively, are
equal except for a complex conjugate:

w = p∗. (3.48)

In fact, MRT and MRC process the channel vector identically, so the conjugate
in (3.48) is merely due to notational differences: the combining vector is applied
as wHh with a conjugate transpose, while the precoding vector is applied as
hTp without a conjugate so it needs to be placed in p beforehand.

Even if the channel capacities are equal, there are essential differences
between the SIMO and MISO channels. When transmitting from M antennas
to a single-antenna receiver, the transmit power is directed towards that
receiver, as illustrated in Figure 1.17 and Figure 1.19. MRT basically selects
the time delays of the different signals to achieve constructive interference
at the point of the receiver; thus, the radiated signal resembles that of a
directive transmit antenna but with the critical difference that the directivity



3.3. Capacity of MISO Channels 167

is adapted to the channel. The precoding and directivity of the transmission
will change when the channel changes, which cannot happen when using a
directive antenna. In contrast, when a single-antenna device transmits to a
receiver equipped with M antennas, the emitted signal propagates isotropically
as illustrated in Figure 1.16 (or according to some other fixed antenna gain
function, such as the one in Figure 1.10). Each receive antenna observes one
component of the signal in additive noise with variance N0. MRC combines
the signal components constructively, while the noise components are neither
constructively nor destructively combined, so the resulting noise term wHn
still has variance N0. The combining creates a spatially directive reception
resembling that of a directive receive antenna but with the vital difference
that the directivity is adapted to the direction of the arriving signal.

Example 3.5. Is the MRT vector p = h∗

∥h∥ unique, or are there capacity-
achieving alternatives similar to the alternative MRC vectors in Section 3.2.1?

The precoding vector is selected under the constraint that ∥p∥ = 1, which
ensures that the symbol power equals the power of the signal x̄. This is a
crucial difference from the selection of combining vectors, which can be scaled
arbitrarily since the scaling factor affects the signal and noise identically.
However, there is still some flexibility in the MRT vector. The derivation in
(3.43) is based on the Cauchy-Schwartz inequality where the maximum value
is achieved when h∗ and p are parallel. All the unit-norm vectors that satisfy
this condition are MRT vectors and can be expressed as p = ejϕ h∗

∥h∥ , where
the common phase-shift ϕ ∈ [−π, π) can be selected arbitrarily.

MRT effectively turns a MISO channel into a SISO channel with an
improved SNR, and the same applies when using MRC in SIMO channels.
Hence, in practice, the data encoding and decoding can be carried out like in
SISO systems. For example, Figure 2.18 gave an example of 28 data rates that
can be achieved by selecting different MCS combinations in 5G NR. When the
capacity has been computed using the expressions provided in this chapter,
we can identify the closest smaller data rate in the table and use that MCS.
The same table can be utilized irrespective of how many antennas are utilized
or whether it is a SIMO or MISO channel. In fact, a base station can hide the
fact that it is equipped with multiple antennas from the user devices, which
has the positive side-effect that one can add beamforming functionalities into
existing systems without changing the fundamental communication protocols.

As explained in Section 2.4.1, we can also express the symbol power as
q = P/B and multiply the capacity expression in (3.47) with B to change the
unit to bit/s. This leads to the alternative but equivalent way to write the
capacity of a MISO channel as

C = B log2

(
1 + P∥h∥2

BN0

)
bit/s. (3.49)
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Example 3.6. Suppose we would transmit the signal x = p1x̄1 + p2x̄2, where
p1,p2 are two unit-norm precoding vectors and x̄1, x̄2 ∼ NC(0, q/2) are
independent data signals containing half the power. How large data rate can
we achieve over a MISO channel? Can we achieve the capacity?

The received signal in (3.38) now becomes

y = hT(p1x̄1 + p2x̄2) + n = hTp1x̄1 + hTp2x̄2 + n. (3.50)

We need to detect the signal x̄1 under the independent additive distortion
hTp2x̄2 +n ∼ NC(0, q2∥h

Tp2∥2 +N0) with both interference from x̄2 and noise.
Since x̄2 is unknown, it is indistinguishable from the noise, and we can achieve
a data rate similar to (3.42) but by using the noise variance q

2∥h
Tp2∥2 +N0:

R1 = log2

(
1 +

q
2∥h

Tp1∥2

q
2∥hTp2∥2 +N0

)
bit/symbol. (3.51)

Now when we have decoded the data contained in x̄1, we know the term hTp1x̄1
in (3.50) and can subtract it from the received signal: y−hTp1x̄1 = hTp2x̄2+n.
This residual received signal is of the kind in (3.41), and the data rate that
we can achieve when extracting the data contained in x̄2 is

R2 = log2

(
1 +

q
2∥h

Tp2∥2

N0

)
bit/symbol. (3.52)

The total data rate of this system is

R1 +R2 = log2

(
1 +

q
2∥h

Tp1∥2

q
2∥hTp2∥2 +N0

)
+ log2

(
1 +

q
2∥h

Tp2∥2

N0

)

= log2

(
q
2∥h

Tp1∥2 + q
2∥h

Tp2∥2 +N0
q
2∥hTp2∥2 +N0

q
2∥h

Tp2∥2 +N0

N0

)

= log2

(
1 +

q
2∥h

Tp1∥2 + q
2∥h

Tp2∥2

N0

)

≤ log2

(
1 +

q
2∥h∥

2 + q
2∥h∥

2

N0

)
= log2

(
1 + q∥h∥2

N0

)
, (3.53)

where the upper bound is achieved by recalling that MRT with p1 = p2 = h∗

∥h∥
has the largest inner product with the conjugate of the channel vector. The
rate expression in (3.53) coincides with the capacity in (3.47). Hence, we
have identified an alternative way to achieve the capacity, but it is more
complicated since we transmit two independent data signals and decode them
sequentially. Hence, the solution in Corollary 3.2 is preferable.
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Figure 3.9: A discrete memoryless MIMO channel with the inputs xk[l] for k = 1, . . . ,K and
outputs ym[l] =

∑K

k=1 hm,kxk[l] + nm[l] for m = 1, . . . ,M , where l is a discrete-time index,
hm,k is the channel response from transmit antenna k to receive antenna m, and nm[l] is the
independent complex Gaussian receiver noise at receive antenna m.

3.4 Capacity of MIMO Channels

We will conclude this chapter by considering the most general point-to-point
scenario: the MIMO channel illustrated in Figure 3.1(d). We assume there are
K transmit antennas and M receive antennas; thus, we need two indices to
denote each channel response: hm,k ∈ C is the channel response from transmit
antenna k to receive antenna m, for k = 1, . . . ,K and m = 1, . . . ,M . By
modeling the channel between each transmit antenna and receive antenna
using the discrete memoryless channel model in (2.130), the received signal
at antenna m becomes

ym[l] =
K∑
k=1

hm,kxk[l] + nm[l], for m = 1, . . . ,M, (3.54)

where l is the discrete time index, xk[l] is the transmitted signal from antenna k,
and nm[l] ∼ NC(0, N0) is the receiver noise that is independent across antennas.
A block diagram of the MIMO channel in (3.54) is shown in Figure 3.9. Note
that the SISO, SIMO, and MISO channels are all special cases of the MIMO
channel considered in this section.

To derive the MIMO channel capacity, we need to utilize all the M received
signals y1[l], . . . , yM [l] for joint signal detection, which calls for a vector/matrix
representation of (3.54). If we use the memoryless channel property to drop
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+x H y

n

Figure 3.10: A discrete memoryless MIMO channel with vector input x ∈ CK and vector
output y ∈ CM . The channel is characterized by the M ×K channel matrix H and the receiver
noise vector n ∈ CM , which contains M independent complex Gaussian variables. This block
diagram is equivalent to the one in Figure 3.9 but uses the vector/matrix notation.

the time index l, the complete received signal at an arbitrary time instance is y1
...
yM

 =


∑K
k=1 h1,kxk

...∑K
k=1 hM,kxk

+

 n1
...
nM



=

 h1,1 . . . h1,K
... . . . ...

hM,1 . . . hM,K


x1

...
xK

+

 n1
...
nM

 . (3.55)

This system model can be written in a concise matrix form as

y = Hx + n (3.56)

by defining the M ×K channel matrix

H =

 h1,1 . . . h1,K
... . . . ...

hM,1 . . . hM,K

 (3.57)

and the vectors

y =

 y1
...
yM

 , x =

x1
...
xK

 , n =

 n1
...
nM

 . (3.58)

Note that the transmitted data signal vector x is K-dimensional since there are
K transmit antennas, while the received signal vector y and the noise vector n
are M -dimensional since there are M receive antennas. Since the noise terms
are independent, the noise vector n has the distribution n ∼ NC(0, N0IM ).
Figure 3.10 shows a block diagram of (3.56) that is equivalent to Figure 3.9
but uses the matrix/vector notation, which makes it more concise.

The main goal of this section is to compute the channel’s capacity from x
to y under a constraint on the maximum symbol power. We let q denote the
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total symbol power of all antennas, which implies that E{∥x∥2} = q where
the mean is computed since the data signal vector x is random. The matrix
form in (3.56) invites to apply linear algebra results to determine how the
transmitter and receiver should process their signals. We will use the following
matrix factorization, called the singular-value decomposition (SVD) [49].

Lemma 3.1. Every complex M ×K matrix H can be factorized as

H = UΣVH, (3.59)

where U is a unitarya M ×M matrix containing the eigenvectors of HHH,
V is a unitary K ×K matrix containing the eigenvectors of HHH, and Σ
is a rectangular M ×K diagonal matrixb with the real numbers s1 ≥ . . . ≥
smin(M,K) ≥ 0 on the diagonal.

aUnitary matrices are described in Definition 2.4.
bA rectangular diagonal matrix of size M ×K can be viewed as a diagonal matrix of size

min(M,K) × min(M,K) that has been appended with zeros to become an M ×K matrix.

The SVD can factorize an arbitrary matrix using two specific unitary
matrices, U and V, whose columns are called the left and right singular vectors.
The non-negative numbers s1, . . . , smin(M,K) are assumed to be ordered in
decreasing order and are called the singular values of H.

Example 3.7. Compute HHH and HHH using the SVD of H from (3.59).
How are eigenvalues of HHH and HHH related to the singular values of H?

We can express HHH using the SVD of H from (3.59) as

HHH = UΣVH (UΣVH)H = UΣ VHV︸ ︷︷ ︸
=IK

ΣHUH = UΣΣHUH, (3.60)

where we utilized that V is a unitary matrix. We notice that ΣΣH is a diagonal
matrix, thus, UΣΣHUH fits the eigendecomposition form in Lemma 2.1. Hence,
U contains the orthonormal eigenvectors of HHH and the M ×M diagonal
matrix ΣΣH contains the real-valued eigenvalues s2

1 ≥ . . . ≥ s2
min(M,K) ≥ 0,

and an additional M−min(M,K) zero-valued eigenvalues if M > min(M,K).
Similarly, we can express HHH using the SVD of H from (3.59) as

HHH = (UΣVH)H UΣVH = VΣH UHU︸ ︷︷ ︸
=IM

ΣVH = VΣHΣVH, (3.61)

which we identify as the eigendecomposition of HHH. The unitary matrix V
contains the orthonormal eigenvectors and the K ×K diagonal matrix ΣHΣ
contains the real-valued eigenvalues, which are s2

1 ≥ . . . ≥ s2
min(M,K) ≥ 0 and

the additional K −min(M,K) zero eigenvalues if K −min(M,K) > 0.



172 Capacity of Point-to-Point MIMO Channels

The SVD can be viewed as a generalization of the conventional eigende-
composition and can be used to diagonalize any matrix. In contrast, only
some square matrices can be diagonalized using the eigendecomposition. For
Hermitian square matrices, the SVD coincides with the eigendecomposition in
Lemma 2.1, in the sense that U = V contains the eigenvectors and Σ contains
the corresponding eigenvalues.

The last example demonstrates a way to derive the singular values of H:
1. Compute either HHH or HHH (preferably the one resulting in the

smallest matrix dimensions) and call it A;

2. Compute the eigenvalues of A by finding the roots to its characteristic
polynomial det(A− λI);

3. Obtain the singular values by taking the square root of the eigenvalues.
The SVD has the same structure for any matrix but with different values

in U, Σ, and V. To derive the MIMO channel capacity, we specifically utilize
the SVD H = UΣVH to the channel matrix in (3.57). Suppose the transmitter
creates its transmit signal as x = Vx̄ for some x̄, while the receiver processes
its received signal y by multiplying it with UH to obtain ȳ = UHy. It then
follows that

ȳ = UHHx + UHn
= UHUΣVHVx̄ + UHn
= Σx̄ + n̄, (3.62)

where we defined n̄ = UHn ∼ NC(0, N0IM ) and notice that this “rotated”
noise vector has the same distribution as n.4 The last equality in (3.62)
utilizes that UHU = IM and VHV = IK for unitary matrices. The proposed
transmitter and receiver processing is non-destructive, meaning that we can
get y back by computing Uȳ (since UUH = IM ). In contrast, any vector
x can be expressed as Vx̄ by selecting x̄ = VHx. Hence, there is no loss of
information when going from (3.56) to (3.62), and the channel capacities must
be identical. However, (3.62) will be more convenient to analyze since Σ is a
(rectangular) diagonal matrix.

Let r denote the number of non-zero singular values of Σ, which is equal to
the rank of Σ (and H). This means that s1 > 0, . . . , sr > 0 while the remaining
singular values are zero. It follows that r ≤ min(M,K) since H has min(M,K)
singular values. If r < min(M,K), it holds that sr+1 = . . . = smin(M,K) = 0.
By utilizing r and the fact that Σ is a rectangular diagonal matrix, we can
write (3.62) in scalar form as

ȳk =
{
skx̄k + n̄k, if k = 1, . . . , r,
n̄k, if k = r + 1, . . . ,M,

(3.63)

4This can be proved by computing the covariance matrix of n̄ as Cov{n̄} = E{n̄n̄H} =
UHE{nnH}U = N0UHIMU = N0IM .
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(a) The transmitter and receiver processing that diagonalizes the MIMO channel.
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(b) An equivalent representation with r parallel SISO channels.

Figure 3.11: By utilizing the SVD H = UΣVH of the MIMO channel matrix, the transmitter
and receiver can process the signals as shown in (a) to achieve r parallel SISO channels as shown
in (b). The channel response in each parallel channel is a non-zero singular value of H.

for k = 1, . . . ,M . Notice that the entries in (3.63) can be denoted in vector
form as follows: ȳ = [ȳ1, . . . , ȳM ]T, x̄ = [x̄1, . . . , x̄K ]T, and n̄ = [n̄1, . . . , n̄M ]T.

Interestingly, each of the first r received signals ȳk in (3.63) only depends
on one channel response sk obtained from the SVD, one transmitted signal
parameter x̄k, and one independent noise variable n̄k. Hence, we can interpret
the first row of (3.63) as being r parallel discrete memoryless SISO channels
useful for communication. The processing that turns the MIMO channel into
r parallel SISO channels is illustrated in Figure 3.11.

If M > r, there are M−r additional received signals ȳr+1, . . . , ȳM in (3.63)
that only contain the independent noise variables n̄r+1, . . . , n̄M . This happens
especially when M > K since r cannot be larger than min(M,K) = K; thus,
the transmitter sends a K-dimensional signal, while the receiver obtains a
higher-dimensional received signal where the extra dimensions contain no
signal information. We might also have r < min(M,K) when the channel
matrix is rank-deficient so that we have fewer than min(M,K) useful parallel
channels between the transmitter and receiver. The M − r received signals
in (3.63) that only contain noise are not helpful for communication and are
disregarded in the remainder of this chapter without loss of optimality.
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Example 3.8. Consider a discrete memoryless MIMO channel with the channel
matrix H ∈ C6×4. The eigenvalues of the matrix HHH are λ1 = 3, λ2 = 2.1,
λ3 = 1.7, and λ4 = λ5 = λ6 = 0. What is the rank r of H? What are the
expressions of the r useful parallel SISO channels?

The singular values of H equals the square roots of the min(M,K) = 4
largest eigenvalues of HHH. Hence, s1 =

√
λ1 =

√
3, s2 =

√
λ2 =

√
2.1,

s3 =
√
λ3 =

√
1.7, and s4 =

√
λ4 = 0. The rank of H is r = 3 since there are

three non-zero singular values. In this case, we have r < min(M,K).
By substituting the three non-zero singular values into (3.63), we obtain the

following r = 3 parallel SISO channels that can be used for data transmission:

ȳ1 =
√

3x̄1 + n̄1, ȳ2 =
√

2.1x̄2 + n̄2, ȳ3 =
√

1.7x̄3 + n̄3. (3.64)

It remains to compute the joint capacity of the r parallel channels in (3.63).
We know from Corollary 2.1 how to compute the channel capacity of one
such channel, but we cannot directly use this result to deal with the parallel
channels in (3.63) since there is one thing that couples them: the transmitter
has a total symbol power q that it must divide between x̄1, . . . , x̄K , and we
need to find the optimal way to do this.

As a first step, we let q1, . . . , qK denote the symbol power of each of
these signals, such that E{|x̄k|2} = qk. These K power variables must be
non-negative. It then follows that5

q = E{∥x∥2} = E{∥x̄∥2} =
K∑
k=1

E{|x̄k|2} =
K∑
k=1

qk. (3.65)

For any given values of q1, . . . , qK , the maximum data rate is the sum of the
capacities of the individual channels, each obtained using Corollary 2.1:6

r∑
k=1

log2

(
1 + qks

2
k

N0

)
. (3.66)

Since this expression only depends on the power variables q1, . . . , qr, the values
that we assign to qr+1, . . . , qK for the unused dimensions will not affect the
data rate. Hence, we can set qr+1 = . . . = qK = 0 so that all the available
power can be used for the r parallel SISO channels between the transmitter
and receiver. The channel capacity of the MIMO channel is obtained by
maximizing (3.66) with respect to the allocation of power over q1, . . . , qr,

5Note that ∥x∥2 = xHx = x̄HVHVx̄ = x̄Hx̄ = ∥x̄∥2 since V is a unitary matrix.
6This step utilizes the fact that the transmitted signals x̄1, . . . , x̄K are independent. Hence,

the received signals ȳ1, . . . , ȳM are also independent, which is a property that follows from the
fact that the noise terms n̄1, . . . , n̄M are independent in (3.63), so there is no reason to introduce
any statistical dependence between the parallel channels. More precisely, the differential entropy
of ȳ is maximized when its entries are independent.
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under the constraint that the total symbol power is q:

C = max
q1≥0,...,qr≥0:

r∑
k=1

qk=q

r∑
k=1

log2

(
1 + qks

2
k

N0

)
. (3.67)

To obtain the MIMO channel capacity, it remains to derive the capacity-
achieving values of the power variables. Some power variables might be zero
at the optimal solution to (3.67). For the sake of argument, suppose we know
that N+ ∈ {1, . . . , r} of the variables are non-zero. We can then be sure that
q1 > 0, . . . , qN+ > 0 and qN++1 = . . . = qr = 0, because s1, . . . , sN+ are the
largest singular values.7 In this case, we observe that

r∑
k=1

log2

(
1 + qks

2
k

N0

)
=

N+∑
k=1

log2

(
1 + qks

2
k

N0

)

=
N+∑
k=1

log2

(
s2
k

N0

)
+

N+∑
k=1

log2

(
N0

s2
k

+ qk

)
, (3.68)

where only the second term depends on the power variables and is the one
that should be maximized. This term can be upper bounded by utilizing the
following classical inequality of arithmetic and geometric means.

Lemma 3.2. For any set of n real positive numbers x1, . . . , xn it holds that

n
√
x1 · . . . · xn ≤

1
n

n∑
k=1

xk. (3.69)

The equality in (3.69) holds if and only if x1 = . . . = xn.

We now apply Lemma 3.2 to the second term in (3.68) to obtain
N+∑
k=1

log2

(
N0

s2
k

+ qk

)
= log2

N+∏
k=1

(
N0

s2
k

+ qk

)
= N+ log2

N+

√√√√N+∏
k=1

(
N0

s2
k

+ qk

) ≤ N+ log2

 1
N+

N+∑
k=1

(
N0

s2
k

+ qk

)
= N+ log2

 1
N+

q +
N+∑
k=1

N0

s2
k

 , (3.70)

7If this was not the case, we would have qk = 0 for some k ≤ N+ and qi > 0 for some
i > N+. Since sk ≥ si, we can switch the power between qk and qi, thereby getting a higher
capacity. That is impossible if we start from the power allocation that maximizes (3.67) and,
hence, we must only use the N+ largest singular values at the solution.
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where the last equality follows from the fact that
∑N+
k=1 qk = q due to the

constraint in (3.67). The upper bound in (3.70) is independent of the opti-
mization variables. We can achieve this upper bound if the power variables
are selected to achieve equality in the inequality of arithmetic and geometric
means. From Lemma 3.2 we know that this happens if N0

s2
k

+ qk takes the same
value for k = 1, . . . , N+. If we call this common value µN+ ≥ 0, it follows from
N0
s2
k

+ qk = µN+ that we should select the symbol powers to satisfy

qk = µN+ −
N0

s2
k

for k = 1, . . . , N+. (3.71)

Moreover, the common value must be

µN+ = 1
N+

q +
N+∑
k=1

N0

s2
k


= q

N+
+ 1
N+

N+∑
k=1

N0

s2
k

(3.72)

since this is the argument of the logarithm on the right-hand side of (3.70).
We have now determined how to compute the optimal symbol powers if

we know that exactly N+ power values will be non-zero. The remaining issue
is that the value of N+ is not known in advance. As we increase N+, we
maximize an expression in (3.68) with additional terms and power variables.
This might give the impression that the data rate will increase with N+,
but we must recall that N+ equals the number of channels we provide with
non-zero power. Some SISO channels might have such small singular values
that it is not helpful to allocate any power to them, even if we can. This can
be observed from the optimized expression for qk in (3.71), which becomes
negative for k = N+ if s2

N+
is so small that N0/s

2
N+

is larger than µN+ . We
should reduce N+ when that happens. On other hand, if we select N+ too
small, then µN+− N0

s2
k
> 0 not only for k ∈ {1, . . . , N+} but also for k = N+ +1.

This indicates that we should increase N+ to find the solution.
The final solution is to select the capacity-achieving symbol powers as

qk = max
(
µ− N0

s2
k

, 0
)
, k = 1, . . . , r, (3.73)

where we choose the value of µ ∈ {µ1, . . . , µr} that results in
∑r
k=1 qk = q.

This condition only applies when choosing the value µ = µN+ that gives
exactly N+ non-zero powers, while all other options will assign too little or
too much power. We have now proved the following MIMO capacity.
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Theorem 3.1. Consider the discrete memoryless point-to-point MIMO channel
in Figure 3.10 with the input x ∈ CK and output y ∈ CM given by

y = Hx + n, (3.74)

where n ∼ NC(0, N0IM ) is independent noise. Suppose the input distribution
is feasible whenever the symbol power satisfies E{∥x∥2} ≤ q. Let H ∈ CM×K

be a constant matrix known at the input and output with r non-zero singular
values s1, . . . , sr. The channel capacity is

C =
r∑

k=1
log2

(
1 + qopt

k s2
k

N0

)
bit/symbol, (3.75)

where
qopt
k = max

(
µ− N0

s2
k

, 0
)
, k = 1, . . . , r (3.76)

and the variable µ is selected to make
∑r
k=1 q

opt
k = q.

The capacity is achieved by the input distribution x ∼ NC(0,VQoptVH),
where Qopt = diag(qopt

1 , . . . , qopt
r , 0, . . . , 0) is a K ×K diagonal matrix and V

contains the ordered right singular vectors of H.

We have now proved that the transmitter should select the data signal
x to have a covariance matrix Cov{x} = VQoptVH, where V contains the
right singular vectors of the channel matrix H, as defined in Lemma 3.1. This
optimal choice diagonalizes the point-to-point MIMO channel into r parallel
SISO channels with the channel gains s2

k for k = 1, . . . , r. Recall that sk is
the kth singular value of the channel matrix H. The singular values were
defined in Lemma 3.1 to be in decreasing order, which implies that s1 is the
“strongest” channel and sr is the “weakest” channel with non-zero gain. This
fact is also reflected in how the transmitter allocates its transmit power over
the parallel channels. Suppose we know the optimal value of µ in (3.76). If
µ− N0

s2
k
> 0, then the transmitter allocates the power qopt

k = µ− N0
s2
k

to the kth
parallel channel. Otherwise, it allocates no power to this channel: qopt

k = 0.
Since the singular values are in decreasing order, it follows that

N0

s2
1
≤ N0

s2
2
≤ . . . ≤ N0

s2
r

(3.77)

and, therefore,
µ− N0

s2
1
≥ µ− N0

s2
2
≥ . . . ≥ µ− N0

s2
r

. (3.78)

Hence, a capacity-achieving transmitter allocates more power to a channel with
a stronger gain than a weaker one. It might also put qopt

k = 0 to some of the
weakest channels, even if the channel gain is non-zero. Two properties govern
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Figure 3.12: The optimal power allocation for a point-to-point MIMO channel can be described
as filling a tank with a volume of water corresponding to the total symbol power q. The height
of each segment of the bottom of the tank is inversely proportional to the channel gain.

the behavior. Logically, stronger channels should be allocated more power
than weaker channels. However, the capacity expression in (3.75) contains the
logarithmic function log2(1 + qk

s2
k

N0
). We recall from Section 3.1 that it grows

linearly with qk as qk s
2
k

N0
log2(e) when the SNR is small, but then grows at

a slower and slower pace; therefore, it eventually becomes preferable to also
allocate power to weaker channels (with smaller s2

k values) because these can
initially deliver a linear capacity growth, even if the slope is weaker.

This optimal power allocation solution is called water-filling since the
implementation can be illustrated by filling a tank with an uneven bottom
with water. This is illustrated in Figure 3.12 for the case of r = 4. The
bottom is divided into four equal-sized segments representing each parallel
channel. The segment related to channel k has a height of N0/s

2
k, and the

power allocated to this channel is the water that is above it. When we pour
water into the tank, it will first be allocated to the strongest channel. We
continue pouring water until the water volume is q. If q > N0/s

2
2−N0/s

2
1, the

water level will eventually reach a point where also the second channel is used.
As we continue pouring water into the tank, the first and second channels
will receive an equal share of the additional water until the point where also
the third channel is activated. In the example shown in Figure 3.12, the total
symbol power q is divided over the three strongest channels, while the fourth
channel is not used, although it has a non-zero channel gain (i.e., the height
of the bottom is finite).
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Figure 3.13: The rates achieved by the two parallel channels from Example 3.9 when optimal
water-filling power allocation is used. When the weaker channel 2 begins to be used, it contributes
equally much to the capacity growth as the stronger channel 1.

Example 3.9. Consider a MIMO channel with r = 2, s2
1/N0 = 1, and s2

2/N0 =
1/4. How is the transmit power allocated when using water-filling?

According to the water-filling expression in (3.76), we will select qopt
2 > 0 if

µ− s2
2/N0 = µ− 4 > 0, which implies that the water level must be µ > 4. By

contrast, for µ ∈ [1, 4], we assign all power to the strongest channel, resulting
in qopt

1 = µ− s2
1/N0 = µ− 1 ∈ [0, 3]. In the range µ > 4 where both channels

are used, they contribute equally to the capacity growth because

log2

(
1 + qopt

k s2
k

N0

)
= log2

(
1 +

(
µ− N0

s2
k

)
s2
k

N0

)
= log2(µ) + log2

(
s2
k

N0

)
(3.79)

increases with µ in the same way regardless of the index k.
Figure 3.13 illustrates this behavior as a function of the total symbol power

q, which is normalized in the sense of being dimensionless in this example. We
notice that the rate of channel 1 grows rapidly in the beginning. However, for
q > 3, we allocate the additional power q− 3 equally among the two channels,
and this results in rate curves for the two channels that grow equally fast.

The two extreme cases of the water-filling power allocation are illustrated
in Figure 3.14. If the symbol power is low, only the strongest channel will
be used, as shown in Figure 3.14(a). If the power is high, the total symbol
power will be allocated over all the r parallel channels. The stronger channels
are always allocated more power than the weaker channels, but the relative
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(a) Low power. (b) High power.

Figure 3.14: Illustration of the water-filling power allocation at low and high power: (a) Only
the strongest channel is used when the power is low. (b) All channels are used when the power
is high, and the power allocation becomes almost equal.

difference gradually disappears. In fact, we get an asymptotically equal power
allocation of q/r per channel as q →∞. Notice that when we say “high” or
“low” power in this context, it typically means that the SNR is high or low.
As mentioned earlier, it is the fact that the logarithm grows slowly at higher
SNRs that motivates the water-filling power allocation to use more than one
channel when the strongest channel has reached a high SNR.

The variable r is called the multiplexing gain of the point-to-point MIMO
channel since it represents the number of parallel data streams the channel
supports with non-zero channel gain. This is an important performance
indicator when the water-filling power allocation assigns non-zero power to
all the r channels (e.g., at high SNR) because then the MIMO capacity is
roughly r times larger than the capacity of a corresponding SISO channel.

To demonstrate how the multiplexing gain can greatly increase the capacity,
we will compare a SISO channel with |h|2 = 1 with a SIMO/MISO channel
with ∥h∥2 = M and a MIMO channel with M = K in which all entries of the
channel matrix H also have unit magnitude. The singular values of this MIMO
channel will satisfy

∑M
k=1 s

2
k = tr(HHH) = MK = M2, but their individual

values will vary depending on how we select the phases of the individual
entries in H. Let us consider an “ideal” MIMO channel where all singular
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Figure 3.15: The capacity in the MIMO, SIMO/MISO, and SISO cases over an ideal channel
where all entries have unit magnitude and all singular values of H are equal. The MIMO capacity
is M log2(1 + SNR), the SIMO/MISO capacity is log2(1 +MSNR), and the SISO capacity is
log2(1 + SNR).

values are equal: s1 = . . . = sM =
√
M .8 The MIMO capacity in (3.75) then

becomes

C =
r∑

k=1
log2

(
1 + qopt

k s2
k

N0

)
= M log2

(
1 + q

N0

)
(3.80)

since r = M , s2
k = M , and equal power allocation qopt

k = q/M is optimal. The
value in (3.80) is exactly M times larger than the corresponding SISO capacity
log2(1+ q

N0
) in (2.145). Moreover, the SIMO/MISO capacity is log2(1+M q

N0
)

in this example. The key difference from (3.80) is that the factor M appears
inside the logarithm instead of in front of the logarithm. This makes a huge
difference when the SNR is large; the multiplexing gain is greatly preferred
over a beamforming gain since the capacity grows linearly with M instead of
logarithmically. The multiplexing gain is also called the pre-log factor since it
appears in front of the logarithm in the capacity expression.

We show the capacities in Figure 3.15 as a function of SNR = q
N0

for
r = M = 4. Note that the SNR is shown in the decibel scale. The lowest curve
is the SISO case, which represents the baseline performance. The SIMO/MISO
case gives a curve with the same shape as in the SISO case, but it is shifted
to the left by 6 dB, due to the beamforming gain of M = 4. The MIMO
case gives the same capacity as the SIMO/MISO case at low SNR (when the

8Equal singular values can be achieved by letting H be a unitary matrix that is scaled by a
factor

√
M , which leads to an SVD with Σ =

√
MIM . Two concrete examples are when H is a

Hadamard matrix or a properly scaled discrete Fourier transform matrix. Section 4.4.3 describes
a way to deploy practical antenna arrays to achieve equal singular values.
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logarithm is approximately a linear function), but then it grows much faster
with the SNR thanks to the multiplexing gain. More precisely, the slope of
the curve is r = 4 times steeper; therefore, the performance gain of having a
MIMO channel becomes larger the higher the SNR becomes.

Example 3.10. Consider a point-to-point MIMO channel where the channel
matrix has the singular values: s1 = 1, s2 = 1

2 , s3 = 1
3 , and s4 = 1

4 . The
optimal water-filling power allocation is used.
(a) If q/N0 = 2, what is the optimal power allocation?
(b) For which values of q/N0 are all singular values assigned non-zero power?
(c) If q/N0 = 434, what is the optimal water-filling power allocation?

(a) We can notice from Figure 3.12 that only the strongest channel s1 is
utilized if q ≤ N0/s

2
2 − N0/s

2
1 = 22N0 − N0 = 3N0. This is the case when

q = 2N0, thus the power allocation is q1 = q = 2N0 and q2 = q3 = q4 = 0.
(b) All the parallel SISO channels are allocated non-zero power when the

water height µ is above the height of the fourth segment in Figure 3.12. The
breaking point occurs at µ = N0/s

2
4 = 16N0, in which case the total power is

q =
4∑
k=1

(
µ− N0

s2
k

)
= 4µ−N0 − 4N0 − 9N0 − 16N0 = 34N0. (3.81)

Hence, the four singular values are assigned non-zero power when q/N0 > 34.
(c) All the channels are utilized since q/N0 = 434 > 34. After filling the

tank with the water volume 34N0, the remaining 434N0 − 34N0 is divided
equally among the four channels. An additional 100N0 of water is added to
each segment, resulting in the new water height µ̄ = 116N0. The optimal
power allocation is q1 = µ̄ − N0 = 115N0, q2 = µ̄ − 4N0 = 112N0, q3 =
µ̄ − 9N0 = 107N0, and q4 = µ̄ − 16N0 = 100N0. This allocation is almost
equal, which is expected when the transmit power is high.

In (3.80) and the last example, we assumed the MIMO channel matrix has
the full rank min(M,K). The multiplexing gain r is generally upper bounded
as r ≤ min(M,K). Hence, there is no need to transmit more parallel data
streams than the minimum of the number of transmit and receive antennas.
This explains why only one data stream was sent over the SIMO and MISO
channels we considered earlier in this chapter. In some cases, r is strictly
smaller than min(M,K), so we have a lower multiplexing gain than in the
ideal case. If the singular values are very different, we need a huge SNR
before the water-filling power allocation uses all r channels. It is only then
that the entire multiplexing gain is helpful in practice. For a given channel
matrix and power level, the effective multiplexing gain N+ (i.e., the number
of non-zero power variables) is more indicative of the multiplexing behavior.
Even if N+ = 1, having multiple antennas on both sides of the channel is
beneficial because the singular value s1 grows the more antennas are used.
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Example 3.11. Consider a point-to-point MIMO system with the total symbol
power q, noise variance is N0, and the channel matrix

H =
[
1 1
1 1

]
. (3.82)

What is the channel capacity CMIMO? Compare it with the MISO channel
capacity CMISO obtained when only one of the receive antennas is used.

We begin by computing the singular values of H, which are the square
roots of the eigenvalues of

HHH =
[
1 1
1 1

] [
1 1
1 1

]
=
[
2 2
2 2

]
. (3.83)

The eigenvalues can be obtained by solving characteristic polynomial equation

0 = det (HHH − λI2) = det
([

2− λ 2
2 2− λ

])
= (2− λ)2 − 4, (3.84)

from which we obtain λ1 = 4 and λ2 = 0. Hence, the singular values of H are
s1 =

√
4 = 2 and s2 = 0. The rank is r = 1, which is also the multiplexing

gain. Since there is only one non-zero singular value, assigning all power to it
is optimal: q1 = q and q2 = 0. This results in the MIMO channel capacity

CMIMO = log2

(
1 + 4q

N0

)
bit/symbol. (3.85)

When the receiver only uses a single antenna, we obtain a MISO channel
with the channel vector h = [1, 1]T being one of the columns of H. The
corresponding MISO channel capacity is obtained from (3.47) as

CMISO = log2

(
1 + q

N0
∥h∥2

)
= log2

(
1 + 2q

N0

)
bit/symbol. (3.86)

The MIMO channel obtains a beamforming gain of MK = 4, while the MISO
channel only achieves a beamforming gain of K = 2. Hence, the MIMO
channel has a distinct benefit even when the multiplexing gain is r = 1.

We will now take a closer look at the water-filling power allocation. The
variable µ represents the water level in Figure 3.12. Recall that this variable
equals µN+ in (3.72) for some N+ ∈ {1, . . . , r}. For each potential value of N+
we can verify if µ = µN+ indeed gives N+ non-zero powers in (3.76); nothing
more and nothing less. This implies that we must have µN+ − N0

s2
N+
≥ 0 and

µN+ − N0
s2
N++1

< 0. Only one value of N+ satisfies both conditions because the
water level is always between two consecutive segments in Figure 3.12. Hence,
the recipe for computing the optimal water level is as follows.



184 Capacity of Point-to-Point MIMO Channels

Corollary 3.3. The optimal water level is

µ =



µ1, if µ1 − N0
s2

2
< 0,

µN+ , if µN+ − N0
s2
N++1

< 0 and µN+ − N0
s2
N+
≥ 0,

for N+ ∈ {2, . . . , r − 1},
µr, if µr − N0

s2
r
≥ 0,

(3.87)

where µN+ is given in (3.72) for N+ ∈ {1, . . . , r}.

Since only one of the r possible values of µ in Corollary 3.3 has conditions
that hold, one way to implement the water-filling power allocation is to start
with computing µr and check if the condition in (3.87) holds. If not, we
compute µr−1 and check if its condition holds. We continue until we find one
µ for which the conditions in (3.87) hold, and this is the optimal solution.

Example 3.12. Consider a point-to-point MIMO channel with the r = 7 non-
zero singular values s1 = 1, s2 = 1√

3 , s3 = 1√
5 , s4 = 1√

6 , s5 = 1√
7 , s6 = 1√

10 ,
and s7 = 1√

16 . What is the water-filling power allocation if q/N0 = 23?
We must identify the optimal water level to find the capacity-achieving

power allocation. Corollary 3.3 provides the options µ1, . . . , µ7, along with
their respective optimality conditions. We begin by computing µ7 using (3.72):

µ7 = q

7 + N0

7 (1 + 3 + 5 + 6 + 7 + 10 + 16) = 71
7 N0. (3.88)

We notice that µ7 − N0
s2

7
= 71

7 N0 − 16N0 ≱ 0, thus, the condition in (3.87) is
not satisfied. We continue by computing µ6 using (3.72), which results in

µ6 = q

6 + N0

6 (1 + 3 + 5 + 6 + 7 + 10) = 55
6 N0. (3.89)

We notice that µ6− N0
s2

7
= 55

6 N0− 16N0 < 0 but µ6− N0
s2

6
= 55

6 N0− 10N0 ≱ 0,
so µ6 is not satisfying its optimality conditions in (3.87). Next, we compute

µ5 = q

5 + N0

5 (1 + 3 + 5 + 6 + 7) = 9N0. (3.90)

We note that µ5 − N0
s2

6
= 9N0 − 10N0 < 0 and µ5 − N0

s2
5

= 9N0 − 7N0 ≥ 0,
hence, the optimality conditions in Corollary 3.3 are satisfied. Since only one
water level satisfies its conditions, there is no need to consider µ1, . . . , µ4.

In conclusion, N+ = 5, and µ5 = 9N0 is the optimal water level. Substi-
tuting these values into (3.76), we obtain the water-filling power allocation
qopt

1 = 8N0, qopt
2 = 6N0, qopt

3 = 4N0, qopt
4 = 3N0, qopt

5 = 2N0, qopt
6 = qopt

7 = 0.
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In practical systems, we cannot operate at arbitrary capacity values but
only those achievable by predefined MCS combinations; for example, those
listed in Table 2.18 for 5G NR. For stream k ∈ {1, . . . , r}, we should select an
MCS delivering a number of bits per symbol that is close to but smaller than
the capacity log2(1 + qks

2
k

N0
) of that stream. The r streams will generally use

different MCSs. The water-filling solution is not optimal when considering
this mapping between the continuous channel capacity and the discrete set of
data rates supported by the available MCS combinations. In particular, one
can sometimes modify the power allocation to push some streams to the next
row in the table (i.e., achieve a larger data rate) without reducing the other
ones. This principle is called mercury/water-filling and is described in [50].

3.4.1 Geometric Interpretation of MIMO Transmission

We will now provide a basic physical interpretation of how we achieve the
MIMO capacity. Let us write the K × K matrix V from the SVD of the
channel matrix as V = [v1, . . . ,vK ], where vk is the kth column. To achieve
the capacity, the transmitter sends the signal vector

x = Vx̄ =
K∑
k=1

vkx̄k, (3.91)

which consists of K data signals x̄1, . . . , x̄K , each being multiplied by a column
vk from V that acts as a precoding vector. This is a generalization of the
MISO setup in (3.39) where we only sent one data signal multiplied by
one precoding vector. We call this type of transmission spatial multiplexing
since we send (up to) K signals simultaneously, but with different spatial
directivity determined by the precoding vectors. These vectors are mutually
orthogonal since VHV = IK but might be assigned different symbol powers
since x̄k ∼ NC(0, qk) for k = 1, . . . ,K. We call V the precoding matrix.

Similarly, let us write the M × M matrix U from the SVD as U =
[u1, . . . ,uM ], where um is the mth column. When the receiver computes
ȳ = UHy, it obtains

ȳ =

uH
1 y
...

uH
My

 , (3.92)

which can be interpreted as applying M different receive combining vectors, in
the same way as we did with one combining vector in the SIMO case in (3.16).
The receive combining vectors are mutually orthogonal since UHU = IM .
Since the precoding vectors v1, . . . ,vK and combining vectors u1, . . . ,uM are
selected based on the SVD of the channel matrix, it follows that

uH
my = uH

m

(
H

K∑
k=1

vkx̄k + n
)

= smx̄m + n̄m, m = 1, . . . , r. (3.93)
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This is the first row in (3.63). The precoding and combining vectors vm,um
for m > r are not used since no data signal can reach the receiver when using
those because the corresponding singular values are zero.

The vectors u1, . . . ,uM are called the left singular vectors of H, while
v1, . . . ,vK are called the right singular vectors. Using this notation, we can
decompose the MIMO channel matrix as

H = UΣVH =
r∑

k=1
skukvH

k , (3.94)

in the same way as we did for the eigendecomposition in (2.40). The above
decomposition can be verified by directly computing the matrix entries on the
right-hand side. Hence, the channel matrix consists of r components, which
might represent different propagation paths. Figure 3.16 provides a rough
geometric interpretation for the case with K = 3 transmit antennas, M = 3
receive antennas, and r = 3. In this figure, each of the three components
is represented by one physical propagation path, which either is the direct
path between the transmitter and receiver, or a path where the transmitted
signal bounces off a scattering object before reaching the receiver. The channel
responses of the respective three paths are s1, s2, s3, which are the singular
values of the channel matrix. To achieve the MIMO capacity, the transmitter
should precode its signals to transmit along the three beams indicated in
Figure 3.16. The receiver “listens” to the corresponding signals by applying the
corresponding receive combining vectors u1,u2,u3. The water-filling power
allocation determines how much of the total power is assigned to each path.

This example exposes another critical difference between having multiple
antennas at the transmitter/receiver versus having a single directive antenna
at the transmitter/receiver. A directive antenna can only transmit/receive
with one directivity, while multiple beams with different directivity (each
adapted to the MIMO channel) are needed to achieve a multiplexing gain.

It is important to note that a direct mapping between precoding/combining
vectors and physical propagation paths, as sketched in Figure 3.16, is not
possible in general. It mainly happens when a few propagation paths (compared
to the number of antennas) are spread out spatially. In all other cases, each
component skukvH

k in (3.94) represents some complicated linear combination
of many different propagation paths, which happen to lead to an orthogonal
transmission. Hence, when talking about the spatial directivity of an M -
dimensional precoding/combining vector, this should not be interpreted as a
distinct angular direction in our three-dimensional world but as the direction
of a vector in an M -dimensional vector space. We will return to this matter in
later chapters when we study MIMO channels in different deployment scenarios
and identify ways to generate the channel matrices from the geometry of the
propagation environment.
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Channel matrix H

u1

u2

u3

vH
1

vH
2

vH
3

Reflecting object

Scattering object

s3

s1

s2

Figure 3.16: The SVD divides the channel matrix H into r paths of the form skukvH
k , where

s2
k describes the channel gain of the kth path, vk describes the spatial direction of the path

seen from the transmitter, and uk describes the spatial direction seen from the receiver.

Example 3.13. Consider a MIMO channel matrix that is decomposed as

H = 3a1bH
1 + a2bH

2 , (3.95)

where
a1 =

[
1
0

]
, a2 =

[
0
j

]
, b1 =

[
2
1

]
, b2 =

[
1 + j
−2− 2j

]
. (3.96)

What is the multiplexing gain of this channel? What are the channel gains of
the SISO channels through which parallel data streams can be sent?

We first notice that a1 and a2 are orthogonal since aH
1 a2 = 0. Moreover,

b1 and b2 are orthogonal since bH
1b2 = 0. Hence, the given decomposition

can be used to obtain the SVD as in (3.94). Recalling that the left and right
singular vectors have unit norms, we can obtain them as

u1 = a1

∥a1∥
, u2 = a2

∥a2∥
, v1 = b1

∥b1∥
, v2 = b2

∥b2∥
. (3.97)

Accordingly, the singular values are computed as s1 = 3∥a1∥∥b1∥ = 3
√

5 and
s2 = ∥a2∥∥b2∥ =

√
10. The multiplexing gain is r = 2 since the rank of H is

two. The channel gains of the parallel SISO channels are s2
1 = 45 and s2

2 = 10.



188 Capacity of Point-to-Point MIMO Channels

3.4.2 Duality and Alternative Capacity Expressions

The channel capacity of the MIMO channel is determined by the total symbol
power q, the singular values of H, and the noise variance N0. Suppose we
would transmit with power q in the opposite direction; that is, over the MIMO
channel HT from M transmit antennas to K receive antennas. The SVD
of this channel matrix is HT = (UΣVH)T = V∗ΣTUT. Since ΣT has the
same diagonal values as Σ, the singular values of H and HT coincide and the
water-filling power allocation will be identical if N0 is also unchanged. We
have obtained the following result.

Corollary 3.4. The capacity of the MIMO channel with channel matrix H is
the same as the capacity of the MIMO channel with channel matrix HT if
the transmit power to noise power ratio is the same.

This corollary establishes a strong connection between a primal system
with channel matrix H and a dual system with channel matrix HT. The
fact that the capacity is the same in both directions of a communication
channel is called duality. One instance of the duality is that SIMO and MISO
channels have the same capacity, as we previously observed in this chapter.
Duality might not be achieved in practice because different devices might have
different transmit power (recall the comparison between uplink and downlink
in Figure 1.7) and noise power due to different hardware characteristics.

Example 3.14. What is the capacity-achieving input distribution for the dual
system with channel matrix HT? Assume q and N0 remain the same.

The optimal input distribution is x ∼ NC(0,VQoptVH) for the primal
system, which depends on the right singular vectors V of H ∈ CM×K and the
K×K power allocation matrix Qopt = diag(qopt

1 , . . . , qopt
r , 0, . . . , 0) computed

using Theorem 3.1. The SVD of the dual channel matrix is HT = V∗ΣTUT,
which instead has the matrix U∗ ∈ CM×M containing its right singular
vectors. Even if the water-filling power allocation is the same in the primal
and dual systems, the number of transmit antennas might differ, so the
power allocation matrix for the dual system must be defined differently:
Q̇opt = diag(qopt

1 , . . . , qopt
r , 0, . . . , 0) is an M ×M diagonal matrix. The first

r diagonal entries are the same as in Qopt but are proceeded by M − r
zero-valued entries.

In conclusion, the capacity-achieving input distribution for the dual system
is ẋ ∼ NC(0,U∗Q̇optUT).

There are several alternative ways to express the MIMO capacity. Recall
that we can multiply the capacity expression in (3.75) with B to change the
unit to bit/s. This leads to the alternative but equivalent way to write the
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capacity of a MIMO channel as

C =
r∑

k=1
B log2

(
1 + qopt

k s2
k

N0

)
bit/s. (3.98)

By substituting the expression for qopt
k in (3.76) into (3.98), we obtain

C =
r∑

k=1
max

(
B log2

(
µs2

k

N0

)
, 0
)

bit/s. (3.99)

The capacity expression in (3.75) can also be rewritten using the determi-
nant in the following way:

C =
r∑

k=1
log2

(
1 + qopt

k s2
k

N0

)
= log2

(
r∏

k=1

(
1 + qopt

k s2
k

N0

))

= log2

(
det

(
IM + 1

N0
ΣQoptΣH

))
= log2

(
det

(
IM + 1

N0
HVQoptVHHH

))
, (3.100)

where the last step follows from some matrix algebra that exploits the fact that
U is a unitary matrix.9 We notice that VQoptVH in (3.100) is the covariance
matrix of the transmitted signal in Theorem 3.1. It is a quadratic form
containing the optimal precoding matrix V and the optimal diagonal power
allocation matrix Qopt. Moreover, the matrix inside the determinant in (3.100)
is the covariance matrix of the received signal y, divided by the noise variance
N0, so we can also express the MIMO capacity as C = log2(det( 1

N0
Cov{y})).

Hence, the capacity-achieving transmission over a MIMO channel is the one
that maximizes the determinant of the received signal’s covariance matrix.

3.4.3 Arbitrary Precoding and Successive Interference Cancellation

There are various reasons for not transmitting in a capacity-achieving way in
practice, such as having imperfect channel knowledge at the transmitter or
limited hardware capabilities. We will return to such issues in later chapters
but cover the fundamental theory here. Recall that the capacity-achieving
precoding creates many parallel SISO channels, as illustrated in Figure 3.11(b).
This will not happen when suboptimal precoding is used to transmit multiple
data streams; thus, the spatially multiplexed signals partially collide at the
receiver and must be appropriately decoded to deal with mutual interference.

9For any M × M square matrices A and B, it holds that det(AB) = det(A) det(B). We
can utilize this property to achieve the last equality in (3.100): det(IM + 1

N0
ΣQoptΣH) =

det(UHU + 1
N0

UHHVQoptVHHHU) = det(UH) det(IM + 1
N0

HVQoptVHHH) det(U), where
det(UH) = det(U) = 1 since these are unitary matrices.
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Suppose the transmitted signal is generated as

x = Px̄ =
K∑
k=1

pkx̄k (3.101)

using an arbitrary precoding matrix P = [p1, . . . ,pK ] ∈ CK×K with unit-norm
columns pk to send the K independent data signals from x̄ = [x̄1, . . . , x̄K ]T

in different spatial directions. As the complex Gaussian input distribution is
capacity-achieving, we assume that x̄ ∼ NC(0,Q), where Q = diag(q1, . . . , qK)
is an arbitrary diagonal power allocation matrix satisfying the power constraint∑K
k=1 qk ≤ q. This is a feasible way to communicate over a MIMO channel,

but it is suboptimal unless we select P = V and Q = Qopt. Before deriving
the achievable rate with an arbitrary P, we begin with a helpful example.

Example 3.15. Suppose we use a fixed precoding vector p ∈ CK to transmit
a data signal x̄ ∼ NC(0, q) over a MIMO channel so that the received signal is

y = Hpx̄+ n, (3.102)

where the noise has the colored distribution n ∼ NC(0, N0C) for some
invertible covariance matrix CM×M . What is the capacity of this channel?

With a fixed precoding vector, the MIMO channel effectively becomes a
SIMO channel with the channel vector Hp. An unusual property is that the
noise is colored since C is generally not an identity matrix. This can be dealt
with using the whitening procedure in (2.86), by transforming (3.102) as

C−1/2y = C−1/2Hpx̄+ C−1/2n︸ ︷︷ ︸
∼NC(0,N0IM )

. (3.103)

The whitening operation is reversible (i.e., it causes no information loss), so
we can use (3.103) to compute the capacity. We now have a received signal
with white noise as in Corollary 3.1 and with the effective SIMO channel
vector C−1/2Hp. The capacity with the fixed precoding becomes

log2

(
1 + q∥C−1/2Hp∥2

N0

)
= log2

(
1 + q

N0
pHHHC−1Hp

)
. (3.104)

This capacity is achieved when applying MRC to (3.103) based on the effective
SIMO channel vector. Hence, we need to apply the combining vector

w = C−1/2C−1/2Hp = C−1Hp (3.105)

to the original received signal in (3.102) to first perform whitening and then
MRC. This vector is equal to LMMSE combining vector in Example 3.4,
except for a scaling factor, so we will use that terminology in this section.
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The transmitted signal x in (3.102) has the (suboptimal) covariance matrix
PQPH and the corresponding data rate is

log2

(
det

(
IM + 1

N0
HPQPHHH

))
bit/symbol, (3.106)

which naturally is smaller than the capacity in (3.100). We will prove that
(3.106) is an achievable rate by expanding the expression until we reach a
familiar form, which reveals how the receiver can operate to achieve this rate.
The rate expression from the last example will be useful in the derivation.

With arbitrary precoding, the received signal in (3.56) can be expressed as

y = Hx + n = HPx̄ + n

=
K∑
k=1

Hpkx̄k + n (3.107)

and its covariance matrix is
∑K
k=1 qkHpkpH

kHH +N0IM . Each signal appears
at the receiver in a unique direction Hpk in the M -dimensional vector space,
and the K directions might be linearly independent (if K ≤M), but generally
not mutually orthogonal. Therefore, the signals are interfering with each
other, which we can deal with by decoding them sequentially and successively
removing the already decoded signals—known signals cease to be interference.
For notational convenience, we define

yi = y−
i−1∑
k=1

Hpkx̄k, i = 1, . . . ,K + 1 (3.108)

as the residual received signal when the first i − 1 data signals have been
decoded and removed. This vector has the covariance matrix N0Ci, where

Ci =

IM +
K∑
k=i

qk
N0

HpkpH
kHH, if i = 1, . . . ,K,

IM , if i = K + 1.
(3.109)

The data rate in (3.106) can be rewritten using this notation as

log2

(
det

(
IM + 1

N0
HPQPHHH

))
= log2

(
det
(

IM +
K∑
k=1

qk
N0

HpkpH
kHH

))
= log2 (det (C1)) (3.110)

by utilizing (3.109) and the fact that the signal covariance matrix can be
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expanded as PQPH =
∑K
k=1 qkpkpH

k . We can further rewrite (3.110) as

log2 (det (C1)) = log2

(
det

(
C2 + q1

N0
Hp1pH

1HH

))
= log2

(
det

(
C2 + q1

N0
Hp1pH

1HHC−1
2 C2

))
= log2

(
det

(
IM + q1

N0
Hp1pH

1HHC−1
2

))
+ log2 (det (C2))

= log2

(
1 + q1

N0
pH

1HHC−1
2 Hp1

)
+ log2 (det (C2)) , (3.111)

where the last equality follows from Sylvester’s determinant theorem in (2.53).
The first term in (3.111) has the same structure as the capacity expression in
Example 3.15; that is, it is the capacity when transmitting using the precoding
vector p1 and having colored complex Gaussian noise with the covariance
matrix N0C2. This is precisely how the received signal in (3.107) is structured
if we decompose it as

y = Hp1x̄1 +
K∑
k=2

Hpkx̄k + n︸ ︷︷ ︸
∼NC(0,N0C2)

. (3.112)

The latter term is not conventional noise since it contains both interfering
signals and receiver noise. However, from the decoding perspective, it is
distributed as colored complex Gaussian noise, so it takes the role of an
effective noise term. Hence, if we decode the data signal x̄1 while treating the
remaining K − 1 interfering signals as part of the noise, then we can achieve
a data rate equal to the first term in (3.111) using LMMSE combining of the
kind described in Example 3.15.

The second term log2(det(C2)) in (3.111) can be expanded similarly. In
fact, for any i = 1, . . . ,K, it holds that

log2 (det (Ci)) = log2

(
det

(
Ci+1 + qi

N0
HpipH

i HH

))
= log2

(
det

(
IM + qi

N0
HpipH

i HHC−1
i+1

))
+ log2 (det (Ci+1))

= log2

(
1 + qi

N0
pH
i HHC−1

i+1Hpi
)

+ log2 (det (Ci+1)) , (3.113)

where the first term is the capacity when transmitting using the precoding
vector pi and having colored complex Gaussian noise with the covariance
matrix N0Ci+1. This is how the residual received signal in (3.108) is structured
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because it can be decomposed as

yi = Hpix̄i +
K∑

k=i+1
Hpkx̄k + n︸ ︷︷ ︸

∼NC(0,N0Ci+1)

. (3.114)

The first term in (3.113) is, therefore, a data rate we can achieve by removing
the first i−1 data signals from y to obtain yi and then decode x̄i while treating
the remaining K−i interfering signals as part of the colored noise. The iterative
expansion in (3.113) terminates when i = K since log2 (det (CK+1)) = 0.

In summary, the data rate in (3.106) can be expanded as

log2

(
det

(
IM + 1

N0
HPQPHHH

))
=

K∑
i=1

log2

(
1 + qi

N0
pH
i HHC−1

i+1Hpi
)

(3.115)

and is achieved by decoding the signals sequentially while removing the previ-
ously decoded signals and treating the uncoded signals as noise. This procedure
is known as successive interference cancellation (SIC) and is summarized in
Figure 3.17. The signal x̄1 is first decoded using y1 = y. Next, y2 is computed
and x̄2 is decoded using it. This procedure continues successively until x̄K has
been decoded. The whole procedure is also known as LMMSE-SIC because
each signal is decoded using LMMSE combining, as discussed in Example 3.15.

The signals were assumed to be decoded in increasing numerical order,
which can be done without loss of generality because the precoding vectors are
numbered arbitrarily. The expression on the left-hand side of (3.115) takes the
same value regardless of how the precoding vectors are numbered; however,
individual terms in the right-hand side expression will take different values
depending on the numbering. Moreover, the right-hand side expression is
explicitly achieved using LMMSE combining, as described in Example 3.15,
but the choice of receiver processing is not visible in the left-hand side
expression. The reason is that rate expressions implicitly assume an optimal
receiver based on the available information.

The SIC procedure is information-theoretically optimal but has several
practical issues. Recall from Definition 2.6 that the capacity determines the
data rate we can communicate at while achieving an arbitrarily low error
probability as the number of symbols in the packet approaches infinity. Hence,
to decode the signal x̄1 actually means to decode an N -length codeword
x̄1[1], . . . , x̄1[N ] where N → ∞ or at least is very large. Next, we need to
recreate Hp1x̄1[l] for the time instances l = 1, . . . , N in the packet and
subtract it from the entire sequence of received signals y[1], . . . ,y[N ]. This
procedure requires extensive memory storage and causes delays proportional to
K. Since N is finite in practice, there will also be a non-zero error probability
for each stream, and when an error occurs, the wrong data signal will be
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subtracted from the received signals. This increases rather than reduces the
amount of interference and is called error propagation because it will likely
result in decoding errors for all the remaining uncoded streams.

Example 3.16. What is the achievable data rate if we decode the K signals
separately without using SIC?

When we decode signal i, we can express the received signal in (3.107) as

y = Hpix̄i +
K∑

k=1,k ̸=i
Hpkx̄k + n

︸ ︷︷ ︸
∼NC(0,N0C−i)

, (3.116)

where the colored noise is based on the covariance matrix

C−i = IM +
K∑

k=1,k ̸=i

qk
N0

HpkpH
kHH. (3.117)

It follows from Example 3.15 that the achievable data rate when treating
interference as colored noise is

log2

(
1 + qi

N0
pH
i HHC−1

−iHpi
)
, (3.118)

which is achieved using the LMMSE combining wi = 1
N0

C−1
−iHpi. The

achievable data rate of all the K data streams then becomes
K∑
i=1

log2

(
1 + qi

N0
pH
i HHC−1

−iHpi
)
. (3.119)

This value is smaller than (3.115) because of the lack of SIC (i.e., there is
more interference). However, it is easier to implement the receiver processing
in practice since the K data streams can be decoded in parallel. Moreover,
unlike SIC, there is no risk of error propagation.

This example describes a setup where each data stream is decoded inde-
pendently while treating the other streams as colored noise. This is called
linear processing because the receiver only performs a linear algebra operation
before the signal decoding: it multiplies the received signal with a receive
combining vector of the LMMSE-kind in (3.105). A block diagram is shown
in Figure 3.18, where we can notice that the K decoding branches are parallel
and independent. By contrast, the LMMSE-SIC receiver processing in Fig-
ure 3.17 is non-linear because of the successive removal of interference, which
connects the decoding of the different signals.
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+

. . .

+

y1

y2

y3

yK

−Hp1x̄1

−Hp2x̄2

Decode signal 1 with
interf. from x̄2, . . . , x̄K

x̄1

Decode signal 2 with
interf. from x̄3, . . . , x̄K

x̄2

Decode signal K
without interference x̄K

Figure 3.17: A block diagram of the LMMSE-SIC receiver processing. When the precoding is
not dividing the MIMO channel into parallel SISO channels, the receiver can instead decode the
data signals sequentially to deal with interference. Each decoded signal is subtracted from the
received signal vector before the next signal is decoded, while the remaining interfering signals
are treated as colored noise. This is called successive interference cancellation.

. . .

y

Decode signal 1 with
interf. from x̄2, . . . , x̄K

Decode signal 2 with
interf. from x̄1, x̄3, . . . , x̄K

x̄1

x̄2

Decode signal K with
interf. from x̄1, . . . , x̄K−1

x̄K

Figure 3.18: A block diagram of a linear MIMO receiver processing. Each data stream is
decoded separately while treating the interference from the other signals as colored noise.
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Figure 3.19: The capacity is compared with the data rates achieved with suboptimal precoding
(i.e., sending an independent data stream per antenna) and two types of receiver processing:
The LMMSE-SIC receiver in Figure 3.17 and the linear receiver in Figure 3.18.

Figure 3.19 compares the MIMO channel capacity with the data rates
achieved with equal power allocation and the precoding P = IK that transmits
one independent signal per antenna. In the latter case, we consider both the
non-linear LMMSE-SIC receiver in Figure 3.17 and the simplified linear
receiver in Figure 3.18. We consider a setup with M = K = 4 antennas.
To obtain a slightly asymmetric channel matrix, we let the entries have
unit magnitude but independent random phases between 0 and 2π. The
figure shows the average rates (over different random phases) as a function
of SNR = q

N0
. The LMMSE-SIC curve is below the capacity due to the

suboptimal precoding. However, it approaches the capacity at high SNR
because water-filling converges to equal power allocation in this regime so
that VQoptVH = q

KVVH = q
K IK . This is the same signal covariance matrix

as when P = IK and equal power allocation are used. The linear receiver is
affected by more interference than the LMMSE-SIC receiver, but they perform
equally well at low SNRs where the interference is anyway negligible. There is
a substantial performance loss at high SNRs, but the curve with the linear
receiver has the same slope as the capacity curve, which showcases that the
same multiplexing gain of r = 4 is achieved in all cases.
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3.5 Exercises

Exercise 3.1. Consider the capacity B log2
(
1 + Pβ

BN0

)
of a SISO channel.

(a) Show that the capacity goes to zero when B → 0. What is the name of this
operating regime?

(b) What happens to the capacity when B → ∞? What is the name of this operating
regime?

Exercise 3.2. Consider the capacity C(P,B) = B log2
(
1 + Pβ

BN0

)
of a SISO channel.

(a) Compute the first-order derivative of the capacity with respect to P . At what
value of P does the capacity grow the fastest? What happens with the capacity
growth as P → ∞?

(b) Compute the second-order derivative of the capacity with respect to P . Show that
it is negative; that is, the capacity is a concave function of P .

(c) Compute the first-order derivative of the capacity, with respect to B. At what
value of B does the capacity grow the fastest? What happens with the capacity
growth as B → ∞? Hint: Use the inequality x

1+x < ln(1 + x) for x > 0.

(d) Compute the second-order derivative of the capacity with respect to B. Show that
it is negative; that is, the capacity is a concave function of B.

Exercise 3.3. Consider the capacity C(P,B) = B log2
(
1 + Pβ

BN0

)
of a SISO channel.

(a) Suppose there is a reference setup where P and B have been selected such that
Pβ/(BN0) = 7. We want to change the bandwidth from B to cB for some scalar
c > 1 to at least double the capacity while keeping all other variables constant.
What will at least double the capacity (compared to c = 1): increasing the
bandwidth to 2B or 6B?

(b) Repeat (a) for the case when the reference setup has Pβ/(BN0) = 1. Can we find
a value of c that doubles the capacity (compared to c = 1)? Hint: Utilize the fact
that f(c) = log2

(
1 + 1

c

)
− 2

c
< 0 for all c > 1.

(c) Use the asymptotic limit of the capacity as B → ∞ (i.e., log2(e)Pβ
N0

) to derive the
condition on the initial selection of Pβ/(BN0) so that we can double the capacity
by increasing the bandwidth to cB for some c > 0. Use this relation to verify your
answers to parts (a) and (b).

Exercise 3.4. Consider a system where the received signal power is Prx = 10−9 W and
the bandwidth is B = 100 MHz. There is an AWGN channel between a transmitting
single-antenna user device and a receiving single-antenna base station.

(a) Give an expression for the channel capacity, as a function of Prx, B, and the noise
power spectral density N0.

(b) What is the channel capacity in bit/s using the numbers given above and N0 =
10−17 W/Hz?

(c) Suppose we would equip the base station with multiple antennas, and each antenna
receives Prx = 10−9 W. How many antennas do we need to get 8 times higher
capacity than in (b)?
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Exercise 3.5. Consider the SIMO channel y = hx + n, where the input signal x has
the power limit E{|x|2} ≤ q and the noise vector n has independent and identically
distributed NC(0, N0)-entries. The channel h is an M -length vector with only ones,
where M denotes the number of receive antennas.

(a) What is the capacity of this channel? What kind of input distribution achieves
the capacity?

(b) Suppose q/N0 = 1. How many antennas do we need to achieve a capacity of 6
bit/symbol?

(c) Suppose we have M = 10 antennas. How large SNR q/N0 do we need to achieve a
capacity of 6 bit/symbol?

(d) Suppose all entries of h are equal to two, instead of one. What is the capacity of
this channel?

(e) Suppose all entries of h are equal to −1, instead of +1. What is the capacity of
this channel? Compare it with (a) and explain the intuition behind the result.

Exercise 3.6. Suppose we are designing an uplink communication system that should
provide (at least) 400 Mbit/s at every point in its coverage area. The transmit power
is 0.1 W, the bandwidth is 100 MHz, and the noise power spectral density is N0 =
10−17 W/Hz. The propagation distance is denoted by d and the gain of the channel is
|h|2 = 10−8(1 km/d)4.

(a) Use the capacity formula for a SISO channel to determine for which range of
distances, d, we can deliver the required data rate.

(b) We would like to extend the range to d = 2 km, but we cannot increase the
transmit power at the user devices. Instead, we will use multiple antennas at the
receiving base station. Suppose the channel gain |hm|2 is the same for each receive
antenna m and matches the SISO case. How many antennas are needed?

Exercise 3.7. Consider a SIMO channel where the single-antenna transmitter sends the
signal x ∼ NC(0, q) to a receiver with M antennas. The received signal is denoted as
y = hx+ n, where h is constant and n is complex Gaussian noise. The receive combining
vector w is applied to the received signal y to detect the signal x from wHy.

(a) Suppose the noise vector is colored n, which means that the covariance matrix
Cov{n} = C is not equal to a scaled identity matrix but invertible. Derive the
receive combining vector w that maximizes the SNR. Hint: Define a = C1/2w
and optimize a instead.

(b) Consider a hypothetical system where C is a singular matrix and h is a non-zero
vector in the nullspace of C (i.e., Ch = 0). What is the largest SNR that we can
achieve in such a system?

Exercise 3.8. Consider a MISO system with two transmit antennas where the received
signal is y = h1 · x1 + h2 · x2 + n, and n ∼ NC(0, N0) is the independent receiver noise.

(a) Suppose the two transmit antennas send the independent signals x1 ∼ NC(0, q1)
and x2 ∼ NC(0, q2), where the powers satisfy the constraint q1 + q2 ≤ q. What is
the resulting data rate? Which values of q1 and q2 will maximize that rate? Hint:
The data rate expression in (3.106) can be utilized.

(b) Compare the data rate from (a) with the MISO channel capacity. Under which
conditions on h1 and h2 are they equal?
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Exercise 3.9. Consider a downlink channel where the user device has one receive antenna
and the base station has three transmit antennas. The transmit power P , bandwidth
B = 100 MHz, and noise power spectral density N0 are selected such that P/(BN0) = 2.
Suppose the channel vector is h = [3, 1,−4]T.

(a) What is the capacity of this channel in bit/s? What does the capacity-achieving
MRT vector become?

(b) Suppose the base station hardware has restricted capabilities so that each entry of
the precoding vector p must have a magnitude equal to 1/

√
3, such that ∥p∥ = 1.

However, we can choose any sign/phase of the entries in the complex-valued vector
p. How should we select the precoding vector to achieve the largest possible data
rate (bit/s)?

(c) Compare the rate values from (a) and (b), and provide a high-level explanation of
the difference.

Exercise 3.10. Consider the discrete memoryless point-to-point MIMO channel with
the input x ∈ CK and output y ∈ CM given by y = Hx + n. The receiver noise
n ∼ NC(0,C) is independent of x but has an arbitrary non-singular covariance matrix
C ∈ CM×M . State the generalized version of Theorem 3.1 that supports such noise
covariance matrices. Hint: Begin by whitening the noise.

Exercise 3.11. Consider a point-to-point MIMO system with q
N0

= 1 and the channel
matrix

H =

 1 0
1 − 2j 0

0 3 + 4j
0 −

√
5

 . (3.120)

(a) What is the channel capacity? What is the covariance matrix of the capacity-
achieving input distribution?

(b) Consider the dual channel HT with q
N0

= 1. What is the channel capacity? What
is the covariance matrix of the capacity-achieving input distribution?

Exercise 3.12. Consider a point-to-point MIMO system with q/N0 = 2. Find the
water-filling power allocation and capacity for each of the following channel matrices:

(a) H =
[

1 1
−1 1

]
. (b) H =

[
1 0
0 1/2

]
. (c) H =

[
1 1
1 1

]
.

Exercise 3.13. Consider a point-to-point MIMO channel with the channel matrix

H =
[ 1√

3
1√
3

1√
3

−1√
3

]
. (3.121)

(a) For what value of q
N0

is the capacity 2 bit/symbol if we use only the first antenna
at the transmitter and the first antenna at the receiver?

(b) For what value of q
N0

is the capacity 2 bit/symbol if we use only the first antenna
of the transmitter but both antennas at the receiver?

(c) For what value of q
N0

is the capacity 2 bit/symbol if we use the whole 2 × 2 MIMO
channel? Compare the results in (a), (b), and (c).
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Exercise 3.14. Consider the transmission over a point-to-point MIMO channel with
M = K = 2. We will use the SNR notation ϱ = q/N0.

(a) Suppose the channel matrix is

H =
[
e−jπ/3 e−jπ/3

1 1

]
. (3.122)

Compute the capacity of this channel as a function of ϱ. Explain how the capacity
is achieved and what kind of gain is achieved compared to the corresponding SISO
channel, which has capacity log2(1 + ϱ).

(b) Suppose the channel matrix is

H =
[

1 −1
1 1

]
. (3.123)

Compute the capacity of this channel as a function of ϱ. Explain how the capacity
is achieved and what kind of gain is achieved compared to the corresponding SISO
channel.

(c) For which values of the SNR ϱ is the capacity in (b) larger than in (a)?

Exercise 3.15. Consider a MIMO channel with the channel matrix H ∈ CM×K . All the
entries of H have unit magnitude.

(a) Assume that M ≥ K and all the columns of H are mutually orthogonal. What is
the channel capacity for a given value of q

N0
?

(b) Compute the first-order derivative of the capacity expression in (a) with respect
to K. Is it an increasing or decreasing function? Hint: Use the inequality x

1+x <
ln(1 + x) for x > 0.

(c) Compute the second-order derivative of the capacity expression with respect to
K. At what value of K does the capacity grow the fastest?

(d) Suppose that K = M . How does the capacity depend on K (and M) in this case?
(e) How does the capacity depend on M and K when q

N0
is close to zero?

Exercise 3.16. Consider an M ×M MIMO channel matrix H with the singular values
s1, . . . , sM . The eigenvalues λ1, . . . , λM of HHH satisfies λm = s2

m for m = 1, . . . ,M .
Suppose we are free to select the eigenvalues freely, under the constraint that they are
positive and that

∑M

k=1 λk = λsum.

(a) Which selection of eigenvalues maximizes the capacity at low SNRs? Hint: Use
that the water-filling only assigns power to the largest eigenvalue at low SNRs.

(b) Which selection of eigenvalues maximizes the capacity at high SNRs? Hint: Use
(3.3), Lemma 3.2, and that water-filling assigns power equally among the eigenval-
ues at high SNRs.
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Exercise 3.17. Consider the M ×M MIMO channel where the received signal is

y = HPx̄ + n. (3.124)

Suppose the precoding matrix is P = HH(HHH)−1D, where D = diag(d1, . . . , dM ) is a
diagonal matrix.

(a) The columns of the precoding matrix are the precoding vectors p1, . . . ,pM . How
can D be selected to ensure each precoding vector has a unit norm?

(b) Show that this precoding matrix creates M parallel SISO channels. What is the
channel gain on each such channel?

(c) Suppose H =
[

2 1
1 2

]
. Compare the gains of the parallel channels achieved in (b)

with the gains of the parallel channels obtained using the SVD. Which approach
gives the largest sum of the channel gains?

Exercise 3.18. Consider the M ×K MIMO channel with the received signal

y = HPx̄ + n =
K∑
k=1

pkx̄k + nk. (3.125)

An arbitrary precoding matrix P = [p1, . . . ,pK ] ∈ CK×K with unit-norm columns pk
is used to send the K independent data signals from x̄ = [x̄1, . . . , x̄K ]T. We assume
that n ∼ NC(0, N0IM ) and x̄ ∼ NC(0,Q) with a fixed power allocation matrix Q =
diag(q1, . . . , qK). The resulting data rate in (3.106) is equal to the mutual information
between x̄ and y, i.e., I(x̄; y).

(a) The chain rule for mutual information is given as

I(x1, . . . , xn; y) = I(x1; y) + I(x2; y|x1) + I(x3; y|x1, x2)
+ . . .+ I(xn; y|x1, x2, . . . , xn−1), (3.126)

where I(xn; y|x1, x2, . . . , xn−1) is the mutual information between xn and y given
the knowledge of x1, x2, . . . , xn−1. Express the data rate for the considered MIMO
channel I(x̄; y) in terms of I(x̄i; y|x̄1, x̄2, . . . , x̄i−1) using the chain rule for mutual
information.

(b) Consider the LMMSE-SIC receiver processing illustrated in Figure 3.17. At stage
i, the LMMSE receiver wi = C−1

i Hpi is applied to the residual yi = y −∑i−1
k=1 Hpkx̄k to decode x̄i. Since x̄ and n are Gaussian distributed, the LMMSE re-

ceiver is also the MMSE receiver. Using this, show that I(x̄i; y|x̄1, x̄2, . . . , x̄i−1) =
I(x̄i; wH

i yi|x̄1, x̄2, . . . , x̄i−1), i.e., that the MMSE receiver at each stage is infor-
mation lossless.

(c) Using (a) and (b), conclude that the LMMSE-SIC receiver processing is information-
theoretically optimal.



Chapter 4

Line-of-Sight Point-to-Point MIMO Channels

The capacity of a point-to-point MIMO channel with an arbitrary channel
matrix H ∈ CM×K was derived in the last chapter. In this chapter, we
will derive a model for H in free-space line-of-sight (LOS) propagation and
use it to analyze the capacity behavior further using the previously derived
expressions. There is only one path between each transmit antenna and each
receive antenna in free-space LOS channels, namely the direct path obtained
by drawing a straight line between the antennas. This is an exact model of
space communications, where no objects create additional signal paths by
reflecting or scattering the transmitted signal. It can also be a reasonably
accurate model of LOS channels on Earth, where there are objects that create
additional signal paths, but these generally have much smaller channel gains
than the direct path. This is particularly the case for the high-band spectrum,
where the reflected paths typically are weaker while the LOS path is not.

As in Chapter 3, we start with the special cases of SIMO and MISO
channels, where only one side of the channel utilizes multiple antennas. The
results will then be extended to the MIMO case.

4.1 Basic Properties of Antenna Arrays

Within the context of this book, an antenna array is a collection of antennas
that operate jointly at the transmitter or receiver side of a communication
system. We used K and M to respectively denote the number of transmit
antennas and receive antennas in Section 3, which then became the dimensions
of the channel matrix H ∈ CM×K . Two properties determine the channel ma-
trix: the array geometries at the transmitter and receiver, and the propagation
environment between them.

Figure 4.1 exemplifies three different array geometries where all the anten-
nas are deployed on a two-dimensional plane. Each array is characterized by
the convex enclosure containing all the antennas, called the aperture, and its
antenna arrangement. Figure 4.1(a) shows an antenna array with an irregu-
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Aperture

Aperture

Aperture
(a) Irregular antenna array.

(b) Linear antenna array.

(c) Planar antenna array.

Aperture length

Horizontal length

Vertical
length

Aperture
length

Aperture length

Figure 4.1: An antenna array is characterized by its aperture (i.e., the convex enclosure of all
antennas) and the antenna arrangement within the aperture. Three examples are given in this
figure, where the filled circles represent the individual antennas. The largest dimension of the
aperture is called the aperture length.

larly shaped aperture and a non-uniform antenna arrangement. Such arrays
are seldom encountered in practice; in fact, the word array is often associated
with a regular geometrical arrangement. Figure 4.1(b) shows a linear array
with a uniform antenna spacing in one dimension, while Figure 4.1(c) shows
a planar array with a uniform antenna spacing in two dimensions.

Definition 4.1. The aperture length D is the largest separation between any
two antennas in an array. It is called the normalized aperture length when
normalized by the wavelength λ and is then denoted as Dλ = D/λ.

The aperture length is indicated for each of the three examples in Figure 4.1.
It is the distance between the first and last antenna in a linear array. In contrast,
it is the distance between the antennas in opposite corners in a planar array.
The aperture length will play an important role throughout this chapter. As
indicated in Figure 4.1(c), a planar array’s horizontal and vertical lengths will
also play a role when analyzing such arrays.

4.2 Modeling of Line-of-Sight SIMO Channels

The SIMO capacity analysis in the previous chapter was based on the discrete-
time complex-baseband channel model ym[l] = hmx[l] +nm[l] in (3.12), where
ym[l] is the received signal at the mth antenna, hm is the corresponding
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Transmitter

Receiver with
M antennas

d1

dm

dM

1

m

M

Figure 4.2: A free-space SIMO LOS channel where dm is the distance between the transmitter
and the mth receive antenna for m = 1, . . . ,M . The array of receive antennas has an arbitrary
geometry in this figure.

channel coefficient, x[l] is the transmitted signal, and nm[l] is the noise. The
analysis considered arbitrary values of h1, . . . , hM . The purpose of this section
is to derive expressions for these coefficients in a scenario where an isotropic
antenna transmits in free space to an array of M isotropic antennas, as
illustrated in Figure 4.2.

We need to start the derivation from a continuous-time signal model since
the physical channel affects this physical signal. The single-antenna transmitter
sends the passband signal

zp(t) =
√

2ℜ
(
z(t)ej2πfct

)
(4.1)

of the kind previously defined in (2.111), where z(t) is the complex-baseband
PAM signal in (2.120) and fc is the carrier frequency.

We denote by dm the physical distance (in meters) between the transmitter
and the mth receive antenna, for m = 1, . . . ,M . Using this notation, the
received passband signal at the mth antenna is (before noise is added)

υp,m(t) =
√
βmzp

(
t− dm

c

)
, (4.2)

where dm/c is the propagation time delay, c denotes the speed of light, and

βm = λ2

(4π)2
1
d2
m

(4.3)

is the free-space channel gain computed as in (1.7).
From (4.2), we notice that the transmitted signal is attenuated by a factor√
βm and delayed by dm

c seconds. This matches the channel model type
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introduced in Section 2.3.3 with L = 1 path. As mentioned in that section, the
receiver must delay its clock by η seconds to compensate for the propagation
delay before sampling the received signal. Following (2.125), the continuous-
time channel impulse response to the mth receive antenna in the complex
baseband then becomes

gm(t) =
√
βme

−j2πfctδ

(
t+ η − dm

c

)
, m = 1, . . . ,M. (4.4)

Furthermore, it follows from (2.128) that the received signal at the mth
antenna after sampling is

ym[l] =
∞∑

k=−∞
x[k]

√
βme

−j2πfc( dmc −η)sinc
(

(l − k) +B

(
η − dm

c

))
+ nm[l].

(4.5)

To avoid intersymbol interference, we would like to select the sampling delay
η such that

sinc
(

(l − k) +B

(
η − dm

c

))
≈ sinc(l − k) =

{
1, l = k,

0, l ̸= k,
m = 1, . . . ,M.

(4.6)
Exact equality is achieved for η = dm

c , but this value depends on the antenna
index m. Since each antenna experiences a different propagation delay, we
generally cannot find one value of η that achieves exact equality for all of
them. Suppose we use the first antenna (m = 1) as the timing reference for
the sampling by setting η = d1

c . We then want B (d1−dm)
c to be close to zero

for m = 2, . . . ,M . This means that the maximum difference in propagation
delay maxm∈{2,...,M}

|dm−d1|
c with respect to the reference antenna should be

much shorter than the symbol time 1
B :

max
m∈{2,...,M}

|dm − d1|
c

≪ 1
B
. (4.7)

The distances d1, . . . , dM depend on the transmitter’s location compared to
the array, but the maximum difference only depends on the array geometry.

The aperture length D was introduced in Definition 4.1 as the maximum
separation between any two antennas in the array. The worst-case delay
scenario can be constructed by identifying two receive antennas separated by
D, making one of them antenna 1, and then placing the transmitter on the
line that connects these receive antennas. The condition in (4.7) becomes

D

c
≪ 1

B
(4.8)

in this worst-case scenario and is satisfied for many array sizes and signal
bandwidths. For example, if the aperture length is D = 1 m, then 1 m

c = 1
B
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implies that B = c
1 m = 300 MHz gives equality in (4.8). Many practical

systems use much smaller bandwidths (e.g., 20 MHz) and often smaller arrays.
Hence, we will use the approximation in (4.6) in this chapter.1 General channel
modeling without this approximation will be considered in Chapter 7.

Example 4.1. Suppose the condition in (4.8) is assumed to hold if D
c ≤

0.1
B .

What is the maximum allowed normalized aperture length if

(a) fc = 3 GHz, and B = 20 MHz;

(b) fc = 30 GHz, and B = 300 MHz;

(c) fc = 30 GHz, and B = 1 GHz?

The normalized aperture length is defined as Dλ = D/λ. Since c = λfc,
we need to satisfy the condition

Dλ

fc
≤ 0.1

B
,

which leads to the following maximum allowed normalized aperture lengths:

(a) Dλ ≤ 0.1fc
B = 0.1·3·109

20·106 = 15 wavelengths;

(b) Dλ ≤ 0.1·30·109

300·106 = 10 wavelengths;

(c) Dλ ≤ 0.1·30·109

109 = 3 wavelengths.

By substituting (4.6) into (4.5), the system model simplifies to

ym[l] =
√
βme

−j2πfc
(dm−d1)

c x[l]+nm[l] =
√
βme

−j2π (dm−d1)
λ︸ ︷︷ ︸

=hm

x[l]+nm[l], (4.9)

where the second equality utilizes the fact that the wavelength at the carrier
frequency is λ = c/fc. We can identify the value of hm from (4.9):

hm =
√
βme

−j2π (dm−d1)
λ . (4.10)

This channel response consists of a channel gain βm and a complex exponential
e−j2π (dm−d1)

λ containing a phase-shift proportional to (dm − d1)/λ. This is
not the absolute phase-shift of the propagation but the relative phase-shift

1In practice, it is preferable to select antenna 1 to minimize the maximum separation to all
other antennas; for example, if the array has a square shape as in Figure 4.1(c), we should pick
the antenna in the center as the timing reference, instead of an antenna in one of the corners as
in the worst-case scenario. This will reduce the maximum delay from D/c to D/(2c). However,
to obtain expressions that resemble those in other textbooks, we will nevertheless use one of the
corners as the reference antenna in this chapter.
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compared to the reference antenna. We can collect all the channel responses
in the channel vector

h =

 h1
...
hM

 =


√
β1√

β2e
−j2π (d2−d1)

λ

...
√
βMe

−j2π (dM−d1)
λ

 , (4.11)

where we recall that βm = λ2

(4π)2
1
d2
m

for m = 1, . . . ,M .
The approximation that we utilized above results in frequency flatness

since the impulse response in (4.4) has effectively been approximated as

gm(t) = hmδ(t), m = 1, . . . ,M, (4.12)

which has a Fourier transform with the constant value hm across all frequencies.
We can utilize the derived expression in (4.11) when dealing with any practical
receiver array of limited size. When the array has a regular geometrical
structure, it can be utilized to simplify the expression. A particular example
will be considered next.

4.2.1 Uniform Linear Array at the Receiver

One type of antenna array is particularly common to deploy and analyze:
the uniform linear array (ULA). In this array type, the M antennas are
deployed with uniform spacing, and the centers are located on a straight
line, as in Figure 4.1(b). We let ∆ denote the spacing between the centers
of any two adjacent antennas. The spacing between the centers of the two
outermost antennas will then be (M − 1)∆. The total length of the ULA,
measured between the outer edges of the outermost antennas, depends on the
physical width of the individual antennas, which depends on the hardware
implementation. For convenience, we will denote the aperture length of the
ULA as M∆, because this expression will appear in many expressions derived
in this chapter. A setup with a receiving ULA is shown in Figure 4.3. We
continue to use receive antenna 1 as the reference point and define the angle-
of-arrival φ ∈ [−π, π) of the impinging signal at this antenna, as shown
in the figure. More precisely, we consider a two-dimensional plane (in the
three-dimensional world) that contains the ULA and transmitter, and define
angles in that plane.2 Note that φ = 0 corresponds to a transmitter on a
line perpendicular to the line where the ULA is deployed. This is called the
broadside or front-fire direction of the array, which is a terminology borrowed
from how the canons on a warship are lined up to fire toward the sides. Two

2This assumption can be made without loss of generality. A plane is defined by two linearly
independent vectors that lie in the plane; thus, we can create the plane by selecting one vector
pointing along the ULA and the other vector pointing from the reference antenna to the
transmitter.
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Transmitter

Receiver

Broadside direction

End-fire direction

d1

dM
∆

(M−2)∆

φ1

2

M

Figure 4.3: Illustration of communication from a single-antenna transmitter to a receiver
equipped with a ULA. The antenna spacing is ∆, and the distance to receive antenna m is dm
for m = 1, . . . ,M . The angle-of-arrival φ is measured at the first antenna. The transmitter is in
the broadside direction if φ = 0, while it is in the end-fire direction if φ = ±π/2.

d1

dm(m− 1)∆

φ+ π
2

Figure 4.4: The distance dm between the transmitter and mth receive antenna can be computed
based on d1, ∆, and φ using the law of cosines.

other important directions are φ = ±π/2, where the transmitter is on the
same line as the ULA. These are called the end-fire directions of the array.

We can now use the geometry to compute the distance dm to the mth
antenna as a function of d1, φ, and ∆. Their relationship is illustrated in
Figure 4.4, and we can utilize the law of cosines to establish the relationship

d2
m = d2

1 + (m− 1)2∆2 − 2d1(m− 1)∆ cos
(
φ+ π

2

)
= d2

1 + (m− 1)2∆2 + 2d1(m− 1)∆ sin (φ) . (4.13)

This difference in propagation distance will affect both the channel gain βm
and the phase-shift 2π (dm−d1)

λ in (4.10). In many cases of practical interest, it
holds that d1 ≫M∆, which means that the distance between the transmitter
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and the first antenna is much larger than the aperture length of the ULA.
Since the channel gain depends on the total distance, it then follows that

βm = λ2

(4π)2
1

d2
1 + (m− 1)2∆2 + 2d1(m− 1)∆ sin (φ) ≈

λ2

(4π)2
1
d2

1
= β1

(4.14)
for m = 1, . . . ,M . This means the channel gain is approximately the same for
all antennas in most free-space LOS scenarios. For simplicity, we will use the
notation

β = β1 = λ2

(4π)2
1
d2 (4.15)

without an antenna index to denote the common channel gain of all antennas,
where d = d1 denotes the distance to the reference antenna.

In contrast, the phase-shift 2π (dm−d1)
λ at the mth antenna depends on

the relative distance dm − d1 between the mth and first antenna, and this
variation cannot be neglected, even if the total distance is considerable. Recall
from Section 1.1.2 that the transmit antenna emits a spherical wave, which
can be approximated as a plane wave when the receive antenna is beyond
the Fraunhofer distance defined in (1.18). The same argument can be applied
when considering a receiving ULA, but the aperture length of the ULA should
be considered instead of the width of a single receive antenna. More specifically,
the impinging wave will have an approximately planar wavefront if

d1 ≥
2M2∆2

λ
. (4.16)

When this holds, we say that the ULA is in the far field of the transmitter.
The far-field condition is often satisfied in practice; for example, if the ULA
has an aperture length of 1 m and λ = 0.1 m (i.e., fc = 3 GHz), then we
need d1 ≥ 20 m to be in the far-field, which is typically the case (at least in
the practical scenarios where such large arrays are being used). Moreover,
the condition (4.16) generally implies d1 ≫M∆, as assumed in (4.14) when
approximating the channel gain, because 2M∆/λ≫ 1 for most arrays.

The difference between spherical and planar wavefronts is illustrated in
Figure 4.5, which shows snapshots of sinusoidal waves propagating in the
xy-plane. The shape of the wavefront is seen by inspecting the points that
attain the maximum value at the same time: these points lie on circular curves
in Figure 4.5(a) and on straight lines in Figure 4.5(b). When this example is
extended to wave propagation in three dimensions, the circular curves become
spherical, while the straight lines become planes. The wave in Figure 4.5(b)
propagates along the x-axis. The spatial frequency is zero along the wavefront
(i.e., no phase difference along the y-axis). We recall from Section 2.8.3 that
the spatial frequency is ±1/λ in the direction the wave propagates.

Even if the impinging wavefronts are planar, the receiving ULA might not
be deployed in a direction that matches the wavefronts. In particular, the
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(a) Spherical wavefronts.

-Direction of propagation

(b) Planar wavefronts.

Figure 4.5: Example of two sinusoidal waves propagating in the xy-plane. The vertical axis
shows the value at a particular time instance. The shape of the wavefronts can be seen by
drawing lines between the neighboring points that attain the same value simultaneously. The
wavefronts are spherical in (a) and planar in (b), represented by circular and straight lines in
this two-dimensional example.
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. . .

Transmitter

Receiver

(m− 1)∆ sin (φ)

∆

(m−2)∆

φ

φ

φ

1

2

m

Planar wavefronts

Spherical wavefronts

Figure 4.6: The isotropic transmitter emits spherical waves, which look like planar waves when
the receiver is far from the transmitter. The angle-of-arrival φ is approximately the same for
all antennas, and the difference in propagation distance between antenna 1 and antenna m is
(m− 1)∆ sin (φ).

distances to the receive antennas will differ when the wave arrives from a
non-broadside direction with angle φ ̸∈ {0,±π}. As shown in Figure 4.6, the
difference in propagation distance between the first and the mth antenna can
be computed using trigonometry when having planar wavefronts:

dm − d1 = (m− 1)∆ sin (φ) . (4.17)

This happens because the opposite angle is φ and the triangle’s longest
side is (m − 1)∆. The phase difference between the considered antennas is
2π(m− 1)∆ sin (φ) /λ. As the distance between the antennas is (m− 1)∆, the
phase variations between the signals observed simultaneously at the different
antennas in the ULA vary with a spatial frequency of sin(φ)/λ periods per
meter. The information-bearing signal still oscillates with time at the temporal
frequency fc, but the relative phase difference between the antennas remains
constant and is determined by the spatial frequency. Hence, the (spatial)
channel vector h contains this spatial frequency, not the signal. One can
view it as the spatial counterpart to how the (temporal) impulse response
of the channel has a frequency response containing a collection of different
frequencies. For the considered ULA, the channel contains the zero-valued
spatial frequency when deployed parallel to the wavefronts (i.e., φ ∈ {0,±π}).
Similarly, the channel contains the spatial frequency ±1/λ when deployed
along the direction of propagation, which is the case when φ = ±π/2.

We have now derived far-field approximations of the channel gain and
phase-shifts when using a ULA. By substituting (4.14) and (4.17) into the
general expression for hm in (4.10), we obtain√

βme
−j2π (dm−d1)

λ ≈
√
βe−j2π (m−1)∆ sin(φ)

λ , m = 1, . . . ,M. (4.18)
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Alternative planar wavefront Planar wavefront

φ

φ

π − φ

Figure 4.7: The channel vector in (4.19) depends on sin(φ), where φ is the angle-of-arrival
of the impinging planar wavefront. The same channel vector is obtained if a planar wavefront
impinges from the alternative angle π − φ, which leads to a mirror-like ambiguity.

This expression is unique to ULAs because it explicitly utilizes how the
antennas are located with respect to each other. In summary, in the free-space
SIMO channel with a ULA, the (approximate) channel vector is

h =

 h1
...
hM

 =
√
β



1
e−j2π∆ sin(φ)

λ

e−j2π 2∆ sin(φ)
λ

...
e−j2π (M−1)∆ sin(φ)

λ


. (4.19)

Two variables determine the transmitter’s location: the channel gain β and the
angle φ. These variables affect h differently. The norm ∥h∥ =

√
Mβ depends

only on the channel gain, while the direction h
∥h∥ only depends on the angle

φ. This is a characteristic feature of far-field propagation.
The angle-of-arrival is measured from the broadside direction, as indicated

in Figure 4.6, and can take any value from −π and π. The channel vector in
(4.19) depends on this angle but only through the sine of it, which creates
ambiguity because sin(φ) is not a bijective function for φ ∈ [−π, π). More
precisely, sin(φ) = sin(π − φ) for any φ, which implies that every feasible
channel vector can be obtained by two different angles-of-arrival. This happens
for pairs of incident wavefronts that are each others’ mirror reflections, as
illustrated in Figure 4.7. This is the reception counterpart of the phenomenon
previously illustrated in Figure 1.17 and Figure 1.19: when a ULA with
isotropic antennas beamforms in one angular direction, it will also beamform
in the mirror-reflected direction. When we continue analyzing ULAs in this
chapter, we will mostly consider signals arriving from (or transmitted into)
the half-space represented by φ ∈ [−π/2, π/2]. There are two main reasons for
this. Firstly, we can illustrate the beamforming concepts more clearly since
there will mainly be one beam direction. Secondly, many ULAs deployed in
practice use directive antennas that only radiate signals into the directions
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given by φ ∈ [−π/2, π/2]. The cosine antenna in Figure 1.10 has this property
and is suitable for deployment on a wall to cover the half-space in front of
the wall. When considering the half-space represented by φ ∈ [−π/2, π/2], we
span the entire range of spatial frequencies from −1/λ (when φ = −π/2) to
1/λ (when φ = π/2) that the channel vector can contain. In other words, we
can distinguish between signals impinging from different angles at the same
side of the array because they give rise to channel vectors containing different
spatial frequencies. However, we cannot uniquely distinguish these signals
from their respective mirror reflections.

Example 4.2. Consider a ULA with antenna spacing ∆ = λ/2 designed for
the carrier frequency fc = 3 GHz and bandwidth B = 20 MHz. The aperture
length is 15λ (i.e., the maximum length from Example 4.1) and the transmitter
is located at a distance d1 = 50 m in the angular direction φ = π/6.

(a) What is the number of antennas, M , in the array?

(b) Compute the channel gains of the outermost antennas using the exact
formula in (4.14) and comment on the differences.

(c) Compute and compare the two expressions in (4.17) for m = M .

The aperture length of the ULA is M∆ = Mλ/2 in this example.

(a) The length is said to satisfy Mλ/2 = 15λ, which implies M = 30.

(b) Using sin(π/6) = 0.5, λ = 0.1 m (fc = 3 GHz), d1 = 50 m, and ∆ =
λ/2 = 0.05 m, the squared distance in (4.13) to the last antenna becomes

d2
M = 502 + 292 · 0.052 + 2 · 50 · 29 · 0.05 · 0.5 ≈ 2575 m2. (4.20)

The channel gains can now be computed using (4.14) as

β1 = 0.12

(4π)2
1

502 ≈ 2.53 · 10−8≈ −76.0 dB, (4.21)

βM ≈
0.12

(4π)2
1

2575 ≈ 2.46 · 10−8≈ −76.1 dB. (4.22)

We notice that β1 and βM differ by as little as 0.1 dB; thus, the far-field
approximation is highly accurate.

(c) The exact distance difference in the left-hand side of (4.17) is dM −d1 ≈√
2575 − 50 ≈ 0.74 m. The far-field approximation in the right-hand

side of (4.17) becomes (M − 1)∆ sin(φ) = 29 · 0.05 · 0.5 ≈ 0.73 m. The
approximation error is around 0.01 m, which is roughly one-tenth of the
wavelength; thus, the far-field approximation is highly accurate.
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As explained in Section 2.8.3, separating adjacent antennas by half a
wavelength is common to obtain spatial samples at twice the maximum spatial
frequency 1/λ that the channel might contain. This corresponds to the antenna
spacing ∆ = λ/2. If we substitute this value into (4.19), it simplifies to

h =

 h1
...
hM

 =
√
β


1

e−jπ sin(φ)

e−jπ2 sin(φ)

...
e−jπ(M−1) sin(φ)

 . (4.23)

We will analyze the impact of other antenna spacings in Section 4.3.4.

4.2.2 SIMO Channel Capacity with ULA

The capacity of a SIMO channel was presented in (3.23) as

C = B log2

(
1 + P∥h∥2

BN0

)
bit/s. (4.24)

For a ULA with h given by (4.19), we have ∥h∥2 = Mβ which is independent
of the antenna spacing. By substituting this value into (4.24), we obtain

C = B log2

(
1 + PMβ

BN0

)
bit/s. (4.25)

If we compare this expression with the SISO capacity B log2(1 + Pβ
BN0

) from
(2.146), we notice that the SNR is M times larger in the SIMO case. This is
the beamforming gain obtained when receiving the same signal at M antennas
and optimally combining the observations using MRC. In this case, the MRC
vector in (3.19) becomes

w = h
∥h∥ = 1√

M



1
e−j2π∆ sin(φ)

λ

e−j2π 2∆ sin(φ)
λ

...
e−j2π (M−1)∆ sin(φ)

λ


. (4.26)

Since the channel gain is the same for all receive antennas, all the elements in
w have the same magnitude. In other words, all antennas contribute equally
much to improve the SNR achieved over free-space LOS channels. MRC rotates
the phases of the received signals so that wHh becomes a sum of M positive
terms, each equal to

√
β/M . Recall that the phase-shifts in the channel vector

are caused by having different propagation delays to the different receive
antennas. Since a conjugate transpose is applied to the MRC vector when
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multiplying it with the channel vector in (3.17), MRC compensates for these
delay variations. The result is essentially the same as if the received signal
had been sampled at slightly different times at the different antennas.

Example 4.3. How does the SIMO capacity in (4.25) depend on the wave-
length λ if the number of antennas is fixed?

The capacity expression depends on the wavelength λ through β = λ2

(4π)2
1
d2 ,

which was defined in (4.15). Hence, we can express (4.25) as

C = B log2

(
1 + PMλ2

BN0(4πd)2

)
. (4.27)

If M is constant, then the capacity in (4.27) is an increasing function of λ,
since the SNR is proportional to λ2. This implies that the capacity is larger
when using low-band spectrum than with high-band spectrum. The reason is
that the ULA consists of M isotropic antennas with the wavelength-dependent
area λ2/(4π) from (1.3). The strength of the electric field that impinges on
the ULA is independent of the wavelength, but the array captures less power
when the individual receive antennas shrink in size when λ is reduced.

4.2.3 Array Factor and Spatial Filtering

In LOS communications, MRC acts as a spatial filter that attenuates any
component of the received signal that arrives from an angle that is (substan-
tially) different from φ. This applies to noise as well as interfering signals. The
channel vector in (4.19) can be expressed as h =

√
βa(φ), where the vector

a(φ) =



1
e−j2π∆ sin(φ)

λ

e−j2π 2∆ sin(φ)
λ

...
e−j2π (M−1)∆ sin(φ)

λ


∈ CM (4.28)

is called the array response vector or steering vector. This vector depends on
the angle-of-arrival φ through the function sin(φ)/λ, which we recognize as the
spatial frequency the channel vector contains. If two signals arrive from vastly
different angular directions, their respective channel vectors contain vastly
different spatial frequencies. Consequently, their respective array response
vectors point in vastly different directions in the vector space CM .

To give a concrete example, suppose the desired signal arrives from φ = 0.
The MRC vector in (4.26) then becomes w = a(0)/

√
M = [1, . . . , 1]T/

√
M . If

an interfering signal
√
βinterfe

−jψinterf reaches the reference antenna from the
angle φinterf, then the signals reaching each of the antennas is computed as√

βinterfe
−jψinterfa(φinterf), (4.29)
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Figure 4.8: An MRC filter designed for an incoming signal from the angle 0 acts as a spatial
filter that attenuates any interfering signal arriving from an angle much different than 0. There
are M = 10 antennas in this example, so the maximum beamforming gain is 10.

since the array response vector determines the relative phase-shift compared
to the reference antenna. If we now apply MRC to (4.29), the resulting scalar
signal is

wH
(√

βinterfe
−jψinterfa(φinterf)

)
=
√
βinterfe

−jψinterf︸ ︷︷ ︸
Interfering signal

wHa(φinterf)︸ ︷︷ ︸
Array factor

. (4.30)

This is the original interfering signal
√
βinterfe

−jψinterf at the reference antenna
multiplied by the factor wHa(φinterf), which is the inner product between
the MRC vector and the array response vector for the direction that the
interfering signal arrives from. This inner product is called the array factor
and determines how the array as a whole amplifies/attenuates and phase-
shifts the signal by its processing. When talking about spatial filtering, we
are interested in the squared magnitude of the array factor:

|wHa(φinterf)|2 = 1
M
|aH(0)a(φinterf)|2 = 1

M

∣∣∣∣∣
M∑
m=1

e−j2π (m−1)∆ sin(φinterf)
λ

∣∣∣∣∣
2

,

(4.31)
which determines the relative signal strength compared to the case with
a single-antenna receiver. The beamforming gain the filter applies to the
interfering signal can attain any value between 0 and M . The precise value in
(4.31) depends on the angle φinterf, as it should for a spatial filter.

Figure 4.8 shows |wHa(φinterf)|2 for the antenna spacing ∆ = λ/2, M = 10
receive antennas, and varying values of φinterf. The MRC vector is designed
for a signal arriving from the angle 0, which has a channel vector with the
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spatial frequency sin(0)/λ = 0. There is an angular interval around 0 where
MRC will amplify any arriving signal, with at most a factor M = 10. However,
any interfering signal arriving outside that angular interval will be greatly
attenuated. In this sense, MRC acts as a spatial bandpass filter : it only passes
through signals from specific spatial directions (i.e., their channel vectors
contain spatial frequencies within a specific range). The width of the spatial
filter can be quantified analytically as a function of M and ∆, and is generally
inversely proportional to the aperture length M∆. We will postpone the
detailed analysis to Section 4.3.2 since this example only intends to introduce
spatial filtering from a qualitative perspective.

The derivations in this section have assumed isotropic antennas but can
also be applied when using directional antennas. The generalization is obtained
by including the antenna gains in β, following the approach in Section 1.1.4,
and will be provided later in Section 4.5.

4.2.4 Acquiring Channel State Information

The channel vector h completely characterizes a deterministic frequency-flat
channel, irrespective of whether the general model in (4.11) is used or the
ULA-specific model in (4.19). To achieve the SIMO channel capacity in (4.24),
the receiver must know h so that it can first apply MRC and then decode the
data symbols. Moreover, the transmitter must know the capacity value C to
encode the data accordingly. Thus far, we have assumed this information to be
available automatically, but an acquisition mechanism is required in practice.
The vector h is often referred to as the channel state, while the available
knowledge of it is called the channel state information (CSI). It is sometimes
necessary to distinguish between the CSI available at the transmitter and
the receiver if these are substantially different. When communicating over
deterministic channels, as in this chapter, it is common to assume that perfect
CSI is available at both the transmitter and receiver; that is, the channel
vector is known precisely. The goal of this section is to justify that statement.

Suppose we transmit a packet of L symbols {x[l] : l = 1, . . . , L} over the
discrete memoryless SIMO channel

y[l] = hx[l] + n[l] for l = 1, . . . , L, (4.32)
where n[l] ∼ NC(0, N0IM ) is the receiver noise. We consider the case when
h is unknown at the receiver when initiating the transmission. Since the
received signal in (4.32) contains products hx[l] between the channel and
the transmitted symbols, it is hard to separate h and x[l] if they are both
unknown. To resolve this ambiguity, we can divide the packet into two parts:

1. A preamble part with Lp predefined symbols that enables estimation of
h since x[l] is known for l = 1, . . . , Lp;

2. A payload part with L−Lp symbols where detection of the random data
symbols x[l] (for l = Lp + 1, . . . , L) is possible since h is now known.
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Preamble Payload

1 Lp L

Figure 4.9: A data packet contains a preamble that can be used for channel estimation and a
payload with data symbols.

Such a packet is illustrated in Figure 4.9. We have analyzed the second part
when characterizing the capacity; thus, we will focus on the preamble in this
section. The preamble is often called a pilot sequence since it tests the channel
quality before the data transmission commences. To comply with the symbol
power constraint E{|x[l]|2} ≤ q, we can utilize the constant symbols

x[l] = √q, l = 1, . . . , Lp, (4.33)

in the preamble. Suppose we compute the sample average of the received
preamble signals (divided by √q):

1
Lp
√
q

Lp∑
l=1

y[l] = h 1
Lp
√
q

Lp∑
l=1

√
q︸ ︷︷ ︸

=1

+ 1
Lp
√
q

Lp∑
l=1

n[l] = h + n′ (4.34)

where n′ = 1
Lp

√
q

∑Lp
l=1 n[l] ∼ NC(0, N0

Lpq
IM ) since we are computing a weighted

sum of independent noise vectors, each having variance N0. We can notice that
(4.34) is equal to the channel vector h plus a noise vector n′ whose entries have
a variance N0

Lpq
that is inversely proportional to the length Lp of the preamble

(called a processing gain). The noise variance will go to zero as Lp → ∞,
and so will all random realizations of n′ that are likely to occur.3 Hence,

1
Lp

√
q

∑Lp
l=1 y[l]→ h so that the receiver has acquired a perfect estimate of h.

This example shows that, by making the preamble sufficiently long, we can
achieve any desired exactness of the CSI. When quantifying the estimation
error for finite values of Lp, it is important to relate the magnitude of the
error to the magnitude of the channel. This can be done by considering the
NMSE metric from (2.160), which in this context becomes

NMSE = E{∥n′∥2}
E{∥h∥2}

= N0

Lpqβ
. (4.35)

The NMSE is a decreasing function of the channel gain β, so we can generally
use shorter preambles when the channel is strong. Moreover, the NMSE in

3The Gaussian distribution has unbounded support; thus, it can give rise to arbitrarily large
realizations, but the probability of them occurring goes to zero as Lp → ∞. It is also important
to remember that the Gaussian modeling of receiver noise is approximate since we cannot get
arbitrarily large noise realizations in practice.
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(4.35) is independent of the number of antennas; thus, it is equally easy/hard
to estimate the channel vector to a ULA with M = 100 antennas as to a
single-antenna receiver. This is because all the receive antennas listen to the
same pilot transmission and perform their channel estimation simultaneously.

If we switch focus to the payload part, we recall from Definition 2.6 that
the channel capacity is achieved “as the number of symbols in the packet
approaches infinity”. This implies that we need L− Lp →∞. However, since
only a fraction

L− Lp

L
= 1− Lp

L
(4.36)

of the packet in Figure 4.9 is used for data symbols, the capacity is obtained
by multiplying the fraction in (4.36) with the capacity value computed earlier
in this chapter. Interestingly, it is possible to operate the system such that
this fraction becomes arbitrarily close to 1. For example, if we let Lp =

√
L,

we will get perfect CSI as L→∞ since this implies Lp →∞. However, the
fraction in (4.36) becomes 1 − Lp/L = 1 − 1/

√
L → 1, so asymptotically

there is no loss in capacity from having the preamble. In other words, we can
safely assume that the receiver has perfect CSI when evaluating the capacity
of deterministic channels because we can simultaneously make the preamble
large enough to acquire perfect CSI and negligibly small compared to the
packet’s total length to avoid a capacity loss.

When the preamble has been transmitted, the receiver can compute the
channel capacity and feed back this information to the transmitter so that
it can encode the data accordingly. In practical systems, there is usually a
predefined table of data rates that the system supports using different MCS,
such as the one for 5G NR exemplified in Table 2.18. It is then sufficient to
feed back a few bits to indicate which table entry to utilize (e.g., 5 bits when
there are 28 rows, as in the table).

Example 4.4. Suppose we want to transmit 10 kbit of data over an LOS
SIMO channel. We have M = 8 antennas and the SNR qβ

N0
= 10 dB. How long

preamble is needed to achieve an NMSE of 0.01? How many data symbols
are needed if we communicate at the capacity?

We need the NMSE in (4.35) to become 0.01, which for the given SNR
value means that 1

10Lp
= 0.01. A preamble of Lp = 10 symbols satisfies this

requirement.
The SIMO capacity in (4.25) can be expressed as log2(1 + qβM

N0
) =

log2(81) = 6.34 bit/symbol since q = P/B. We therefore need 10·103

6.34 ≈ 1577
symbols to transmit 10 kbit. The packet’s total length will be L ≈ 1587, where
99.4% is used for data and 0.6% for the preamble.
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4.2.5 Maximum Likelihood Channel Estimation

The previous section described a protocol for acquiring CSI by transmitting a
preamble of length Lp and then computing the average of the received signals
according to (4.34). The result is a consistent estimate of the channel vector
h, meaning that we obtain an exact estimate as Lp → ∞, but it is not the
most accurate estimator for a given finite value of Lp. The array geometry
and propagation scenario provide valuable information that can be utilized for
improved estimation. For example, when considering a ULA in a free-space
LOS scenario, we know from (4.19) that only channel vectors with a particular
structure can appear:

h =
√
β



1
e−j2π∆ sin(φ)

λ

e−j2π 2∆ sin(φ)
λ

...
e−j2π (M−1)∆ sin(φ)

λ


︸ ︷︷ ︸

=a(φ)

. (4.37)

These feasible channel vectors are parametrized by the channel gain β ∈ [0, 1]
and array response vector a(φ) ∈ CM from (4.28), which only depends on the
angle-of-arrival φ ∈ [−π/2, π/2] because the impinging wavefront is planar.
The fact that the M -dimensional complex-valued channel vector h is entirely
determined by two real-valued variables indicates that only a tiny subset of all
vectors in CM can appear as channel vectors in LOS communications. We must
select a suitable design criterion when designing a parametric estimator that
utilizes this structural knowledge. We will consider the maximum likelihood
(ML) criterion that identifies the feasible channel vector most likely to have
provided the received signals during the preamble transmission.

The channel vector h =
√
βa(φ) is deterministic but unknown. The PDF

of the received signal y[l] = h√q + n[l] in (4.32) can be expressed as

fy[l](y[l]) = 1
(πN0)M e− ∥y[l]−h√

q∥2
N0 (4.38)

because y[l]− h√q ∼ NC(0, N0IM ) whose PDF is given in (2.80). Since the
noise realizations in y[1], . . . ,y[Lp] are independent, the joint PDF is
Lp∏
l=1

fy[l](y[l]) = 1
(πN0)MLp

e−
∑Lp

l=1
∥y[l]−h√

q∥2
N0

= 1
(πN0)MLp

e−
∑Lp

l=1

∥y[l]∥2+∥h∥2q−2√
qℜ(hHy[l])

N0

= 1
(πN0)MLp

e
2
√
qβ

N0
ℜ
(

aH(φ)
∑Lp

l=1
y[l]
)

−
∑Lp

l=1
∥y[l]∥2
N0

−LpMβq
N0 , (4.39)
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Figure 4.10: The utility function in (4.40) depends on the potential angles-of-arrival φ, as
shown in the figure for one random noise realization. The utility is maximized to obtain the ML
estimate φ̂ in (4.40). The true angle-of-arrival is π/6 and the ML estimates are marked by stars.
The peak values become more distinct as the number of antennas increases.

where the last equality utilizes the fact that ∥h∥2 = Mβ. The ML estimates
of β and φ are the values that jointly maximize (4.39), which is equivalent
to maximizing the argument of the exponential function. If we begin by
considering the angle-of-arrival estimation, the angle only appears in the term
ℜ(aH(φ)

∑Lp
l=1 y[l]); thus, the ML estimate is obtained as

φ̂ = arg max
φ∈[−π

2 ,
π
2 ]
ℜ

aH(φ)
Lp∑
l=1

y[l]

 . (4.40)

We should look for the array response vector a(φ) that has the largest real
part of the inner product with the sample average of the received signals
(except for some missing scaling factors that will not affect the solution).
This corresponds to comparing the average received signal with the plausible
signal vectors obtained with different spatial frequencies to determine the best
match. The maximum can be found by doing a one-dimensional search over
the range of possible angles.

Figure 4.10 shows the utility function in (4.40), normalized by
√
LpN0 so

that each entry of
∑Lp
l=1 n[l] has unit variance, for different potential values of

φ. We consider a scenario with ∆ = λ/2 and SNR = qβLp/N0 = 10 dB. The
true angle-of-arrival is π/6 and the number of antennas is either M = 10 or
M = 20. The utility function oscillates, but there are distinct maximum peaks
in both cases, and the estimate φ̂ in (4.40) is obtained at the peak values
(marked by stars). The ML estimator exploits the ULA’s spatial filtering
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feature to identify the angle of the arriving signal. As the number of antennas
increases, the peak becomes taller and narrower, which implies that the
estimation accuracy improves with M . An equivalent interpretation is that
we estimate the spatial frequency of the channel as sin(φ̂)/λ, and we can
distinguish between smaller variations when having more antennas. This is a
vital benefit of the parametric ML estimator compared to the non-parametric
sample-average estimator in (4.34), which achieves an NMSE independent of
M . The reason is that the former only needs to estimate the two parameters
β and φ, while the latter needs to estimate M parameters.

Example 4.5. Consider the ML channel estimation method described in this
section and assume the angle-of-arrival is estimated perfectly: φ̂ = φ. Let
α =
√
β denote the square root of the channel gain. What is the ML estimate

of α? What are the mean and variance of the estimation error?
The ML estimate of α is obtained by modifying (4.43) as

α̂ = arg max
α∈[0,1]

2√qα
N0
ℜ

aH(φ)
Lp∑
l=1

y[l]

− LpMα2q

N0
=
ℜ
(

aH(φ)
∑Lp
l=1 y[l]

)
LpM

√
q

,

where the solution is obtained by taking the first-order derivative with respect
to α, equating it to zero, and solving the equation. We notice that α̂ is the
square root of the ML estimate of β in (4.43) (when φ̂ = φ).

Recalling h =
√
βa(φ) and the received signals from (4.32), we write α̂ as

α̂ =
ℜ
(

aH(φ)
∑Lp
l=1
(√
βa(φ)√q + n[l]

))
LpM

√
q

=
√
β
√
q
∑Lp
l=1 aH(φ)a(φ)

LpM
√
q︸ ︷︷ ︸

=
√
β

+ 1
LpM

√
q

Lp∑
l=1
ℜ (aH(φ)n[l])︸ ︷︷ ︸

=nα

, (4.41)

where nα denotes the estimation error and we used aH(φ)a(φ) = M . Since
E{aH(φ)n[l]nH[l]a(φ)} = aH(φ)E{n[l]nH[l]}a(φ) = aH(φ)a(φ)N0 = MN0, it
follows that aH(φ)n[l] ∼ NC(0,MN0) and ℜ(aH(φ)n[l]) ∼ N (0,MN0/2). The
mean of the estimation error is E{nα} = 0 and the variance is

E{n2
α} = N0

2LpMq
(4.42)

because nα is the summation of many independent random variables. The
error variance in (4.42) decreases with Lp, M , and q/N0. Hence, increasing
the number of antennas improves the estimation quality of the channel gain
when using the parametric ML estimator.
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Even if the angle-of-arrival is estimated imperfectly, we can still use it to
estimate the channel gain. Unlike the last example, we will directly estimate
the channel gain instead of estimating its square root. Specifically, we can
substitute φ̂ back into (4.39) and look for the value of β that maximizes the
PDF. Since only two terms in the exponent contain β, the ML estimate is
obtained as

β̂ = arg max
β∈[0,1]

2
√
qβ

N0
ℜ

aH(φ̂)
Lp∑
l=1

y[l]

− LpMβq

N0

=

(
ℜ
(

aH(φ̂)
∑Lp
l=1 y[l]

))2

L2
pM

2q
. (4.43)

The solution is obtained by taking the first-order derivative of the exponent
with respect to β, equating it to zero, and solving for β.4

In summary, the ML estimate of the channel vector is
√
β̂a(φ̂) and com-

puted using (4.40) and (4.43). There are many other channel estimation
methods for LOS channels, including those that can simultaneously identify
multiple signals arriving from different angles. This is a common problem in
radar applications. We refer to [51] for a classic overview of such algorithms.
Section 8.1 describes a few of these algorithms.

4.3 Modeling of Line-of-Sight MISO Channels

A MISO channel can be obtained from a SIMO channel by switching the
transmitter and receiver roles, as discussed in Section 3.3. Figure 4.11 shows a
general free-space MISO LOS setup of the same kind as in Figure 4.2, but with
the opposite transmitter/receiver roles. The distances remain the same, with
dm denoting the distance between the transmit antenna m and the receiver.
Hence, the SIMO and MISO channels are reciprocal so that the channel vector
h = [h1, . . . , hM ]T is the same in both cases. There is no need to repeat any
derivations, but we will summarize the results from the last sections. With
arbitrary antenna locations and the assumptions leading to frequency flatness,
hm can be computed using (4.10) when antenna 1 is the reference antenna.
The channel vector becomes

h =

 h1
...
hM

 =



√
β1√

β2e
−j2π (d2−d1)

λ

√
β3e

−j2π (d3−d1)
λ

...
√
βMe

−j2π (dM−d1)
λ


. (4.44)

4We implicitly assumed that the estimate β̂ in (4.43) is not larger than 1. This is a meaningful
assumption since the magnitude of the sample average of the received signals is sufficiently small
in practice so that β̂ ≤ 1.
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Receiver

Transmitter with
M antennas

d1

dm

dM

1

m

M

Figure 4.11: A free-space MISO LOS channel where dm is the distance between the transmit
antenna m and the receive antenna for m = 1, . . . ,M .

If we restrict ourselves to a ULA at the transmitter with the antenna spacing
∆ and φ being the angle-of-departure from the first transmit antenna to the
receiver, then we obtain the same geometry as in Figure 4.3, except that the
transmitter and receiver roles are interchanged. Assuming d1 ≥ 2M2∆2/λ, so
that the receiver is in the far-field of the ULA, (4.44) simplifies (approximately)
to

h =

 h1
...
hM

 =
√
β



1
e−j2π∆ sin(φ)

λ

e−j2π 2∆ sin(φ)
λ

...
e−j2π (M−1)∆ sin(φ)

λ


, (4.45)

where β is the common channel gain of all the antennas. The expression
depends on the angle-of-departure via the spatial frequency sin (φ) /λ. This is
the same spatial frequency as when the array receives a signal from the angle
φ. The expression can be further simplified by setting ∆ = λ/2 to obtain the
typical expression in (4.23) for a half-wavelength-spaced ULA.

4.3.1 MISO Channel Capacity with ULA

The capacity of a MISO channel was presented in (3.49) as

C = B log2

(
1 + P∥h∥2

BN0

)
bit/s. (4.46)

For the ULA with h given by (4.45), we have ∥h∥2 = Mβ independently of
the antenna spacing and angle. If we substitute this into (4.46), we obtain

C = B log2

(
1 + PMβ

BN0

)
bit/s, (4.47)
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which is the same as for the corresponding SIMO channel. The SNR is M times
larger than the corresponding SISO case where only one transmit antenna
is used. This beamforming gain is achieved by using the M antennas of the
ULA to focus the transmitted signal on the receiver using MRT. In this case,
the MRT vector in (3.44) becomes

p = h∗

∥h∥ = 1√
M



1
ej2π∆ sin(φ)

λ

ej2π 2∆ sin(φ)
λ

...
ej2π (M−1)∆ sin(φ)

λ


. (4.48)

All the elements in p have the same magnitude 1/
√
M since the channel gain

is the same for all transmit antennas, a unique feature of LOS channels. Hence,
MRT consists of dividing the transmit power equally between the M antennas
and phase-shifting the signals before transmission to make sure that the M
signal components combine coherently at the receiver; that is, hTp becomes a
sum of M positive terms, each being equal to

√
β/M .

The phase-shifts in MRT actually describe different time delays; antennas
with slightly longer distances to the receiver will transmit their signals slightly
earlier so that all M signals are received synchronously. This principle is
illustrated in Figure 4.12, where two of the antennas must transmit earlier to
compensate for their longer distances to the receiver. This corresponds to a
virtual rotation of the ULA by φ to mimic the situation where the receiver
is in the broadside direction. The equivalence between phase-shifts and time
delays appears under frequency flatness. ULAs can also be used for a channel
that does not satisfy the frequency flatness condition maxm |dm−d1|

c ≪ 1
B

(e.g., due to a huge bandwidth B or vast distance between the outermost
antennas), but in this case, we must select the precoding vector differently to
match the corresponding channel vector.

An equivalent description is that the channel vector contains the spatial
frequency sin(φ)/λ, and the MRT vector must be matched to that frequency to
ensure that the M signal components combine coherently. This interpretation
will be instrumental in understanding beamforming from ULAs.

To achieve the MISO capacity, the transmitter needs to know the channel
h so that it can compute the MRT vector in (4.48) and the capacity value in
(4.47) that determines how to encode the data symbols. The receiver needs
comparably less CSI to decode the transmitted data: it needs to know the
factor hTp = ∥h∥ that the data signal is multiplied by in the received signal
y = hTpx̄+ n in (3.41) and the capacity value. The CSI can be acquired by
transmitting a preamble, similar to what was described in Section 4.2.4. One
option is that the multi-antenna transmitter sends multiple preambles in a
sequence (one from each of the M antennas) and lets the receiver feed back
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Receiver

Transmitting ULA
with M antennas

φ

φ

Virtual
antenna
locations

Figure 4.12: When a ULA transmits to a far-field receiver located in a non-broadside direction
φ, all antennas except the reference antenna will phase-shift their signals to ensure they are
received synchronously at the intended receiver. This is equivalent to a virtual rotation of the
ULA by the angle φ to synthesize that the receiver is in its broadside direction. The coloring in
this figure represents wave components that are supposed to be received synchronously.

the channel estimates. Since this requires the receiver to transmit something,
an alternative is to let the single-antenna receiver transmit the preamble,
in which case we can precisely follow the approach for SIMO channels in
Section 4.2.4. The fact that the SIMO and MISO channels are reciprocal
enables us to send the preamble in any direction. It is typically more efficient
to send preambles in the SIMO direction since one can estimate the entire
channel vector from a single preamble, while the MISO direction requires one
preamble per transmit antenna.5 Moreover, it is only the multi-antenna device
that needs to know the complete channel vector, so it is convenient if it is the
one that computes the estimate.

4.3.2 Beamwidth of the Transmitted Signal

When using MRT in free-space LOS communications, the transmitted signal
from a ULA takes the shape of a directional beam when measured in the
far-field. This was illustrated already in Section 1.2.1. Figure 1.17 shows
beamforming in the direction φ = 0 from a ULA with M = 10 antennas and
∆ = λ/2, while the corresponding case of φ = π/2 is illustrated in Figure 1.19.
The equivalent to MRT when using the ULA for reception was also exemplified
in Figure 4.8, where we noticed that MRC acts as a spatial filter that only
amplifies signals arriving from the preferred angular directions.

When the transmitted signal is directed in the angular direction φ, a
receiver located in precisely that direction will obtain a beamforming gain of M .

5If the parametric ML estimator is used and the SNR is high, it is sufficient to transmit two
preambles in the MISO direction to estimate the two unknown parameters: channel gain and
angle. This is, nevertheless, more preambles than in the SIMO direction.
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Receivers in other nearby angular directions will also achieve a beamforming
gain, but it is smaller than M . The angular interval where a beamforming
gain is observed is called the beamwidth. The purpose of this section is to
quantify the beamwidth for a ULA with ∆ = λ/2.

We begin by defining the array response vector of dimension M as

aM (φ) =


1

e−jπ sin(φ)

e−jπ2 sin(φ)

...
e−jπ(M−1) sin(φ)

 . (4.49)

This is a special case of (4.28), where we considered an arbitrary antenna
spacing. The array response vector is equal to h/

√
β where h is taken from

(4.23); thus, it describes the normalized channel to any receiver located in the
far-field in the angular direction φ. The normalization removes β from the
channel expression and thereby eliminates the dependence on the propagation
distance, which has no impact on the angular properties of the beam.

Suppose we transmit a signal in the direction φbeam ∈ [−π/2, π/2] using
the MRT vector p = a∗

M (φbeam)/∥aM (φbeam)∥, then the array factor observed
by a receiver located in another direction φ ∈ [−π/2, π/2] is aT

M (φ)p. This
represents the complex scaling factor the signal will experience compared to
the single-antenna case. The beamforming gain is the squared magnitude of
the array factor:∣∣∣∣aT

M (φ) a∗
M (φbeam)

∥aM (φbeam)∥

∣∣∣∣2 = |a
T
M (φ)a∗

M (φbeam)|2

M

= 1
M

∣∣∣∣∣
M∑
m=1

e−jπ(m−1)(sin(φ)−sin(φbeam))

∣∣∣∣∣
2

, (4.50)

where we utilized the fact that ∥aM (φbeam)∥2 = M . The beamforming gain in
(4.50) is 1

M |
∑M
m=1 1|2 = M for a user in direction φ = φbeam, as expected. To

compute the beamforming gain achieved/observed in other angular directions,
we make use of the summation formula for geometric series:

M∑
m=1

xm−1 =
{

1−xM
1−x , if x ̸= 1,
M, if x = 1.

(4.51)

The summation in (4.50) is a geometric series with x = e−jπ(sin(φ)−sin(φbeam)).
The case x = 1 occurs when the two angles are equal, φ = φbeam, and then
the beamforming gain in (4.50) becomes M .6 For any other φ ∈ [−π/2, π/2],

6If we extend the range to φ ∈ [−π, π), we will also obtain x = 1 for φ = π − φbeam. This
demonstrates that a ULA with isotropic antennas cannot beamform in one direction without
also sending a beam in the mirror-reflection direction that was illustrated in Figure 4.7.
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we have sin(φ) ̸= sin(φbeam) (leading to x ̸= 1) and the beamforming gain in
(4.50) can be rewritten as

1
M

∣∣∣∣∣
M∑
m=1

e−jπ(m−1)(sin(φ)−sin(φbeam))

∣∣∣∣∣
2

= 1
M

∣∣∣∣∣1− e−jπM(sin(φ)−sin(φbeam))

1− e−jπ(sin(φ)−sin(φbeam))

∣∣∣∣∣
2

= 1
M

sin2
(
M π(sin(φ)−sin(φbeam))

2

)
sin2

(
π(sin(φ)−sin(φbeam))

2

) ,

(4.52)

where the second equality follows from Euler’s formula:

sin(x) = ejx − e−jx

2j = ejx 1− e−2jx

2j . (4.53)

This formula is applied in both the numerator and the denominator. In
particular, we utilize that |1− e−2jx|2 = 4| sin(x)|2 = 4 sin2(x).

The ratio in (4.52) can be recognized as a squared Dirichlet kernel/function,
but this terminology from Fourier analysis does not make it easier to grasp its
behavior. However, it can be well approximated for small angle differences by
a squared sinc-function. By exploiting the fact that sin2(x) ≈ x2 for argument
values close to zero, we obtain7

1
M

sin2
(
M π(sin(φ)−sin(φbeam))

2

)
sin2

(
π(sin(φ)−sin(φbeam))

2

) ≈ 1
M

sin2
(
M π(sin(φ)−sin(φbeam))

2

)
(
π(sin(φ)−sin(φbeam))

2

)2

= Msinc2
(
M (sin(φ)− sin(φbeam))

2

)
.

(4.54)

This approximation is tight when the beam angle φbeam and the observation
angle φ are similar, in the sense that sin(φ) ≈ sin(φbeam). The argument of
the sinc-function in (4.54) is the aperture length M∆ = Mλ/2 of the ULA
multiplied by (sin(φ) − sin(φbeam))/λ, which is the difference between the
spatial frequencies of the channel vector and the MRT vector being used.
The sinc-function attains its largest value when the argument is zero, which
happens for sin(φ) = sin(φbeam). The general trend is that the function in
(4.54)x reduces as the argument attains larger positive or negative values,
but it also oscillates and has zero-crossings for integer-valued arguments.
This indicates that the beamforming gain is largest in the intended angular
direction φ = φbeam and then reduces in an oscillating manner.

7Another way to obtain this approximation is to interpret the summation in (4.50) as the left
Riemann sum of the function e−jπm(sin(φ)−sin(φbeam)) with unit-sized partitions. By replacing
it with the corresponding Riemann integral

∫M
0 e−jπm(sin(φ)−sin(φbeam))∂m and computing its

value, we obtain the final expression in (4.54) after some algebra.
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Example 4.6. Consider a ULA with M antennas and ∆ = λ/2. Suppose a
signal is transmitted in the direction φbeam = 0. Use the exact formula in
(4.52) and sinc-approximation in (4.54) to determine the beamforming gain

(a) in the direction φ = π/6 when M = 10;

(b) in the direction φ = π/60 when M = 10;

(c) in the direction φ = π/60 when M = 100.

By inserting the corresponding values into the expressions in (4.52) and
(4.54), we obtain the exact and approximate beamforming gains as

(a) exact: 1
10

sin2
(

10π sin(π/6)
2

)
sin2
(
π sin(π/6)

2

) = 0.2,

approximate: 10 · sinc2
(

10 sin(π/6)
2

)
≈ 0.16.

(b) exact: 1
10

sin2
(

10π sin(π/60)
2

)
sin2
(
π sin(π/60)

2

) ≈ 7.96,

approximate: 10 · sinc2
(

10 sin(π/60)
2

)
≈ 7.94.

(c) exact: 1
100

sin2
(

100π sin(π/60)
2

)
sin2
(
π sin(π/60)

2

) ≈ 1.29,

approximate: 100 · sinc2
(

100 sin(π/60)
2

)
≈ 1.29.

We notice a large beamforming gain of 7.96 in the direction φ = π/60 with
M = 10 antennas, while it reduces to 1.29 for M = 100. This is remarkable
since the maximum beamforming gain equals the number of antennas and
simultaneously increases from 10 to 100. We notice that the approximate
beamforming gains are very similar to the exact gains when φ is close to
φbeam, but can otherwise slightly underestimate the gain.

To gain further insights, we will analyze the special case when we transmit
in the broadside direction perpendicularly to the array: φbeam = 0. It then
follows from (4.50) and (4.52) that∣∣∣∣aT

M (φ) a∗
M (0)

∥aM (0)∥

∣∣∣∣2 = 1
M

sin2
(
M π sin(φ)

2

)
sin2

(
π sin(φ)

2

) . (4.55)

The solid line in Figure 4.13(a) shows the beamforming gain in (4.55) that
is observed for angles φ between −π/2 and π/2 (i.e., from −90◦ to 90◦). A
plot like this is called the beam pattern. We consider M = 10 antennas, and
the vertical axis is shown in the decibel scale since the beamforming gain
variations are substantial. The maximum beamforming gain is 10 dB and
is achieved for φ = 0 = φbeam. This is expected since the ULA focuses its
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Above line:
Amplification

(a) Beamforming gain shown using a rectangular plot.

Beamforming gain [dB]

Observation angle φ

(b) Beamforming gain shown using a polar plot.

Figure 4.13: The beamforming gain that is observed in different directions φ when a ULA
with M = 10 antennas transmits in the zero-angle direction: φbeam = 0. The beamforming gain
is computed using (4.52). The angles are measured in radians, but the scale is easy to convert
to degrees since π/6 is 30◦, π/3 is 60◦, and π/2 is 90◦.
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Main beam

NullsBeamwidth

Side-lobes

Maximum beamforming gain

Figure 4.14: A typical beam pattern and summary of the related terminology.

signal in that direction and 10 log10(M) = 10 dB. The beamforming gain
gradually reduces when φ is changed, and after a while, it drops below 0 dB.
The dashed horizontal line in Figure 4.13(a) corresponds to 0 dB. When the
beamforming gain is below this line, the signal is not amplified by the ULA
but attenuated compared to the transmission from a single isotropic antenna.
This demonstrates that beamforming does not create signal power but merely
redistributes power between different angular directions. The beamforming
gain oscillates in the left and right parts of the beam pattern, but the general
trend is that it decreases as |φ| increases. The dotted curve is computed
using the sinc-approximation from (4.54). This approximation has the correct
zero-crossings but underestimates the maximum gains of the oscillations when
φ is much different from φbeam.

Figure 4.13(b) shows the same beam pattern using a polar plot. This type
of plot gives a better visualization of the beam directivities since each beam
points in its actual angular direction seen from the origin. To achieve this, the
angles are presented in the opposite order compared to Figure 4.13(a). The
same nine beams can be observed in both cases: A strong main beam is in
the middle (around φ = 0) and four side-beams on each side. We will refer to
the latter as side-lobes to reserve the word “beam” for the intended direction.
The beamforming gain is precisely zero in between these beams, and those
points are called nulls. The null locations and the angular widths are easier
to measure and compare using the rectangular plot in Figure 4.13(a) because
the strength of a beam does not affect how wide it appears in the plot. Hence,
we will mainly consider rectangular plots in this book. We summarize this
terminology in Figure 4.14.
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We want to characterize the width of the main beam because it is within
this interval that the beamforming gain is large. The beamwidth can be
defined in several different ways. The half-power beamwidth is the width of
the angular interval in which the beamforming gain is between M and M/2.
This definition quantifies the angular interval where the beamforming gain is
close to the maximum gain. It is also known as the 3 dB-beamwidth since a
loss of 1/2 in linear scale can also be expressed as 10 log10(1/2) ≈ −3 dB.

Example 4.7. What is the half-power beamwidth when a ULA transmits in
the direction φbeam = 0? Utilize the sinc-approximation and the fact that
sinc2(0.443) ≈ 1

2 .
Under the sinc-approximation, the lower and upper limits of the half-power

beamwidth are obtained by equating the beamforming gain in (4.54) to M/2:

Msinc2
(
M sin(φ)

2

)
= M

2 ⇒ sinc2
(
M sin(φ)

2

)
= 1

2 . (4.56)

Using the facts that sinc(0.443) ≈ 1√
2 and sinc(−0.443) ≈ 1√

2 , we obtain the
lower and upper limits as

M sin(φ)
2 ≈ ±0.443⇔ φ ≈ ± arcsin

(0.886
M

)
. (4.57)

The half-power beamwidth is the difference between these limits and becomes
approximately

2 arcsin
(0.886

M

)
, (4.58)

which decreases when M increases. When M is large, we can utilize the Taylor
approximation arcsin(x) ≈ x that holds for x ≈ 0 to simplify the half-power
beamwidth to 2 · 0.886/M = 1.772/M . The considered beam transmission is
matched to a channel vector containing the spatial frequency sin(φbeam)/λ = 0
but will provide substantial beamforming gains over channels with spatial
frequencies in the interval [−0.886

Mλ ,
0.886
Mλ ].

Figure 4.15 shows the main beam from Figure 4.13. The half-power
beamwidth is indicated, as well as two alternative beamwidth definitions.
Another option is determining the angular interval within the main beam,
where the beamforming gain is above 0 dB. We call this the amplification
beamwidth. This definition quantifies the angular interval where the received
power is larger than when transmitting from an isotropic antenna.

One can also measure the total width of the main beam, which we call the
first-null beamwidth. The benefit of this definition is that it is relatively easy
to compute an exact analytical expression, while the drawback is that the
beamforming gain is tiny at the edges of the main beam. The expression in
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Half-power beamwidth

Amplification beamwidth

First-null beamwidth

Figure 4.15: There are three possible beamwidth definitions, which have different benefits
and drawbacks. This figure illustrates what is measured with these definitions in the setup
considered in Figure 4.13.

(4.55) contains the ratio between two sine functions that depend on φ. The
lower and upper limits of the main beam occur when the numerator is zero
while the denominator is not. This happens for angles φ such that

M
π sin (φ)

2 = nπ (4.59)

for some integer n ̸= 0. The range of solutions to (4.59) is limited by the fact
that sin(φ) ∈ [−1, 1]. This implies that there are nulls at the M angles

φ = arcsin
(2n
M

)
(4.60)

for n = ±1,±2, . . . ,±⌊M2 ⌋, where ⌊·⌋ rounds the argument to the closest
smaller or equal integer. The nulls that specify the left and right limits of the
main beam are given by n = ±1, for which (4.60) reduces to

φ = ± arcsin
( 2
M

)
. (4.61)

Hence, the first-null beamwidth is 2 arcsin( 2
M ). If M ≥ 5, we can utilize the

Taylor approximation arcsin(x) ≈ x, which is very tight for x ∈ [0, 0.4], to
conclude that the lower and upper limits of the main beam are

φ ≈ ± 2
M
. (4.62)

Hence, the width of the main beam is approximately 4/M radians, which can
also be expressed as (180/π) · (4/M) = 720/(Mπ) degrees. This expression
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for the first-null beamwidth is more than twice as large as the approximate
half-power beamwidth 1.772/M that was derived in Example 4.7 (as can also
be seen in Figure 4.15). However, the two beamwidth definitions share the
following general behavior: the beamwidth is inversely proportional to the
number of antennas M . The more antennas are used, the narrower the beams
will be, which has two benefits: the receiver obtains a stronger signal, and
less interference is transmitted in other non-intended directions. This is yet
another reason for using many antennas in wireless communications.

We can also measure the purity of the beamforming directivity by compar-
ing the gain of the main beam with the peak gains of the largest side-lobes.
As noticed earlier, the main beam has a beamforming gain of M . The sinc-
approximation in (4.54) implies that the peak of the first lobe has a beam-
forming gain of Msinc2(3/2) = M( 2

3π )2 since a sinc-function has peak values
roughly at 0,±3

2 ,±
5
2 , . . .. Hence, the main beam is roughly (3π

2 )2 ≈ 13.5 dB
stronger than the largest side-lobe. This ratio is independent of the number
of antennas; thus, we can shrink the beamwidth by adding extra antennas,
but it will not reduce the relative strength of the side-lobes. Following the
same approach, we can conclude that the main beam always has a gain that is
roughly (5π

2 )2 ≈ 17.9 dB stronger than the gain of the second largest side-lobe.
In addition to communication applications, ULAs have been considered for

radar applications for many years. The goal is then to detect the angle of a
target (e.g., a vehicle) using methods similar to the angle-of-arrival estimation
described in Section 4.2.5. In these cases, it is not only the SNR that matters,
but the beamwidth determines the spatial resolution of the array, also known
as the angular resolution. For example, Figure 4.10 showed how the utility
function in ML estimation looks like a beam around the correct angle. The
width matches the beamwidth; thus, more antennas lead to a smaller width,
resulting in better estimation accuracy. In radar applications, detecting two
targets with an angle difference smaller than the beamwidth is hard because
they appear as a single target with a somewhat larger size. Similarly, if we
want to transmit communication signals to two LOS receivers simultaneously,
the mutual interference is small if their angle separation is larger than the
beamwidth. We will consider localization and sensing in Chapter 8.

Figure 4.16 considers the same setup as in the previous figure, except that
we are now comparing M = 10 and M = 20 to show how the beamwidth
shrinks as we increase the number of antennas (irrespective of which beamwidth
definition we consider). When having M = 20 antennas, we get roughly half
the beamwidth compared to the case of M = 10. The width of the side-
lobes shrinks similarly, which also means there are more side-lobes. Since
we assumed an antenna spacing of ∆ = λ/2 in this section, increasing the
number of antennas is equivalent to making the ULA wider. If we generalized
the results to consider other antenna spacings, we would observe that the
aperture length of the ULA determines the beamwidth and not the number
of antennas. We will return to this in Section 4.3.4.
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Above line:
Amplification

Figure 4.16: Comparison of the beamforming gains with M = 10 and M = 20 in the same
setup as in Figure 4.13.

The beamwidth also depends on which angular direction we point the
beam in. If we consider an arbitrary beam direction φbeam ∈ [−π/2, π/2],
then the nulls appear when the sine function in the numerator of (4.52) is
zero while the denominator is non-zero. This happens for angles φ such that

M
π (sin(φ)− sin(φbeam))

2 = nπ (4.63)

for non-zero integers n satisfying−M2 (1+sin(φbeam)) ≤ n ≤ M
2 (1−sin(φbeam)).

The limits of the main beam are usually obtained by n = ±1, which results in

φ = + arcsin
( 2
M

+ sin(φbeam)
)
, (4.64)

φ = − arcsin
( 2
M
− sin(φbeam)

)
. (4.65)

The first-null beamwidth is the difference between (4.64) and (4.65):

arcsin
( 2
M

+ sin(φbeam)
)

+ arcsin
( 2
M
− sin(φbeam)

)
. (4.66)

This is an increasing function of | sin(φbeam)|, as can be proved by showing
that its first-order derivative is positive for sin(φbeam) ≥ 0 and noting that it is
a symmetric function of sin(φbeam). Hence, the beamwidth gradually increases
as the beam direction is changed from the broadside direction φbeam = 0 to
the end-fire direction φbeam = ±π/2. In other words, the angular resolution
is worse in the vicinity of the end-fire direction because the spatial frequency
sin(φbeam)/λ varies slowly with the beam angle in these situations.
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Figure 4.17: The beamforming gain that is observed in different directions φ when a ULA with
M = 10 antennas transmits a beam in the directions φbeam = π/3, φbeam = π/4, or φbeam = 0.

When the beam direction is close to π/2 or −π/2, it happens that the
main beam is divided within the interval [−π/2, π/2] so that one part appears
close to −π/2 and the other part is close to +π/2. In this case, the interval
−M2 (1 + sin(φbeam)) ≤ n ≤ M

2 (1− sin(φbeam)) either contains only positive
integers or only negative integers. The smallest and largest n then give the
nulls of the main beam in the interval.

Figure 4.17 shows the beamforming gains that can be observed in different
directions when the beam is transmitted in directions φbeam = π/3 radians
(60◦), φbeam = π/4 radians (45◦), or φbeam = 0 (the broadside direction
as in the previous figures). As expected, the beamwidth is smallest when
transmitting in the broadside direction, while it grows when we increase |φbeam|
towards any of the end-fire directions ±π/2. The main beam is divided into
two pieces when φbeam = π/3, of which the majority appears in the right part
of the figure and a small piece appears to the left. The maximum beamforming
gain is equal to M in all three cases, but the shape of the signal leakage in
other directions is different.

The wider beamwidths obtained with φbeam = π/3 and φbeam = π/4 might
give the impression that there is more signal power in these cases (e.g., the
areas under the curves are larger). However, the precise interpretation is that
a larger fraction of the signal power is radiated into the horizontal plane than
with broadside beamforming. To demonstrate this property, Figure 4.18 shows
the beam patterns for φbeam ∈ {0, π/4} in all three dimensions. The ULA is
deployed along the y-axis and the xy-plane is the horizontal plane; thus, it is
the beam patterns along the dotted curves shown in Figure 4.17. Note that
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[dB]

(a) Beamforming in the broadside azimuth direction φbeam = 0.

[dB]

(b) Beamforming in the azimuth direction φbeam = π/4.

Figure 4.18: The beamforming gain observed in different 3D directions when a ULA with
M = 10 antennas is deployed along the y-axis. Beamforming in two different azimuth directions
is considered, and the dotted curves show the gain variations in the horizontal plane. These are
the same beam patterns as shown in Figure 4.17.
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the beam patterns are invariant if we rotate them around the y-axis; thus, the
beam points in the desired direction in the azimuth plane and many other
directions with non-zero elevation angles. The beamwidth in the horizontal
plane is indeed smaller with φbeam = 0 than with φbeam = π/4, but this is
compensated for since the beam covers more area in the elevation dimension
in the former case. The average beamforming gain over the sphere is 1 in both
cases. Since the beamwidth in the elevation dimension is broad, covering all
elevation angles, the beams created by a ULA have roughly the same shape
as orange slices.

It is a common practice to deploy ULAs so that most of the intended
receivers are located close to the broadside direction, where the beams are
sharper (smaller beamwidth). This feature is essential in radar applications
where one can detect targets in different angular directions if the main beams
leading to those targets are non-overlapping. Since the total signal power is
constant irrespective of the value of φbeam, having a sharp main beam in the
desired plane leads to the main beam extending into other dimensions and/or
the side-lobes becoming larger. In wireless communications, all the signal power
that does not reach the desired receiver can cause interference to other receivers,
depending on where those receivers are. Which type of angular beam pattern
causes the least interference varies depending on the deployment scenario and
distribution of users over the propagation environment. If the users are closely
located, the beamwidth should be small so that the non-intended user is not
within the main beam. However, if the users have well-separated angles, the
beamwidth can be broad because the side-lobes anyway cause all interference.

Example 4.8. An M -antenna ULA with ∆ = λ/2 transmits with MRT to a
receiver in the direction φbeam = π/3 (60◦). An unintended receiver is in the
direction φ = 13π/36 (65◦). How many antennas are needed to ensure the
unintended receiver is outside the half-power beamwidth?

We must find how many antennas are needed to achieve a beamforming
gain smaller than M/2 at the angle φ of the unintended receiver. By using
the sinc-approximation in (4.54), we can express this condition as

Msinc2
(
M (sin(φ)− sin(φbeam))

2

)
<
M

2 ⇒ sinc2 (0.02014 ·M) < 1
2 (4.67)

since (sin(φ) − sin(φbeam))/2 ≈ 0.02014. We recall from Example 4.7 that
sinc2(0.443) ≈ 1

2 and notice that sinc(x) is a decreasing function for x ∈
[0, 0.443]. This implies that (4.67) can be rewritten as

0.02014 ·M > 0.443 ⇒ M > 21.996. (4.68)

Since the number of antennas must be an integer, we need at least 22 antennas
to ensure that the unintended receiver is outside the half-power beamwidth.
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The beamwidth concept is most easily explained when transmitting from
a ULA but also exists for arrays with other geometries. In the case of a SIMO
channel, the counterpart for signal reception using a ULA is the spatial filtering
illustrated in Figure 4.8. If MRC is used to coherently combine the signals
from a transmitter with angle-of-arrival φ = 0, then the beamwidth defines
the angular interval around φ = 0 for which other incoming (interfering)
signals will also be partially coherently combined.

4.3.3 Grid of Orthogonal Beams

The beamwidth demonstrates how beamforming focuses the emitted power
into a limited angular interval. A receiver in other directions will be reached by
comparably less power and possibly zero power if it is located in a null direction.
This is a desired feature when transmitting data to a known receiver in a
known direction, but it is problematic when the goal is to broadcast signals to
unknown receivers in unknown directions. For example, a cellular base station
must occasionally announce its existence by broadcasting common messages
over its entire coverage area to tell prospective user devices how to connect to
the base station, thereby becoming one of the receivers with a known direction.
In 5G, the broadcasting starts with the primary synchronization signal (PSS).
Generally speaking, we need a procedure to reach prospective users with a
relatively high beamforming gain without knowing their locations. To this
end, we can preselect a collection of beams and transmit the same common
message through each of them. This procedure is called beam sweeping. We
want to select the beam directions to ensure that any prospective user is
located within the main beam of at least one of the beams in the collection.

Consider the MISO channel to an unknown receiver, represented by an
unknown M -dimensional vector h in the vector space CM . Any non-zero
vector can be written as a linear combination of M orthonormal basis vectors
b1, . . . ,bM ∈ CM :

h = c1b1 + . . .+ cMbM , (4.69)
where at least one of the scalar coefficients c1, . . . , cM is non-zero. If we use
the conjugate of the basis vector bi as the precoding vector, the SNR at the
unknown receiver will be proportional to

|hTb∗
i |2 = |(c1bT

1 + . . .+ cMbT
M ) b∗

i |
2 = |ci|2, (4.70)

where we utilized that orthonormal vectors satisfy bT
i b∗

i = 1 and bT
mb∗

i = 0
for m ̸= i. It is plausible that only one of the coefficients in (4.69) is non-zero
for a particular receiver; thus, we will have to transmit beams using all M
basis vectors to ensure that the SNR is non-zero for at least one beam. The
conclusion is that we need a collection of M beams to reach all users and that
those beams should constitute an orthonormal basis. However, many different
orthonormal bases can be created. One option is to utilize the columns of
the identity matrix IM as the basis vectors, which effectively means that
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we will transmit from one antenna at a time. This is undesirable because
there will never be any beamforming gains, but each antenna will spread a
relatively weak signal over the coverage area. Instead, we want to divide the
coverage area into M subareas (i.e., angular sectors) and let each basis vector
beamform towards one of these subareas. We will describe how to do that in
the situation considered in the previous sections: the transmitter is equipped
with a ULA with ∆ = λ/2 as the antenna spacing, and there are far-field
free-space LOS channels to all the prospective user locations.

If we transmit a beam in the broadside direction φbeam = 0, then we recall
from (4.60) that there are nulls at the angles

φ = arcsin
(2n
M

)
(4.71)

for n = ±1,±2, . . . ,±⌊M2 ⌋. If we substitute these angles into (4.49), we can
find the array response vectors that are orthogonal to the one obtained by
φbeam = 0. If we normalize these vectors to have unit length, as we normally
do when selecting precoding vectors, we obtain

1√
M

aM
(

arcsin
(2n
M

))
= 1√

M


1

e−jπn 2
M

e−jπ2n 2
M

...
e−jπ(M−1)n 2

M

 = 1√
M


1
υnM
υ2n
M
...

υ
(M−1)n
M

 ,
(4.72)

where the last expression uses the notation υM = e−j2π/M that was first
introduced in (2.198) when defining the DFT matrix. Several observations
can be made by inspecting (4.72) and comparing it to the M × M DFT
matrix FM . Firstly, the vector with index n contains samples of the complex
exponential υnM = e−j2π∆ 2n

Mλ with the spatial frequency 2n
Mλ . The distance

between the samples is the antenna spacing ∆ = λ/2. Secondly, the vectors in
(4.72) for the positive values n = 1, . . . , ⌊M2 ⌋ are columns of the DFT matrix.
Thirdly, the vectors in (4.72) for the negative values n = −1,−2, . . . ,−⌊M2 ⌋
can be rewritten to only contain positive exponents of υM . The key is to
utilize the property υMM = 1 to rewrite expression as υnM = υM+n

M for these
negative values of n. Hence, all vectors with negative values of n are identical
to the last ⌊M2 ⌋ columns of the DFT matrix. If M is even, then n = M/2 and
n = −M/2 result in the same precoding vector. The convention is to only
consider n = −M/2 in this case. Finally, the precoding vector for broadside
transmission contains only ones, just like the first column of the DFT matrix.

The conclusion is that the columns of the M -dimensional DFT matrix
contain a collection of M beams, each associated with beamforming in a
distinct angular direction. This is called a grid of beams since it is obtained by
sampling the range of azimuth angles φ to obtain M grid points. The points
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are not equally spaced in the angular domain [−π/2, π/2] but in the spatial
frequency domain [−1/λ, 1/λ] to take the angle-dependent beamwidths into
account; we need more beams close to the broadside direction and fewer beams
close to the end-fire directions. We identified this particular grid of beams by
starting from the first column of the DFT matrix (i.e., beamforming in the
broadside direction) and noticing that the other columns of the DFT matrix
are orthogonal to it and, thus, can be used to beamform in its null directions.
However, we also know that the DFT matrix is unitary, which implies that all
columns are mutually orthogonal and constitute an orthonormal basis in CM .
This implies that each column will form a main beam centered at a null of all
the other beams. It is, therefore, appropriate to call this a grid of orthogonal
beams to distinguish it from other prospective collections of beams. It is also
known as the DFT beams for apparent reasons.

Figure 4.19(a) shows the ten orthogonal beams obtained from the DFT
matrix when having M = 10 antennas. The seven beams in the middle have
similar beamwidths and angular separation, while the outermost beams are
substantially broader and, thus, more spread out. This aligns with the previous
beamwidth discussion and demonstrates how a ULA has a worse angular
resolution close to the end-fire directions. In fact, the outermost beam is split
into two parts, of which one-half points to the left and the other half points
to the right. Figure 4.19(b) shows the same ten beams but considering the
spatial frequency sin(φ)/λ on the horizontal axis, in which case all the beams
become equally wide. The spatial resolution of a ULA is fundamentally a
spatial frequency resolution, as we have hinted earlier in this chapter. The
maximum beamforming gain is 10 dB for all the beams because M = 10. The
neighboring beams intersect at the point where the beamforming gain has
reduced by almost 4 dB to around 6 dB. Hence, if the considered multi-antenna
base station broadcasts a common message by repeating it ten times using
these different beams, any LOS user is guaranteed a beamforming gain of at
least 6 dB, although the beams were not adapted to any user location.

The loss in beamforming gain remains around 4 dB at the intersection point
between two adjacent DFT beams, even if we increase the number of antennas.
To prove this, we consider the adjacent beams in the directions arcsin(2n

M )
and arcsin(2n+2

M ) for some feasible n. The intersection point between these
beams is at the angle arcsin(2n+1

M ).8 If we substitute the first beam and the
intersection point into (4.52), we obtain the beamforming gain

1
M

sin2
(
M

π( 2n+1
M − 2n

M ))
2

)
sin2

(
π( 2n+1

M − 2n
M ))

2

) = 1
M

sin2 (π
2
)

sin2 ( π
2M
) = 1

M sin2 ( π
2M
) ≥M ( 2

π

)2
,

(4.73)
8The intersection point is found by comparing (4.52) for the two beam directions and

identifying the value of φ where the expressions are equal.
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Beamforming gain [dB]

Observation angle φ

(a) Grid of orthogonal beams shown using a polar plot as a function of the azimuth observation angle
φ.

(b) Grid of orthogonal beams as a function of the spatial frequency.

Figure 4.19: The beam patterns of the grid of ten orthogonal beams obtained from the columns
of the DFT matrix when using a ULA with M = 10 antennas. The angles in (a) are measured
in radians, but the scale can easily be converted into degrees since π/6 is 30◦, π/3 is 60◦, and
π/2 is 90◦. An equivalent representation as a function of the spatial frequency is given in (b) to
showcase that all beams are equally wide in that domain.
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where the last step follows from that sin2(x) ≤ x2. The lower bound is
approached when M is large, as seen from making a first-order Taylor ap-
proximation of the sine function. This reveals that the reduction in beam-
forming gain at the intersection point between two DFT beams is at most
20 log10(2/π) ≈ −3.9 dB and reaches this value when M grows large. In sum-
mary, when a ULA with M antennas transmits a grid of orthogonal beams, all
LOS users are guaranteed to find one beam where it achieves a beamforming
gain of at least M(2/π)2.

4.3.4 Impact of Aperture Length and Antenna Spacing

The beamwidth analysis in the previous sections shows how the directivity
of the radiation pattern can be controlled under the assumption of a ULA
with antenna spacing ∆ = λ/2. If the antenna array has a different geometry,
the radiation patterns that beamforming creates will be different—a more
irregular geometry will result in a more irregular pattern. In this section, we
will still consider ULAs but determine the impact of the antenna spacing.
Recall from (4.19) that the LOS channel vector with an arbitrary antenna
spacing ∆ and wavelength λ can be expressed as h =

√
βa(φ), where the

array response vector for the angle-of-departure φ is

a(φ) =



1
e−j2π∆ sin(φ)

λ

e−j2π 2∆ sin(φ)
λ

...
e−j2π (M−1)∆ sin(φ)

λ


. (4.74)

If we transmit a signal in the direction φbeam ∈ [−π/2, π/2] using the MRT
vector p = a∗(φbeam)/∥a(φbeam)∥, then we can follow the approach in (4.50)–
(4.52) to determine the beamforming gain that is observed by a receiver
located in any direction φ ∈ [−π/2, π/2]:∣∣∣∣aT(φ) a∗(φbeam)

∥a(φbeam)∥

∣∣∣∣2 = 1
M

∣∣∣∣∣
M∑
m=1

e−j 2π∆(m−1)
λ (sin(φ)−sin(φbeam))

∣∣∣∣∣
2

=


M, if ∆

λ (sin(φ)− sin(φbeam)) is an integer,

1
M

sin2
(
M

π∆(sin(φ)−sin(φbeam))
λ

)
sin2
(
π∆(sin(φ)−sin(φbeam))

λ

) , otherwise.

(4.75)
The last equality follows from the summation formula for geometric series in
(4.51) and Euler’s formula. The first row in (4.75) shows that the maximum
beamforming gain is M and is achieved for φ = φbeam (the intended beam-
forming direction) because in that case, we have ∆

λ (sin(φ)− sin(φbeam)) = 0.
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There might be additional values of φ for which ∆
λ (sin(φ)− sin(φbeam)) be-

comes and integer. Since the maximum gain is M , it depends on the number
of antennas but not the antenna spacing. The reason is that MRT ensures that
all antennas’ signal components superimpose constructively in the desired
angular direction, irrespective of the array geometry. The second expression in
(4.75) characterizes the beamforming gain in other directions, and it depends
on the normalized antenna spacing relative to the wavelength, which we will
denote in this section as

∆λ = ∆
λ
. (4.76)

The numerator of the second expression in (4.75) also contains the product
between the number of antennas and the normalized antenna spacing, which
we will further denote as

Dλ = M∆
λ

= M∆λ. (4.77)

This is the normalized aperture length, according to Definition 4.1, which is
the physical aperture length M∆ of the ULA normalized by the wavelength.
To analyze how the beamforming gain depends on ∆λ, Dλ, and the observation
angle φ, we first introduce the variable

Φ = sin(φbeam)− sin(φ). (4.78)

For a given value of φbeam, only the range Φ ∈ [sin(φbeam)−1, sin(φbeam) + 1]
can be achieved since sin(φ) takes values between −1 and 1. When considering
all possible beamforming directions, we should consider values of Φ from −2
to 2. We notice that Φ/λ is the difference in spatial frequency between beam
direction and observation direction.

The beamforming gain in (4.75) can be expressed as a function of Φ as

A(Φ) = 1
M

sin2
(
M π∆Φ

λ

)
sin2

(
π∆Φ
λ

) = 1
M

sin2 (πDλΦ)
sin2 (π∆λΦ)

. (4.79)

The squared sine-function is a periodic function that repeats when the argu-
ment changes by ±π. This implies that the numerator in (4.79) is a periodic
function of Φ with period 1/Dλ and the denominator is periodic with a period
of 1/∆λ. The numerator varies M times faster than the denominator because
Dλ/∆λ = M ; thus, A(Φ) has a period of 1/∆λ. We also have that

A

(
m

Dλ

)
= 0, m = ±1, . . . ,±(M − 1), (4.80)

since the numerator is zero while the denominator is non-zero at these points.
These values correspond to the nulls in the beam pattern. In particular,
the main beam around Φ = 0 has its nulls at ±1/Dλ; thus, the first-null
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beamwidth only depends on the normalized aperture length. The larger the
aperture, the smaller the beamwidth, irrespective of whether the aperture
is achieved using many antennas with small spacing or few antennas with
large spacing. At the points A(0) and A(±1/∆λ), where the beam pattern
repeats itself, the numerator and denominator in (4.79) are both zero, which
makes the function seemingly undefined. However, the limit value is M , as
in the first row of (4.75) that represents the maximum beamforming gain.
For brevity, we will not write that out explicitly when analyzing A(Φ), but
remember that it is indeed a well-defined continuous function of Φ.

Figure 4.20 shows A(Φ) in dB-scale for a ULA with M = 10 antennas and
an antenna spacing of ∆λ = 1/2 wavelengths, which results in a normalized
aperture length of Dλ = 5 wavelengths. The purpose of this figure is to
illustrate how the beam patterns for different values of φbeam are obtained
from A(Φ) for Φ ∈ [sin(φbeam)− 1, sin(φbeam) + 1]. In the upper part of the
figure, the red dash-dotted curve is obtained by beamforming directed in the
broadside direction φbeam = 0, while the dotted green curve is obtained by
beamforming in the end-fire direction φbeam = π/2. These curves are drawn
as a function of φ but are each obtained by taking the indicated intervals of
A(Φ) in the lower part of the figure and “stretching” them out over all angles.
The mapping of the horizontal axes is non-linear since Φ = sin(φbeam)− sin(φ)
contains the sine-function, but the shape along the vertical axis is unchanged.

The first-null beamwidth is 2/Dλ when considering A(Φ). In case of
φbeam = 0, we have φ = − arcsin(Φ) and, thus, the beamwidth becomes

2 arcsin
( 1
Dλ

)
≈ 2
Dλ

radians (4.81)

when expressed in terms of the observation angle φ. The approximation in
(4.81) is tight for Dλ ≥ 2.5 since arcsin(x) ≈ x holds very well for x ∈
[0, 0.4]. Hence, for arrays with aperture lengths beyond a few wavelengths, the
beamwidth becomes inversely proportional to the aperture length (irrespective
of the antenna spacing). The beamwidth widens as φbeam increases and reaches
its maximum in the end-fire direction. However, the heights of the main beam
and side-lobes are the same in all these cases.

Since A(Φ) has a period of 1/∆λ = 2, the main beam at Φ = 0 repeats
itself at Φ = ±2. This explains why the main beam is divided into two pieces
on the green curve that utilizes the range Φ ∈ [0, 2]. This was previously
observed in Figure 4.19(a), where beamforming in one end-fire direction also
resulted in a beam pointing in the opposite end-fire direction.

Using the established connection between A(Φ) and the beam patterns,
we will further study how the antenna spacing affects A(Φ). Figure 4.21
shows A(Φ) for a ULA with a normalized aperture length of Dλ = M∆λ = 5
wavelengths, but three different configurations:

1. M = 20 with ∆λ = 1/4 wavelengths;
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φbeam = 0 φbeam = π
2

Figure 4.20: The function A(Φ) in (4.79) is shown in the bottom figure for M = 10 antennas
and the antenna spacing ∆λ = 1/2 wavelengths. Depending on the beamforming direction
φbeam, we take a certain interval Φ ∈ [sin(φbeam) − 1, sin(φbeam) + 1] from A(Φ) and use
it to generate the resulting beam pattern at the top. The horizontal axis is stretched since
Φ = sin(φbeam) − sin(φ).This is illustrated for φbeam = 0 and φbeam = π/2.
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Figure 4.21: The function A(Φ) in (4.79) is shown for three different ULAs with a normalized
aperture length of Dλ = 5 wavelengths. The first-null beamwidth and locations of other nulls
are the same in all three cases, but the sizes of the side-lobes vary.

2. M = 10 with ∆λ = 1/2 wavelengths;

3. M = 5 with ∆λ = 1 wavelengths.

The second configuration is the half-wavelength-spacing case considered in
Figure 4.20 and previously in this chapter. We will compare it to the first
and third configurations. If we double the number of antennas to M = 20
while reducing the antenna spacing, Figure 4.21 shows that the maximum
beamforming gain of the main beam at Φ = 0 is doubled, but the first-null
beamwidth remains unchanged. This aligns with our analytical observation in
(4.80) that only the normalized aperture length determines the null locations.
The heights of the side-lobes are changed, but the number of side-lobes
and their respective widths are identical. Recall from Figure 4.20 that the
maximum beamforming gain reappears around Φ = ±2 since A(Φ) has a
period of 1/∆λ = 2. This phenomenon disappears when the antenna spacing is
reduced to ∆λ = 1/4 because A(Φ) has a period of 1/∆λ = 4 in that case, and
we consider a smaller interval. Hence, we can now beamform in one end-fire
direction without creating a beam in the opposite end-fire direction.

In the case of M = 5, A(Φ) has a period of 1/∆λ = 1; thus, the side-lobes
at Φ = ±1 are equally strong as the main beam. These are called grating lobes
and show that the array cannot distinguish between specific angular directions
when the antenna spacing is λ. Apart from this phenomenon, the first-null
beamwidth and the locations of the other side-lobes remain the same since
these are only determined by the normalized aperture length of the ULA.

Recall that the classical sampling theorem in Lemma 2.8 states that a
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signal must be sampled at least twice per period (of its largest frequency) to
be uniquely distinguishable. We normally apply this theorem by letting the
same device take samples at regular time instances. However, since a wireless
signal propagates over the wireless medium, we can also take samples at the
same time but at different spatial locations. The latter is what an antenna
array does during reception. The array response vector a(φ) in (4.74) contains
the entries

e−j2π sin(φ)
λ ∆m, m = 0, . . . ,M − 1, (4.82)

which are obtained simultaneously by a ULA with the spatial antenna spacing
∆. The same entries could alternatively be obtained as samples taken once
every ∆ seconds from a complex exponential with the frequency sin(φ)/λ Hz.
When the wavelength is λ, the largest observable spatial frequencies (in the
magnitude sense) are ±1/λ. The ULA will observe a complex exponential
with those spatial frequencies when the signal impinges from the end-fire
directions φ = ±π/2. Since the period is λ in this case, the sampling theorem
dictates that complex exponentials with spatial frequencies in [−1/λ, 1/λ) can
only be uniquely distinguished from their samples if ∆ ≤ λ/2 (i.e., sampling
twice per period). In analogy to sampling at the Nyquist rate, a ULA with
∆λ = 1/2 is called a critically spaced array. A sparsely spaced array with
∆λ > 1/2 performs spatial undersampling and gives rise to grating lobes,
which is a kind of spatial aliasing where some widely different directions are
indistinguishable. A densely spaced array with ∆λ < 1/2 performs spatial
oversampling, which cannot increase the spatial resolution, just as oversam-
pling of a time-domain signal does not resolve any ambiguities since those
disappear at the Nyquist rate. However, oversampling increases the maximum
beamforming gain proportionally to M for a given aperture length.

A subtle but important point is that a critically spaced array cannot
distinguish between −1/λ and 1/λ, which is why the same DFT beam covers
both end-fire directions in Figure 4.19. This is because the sampling theorem
requires the spatial bandwidth to be strictly smaller than 2/λ (i.e., equality
is not permitted) when sampling at the spatial Nyquist rate of 1/∆ = 2/λ
(i.e., ∆ = λ/2). This issue can be disregarded when the ULA uses directive
antennas that cannot receive anything from the end-fire directions, as is the
case for the cosine antenna in (1.34),

We will now let the number of antennas be fixed but vary the antenna
spacing. Figure 4.22(a) shows A(Φ) with M = 10 and either ∆λ = 1/2
(critically spaced) or ∆λ = 1/4 (densely spaced). The aperture length is smaller
in the latter case since the number of antennas is fixed. The widths of the
main beam and side-lobes increase when the antenna spacing is reduced; recall
that the distance between the nulls in (4.80) increases when the normalized
aperture length shrinks. The opposite result is seen in Figure 4.22(b), where
we compare ∆λ = 1/2 (critically spaced) and ∆λ = 1 (sparsely spaced). A
larger antenna spacing results in a narrower main beam but also gives rise to
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(a) Comparison between critically spaced and densely spaced arrays.

(b) Comparison between critically spaced and sparsely spaced arrays.

Figure 4.22: The function A(Φ) in (4.79) is shown for ULAs with M = 10 antennas, but
either critical spacing (∆ = λ/2), dense spacing (∆ = λ/4), or sparse spacing (∆ = λ). A larger
antenna spacing leads to smaller beamwidth but will also give rise to grating lobes when the
spacing is larger than λ/2.



250 Line-of-Sight Point-to-Point MIMO Channels

grating lobes. The total width of the main beam and grating lobes are always
the same. Grating lobes are undesirable if we want to extract information
from the channel, such as determining the angle to the receiver, because we
cannot distinguish whether the received signal power is strong because the
main beam points to the receiver or one of the grating lobes. This ambiguity
is primarily a concern in radar and not in communications, where we can even
benefit from the fact that the main beam is narrower when there are grating
lobes—it gives a higher spatial resolution around the intended beamforming
direction, which might improve the ability of spatial multiplexing.

Example 4.9. Consider a ULA deployed vertically in a mast to serve user
devices on the ground. The potential users are located in the angular interval
[0, π/2], so no grating lobes are allowed in this interval when beamforming
towards the users. How should the antenna spacing be selected for a given
number of antennas, M , to minimize the beamwidth?

The beamwidth is inversely proportional to the normalized aperture length
Dλ = M∆λ. Since M is fixed, the beamwidth can be minimized by selecting
the largest permitted antenna spacing ∆λ. The function A(Φ) in (4.79) is
periodic with period 1/∆λ, so we need |Φ| ≤ 1/∆λ for all the values of
Φ = sin(φbeam)− sin(φ) that appear in this deployment scenario. We might
send a beam to a user device in any direction φbeam ∈ [0, π/2] and have
prospective receivers in any direction φ ∈ [0, π/2]. Hence, we require that

max
φbeam,φ∈[0,π/2]

|sin(φbeam)− sin(φ)| ≤ 1
∆λ

. (4.83)

Since the sine function takes values between 0 and 1 in the given interval, the
maximum difference is 1. As a result, we need to guarantee that

1 ≤ 1
∆λ

⇒ ∆λ ≤ 1 wavelength. (4.84)

In conclusion, we achieve the smallest beamwidth (highest spatial resolution)
with an antenna spacing of one wavelength. This sparsely spaced array achieves
beamwidths roughly half as wide as with the corresponding critically spaced
array. The price to pay is that grating lobes are sent into the sky, but this
will not cause interference to the users on the ground.

The conclusion is that ∆ = λ/2 is often the preferred antenna spacing
because, for a given number of antennas, it gives the smallest beamwidth
achievable without grating lobes (i.e., spatial aliasing), except in the end-fire
directions. This is why we considered this spacing earlier in the chapter and
will continue doing so in the remainder of this book. However, in situations
where grating lobes are acceptable in certain angular intervals, increasing the
antenna spacing to reduce the beamwidth in other intervals can be desirable.
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4.4 Modeling of Line-of-Sight MIMO Channels

We will now reuse the analysis from the SIMO and MISO cases to characterize
the point-to-point MIMO channel matrix H. We assume there are K transmit
antennas and M receive antennas. We let dm,k denote the distance between
the transmit antenna k and receive antenna m. A detailed derivation of
the MIMO channel can be obtained by following the same approach as in
Section 4.2.1, but we will only provide the main results. The transmitter and
receiver are time-synchronized, meaning that the receiver samples the received
signal η = d/c seconds after the transmission, where d is a reference distance
between the transmitter and receiver. The channel response hm,k between
transmit antenna k and receive antenna m is then obtained (similar to (4.10))
as

hm,k =
√
βm,ke

−j2π
(dm,k−d)

λ , (4.85)

where the phase-shift is 2π (dm,k−d)
λ and the channel gain is

βm,k = λ2

(4π)2
1

d2
m,k

. (4.86)

By gathering all the channel responses in an M×K channel matrix, we obtain

H =

 h1,1 . . . h1,K
... . . . ...

hM,1 . . . hM,K

=


√
β1,1e

−j2π (d1,1−d)
λ . . .

√
β1,Ke

−j2π
(d1,K−d)

λ

... . . . ...√
βM,1e

−j2π
(dM,1−d)

λ . . .
√
βM,Ke

−j2π
(dM,K−d)

λ

.
(4.87)

This channel matrix applies to any MIMO LOS setup, regardless of the
antenna array geometries or distances. The channel capacity can be computed
using Theorem 3.1. In the following sections, we will analyze three specific
cases to shed light on the interplay between array deployment and capacity.

4.4.1 MIMO Channel Capacity with ULAs and Planar Wavefronts

We assume that the transmitter and receiver are equipped with ULAs with
the same antenna spacing ∆ to gain further insights into the channel matrix
properties. Moreover, when synchronizing the transmitter and receiver, we use
the distance d = d1,1 between the first antennas in each array as the reference
distance. The transmitter and receiver are assumed to be located in the same
two-dimensional plane (e.g., at the same height above the ground).9 We will
use the same approximations as in the SIMO and MISO cases: Frequency

9This is a limiting assumption in the MIMO case, which for instance does not cover the case
when one ULA is deployed horizontally and the other ULA is deployed vertically. The general
case requires other angles to be defined and adjustments to be made in the channel model, but
the main conclusions drawn in this section will not change.
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Figure 4.23: Illustration of a MIMO communication setup where the transmitter is equipped
with a ULA with k antennas and the receiver is equipped with a ULA with m antennas. The
antenna spacing is ∆ in each array and the distance between transmit antenna k and receiver
antenna m is denoted by dm,k. The figure shows a far-field scenario where the angle-of-departure
is φt for all the transmit antennas, while the angle-of-arrival is φr for all the receive antennas.

flatness and that each antenna is in the far-field of the other array. The latter
means that d ≥ 2M2∆2/λ and d ≥ 2K2∆2/λ according to (4.16). Under
these approximations, valid in many practical scenarios, there is a common
angle-of-departure φt for all transmit antennas and a common angle-of-arrival
φr among all the receive antennas. We illustrate this setup in Figure 4.23. As
shown in the figure, the distance dm,k can be (approximately) computed as

dm,k = d+ (k − 1)∆ sin(φt) + (m− 1)∆ sin(φr), (4.88)

which is the reference distance d plus two additional terms describing the
phase differences among the transmit and receive antennas, respectively.
These terms are computed trigonometrically, as shown in the figure. The term
(k − 1)∆ sin(φt) represents the extra propagation distance at the transmitter
side, while (m− 1)∆ sin(φr) represent the extra propagation distance at the
receiver side. Their values can be either positive or negative, depending on the
angles, and give rise to different phase-shifts between every pair of antennas.

The far-field assumption also implies that there is a common channel gain

β = λ2

(4π)2
1
d2 (4.89)

between any pair of transmit and receive antennas because d is much larger
than the latter two terms in (4.88). Hence, βm,k ≈ β for all m and k. Under
these far-field conditions, the M×K channel matrix in (4.87) can be simplified
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as

H =

 h1,1 . . . h1,K
... . . . ...

hM,1 . . . hM,K



=
√
β


1 . . . e−j2π (K−1)∆ sin(φt)

λ

... . . . ...
e−j2π (M−1)∆ sin(φr)

λ . . . e−j2π (M−1)∆ sin(φr)
λ e−j2π (K−1)∆ sin(φt)

λ



=
√
β


1
...

e−j2π (M−1)∆ sin(φr)
λ

 [1 . . . e−j2π (K−1)∆ sin(φt)
λ

]
. (4.90)

Interestingly, (4.90) shows that the matrix H can be written as an outer
product of two vectors when considering free-space LOS channels under the
far-field assumption. The two vectors are the channel vectors that one would
get with a SIMO channel (K = 1) and a MISO channel (M = 1), except that
the channel gain β only appears once in the expression. The channel matrix in
(4.90) is derived for arbitrary antenna spacings, but it is common to consider
∆ = λ/2. In that special case, we can utilize the array response vector defined
in (4.49) to write (4.90) as

H =
√
βaM (φr)aT

K(φt). (4.91)

We will now compute the capacity of MIMO channels that can be described
using the channel matrix in (4.90). We recall that the MIMO channel capacity
in Theorem 3.1 depends on the non-zero singular values of H. Since the
channel matrix in (4.90) is the outer product of two vectors, it is a matrix
with rank one. We can then write its SVD as

H = s1u1vH
1 , (4.92)

where

s1 =
√
βMK (4.93)

is the only non-zero singular value and the unit-length left and right singular
vectors are given by the following normalized array response vectors:

u1 = 1√
M

aM (φr) = 1√
M


1
...

e−j2π (M−1)∆ sin(φr)
λ

 , (4.94)

v1 = 1√
K

aK(φt) = 1√
K


1
...

e+j2π (K−1)∆ sin(φt)
λ

 . (4.95)
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If we substitute s1 and r = 1 into (3.75), the MIMO channel capacity becomes

C = log2

(
1 + qopt

1 s2
1

N0

)
= log2

(
1 + qβMK

N0

)
, (4.96)

where we utilized that qopt
1 = q when there is only one non-zero singular value.

Example 4.10. An early 5G demonstration reached a data rate of 4.3 Gbit/s
over a point-to-point LOS channel using B = 800 MHz of mmWave spectrum.
This example will consider how this value might have been achieved. Suppose
the wavelength is λ = 10 mm, the transmit power is P = 10 W, and the noise
power spectral density is N0 = 10−17 W/Hz.

(a) If M = K = 1 isotropic antennas were used, how large was the propaga-
tion distance?

(b) If M = 64 and K = 8 isotropic antennas were used, how large was the
propagation distance?

The capacity of the system is B log2(1 + SNR) = 4.3 · 109 bit/s, which
requires an SNR value of 24.3·109/(8·108)−1 ≈ 40.5 for a bandwidth of 8 ·108 Hz.

(a) The SNR in the SISO case is SNR = P λ2

(4π)2BN0
1
d2 . If we equate it to

40.5 and solve for the distance d, we obtain

d =

√
P

λ2

(4π)2BN0SNR ≈

√
10 · 0.012

(4π)2 · 8 · 108 · 10−17 · 40.5 ≈ 4.4 m.

(4.97)

(b) The SNR over an 64 × 8 LOS MIMO channel can be extracted from
(4.96) as SNR = P λ2

(4π)2BN0
MK
d2 , where MK = 512. The SNR should

still be 40.5, but since the numerator of the SNR has increased by a
factor of 512, the squared propagation distance d2 can increase by the
same factor. Hence, the distance is increased to d ≈ 4.4

√
512 ≈ 100 m.

When the point-to-point MIMO channel capacity was discussed in Sec-
tion 3.4, a major distinguishing factor from the SIMO and MISO capacities
was the existence of a multiplexing gain; that is, the ability to transmit r > 1
parallel data streams, so that channel capacity grows proportional to r (par-
ticularly at high SNR). Since the multiplexing gain is multiplied in front of
the logarithm in the capacity expression, it can improve the capacity much
more than the beamforming gain, which appears inside the logarithm. Unfor-
tunately, the spatial multiplexing gain cannot be harnessed in the considered
LOS setup since r = 1. Only a beamforming gain of MK appears in (4.96), in
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the sense that the SNR is MK times larger than for the corresponding SISO
system. The main reason is the far-field situation: the angle-of-departure φt
is (approximately) the same from all the transmit antennas towards all the
receive antennas. Hence, when the transmitter forms a beam towards the
center of the receiver array, all the receive antennas are at the center of the
main beam. Recall from (3.62) that the capacity is achieved using the left
and right singular vectors to turn the channel into r parallel channels. In
this case, we only get one such channel, achieved by transmitting the signal
using the precoding vector v1 and processing the received signal using the
combining vector u1. As illustrated in Figure 4.24, this is the same thing
as performing MRT at the transmitter based on the MISO channel vector
v∗

1, followed by MRC at the receiver based on the SIMO channel vector u1.
Hence, the transmitter and receiver can compute their precoding/combining
independently without knowing how many antennas the other device has. To
get a rank r > 1, the transmitter must be able to transmit multiple beams
that are distinguishable at the receiver. This can happen when there are
scattering objects that the signal can bounce off, as previously illustrated in
Figure 3.16, but not in the considered setup.

Despite the lack of a multiplexing gain, the beamforming gain is larger
in MIMO channels compared to SIMO and MISO channels having the same
total number of antennas. The following example demonstrates the benefit of
having multiple antennas on both sides of a communication system.

Example 4.11. If the total number of transmit and receiver antennas must
satisfy M +K = c, for some integer c, how should we distribute them between
the transmitter and receiver to maximize capacity?

The SNR is proportional to MK in the MIMO capacity expression in (4.96).
Since we have the condition M + K = c, we can rewrite this beamforming
gain as MK = M(c −M). The first-order derivative with respect to M is
c − 2M and by equating it to zero, we find that the beamforming gain is
maximized if M = c/2. Hence, we maximize the capacity by dividing the
antennas equally between the transmitter and receiver.

Suppose we have M + K = 10 antennas that can be deployed on the
transmitter or the receiver. If we create a SIMO system with M = 9 and
K = 1, the beamforming gain is MK = 9. However, if we create a MIMO
system with M = 5 and K = 5, the beamforming gain is MK = 25. Figure 4.25
shows how the corresponding channel capacities depend on the SNR. Since
the SNR of a particular data signal depends on both the number of antennas
and whether they are used for beamforming or multiplexing, we define the
reference SNR as

SNR = qβ

N0
. (4.98)

This is the SNR that a SISO system achieves under the same propagation



256 Line-of-Sight Point-to-Point MIMO Channels

Channel matrix H

u1vH
1

s1

Figure 4.24: An LOS channel between two ULAs only features one propagation path between
the transmitter and the receiver. The multiplexing gain is r = 1 and the SVD of the channel
matrix can be expressed as H = s1u1vH

1 .

Figure 4.25: The capacity in the MIMO, SIMO/MISO, and SISO cases over far-field LOS
channels. The MIMO capacity is log2(1 + 25 SNR) and the SIMO/MISO capacity is log2(1 +
9 SNR), but the total number of antennas is 10 in both scenarios. The SISO capacity log2(1+SNR)
is also shown and its SNR is used as the reference SNR.

conditions and is used on the horizontal axis in Figure 4.25. All the curves have
the same slope since the multiplexing gain is r = 1 in all the considered cases,
but the beamforming gain shifts the curves toward the left so that a higher
capacity is achieved in the MIMO setup for any given SNR. In conclusion, it
is beneficial to deploy a MIMO system even in a far-field LOS scenario with
ULAs, although it is disappointing that there is no multiplexing gain.
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Figure 4.26: Illustration of a MIMO communication setup where the transmitter has a ULA
with antenna spacing ∆. The receiver is equipped with a distributed array deployed along the
arc of a circle with the radius d. The antennas are uniformly spaced over a circle sector with
the central angle ϑ.

4.4.2 MIMO Channel Capacity with Distributed Antennas

The rank deficiency of the MIMO channel matrix that we observed in the last
section is inherent in the point-to-point terminology. If we transmit from an
array at one location to an array at another location, and the propagation
distance is large, then the receiver will be at the center of the main beam
and can only identify the angular direction of the incoming plane wave; it
cannot distinguish between the individual transmit antennas. Similarly, if
one watches a brick wall from a distance, one can identify the location of the
building but not distinguish individual bricks.

In this section, we will demonstrate that it is the plane-wave/far-field
assumption implies the rank-one channel matrix. If we spread out the antennas
in one of the arrays to the point where the spherical wavefronts become
noticeable, the rank of the channel matrix will increase. A potential such
setup is illustrated in Figure 4.26, where the transmitter is equipped with a
ULA while the receiver is equipped with a distributed array of antennas. For
simplicity, we assume all the receive antennas are at the same distance d from
the transmitter’s center; thus, the antennas are deployed on the arc of a circle
with radius d. The figure illustrates that the angular difference between the
outermost receive antennas is called ϑ and the antennas are uniformly spaced
on the arc. We can obtain the exact channel matrix based on these geometrical
assumptions using (4.87), without making a plane-wave approximation, and
then compute the channel capacity using Theorem 3.1.

Figure 4.27 exemplifies the capacity in a setup with M = K = 4 antennas
and d = 2000λ (e.g., 200 m if λ = 0.1 m). The transmitter has a ULA with
∆ = λ/2 spacing. The receiver either has an identical compact ULA or a
distributed array of the kind illustrated in Figure 4.26 with either ϑ = 20◦ or
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Figure 4.27: Capacity of LOS MIMO channels with M = K = 4 where the transmitter is
equipped with a ULA, while the receiver is either equipped with a half-wavelength-spaced
ULA or a distributed array of the kind illustrated in Figure 4.26. The ideal MIMO capacity
4 log2(1 + SNR) is shown as a reference.

ϑ = 75◦. The figure shows how the channel capacity depends on the reference
SNR from (4.98), measured as in a SISO system. Recall that the multiplexing
gain determines the high-SNR slope of a capacity curve. We notice that the
slope differs between the curves; thus, the multiplexing gains differ. While a
receiver equipped with a compact ULA only achieves a multiplexing gain of
r = 1, a receiver with a distributed array can achieve a larger multiplexing
gain and, thereby, a steeper slope. The benefit of distributing the antennas
comes gradually as ϑ increases. The full multiplexing gain r = 4 is achieved
for ϑ = 75◦, but not for ϑ = 20◦.10 The reference curve 4 log2(1 + SNR) is
included to represent the ideal case when all the singular values of H are
equal. The setup with ϑ = 75◦ has the same slope but is slightly shifted to
the right since the singular values are unequal.

We can achieve a larger multiplexing gain when having a distributed array
because a single beam is too narrow to cover the entire receiver array. The
half-power beamwidth can be computed for the simulation example using
(4.58) and becomes 2 arcsin(0.886/4) ≈ 0.45 ≈ 26◦. The angle difference
between the adjacent receive antennas is 25◦ when ϑ = 75◦; hence, if we point
one beam towards each receive antenna, as illustrated in Figure 4.28, they
will barely overlap. This explains why we can nearly reach the ideal MIMO

10Strictly speaking, the rank of H is 4 in all the considered setups because all the singular
values are non-zero. However, it is not until the water-filling power allocation uses all the parallel
channels that the effective multiplexing gain becomes 4 and the slope increases to its maximum.
It is only for ϑ = 50◦ that all the parallel channels are utilized within the considered SNR range,
while the other setups have several singular values that are negligibly small.
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Figure 4.28: Illustration of how a transmitter with four antennas can transmit a superposition
of four beams, each carrying different data. Each beam has a different direction and focuses on
a different part of the receiver’s distributed array. This is how the MIMO channel capacity is
achieved when the receiver is so large that each main beam only reaches one antenna.

capacity in this setup. All the signals are sent from all the transmit antennas
to achieve narrow beams and reach all the receive antennas, but with varying
amplitudes and phases, so we can use the SVD to create four parallel channels
that are almost equally strong. In practice, this property can be utilized by
deploying base stations at different locations and serving each user device
using all of them to create a MIMO channel with a high rank. Such systems
are called Cell-free MIMO [2] or coordinated multipoint [52].

If we shift focus to the low-SNR regime, we can notice from Figure 4.27
that the ULA outperforms the two distributed arrays in this case (but the
margin is smaller for ϑ = 20◦). The reason is that the water-filling power
allocation will only utilize the subchannel with the largest singular value in
this case; thus, having a rank-one channel is preferable at low SNR because
then the maximum beamforming gain of MK can be achieved.

Example 4.12. Consider a MIMO system with M = K = 2 antennas. For
which SNR values will we achieve a higher capacity with a full-rank channel
matrix with two identical singular values than a rank-one channel matrix?

A rank-one channel has the capacity log2(1 +MKSNR) = log2(1 + 4SNR)
from (4.96), where SNR denotes the SNR of a corresponding SISO channel.
If the singular values are equal, the capacity becomes 2 log2(1 + SNR) where
there is a multiplexing gain, but the power allocation cancels the beamforming
gain. The full-rank channel matrix achieves a higher capacity if

2 log2(1 + SNR) ≥ log2(1 + 4SNR) ⇒ (1 + SNR)2 ≥ 1 + 4SNR
⇒ SNR ≥ 2. (4.99)
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A similar computation for the case M = K = 4 that was considered
in Figure 4.27 would result in (1 + SNR)4 ≥ 1 + 16SNR, which implies
SNR ⪆ 1.06 = 0.25 dB (which is an approximate number). We can observe
that this is the intersection point between the ULA curve and reference curve
in Figure 4.27. The intersection point will gradually reduce if we continue
increasing the number of antennas.

4.4.3 MIMO Channel Capacity in the Radiative Near-Field

The last section demonstrated that the rank of an LOS MIMO channel matrix
becomes larger than 1 when the receiving array has a size larger than the
transmitted signal’s beamwidth. This might happen even if the antennas
are gathered in a compact aperture but not under the far-field conditions
considered earlier. In this section, we instead consider the radiative near-field,
where the spherical curvature of the signals helps to increase the channel rank.

The half-power beamwidth of a ULA transmitting in the broadside direction
was shown in (4.58) to be 2 arcsin (0.886/M) when the antenna spacing is
∆ = λ/2. The beamwidth with an arbitrary antenna spacing ∆ can be
expressed as

ψ = 2 arcsin
(

0.886
M∆ 2

λ

)
= 2 arcsin

(0.443λ
Dt

)
≈ 0.886λ

Dt
radians, (4.100)

where Dt = M∆ denotes the aperture length of the transmitting ULA. The
approximation in (4.100) is based on that arcsin(x) ≈ x for x ∈ [0, 0.4] and is
therefore tight when the aperture length is at least a few wavelengths. The
expression in (4.100) shows that the beamwidth is narrow when either the
wavelength λ is small or the aperture length Dt is large. Since the beam
has a constant angular width, the physical width measured in meters grows
linearly with the propagation distance. At a distance d from the transmitter,
the physical beamwidth becomes

2d tan
(
ψ

2

)
≈ 2dψ2 = dψ ≈ 0.886λd

Dt
meters, (4.101)

where the approximations once again follow from the assumption that the
angles are small. Figure 4.29 illustrates this relationship between the aperture
length, half-power angular beamwidth, and physical beamwidth at a distance d.
If the receiver has a smaller aperture length than the physical beamwidth when
the beam is focused on the outermost antennas, as shown in the figure, we can
expect the channel matrix to have rank 1. The rank is higher when the receiver’s
aperture length Dr is larger than half the physical beamwidth ψ

2 d because then
we can focus different beams on the two outermost antennas (top and bottom)
and have limited overlap. In practice, the aperture lengths of the transmitter
and receiver are limited by the physical sizes of the respective devices. However,
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Figure 4.29: The half-power beamwidth ψ ≈ 0.886λ/Dt measures the angular width of the
transmitted beam containing most of the power. The physical beamwidth (in meters) experienced
at a distance d from the transmitter is approximately ψd. If the beam is focused on the outermost
antenna, half the physical beamwidth should be compared with the receiver’s aperture length
Dr. If it is smaller than ψd/2, as exemplified here, the channel matrix will have rank 1.

we can achieve a high-rank channel by reducing the wavelength (i.e., increasing
the carrier frequency), which is a distinct benefit of using the high-band
spectrum in LOS scenarios.

Example 4.13. Suppose the transmitter and receiver are equipped with ULAs
with the aperture length Dt = Dr = 1 m. For which propagation distances d
is half the physical beamwidth in (4.101) smaller than the receiver’s aperture?
Consider the wavelengths λ = 1 dm (3 GHz) and λ = 1 cm (30 GHz).

Half the physical beamwidth in (4.101) is smaller than Dr if

1
2

0.886λd
Dt

≤ Dr ⇒ d ≤ 2DtDr

0.886λ. (4.102)

The upper bound is similar to the Fraunhofer distance 2D2/λ if D = Dt = Dr.
Hence, the far-field plane wave approximation is not applicable when half the
transmitter’s beamwidth is smaller than the receiver’s aperture length. We
obtain the range d ≤ 22.6 m if λ = 1 dm and d ≤ 226 m if λ = 1 cm. Hence,
for practically sized arrays, we can utilize spherical wavefronts to achieve a
high-rank LOS channel if the distance and/or wavelength is small.

Figure 4.30 shows the capacity achieved when having ULAs with M =
K = 100 antennas at the transmitter and receiver. The wavelength is λ = 1 cm
(30 GHz) and the antenna spacing is ∆ = λ, which results in an aperture length
of Dt = Dr = 1 m as in the last example. The arrays are deployed parallel to
each other at a distance d that is varied on the horizontal axis. The SNR is
defined as in (4.98) and fixed at 20 dB.11 The capacity is substantially higher
for all the considered distances than the reference curve log2(1 +MK SNR),
which is achieved with a rank-1 channel matrix. However, the capacity curve
converges to this value as the distance grows large because then the far-field

11If the transmit power is fixed, the SNR is also distance-dependent. However, this example
focuses on showing how the singular values of the channel matrix depend on the propagation
distance in the radiative near-field, so we keep the SNR fixed to highlight this effect.
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Figure 4.30: The capacity of LOS MIMO channels with M = K = 100 where the transmitter
and receiver are equipped with ULAs. The channel matrix gets more non-zero singular values
with similar strengths at shorter propagation distances, which results in a higher capacity thanks
to the larger effective multiplexing gain. The rank-1 MIMO capacity log2(1 + MK SNR) is
shown as a reference curve and SNR = 20 dB.

approximation becomes valid. We get a higher capacity in the considered
range because H has multiple non-zero singular values, and the number grows
rapidly at short distances. When d = 2DtDr

0.886λ ≈ 226 m, which was derived in
(4.102) by comparing the transmitter’s beamwidth with the receiver’s aperture,
the capacity is roughly twice as large as in the far-field. The capacity changes
slowly with the distance, so we could alternatively use 2DtDr

λ = 200 m as the
approximate maximum distance for near-field spatial multiplexing because it
looks similar to the Fraunhofer distance. Both points are indicated in the figure.
In conclusion, for fixed aperture sizes at the transmitter and receiver, the
LOS channel matrix gets more non-zero singular values when the propagation
distance d shrinks because the physical beamwidth becomes smaller than the
receiver array.

When communicating between two locations separated by a distance of d,
we can optimize the antenna deployment to achieve the maximum channel
rank and equal singular values, which gives the ideal MIMO capacity at high
SNRs. For notational convenience and inspired by [53], we will consider two
ULAs with M antennas and matching antenna separation ∆. The ULAs are
parallel and located in each other’s broadside directions. The antennas with
the same index in the two ULAs are separated by the distance d, as illustrated
in Figure 4.31. It then follows from the Pythagorean theorem that the distance
between antenna k at the transmitter and antenna m at the receiver is

dm,k =
√
d2 + (m− k)2∆2 = d

√
1 + (m− k)2∆2

d2 ≈ d
(

1 + (m− k)2∆2

2d2

)
,

(4.103)
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Figure 4.31: Illustration of a MIMO communication setup with two parallel ULAs with the
same number of antennas and antenna spacing ∆. The distance between transmit antenna k
and receive antenna m is

√
d2 + (m− k)2∆2 and can be Fresnel approximated as in (4.103).

where we used the first-order Taylor approximation
√

1 + x2 ≈ 1 + x2

2 that
is tight for 0 ≤ x ≤ 0.25. Therefore, the approximate expression is tight
when the distance d exceeds the aperture length. Despite the approximation
in (4.103), the derivations that will follow in this section are more accurate
than the far-field approximation in (4.88), which corresponds to making the
approximation

√
d2 + (m− k)2∆2 ≈ d. More precisely, it is the difference

between using a first-order and zeroth-order Taylor approximation of the
distance between antennas. The simplification in (4.103) is called the Fresnel
approximation [54] and models the waves as parabolic. We say that we operate
in the radiative near-field region (also known as the Fresnel zone) when the
Fresnel approximation is tight, but the far-field approximation is not.

If we return to the general MIMO channel matrix expression in (4.87) and
make use of the Fresnel approximation in (4.103) and that K = M , we obtain

H =
√
β


1 e−jπ 12∆2

λd . . . e−jπ (M−1)2∆2
λd

e−jπ 12∆2
λd 1 . . . e−jπ (M−2)2∆2

λd

...
... . . . ...

e−jπ (M−1)2∆2
λd e−jπ (M−2)2∆2

λd . . . 1

 , (4.104)

where β = λ2

(4π)2
1
d2 is an accurate approximation of the channel gain in these

cases. We recall from Example 3.7 that the singular values of H are also the
square roots of the eigenvalues of HHH. If the columns of H are mutually
orthogonal, then HHH = MβIM and all the singular values will be

√
Mβ.

Orthogonality between the columns can be achieved by fine-tuning the antenna
spacing ∆. The magnitude of the inner product between the kth and lth



264 Line-of-Sight Point-to-Point MIMO Channels

column (for l ̸= k) can be computed as

β

∣∣∣∣∣∣∣∣∣∣∣


e−jπ (k−1)2∆2

λd

e−jπ (k−2)2∆2
λd

...
e−jπ (k−M)2∆2

λd



H 
e−jπ (l−1)2∆2

λd

e−jπ (l−2)2∆2
λd

...
e−jπ (l−M)2∆2

λd



∣∣∣∣∣∣∣∣∣∣∣
= β

∣∣∣∣∣
M∑
m=1

ejπ (k−m)2∆2
λd e−jπ (l−m)2∆2

λd

∣∣∣∣∣

= β

∣∣∣∣∣
M∑
m=1

ejπ 2(m−1)(l−k)∆2
λd

∣∣∣∣∣ = β

∣∣∣∣∣∣1− e
jπ 2M(l−k)∆2

λd

1− ejπ 2(l−k)∆2
λd

∣∣∣∣∣∣
2

= β

∣∣∣∣∣∣
sin
(
πM(l−k)∆2

λd

)
sin
(
π (l−k)∆2

λd

)
∣∣∣∣∣∣ .

(4.105)
The second equality follows from multiplying with e−jπ∆2

λd (k2−l2+2(l−k)) inside
the magnitude to remove terms that are independent of m. This can be done
since this term has unit magnitude. We used the formula for geometric series
similarly as in (4.52) to obtain the final expression in (4.105).

If we select the antenna spacing so that M∆2

λd = 1, then the numerator in
(4.105) is zero while the denominator is non-zero, because |l− k| ≤M − 1 for
l, k ∈ {1, . . . ,M}. Hence, if the antenna spacing in the two antenna arrays is

∆ =
√
λd

M
, (4.106)

the columns of the channel matrix in (4.104) are mutually orthogonal. The
aperture lengths of the ULAs are D = M∆ =

√
Mλd, which shrinks when the

carrier frequency fc = c/λ is increased. The length grows with the number of
antennas but slower than linear since the antenna spacing reduces with M .

Since there are M singular values that equal
√
Mβ, the water-filling

power allocation will assign the power equally between them. Hence, for
the considered setup with two parallel M -antenna ULAs and the optimized
antenna spacing in (4.106), the MIMO capacity in (3.75) becomes

C = M log2

(
1 + q

M

Mβ

N0

)
= M log2

(
1 + qβ

N0

)
bit/symbol. (4.107)

This is the ideal capacity from a multiplexing perspective.

Example 4.14. Suppose we want to design an LOS MIMO system with
M = K = 32 antennas where the propagation distance is d = 50 m. Which
antenna spacing is needed to achieve M identical singular values if λ = 1 cm
(30 GHz)? What is the resulting aperture length?

The antenna spacing in (4.106) becomes ∆ =
√

λd
M = 0.125 m, which is

12.5 wavelengths. This unusually large separation will enable the receiver to
detect the spherical wavefronts. The aperture length becomes M∆ = 4 m.



4.4. Modeling of Line-of-Sight MIMO Channels 265

Transmitter Receiver

Figure 4.32: When the antenna spacing of the ULAs in Figure 4.31 is optimized according
to (4.106), then the channel matrix has a full rank, all the singular values are equal, and the
capacity is achieved by transmitting independent signals from each antenna (as illustrated by
the coloring). The receiver will use the phase-shift variations created by the spherical wavefronts
to separate the transmitted signals.

The antenna spacing was fine-tuned in (4.106) to achieve orthogonal
columns in H. The singular value decomposition is

H = 1√
M


e−jπ 02

M . . . e−jπ (M−1)2
M

e−jπ 12
M . . . e−jπ (M−2)2

M

... . . . ...
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M . . . e−jπ 02
M


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=U
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√
βM 0 . . .

0 . . . 0
... 0

√
βM


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=Σ

IM︸︷︷︸
=VH

,

(4.108)
where the left singular vectors in U are the normalized columns of H in
(4.104) when using the antenna spacing in (4.106). The matrix V with the
right singular vectors is an identity matrix and is used for precoding. The
transmitted signal becomes x = Vx̄ = x̄, which implies that each of the
independent signals in x̄ is transmitted from only one of the antennas. The
receiver then utilizes the fact that the spherical wavefronts create varying
phase-shifts over the receive antennas to separate the signals while achieving
identical signal strengths for all of them. This mode of operation is illustrated
in Figure 4.32. This structure is unique to the optimized antenna spacing,
which is fine-tuned so that when the receiver focuses a beam on a transmit
antenna, the other antennas are exactly at the nulls of the beam pattern. If we
use slightly different spacings, the channel matrix will have slight variations
in the singular values, and the precoding will not reduce to transmitting
independent signals from the antennas.

We analyzed parallel ULAs in this section, in which case all the phase-shifts
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in H are caused by the spherical wavefronts. When the arrays are rotated
differently, there will be further phase-shifts since plane waves will also give
rise to that, as shown in (4.90) for far-field communication. The unique
feature of communicating in the radiative near-field is that the MIMO channel
matrix gets a higher rank than 1 because the phase-shifts caused by the
spherical wavefronts vary non-linearly with the antenna index. The traditional
Fraunhofer distance 2D2/λ is unable to determine the upper limit of the
near-field region of MIMO channels because it was derived for a MISO/SIMO
channel with an aperture length of D on one side and a single isotropic antenna
on the other side. In MIMO scenarios, we must take both the transmitter’s
aperture length Dt into account since it determines the narrowness of the
beam and consider the receiver’s aperture length Dr because it determines the
ability to observe spherical wavefronts. One way to characterize the radiative
near-field is that the propagation distance d must satisfy

d ≤ 2DtDr

λ
, (4.109)

where the upper bound is called the near-field multiplexing distance. We stress
that this is a rule-of-thumb for when we can at least double the capacity
compared to the far-field, but the capacity value varies slowly around this
value, so alternative upper limits can be defined.

4.5 Three-Dimensional Far-Field Channel Modeling

The MIMO channel matrix expression in (4.87) depends on the exact propa-
gation distances between every pair of transmit and receive antennas; thus,
it can be utilized to model any free-space LOS channel. In contrast, all the
simplified expressions for ULAs that have been derived so far are limited in
their generality by the choice of array geometry and the assumption that all
antennas are located in the same two-dimensional plane. When analyzing
SIMO and MISO channels with ULAs, we can always define the coordinate
system such that all antennas are located in the same plane. By contrast,
this is not always possible in the MIMO case; for example, one array might
be deployed horizontally and the other array vertically. In this section, we
will consider the general case where the transmitter and receiver can have
arbitrary array geometries. The only limiting assumption is that the receiver
is in the far-field of the transmitter.

We begin by considering the SIMO setup illustrated in Figure 4.33, where
a single-antenna transmitter sends a signal toward two receive antennas. The
receive antennas are in the far-field of the transmitter; thus, the impinging
wavefront can be approximated as planar. The location of each antenna
is represented by a three-dimensional vector, representing a point in the
three-dimensional world. Suppose we define the coordinate system such that
one receive antenna is located in the origin, denoted by 0 = [0, 0, 0]T. The
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Figure 4.33: Illustration of a setup with two receive antennas, one located at the origin 0 and
one at location u, receiving a planar wavefront emitted by a transmitter at location d. The
unit-length vector ρ points out the direction leading towards the transmitter. The difference in
propagation distance between the two receive antennas is uTρ.

transmitter location is d ∈ R3, while the location of the other receive antenna
is u ∈ R3. The impinging wave will generally reach the receive antennas at
slightly different times, determined by the difference in propagation distances,
leading to phase differences when the signals are sampled simultaneously. To
determine this phase difference, we define the unit length vector

ρ = d
∥d∥ (4.110)

that points from the origin towards the transmitter. Since the planar wavefront
propagates perpendicular to ρ, we can determine the path difference between
the two receive antennas by projecting the location u of the second receive
antenna onto ρ. The orthogonal projection is given by uTρ ∈ R and represents
how much shorter the distance is to the second receive antenna, compared to
the distance to the antenna in the origin. A negative value implies a longer
distance to the second antenna.

Suppose the impinging signal has wavelength λ. In that case, uTρ/λ
represents how many wavelengths shorter the propagation distance is to the
second antenna, while the corresponding phase-shift is

−2π
λ

uTρ. (4.111)

The channel response will then be
√
βej 2π

λ uTρ, where β ∈ [0, 1] is the channel
gain and the minus sign disappeared since phase-shifts appear with a minus
in channel models. Recall that the unit-length vector ρ specifies the direction-
of-arrival of the planar wavefront using Cartesian coordinates; however, it can
be more instructive to describe it using angles. To this end, we will make use
of the spherical coordinate system, defined in Figure 1.9, and parametrize
the directional vector ρ in terms of the azimuth angle φ ∈ [−π, π) and
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Figure 4.34: Illustration of a setup where a planar wave impinges on an array with M receive
antennas from the azimuth angle φ and elevation angle θ.

the elevation angle θ ∈ [−π/2, π/2]. The one-to-one mapping between these
coordinate systems was stated in (1.22) and implies that

ρ =

cos(φ) cos(θ)
sin(φ) cos(θ)

sin(θ)

 . (4.112)

By substituting (4.112) into (4.111), we can represent the phase-shift using
the azimuth and elevation angles.

We will now consider a SIMO channel with M receive antennas where the
location of antenna m is denoted by um ∈ R3, as illustrated in Figure 4.34. A
planar wave is impinging from the angular direction (φ, θ), measured from
the origin wherever it might be. None of the antennas need to be located at
the origin, but we will still utilize it as the reference point when computing
the phase-shifts. More precisely, the sampling delay is selected to obtain a
zero-valued phase-shift at the origin. The phase-shift at the mth antenna will
then be −2πuT

mρ/λ, where ρ is computed using (4.112). We can define the
array response vector

a(φ, θ) =


ej 2π

λ uT
1 ρ

ej 2π
λ uT

2 ρ

...
ej 2π

λ uT
Mρ

 (4.113)

as the normalized channel vector (i.e., without the channel gain) for the case
when the impinging signal has the angles-of-arrival (φ, θ). If all the antennas
are isotropic and β = λ2/(4πd)2 denotes the channel gain at a propagation
distance of d, then the SIMO channel vector can be expressed using (4.113) as

h =
√
βa(φ, θ). (4.114)

This channel vector can also be utilized for the MISO channel obtained by
reversing the roles of the transmitter and receiver.
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Example 4.15. Consider two receive antennas deployed on the y-axis at the
locations u1 = [0, λ/4, 0]T and u2 = [0,−λ/4, 0]T. What is the array response
vector a(φ, θ)? How does a(φ, θ) depend on the azimuth angle φ when the
elevation angle is θ = 0 or θ = π/2?

The antenna separation is λ/2. The array response vector for an arbitrary
angle (φ, θ) is obtained using (4.113) as

a(φ, θ) =
[
ej 2π

λ uT
1 ρ

ej 2π
λ uT

2 ρ

]
=
[
ejπ2 sin(φ) cos(θ)

e−jπ2 sin(φ) cos(θ)

]
. (4.115)

When θ = 0, (4.115) simplifies to

a(φ, 0) =
[
ejπ2 sin(φ)

e−jπ2 sin(φ)

]
, (4.116)

where there is a phase-shift difference of π sin(φ) between the antennas. The
same phase difference between the adjacent antennas was obtained in (4.23)
for a ULA with ∆ = λ/2 that was also deployed along the y-axis.

When θ = π/2, the transmitter is at a point along the z-axis and is
unaffected by φ since ρ = [0, 0, 1]T. Hence, the impinging wave is always from
the broadside direction, and the corresponding array response vector is

a(φ, π/2) =
[
1
1

]
. (4.117)

4.5.1 Array Response Vector with a ULA in Three Dimensions

We will now particularize the array response vector in (4.113) for a ULA with
M antennas where the spacing is ∆. We assume that the ULA is deployed
along the y-axis, with the first antenna located in the origin and the remaining
antennas located along the negative side of the axis. This assumption can be
made without losing generality since we can rotate the coordinate system as
we like. Under these assumptions, the location of receive antenna m becomes

um =

 0
−(m− 1)∆

0

 . (4.118)

This setup is illustrated in Figure 4.35. The inner product between the location
vector in (4.118) and the direction-of-arrival vector in (4.112) becomes

uT
mρ =

 0
−(m− 1)∆

0

T cos(φ) cos(θ)
sin(φ) cos(θ)

sin(θ)

 = −(m− 1)∆ sin(φ) cos(θ). (4.119)
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]
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∆
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Figure 4.35: Illustration of a setup where a planar wave impinges on a ULA with M receive
antennas from the azimuth angle φ and elevation angle θ.

If we substitute (4.119) into (4.113), we obtain the array response vector for
a ULA as

aM (φ, θ) =


1

e−j2π∆ sin(φ) cos(θ)
λ

...
e−j2π (M−1)∆ sin(φ) cos(θ)

λ

 (4.120)

where the subscript denotes the number of antennas. This is a generalization
of the previous array response vector in (4.37) since the impinging wave can
arrive from any angular direction (not limited to the horizontal xy-plane).

Example 4.16. Consider a ULA with M antennas deployed along the z-
axis. The antenna spacing is ∆ and the mth element is located at um =
[0, 0,−(m− 1)∆]T. What is the array response vector?

This ULA is deployed vertically. The inner product between the location
vector um and the direction-of-arrival vector in (4.112) becomes

uT
mρ =

 0
0

−(m− 1)∆

T cos(φ) cos(θ)
sin(φ) cos(θ)

sin(θ)

 = −(m− 1)∆ sin(θ). (4.121)

The array response vector of this vertical ULA is obtained by substituting
(4.121) into (4.113), which yields

a(φ, θ) =
[
1, e−j2π∆ sin(θ)

λ , . . . , e−j2π (M−1)∆ sin(θ)
λ

]T

. (4.122)

This expression differs from the one in (4.120) for a horizontal ULA, due
to the different deployment directions compared to the assumed spherical
coordinate system. However, (4.122) matches with aM (θ, 0) from (4.120) when
the elevation angle is zero while the azimuth angle is replaced by θ.
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There are many ways to express the array response vector of a ULA,
depending on how the coordinate system is rotated compared to it. Two exam-
ples are given in (4.120) and (4.122). While the transmitter’s location relative
to the receiver matters when determining the beamwidth, the communication
performance is the same irrespective of how the coordinate system is rotated.
A three-dimensional array response model is necessary when there are multiple
impinging wavefronts via different propagation paths, so we cannot rotate the
coordinate system to place everything in a two-dimensional plane.

4.5.2 Array Response Vector with a Uniform Planar Array

Many practical antenna arrays are planar, which means that the antennas are
deployed in two dimensions: one horizontally and one vertically. There are
three main benefits of this. Firstly, if an array is designed with a maximally
allowed aperture length, we can fit more antennas by distributing them over
two dimensions. This is because the length is then measured diagonally, as
previously illustrated in Figure 4.1(c). This allows for a larger beamforming
gain in a size-constrained deployment. Secondly, a horizontal ULA can have a
small beamwidth in the horizontal plane while it spreads the power equally
over all elevation angles (see Figure 4.18). Since the prospective users are
typically below the base station (i.e., the elevation angles of interest are
θ ∈ [−π/2, 0]), half of the power is lost by radiating it into the sky. A planar
array can have a small beamwidth also in the vertical plane. Thirdly, a planar
array is capable of 3D beamforming, where it points different beams towards
objects/users located in similar azimuth angles but different elevation angles.

We will analyze the canonical form of a planar array: the uniform planar
array (UPA) where the antennas are deployed on an evenly spaced grid in
two dimensions, as illustrated in Figure 4.36. Each row has MH antennas with
the spacing ∆ between the adjacent antennas. Similarly, each column has MV
antennas with the spacing ∆ between adjacent antennas.12 Since there are
MV rows and MH columns, the total number of antennas is M = MHMV.
The horizontal spacing between the centers of the two outermost antennas in
each row is (MH − 1)∆. Similarly, the vertical spacing between the centers of
the two outermost antennas in each column is (MV− 1)∆. Since each antenna
also has a physical size, we will denote the horizontal length as MH∆ and the
vertical length as MV∆ (in line with what we did when analyzing ULAs).

The aperture length D is measured along the diagonal of the UPA. It
follows from the Pythagorean theorem that

D =
√

(MH∆)2 + (MV∆)2 =
√
M2

H +M2
V∆. (4.123)

12We have selected equal horizontal and vertical antenna spacings for notational convenience,
but this assumption can be generalized. It makes sense for devices to have the same spacings in
both dimensions because they can be rotated freely by the user. However, fixed base stations
commonly use a larger vertical than horizontal spacing to achieve a narrower vertical beamwidth.
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Figure 4.36: Illustration of a setup where a planar wave impinges on a UPA from the azimuth
angle φ and elevation angle θ. The UPA has MH antennas per row and MV antennas per column
on a grid in the yz-plane. The horizontal and vertical spacings are ∆.

Example 4.17. Consider an array with M = 100 antennas with ∆ = λ/2
spacing that is designed for λ = 0.1 m (i.e., 3 GHz). Compare the aperture
lengths obtained if the array is a ULA or a UPA with 10× 10 antennas.

With the ULA configuration, the aperture length is D = M∆ = 100·0.05 =
5 m. With the square-shaped UPA configuration, the aperture length in (4.123)
becomes D =

√
102 + 102 ·0.05 =

√
2 ·0.5 ≈ 0.7 m. The horizontal and vertical

lengths of the UPA are 10 · 0.05 = 0.5 m, which is ten times smaller than with
the ULA. In conclusion, the UPA configuration enables the given number
of antennas to be deployed in a physically smaller form factor. This feature
enables large numbers of antennas in practical deployments.

We will now particularize the general array response vector expression
in (4.113) for a UPA with the antenna spacing ∆. We assume that the UPA
is deployed along the yz-plane with the first antenna located in the origin
and the remaining antennas located along the negative side of the y-axis and
z-axis, as illustrated in Figure 4.36. This assumption can be made without
loss of generality since we can define/rotate the coordinate system as we like.
There are MV rows, each extending horizontally along the negative y-axis and
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Figure 4.37: Illustration of a UPA with M = 20 antennas, which are divided into MH = 5
antennas per row and MV = 4 antennas per column. The antennas are numbered row-by-row
from 1 to 20, as shown in the figure. When characterizing the array response vector, it is useful
to characterize the horizontal index as in (4.124) and the vertical index as in (4.125).

containing MH antennas. Similarly, there are MH columns, each extending
vertically along the negative z-axis and containing MV antennas.

The first antenna is located in the origin. Suppose the antennas are
then consecutively indexed row-by-row by m ∈ {1, . . . ,M}, where M =
MHMV is the total number of antennas. The horizontal index of the first
MH antennas will be 0, 1, . . . ,MH − 1. These indices are repeated on each
row; thus, the antennas (n − 1)MH + 1, . . . , nMH also have the horizontal
indices 0, 1, . . . ,MH − 1, for n = 2, . . . ,MV. Using this row-by-row indexing,
the horizontal index of antenna m can be computed as

i(m) = (m− 1)−MH

⌊
m− 1
MH

⌋
∈ {0, 1, . . . ,MH − 1}, (4.124)

where ⌊·⌋ rounds the argument to the closest smaller or equal integer. The
computation in (4.124) gives the remainder when dividing m− 1 by MH and
is known as the modulo operation.

Next, we will define the vertical index, which will be 0 for the MH antennas
on the first row. The vertical index will then be n − 1 for the antennas
(n − 1)MH + 1, . . . , nMH, for n = 2, . . . ,MV. Hence, the vertical index of
antenna m can be obtained as

j(m) =
⌊
m− 1
MH

⌋
∈ {0, 1, . . . ,MV − 1}, (4.125)

which returns the integer-valued quotient when dividing m− 1 by MH. The
mapping between antenna numbers and horizontal/vertical indices is illus-
trated in Figure 4.37 for a UPA with MH = 5 and MV = 4.
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Under these indexing assumptions, the location of antenna m becomes

um =

 0
−i(m)∆
−j(m)∆

 . (4.126)

The inner product between the location vector in (4.126) and the direction-of-
arrival vector in (4.112) becomes

uT
mρ =

 0
−i(m)∆
−j(m)∆

T cos(φ) cos(θ)
sin(φ) cos(θ)

sin(θ)

 = −i(m)∆ sin(φ) cos(θ)−j(m)∆ sin(θ).

(4.127)
If we substitute (4.127) into (4.113), we obtain the array response vector for
the UPA as

aMH,MV(φ, θ) =


1

e−j 2π
λ (i(2)∆ sin(φ) cos(θ)+j(2)∆ sin(θ))

...
e−j 2π

λ (i(M)∆ sin(φ) cos(θ)+j(M)∆ sin(θ))



=



1 ·


1

e−j2π∆ sin(φ) cos(θ)
λ

...
e−j2π (MH−1)∆ sin(φ) cos(θ)

λ



e−j2π∆ sin(θ)
λ ·


1

e−j2π∆ sin(φ) cos(θ)
λ

...
e−j2π (MH−1)∆ sin(φ) cos(θ)

λ


...

e−j2π (MV−1)∆ sin(θ)
λ ·


1

e−j2π∆ sin(φ) cos(θ)
λ

...
e−j2π (MH−1)∆ sin(φ) cos(θ)

λ





=


1 · aMH(φ, θ)

e−j2π∆ sin(θ)
λ · aMH(φ, θ)

...
e−j2π (MV−1)∆ sin(θ)

λ · aMH(φ, θ)

 = aMV(θ, 0)⊗ aMH(φ, θ).

(4.128)

The subscript of aMH,MV(φ, θ) denotes the number of antennas along the
horizontal and vertical axes, respectively. The derivation utilizes the fact that
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the horizontal index changes between each entry while the vertical index
only changes after MH entries. On the last row in (4.128), we first recognize
the array response vector aMH(φ, θ) in (4.120) for a horizontally deployed
ULA with MH antennas with separation ∆. Next, we identify a Kronecker
product between this vector and the array response vector aMV(θ, 0) of a
vertically deployed ULA with MV antennas with separation ∆. This setup
was previously characterized in Example 4.16.

In summary, the array response vector of a UPA is a concatenation of
the array response vectors of two ULAs computed through a Kronecker
product. Each vector entry contains the phase-shift the corresponding antenna
experiences compared to the first antenna in the UPA, located in the origin.
The phase-shift depends on the azimuth angle φ, elevation angle θ, antenna
spacing ∆, and the number of horizontal and vertical antennas. Note that if
we set MV = 1 and M = MH, the array response vector in (4.128) reduces to
the previous result in (4.120) for an M -dimensional horizontal ULA.

Example 4.18. What is the array response vector of a UPA with MH = 2,
MV = 3, and the antenna spacing ∆ = λ/2?

According to (4.128), we can compute the array response vector as

a2,3(φ, θ) = a3(θ, 0)⊗ a2(φ, θ), (4.129)

which is the Kronecker product between the array response vectors of two
ULAs. We can compute those vectors using (4.120) as

a3(φ, θ) =

 1
e−jπ sin(θ)

e−j2π sin(θ)

 , a2(φ, θ) =
[

1
e−jπ sin(φ) cos(θ)

]
. (4.130)

We can now use the definition (2.54) of a Kronecker product to compute the
UPA’s array response vector as

a2,3(φ, θ)=


1 ·
[

1
e−jπ sin(φ) cos(θ)

]
e−jπ sin(θ) ·

[
1

e−jπ sin(φ) cos(θ)

]
e−j2π sin(θ) ·

[
1

e−jπ sin(φ) cos(θ)

]


=



1
e−jπ sin(φ) cos(θ)

e−jπ sin(θ)

e−jπ sin(θ)e−jπ sin(φ) cos(θ)

e−j2π sin(θ)

e−j2π sin(θ)e−jπ sin(φ) cos(θ)


.

(4.131)

4.5.3 Horizontal and Vertical Beamwidths with UPAs

The beamwidth has been characterized previously in this chapter for a ULA,
but only considering the horizontal plane where θ = 0. In this section, we
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will extend the analysis from Section 4.3.4 to the case of a UPA and derive
the beamwidths of 3D beamforming. The channel vector for a UPA with an
arbitrary antenna spacing ∆ and wavelength λ is h =

√
βaMH,MV(φ, θ), where

β is the channel gain and the array response vector is given by (4.128).
Suppose we transmit a signal in the direction (φbeam, θbeam), where φbeam ∈

[−π/2, π/2] is the azimuth angle and θbeam ∈ [−π/2, π/2] is the elevation
angle, using MRT with p = a∗

MH,MV
(φbeam, θbeam)/∥aMH,MV(φbeam, θbeam)∥.

We can then follow the approach in (4.75) to determine the beamforming gain
that is observed by a receiver located in any another direction φ ∈ [−π/2, π/2],
θ ∈ [−π/2, π/2]:∣∣∣∣∣aT
MH,MV

(φ, θ)
a∗
MH,MV

(φbeam, θbeam)
∥aMH,MV(φbeam, θbeam)∥

∣∣∣∣∣
2

= 1
MHMV

∣∣(aMV(θ, 0)⊗ aMH(φ, θ))T (aMV(θbeam, 0)⊗ aMH(φbeam, θbeam))∗∣∣2
= 1
MV

∣∣aT
MV

(θ, 0)a∗
MV

(θbeam, 0)
∣∣2 1
MH

∣∣aT
MH

(φ, θ)a∗
MH

(φbeam, θbeam)
∣∣2

= 1
MH

∣∣∣∣∣∣∣∣
MH∑
m=1

e

−j 2π∆(m−1)
λ

(
sin(φ) cos(θ)− sin(φbeam) cos(θbeam)︸ ︷︷ ︸

=Φ

)∣∣∣∣∣∣∣∣
2

︸ ︷︷ ︸
=AMH (Φ)

× 1
MV

∣∣∣∣∣∣∣∣
MV∑
n=1

e

−j 2π∆(n−1)
λ

(
sin(θ)− sin(θbeam)︸ ︷︷ ︸

=Ω

)∣∣∣∣∣∣∣∣
2

︸ ︷︷ ︸
=AMV (Ω)

, (4.132)

where the first equality utilizes the expression in (4.128) and the fact that
∥aMH,MV(φbeam, θbeam)∥2 = MHMV. The second equality utilizes the Kro-
necker product property (a ⊗ b)T(c⊗ d)∗ = (aTc∗ ⊗ bTd∗) which holds for
any vectors a,b, c,d with matching dimensions.

We notice that the beamforming gain expression in (4.132) is decomposed
as the product of the two terms that we denote as AMH(Φ) and AMV(Ω),
which depend on the angles through the variables

Φ = sin(φ) cos(θ)− sin(φbeam) cos(θbeam), (4.133)
Ω = sin(θ)− sin(θbeam). (4.134)

Each of these functions has the same structure as the beamforming gain
function considered in Section 4.3.4. More precisely, we can use the summation
formula for geometric series in (4.51) and Euler’s formula to compute the
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horizontal function AMH(Φ) as

AMH(Φ) = 1
MH

sin2
(
MH

π∆Φ
λ

)
sin2

(
π∆Φ
λ

) = 1
MH

sin2 (πLH,λΦ)
sin2 (π∆λΦ)

, (4.135)

which equals A(Φ) in (4.79) when M = MH. The last equality in (4.135)
follows from using the notation ∆λ = ∆/λ for the normalized antenna spacing
and by defining the normalized horizontal length of the UPA as

LH,λ = MH∆
λ

= MH∆λ. (4.136)

Whenever the numerator and denominator in (4.135) are zero simultaneously
(e.g., if Φ = 0), it follows from the geometric series formula that the function
value is MH. We will not write this out to keep the expression compact.

Similarly, the vertical function AMV(Ω) in (4.132) can be expressed as

AMV(Ω) = 1
MV

sin2
(
MV

π∆Ω
λ

)
sin2

(
π∆Ω
λ

) = 1
MV

sin2 (πLV,λΩ)
sin2 (π∆λΩ)

, (4.137)

which is equal to A(Φ) in (4.79) when Φ = Ω and M = MV. The last equality
in (4.137) follows from defining the normalized vertical length of the UPA as

LV,λ = MV∆
λ

= MV∆λ. (4.138)

In summary, the beamforming gain in (4.132) that is obtained in the angular
direction (φ, θ) can be expressed as

AMH(Φ)AMV(Ω) = 1
M

sin2 (πLH,λΦ)
sin2 (π∆λΦ)

sin2 (πLV,λΩ)
sin2 (π∆λΩ)

. (4.139)

The maximum beamforming gain is M and is achieved for φ = φbeam and
θ = θbeam (the intended beamforming direction) because in that case, we have
Φ = Ω = 0.13 We further notice that the maximum gain, M , only depends on
the number of antennas and not on the antenna spacing, which aligns with
the analysis of ULAs earlier in this chapter.

The beamforming gain AMH(Φ)AMV(Ω) is generally smaller than the
number of antennas M . Depending on the angles (φ, θ) and (φbeam, θbeam),
the input variables can take values in the ranges Φ ∈ [−2, 2] and Ω ∈ [−2, 2].
For given values of Φ and Ω, the function value is determined by M , the
normalized antenna spacing ∆λ, the normalized horizontal length LH,λ, and the
normalized vertical length LV,λ. It is always the relative distances compared
to the wavelength that matters in this context.

13It follows from (4.132) that AMH (0) = MH and AMV (0) = MV.
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Example 4.19. What is the area of a UPA? How does the SIMO capacity in
(4.25) depend on the UPA’s area if ∆ = λ/2?

The horizontal length of the UPA is MH∆ and the vertical length is MV∆;
thus, the area is Area = MH∆ ·MV∆ = M∆2. By utilizing the fact that
β = λ2

(4π)2
1
d2 , we can express the SIMO capacity in (4.25) as

C = B log2

(
1 + PMλ2

BN0(4πd)2

)
= B log2

(
1 + P

BN0(2πd)2 Area
)
. (4.140)

The SNR in this capacity expression is proportional to the array area but
independent of the wavelength. The reason is that an isotropic transmit
antenna radiates identically irrespective of the wavelength, while it is the
area of the receiver array that determines what fraction of the signal power it
captures. However, Area = Mλ2/4, so if the wavelength reduces, the number
of antennas must grow as 1/λ2 to maintain the array area.

By following the same steps as in Section 4.3.4, one can show that the
numerator of AMH(Φ) is a periodic function of Φ with period 1/LH,λ =
1/(MH∆λ) and the denominator is periodic with period 1/∆λ. Similarly,
the numerator of AMV(Ω) is a periodic function of Ω with period 1/LV,λ =
1/(MV∆λ) and the denominator is periodic with period 1/∆λ. Hence, both
AMH(Φ) and AMV(Ω) have a period of 1/∆λ. We also have that

AMH

(
m

LH,λ

)
= 0, m = ±1, . . . ,±(MH − 1), (4.141)

AMV

(
n

LV,λ

)
= 0, n = ±1, . . .± (MV − 1). (4.142)

These points correspond to the nulls of the beamforming gain pattern and
thereby characterize the beamwidths. It is sufficient that one of these functions
is zero to obtain a null. This implies that for a given value of θ, we can find a
value of φ that results in a null (and vice versa). One can measure both the
horizontal and vertical beamwidths, which are generally different.

We will consider a few special cases to shed light on the angular locations
of the nulls. We begin by considering the horizontal plane where θ = θbeam =
0. We then have Ω = sin(θ) − sin(θbeam) = 0 and Φ = sin(φ) cos(θ) −
sin(φbeam) cos(θbeam) = sin(φ)− sin(φbeam). The latter coincides with (4.78)
that was derived for a ULA; thus, the horizontal beamwidth of a UPA is the
same as for a ULA with the same number of antennas horizontally.

Figure 4.38 shows the beamforming gain in (4.139) when transmitting
in the broadside direction where φbeam = 0 and θbeam = 0, which results
in AMH(Φ)AMV(Ω) = MVAMH(sin(φ)). The antenna spacing is ∆λ = 1/2
wavelengths. We compare two arrays: i) a UPA with MH = 10 horizontal
antennas and MV = 4 vertical antennas; ii) a ULA with M = MH = 10
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Figure 4.38: Comparison of the beamforming gain in (4.139) with a UPA (MH = 10, MV = 4)
and a ULA (M = MH = 10, MV = 1) in the horizontal plane where θ = 0. The arrays transmit
in the broadside direction φbeam = 0 and θbeam = 0.

horizontal antennas (and MV = 1). The beamforming gain is shown as a
function of the observation azimuth angle φ in the horizontal plane (where
θ = 0). The figure validates that the beamforming gain in this plane is only
determined by the horizontal lengths of the arrays, which are identical for
the UPA and ULA. Hence, the null locations and the shape of the lobes are
the same in both cases. However, since the UPA has M = 40 antennas while
the ULA has M = 10, there is a 40/10 ≈ 6 dB vertical difference between the
beamforming gain patterns. The maximum beamforming gain for the UPA is
40 ≈ 16 dB, whereas the maximum beamforming gain for the ULA is 10 dB.

If we keep transmitting in the broadside direction but consider the plane
where θ = π/4, then we have Ω = sin(θ) − sin(θbeam) = 1/

√
2 and Φ =

sin(φ) cos(θ) − sin(φbeam) cos(θbeam) = sin(φ)/
√

2. The beamforming gain
for different azimuth angles will then be determined by AMH(Φ)AMV(Ω) =
AMH(sin(φ)/

√
2)AMV(1/

√
2). The division by

√
2 in the first factor leads to

a widening of the beamwidth compared to having θ = 0, while the second
factor leads to a loss in beamforming gain since AMV(1/

√
2) < 1 for MV > 1.

Figure 4.39 compares the beamforming gains observed at different azimuth
angles when the elevation angle is either θ = 0 or θ = π/4. As expected, the
nulls move outwards when θ increases so that the beamwidth increases, but
the beamforming gain is reduced.

The vertical beamwidth only depends on the number of vertical antennas.
To show this, we continue transmitting in the broadside direction (i.e., φbeam =
θbeam = 0) and consider the vertical plane where φ = 0. We then have
Φ = sin(φ) cos(θ) − sin(φbeam) cos(θbeam) = 0 and AMH(0) = MH. On the
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Figure 4.39: The beamforming gain that is observed in different azimuth directions φ when a
UPA with MH = 10 and MV = 4 transmits a beam in the broadside direction φbeam = 0 and
θbeam = 0. The pattern depends on the elevation angle θ.

other hand, Ω = sin(θ)− sin(θbeam) = sin(θ). From (4.142), the 2⌊LV,λ⌋ null
directions are obtained as14

θ = arcsin
(

n

LV,λ

)
, n = ±1, . . . ,±⌊LV,λ⌋. (4.143)

A ULA with MV = 1 and normalized vertical length LV,λ = 0.5 has no nulls
in the vertical plane, so its beams have no vertical directivity. However, if we
extend the ULA to a UPA by adding antennas in the vertical plane, we achieve
a directive beam in both the horizontal and vertical planes. Figure 4.40 shows
the beamforming gain in this vertical plane for the same UPA and ULA as
in Figure 4.38. The ULA achieves a constant gain for all elevation angles.
However, the UPA with MV = 4 has a normalized vertical length of LV,λ = 2
so there are 2LV,λ = 4 nulls in the vertical plane. The null directions are
θ = ± arcsin(1/2) = ±π/6 and θ = ± arcsin(1) = ±π/2.

Figure 4.41 shows the beamforming gain pattern in the 3D half-space
x ≥ 0 when the antenna array is deployed in the yz-plane and beamforms
in the broadside direction. Figure 4.41(a) considers the UPA with MH = 10
and MV = 4, while Figure 4.41(b) considers the ULA with MH = 10 and
MV = 1. The dotted black curve shows the angles representing the horizontal
plane previously considered in Figure 4.38, while the dashed blue curve shows
the vertical plane previously considered in Figure 4.40. The white areas

14All the nulls of the function AMV (Ω) are given by (4.142). We should find the values of θ
that give Ω = sin(θ) = n/LV,λ for n = ±1, . . . ,±(MV − 1). This equation can only be solved
when |n| ≤ LV,λ, and the feasible solutions are given in (4.143).
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Figure 4.40: Comparison of the beamforming gain in (4.139) with a UPA (MH = 10, MV = 4)
and a ULA (M = MH = 10, MV = 1) in the vertical plane where φ = 0. The arrays transmit in
the broadside direction φbeam = 0 and θbeam = 0.

represent directions that are close to the nulls. We notice that the UPA
achieves directivity in both the azimuth and elevation directions, while the
ULA has an azimuth directivity but spreads its signal equally for all elevation
angles. The 3D directivity achieved by a UPA makes the transmission more
confined to the directions close to the intended receiver.

Example 4.20. Consider a UPA with MH = 10, MV = 4, and ∆λ = 1/2.
If it beamforms in the broadside direction as in Figure 4.41(a), what is the
first-null beamwidth in the horizontal and vertical planes?

In the horizontal plane where θ = 0, Φ in (4.133) becomes

Φ = sin(φ) cos(0)− sin(0) cos(0) = sin(φ) (4.144)

since φbeam = θbeam = 0. The nulls in the horizontal plane occur when
AMH (Φ) = 0. Since LH,λ = MH∆λ = 5 wavelengths, it follows from (4.141)
that the first nulls are at the azimuth angles φ = ± arcsin(1/5). Hence, the
first-null beamwidth is 2 arcsin(1/5) ≈ 0.4 (23◦) in the horizontal plane.

In the vertical plane where φ = 0, Ω in (4.134) becomes

Ω = sin(θ)− sin(0) = sin(θ). (4.145)

The nulls in the vertical plane occur when AMV (Ω) = 0. Since LV,λ =
MV∆λ = 2 wavelengths, it follows from (4.142) that the first nulls are at the
elevation angles θ = ± arcsin(1/2) = ±π/6. Hence, the first-null beamwidth
is 2π/6 = π/3 (60◦) in the vertical plane.
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[dB]

(a) Beamforming with a UPA having MH = 10 horizontal antennas and MV = 4 vertical antennas.

[dB]

(b) Beamforming with a ULA having MH = 10 horizontal antennas.

Figure 4.41: The beamforming gain that is observed in different 3D directions for the UPA
and ULA setups that were considered in Figure 4.38 and Figure 4.40. The dotted black curves
show the gain variations in the horizontal plane where θ = 0 and the dashed blue curves show
the gain variations in the vertical plane where φ = 0. These are the same gain patterns as shown
in the previous figures.
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When a plane wave impinges on the UPA from the angle (φ, θ), the
antennas in the array take simultaneous samples of the waveform. Suppose
the information-bearing signal has the wavelength λ. The angle-of-arrival
determines the phase-shift differences between the antennas and, thereby,
what spatial frequencies in the range [−1/λ, 1/λ] are present in the channel
vector. Since the UPA extends in two dimensions, the channel vector can
resolve spatial frequencies horizontally and vertically, which are generally
different. Recall that we consider a UPA deployed in the negative parts of the
yz-plane with one antenna in the origin. At any given time, the phase-shift
seen along the horizontal negative y-axis is

2π
λ

 0
−y
0

T cos(φ) cos(θ)
sin(φ) cos(θ)

sin(θ)

 = −2π
λ
y sin(φ) cos(θ), (4.146)

relative to the origin. This implies that the channel contains the horizontal
spatial frequency sin(φ) cos(θ)/λ periods per meter. Similarly, the phase-shift
seen along the negative vertical z-axis is

2π
λ

 0
0
−z

T cos(φ) cos(θ)
sin(φ) cos(θ)

sin(θ)

 = −2π
λ
z sin(θ), (4.147)

thus the channel contains the vertical spatial frequency sin(θ)/λ periods
per meter. The vertical frequency depends on the elevation angle, while the
horizontal frequency depends on both the azimuth and elevation angles. Each
frequency can take values in the range [−1/λ, 1/λ], but since both values
depend on the elevation angle, only some combinations of frequencies can
occur. Figure 4.42 shows the feasible combinations, which are contained within
a circle with a radius of 1/λ. Points at the outer boundary are achieved when
φ = ±π2 while θ is varied throughout its feasible range.

The concept of horizontal and vertical spatial frequencies is further illus-
trated in Figure 4.43 for different angle-of-arrivals. The coloring shows the real
part of the impinging plane wave at a time instance when the phase is zero at
the origin. The wave variations are shown for a square area with width 4λ and
height 4λ, but the antenna array only samples it at 81 discrete points; that is,
the UPA has MH = MV = 9 antennas per dimension with the spacing ∆ = λ/2.
Figure 4.43(a) considers a plane wave arriving from the broadside direction
φ = θ = 0. In this case, the horizontal and vertical spatial frequencies are zero
because the UPA is deployed perpendicularly to the direction the wave travels.
No phase variations exist between the antennas; therefore, the entire array
surface has the same color. Figure 4.43(b) considers a plane wave arriving from
the direction φ = π/6, θ = 0, which represents a rotation in the horizontal
plane. The horizontal spatial frequency is sin(π/6) cos(0)/λ = 1/(2λ), which
explains why the waveform repeats itself at points that are separated by
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Figure 4.42: The combinations of horizontal and vertical spatial frequencies that the channel
to/from a UPA can contain are all contained in a circle with the radius 1/λ. The horizontal
frequency is sin(φ) cos(θ)/λ and the vertical frequency is sin(θ)/λ, where φ is the azimuth angle
and θ is the elevation angle.

2λ horizontally. The vertical spatial frequency is sin(0)/λ = 0, as seen from
the fact that there are no vertical variations in the waveform. Figure 4.43(c)
considers the case of φ = 0, θ = π/4, where the plane wave is rotated in the
vertical plane compared to the UPA. The horizontal frequency is zero, while
the vertical frequency becomes sin(π/4)/λ = 1/(

√
2λ), so the wave repeats

itself at points that have a vertical separation of
√

2λ. Finally, Figure 4.43(d)
considers a plane wave arriving from the direction φ = π/4, θ = π/4, for
which both the horizontal and vertical frequencies are non-zero. The horizontal
spatial frequency is sin(π/4) cos(π/4)/λ = 1/(2λ), which is the same as in
Figure 4.43(b). The vertical spatial frequency is the same as in Figure 4.43(c);
thus, these frequencies are simultaneously achievable (i.e., they are within the
circle shown in Figure 4.42).

Example 4.21. What fraction of all horizontal/vertical spatial frequency
combinations are practically achievable?

The horizontal spatial frequency can take any value in the range [−1/λ, 1/λ],
which is a range of length 2/λ, and the same holds for the vertical spatial
frequency. This corresponds to a total area of 4/λ2 of possible combina-
tions. However, the practically achievable combinations are contained in
the circle in Figure 4.42, which has the area π(1/λ)2. Hence, a fraction
π(1/λ)2/(4/λ2) = π/4 ≈ 0.79 of all combinations are practically achievable.
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(a) Angle-of-arrival: φ = 0, θ = 0.

φ

(b) Angle-of-arrival: φ = π/6, θ = 0.

θ

(c) Angle-of-arrival: φ = 0, θ = π/4.

θ
φ

(d) Angle-of-arrival: φ = π/4, θ = π/4.

Figure 4.43: When a plane wave with wavelength λ impinges on a UPA, the angle-of-arrival
(φ, θ) determines the wave variations simultaneously observable over the array’s surface. The
real part of the wave is shown for four different angle-of-arrivals using colors to represent the
value. The horizontal and vertical spatial frequencies differ depending on the angle-of-arrival,
as seen from the color patterns. The UPA consists of 81 antennas (MH = MV = 9) with the
spacing ∆ = λ/2.
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4.5.4 Effective Array Response with Directive Antennas

Another benefit of specifying the array response vectors in terms of both
the azimuth and elevation angles is that we can readily extend the model
to support arrays of directive antennas. Recall from Section 1.1.3 that the
directivity of an antenna is determined by the antenna gain function G(φ, θ),
which specifies the angular variations in the antenna gain compared to an
isotropic antenna. We will analyze a MISO channel where the M transmit
antennas have the same antenna gain function Gt(φ, θ), while the receive
antenna is isotropic. We can then define the effective array response as√

Gt(φ, θ)aM (φ, θ). (4.148)

and let βiso = λ2/(4πd)2 denote the channel gain when both the transmitter
and receiver have isotropic antennas. If the transmitter has a ULA with
antenna spacing ∆, then the channel vector becomes

h =
√
βiso

√
Gt(φ, θ)aM (φ, θ) =

√
βiso

√
Gt(φ, θ)


1

e−j2π∆ sin(φ) cos(θ)
λ

...
e−j2π (M−1)∆ sin(φ) cos(θ)

λ

 .
(4.149)

The capacity of this MISO channel can be computed using (4.46) as

C = B log2

(
1 + P∥h∥2

BN0

)
= B log2

(
1 + PGt(φ, θ)Mβiso

BN0

)
. (4.150)

The only difference from the capacity expression in (4.47) for ULAs with
isotropic antennas is that the SNR is multiplied by the antenna gain Gt(φ, θ).
Hence, if Gt(φ, θ) ̸= 0, a beamforming gain of M can be achieved using
an array of directive antennas. This is the same beamforming gain as with
isotropic antennas; thus, the SNR grows proportionally to the number of
antennas, but the proportionality constant depends on the antenna gain
in the angular direction leading to the receiver. By replacing Gt(φ, θ) with
Gr(φ, θ), the capacity expression in (4.150) applies to a SIMO channel where
the receiver is equipped with M antennas with the gain function Gr(φ, θ) and
the transmitter is equipped with an isotropic antenna. Note that the MISO
capacity is achieved using the MRT vector a∗

M (φ, θ)/
√
M , while the SIMO

capacity is achieved using the MRC vector aM (φ, θ)/
√
M . These are the same

vectors as with isotropic antennas because the antenna gain only changes the
scaling of the channel vector, not its direction in the vector space.

Recall that the primary purpose of beamforming is to control the directivity
of the transmission. A directive antenna has a fixed directivity, while an array
of isotropic antennas can form beams in any direction and always achieve the
same maximum gain. In practice, arrays of weakly directive antennas are often
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Shape of cosine antenna gain

Broadside direction

Figure 4.44: A ULA with cosine antennas can form beams in most directions, but the strength
of the beams will depend on the beam direction. The maximum gain is achieved in the broadside
direction and then tapers off for other angles, determined by the shape of the antenna gain
function.

utilized when not all angular directions are important. For example, an array
might be deployed to serve user devices in a 120◦ sector of the horizontal
plane; that is, φ ∈ [−π/3, π/3]. We can then utilize an array of the cosine
antenna from Section 1.1.3, which has the gain function

G(φ, θ) =
{

4 cos(φ) cos(θ), if φ ∈ [−π/2, π/2], θ ∈ [−π/2, π/2],
0, elsewhere.

(4.151)

It provides the maximum antenna gain of 4 (i.e., 6 dBi) when transmitting
to receivers located in the direction (φ, θ) = (0, 0) and an antenna gain
of 2 (i.e., 3 dBi) when transmitting to receivers located in the directions
(φ, θ) = (±π/3, 0) at the edges of a 120◦ sector. Since these gains are larger
than one, all users located in the intended sector will benefit from having this
directive antenna (compared to having an isotropic antenna) but to a varying
extent. Note that the antenna gain also varies with the elevation angle, but
every user located in the interval φ ∈ [−π/3, π/3], θ ∈ [−π/3, π/3] will obtain
an antenna gain larger than one; thus, preferring the cosine antenna over an
isotropic transmit antenna.

The combination of antenna directivity and beamforming makes the radi-
ated signal even more directive than when using isotropic antennas, but the
joint gain also becomes dependent on the beam direction. Figure 4.44 illus-
trates this property by showing a collection of beams transmitted in different
angular directions from a ULA equipped with cosine antennas. The beam
radiated in the broadside direction is substantially larger/stronger than the
beams radiated towards angles closer to the end-fire directions. The overlaid
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φ

φ
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Rotated transmitter

Figure 4.45: If the receiver is not located in the broadside direction of the ULA, electrical
beamforming can be utilized to phase-shift the signals to form a beam in the angular direction
φ leading toward the receiver. Alternatively, mechanical beamforming can be utilized where the
transmitter is physically rotated so the receiver is in the new broadside direction.

shape of the cosine antenna gain demonstrates how it dictates the strength
that beams can get in different directions.

We will now take a closer look at these properties. Figure 4.45 illustrates a
setup where the transmitter is equipped with a ULA of cosine antennas with
their maximum gain in the azimuth direction φ = 0. The antenna spacing is
∆ = λ/2. The receiver is located in another angular direction φ ̸= 0. We will
compare two ways of handling this situation. The first solution is to apply
MRT, as described earlier in this chapter. We can refer to this as electrical
beamforming since we are phase-shifting the radiated signals to form a beam
in the desired direction. Another potential solution is to physically rotate
the transmitter by the angle φ so that the maximum gain is achieved in the
direction towards the receiver. We refer to this as mechanical beamforming,
and we can then transmit the same signal from every antenna. These solutions
have different pros and cons, which we will explain by a numerical example.

Figure 4.46 shows the joint beamforming and antenna gain achieved in
different angular directions using a ULA with M = 10 cosine antennas. The
receiver is in the direction (φ, θ) = (π/4, 0). Mechanical beamforming achieves
a beamforming gain of 10 dB and the maximum antenna gain of 6 dBi, resulting
in a joint gain of 16 dBi. Electrical beamforming also achieves a beamforming
gain of 10 dB but the antenna gain is only 4 cos(π/4) cos(0) = 2

√
2 ≈ 4.5 dB;

thus, the joint gain is 14.5 dBi. If the transmit power is the same in both cases,
the receiver will achieve a 1.5 dB lower SNR when using electrical beamforming.
Nevertheless, it is beneficial to utilize directive antennas in this setup because
the gain is 4.5 dB larger than if isotropic antennas would have been utilized,
as was the case in Figure 4.17. Another difference between mechanical and
electrical beamforming is that the beamwidth becomes broader in the latter
case, as shown in Figure 4.46. This can lead to more interference towards
undesired receivers located in roughly the same direction as the desired receiver.
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Figure 4.46: The joint beamforming and antenna gain that is observed in different azimuth
directions φ when a ULA with M = 10 cosine antennas transmits a beam in the direction
φbeam = π/4. We compare electrical beamforming (i.e., phase-shifting the transmitted signals
using MRT) with mechanical beamforming where the ULA is rotated by π/4 to have the
broadcast towards the receiver, as shown in Figure 4.45.

However, the wider beam can also be a benefit if the receiver’s angle is only
approximately known.

Although mechanical beamforming might seem like a viable competing
technology, it is seldom used in mobile communications since changes in the
mechanical rotation at the millisecond level are associated with many practical
implementation issues. The benefit also vanishes in MIMO scenarios where
multiple beams are to be transmitted simultaneously in different directions to
achieve multiplexing gains. The flexibility of electrical beamforming generally
makes it a superior technology; however, a careful selection of the antennas
and mechanical rotation is necessary when deploying an array to ensure that
the antenna gain is sufficiently large within the intended coverage area. For
example, in a cellular network where the base stations are deployed tens of
meters above the ground, it is common to mechanically downtilt the base
station array by around ten degrees in the elevation angle domain, to focus
the antenna gain on the places where the prospective users are instead of
towards the horizon. Electrical downtilt in the form of beamforming is then
utilized to adapt the transmission to the current user location. Base station
arrays are also rotated horizontally at the deployment stage to point toward
the center of their intended coverage area, while electrical beamforming is
used to point beams in the azimuth direction where the user currently resides.
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Example 4.22. Consider a UPA with MH = 10, MV = 4, ∆λ = 1/2, and
cosine antennas. What is the joint beamforming and antenna gain if the UPA
is mechanically rotated to transmit to a receiver in the broadside direction?
What is the joint beamforming and antenna gain if the UPA is electrically
rotated to transmit to a receiver in the direction φ = 0 and θ = −π/4? How
does the first-null horizontal beamwidth differ between these setups?

The antenna gain function in (4.151) is G(0, 0) = 4 in the broadside
direction, while the beamforming gain in (4.139) becomes M = A10(0)A4(0) =
40. Hence, the joint beamforming and antenna gain is 4 · 40 = 160 ≈ 22 dBi.

With the electrical downtilt, the antenna gain becomes G(0,−π/4) = 2
√

2
while the beamforming gain remains M = A10(0)A4(0) = 40. Hence, the joint
beamforming and antenna gain is 2

√
2 · 40 = 80

√
2 ≈ 20.5 dBi.

Example 4.20 showed that 2 arcsin(1/5) ≈ 0.4 is the first-null horizontal
beamwidth when transmitting in the broadside direction. In contrast, with
the electrical downtilt, Φ in (4.133) becomes

Φ = sin(φ) cos(−π/4)− sin(0) cos(−π/4) = sin(φ)/
√

2. (4.152)

According to (4.143), the first nulls in the horizontal plane occur when
Φ = ±1/LH,λ. The normalized horizontal length of the considered UPA is
LH,λ = MH∆λ = 10 · 0.5 = 5 wavelengths. By solving for the azimuth angle
φ, we obtain that the first nulls are at φ = ± arcsin(

√
2/5) and the first-null

horizontal beamwidth is therefore 2 arcsin(
√

2/5) ≈ 0.57.
In summary, the electrical downtilt results in a 1.5 dBi loss in antenna gain

and an increased beamwidth by 42% since arcsin(
√

2/5)/ arcsin(1/5) ≈ 1.42.
The benefit is that there is no need to mechanically rotate the array based on
the receiver’s location in the coverage area.

4.5.5 Effective Isotropic Radiated Power

The maximum radiated power in a wireless communication system is deter-
mined by regulations, which can differ between countries and frequency bands.
The maximum power can be quantified in terms of the total radiated power ,
denoted by P in this book, without considering how this power is distributed
over different angular directions. In regulations, it is common to consider the
effective isotropic radiated power (EIRP), which also includes the antenna
and beamforming gains. Notice that the SNR in (4.150) for a MISO system
can be factorized as

P∥h∥2

BN0
= PGt(φ, θ)M︸ ︷︷ ︸

EIRP

βiso

BN0
, (4.153)

which is effectively the same as for a SISO channel with a single isotropic
antenna that radiates PGt(φ, θ)M . In terms of the received signal strength,
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the receiver cannot tell whether the signal was radiated isotropically or with
a strong directivity. Hence, if the goal of the regulation is to limit the worst-
case radiation intensity (e.g., to comply with health guidelines and limit
out-of-band emissions), then the EIRP must be regulated. In particular, the
maximum EIRP over all angles can be computed as

EIRPmax = max
φ,θ

PGt(φ, θ)M. (4.154)

The maximum EIRP is proportional to total radiated power P , the maximum
antenna gain maxφ,θGt(φ, θ), and the beamforming gain M .

Example 4.23. What is the EIRP if the total radiated power is 1 W, the
antenna gain is 4, and the beamforming gain is 10?

The EIRP is the product of these parameters: 1·4·10 = 40 W, which is often
expressed in decibel scale as 46 dBm. Thanks to the directive transmission,
the receiver will experience a received signal equivalent to the transmission of
40 W from an isotropic antenna, although the transmitter only radiates 1 W.

The EIRP limits can vary significantly between different frequency bands
and geographical regions. Within the European Union, the guidelines for
the 3.5 GHz band (utilized for 5G NR) is to have a maximum EIRP of
68 dBm per 5 MHz of spectrum for base stations, while EIRP limit is only
25 dBm per user device [55]. There is a large power imbalance between the
downlink and uplink transmissions, as previously discussed in relation to
Figure 1.7. However, the EIRP numbers do not tell the whole story since the
antenna/beamforming gains at the receiver side are omitted. For example, the
downlink EIRP of 68 dBm might be reached using a total radiated power of
47 dBm (i.e., 50 W) and a joint antenna and beamforming gain of 21 dBi. The
same antenna/beamforming gain can also be utilized when receiving the uplink
transmission. Hence, the difference in total radiated power determines the SNR
imbalance between uplink and downlink. The uplink EIRP limit of 25 dBm
might be reached using a total radiated power of 23 dBm (i.e., 200 mW), an
antenna gain of 2 dBi, and no beamforming gain. Importantly, base stations
are often allowed to increase their power proportionally to the bandwidth.
This is not the case for user devices, so the power imbalance between uplink
and downlink becomes more severe as the bandwidth increases.

4.5.6 MIMO Channels with Arbitrary ULAs

A far-field MIMO channel model was provided in Section 4.4.1 for the case
when the transmitter and receiver are equipped with ULAs of isotropic
antennas located in the same two-dimensional plane. We will now utilize
the array responses derived in Section 4.5.1 to generalize the expression
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Figure 4.47: Illustration of a free-space MIMO LOS communication setup where the transmitter
is equipped with a ULA with K antennas and the receiver with a ULA with M antennas. The
antenna spacing is ∆ in each array. From the transmitter’s perspective, the angles-of-departure
leading to the receiver are (φt, θt). From the receiver’s perspective, the angles-of-arrival of the
signal radiated by the transmitter are (φr, θr).

to support directive antennas, and ULAs arbitrarily rotated in the three-
dimensional world. Figure 4.47 illustrates such a setup, where the receiver is
in the far-field of the transmitter and the channel gain between any pair of
transmit and receive antennas under the assumption of isotropic antennas is
βiso = λ2/(4πd)2. The transmitter is equipped with a ULA with K antennas
and the antenna spacing is ∆. These antennas have the gain function Gt(φ, θ)
and angles-of-departure leading towards the receiver is denoted by (φt, θt).
The receiver has a ULA with M antennas and the same antenna spacing
∆. These antennas have the gain function Gr(φ, θ) and the radiated signal
impinges as a planar wavefront with the angles-of-arrival denoted by (φr, θr).

We can utilize (4.149) to conclude that the channel from the first transmit
antenna to the M receive antennas is

√
βiso

√
Gt(φt, θt)

√
Gr(φr, θr)aM (φr, θr),

by also taking the antenna gain Gt(φt, θt) of the transmitter into account. Sim-
ilarly, from the transmitter’s perspective, the channel from the K transmit an-
tennas to the first receive antenna is

√
βiso

√
Gt(φt, θt)

√
Gr(φr, θr)aK(φt, θt).

By combining these results, we conclude that the complete channel matrix is

H =
√
βiso

√
Gt(φt, θt)

√
Gr(φr, θr)aM (φr, θr)aT

K(φt, θt). (4.155)

This is a rank-one matrix, which aligns with previous observations in this
chapter. The non-zero singular value is

s1 =
√
βisoMKGt(φt, θt)Gr(φr, θr), (4.156)

which now depends on the antenna gains at both the transmitter and receiver.
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The MIMO channel capacity becomes

C = log2

(
1 +Gt(φt, θt)Gr(φr, θr)

qβisoMK

N0

)
, (4.157)

which coincides with (4.96) when Gt(φt, θt)Gr(φr, θr) = 1. Depending on how
the antennas are directed, the value of the capacity can be either higher,
lower, or the same as with isotropic antennas. The same beamforming gain of
MK is obtained irrespective of the choice of antennas (as long as the gain is
non-zero). The capacity is achieved by using the MRT vector a∗

K(φt, θt)/
√
K

for precoding and the MRC vector aM (φr, θr)/
√
M for combining.

Example 4.24. Consider a free-space MIMO channel between a base station
and a user device, both equipped with UPAs. The Cartesian coordinates of
the center points of the base station and the user device are (0, 0, 0) and
(300, 300, 300

√
2) in meters, respectively. The number of antennas at the base

station (receiver) and user device (transmitter) are M = 32 and K = 4,
respectively. All antennas have the cosine gain function given in (4.151). The
two UPAs are deployed along the yz-plane, and their broadside directions
face each other (i.e., the base station has zero gain for x < 0 and the device
has zero gain for x > 300). What is the capacity of the considered MIMO
channel for q = 10−8 W/Hz, N0 = 10−17 W/Hz, and λ = 0.1 m?

We can determine the capacity of the considered free-space MIMO channel
using (4.157) and βiso = λ2/(4πd)2 with M = 32, K = 4, q = 10−8 W/Hz,
N0 = 10−17 W/Hz, and λ = 0.1 m. It becomes

C = log2

(
1 +G(φt, θt)G(φr, θr)

10−8 · 0.12 · 32 · 4
10−17 · (4π)2d2

)
, (4.158)

where G(φ, θ) is the antenna gain function in (4.151). The distance between
the transmitter and receiver is computed as

d =
√

(300− 0)2 + (300− 0)2 + (300
√

2− 0)2 = 600 m. (4.159)

Let us first determine the angles-of-arrival (φr, θr) from the user device to the
base station. From the given geometry of the UPAs, φr = π/4 and θr = π/4.
The angles-of-departure (φt, θt) from the user device to the base station are
computed as φt = π/4 and θt = −π/4. Hence, the cosine antenna gains are
obtained as G(φt, θt) = G(φr, θr) = 4

(
√

2)2 = 2. Inserting these values into the
capacity expression, we obtain

C = log2

(
1 + 2 · 2 10−8 · 0.12 · 32 · 4

10−17 · (4π)2 · 6002

)
≈ 6.5 bit/symbol. (4.160)
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Figure 4.48: Electromagnetic waves can have different polarization, as represented by the
direction in which the electric field oscillates. The figure shows two waves with orthogonal
polarizations oscillating horizontally or vertically. The thick arrows show the dimensions of the
oscillations and in which direction the amplitude is positive.

4.6 Polarization of Electromagnetic Waves

An electromagnetic wave travels in one direction, but the electric field oscillates
(like a sinusoid) in a perpendicular direction. When a plane wave propagates
along one dimension of our three-dimensional world, there are two possible
perpendicular dimensions in which the electric field could oscillate, or it can
be a linear combination of them. The direction of the oscillations is called the
polarization of the wave. Figure 4.48 shows an example of the wave propagating
along the x-axis. When the electric field oscillates in the horizontal plane (i.e.,
along the y-axis), we have a horizontally polarized wave. When the electric
field oscillates in the vertical plane (i.e., along the z-axis), we have a vertically
polarized wave. This is an example of a pair of orthogonally polarized waves
since the electric fields exist in entirely different dimensions. One can find
other pairs of orthogonal waves by rotating both waves with the same angle
in the yz-plane. However, one cannot find more than two orthogonal waves
since there are only two dimensions.15

Each antenna has predetermined polarization properties, in the sense that
it radiates waves with a given polarization and responds to impinging waves
with the same polarization. For example, a horizontally polarized antenna
radiates and responds to waves of the horizontally polarized kind shown in
Figure 4.48(a) and might have a physical shape similar to the thick arrow

15We have only exemplified linearly polarized waves for which the electric field oscillates in a
single dimension. One can also create circularly/elliptically polarized waves for which the electric
field rotates in the plane perpendicular to the direction of travel, which means that the direction
of the oscillations is time-varying. For example, if the wave travels along the x-axis, then the
wave’s electric field could rotate in the yz-plane. In this case, a clockwise and a counter-clockwise
rotation lead to orthogonal polarization. Electromagnetic fields are also characterized by their
magnetic fields, which are orthogonal to the electric fields and the direction of travel, and thus
oscillate as the orthogonal wave’s electric field.
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illustrated along the y-axis. Similarly, a vertically polarized antenna radiates
and responds to waves of the vertically polarized kind shown in Figure 4.48(b)
and might have a physical shape similar to the thick arrow illustrated along
the z-axis. Note that the physical orientation of an antenna is essential when
interpreting these things. A horizontally polarized antenna can be rotated by
90◦ to become a vertically polarized antenna and vice versa. If a horizontally
polarized antenna is rotated by 180◦, it remains horizontally polarized, but the
notions of up and down are switched, corresponding to changing the signal’s
sign. The thick arrows in Figure 4.48 show the direction where the signal
attains positive values in this coordinated system.

The analysis in this chapter has implicitly assumed that all antennas have
matching polarization. However, there are three main reasons for generalizing
the analysis. Firstly, we cannot control the device’s orientation in mobile
communications since the user must be allowed to hold and rotate it arbitrarily.
For instance, a mobile phone antenna might be vertically polarized when held
against the ear but horizontally polarized when put on a table. This calls for
the use of multiple antennas with different polarization at the base station
so that it can always generate waves with the device’s currently preferred
polarization.16 Secondly, two antennas with opposite polarization can be co-
located, which enables doubling the number of antennas that fit in a given
physical aperture area. Thirdly, polarization creates an extra dimension that
can be used for spatial multiplexing over LOS channels, which was recognized
already in the 1980s [58] (i.e., before spatial multiplexing through beamforming
was discovered). The latter property will be the focus of this section.

4.6.1 Channel Capacity with Dual-Polarized Antennas

Suppose the transmitter has two antennas with orthogonal polarization. Since
the antennas have different orientations, they can be centered around the
same point to create what is called a dual-polarized antenna: two antennas at
one location but with orthogonal polarizations. In this section, we consider the
setup in Figure 4.49, where the receiver is equipped with the same antenna
configuration, including identical rotations. Just as any other MIMO system
with M = K = 2, the considered setup can be described by the MIMO system
model in (3.56):

y = Hx + n, (4.161)
16Any direction of the electric field can be obtained as a superposition of two orthogonal

electric fields, for example, generated using horizontal and vertical polarizations. Practical
base stations often utilize dual-polarized antennas with ±45◦ slanted polarizations, a pair of
orthogonal polarizations between the horizontal and vertical directions. The reason is that many
propagation environments provide better conditions for either the horizontally or vertically
polarized wave component; for example, the vertical polarization often leads to stronger signals
in mobile communications since the waves mostly travel horizontally between the base station
and user device, and are reflected off vertical objects (e.g., buildings) that are better at reflecting
vertically polarized waves [56], [57]. In any case, we can achieve a balanced power per antenna
by dividing these dimensions equally between the antennas by using slanted polarization.
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Figure 4.49: Illustration of a setup where the transmitter and receiver are equipped with
dual-polarized antennas with identical rotations in the yz-plane.

where the elements of y ∈ C2 correspond to the two receive antennas with
orthogonal polarizations and the elements of x ∈ C2 correspond to the two
transmit antennas with orthogonal polarizations. The assumption of dual-
polarized antennas only affects the modeling of the channel matrix H ∈ C2×2.

We consider an LOS channel where d is the distance between the dual-
polarized transmit antenna and the dual-polarized receive antenna; thus, the
channel gain is β = λ2

(4π)2
1
d2 . If we order the antennas so that transmit antenna

m and receive antenna m have matching polarization, for m = 1, 2, then we
obtain the channel matrix

H =
√
β

[
1 0
0 1

]
=
√
βI2. (4.162)

The diagonal elements are
√
β just as for a single-antenna LOS channel where

the antennas have equal polarization. In contrast, the off-diagonal elements are
zero because the corresponding antennas have orthogonal polarizations. Both
singular values equal

√
β since the channel matrix is a scaled identity matrix.

This is an ideal type of MIMO channel for spatial multiplexing because we
can transmit two parallel data streams that experience equally strong singular
values. Hence, the water-filling power allocation will result in equal power
allocation: q1 = q2 = q/2. The channel capacity in (3.75) becomes

C = 2 log2

(
1 + qβ

2N0

)
bit/symbol. (4.163)

The transmit precoding and receive combining that achieves the capacity is
trivial: send the mth stream from the mth transmit antenna and receive it
using only the mth receive antenna. Since the orthogonality between the data
streams is achieved by the different polarization rather than using different
spatial beams, it is more appropriate to call this polarization multiplexing
than spatial multiplexing. However, the underlying MIMO capacity theory is
the same; it is just the physical interpretation that differs.

It is instructive to compare the capacity of the dual-polarized 2× 2 MIMO
channel in (4.163) with the capacity in (4.96) for a far-field MIMO setup with
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Figure 4.50: Comparison of the capacities of 2 × 2 MIMO LOS channels with either two
single-polarized antennas or one dual-polarized antenna on each side. The SISO capacity is
shown as a reference.

ULAs where all the antennas have the same polarization. For M = K = 2,
(4.96) becomes log2(1 + 4qβ

N0
), where there is no multiplexing gain but a

beamforming gain of MK = 4. Figure 4.50 shows the capacities as a function
of SNR = qβ/N0. This is the SNR achieved in a SISO system and its capacity
log2(1 + SNR) is shown as a reference. The single-polarized setup achieves the
highest capacity at low SNR thanks to the beamforming gains obtained at both
the transmitter and receiver. The dual-polarized setup performs identically to
the SISO setup at low SNR because each antenna transmits isotropically, and
each receive antenna only captures power from one transmit antenna. We can
show this mathematically using the low SNR approximation in (3.2):

2 log2

(
1 + SNR

2

)
≈ 2 log2(e)SNR

2 = log2(e)SNR ≈ log2(1 + SNR). (4.164)

However, the dual-polarized setup can use the multiplexing gain to achieve a
significantly higher capacity at high SNR. Since the single-polarized MIMO
channel in (4.90) has rank 1, while the dual-polarized MIMO channel in
(4.162) has rank 2, the capacity curve has a steeper slope in the latter case
and eventually provides the largest capacity. The SNR range where the dual-
polarized setup provides the highest capacity can be identified as follows:

2 log2

(
1 + SNR

2

)
≥ log2(1 + 4SNR)

⇒
(

1 + SNR
2

)2
≥ 1 + 4SNR ⇒ SNR ≥ 12. (4.165)
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The intersection point is SNR = 12 ≈ 10.8 dB, which can be observed in
Figure 4.50. This SNR value is six times higher than in (4.99), where single-
polarized MIMO channels with rank-one and rank-two were compared. The
reason for the difference is that half the power is lost over the dual-polarized
channel. In conclusion, dual-polarized antennas reduce the total received
power but create an extra dimension that increases the high-SNR capacity.

Example 4.25. Suppose the dual-polarized transmit antenna is rotated by 45◦,
compared to the dual-polarized receive antenna, as illustrated in Figure 4.51.
How will the channel matrix in (4.162) and channel capacity change?

The first antenna (blue) and the second antenna (red) of the receiver
in Figure 4.51 have polarizations along the y-axis and z-axis, respectively.
By contrast, the transmitter has an antenna configuration rotated counter-
clockwise by 45◦ in the yz-plane. Each arrow points in the direction that
the wave takes positive values. Hence, the first receive antenna obtains the
summation of the signal components along the y-axis, which is x1−x2√

2 . The
minus sign appears because the red arrow points toward the negative y-axis
and the term 1/

√
2 describes that only half the power is radiated in the y-

dimension. Similarly, the second antenna of the receiver receives a summation
of the components of the signals along the z-axis, which is x1+x2√

2 . Hence, the
MIMO channel matrix is

H =
√
β

[ 1√
2 − 1√

2
1√
2

1√
2

]
=
[ 1√

2 − 1√
2

1√
2

1√
2

]
︸ ︷︷ ︸

=U

√
βI2︸ ︷︷ ︸

=Σ

I2︸︷︷︸
=VH

, (4.166)

where the second equality provides the SVD. The singular values are s1 =
s2 =

√
β, just as with identically rotated antennas in (4.162). Therefore,

the channel capacity is the same as in (4.163) but is achieved differently.
Using Theorem 3.1, we can conclude that the capacity is achieved when
the transmitter sends two independent data streams x1 ∼ NC(0, q/2) and
x2 ∼ NC(0, q/2) and the receiver applies the receive combining ȳ = UHy
to separate them, which corresponds to compensating for the polarization
mismatch by computing ȳ1 = y1+y2√

2 and ȳ2 = y1−y2√
2 .

Alternatively, the transmitter can generate two independent data streams
x̄1 ∼ NC(0, q/2) and x̄2 ∼ NC(0, q/2) and apply the transmit precoding
x = UHx̄ beacuse Hx =

√
βUUHx̄ =

√
βx̄. This corresponds to using the two

rotated antennas to transmit signals with horizontal and vertical polarization.
In summary, it is sufficient to study the case with identical antenna

rotations when characterizing the capacity with dual polarization. To achieve
the capacity in practice, the exact channel matrix must be known so that the
transmission can compensate for potential antenna rotations.
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Figure 4.51: Illustration of a setup where the transmitter and receiver are equipped with
dual-polarized antennas that differ in rotation by 45◦ in the yz-plane.

4.6.2 Impact of Finite Cross-Polar Discrimination

Even if antennas are designed to have orthogonal polarization, there is usu-
ally cross-talk between the polarizations; for example, caused by imperfect
polarization discrimination in the individual antennas and imperfect isolation
between the co-located antennas [59], [60]. These effects can be analyzed
separately and in great detail, but that is beyond the scope of this chapter.
To study their collective impact on the channel capacity, we measure the
purity of a dual-polarized antenna by the cross-polar discrimination (XPD)
factor, which is defined as the ratio between the power radiated into the
intended polarization direction and the power transmitted into the orthogonal
polarization direction. We will not distinguish whether this issue is created
since the intended antenna partially radiates into the unintended polarization
direction or if the signal leaks into the co-located opposite-polarized antenna
and is then radiated into the unintended polarization direction. The XPD
correspondingly affects the reception, so there is symmetry in the system.

We will now consider polarized antennas that transmit a fraction (1−γ) of
the total power into the intended polarization (for any of the reasons above)
and a fraction γ into the opposite polarization. The parameter γ ∈ [0, 1]
characterizes the impurity of the antenna (a smaller value is better). Note
that (1− γ) + γ = 1, which implies that the total power is divided between
the two orthogonal polarizations without losses. The XPD of such an antenna
is

XPD = 1− γ
γ

→ γ = 1
1 + XPD . (4.167)

A larger value of γ corresponds to a smaller XPD and vice versa.
Suppose we transmit a signal with power P to a polarized receive antenna

of the same kind. A signal component with power (1− γ)P is radiated with
the intended polarization. If the channel gain is β ∈ [0, 1], a fraction β of
the transmitted power reaches the receive antenna and a fraction (1− γ) is
properly received. Hence, the received signal component has power (1−γ)2Pβ.
Moreover, a signal component with power γP will be radiated using the
opposite polarization, and the receive antenna will then capture a fraction γβ
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of it. Hence, the total received power is
(1− γ)2Pβ + γ2Pβ = (1− 2(1− γ)γ)Pβ. (4.168)

Suppose the receive antenna instead has the opposite polarization direction
but the same XPD. It will then receive two signal components: one that leaks
into the wrong polarization at the transmitter and one that leaks into the
wrong polarization at the receiver. Due to the assumed XPD symmetry, each
of them has power (1− γ)γPβ; thus, the total received power is

(1− γ)γPβ + (1− γ)γPβ = 2(1− γ)γPβ. (4.169)
Note that the sum of (4.168) and (4.169) is Pβ; thus, a dual-polarized receive
antenna can capture all the signal power that reaches the receiver, irrespective
of the XPD. This observation can be extended to the case when the transmitter
is a user device with an arbitrary orientation. The combined effect of the
orientation and XPD will determine how the received power is distributed
over the two polarizations of the dual-polarized receive antenna. However,
the total power of the impinging wave over the antenna’s effective area will
always be captured. This is a somewhat intuitive result but requires much
more notation to formalize mathematically; thus, it has been omitted here.

We will now study the impact of the XPD on the MIMO channel capacity.
The discussion above is related to the power of signals, while the channel
matrix describes how the amplitude and phase change. Hence, based on (4.168)
and (4.169), we can write the channel matrix as

H =
√
β

[√
1− 2(1− γ)γ

√
2(1− γ)γ√

2(1− γ)γ
√

1− 2(1− γ)γ

]
=
√
β

[√
1− κ

√
κ√

κ
√

1− κ

]
,

(4.170)
where β still denotes the channel gain and we have defined

κ = 2(1− γ)γ = 2 XPD
(1 + XPD)2 (4.171)

as the total fraction of power that leaks from a transmitted signal with one
polarization to a received signal with the opposite polarization. The derived
model is equivalent to the ones presented in [59], [60]. Note that κ ∈ [0, 0.5],
where the largest value is achieved for γ = 1/2 and XPD = 1. The channel
matrix in (4.170) reduces to (4.162) in the special case of κ = 0 when the
antenna polarizations are pure. The SVD of the channel matrix in (4.170) is17

H =
√
β

[√
1− κ

√
κ√

κ
√

1− κ

]
=
[ 1√

2
1√
2

1√
2 − 1√

2

] [√
β(
√

1− κ+
√
κ) 0

0
√
β(
√

1− κ−
√
κ)

] [ 1√
2

1√
2

1√
2 − 1√

2

]
.

(4.172)
17The SVD of H coincides with its eigendecomposition since H is a positive semi-definite

Hermitian symmetric matrix.
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Figure 4.52: The capacity of a 2 × 2 MIMO channel with dual-polarized antennas is affected
by the XPD, but the effect is negligible for large XPD values.

This implies that the MIMO channel can be divided into two parallel channels
with s1 =

√
β(
√

1− κ +
√
κ) and s2 =

√
β(
√

1− κ −
√
κ) as the singular

values. The channel capacity is achieved by transmitting each signal over both
polarizations, using the precoding vectors [1/

√
2 1/
√

2]T and [1/
√

2 −1/
√

2]T.
The same vectors are also utilized for receive combining.

The capacity can be computed using (3.75) as

C = log2

(
1 + qopt

1 s2
1

N0

)
+ log2

(
1 + qopt

2 s2
2

N0

)
, (4.173)

where qopt
k = max(µ− N0

s2
k
, 0) is the transmit power obtained from the water-

filling power allocation. It follows from Corollary 3.3 that

qopt
1 =

q, if q < N0
s2

2
− N0

s2
1
,

q
2 + N0

2s2
2
− N0

2s2
1
, otherwise,

(4.174)

qopt
2 =

0, if q < N0
s2

2
− N0

s2
1
,

q
2 + N0

2s2
1
− N0

2s2
2
, otherwise,

(4.175)

where both channels are only utilized if the transmit power is above a threshold.
Figure 4.52 illustrates the impact of XPD on the MIMO capacity. The ideal

case of κ = 0 is compared with XPD = 20 dB (κ ≈ 0.02) and XPD = 10 dB
(κ ≈ 0.17), where the transformation from XPD to κ is achieved using (4.171).
When the XPD is large, the relation becomes κ ≈ 2/XPD. The figure shows
that the polarization impurity caused by having a low XPD (such as 10 dB)
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results in a capacity reduction at high SNR. The multiplexing gain is the same,
as seen from the identical slopes of the curves, but the curve is shifted to the
right, indicating a power loss from having singular values of different sizes. In
contrast, the polarization impurity results in a minor capacity improvement
at low SNR, where only the largest singular value s1 is utilized, and s1 is an
increasing function of κ (in the range [0, 0.5] of possible parameter values).
When the XPD reaches 20 dB (or more), it has a negligible impact on the
capacity. Many practical antennas operate in that regime.

4.6.3 MIMO Channel Capacity with Dual-Polarized ULAs

We will now consider a MIMO setup with arrays of dual-polarized antennas
at both the transmitter and receiver. To keep the notation simple, we assume
that the transmitter and receiver are equipped with ULAs located in the same
two-dimensional plane (e.g., at the same height above the ground) and the
antenna spacing is ∆ = λ/2. The transmitter has K/2 dual-polarized antennas,
where K is an even number representing the total number of transmit antennas
(counting both polarizations). The receiver has M/2 dual-polarized antennas,
where M is an even number representing the total number of receive antennas.
The XPD is characterized by the parameter κ ∈ [0, 0.5] defined in (4.171).

We order the antennas according to their polarization so that transmit
antennas 1, . . . ,K/2 and receive antennas 1, . . . ,M/2 become a M

2 ×
K
2 MIMO

channel of the kind studied in Section 4.4. The same applies for transmit
antennas K/2 + 1, . . . ,K and receive antennas M/2 + 1, . . . ,M . Under the
same frequency-flatness, far-field assumptions, and angle definitions as in
Section 4.4.1, the channel matrix H ∈ CM×K can be expressed using (4.91)
as

H =
√
β

[√
1− κaM/2(φr)aT

K/2(φt)
√
κaM/2(φr)aT

K/2(φt)√
κaM/2(φr)aT

K/2(φt)
√

1− κaM/2(φr)aT
K/2(φt)

]

=
√
β

[√
1− κ

√
κ√

κ
√

1− κ

]
⊗
(

aM/2(φr)aT
K/2(φt)

)
, (4.176)

where aM/2(φ) is the array response vector defined in (4.49). We notice that H
is the Kronecker product between the channel matrix in (4.170) for two dual-
polarized antennas and an M

2 ×
K
2 MIMO channel matrix aM/2(φr)aT

K/2(φt)
with single-polarized antennas. Similarly to (4.172), the channel matrix in
(4.176) can be factorized as

H =

aM/2(φr)√
M

aM/2(φr)√
M

aM/2(φr)√
M

−aM/2(φr)√
M

[s1 0
0 s2

]aT
K/2(φt)

√
K

aT
K/2(φt)

√
K

aT
K/2(φt)

√
K

−aT
K/2(φt)

√
K

 . (4.177)
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Figure 4.53: Comparison of the capacities of MIMO channels with either 4 or 8 single-polarized
antennas on each side, or 2 or 4 dual-polarized antennas on each side (which is also 4 or 8
antennas).

This is the SVD where the two non-zero singular values are

s1 =
√
βMK

2 (
√

1− κ+
√
κ), (4.178)

s2 =
√
βMK

2 (
√

1− κ−
√
κ). (4.179)

Comparing with the case M = K = 2 in (4.172), we notice that having
multiple dual-polarized antennas at the transmitter and receiver results in a
beamforming gain of MK/4. This is the product of the number of transmit
and receive antennas of each polarization. However, the multiplexing gain
remains limited to r = 2 and is created by the different antenna polarizations.
In other words, the varying polarization does not help to resolve the issue
that far-field MIMO LOS channels have low rank since there is only one
path between the transmitter and receiver. The capacity is achieved by using
MRT with the precoding vector a∗

K/2(φt)/
√
K for each polarization at the

transmitter side and MRC with the combining vector aM/2(φr)/
√
M for each

polarization at the receiver side. The polarization multiplexing is achieved by
using the same or different signs in front of these vectors.

Figure 4.53 compares the capacities achieved with single-polarized and
dual-polarized antennas with κ = 0. There are curves for M = K = 8 and
M = K = 4. We previously observed in Figure 4.50 that the single-polarized
setup has a benefit at low SNR because a higher beamforming gain is achievable
when all antennas have matching polarization. This property remains when
the number of antennas increases, but it only occurs at lower SNRs. When
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the SNR is greater than 0 dB in Figure 4.53, the improved multiplexing gain
that dual-polarized antennas offer almost always compensates for the reduced
beamforming gain. Hence, antenna arrays and dual polarization are a good
combination when designing point-to-point MIMO LOS systems.

Example 4.26. Consider the MIMO channel with dual-polarized ULAs, whose
channel matrix is given in (4.176). Compute the channel capacity with κ = 0
(best-case XPD) and κ = 0.5 (worst-case XPD). For which values of SNR = qβ

N0
is κ = 0 giving the largest capacity?

The two non-zero singular values are given in (4.178) and (4.179). If κ = 0,
we get s1 = s2 =

√
βMK/2 and then the water-filling power allocation gives

q1 = q2 = q/2. The resulting channel capacity is

Cdual,κ=0 = 2 log2

(
1 + qβMK

8N0

)
= 2 log2

(
1 + MK

8 SNR
)
. (4.180)

If κ = 0.5, we instead have s1 =
√
βMK/2 and s2 = 0. Hence, only a

single subchannel is activated (q1 = q), which leads to the channel capacity

Cdual,κ=0.5 = log2

(
1 + qβMK

2N0

)
= log2

(
1 + MK

2 SNR
)
. (4.181)

This worst-case XPD scenario gives a smaller multiplexing gain but a larger
beamforming gain. Yet, the beamforming gain is only half that achieved by
the single-polarized MIMO channel in (4.96), so dual-polarized antennas are
not desirable for pure beamforming.

We can identify the SNR range where Cdual,κ=0 ≥ Cdual,κ=0.5 as follows:

2 log2

(
1 + MK

8 SNR
)
≥ log2

(
1 + MK

2 SNR
)

⇒
(

1 + MK

8 SNR
)2
≥ 1 + MK

2 SNR ⇒ SNR ≥ 16
MK

. (4.182)

The more antennas are used, the larger the SNR range where the setup with
κ = 0 outperforms the setup with κ = 0.5.
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4.7 Exercises

Exercise 4.1. Consider a ULA with M antennas that receive a signal from a single-
antenna transmitter located at a distance d1 in the angular direction φ. A general
relationship between the distances d1 and dM is given in (4.13) for spherical waves,
while the corresponding expression for plane waves is provided in (4.17). Show that we
can obtain (4.17) as an approximation of (4.13) when d1 ≫ M∆. Hint: Use the Taylor
approximation

√
1 + x2 ≈ 1 + x2

2 that is tight for 0 ≤ x ≤ 0.25, which was previously
considered in Section 1.1.2.

Exercise 4.2. Consider a SIMO system with isotropic antennas operating over a far-field
LOS channel. The transmit power is P , the bandwidth is B, and there are M receive
antennas.

(a) State the channel capacity expression as a function of M , P , B, the wavelength λ,
the propagation distance d, and the noise power spectral density N0.

(b) Suppose M = 1, P = 1 W, B = 10 MHz, λ = 10 cm, and N0 = 10−17 W/Hz. At
what distance d is the channel capacity 10 Mbit/s?

(c) We want to increase the number of antennas to achieve a channel capacity of
100 Mbit/s at the same distance as in (b). How many antennas are needed if
the other parameters are unchanged? How large is the total effective area of the
antennas in the receiver array?

(d) We now reduce the wavelength to λ = 1 cm. How many antennas are needed to
achieve a channel capacity of 100 Mbit/s at the same distance as in (b)? How
large is the total effective area of the antennas in the receiver array?

Exercise 4.3. Consider a ULA with M = 10 antennas and half-wavelength antenna
spacing. Suppose it beamforms in the broadside direction in a free-space LOS scenario.

(a) What is the beamforming gain obtained in the direction φ = 0?

(b) What is the beamforming gain obtained in the direction φ = π/6?

Exercise 4.4. Reproduce the exact curve in Figure 4.13 but for a ULA with cosine an-
tennas. Use the simulation results to discuss what happens to the half-power beamwidth,
the amplification beamwidth, and the first-null beamwidth compared to having isotropic
antennas. Which of these becomes smaller, wider, or unchanged in this example?

Exercise 4.5. Consider a MISO channel with a ULA having M antennas and ∆ = λ/2.
The ULA transmits a signal in the end-fire direction φbeam = π/2.

(a) If the receiver is located in another angular direction φ, what is the beamforming
gain?

(b) Compute an approximate expression for the first-null beamwidth using the Taylor
approximation arcsin(x) ≈ x, which is very tight if M ≥ 5. Hint: Consider angular
directions close to ±π/2 by setting φ = ±π/2 + x and looking for small x. Use
that sin(±π/2 + x) = ±(1 − 2 sin2(x/2)).

(c) Compare the result with the beamwidth 4/M in (4.62) for broadside beamforming.
Is the beamwidth smaller when transmitting in the broadside or end-fire direction?
Does the beamwidth for end-fire beamforming decrease when M increases?
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Exercise 4.6. A base station with M = 4 antennas transmits to a single-antenna device
located at an angle φ. Suppose the channel vector is

h =
√
β

 1
e−jπ sin(φ)

e−j2π sin(φ)

e−j3π sin(φ)

 . (4.183)

(a) What is the capacity of this channel when Pβ/(BN0) = 10? Explain how the
capacity value depends on φ.

(b) Suppose the base station believes the user is located at φbeam = 0◦ and transmits
using MRT. If the true angle of the user is φ = 60◦, what is the achievable data
rate? Compare the result with (a).

(c) Repeat (b) but with φ = 30◦. Explain the result.

Exercise 4.7. It is possible to create other grids of orthogonal angular beams than the
DFT beams defined in Section 4.3.3. Suppose we construct M beams using the angles

φ = arcsin
(2n+ a

M

)
(4.184)

for some 0 < a < 1 and for the integers n satisfying −M
2 − a

2 ≤ n ≤ M
2 − a

2 (there are
M such integers). Show that these beams are mutually orthogonal when using a ULA
with ∆ = λ/2.

Exercise 4.8. An M -antenna ULA receives the signal from φ = −π/6 and uses MRC.
An interfering signal arrives from the angle φinterf = −π/9.

(a) Obtain the sinc approximation of the beamforming gain in (4.31) for φ = −π/6
and φinterf = −π/9 by using that sin(x2) ≈ x2 for arguments close to zero.

(b) Use the obtained sinc-expression from (a) to determine how many antennas
are needed to ensure that the interfering transmitter is outside the half-power
beamwidth if ∆ = λ/2.

(c) Repeat (b) for ∆ = λ.

Exercise 4.9. Consider a ULA with M antennas deployed to transmit beams toward
user devices located in angular directions between 30◦ and 60◦. When doing so, grating
lobes are allowed if they do not appear in the angular interval φ ∈ [10◦, 80◦]. How should
the antenna spacing be selected to achieve the smallest beamwidth?

Exercise 4.10. Consider a MIMO LOS channel where the transmitter is equipped with a
ULA with K = 4 antennas and antenna spacing ∆ = λ/2. The receiver is equipped with
M = 4 distributed antennas deployed along the arc of a circle with radius d (similar
to Figure 4.26). The antennas are located in the angular directions φ1 = 0, φ2 = π/6,
φ3 = π/2, and φ4 = −π/6 as seen from the transmitter. Compute the channel capacity
in terms of q, β, and N0. Hint: Express the channel matrix using array response vectors
and show that these are mutually orthogonal.

Exercise 4.11. Consider an array with three isotropic antennas deployed at the corners
of an equilateral triangle with the side length ∆. The antennas are placed in the yz-plane.
Compute an expression for the array response vector a(φ, θ).
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Exercise 4.12. Consider a UPA transmitter with MH = 10 horizontal antennas along
the y-axis and MV = 4 vertical antennas along the z-axis. Each antenna has the
cosine gain function given in (4.151). The single-antenna receiver is in the direction
(φ, θ) = (π/6, π/6).

(a) What is the joint antenna and beamforming gain achieved by mechanical beam-
forming?

(b) What is the joint antenna and beamforming gain achieved by electrical beamform-
ing?

(c) Will the results in (a) and (b) change if the UPA instead has MH = 5 horizontal
antennas and MV = 8 vertical antennas?

Exercise 4.13. Suppose we are building a MISO system that will operate under a
maximum EIRP limit of 68 dBm. We use cosine antennas and let P denote the total
transmit power. The power consumption of the system is measured as

P

0.25 +M · 1 + Pcircuit W, (4.185)

where the first term models signal transmission with a power amplifier efficiency of
25%, the second term models that the transceiver hardware connected to each antenna
consumes 1 W, and the fixed term Pcircuit ≥ 0 models the remaining power consumption.
Which combination of P and M will reach the EIRP limit while minimizing the power
consumption in (4.185)?

Exercise 4.14. Consider a point-to-point LOS channel. Suppose the wavelength is
λ = 0.1 m, the transmit power is P = 10 W, the bandwidth is B = 100 MHz, and the
noise power spectral density is N0 = 10−17 W/Hz.

(a) If M = K = 1 isotropic antennas are used, what is the capacity when the
propagation distance is d = 100 m?

(b) If M = 1 isotropic antenna is used at the receiver, how many isotropic antennas, K,
are needed at the transmitter to reach the same data rate in (a) at the propagation
distance d = 400 m?

(c) Assuming the transmitter has K isotropic antennas, where K is obtained from
(b), how many isotropic antennas are needed at the receiver, M , to reach the same
data rate in (a) at the propagation distance d = 800 m?

(d) Is it possible to reach the same data rate as in (a) at the propagation distance
d = 800 m by using a smaller total number of antennas M +K than in (c)? What
are M and K in that case?

Exercise 4.15. A UPA transmits a signal in the direction (φbeam, θbeam), where φbeam ∈
[−π/2, π/2] is the azimuth angle and θbeam ∈ [−π/2, π/2] is the elevation angle, using
MRT.

(a) Compute the first-null beamwidths in the horizontal plane (i.e., θ = θbeam) and
vertical plane (i.e., φ = φbeam).

(b) Suppose MH = 10, MV = 4, and ∆λ = 1/2. If the UPA beamforms in the direction
φbeam = 0, θbeam = π/10, what is the first-null beamwidth in the horizontal plane
(θ = π/10) and vertical plane (φ = 0)? Compare the beamwidths with those
achieved for φbeam = 0, θbeam = 0 in Example 4.20.
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Exercise 4.16. Consider a MIMO setup with two parallel M -antenna ULAs that are
separated by a distance d. The transmitter and receiver have the antenna spacings ∆
and λ/2, respectively. If the first antenna in each array are aligned, the distance between
transmit antenna k and receive antenna m becomes

dm,k =
√
d2 +

(
m
λ

2 − k∆
)2

= d

√
1 +

(
mλ

2 − k∆
)2

d2 ≈ d

(
1 +

(
mλ

2 − k∆
)2

2d2

)
.

(4.186)
Use this approximation and that the channel gain is the same between every transmit
and receive antenna pair.

(a) Find an antenna spacing ∆ that makes all the singular values of the channel
matrix equal. Hint: Follow the approach in Section 4.4.3 but with different antenna
spacings at the transmitter and receiver.

(b) Consider the nulls of the beam pattern in (4.60). What is the physical distance
between the nulls at the distance d from the transmitter? Compare it to ∆ in (a).

Exercise 4.17. Consider a free-space point-to-point MIMO channel. The antennas at the
transmitter and receiver are K = 8 and M = 16, respectively. The angles-of-arrival and
angles-of-departure are the same and given as φr = φt = π/3 and θr = θt = 0. Suppose
that q = 10−8 W/Hz, N0 = 10−17 W/Hz, and λ = 0.1 m.

(a) At what propagation distance d is the channel capacity C = 7 bit/symbol if
single-polarized isotropic antennas are used?

(b) Suppose single-polarized cosine antennas with the antenna gain function in (4.151)
are used at both the transmitter and receiver. At what distance d is the channel
capacity the same as in (a)?

(c) At what distance d is the same channel capacity as in (a) achieved when the
transmitter and receiver use dual-polarized cosine antennas with the antenna gain
function in (4.151) and κ = 0 (i.e., best-case XPD)?

Exercise 4.18. A packet of symbols is transmitted over the SIMO channel in (4.32).
Suppose the transmitter sends the constant √

q symbol Lp times, as explained in
Section 4.2.5, so that the ULA receiver can estimate the deterministic but unknown
channel h =

√
βa(φ). Due to hardware impairments, a deterministic but unknown

phase-shift is introduced on the transmitted symbols. Hence, the received signals are
y[l] = h√

qe−jϕ + n[l], for l = 1, . . . , Lp, where ϕ ∈ [−π, π) represents the phase-shift.
The power q of the transmitted symbols is known at the receiver. Find the ML estimates
of φ, β, and ϕ.

Exercise 4.19. A packet of symbols is transmitted over the SIMO channel in (4.32).
Suppose the transmitter sends the constant √

q symbol Lp times so that the receiver
can estimate the deterministic but unknown channel h =

√
βa(φ, θ) using the received

signals y[l] = h√
q + n[l], for l = 1, . . . , Lp.

(a) Suppose the receiver has a ULA with M = 2 and ∆ = λ/2. The array response
vector is obtained from (4.120) as a(φ, θ) =

[
1, e−jπ sin(φ) cos(θ)]T. Can the receiver

uniquely find the ML estimates of φ and θ?
(b) Can we find an M > 2 so the receiver can uniquely find the ML estimates of φ

and θ?



Chapter 5

Non-Line-of-Sight Point-to-Point MIMO Channels

The previous chapter considered free-space LOS channels, where the transmit-
ted signal only reaches the receiver through a direct, unobstructed path. This
chapter considers an entirely different setup: There is no LOS path (some
object blocks it), but many reflected paths. We will first show that these
multipath channels behave randomly and, thus, can be modeled statistically.
This is known as a fading channel since the current SNR depends on the
current random realization of the channel. We will then extend the statistical
model to MIMO channels and obtain what is known as independent and
identically distributed (i.i.d.) Rayleigh fading. Depending on how quickly the
channels vary over time, we will consider different ways of extending the
capacity concept to handle fading channels. The benefit of using multiple
antennas to combat fading variations will be demonstrated and the spatial
fading correlation created by the propagation environment’s geometry will be
studied.

5.1 Basics of Multipath Propagation and Rayleigh Fading

We begin by considering a non-LOS (NLOS) SISO channel where there are L
different paths that the signal can travel between the transmitter and receiver.
This is called a multipath propagation channel. The paths are created when
the electromagnetic wave interacts with various objects in the propagation
environment, as illustrated in Figure 5.1. In this figure, the LOS path is
blocked, but one can draw an unobstructed line between the transmitter and
each object, and between each such object and the receiver.

The interaction between the wave and the object depends on the shape of
the object. Figure 5.2 showcases four main categories of interactions. Specular
reflection refers to the case when the signal wave bounces off the surface
in a mirror-like way; that is, the incident and outgoing angles are the same
but on the opposite side of the normal to the object. This type of reflection
occurs when the object is large and smooth (as compared to the wavelength).
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d1

d2

di

dL

Line-of-sight
is blocked

Figure 5.1: An NLOS SISO channel with L propagation paths, where di denotes the total length
of the ith path. Each path is generated through interaction with an object in the environment.
Figure 5.2 illustrates different types of interactions.

Incident wave

Specular reflection Scattering
(Diffuse reflection)

Transmission

Refraction

Diffraction

φ −φ

Figure 5.2: An electromagnetic wave can interact with an object in the propagation environment
in various ways. The interaction might change both the direction of the signal and its shape,
which can become more diffuse.

Scattering is a phenomenon that occurs when the signal wave impinges on a
rough surface. When the signal bounces off the surface, it will be spread out
in many different directions, also known as diffuse reflection. Compared to
specular reflection, the benefit of scattering is the greater chance that one of
the outgoing wave components propagates toward the receiver. The downside
is that each component carries relatively little signal energy since the total
energy of the impinging wave is spread between many directions. Transmission
refers to when the signal passes through the object, often resulting in a slight
shift in the propagation direction due to refraction inside the object. The
object’s material determines what fractions of the signal energy are reflected,
absorbed, and transmitted to the other side. Finally, diffraction refers to
the phenomenon that electromagnetic waves can bend around sharp corners,
resulting in the signal spreading diffusely on the other side. Diffraction also
happens when the signal passes through holes in an object with a smaller size
than the wavelength.

In the context of communications, the important thing is the existence
of multiple propagation paths, while the type of interaction with the objects
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is secondary. We considered a multipath channel with L paths already in
Section 2.3.3 when deriving the memoryless channel model we used in previous
chapters. We will now recall some main results and introduce new notation to
study the channel properties further. We denote the total length of the ith
propagation path by di meters. Hence, the signal that is received through the
ith path will be time-delayed by τi = di/c = di/(fcλ) seconds, where fc is
the carrier frequency, λ is the wavelength, and c is the speed of light. We let
d = 1

L

∑L
i=1 di denote the average path length. The average path length in

wireless communications is usually much larger than the variations |di − d|
around the average. This is because mainly objects surrounding the transmitter
or receiver will create propagation paths that reach the receiver. Hence, the
receiver can sample the received signal using the delay η = d/c = d/(fcλ), and
we will obtain a memoryless channel if B(d−di)/c ≈ 0 for i = 1, . . . , L. Recall
from Section 2.3.4 that this is known as the narrowband assumption since
it is always satisfied when the bandwidth is sufficiently small. For example,
suppose we interpret B(d − di)/c ≈ 0 as requiring that B|d − di|/c ≤ 0.1
for all paths.1 If the maximum deviation from the average path length d is
maxi |d−di| = 30 m, then we will obtain a narrowband channel for B ≤ 1 MHz.
If maxi |d− di| = 3 m, then B ≤ 10 MHz will result in a narrowband channel.

We let αi ∈ [0, 1] denote attenuation of the ith path, while α2
i is the gain.

We stress that α2
i should not be computed using the LOS formula in (1.7)

since it only applies to direct free-space LOS paths. A path generated through
specular reflection might have a gain that resembles that formula, but only
when the reflecting surface is huge compared to the wavelength.2 Diffusely
reflected/scattered paths generally have a much lower channel gain due to
the additional spatial dispersion created by the scattering and the material’s
absorption losses. We will not assume a specific model in this chapter.

By utilizing the narrowband assumption, we previously showed in (2.131)
that the channel response h ∈ C when having L paths can be written as

h =
L∑
i=1

αie
−j2πfc(τi−η) =

L∑
i=1

αie
−j2π (di−d)

λ , (5.1)

where the second equality follows from τi = di/(fcλ) and our assumption of
η = d/(fcλ). The value of this channel response depends on the distances
and attenuations of the L individual paths. Since the attenuations αi are
multiplied by the phase-shift terms e−j2π (di−d)

λ , it is hard to tell whether the
1The upper bound depends on which pulse function p(t) is utilized in the PAM because this

determines for which time-shifts the intersymbol interference can be neglected. In this case, we
selected 0.1 based on the fact that sinc(±0.1) ≈ sinc(0) = 1 and sinc(l ± 0.1) ≈ sinc(l) = 0 for
l = ±1,±2, . . . If we would use a pulse that varies more slowly than the sinc function, then we
might expand the delay spread that we can manage without having intersymbol interference.

2Many objects that behave as specularly reflecting mirrors for visible light are too small
to behave in that way in wireless communications because the wavelength might be a 100 000
times larger (compare 4 GHz communication with visible light that starts at 400 THz).
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terms in the sum will reinforce or cancel each other. This depends on whether
the phases happen to be aligned or not. When the transmitter or receiver
moves, d1, . . . , dL will change. Even if the movement is only over a distance
proportional to the wavelength λ, this might substantially change all the
phase-shifts in (5.1) and thereby change if the terms reinforce or cancel each
other. This phenomenon is called multipath fading and motivates why small
movements can give rise to seemingly random changes in the channel response.

Example 5.1. Consider an environment with L = 2 objects creating propaga-
tion paths with identical phases. What is the shortest distance the receiver
can move to risk that the paths have phases that differ by π instead?

Suppose for simplicity that e−j2π (d1−d)
λ = e−j2π (d2−d)

λ = 1 at the initial
point. When the receiver moves, the distances d1 and d2 will change, and the
phases will rotate. If the receiver moves a distance δ > 0, the path lengths
d1, d2 can at most increase or decrease by δ, depending on the direction of
motion compared to the direction that the signal components arrive from.
The largest phase difference between the two paths occurs when the receiver
moves right towards object 2 so that d2 shrinks to d2−δ, while simultaneously
moving away from object 1 so that d1 increases to d1 + δ (or the other way
around). The respective phase-shifts will then become

e−j2π (d1+δ−d)
λ = e−j2π δλ , (5.2)

e−j2π (d2−δ−d)
λ = e+j2π δλ . (5.3)

The difference between these phases is 4π δλ , which becomes π if δ = λ/4.
Hence, whenever the receiver moves a quarter of the wavelength, there is a
risk that the multipath propagation will change so radically that the paths
are canceling out instead of reinforcing one another.

5.1.1 Rich Multipath Propagation: Rayleigh Fading

When the number of paths (L) is huge, we have a scenario known as rich
multipath propagation. This is often a valid assumption in NLOS communica-
tions due to the many paths created by scattering. We will derive a statistical
distribution for the channel response h in this case. Since there is a large
set of path attenuations αi and distances di, it makes sense to model their
values statistically. We assume that α1, . . . , αL are independent realizations
of a random variable A, which describes how the channel attenuations vary
between different objects in the environment.

We further use ψi = 2π (di−d)
λ + 2πki to denote the phase-shift of the

ith path in (5.1), where the integer ki is selected so that ψi ∈ [−π, π), for
i = 1, . . . , L. We can wrap any phase-shift into the interval [−π, π) without
loss of generality since e−jψi is a periodic function with period 2π. When there
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are many paths, it is likely that the path difference |di−d| ranges from zero up
to many wavelengths, which implies that ψi will likely be uniformly distributed
between −π and π. Hence, we assume ψ1, . . . , ψL are independent realizations
of a random variable with a continuous uniform distribution between −π and
π. This is denoted as ψi ∼ U [−π, π) and the corresponding PDF is

fψ(ψ) =
{

1
2π , if − π ≤ ψ < π,

0, otherwise.
(5.4)

The purpose of this statistical modeling is to emphasize that (5.1) can be
viewed as the summation of L independent realizations drawn from the same
random distribution. We can separate the sum into two parts:

h =
L∑
i=1

αie
−jψi =

L∑
i=1

αi cos(ψi)︸ ︷︷ ︸
Real part

−j
L∑
i=1

αi sin(ψi)︸ ︷︷ ︸
Imaginary part

. (5.5)

The real and imaginary parts have zero means because the integral over a
period of a cosine/sine function is zero. These parts are uncorrelated since

E


L∑
i=1

αi cos(ψi)
L∑
j=1

αj sin(ψj)

 =
L∑
i=1

E
{
α2
i

}
E{cos(ψi) sin(ψi)}︸ ︷︷ ︸

=0

= 0 (5.6)

when ψi ∼ U [−π, π).3 One can also show that the real and imaginary parts
in (5.5) have the same variance since E{cos2(ψi)} = E{sin2(ψi)} = 1/2.4

When L is large, we can utilize the central limit theorem, stated in
Lemma 2.6, to obtain an approximate random distribution of h. This re-
sult manifests that the sum of many independent and identically distributed
real-valued random variables becomes approximately Gaussian distributed.
We can apply this theorem to the real and imaginary parts of h in (5.5) to
motivate that both are approximately Gaussian distributed. Since we have
shown that the real and imaginary parts are also uncorrelated, it follows
from the Gaussian distribution that they are also approximately independent.
Hence, the channel response in a rich multipath environment is approximately
complex Gaussian distributed:

h ∼ NC(0, β). (5.7)

We let β denote the average channel gain E{|h|2} = β of h to obtain a
notation where the average SNR is denoted in the same way as in LOS

3There is a trigonometric identity saying that cos(ψi) sin(ψi) = sin(2ψi)/2. For ψi ∼
U [−π, π), it follows that E{cos(ψi) sin(ψi)} = E{sin(2ψi)}/2 is an integral over two periods of
the sine function; thus, it is equal to zero.

4There is another trigonometric identity saying that cos2(ψi) = 1/2 + cos(2ψi)/2. For
ψi ∼ U [−π, π), it follows that E{cos2(ψi)} = 1/2. Similarly, using the trigonometric identity
sin2(ψi) = 1/2 − cos(2ψi)/2, it follows that E{sin2(ψi)} = 1/2.
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communications. Note that β is also the variance of h since the mean value
is zero. As explained in Section 2.2.2, the full name of the distribution in
(5.7) is the circularly symmetric complex Gaussian distribution, where the
circular symmetry means that h and he−jψ have the same distribution for any
phase-shift ψ. This property can be observed in Figure 2.6, where the PDF
remains the same if it is rotated around the origin.

The type of channel distribution in (5.7) is commonly known as Rayleigh
fading. The reason is that the channel magnitude |h| is Rayleigh distributed,
as previously described in Section 2.2.5. Specifically, |h| ∼ Rayleigh(

√
β/2),

resulting in the PDF

f|h|(x) = 2x
β
e−x2

β , for x ≥ 0. (5.8)

This PDF is illustrated in Figure 5.3(a) for β = 1. We observe that |h| has
most of its probability mass between 0 and 3. The mean value can be shown to
be
√
π/2 ≈ 0.9. The PDF does not look particularly strange, but an important

characteristic is emphasized in Figure 5.3(b), where we show the same PDF
using a logarithmic scale on the horizontal axis. We can then notice that
most channel realizations will give |h| ≈ 1, but there is also a substantial risk
of getting a value closer to zero. For example, |h| < 0.5 happens in 22% of
the realizations and |h| < 10−1 happens in 1% of the realizations. When the
magnitude of the channel is this small, we say that it is in deep fade.

Relatively few propagation paths are sufficient to approximately observe
Rayleigh fading, especially if the paths have roughly the same channel gains
α2
i . This will be the case when the scattering is close to the transmitter and/or

receiver, so the path lengths d1, . . . , dL are roughly the same. The convergence
to Rayleigh fading is illustrated in Figure 5.4 by showing the CDF

F|h|(x) =
∫ x

−∞
f|h|(u)∂u (5.9)

of |h| with L = 2, L = 5, and Rayleigh fading that is obtained as L → ∞.
Recall that the CDF of the Rayleigh distribution was given in (2.102). We
have assumed αi = 1/

√
L and ψi ∼ U [−π, π). The curves with Rayleigh

fading and L = 5 are nearly the same, while L = 2 gives a different shape.
Hence, it is sufficient with five propagation paths with equal attenuation and
random phases to obtain a channel that can be modeled by Rayleigh fading.

Random channels are generally called fading channels since the SNR q|h|2

N0
varies depending on the realization of h. The cause of the variations is the
summation of the many complex exponentials in (5.1), which cancel out each
other by having very different phases when the channel is in a deep fade. This
is essentially an extension to Example 5.1, which showcased how two paths
are canceled when the phase-shifts differ by π. As we will see later in this
chapter, the fading variations are problematic in wireless communications and
require us to define the channel capacity differently.
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(a) Probability density function using a linear scale on the horizontal axis.

“Deep fade”
@
@R

“Good channel”
�

�	

(b) Probability density function using a log-scale on the horizontal axis.

Figure 5.3: The probability density function 2xe−x2 of x = |h|, when h ∼ NC(0, 1). This
channel distribution is known as Rayleigh fading and is characterized by occasional deep fades
where |h| is much smaller than the average value.
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Although the distribution of the magnitude |h| has given rise to the term
“Rayleigh fading,” mostly the distribution of the squared magnitude |h|2 is
useful when analyzing the communication over Rayleigh fading channels. We
will utilize it later in this chapter. It was shown in Section 2.2.5 that it has
an exponential distribution: |h|2 ∼ Exp(1/β) with the PDF

f|h|2(x) = 1
β
e− x

β , for x ≥ 0. (5.10)

Example 5.2. The derivation of Rayleigh fading distribution assumes that
there are L independent and identically distributed propagation paths. What
happens to the distribution if there is also an LOS path?

The distinguishing property of the LOS path is that its gain is much
stronger than that of the NLOS paths, so it cannot be included when applying
the central limit theorem. If we denote the LOS channel gain as α2

0 and
phase-shift as ψ0 ∼ U [−π, π), then the channel response can be expressed as

h = α0e
−jψ0 +

L∑
i=1

αie
−jψi (5.11)

→ α0e
−jψ0 + hNLOS as L→∞, (5.12)

where hNLOS ∼ NC(0, βNLOS) is Rayleigh fading created by the NLOS paths.
This channel model is called Rician fading since |h| ∼ Rice(α0,

√
βNLOS/2)

has a Rician distribution.a When using this alternative model, it is common
to let β = E{|h|2} = α2

0 +βNLOS denote the average gain of the entire channel
and define the so-called κ-factor determining how the gain is divided between
the LOS and NLOS paths:

κ = α2
0

βNLOS
. (5.13)

Using this notation, we can generate random channel realizations as

h =
√

κ

κ+ 1
√
βe−j·U [−π,π) +

√
1

κ+ 1NC(0, β), (5.14)

where the phase of the LOS path and the Rayleigh fading created by the
NLOS paths are the two sources of randomness. Using this notation, we also
have that |h| ∼ Rice(

√
βκ/(κ+ 1),

√
β/(2(κ+ 1))).

aThe Rician distribution x ∼ Rice(ν, σ) has the PDF f(x) = x
σ2 e

− x2+ν2

2σ2 I0
(
xν
σ2

)
, where

I0(z) =
∑∞

n=0
(z/2)2n

(n!)2 is the zeroth-order modified Bessel function of the first kind.

Under the Rician fading model, the PDF of |h| can have a shape that
differs substantially from Rayleigh fading. Figure 5.5 shows the PDF with
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Figure 5.4: The CDF Pr{|h| ≤ x} of the channel magnitude |h| with Rayleigh fading and with
L = 2 or L = 5 paths with constant gain and uniformly distributed phases. It is sufficient to
have five paths to approximately observe Rayleigh fading.

Figure 5.5: The probability density function of |h| for Rician fading with β = 1 and different
values of the κ-factor.

β = 1 and three values of the κ-factor. Rayleigh fading is given by κ = 0 while
κ = 1 represents the scenario when the strength of the LOS path is identical
to the average combined strength of all the NLOS paths. The existence of
the LOS path shifts the probability mass slightly towards

√
β = 1, but the

difference from Rayleigh fading is not so large, and deep fades still occur. In
contrast, κ = 10 results in a PDF more confined around 1, so small and large
realizations are much less likely than under Rayleigh fading.



318 Non-Line-of-Sight Point-to-Point MIMO Channels

The remainder of this chapter considers Rayleigh fading since this is the
more problematic scenario. The corresponding PDF expression is also tractable
for performance analysis and developing methods that counteract fading.

5.1.2 Independent Rayleigh Fading in SIMO and MISO Channels

The Rayleigh fading channel model will now be extended to systems with
multiple antennas. Building on the results in the previous section, we can
expect that the channel between one transmit antenna and one receive antenna
can be modeled by the complex Gaussian distribution in (5.7) under rich
multipath conditions. Hence, every entry hm,k of the MIMO channel matrix
H can be modeled this way. The remaining question is how these channel
coefficients are related to each other. Will h1,1 and hm,k be statistically
independent or correlated? Will they have different variances? These questions
will be answered in this section for the considered frequency-flat channel.

We begin by considering a SIMO channel where a ULA with M antennas
and antenna spacing ∆ receives a signal from a single-antenna transmitter. We
assume the ULA receives signal components via L objects in different angular
directions in the three-dimensional world. We will use the spherical coordinate
system in Figure 1.9 and assume the ULA is located along the z-axis, as in
Example 4.16. The reason is that the corresponding array response in (4.122)
is independent of the azimuth angle, which will simplify the presentation in
this section. We let αi ∈ [0, 1] denote the attenuation of the ith path, ψi is the
non-zero phase-shift5 at the reference antenna, and θi is the angle-of-arrival in
the elevation domain. The channel response h ∈ CM can then be written as

h =
L∑
i=1

αie
−jψi



1
e−j2π∆ sin(θi)

λ

e−j2π 2∆ sin(θi)
λ

...
e−j2π (M−1)∆ sin(θi)

λ


, (5.15)

where the summation resembles the SISO channel in (5.5) but the ith term
is multiplied by the array response vector from (4.122) for a signal arriving
from θi. This setup is illustrated in Figure 5.6. We assume ψ1, . . . , ψL are
independent realizations of a uniform distribution between 0 and 2π. We
further assume α1, . . . , αL are independent realizations of a random variable
and denote the average channel gain as

β =
L∑
i=1

E
{
α2
i

}
. (5.16)

5In free-space LOS communications, there is only one path so we can synchronize the receiver
such that there is no phase-shift at the reference antenna. This cannot be done when there are
multiple paths, which is why ψi is needed in this case.
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∆

∆

∆

Figure 5.6: A ULA in an isotropic rich multipath environment where the multipath components
are received from random elevation angle directions with uniform distribution.

In an isotropic rich multipath environment, the number of multipath com-
ponents L is large, and their locations are uniformly/isotropically distributed
over all directions. Recall that φ ∈ [−π, π) denotes the azimuth angle, while
θ ∈ [−π/2, π/2] denotes the elevation angle in the spherical coordinate system.
The PDF of a uniform distribution over a unit sphere is given by

fφ,θ(φ, θ) = cos(θ)
4π , −π ≤ φ < π, −π2 ≤ θ ≤

π

2 (5.17)

where 4π is the surface area of the unit sphere and cos(θ)∂θ∂φ is the area
of a surface element in direction (φ, θ) that appears when integrating over a
sphere using spherical coordinates as in (1.27). The channel in (5.15) does not
depend on the azimuth angle φ; there is a rotational invariance when using a
ULA that can be observed in Figure 1.18 and Figure 1.20. Hence, we only
need the marginal PDF

fθ(θ) =
∫ π

−π
fφ,θ(φ, θ)∂φ = cos(θ)

2 , −π2 ≤ θ ≤
π

2 , (5.18)

when characterizing the statistical channel properties in this section. The
entry hm =

∑L
i=1 αie

−jψie−j2π (m−1)∆ sin(θi)
λ in h = [h1, . . . , hM ]T has the mean

E{hm} =
L∑
i=1

E{αi}E{e−jψi}︸ ︷︷ ︸
=0

E
{
e−j2π (m−1)∆ sin(θi)

λ

}
= 0, (5.19)
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where E{e−jψi} = 0 follows from that the angles are uniformly distributed
between 0 and 2π. Furthermore, the variance is

Var{hm} = E
{
|hm|2

}
= E


∣∣∣∣∣
L∑
i=1

αie
−jψie−j2π (m−1)∆ sin(θi)

λ

∣∣∣∣∣
2

=
L∑
i=1

E
{
α2
i

}
= β. (5.20)

If L is large, we can model this channel coefficient as

hm ∼ NC(0, β), (5.21)

according to the central limit theorem in Lemma 2.6 (following the same
procedure as in the last section). All the channel coefficients in h have the
same marginal distribution, including mean and variance. The multipath
environment creates a random process that determines the fading realizations
at all spatial locations, and the channel coefficients are samples taken from
that process at antenna locations. Hence, the coefficients are also jointly
complex Gaussian distributed. It remains to determine if the coefficients are
correlated. To this end, we consider two different channel coefficients hm and
hn, for which m ̸= n, and compute the correlation

E{hmh∗
n} = E


L∑
i=1

αie
−jψie−j2π (m−1)∆ sin(θi)

λ

L∑
j=1

αje
jψjej2π

(n−1)∆ sin(θj)
λ


=

L∑
i=1

E
{
α2
i

}
E
{
ej2π (n−m)∆ sin(θi)

λ

}
, (5.22)

where the last equality follows from that E{e−jψiejψj} = E{e−jψi}E{ejψj} = 0
for i ≠ j because the angles are independent and uniformly distributed
between 0 and 2π. We can use the PDF in (5.18) to compute the last mean
value in (5.22):

E
{
ej2π (n−m)∆ sin(θi)

λ

}
=
∫ π/2

−π/2
ej2π (n−m)∆ sin(θi)

λ
cos(θi)

2 ∂θi

= λ

2π(n−m)∆
ej2π (n−m)∆

λ − e−j2π (n−m)∆
λ

j2

=
λ sin

(
2π (n−m)∆

λ

)
2π(n−m)∆ = sinc

(2(n−m)∆
λ

)
. (5.23)

By using this expression and (5.16), the correlation in (5.22) becomes

E{hmh∗
n} = β sinc

(2(n−m)∆
λ

)
. (5.24)
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This value is generally non-zero, meaning the channel coefficients are generally
statistically correlated. This is known as spatial correlation since we measure
the correlation between the channel coefficients observed at different spatial
locations. However, we can identify specific antenna spacings that give uncor-
related channels. Since (n−m) is an integer and the sinc function is zero for
integer arguments (except for zero), the expression in (5.24) is zero if 2∆/λ
is an integer. In particular, this happens for the antenna spacing ∆ = λ/2,
which is yet another reason why the half-wavelength spacing is popular when
considering ULAs. Intuitively, having uncorrelated channel coefficients in the
array is preferable because every receive antenna provides unique information.
We will see later that it is an important property to combat the adverse effects
of fading. Note that if hm and hn are uncorrelated, they are also independent
since they are jointly complex Gaussian distributed.

Spatial correlation is sometimes referred to as antenna correlation, but this
is a misnomer since the antennas are physical objects, not random variables.
It is channel coefficients observed at different antennas that can be correlated,
both in time and space. It is the spatial correlation we focus on in this chapter.

Example 5.3. Consider two antennas located at the Cartesian coordinates
(x1, y1, z1) and (x2, y2, z2), respectively. What is the spatial correlation be-
tween their channel coefficients in an isotropic rich multipath environment?

There is a distance δ =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 between the
antennas. Since the multipath components are uniformly distributed over all
directions, we can shift and rotate the Cartesian coordinate system without
changing the statistical distribution. In particular, we can place the origin at
the first antenna and point the z-axis in the direction of the second antenna.
We then have a ULA along the z-axis with M = 2 antennas and antenna
spacing δ. It then follows from (5.24) that the correlation between the channel
coefficients h1 and h2 at the two antennas is

E{h1h
∗
2} = β sinc

(2δ
λ

)
, (5.25)

where β denotes the common channel gain. The conclusion is that spatial
correlation in an isotropic rich multipath environment only depends on the
distance between the antennas, not their exact locations.

The derivation of the spatial correlation in this section is based on the
assumption of having a ULA deployed along the z-axis. Example 5.3 shows that
we can rotate the coordinate system arbitrarily and get the same result. Only
the antenna spacing matters when determining the correlation in an isotropic
rich multipath environment. For example, a ULA deployed in the horizontal
plane will also give rise to Rayleigh fading with the spatial correlation given
by (5.24). The correlation is zero if the antennas are half-wavelength-spaced
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(or an integer times that), but not otherwise.
There is a connection between the preferable spacing between antennas

and the classical sampling theorem in Lemma 2.8. The sampling theorem of
complex time-domain signals says we can reconstruct a signal with bandwidth
B (counting both positive and negative frequencies) from samples spaced apart
by 1/B in time. As the signal bandwidth is typically distributed between −B/2
and B/2, the samples are taken twice per period of the largest signal frequency
±B/2. What we have observed in this section is that we should sample a
wireless signal in space using an antenna spacing of λ/2 apart. We recall from
Section 2.8.3 that a signal with wavelength λ has the spatial frequencies ±1/λ
in the direction of propagation. In contrast, spatial frequencies in the range
(−1/λ, 1/λ) can be observed in other directions. In an isotropic rich multipath
environment where signal components impinge on the ULA from all possible
angular directions, the channel will contain all spatial frequencies from −1/λ
to 1/λ (not only one frequency as in Chapter 4). We can say that the spatial
bandwidth is 2/λ, and the sampling theorem then recommends taking samples
that are spatially separated by λ/2 (i.e., twice per period). This is why the
ULA should have that antenna spacing.

The conclusion from the analysis above is the following. If a ULA with M
antennas and ∆ = λ/2 spacing receives a signal in a rich multipath environment
(with scatterers being equally distributed over all angular directions), then the
SIMO channel h = [h1, . . . , hM ]T contains independent entries that are equally
distributed according to (5.21). We can write this distribution in vector form
as

h ∼ NC(0, βIM ). (5.26)

This channel model is known as i.i.d. Rayleigh fading and can be utilized for
SIMO and MISO channels.

5.1.3 Independent Rayleigh Fading in MIMO Channels

We can extend this result to MIMO channels where both the transmitter and
receiver are equipped with ULAs with ∆ = λ/2 as antenna spacing. If each
array is surrounded by many isotropically distributed scatterers (according to
the conditions above), then every entry hm,k of the channel matrix H ∈ CM×K

will be independent and identically distributed as

hm,k ∼ NC(0, β). (5.27)

If the antennas are arranged in other ways, the entries of H will generally be
correlated. For example, MIMO systems with UPAs always feature spatial
correlation because one cannot achieve λ/2-spacing along the many diagonals
in the arrays. We will focus on i.i.d. fading in this chapter since this is
practically achievable and analytically tractable.
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Example 5.4. What is the rank of H in i.i.d. Rayleigh fading?
The rank of a matrix is equal to the maximal number of linearly inde-

pendent columns. The matrix H ∈ CM×K has K column vectors from CM .
We begin by considering the case when K ≤M , so there are fewer columns
than rows. The probability that a collection of K ≤M randomly generated
columns will happen to be linearly dependent is zero when the randomness is
independent and originates from a continuous distribution. The formal proof
builds on generating random realizations for all entries of H except the last
one: hM,K . For the last column to be a linear combination of the previous
ones, there will only be one or a few discrete values that hM,K can take (or
there is no value at all). The probability of obtaining one of a few specific
values from a continuous distribution is zero.

If K > M , then the first M columns will be linearly independent with
probability one, and the same holds for any subset of M columns from H.
Hence, we will get a realization of H that has the maximum rank min(M,K)
with probability one. This also means that a MIMO channel with i.i.d. Rayleigh
fading can achieve the maximum multiplexing gain r = min(M,K).

5.2 Slow and Fast Fading Versus the Channel Coherence Time

When the channel capacity was analyzed in Section 3, it was assumed that
the channels are fixed throughout the transmission and known at both the
transmitter and receiver. These are reasonable assumptions for LOS channels
but not necessarily for fading channels. Recall from Definition 2.7 that the
capacity describes the number of bits per second that can be “communicated
with arbitrarily low error probability as the number of symbols in the packet
approaches infinity”. The second part of this sentence is crucial in the context
of fading channels: When we send a long packet, how many random realizations
of the fading channels will we observe in the meantime?

The answer to this question depends on many factors, such as the packet
size, the geometry of the propagation environment, and the mobility of the
transmitter, receiver, and objects that interact with the waves. We will quantify
the time a channel coefficient is approximately constant to shed light on this.

The worst-case scenario for channel variations was identified in Example 5.1.
A practical situation where the same thing occurs is illustrated in Figure 5.7.
The transmitter can reach the receiver via two reflecting objects, although the
LOS path is blocked. Initially, the two propagation paths are of equal length
d (i.e., d1 = d2 = d) and have the same attenuation α. The receiver then
moves towards object 2 at a speed of υm/s without changing the attenuation
(for simplicity). Hence, the two propagation distances can be expressed as
functions of the time t as

d1(t) = d+ υt, d2(t) = d− υt. (5.28)
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d1 d2

Line-of-sight is blocked

Transmitter

Receiver

Object 1 Object 2Speed: υ

Figure 5.7: An NLOS SISO channel with two propagation paths that are initially of equal
length, but the receiver then moves towards object 2 at a speed of υm/s.

The SISO channel coefficient in (5.1) also becomes a function of time:

h(t) = α
(
e−j2π (d1(t)−d)

λ + e−j2π (d2(t)−d)
λ

)
= α

(
e−j2π υtλ + e+j2π υtλ

)
= 2α cos

(
2πυt

λ

)
. (5.29)

We can notice several things from this expression. Firstly, the two paths have
aligned phases at t = 0 and cancel out when υt = λ/4 which happens at the
time t = Tc, where

Tc = λ

4υ . (5.30)

This is called the channel coherence time since it represents the shortest
time to move from constructive superposition to a deep fade. The expression
in (5.30) is often used to approximate the time a channel response remains
approximately constant. The coherence time is proportional to the wavelength
and inversely proportional to the speed of motion. One can rightfully criticize
whether the proportionality constant in (5.30) should be 1/4 because the
channel in (5.29) will change drastically from h(0) = 2α to h(Tc) = 0 in that
time period. On the other hand, we considered a worst-case scenario that is
unlikely to happen in practice, which is why it is a common rule-of-thumb
[26, Sec. 2.1.4].6

The second observation is that the phase-shifts in (5.29) due to mobility
are e±j2π υtλ = e±j2πfc

υt
c , which corresponds to shifting the instantaneous

frequency of the received signal by ±fc
υ
c . This is known as Doppler shifts.

6One can find alternative definitions of the coherence time in other textbooks; for example,
based on maintaining temporal correlation above 0.5 [61] or based on the sampling theorem [3].
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Example 5.5. Consider transmitting a data packet with a time duration of
100 ms. The communication takes place in the 3 GHz band (i.e., λ = 0.1 m).
What is the coherence time if υ = 0.1 m/s or υ = 25 m/s?

The two speeds correspond to slow indoor mobility and driving on a
highway, respectively. The coherence time in (5.30) becomes

Tc = λ

4υ = 0.1
4 · 0.1 = 250 ms if υ = 0.1 m/s, (5.31)

Tc = λ

4υ = 0.1
4 · 25 = 1 ms if υ = 25 m/s. (5.32)

In the former case, the time duration of the packet is substantially smaller
than the coherence time; thus, the channel will be approximately constant
throughout the transmission. In the latter case, the coherence time is 100
times shorter than the duration of the data packet; thus, the communication
will be subject to roughly 100 different channel realizations.

An additional perspective on the coherence time concept can be obtained
by revisiting the rich multipath environment from Section 5.1.2. The channel
response at a given location is then a realization of a complex Gaussian random
variable: NC(0, β). Suppose the receiver starts at an arbitrary location at
time 0 and then moves along a straight line at the speed υm/s. At the time t,
it will be at a location δ = υt meters away from the initial location. Suppose
we let h(0) and h(t) denote the channel realizations at these locations. In that
case, we basically have a ULA with antennas separated by δ, except that the
receive antenna is not simultaneously at both locations. It then follows from
(5.25) that the temporal channel correlation is

E{h(0)h∗(t)} = β sinc
(2δ
λ

)
= β sinc

(2υt
λ

)
. (5.33)

If we continue using Tc = λ
4υ from (5.30) as the channel coherence time

definition, the correlation in (5.33) becomes βsinc(2υTc/λ) = βsinc(1/2) ≈
0.64β. One way to interpret this correlation value is that

h(Tc) ≈ 0.64h(0) +
√

1− 0.642NC(0, β), (5.34)

which is a linear combination of the old channel h(0) and a new independent
realization of the complex Gaussian distribution. The coefficient ensures that
E{|h(Tc)|2} = β. We can expect the random channel fluctuations to be small
within the coherence time. Beyond that time interval, the temporal correlation
reduces more rapidly and becomes βsinc(1) = 0 when t = λ

2υ .
Figure 5.8 shows random realizations of |h(t)|, as a function of the time

t, that are generated based on the temporal correlation model in (5.33).
We consider β = 1, λ = 0.1 m, and the same two speeds of motion as in
Example 5.5: υ = 0.1 m/s or υ = 25 m/s. We notice that channel magnitude



326 Non-Line-of-Sight Point-to-Point MIMO Channels

Figure 5.8: A sequence of random realizations of |h(t)| that was generated using the temporal
correlation model in (5.33). The speed υ determines how quickly the channel changes over time.

is almost constant over the considered 100 ms time interval when the speed is
low, while there are very rapid variations when the speed is high.

In conclusion, depending on how quickly things are moving in the propaga-
tion environment, a fading channel takes one random realization throughout
the time interval required to send a data packet, or the channel magnitude
oscillates rapidly. Even in the latter case, there is a channel coherence time
within which the channel is approximately constant. Hence, we can treat a
fading channel as being piecewise constant over short blocks of time and jumps
between different random fading realizations across these blocks. Figure 5.9
illustrates how a continuously time-varying channel can be approximated to
be piecewise constant in time intervals that match the coherence time of the
channel. If we further assume that the random realizations are independent
across these blocks but originate from the same distribution, we obtain what
is known as the block fading model.

5.2.1 Definitions of Slow and Fast Fading

The relation between the channel coherence time and the packet length deter-
mines how many fading realizations will be observed during communication.
When studying the impact of fading on the channel capacity, two canonical
setups (or extreme cases) are normally considered:

1. Slow fading: The channel takes only one random realization throughout
the entire transmission.

2. Fast fading: The channel takes a new independent random realization at
every time instance.
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Time t

Tc

Channel amplitude |h(t)|

Piecewise constant approximation
Continuously time-varying channel

Figure 5.9: The block fading model approximates a continuously time-varying channel as
being piecewise constant over time. The channel response changes every Tc second, based on
the channel coherence time, and takes independent and identically distributed realizations.

We will study these cases separately in the remainder of this chapter. In
both cases, the receiver is assumed to know the channel realization, while the
transmitter does not. The motivation for this assumption is that the receiver
can learn the channel realization after/during the transmission by analyzing
the received signal. By contrast, the transmitter must decide how to transmit
in advance, and then the random fading realization is generated.

One can also relate the slow and fast fading concepts to the latency
requirements of the communication link; that is, the time delay from a bit
is transmitted until it must be decoded at the receiver. For a given channel
coherence time, we can choose between transmitting a relatively short data
packet only exposed to one fading realization (i.e., slow fading) or a very
long data packet exposed to many fading realizations (i.e., fast fading). Since
the receiver cannot finish the data decoding until the entire packet has been
received, the former option will result in lower latency, while the latter option
will result in higher latency. On the other hand, we will observe later in
this chapter that the performance loss due to channel fading is lower under
fast-fading conditions, so it is the preferred operating regime whenever latency
is of little concern.

5.3 Capacity Concept with Slow Fading

In the slow-fading scenario, the channel responses are constant throughout
the communication, but their values are generated as realizations of random
variables. We consider the transmission of a packet containing sufficiently much
data to use the channel capacity as the performance metric. We further assume
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that the receiver knows the realization of the channel response, which we
refer to as having perfect CSI . The transmitter can enable channel estimation
at the receiver by transmitting a known preamble, following the procedure
described in Section 4.2.4. Regarding channel knowledge at the transmitter,
there are two possible modes of operation.

In a closed-loop system, the receiver can feed back its channel estimate
to the transmitter, which will then also have perfect CSI. The capacity of
such a channel can be computed as described in Chapter 3, with the only
addition that the channel coefficients are now drawn randomly from a specific
distribution (e.g., i.i.d. Rayleigh fading).

This section considers open-loop systems, where the transmitter is unaware
of the current channel realization but knows the statistical distribution. This
situation especially appears in systems where a reverse feedback link does not
exist (e.g., when broadcasting data to many unknown user devices) or when
the feedback functionality is too slow to provide the transmitter with CSI
(e.g., when the latency requirements are strict). The capacity results from
Chapter 3 cannot be applied under these circumstances; thus, a new capacity
concept will be developed in this section.

To this end, we begin by returning to the memoryless SISO channel that
was initially described in (2.130):

y[l] = h · x[l] + n[l]. (5.35)

We will mainly consider a Rayleigh fading channel where the channel response
h is distributed as

h ∼ NC(0, β) (5.36)
and takes only one realization throughout the communication. This might
happen in practice when the transmitter and/or receiver are at random but
fixed locations in a rich multipath environment.

For a given realization h, we know from Corollary 2.1 that the (conditional)
capacity is

Ch = log2

(
1 + q|h|2

N0

)
bit/symbol, (5.37)

where the subscript h indicates that we have conditioned on the realization
h. The receiver can decode a signal transmitted using any data rate R ≤ Ch
since it has perfect CSI. The critical challenge in slow fading is that the
transmitter does not know the realization h, but only the statistics (i.e.,
Rayleigh fading with variance β). Hence, the transmitter needs to select a
data rate R bit/symbol, encode its data at that rate, and then hope that the
communication will be successful so that the receiver can decode the data.
The randomness can give rise to two different events:

• If R ≤ Ch, the transmitter has selected a data rate below the capacity.
The communication will then be successful in the sense of achieving an
arbitrarily low packet error probability.
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Area = Pout(R)

R

Figure 5.10: In a slow-fading scenario, the fading realization h determines the supported
channel capacity Ch. The PDF of Ch is shown in this figure for h ∼ NC(0, 1) and q/N0 = 1.
For a given R, the outage probability Pout(R) is the area under the curve for which Ch < R.

• If R > Ch, the transmitter has selected a data rate above the capacity.
The communication will then be unsuccessful in the sense of having a
very high packet error probability.

When the latter happens, the system is said to be in an outage. For a
given rate R, we can define the outage probability:

Pout(R) = Pr {R > Ch} = Pr
{
R > log2

(
1 + q|h|2

N0

)}
. (5.38)

The outage probability is a strictly increasing function of R and Pout(0) = 0.
Since the only rate guaranteed to provide zero packet error for any channel
realization is R = 0, the channel capacity is strictly speaking equal to zero.

We can nevertheless communicate over the channel, but the selection of
R becomes a gamble. We can communicate relatively reliably by selecting
a low R (resulting in a low outage probability), but then we will get little
data through the channel. Alternatively, we can communicate unreliably by
selecting a high R (resulting in a high outage probability). In this case, we
can get a lot of data through the channel, but only on those few occasions
when there is no outage. Figure 5.10 illustrates this situation by showing the
PDF of the capacity Ch for h ∼ NC(0, 1) and q/N0 = 1. The larger R is, the
more probability mass will be under the curve between Ch = 0 and Ch = R.
The outage probability equals this probability mass.

We can compare the variations in Figure 5.10 with a non-fading/LOS
channel having the same average SNR: E{ q|h|2

N0
} = q

N0
= 1. Such a channel
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would have a capacity of C = log2(1 + 1) = 1 bit/symbol. The figure shows
that a fading channel can provide both larger and smaller values of Ch, which
might give the impression that fading can be both positive and negative.
Unfortunately, the adverse effect dominates in slow-fading scenarios since the
transmitter does not know the value of Ch, so it must be very conservative
when selecting R to avoid getting a large outage probability.

The outage probability expression in (5.38) can be utilized along with any
fading distribution. We will now compute the probability by exploiting the
assumption that h ∼ NC(0, β), which implies that |h|2 has an exponential
distribution with its PDF f|h|2(x) given in (5.10). In particular, it follows that

Pr
{
|h|2 < x

}
=
∫ x

0
f|h|2(t)∂t = 1− e− x

β . (5.39)

By rearranging the expression in (5.38), we can obtain

Pout(R) = Pr
{
R > log2

(
1 + q|h|2

N0

)}
= Pr

{
2R > 1 + q|h|2

N0

}
= Pr

{
|h|2 < N0(2R − 1)

q

}
= 1− e−

N0(2R−1)
qβ . (5.40)

If we denote the average SNR (similar to the case of non-fading channels) as

SNR = E
{
q|h|2

N0

}
= qβ

N0
, (5.41)

then the outage probability in (5.40) can be expressed as

Pout(R) = 1− e− 2R−1
SNR . (5.42)

This is a decreasing function of the SNR, which is logical since a higher SNR
should make it easier for the channel to support a given rate R. We want
to operate communication systems at relatively high SNRs to achieve high
data rates. Hence, analyzing the scaling behavior of the outage probability
in the high-SNR regime is essential. We can utilize the first-order Taylor
approximation e−x ≈ 1− x for x ≈ 0 to observe that

Pout(R) ≈ 1−
(

1− 2R − 1
SNR

)
= 2R − 1

SNR (5.43)

when the SNR is high. Hence, the outage probability is proportional to SNR−1

in the high-SNR regime and will go to zero as SNR →∞. We will show later
that we can improve this high-SNR behavior by utilizing multiple antennas,
but we will first provide an alternative way of formulating the outage situation.
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Example 5.6. Suppose the channel response h has a fading distribution such
that |h|2 is uniformly distributed between 0 and 2β. What is the average
SNR? How does the outage probability depend on the SNR?

The mean value of a uniform distribution with support in [0, 2β] equals
the interval’s midpoint: β. Hence, the average SNR is

SNR = E
{
q|h|2

N0

}
= qβ

N0
, (5.44)

which is the same as in (5.41). The assumed channel distribution implies that

Pr
{
|h|2 < x

}
=


0 x < 0,
x

2β x ∈ [0, 2β],
1 x > 2β.

(5.45)

By utilizing this property, we can calculate the outage probability in (5.38) as

Pout(R) = Pr
{
R > log2

(
1 + q|h|2

N0

)}
= Pr

{
|h|2 < N0(2R − 1)

q

}
=
{

2R−1
2 SNR R ∈ [0, log2(1 + 2 SNR)],
1 R > log2(1 + 2 SNR).

(5.46)

This expression is proportional to SNR−1, just as the outage probability in
(5.43) with Rayleigh fading. However, the proportionality constant is only
half as large, so there is a smaller risk of an outage when having a uniform
fading distribution than with Rayleigh fading.

5.3.1 ϵ-Outage Capacity

Instead of specifying the desired rate R ≥ 0 and computing the resulting
outage probability Pout(R), we can specify a desired outage probability ϵ > 0
and compute the resulting maximum rate that can be supported over the
channel. That rate is called the ϵ-outage capacity and will be denoted as Cϵ.
It represents a capacity that can be achieved with probability 1− ϵ.

In the considered Rayleigh fading SISO setup, we can set ϵ = Pout(R) and
solve for R to find Cϵ. By utilizing (5.42), we obtain

ϵ = 1− e− 2R−1
SNR ⇔ 1− ϵ = e− 2R−1

SNR

⇔ 2R − 1
SNR = − ln(1− ϵ)

⇔ 2R − 1 = SNR ln
(
(1− ϵ)−1)

⇔ R = log2
(
1 + SNR ln

(
(1− ϵ)−1)) . (5.47)
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ϵ = 1 − e−1

Figure 5.11: The ϵ-outage capacity Cϵ of a Rayleigh fading channel is compared with the
capacity of an AWGN channel when the (average) SNR is SNR = 0 dB. The ϵ-outage capacity is
much smaller than the AWGN capacity in the practically interesting range of outage capacities
(e.g., ϵ ≤ 0.1) but is higher than the AWGN capacity for ϵ > 1 − e−1.

Hence, the ϵ-outage capacity is

Cϵ = log2
(
1 + SNR ln

(
(1− ϵ)−1)) (5.48)

and depends on the SNR and ϵ. By computing the first-order derivative of Cϵ
with respect to SNR and ϵ, one can respectively show that Cϵ is an increasing
function of the SNR and also an increasing function of the outage probability.
Naturally, a higher SNR allows us to send more data. The reason that Cϵ
increases with ϵ is that we can then select a rate that is supported by the
channel only when we get “good” fading realizations.

It is instructive to compare Cϵ with the capacity C = log2(1 + SNR)
of a non-fading AWGN channel having the same (average) SNR. The only
difference is the additional term ln((1− ϵ)−1) that the SNR is multiplied by
in (5.48). Interestingly, this term can be both smaller and larger than one.
More precisely, it is smaller than one if ϵ < 1− e−1 ≈ 0.63, because this is the
probability that |h|2 is smaller than its average value E{|h|2} = β. In these
cases, the ϵ-outage capacity is smaller than the AWGN capacity. The opposite
is true for ϵ > 1 − e−1 because then the communication is only successful
when the channel realization is stronger than its average.

Figure 5.11 compares Cϵ and C = log2(1 + SNR) for SNR = 0 dB. The ϵ-
outage capacity is much smaller than the AWGN capacity for the vast majority
of ϵ-values. Typical desired values of the outage probability are ϵ ≤ 0.1, for
which the ϵ-outage capacity is less than 15% of the AWGN capacity. Hence,
fading is generally considered a detrimental property of wireless channels.



5.3. Capacity Concept with Slow Fading 333

Figure 5.12: The ratio between the ϵ-outage capacity Cϵ in (5.48) and the AWGN capacity
C = log2(1 + SNR) for different SNRs. The fading channel achieves a higher fraction of the
AWGN capacity at high SNR, but the convergence in (5.49) is not visible.

However, the figure also shows that for large values of ϵ, the ϵ-outage capacity
is larger than the AWGN channel capacity. If reliability is unimportant, the
fading can occasionally be exploited to achieve high rates. However, the
transmitter needs to know when the channel has good realizations, which is
inconsistent with the considered setup.

The last figure considered a rather low SNR value. The difference between
Cϵ and C depends on the SNR. The fraction of the AWGN capacity that is
achieved with a fading channel converges as

Cϵ
C

=
log2

(
1 + SNR ln

(
(1− ϵ)−1))

log2(1 + SNR) → 1 (5.49)

when SNR →∞, where the limit can be established using L’Hospital’s rule.
Hence, the relative difference vanishes asymptotically at high SNR.

Figure 5.12 shows the fraction Cϵ
C from (5.49) for a range of practical SNR

values. Two practical outage probability values are considered: ϵ = 0.1 and
ϵ = 0.01. The figure shows that fading channels operate closer to the AWGN
capacity at higher SNRs; however, the convergence to the upper limit in (5.49)
is not apparent in the considered SNR range. An SNR of hundreds of dB is
necessary to approach the upper limit for these values of ϵ. The conclusions
are that channel fading has a detrimental impact on the capacity at practical
SNRs and that the asymptotic result in (5.49) is not practically useful.
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5.3.2 Receive Diversity in SIMO Systems

The issue with slow fading channels is the substantial risk that the channel
coefficient is in a deep fade; thus, we need to select a low rate value of R to
keep the outage probability reasonably low. This problem can be mitigated by
using multiple antennas that have been deployed to observe different fading
realizations. In this section, we consider a SIMO system with i.i.d. Rayleigh
fading. We will demonstrate that having multiple independent channel coef-
ficients under slow fading is beneficial since there is a good chance that at
least one of the M antennas experiences a decent channel realization.

The SIMO channel h ∼ NC(0, βIM ) is considered in this section. For a
given channel realization, we can utilize (3.22) to obtain the (conditional)
capacity value

Ch = log2

(
1 + q∥h∥2

N0

)
(5.50)

for a given realization of h. This expression does not depend on the individual
entries of h but only on the squared norm ∥h∥2. The norm is only small when
all the entries of h are simultaneously small. Under i.i.d. Rayleigh fading, this
variable has the scaled χ2(2M)-distribution introduced in Section 2.2.5. The
PDF of ∥h∥2 was stated in (2.99) as

f∥h∥2(x) = xM−1e− x
β

βM (M − 1)! , for x ≥ 0. (5.51)

We can define the outage probability when the transmitter uses the rate R as

Pout(R) = Pr {R > Ch} = Pr
{
R > log2

(
1 + q∥h∥2

N0

)}
= Pr

{
∥h∥2 <

N0
(
2R − 1

)
q

}
. (5.52)

The exact outage probability can then be computed using (5.51) as

Pout(R) =
∫ N0(2R−1)

q

0

xM−1e− x
β

βM (M − 1)!∂x

= −

(
N0(2R−1)

q

)M−1
e−

N0(2R−1)
qβ

βM−1(M − 1)! +
∫ N0(2R−1)

q

0

xM−2e− x
β

βM−1(M − 2)!∂x

= 1− e−
N0(2R−1)

qβ

M−1∑
m=0

(
N0(2R−1)

qβ

)m
m! = 1− e− 2R−1

SNR

M−1∑
m=0

(
2R−1
SNR

)m
m!

(5.53)

by integrating by parts repeatedly and then using the SNR definition SNR =
qβ
N0

from (5.41). This expression is complicated to analyze since there are
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many terms. We are primarily interested in the behavior at high SNRs since
this is where we want the system to operate and where outages can be
avoided through a good system design. In those cases, the outage probability
is determined by the behavior of f∥h∥2(x) for x ≈ 0. By utilizing the fact that
e−x/β ≤ 1 for x ≥ 0, we obtain the inequality

f∥h∥2(x) ≤ xM−1

βM (M − 1)! . (5.54)

We can expect to achieve equality approximately in (5.54) when x ≈ 0. Hence,
a tight upper bound on the outage probability in (5.52) can be computed as

Pout(R) =
∫ N0(2R−1)

q

0
f∥h∥2(x)∂x

≤
∫ N0(2R−1)

q

0

xM−1

βM (M − 1)!∂x =
(
N0
(
2R − 1

)
qβ

)M
1
M ! . (5.55)

By using the SNR definition in (5.41), we can write (5.55) as

Pout(R) ≤
(2R − 1

SNR

)M 1
M ! , (5.56)

where the upper bound is proportional to SNR−M and is approximately
achieved when the SNR is high. Hence, the outage probability reduces with
the SNR much more rapidly when multiple antennas exist. This is known as
a spatial diversity gain and M is the diversity order . The more antennas are
used, the less probable it is that all the antennas are simultaneously in deep
fades; each independent channel coefficient contributes +1 to the diversity
order. Moreover, the higher the SNR is, the deeper the fade must be to get
an outage for a given value of R, and this becomes even less probable when
there are multiple antennas.

Figure 5.13 illustrates the diversity gain in a setup with i.i.d. Rayleigh
fading and R = 1 bit/symbol. Figure 5.13(a) shows the outage probability
for different SNRs with M = 1, M = 2, and M = 4 antennas. The outage
probabilities are roughly the same at low SNRs, while the curves behave
very differently at higher SNRs. We know that the outage probability is
proportional to SNR−M at high SNR. This means that for every 10 dB that
the SNR increases, the outage probability is reduced by a factor of 1/10M .
Since logarithmic scales are used on both axes in Figure 5.13(a), this results
in lines with the slope −M . As the SNR increases, a steeper slope leads to
a rapidly lower outage probability. If we want to achieve Pout = 10−3, then
we need SNR = 30 dB with M = 1, SNR = 13 dB with M = 2, and only
SNR = 4 dB with M = 4.
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(a) The exact outage probabilities with M = 1, M = 2, and M = 4.
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(b) The exact outage probability and the upper bound in (5.56) for M = 2.

Figure 5.13: The outage probability is proportional to SNR−M at high SNRs when communicat-
ing over a SIMO channel with i.i.d. Rayleigh fading. In this case, we consider R = 1 bit/symbol.
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The origin of the performance gain lies in the behavior of ∥h∥2, and there
are two contributing phenomena. Firstly, the average gain

E
{
∥h∥2} =

M∑
m=1

E
{
|hm|2

}
= Mβ (5.57)

is proportional to M (see Section 2.2.5 for further details), which is how the
beamforming gain is manifested in NLOS channels. The gain is the same as for
LOS channels, except that it now varies around the mean value M depending
on the channel realizations instead of always having that exact value. Secondly,
the variations in ∥h∥2 around its mean value reduce in relative terms (i.e.,
normalized by the average gain). The variance can be computed as

Var
{ ∥h∥2

E{∥h∥2}

}
= E

{∣∣∣∣ ∥h∥2

E{∥h∥2}

∣∣∣∣2
}
−

∣∣∣∣∣∣E
 ∥h∥2

E
{
∥h∥2

}

∣∣∣∣∣∣
2

=
E
{
∥h∥4}

M2β2 −
∣∣E{∥h∥2}∣∣2
|E {∥h∥2}|2

= (M2 +M)β2

M2β2 − 1 = 1
M
,

(5.58)
by using (5.57) and the following result from (2.97): E

{
∥h∥4} = (M2 +M)β2.

We notice that the variance in (5.58) reduces with M . This is the statistical
property that gives rise to the diversity gain. In general, the beamforming
gain shifts the outage probability curves to the left in Figure 5.13(a) as we
increase M , while the diversity gain makes the curves steeper.

We will now continue describing the simulation example. Figure 5.13(b)
compares the exact outage probability Pout(1) in (5.53) with M = 2 and the
upper bound in the right-hand side of (5.56), for different SNR values. As
previously claimed, the upper bound overlaps with the exact curve when the
SNR is large. At high SNRs, we can thus increase the SNR by 10 dB and
expect the outage probability to reduce by a factor 1/10M = 1/100 since
M = 2. This is indicated in the figure.

Recall that we want to achieve R = 1 bit/symbol in this example. It
is instructive to compare the fading channel with an LOS channel with
M = 2 antennas and an SNR of −3 dB because it has a matching capacity of
1 bit/symbol. There are no outage issues for such a non-fading channel: we
need the SNR to be at least −3 dB, and then we are guaranteed to achieve a
data rate of 1 bit/symbol. The dotted vertical line in Figure 5.13(b) indicates
this SNR level. If the i.i.d. Rayleigh fading channel has the same SNR, the
outage probability is approximately 0.6 (this is where the curves intersect),
which is too high to get reliable communication. We must increase the SNR
to achieve a reasonably low outage probability. This is the price to pay for
reliability over fading channels. The price reduces when we add more receive
antennas, thanks to the diversity gain, but there is always a need for operating
at somewhat higher SNRs than in the corresponding non-fading channel.
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Example 5.7. What is the ϵ-outage capacity of the SIMO channel?
The exact ϵ-outage capacity Cϵ can be obtained by solving the equation

Pout(R) = ϵ for R. The outage probability in (5.53) can be expressed as

Pout(R) = F∥h∥2

(
N0
(
2R − 1

)
q

)
, (5.59)

where F∥h∥2(x) = 1−e− x
β
∑M−1
m=0

( xβ )m
m! is the CDF of ∥h∥2 with i.i.d. Rayleigh

fading. By inverting the CDF, we can compute the outage capacity as

ϵ = F∥h∥2

(
N0
(
2R − 1

)
q

)
⇔ F−1

∥h∥2(ϵ) =
N0
(
2R − 1

)
q

⇔ log2

(
1 + q

N0
F−1

∥h∥2(ϵ)
)

= R. (5.60)

Hence, the ϵ-outage capacity becomes

Cϵ = log2

(
1 + q

N0
F−1

∥h∥2(ϵ)
)
. (5.61)

Unfortunately, there is no simple expression for the inverse CDF, but the
inverse exists since the CDF is a strictly increasing function. We can use the
expression in (5.61) for any fading distribution, not only i.i.d. Rayleigh fading.

5.3.3 Transmit Diversity in MISO Systems

We now turn our attention to a MISO system. We know from Section 3.3 that
the capacity of SIMO and MISO channels are the same, but that result was
obtained assuming that both the transmitter and receiver know the channel
vector h. Only the receiver knows the channel in the slow-fading scenario we
consider in this section. Hence, the receiver could apply the optimal MRC
vector w = h

∥h∥ to the received signal in the SIMO system in the previous
section. By contrast, the transmitter cannot apply the optimal MRT vector
p = h∗

∥h∥ in the corresponding MISO system since it does not know h. However,
a way to achieve a diversity gain in MISO systems is to use a space-time block
code (STBC). We will provide a few basic examples to introduce the main
characteristics while we refer to [62] for a textbook dedicated to the topic.

The received signal of a MISO system with linear precoding was given in
(3.41) as y = hTpx̄+ n. If the transmitter selects a fixed unit-norm precoding
vector p that is independent of the channel h, then we obtain

hTp ∼ NC(0, β) (5.62)

under i.i.d. Rayleigh fading with h ∼ NC(0, βIM ). This follows from the fact
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that the weighted sum of independent Gaussian random variables is also
Gaussian distributed, and from that E{|hTp|2} = pHE{h∗hT}p = βpHIMp =
β. The effective SISO channel hTp that we obtained has the same fading
distribution as the SISO channel we analyzed earlier in this chapter; thus,
there is no additional diversity. To achieve transmit diversity, we need a more
intricate transmission scheme than precoding in a fixed direction.

The technique for achieving the maximum transmit diversity with M = 2
is known as the Alamouti code because it was first proposed by Alamouti in
[36]. The main idea is to transmit the same set of two data symbols two times
using different precoding. The precoding vectors are not selected based on
the channel h = [h1, h2]T but in a clever way that works for any realization of
the channel and yet enables the receiver to separate the data symbols.

We consider two consecutive transmissions over the MISO channel in (3.35)
with time indices l = 1 and l = 2:

y[1] =
M∑
m=1

hmxm[1] + n[1], (5.63)

y[2] =
M∑
m=1

hmxm[2] + n[2], (5.64)

where y[l] is the received signal at time l, xm[l] is the transmitted signal from
the mth antenna, and n[l] is the noise. We can write this entire system in
matrix form as [

y[1]
y[2]

]
︸ ︷︷ ︸

=y

=
[
x1[1] x2[1]
x1[2] x2[2]

]
︸ ︷︷ ︸

=X

[
h1
h2

]
︸ ︷︷ ︸

=h

+
[
n[1]
n[2]

]
︸ ︷︷ ︸

=n

. (5.65)

The data symbols should be embedded into the matrix X, where each column
represents the signals transmitted at a specific antenna (the space dimension),
and each row contains the signals transmitted simultaneously (the time
dimension). We want to send the two data symbols x̄[1] and x̄[2] over the two
considered time instances. Ideally, we would send one after the other using
MRT with X = [x̄[1], x̄[2]]T hH

∥h∥ but this requires channel knowledge at the
transmitter. Alamouti proposed a way to achieve a similar result without
having to know the channel by embedding x̄[1] and x̄[2] into X as

X = 1√
2

[
x̄[1] x̄[2]
−x̄∗[2] x̄∗[1]

]
. (5.66)

The scaling factor 1/
√

2 in front of the matrix ensures that the transmit power
at each time instance equals the average power of the data symbols. This
signal matrix does not depend on the channel realization h. Each column
in X represents what one of the antennas transmits over two different time
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−x̄∗[2], x̄[1]

x̄∗[1], x̄[2]

x̄[2], x̄[1] Space-time
encoding

Antenna 1

Antenna 2

Figure 5.14: The Alamouti space-time encoding takes a sequence of two data symbols x̄[1], x̄[2]
and transmits them over two antennas according to (5.66).

instances. In the first instance, the first antenna sends the first symbol, and
the second one sends the second symbol. Next, the antennas transmit the
opposite symbols with complex conjugates and a minus sign on one of the
antennas. The operation of taking a block of data symbols and mapping them
to the antennas over a time block is called space-time encoding. Figure 5.14
illustrates the encoding operation for the Alamouti code.

The pattern of how the data symbols are mapped to the antennas in X is
carefully designed so that (5.65) can be written as

y = Xh + n = 1√
2

[
x̄[1] x̄[2]
−x̄∗[2] x̄∗[1]

] [
h1
h2

]
+ n

= 1√
2

[
h1x̄[1] + h2x̄[2]
−h1x̄

∗[2] + h2x̄
∗[1]

]
+ n. (5.67)

If we take the conjugate of the second row in (5.67), we obtain[
y[1]
y∗[2]

]
︸ ︷︷ ︸

=ȳ

= 1√
2

[
h1x̄[1] + h2x̄[2]
−h∗

1x̄[2] + h∗
2x̄[1]

]
+
[
n[1]
n∗[2]

]
︸ ︷︷ ︸

=n̄

= 1√
2

[
h1 h2
h∗

2 −h∗
1

]
︸ ︷︷ ︸

=H̄

[
x̄[1]
x̄[2]

]
+ n̄. (5.68)

By comparing (5.68) with (3.56), we notice that it has the same form as a
2×2 MIMO system with the channel matrix H̄. In fact, the Alamouti code has
been selected so that this matrix has orthogonal columns. This implies that
the receiver observes the two signals in two different orthogonal dimensions
of the vector space so that the signals can be distinguished without mutual
interference. The SVD H̄ = ŪΣ̄V̄H of the channel matrix in (5.68) has the
simple form

H̄ = 1
∥h∥

[
h1 h2
h∗

2 −h∗
1

]
︸ ︷︷ ︸

=Ū

[∥h∥√
2 0

0 ∥h∥√
2

]
︸ ︷︷ ︸

=Σ̄

[
1 0
0 1

]
︸ ︷︷ ︸

=V̄H

, (5.69)
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+x̄[2], x̄[1] X
h

n

y ȳ
∗ ŪH

ŪHȳ= ∥h∥√
2

[
x̄[1]
x̄[2]

]
+noise

Space-time
encoding

Figure 5.15: A block diagram of the transmission and reception using the Alamouti code. The
transmitter maps two data symbols into a transmission block X, as detailed in Figure 5.14. The
receiver conjugates the second received signal to obtain ȳ in (5.68). It then acts as a MIMO
receiver that uses the left singular vectors from (5.69) to decouple the two transmitted symbols.

where both singular values are equal to ∥h∥/
√

2. If we multiply ȳ in (5.68)
with ŪH from the left, we decouple the reception into two parallel channels:

ŪHȳ = ∥h∥√
2

[
x̄[1]
x̄[2]

]
+ ŪHn̄, (5.70)

where ŪHn̄ ∼ NC(0, N0I2). Since the signal values are equally large, it is
optimal to allocate the transmit power equally between x̄[1] and x̄[2]:[

x̄[1]
x̄[2]

]
∼ NC(0, qI2). (5.71)

The transmitter sends these signals without utilizing the channel coefficients
since V̄ in (5.70) is an identity matrix. The block diagram shown in Figure 5.15
summarizes the space-time encoding and decoding. Two data symbols are
mapped to X, which is then sent over the channel over two different time
instances to obtain y = Xh + n. At the receiver, the second entry of y is
conjugated to obtain ȳ, which is then multiplied by ŪH that originates from
the SVD in (5.69). This decouples the transmission into two parallel channels,
each having the channel coefficient ∥h∥/

√
2 and independent additive noise

with variance N0. The data can be encoded and decoded separately over these
channels; thus, no non-linear processing is required.

Note that each symbol is transmitted with the power q since the total
power over two channel instances is 2q, and it should be equally distributed
over x̄[1] and x̄[2]. Hence, for a given channel realization h, it follows from
(3.75) that the (conditional) capacity over the two time instances is

Ch = 2 log2

(
1 + q∥h∥2

2N0

)
bit per two symbols. (5.72)

Since we are used to expressing the capacity in bit/symbol, it is more conve-
nient to rewrite (5.72) as

Ch = log2

(
1 + q∥h∥2

2N0

)
bit/symbol. (5.73)
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If we compare (5.73) with the SIMO case in (5.50), we notice that the
only difference is that we only get half the SNR in the MISO case. This is
because the signals are transmitted isotropically instead of being beamformed
towards the receiver; thus, the beamforming gain is lost. If we consider
i.i.d. Rayleigh fading with h ∼ NC(0, βI2), then the average SNR in (5.73)
becomes E{ q∥h∥2

2N0
} = qβ/N0, which does not depend on the number of antennas.

This is the way to verify that there is no beamforming gain.
Although the transmitter can construct X without knowing the channel,

it cannot compute Ch, so it does not know how much data to encode into
x̄[1], x̄[2]. If the transmitter selects the rate R, the outage probability with
i.i.d. Rayleigh fading can be computed as

Pout(R) = Pr
{
R > log2

(
1 + q∥h∥2

2N0

)}

= 1− e−
2(2R−1)

SNR

1∑
m=0

(
2(2R−1)

SNR

)m
m! (5.74)

by following the same integration-by-parts approach as in (5.53). The average
SNR is still defined as SNR = qβ

N0
, but only half of this value is achieved when

communicating in this way. Moreover, the compact upper bound

Pout(R) ≤
(

2N0
(
2R − 1

)
qβ

)2
1
2! = 1

2

(
2
(
2R − 1

)
SNR

)2

(5.75)

can be obtained by following the same steps as in (5.54)-(5.56). Recall from
Section 5.3.2 that this bound is tight at high SNRs. We can see in (5.75) that
the outage probability reduces as SNR−2. This means the Alamouti code
achieves a diversity gain of order M = 2, the same maximum diversity order
as in the SIMO case with the matching number of antennas.

Figure 5.16 shows the outage probability for a channel with i.i.d. Rayleigh
fading and the desired rate R = 1 bit/symbol. We compare a SISO system
(M = 1) with the receive diversity obtained by a SIMO system (M = 2) and
the transmit diversity obtained by a MISO system (M = 2) using the Alamouti
code. The diversity gains are clearly visible: The outage probabilities decay
as SNR−M . This demonstrates that the diversity orders obtained by transmit
and receive diversity are the same. However, there is a 3 dB gap between the
curves. This is because receive diversity also gives rise to a beamforming gain
that doubles the SNR, corresponding to a 3 dB improvement. This can be
observed mathematically by comparing (5.75) with (5.56) for M = 2, where
the only difference is that the SNR is divided by two in the MISO case.
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Figure 5.16: The outage probability of MISO and SIMO systems with M = 2 and i.i.d. Rayleigh
fading is compared with the corresponding SISO system. The rate is R = 1 bit/symbol. The
MISO and SIMO systems achieve the same diversity order, but the MISO system has a 3 dB
worse SNR since it cannot obtain a beamforming gain.

Example 5.8. Show that XXH is a scaled identity matrix when using the
Alamouti code. How is E{tr(XXH)} related to the transmit power?

We can compute the matrix product using (5.66), which leads to

XXH = 1
2

[
x̄[1] x̄[2]
−x̄∗[2] x̄∗[1]

] [
x̄∗[1] −x̄[2]
x̄∗[2] x̄[1]

]
= 1

2
(
|x̄[1]|2 + |x̄[2]|2

)
I2. (5.76)

This is a scaled identity matrix, which implies that the rows of X are orthog-
onal. All STBCs that satisfy this condition are called orthogonal and share
the property that the receiver can separate the transmitted signals without
interference, as was the case for the Alamouti code. The scaling factor in (5.76)
ensures that tr(XXH) = |x̄[1]|2 + |x̄[2]|2, which implies that E{tr(XXH)} = 2q
so that the total power of one block equals the power q per symbol times the
length of the block.

The Alamouti code is designed for transmitting two data symbols over
M = 2 antennas, but there are orthogonal STBCs crafted for larger numbers
of transmit antennas and more symbols. The code design is nontrivial and
has attracted much research attention over the past decades, starting with
[37]. There are three main design parameters: i) the number of transmit
antennas, ii) the number of time instances the code is transmitted over, and
iii) how many data symbols are embedded. It is also essential to ensure that
the symbols are assigned an equal fraction of the transmit power and obtain
the maximum diversity order. When having M > 2 transmit antennas, only
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codes that use more time instances than there are symbols exist, and it can
be proved that the fraction cannot surpass 3/4 [62]. The Alamouti code is
the only code with as many symbols as there are time instances.7

We will conclude this section by describing an orthogonal code from [63]
designed for M = 4 antennas, which we will refer to as the Ganesan code
since Ganesan and Stoica proposed it. The code transmits the 3 data symbols
x̄[1], x̄[2], x̄[3] over 4 time instances, leading to the coding rate nr = 3/4. The
code matrix is

X = 1√
3


x̄[1] 0 x̄[2] −x̄[3]

0 x̄[1] x̄∗[3] x̄∗[2]
−x̄∗[2] −x̄[3] x̄∗[1] 0
x̄∗[3] −x̄[2] 0 x̄∗[1]

 (5.77)

and has the property XXH = 1
3
(
|x̄[1]|2 + |x̄[2]|2 + |x̄[3]|2

)
I4 that is expected

from Example 5.8. The scaling factor in front of the matrix ensures that the
transmit power at each time instance equals the average power of the data
symbols. Each row of X has the same norm; thus, the transmit power is
divided equally over time. We also notice that each symbol is transmitted
from each antenna, which is a prerequisite for achieving maximum diversity.
The received signal over the four different time instances can be expressed as

y[1]
y[2]
y[3]
y[4]


︸ ︷︷ ︸

=y

= Xh +


n[1]
n[2]
n[3]
n[4]


︸ ︷︷ ︸

=n

, (5.78)

where h = [h1, h2, h3, h4]T is the channel response, y[l] is the received signal
at time l, and n[l] is receiver noise at time l, for l = 1, . . . , 4. Since the data
symbols appear in (5.77) both with and without complex conjugates, it is
convenient for decoding purposes to extend the system model in (5.78) also
to include the conjugates of the received signals:

[
y
y∗

]
︸ ︷︷ ︸

=ȳ

=
[

Xh
X∗h∗

]
+
[

n
n∗

]
︸ ︷︷ ︸

=n̄

= 1√
3



h1 h3 −h4 0 0 0
h2 0 0 0 h4 h3
0 0 −h2 h3 −h1 0
0 −h2 0 h4 0 h1
0 0 0 h∗

1 h∗
3 −h∗

4
0 h∗

4 h∗
3 h∗

2 0 0
h∗

3 −h∗
1 0 0 0 −h∗

2
h∗

4 0 h∗
1 0 −h∗

2 0


︸ ︷︷ ︸

=H̄



x̄[1]
x̄[2]
x̄[3]
x̄∗[1]
x̄∗[2]
x̄∗[3]


︸ ︷︷ ︸

=x̄

+n̄.

(5.79)
7There exist non-orthogonal STBCs that contain as many data symbols as there are time slots,

but these require more complicated receiver processing to deal with the resulting interference;
we refer to [62] for details.
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If we compare (5.79) with (3.56), we notice that it has the same form as an
8 × 6 MIMO system with the channel matrix H̄. The critical difference is
that the last three symbols in x̄ are complex conjugates of the first three
symbols, so they carry no extra information. All the columns of H̄ are mutually
orthogonal and have norms equal to ∥h∥/

√
3, thanks to how the code matrix

in (5.77) was designed. This implies that H̄HH̄ = ∥h∥2

3 I6. Hence, if we multiply
ȳ with

√
3

∥h∥H̄H (which has unit-norm rows) from the left, we obtain

√
3
∥h∥H̄Hȳ = ∥h∥√

3



x̄[1]
x̄[2]
x̄[3]
x̄∗[1]
x̄∗[2]
x̄∗[3]

+
√

3
∥h∥H̄Hn̄. (5.80)

We notice that the data symbols x̄[1], x̄[2], x̄[3] are received separately in
the first three entries of

√
3

∥h∥H̄H and exhibit a common channel coefficient of
∥h∥/

√
3. It can also be shown that the first three entries of the noise term

in (5.80) are independent and have variance N0, thanks to the normalization
factor

√
3

∥h∥ and that we never used a noise variable and its complex conjugate
in the same expression. Since the channel gain is the same for all three symbols,
it is optimal for the transmitter to allocate the power equally between them:x̄[1]

x̄[2]
x̄[3]

 ∼ NC(0, qI3). (5.81)

It follows that E{tr(XXH)} = 1
3(E{|x̄[1]|2+|x̄[2]|2+|x̄[3]|2})tr(I4) = 4q, which

is the power q times the length of the block. For a given channel realization
h, it follows from (3.75) that the (conditional) capacity is

Ch = 3
4 log2

(
1 + q∥h∥2

3N0

)
bit per symbol. (5.82)

The word “symbol” in the unit refers to the transmitted symbols, not the
data symbols. Since we transmit a block of four symbols to transfer three
data symbols, the coding rate nr = 3/4 appears as a pre-log factor in (5.82).
Compared to the (conditional) capacity in the SIMO case in (5.50), we notice
that the Ganesan code only gets a third of the SNR. There are two contributing
factors: the lack of beamforming reduces the SNR by 1/M = 1/4 while
spreading three signals over four time slots increases the SNR by 1/nr = 4/3.
The combined effect is 1/(Mnr) = 1/3.

The main reason to use an STBC is to achieve the maximum diversity
order the channel can offer. The outage probability for a given rate R and
i.i.d. Rayleigh fading can be computed as
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Pout(R) = Pr
{
R >

3
4 log2

(
1 + q∥h∥2

3N0

)}

= 1− e−
3(24R/3−1)

SNR

3∑
m=0

(
3(24R/3−1)

SNR

)m
m! (5.83)

by following the approach in (5.53). To enable comparison with the SISO case,
the average SNR is still defined as SNR = qβ

N0
, although only a third of it is

achieved. An upper bound that is tight at high SNRs is obtained as

Pout(R) ≤

3
(

24R/3 − 1
)

SNR

4
1
4! (5.84)

by following the same steps as in (5.54)-(5.56). We can see in (5.84) that the
outage probability reduces as SNR−4, which implies that the diversity order
is M = 4, which is the same as in the SIMO case with four antennas.

Example 5.9. What diversity order is achieved by a repetition scheme where
the same signal x ∼ NC(0, q) is transmitted sequentially from M antennas
over M time instances, using only one antenna at a time?

The received signal with this repetition scheme can be expressed as y[1]
...

y[M ]


︸ ︷︷ ︸

=y

=

 h1
...
hM


︸ ︷︷ ︸

=h

x+

 n[1]
...

n[M ]


︸ ︷︷ ︸

=n

, (5.85)

if we transmit the signal from antenna m at time instance m to obtain the
received signal y[m]. The system model in (5.85) has the same form as the
SIMO system in (3.14). Hence, the (conditional) capacity is obtained from
(3.22) as Ch = 1

M log2(1+ q∥h∥2

N0
), where the pre-log factor 1/M represents that

the same symbol is repeated over M time instances. Assuming i.i.d. Rayleigh
fading, we can follow (5.54)-(5.56) to upper bound the outage probability as

Pout(R) = Pr
{
R >

1
M

log2

(
1 + q∥h∥2

N0

)}
≤
(2MR − 1

SNR

)M 1
M ! . (5.86)

The diversity order is M since the outage probability reduces as SNR−M ,
which is the maximum value. The drawback is the inefficient use of time
resources; transmitting one symbol over M time instances leads to a coding
rate of only 1/M . For this reason, the outage probability is proportional to
(2MR − 1)M instead of (2R − 1)M as in the SIMO case in (5.56).
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Figure 5.17: The outage probability of MISO systems with M = 2 or M = 4 antennas
and i.i.d. Rayleigh fading is compared with the corresponding SISO system. The rate is
R = 1 bit/symbol. The STBCs achieve diversity orders equal to the number of antennas
and outperform the repetition scheme for the same number of antennas.

Figure 5.17 shows how the outage probability varies with the SNR when
the rate is R = 1 bit/symbol and there is i.i.d. Rayleigh fading. We compare
a SISO system (M = 1) with three schemes that achieve transmit diversity
over MISO channels: The Alamouti code in (5.66) with M = 2, the Ganesan
code in (5.77) with M = 4, and the repetition scheme from Example 5.9 with
M = 4. The SISO system achieves the lowest outage probability when the
SNR is very low, while the benefit of diversity becomes evident at medium to
high SNR. Although the Alamouti code has a coding rate of nr = 1 and the
Ganesan code only has nr = 3/4, the latter achieves a larger diversity order,
which leads to a lower outage probability for SNRs above 1 dB. The repetition
scheme’s inefficiency is evident from the wide performance gap to the Ganesan
code that uses the same number of antennas. However, it outperforms the
Alamouti code at high SNRs thanks to the larger diversity order.

In conclusion, diversity is of utmost importance to achieve low outage
probabilities, and it can be achieved at the transmitter side using STBCs.

5.3.4 Joint Transmit and Receive Diversity in MIMO Systems

When both the transmitter and receiver are equipped with multiple antennas,
even better reliability against fading can be achieved through the simultaneous
use of transmit and receive diversity. The MIMO channel matrix H ∈ CM×K

containsMK entries and, under i.i.d. Rayleigh fading, it can provide a diversity
order up to MK. To this end, we must design a transmission scheme where
the channel coefficient becomes proportional to ∥H∥F, which is the Frobenius
norm of the matrix defined as follows.
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Definition 5.1. The Frobenius norm of the matrix H ∈ CM×K is defined as

∥H∥F =

√√√√ M∑
m=1

K∑
k=1
|hm,k|2, (5.87)

where hm,k denotes the entry at the mth row in the kth column.

The Frobenius norm is a natural matrix extension of the Euclidean vector
norm ∥h∥ =

√∑M
m=1 |hm|2 since it also adds up the squared magnitudes of the

entries. The subscript “F” is used in this book for clarity because alternative
matrix norms are commonly used for matrix analysis. In this section, we will
denote the kth column of H as hk, so that H = [h1, . . . ,hK ].

The Frobenius norm is closely related to the trace and singular values
s1, . . . , sr of H because the following two properties hold:

∥H∥2
F = tr (HHH) =

K∑
k=1
∥hk∥2, (5.88)

∥H∥2
F =

r∑
k=1

s2
k. (5.89)

Under i.i.d. Rayleigh fading with hm,k ∼ NC(0, β), ∥H∥2
F has the same

distribution as the squared norm of a SIMO/MISO channel with MK antennas.
Hence, the squared Frobenius norm has the scaled χ2(2MK)-distribution that
was introduced in Section 2.2.5, which has the PDF

f∥H∥2
F
(x) = xMK−1e− x

β

βMK(MK − 1)! , for x ≥ 0. (5.90)

A straightforward way to achieve the maximum diversity order is to utilize
the repetition scheme from Example 5.9. In this case, the same signal is
transmitted over the K transmit antennas over K time instances, using
only one transmit antenna at a time, while all M receive antennas are used
continuously. The received signal y[k] ∈ CM at time instance k can be
expressed as

y[k] = hkx+ n[k], k = 1, . . . ,K, (5.91)
where x is the data symbol and n[k] ∼ NC(0, N0IM ) is the independent
receiver noise. As the same symbol is repeated, the complete received signal
can be expressed as  y[1]

...
y[K]

 =

h1
...

hK

x+

 n[1]
...

n[K]

 , (5.92)
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which looks like a SIMO channel with an MK-dimensional channel vector con-
taining all the columns of H. It then follows from (3.22) that the (conditional)
capacity of this channel is

CH = 1
K

log2

(
1 + q

∑K
k=1 ∥hk∥2

N0

)
= 1
K

log2

(
1 + q∥H∥2

F
N0

)
, (5.93)

where the pre-log factor 1/K represents that the same data symbol is repeated
over K time slots. The last expression follows from (5.88). If the transmitter
selects the data rate R, then the outage probability can be computed as

Pout(R) = Pr
{
R >

1
K

log2

(
1 + q∥H∥2

F
N0

)}

= 1− e− 2KR−1
SNR

MK−1∑
m=0

(
2KR−1

SNR

)m
m! (5.94)

by following the same approach as in (5.53) and defining the SNR as earlier.
The diversity order becomes particularly visible in the upper bound

Pout(R) ≤
(2KR − 1

SNR

)MK 1
(MK)! (5.95)

that is obtained through the same steps as in (5.54)-(5.56). This expression
shows that the outage probability reduces with an increasing SNR as SNR−MK

at high SNRs, where the bound is tight. Hence, the diversity order is MK.
The same diversity gain can be achieved using STBCs, which can be

designed to outperform the repetition scheme for every given SNR value. The
repetition scheme can be viewed as an inefficient STBC achieving maximum
diversity but with an unnecessarily low coding rate of nr = 1/K. While each
STBC is designed for a particular number of transmit antennas, they can
be directly applied along with any number of receive antennas. For example,
the Alamouti and Ganesan codes use K = 2 and K = 4 transmit antennas,
respectively, while the number of receive antennas M can be arbitrary.

In the MISO case, the received signal in (5.67) with the Alamouti code has
the form y = Xh + n ∈ CK . In the MIMO case, the received signal ym ∈ CK
at receive antenna m can instead be expressed as

ym = Xh⃗m + nm, m = 1, . . . ,M, (5.96)

where nm ∼ NC(0, N0IK) is the receiver noise and h⃗m ∈ CK denotes the
mth row of the channel matrix (the arrow notation points out that rows are
horizontal):

H =


h⃗T

1
...

h⃗T
M

 . (5.97)
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By processing the received signal as described in Section 5.3.3, the counterpart
to (5.70) for the mth receive antenna is the processed received signal

∥h⃗m∥√
2

[
x̄[1]
x̄[2]

]
+
[
NC(0, N0)
NC(0, N0)

]
. (5.98)

At this stage, the receiver can use MRC to combine the signals over the M
receive antennas, which will result in a summation of the channel gains:

M∑
m=1

∣∣∣∣∣∥h⃗m∥√2

∣∣∣∣∣
2

=
∑M
m=1 ∥h⃗m∥2

2 = ∥H∥
2
F

2 . (5.99)

Hence, we can reuse the outage probability expressions from earlier in this
chapter but replace ∥h∥2 with ∥H∥2

F. The diversity order with the Alamouti
code increases from 2 to 2M , and the outage probability in (5.74) becomes

Pout(R) = Pr
{
R > log2

(
1 + q∥H∥2

F
2N0

)}
= 1− e−

2(2R−1)
SNR

2M−1∑
m=0

(
2(2R−1)

SNR

)m
m! .

(5.100)

The same approach of combining the signals over the M received signals
can be used along with the Ganesan code, in which case the diversity order
increases from 4 to 4M , and the outage probability in (5.83) generalizes to

Pout(R) = Pr
{
R >

3
4 log2

(
1 + q∥H∥2

F
3N0

)}

= 1− e−
3(24R/3−1)

SNR

4M−1∑
m=0

(
3(24R/3−1)

SNR

)m
m! . (5.101)

Example 5.10. What is the outage probability if the transmitter sends an
independent data symbol with equal power from each antenna?

If the transmitter sends x = [x1, . . . , xK ]T ∼ NC(0, qK IK), the receiver
can decode the data streams sequentially as described in Section 3.4.3 with
P = IK and Q = q

K IK . The achievable data rate for xi is stated in (3.115)
as log2(1 + q

KN0
hH
i C−1

i+1hi), where Ci+1 = IM +
∑K
k=i+1

q
KN0

hkhH
k and hk is

the kth column of H. To reach the total data rate R, the transmitter can use
the rate R/K for each stream. The resulting outage probability is

Pout(R) = Pr
{
R

K
> min
i∈{1,...,K}

log2

(
1 + q

KN0
hH
i C−1

i+1hi
)}

(5.102)

because an outage occurs if at least one of the K streams does not support the
rate R/K. Since each signal is sent from one antenna to M receive antennas,
the diversity order is M instead of MK. Hence, this transmission scheme
sacrifices diversity to achieve the maximum multiplexing gain of min(M,K).
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Figure 5.18: The outage probability of MIMO systems with M = K = 4 antennas and
i.i.d. Rayleigh fading. The rate is R = 4 bit/symbol, and three schemes are compared. The STBC
(Ganesan code) and repetition scheme achieve the maximum diversity order of 16; however, the
former is more efficient thanks to the higher coding rate. Spatial multiplexing of four streams
leads to lower outage probability at low and medium SNRs, but the reduced diversity order
makes it less efficient than the STBC at higher SNRs.

Figure 5.18 exemplifies how the outage probabilities vary with the SNR in a
MIMO system with M = K = 4 antennas. The data rate is R = 4 bit/symbol,
which is selected to be larger than in previous examples since the system is now
capable of spatial multiplexing. We compare the use of an STBC (Ganesan
code) with spatial multiplexing of four parallel signals as in (5.102) and the
repetition scheme in (5.94). Spatial multiplexing can more easily achieve large
rates at moderate SNRs, which results in the lowest outage probability for
SNRs below 10.3 dB. However, this scheme only achieves diversity order 4
since each symbol is transmitted from a single antenna and received by M = 4
antennas. The STBC gives a much lower outage probability at higher SNRs
because it achieves the maximum diversity order of MK = 16. This is why
the corresponding curve is extremely steep when it begins decaying. The
repetition scheme also achieves the maximum diversity order. However, the
curve is shifted by 27 dB to the right since it only transmits one symbol per
four time instances, which is very inefficient compared to the Ganesan code.

This concluding example is a reminder that there are two conflicting design
goals in slow-fading scenarios: Achieving a high data rate R and maintaining a
low outage probability Pout(R). In practice, the acceptable outage probability
ϵ might be a given design parameter, and then the remaining goal is to achieve
the ϵ-outage capacity. In the MIMO case, the preferred choice between spatial
multiplexing and STBCs, or something in between, depends on ϵ. We refer
to [26, Ch. 9] and [64] for a deeper theoretical framework for analyzing the
diversity-multiplexing tradeoff.
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5.4 Capacity Concept with Fast Fading

We now shift the attention to fast fading, where many channel realizations
occur during the signal transmission. We begin by revisiting the memoryless
SISO channel in (2.130), where the received signal at the time instance l is

y[l] = h[l] · x[l] + n[l], (5.103)

while x[l] is the transmitted signal and n[l] ∼ NC(0, N0) is noise. The im-
portant new property in this section is that the channel coefficient h[l] is
time-dependent. For notational convenience, we will first consider the scenario
where the channel takes a new independent realization at every time instance.
The fading is so fast that the channel varies at the symbol rate but is constant
within each symbol transmission interval. Later in this chapter, we will extend
the analysis to the case where the channel is constant over a finite block of
time instances before a new independent realization occurs.

The channel can be viewed as a continuous-time random process (see
Section 2.2.7) from which we take samples at the symbol rate to obtain
the sequence of channel realizations: h[1], h[2], . . .. We assume the random
process has zero mean and is stationary, which implies that each sample
has the same statistics. We further assume that h[l] is independent for each
l and the variance is denoted by E{|h[l]|2} = β. The receiver knows the
channel realizations perfectly, while the transmitter only knows the channel
statistics. The fast channel variations lead to massive diversity since many
fading realizations are observed, which makes the capacity analysis much
different from the slow-fading scenario; for example, we will demonstrate that
outage-free communication can be achieved without CSI at the transmitter.

The capacity of a non-fading channel is C = maxfx(x)(H(y) − H(y|x))
bit/symbol, as defined in (2.133). To understand its operational meaning,
we need to consider the transmission of a packet containing L data symbols:
x[1], . . . , x[L]. If each symbol is encoded to represent C bits, then the error
probability in the decoding at the receiver goes to zero as L→∞.

The original capacity expression has no time index since the channel
response was assumed constant throughout the communication. Hence, we
need to derive a different expression that can be applied to a fast-fading
channel. The starting point is to transmit a packet of length L with the
received signal given by (5.103) for l = 1, . . . , L, which is affected by the
independent fading realizations h[1], . . . , h[L]. We let fx[1],...,x[L](x[1], . . . , x[L])
denote the joint PDF of the L data symbols x[1], . . . , x[L]. The capacity can
then be generalized as [65, Ch. 4]

C = lim
L→∞

max
fx[1],...,x[L](x[1],...,x[L])

RL, (5.104)



5.4. Capacity Concept with Fast Fading 353

where the average data rate over L time instances is

RL = 1
L

(
H(y[1], . . . , y[L]|h[1], . . . , h[L])

−H(y[1], . . . , y[L]|x[1], . . . , x[L], h[1], . . . , h[L])
)

(5.105)

and the differential entropies are conditioned on the L channel realizations.
Since the channel is memoryless and the channel realizations are independent,
the differential entropies in (5.105) can be decoupled using the chain rule in
(2.136) as

H(y[1], . . . , y[L]|h[1], . . . , h[L]) ≤
L∑
l=1
H(y[l]|h[l]), (5.106)

H(y[1], . . . , y[L]|x[1], . . . , x[L], h[1], . . . , h[L]) =
L∑
l=1
H(y[l]|x[l], h[l]), (5.107)

where the upper bound in (5.106) is achieved when the symbols x[1], . . . , x[L]
are designed to be independent so that the received signals y[l] are con-
ditionally independent (given h[l]) for l = 1, . . . , L. Since the capacity in
(5.104) is achieved by maximizing RL with respect to the symbol distribution
fx[1],...,x[L](x[1], . . . , x[L]), we should let the L signals be independent so the
upper bound is achieved. By inserting these expressions into (5.104) and
(5.105), we obtain

C = lim
L→∞

1
L

L∑
l=1

max
fx[l](x[l])

(
H(y[l]|h[l])−H(y[l]|x[l], h[l])

)
= lim
L→∞

1
L

L∑
l=1

log2

(
1 + q|h[l]|2

N0

)
. (5.108)

In the last step, we utilized the capacity result in Corollary 2.1 to conclude
that x[l] ∼ NC(0, q) is the optimal symbol distribution, which leads to an
expression having the familiar log2(1 + SNR) structure.

It remains to compute the limit in (5.108). We notice that this expression
is the sample average of the data rate log2(1 + q|h[l]|2

N0
). Since the channel

realizations are independent, the rate realizations are also independent. The
limit of the sample average of independent and identically distributed realiza-
tions can be computed using Lemma 2.4, which is known as the law of large
numbers. As long as the random data rates have finite variance, we can use
this lemma to establish that

C = lim
L→∞

1
L

L∑
l=1

log2

(
1 + q|h[l]|2

N0

)
= E

{
log2

(
1 + q|h|2

N0

)}
, (5.109)
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where the sample average converges to the statistical mean. This is the mean
of the conditional capacity Ch in (5.37) with respect to the fading channel
h, which is the only random variable in the expression. The expression in
(5.109) holds for any practical fading distribution because the variance is
always finite.8 However, we will mainly analyze the Rayleigh fading case
where h ∼ NC(0, β). We summarize the capacity result as follows.

Corollary 5.1. Consider the discrete memoryless fast-fading channel with
input x[l] ∈ C and output y[l] ∈ C given by

y[l] = h[l] · x[l] + n[l], (5.110)

where n[l] ∼ NC(0, N0) is independent noise. Suppose the input distribution
is feasible whenever the symbol power satisfies E{|x[l]|2} ≤ q. Furthermore,
suppose the channel h[l] takes independent and identically distributed real-
izations at every time instance l from a distribution with finite variance. If
the channel realizations are known at the output, the channel capacity is

C = E
{

log2

(
1 + q|h|2

N0

)}
bit/symbol (5.111)

and is achieved when x[l] ∼ NC(0, q) and independent for each l.

The term ergodic is used in statistics to describe random processes for
which the time average approaches the statistical mean. This property was
used in (5.109) to obtain the capacity as the mean value of log2(1 + q|h|2/N0).
The proof was based on Lemma 2.4 (the law of large numbers) and utilized the
assumption that the temporal channel realizations h[1], h[2], . . . are mutually
independent. This is a sufficient but unnecessarily strong assumption. The
same capacity expression is obtained when the channel realizations are samples
from any ergodic random process, which generally features a weak temporal
correlation that vanishes with time. For example, suppose the receiver moves
at the speed υ along a straight line in a rich multipath environment, and
the data symbol l is transmitted at time t = l/B, where B is the bandwidth.
It follows from (5.33) that the temporal correlation between the channel
coefficients h[1] and h[l] is

E {h[1]h∗[l]} = β sinc
(2υ(l − 1)

λB

)
, (5.112)

which goes to zero as l→∞. A weak law of large numbers can be established
under these conditions [66, Ex. 254]. The truly necessary condition is that

8The magnitude of the channel coefficient is upper bounded as |h| ≤ 1 in practice because
we cannot receive more power than was transmitted. This implies that the variance of h can
also not be larger than 1.



5.4. Capacity Concept with Fast Fading 355

all possible channel realizations are obtained over time, according to the
underlying stationary statistical distribution, which ergodicity implies.

The capacity in (5.111) is called the ergodic capacity for the aforementioned
reasons and this term is used to distinguish it from the conventional capacity
of non-fading channels. Since the ergodic capacity in (5.111) is a deterministic
constant that can be computed by the transmitter using only statistical
knowledge (i.e., the distributions of the channel and noise), the transmitter
can deduce how to encode the data without knowing the channel realizations.
Hence, unlike the slow-fading scenario, the transmitter does not need to guess
which data rate the channel supports. By encoding the data based on the
ergodic capacity value, we can achieve reliable (outage-free) communications
as in the non-fading channels considered in previous chapters.

Example 5.11. Compute the ergodic capacity for a Rayleigh fading channel,
using the exponential integral function E1(x) =

∫∞
1 e−xw/w ∂w.

We consider the channel distribution h ∼ NC(0, β). The squared magnitude
of a complex Gaussian random variable is exponentially distributed (see
Section 2.2.5), thus the ergodic capacity in (5.111) can be expressed as

C = E {log2 (1 + z)} , (5.113)

where z = q|h|2

N0
∼ Exp(1/SNR) and the average SNR is defined as SNR = qβ

N0
.

By using this distribution, we can compute the mean value in (5.113) as

C =
∫ ∞

0
log2 (1 + z) 1

SNRe
− z

SNR ∂z = e
1

SNR

∫ ∞

1
log2 (w) 1

SNRe
− w

SNR ∂w

= log2(e)e 1
SNR

∫ ∞

1

1
w
e− w

SNR ∂w = log2(e)e 1
SNRE1

( 1
SNR

)
, (5.114)

where the second equality follows from a variable change to w = 1 + z, and
the third equality follows from an integration-by-parts approach (where some
terms are omitted since they equal zero). The final expression utilizes the
definition of the exponential integral function E1(x). This is an established
analytical function that is implemented in many software libraries.

We can get further analytical insights by bounding the function as 1
2 ln(1 +

2/x) < exE1 (x) < ln(1 + 1/x) [67, §5.1.20], which implies that

1
2 log2 (1 + 2 SNR) < C < log2 (1 + SNR) . (5.115)

This chain of inequalities shows that the ergodic capacity is smaller than
the capacity log2(1 + SNR) of the corresponding non-fading channel, but the
relative loss cannot surpass 1/2 due to the structure of the lower bound.

The closed-form ergodic capacity expression for Rayleigh fading in (5.114)
enables efficient numerical evaluation but is not amenable to analysis. We
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will therefore continue the comparison between a Rayleigh fading channel
h ∼ NC(0, β) and the capacity log2(1 + qβ

N0
) of the corresponding non-fading

channel by starting from the mean value expression in (5.111). At low SNR,
we can use the approximation in (3.2) to obtain that the capacity difference is

E
{

log2

(
1 + q|h|2

N0

)}
− log2

(
1 + qβ

N0

)
≈ log2(e)qE{|h|

2}
N0

− log2(e) qβ
N0

= 0.

(5.116)
Consequently, there is no capacity loss from having a fading channel when
the SNR is low. The reason is that the capacity is then an approximately
linear function of |h|2; the realizations where |h|2 is below the average β are
fully compensated by the realizations that are above the average. The fading
sometimes makes the channel stronger and sometimes weaker, but it behaves
like a non-fading channel on average.

The situation is more troublesome at high SNR, where the capacity differ-
ence (in bit/symbol) is

E
{

log2

(
1 + q|h|2

N0

)}
− log2

(
1 + qβ

N0

)
≈ E

{
log2

(
q|h|2

N0

)}
− log2

(
qβ

N0

)
= E

{
log2

( |h|2
β

)}
≈ −0.83, (5.117)

where the first approximation follows from (3.3) and the second approximation
is obtained by computing the mean value numerically and presenting it with
two significant digits. These results imply a negligible capacity loss in Rayleigh
fading channels at low SNRs, while the loss approaches 0.83 bit/symbol at high
SNRs. The reason for this loss is that the capacity grows slower and slower
with the SNR since it is a logarithmic function of it. Hence, the realizations
of |h|2 that are below the average β incur a larger rate degradation than the
realizations of |h|2 that are above the average improve the rate.

These differences are illustrated in Figure 5.19, where the ergodic capacity
of a Rayleigh fading channel is compared with the capacity of a non-fading
channel when SNR = qβ

N0
is the same. The performance difference is negligible

when the SNR is below −10 dB, but then it begins to grow. The high-SNR
gap of −0.83 bit/symbol is approximately achieved when the SNR is 30 dB.
In summary, fading reduces communication performance, particularly at high
SNR, where we want communication systems to operate. Fortunately, this
adverse effect can be mitigated using multiple antennas, as shown next.

5.4.1 Ergodic Capacity of i.i.d. Rayleigh Fading SIMO Channels

The ergodic capacity is the mean value of the data rate achieved for a single
channel realization. For a SIMO channel with M antennas, we can therefore
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6?
Gap ≈ 0.83

Figure 5.19: The ergodic capacity of a Rayleigh fading SISO system for a varying SNR is
compared with the corresponding capacity of a non-fading channel. There is no gap at low SNR,
while the capacity loss of having a fading channel approaches 0.83 bit/symbol at high SNR.

generalize the SISO ergodic capacity in (5.111) to the SIMO ergodic capacity

C = E
{

log2

(
1 + q∥h∥2

N0

)}
bit/symbol. (5.118)

This is the mean value of the conditional capacity Ch in (5.50). The expression
in (5.118) holds for any channel distribution (with bounded variance). We
consider an i.i.d. Rayleigh fading channel: h ∼ NC(0, βIM ). It is then possible
to compute (5.118) exactly, following the approach in Example 5.11, but
the expression is complicated and provides little insights.9 We will instead
compute lower and upper bounds on the ergodic capacity and compare them
with the capacity log2(1 + MSNR) of the corresponding non-fading SIMO
channel, for which ∥h∥2 = βM and we still use the definition SNR = qβ

N0
. To

this end, we will make use of a few mathematical properties.

Definition 5.2. A twice-differentiable scalar function f(x) is said to be convex
if ∂2

∂x2 f(x) ≥ 0 for all x, while it is concave if ∂2

∂x2 f(x) ≤ 0.

The graph of a convex function is shaped like a cup, ∪, in the sense that
the line segment between any two points on the graph is above the graph. By
contrast, the graph of a concave function is shaped like a cap, ∩, and has the
opposite property. The expectation of a convex or concave function behaves
differently, as shown by the following result, called Jensen’s inequality.

9We refer to [1, Lemma B.15] for the complete result and derivation.
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Lemma 5.1. Consider a scalar random variable x and scalar function f(x).
If f(x) is a convex function, then

f(E{x}) ≤ E{f(x)}. (5.119)

If f(x) is a concave function, then

f(E{x}) ≥ E{f(x)}. (5.120)

If we set x = ∥h∥2, we can notice that f(x) = log2(1 + qx
N0

) is a concave
function of x. Hence, we can use (5.120) to conclude that

E
{

log2

(
1 + q∥h∥2

N0

)}
≤ log2

(
1 + qE{∥h∥2}

N0

)
= log2

(
1 + qMβ

N0

)
= log2(1 +MSNR), (5.121)

where we utilized that E{∥h∥2} = Mβ. This upper bound coincides with the
capacity of a non-fading LOS channel with the same average SNR. Hence,
the ergodic capacity can never be larger than the capacity of a corresponding
LOS channel.

To determine how much smaller the ergodic capacity can be, we can utilize
Jensen’s inequality again. This time we set x = 1/∥h∥2 and notice that
f(x) = log2(1 + 1

x
q
N0

) is a convex function of x. It follows from (5.119) that

E
{

log2

(
1 + q∥h∥2

N0

)}
≥ log2

1 + q

N0E
{

1
∥h∥2

}
 = log2

(
1 + q(M − 1)β

N0

)
= log2(1 + (M − 1)SNR), (5.122)

where the first equality utilizes that

E
{ 1
∥h∥2

}
=
∫ ∞

0

1
x
f∥h∥2(x)∂x =

∫ ∞

0

1
x

xM−1e− x
β

βM (M − 1)!∂x

= 1
(M − 1)β

∫ ∞

0

xM−2e− x
β

βM−1(M − 2)!∂x︸ ︷︷ ︸
=1

= 1
(M − 1)β . (5.123)

This mean value is computed by using the PDF in (5.51) of the scaled χ2(2M)-
distribution, and the last equality follows by recognizing that the integral over
the PDF of the scaled χ2(2(M − 1))-distribution is one.

In summary, we have derived the following chain of inequalities:

log2(1+(M−1)SNR) ≤ E
{

log2

(
1 + q∥h∥2

N0

)}
≤ log2(1+MSNR). (5.124)
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The gap between the lower and upper bounds can be substantial when M
is small (as seen in the SISO case) but reduces as M increases. This is a
consequence of the spatial receive diversity; as shown in (5.58), the relative
variations in ∥h∥2 reduce the more antennas are used. In the context of ergodic
capacities, it is common to call it channel hardening [68]. This means that
the influence of the random channel variations on the capacity disappears as
M increases if MRC is used at the receiver. The fading still exists, and the
entries of the channel vector h vary rapidly. However, the variations (partially)
average out when the M independent random variables are combined in the
SNR-maximizing way.

Example 5.12. What is the PDF of Ch = log2

(
1 + q∥h∥2

N0

)
if h ∼ NC(0, βIM )?

The PDF f∥h∥2(x) of ∥h∥2 is given in (5.51) and can be used to derive
the PDF fCh(z) of Ch. The connection between ∥h∥2 and Ch is most easily
exposed through the CDFs but, as stated in (2.101), the PDF is the derivative
of the CDF. Hence, we can compute the desired PDF as

fCh(z) = ∂

∂z
Pr {Ch ≤ z} = ∂

∂z
Pr
{

log2

(
1 + q∥h∥2

N0

)
≤ z

}
= ∂

∂z
Pr
{
∥h∥2 ≤ N0

q
(2z − 1)

}
= f∥h∥2

(
N0

q
(2z − 1)

)
∂

∂z

N0

q
(2z − 1)

= (2z − 1)M−1e− 2z−1
SNR

SNRM (M − 1)!
2z ln(2), for z ≥ 0, (5.125)

where the chain rule is used when computing the derivative and SNR = qβ
N0

in the last step. This expression was used in Figure 5.10 for M = 1.

The ergodic capacity is E{Ch} and its value depends on the PDF of Ch,
which is given in (5.125) for i.i.d. Rayleigh fading. Figure 5.20 shows this PDF
with M = 1, M = 8, or M = 32 antennas. The probability mass is shifted to
larger values as M increases, which results in a larger mean value (i.e., larger
ergodic capacity). The mass also becomes concentrated in a smaller interval,
which leads to a larger peak value of the PDF because the area under each
curve is 1. It is this phenomenon that is called channel hardening.

Figure 5.21 shows the ergodic capacity of an i.i.d. Rayleigh fading channel
with SNR = 10 dB and a varying number of antennas. The exact value is
compared with the lower and upper bounds. We notice a huge gap between
the curves at M = 1, where the lower bound is zero. However, for M ≥ 5, the
difference between the lower and upper bounds is tiny. More importantly, the
ergodic capacity is close to the upper bound, representing the capacity of a
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Figure 5.20: The PDFs of the (conditional) capacity Ch in (5.125) for SNR = 1 and M = 1,
M = 8, or M = 32 antennas. As M increases, the probability mass shifts to the right and is
concentrated in a smaller interval.

Figure 5.21: The ergodic SIMO capacity of an i.i.d. Rayleigh fading is shown for SNR = 10 dB
and a varying number of antennas. It is compared with the lower and upper bounds in (5.124),
where the upper bound corresponds to the capacity of a non-fading LOS channel.

non-fading LOS channel with the same SNR. Hence, the rate loss incurred by
having a fading channel is relatively small when the receiver is equipped with
a handful or more antennas. Hence, the spatial receive diversity makes the
performance of communication systems more robust to channel fading.
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5.4.2 Ergodic Capacity of i.i.d. Rayleigh Fading MIMO Channels

We now consider the MIMO setup where the transmitter has K antennas and
the receiver has M antennas so that the fast-fading channel is described by
the M ×K channel matrix H. The random realization of this channel matrix
changes at every time instance. As earlier in this chapter, the receiver knows
the realization of H but not the transmitter, which only knows the channel
statistics. Hence, the transmitter must encode its data signal x = [x1, . . . , xK ]T

in a way that is independent of H, which implies that we cannot create multiple
parallel channels using the SVD as in Section 3.4. Instead, we must follow the
approach with arbitrary precoding from Section 3.4.3. Suppose the transmitted
signal is x ∼ NC(0,Rx) for some arbitrary choice of the covariance matrix
Rx.10 For a given realization of H, we concluded earlier in (3.106) that an
achievable (conditional) data rate is

log2

(
det

(
IM + 1

N0
HRxHH

))
. (5.126)

By considering a transmission that takes place over infinitely many time
instances with independent channel realizations, an ergodic achievable rate is

E
{

log2

(
det

(
IM + 1

N0
HRxHH

))}
, (5.127)

where the mean value is computed with respect to the channel matrix H. The
argumentation for this result is the same as earlier in this chapter; the channel
realizations are samples from a stationary and ergodic random process; thus,
the time-average rate equals the statistical mean.

The capacity is the maximum achievable data rate. Although the transmit-
ter does not know the channel realizations, it can compute the ergodic rate
in (5.127) and adapt its choice of covariance matrix Rx to maximize it. We
notice that the kth diagonal entry of Rx is E{|xk|2} and recall that tr(Rx) is
the sum of the diagonal entries. We want the signal power

E
{
∥x∥2

}
=

K∑
k=1

E
{
|xk|2

}
= tr(Rx) (5.128)

to equal the maximum symbol power q. Hence, the ergodic capacity is

C = max
Rx∈CK×K : tr(Rx)=q

E
{

log2

(
det

(
IM + 1

N0
HRxHH

))}
, (5.129)

where we need to find the positive semi-definite covariance matrix Rx that
maximizes the ergodic rate under the power constraint tr(Rx) = q.

10This covariance matrix can be factorized as Rx = PQPH for some precoding matrix P and
diagonal power allocation matrix Q, following the definitions made in Section 3.4.3. However,
this specific structure is not needed in this section.
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The optimal covariance matrix depends on the distribution of the channel
matrix. If we consider i.i.d. Rayleigh fading, meaning that all entries of H are
independent complex Gaussian distributed with the zero mean and identical
variance, then the optimal covariance matrix has the simple form

Rx = q

K
IK . (5.130)

This means the transmitter should send one independent data symbol from
each of its K antennas and divide the power q equally between them. We will
outline the proof, but refer to [31] for the precise details.

For any choice of the covariance matrix Rx, we can express its eigendecom-
position as Rx = UDUH, where U is a unitary matrix and D is a diagonal
matrix. The term HRxHH in the ergodic capacity in (5.129) can therefore
be expressed as HUDUHHH = (HU)D(HU)H. Since the entries of H are
independent NC(0, β)-distributed, the entries of HU have the same distribu-
tion (see Example 2.10). Hence, when computing the mean with respect to
the channel in (5.129), it is sufficient to consider diagonal covariance matrices
Rx = D because the choice of the unitary matrix makes no difference.

As all transmit antennas experience channels with the same distribution,
it should not matter which antenna is assigned a specific amount of the
total power; we can always reorder the antennas and get the same result. In
particular, it can be proved that E{log2(det(IM + 1

N0
HDHH))} is a jointly

concave and symmetric function of the diagonal entries of D, which implies
that the maximum is achieved when all the entries are the same.

In summary, the ergodic capacity with i.i.d. Rayleigh fading is obtained
by substituting (5.130) into (5.129):

C = E
{

log2

(
det

(
IM + q

KN0
HHH

))}
. (5.131)

We note that this result holds even if K > M , which means we transmit
more signals than the receiver has antennas. This is not an issue since the
transmitted data signals are encoded to enable decoding at the receiver side
using the SIC procedure, even if the MIMO channel cannot be divided into
parallel channels when the transmitter is unaware of the channel realizations.
The multiplexing gain is, however, limited to r = min(M,K) because this is
the maximum number of non-zero eigenvalues of HHH. If we denote these
eigenvalues by λ1, . . . , λr, then (5.131) can also be expressed as

C = E
{

log2

(
r∏

m=1

(
1 + q

KN0
λm

))}
= E

{
r∑

m=1
log2

(
1 + q

KN0
λm

)}
,

(5.132)
by utilizing the fact that the determinant is the product of the eigenvalues.

The mean value in (5.132) can be computed in closed form at low SNR.
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By utilizing the low-SNR approximation in (3.2), we can rewrite (5.132) as

C ≈ E
{

r∑
m=1

log2(e) q

KN0
λm

}
= log2(e) q

KN0
E {tr(HHH)}

= log2(e) q

KN0
MKβ = log2(e)MSNR. (5.133)

The final result follows from the fact that the trace is defined as tr(HHH) =∑r
m=1 λm and by computing the mean value E{HHH} = KβIM by using

the assumption of i.i.d. Rayleigh fading. We can notice in (5.133) that the
capacity is proportional to the number of receive antennas at low SNR (i.e., a
receive beamforming gain), while the number of transmit antennas makes no
difference. Hence, in the absence of CSI at the transmitter, multiple transmit
antennas are only helpful in achieving multiplexing gains.

Example 5.13. How does the ergodic MIMO capacity with i.i.d. Rayleigh
fading behave when K →∞, while M is fixed?

To answer this question, we need to determine the limit of 1
KHHH as

K →∞. The mth diagonal entry of this matrix is 1
K

∑K
k=1 |hm,k|2, which is

the sample average of K i.i.d. random variables. The limit follows from the law
of large numbers (Lemma 2.4) and equals the mean β of the individual terms
|hm,k|2. Similarly, the (m, l)th entry is 1

K

∑K
k=1 hm,kh

∗
l,k, where all terms are

independent and have zero mean when m ̸= l. It follows from the law of
large numbers that the off-diagonal entries converge to zero. We have thereby
proved that 1

KHHH → βIM . By substituting this result into (5.131), we
obtain the asymptotic ergodic MIMO capacity

C = log2

(
det

(
IM + q

N0
βIM

))
= M log2(1 + SNR), (5.134)

where the mean value is removed since the randomness vanishes as K → ∞.
This ergodic capacity is M times larger than the SISO capacity of the corre-
sponding non-fading channel. The multiplexing gain is min(M,K) = M .

We have now covered the ergodic capacities of SISO, SIMO, and MIMO
channels. What remains is to consider the MISO channel, which is a special
case of the MIMO channel with M = 1 receive antenna. In that special case,
the channel matrix can be written as H = hT = [h1, . . . , hK ]. Hence, the
ergodic capacity in (5.131) reduces to

C = E
{

log2

(
det

(
I1 + q

KN0
hTh∗

))}
= E

{
log2

(
1 + q

KN0
∥h∥2

)}
.

(5.135)
This capacity expression resembles the ergodic SIMO capacity in (5.118), but
with a crucial difference: Instead of getting the sum of the channel gains
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Four times
steeper slope

Figure 5.22: The ergodic capacity over i.i.d. Rayleigh fading channels. We compare a SISO
channel with a SIMO channel with M = 4 antennas, a MISO channel with K = 4 antennas,
and a MIMO channel with M = K = 4 antennas.

∥h∥2 =
∑M
m=1 |hm|2 of the receive antennas, we get the average ∥h∥2/K =∑K

k=1 |hk|2/K of the channel gains among the transmit antennas. The division
by K represents the absence of a beamforming gain in the MISO case, as
we previously observed in slow fading. One way to interpret this is that the
transmitter must spread its power over all K dimensions in CK to ensure it
reaches the receiver, even if only one randomly selected dimension leads to
the receiver. By sending K independent signals from the antennas, the MISO
channel achieves a diversity gain that provides channel hardening, making the
setup preferable over a SISO channel.

We previously presented a duality result in Corollary 3.4, which stated
that the capacity is the same in both directions of a MIMO channel if the ratio
between the total transmit power and noise variance is the same. This result
was obtained for a non-fading channel known at both the transmitter and
the receiver. Considering the ergodic capacity in (5.131), the same result can
only be obtained in the symmetric case of M = K, where there are equally
many antennas in both directions. In contrast, we observed that the ergodic
capacities of MISO and SIMO systems are very different because we can only
obtain a beamforming gain at the receiver side.

Figure 5.22 shows the ergodic capacity as a function of the SNR in the
case of i.i.d. Rayleigh fading channels. We compare four setups: a SISO case,
a MISO case with K = 4 transmit antennas, a SIMO case with M = 4
receive antennas, and a MIMO case with M = K = 4 antennas. Note that
all four cases can be computed using the MIMO expression in (5.131), but
the mean value must be computed numerically. The results resemble those in



5.5. Block Fading and Channel Estimation 365

Figure 3.15 for non-fading channels, except that the SIMO and MISO cases
are not equal anymore. The SISO case gives the lowest ergodic capacity. The
MISO case is slightly better than the SISO case at high SNR, thanks to the
diversity gain, but the performance gap is just around 2 dB. The SIMO case
gives a curve having roughly the same shape as in the SISO setup, but it is
shifted to the left thanks to both the beamforming gain and the diversity
gain. The gap to the SISO curve is around 8 dB at high SNR, of which 6 dB
is the beamforming gain and the remaining 2 dB is the diversity gain (same
as in the MISO case). Note that the relative gain of having multiple receive
antennas is greater for fading channels than for non-fading channels, for which
there is only a beamforming gain. However, in absolute numbers, the ergodic
capacities in Figure 5.22 are always smaller than the corresponding capacities
of the non-fading channels in Figure 3.15. The highest capacity is achieved in
the MIMO case, where a multiplexing gain is achieved since the transmitter
sends four signals. At high SNR, the capacity curve grows as M log2(SNR),
roughly M times faster than in the SISO case.

5.5 Block Fading and Channel Estimation

The capacity analysis in this book has thus far relied on the assumption that
the receiver knows the channel perfectly. This is well motivated when the
channel takes a single realization throughout the communication because the
capacity is (by definition) achieved by transmitting very long data packets.
Section 4.2.4 exemplified how a preamble containing a known pilot sequence
can be appended to the packet to enable perfect channel estimation while still
being negligibly small compared to the payload part that contains data. This
argument holds in both scenarios with deterministic LOS channels (Chapter 4)
and slow fading (Section 5.3), but not under fast fading. When the channel
varies rapidly, we need to transmit new pilot sequences at the same pace as
the channel changes, which has two main consequences. Firstly, the fraction
of symbols spent on pilots instead of data is non-negligible. Secondly, the
limited pilot sequence length leads to non-zero estimation errors, so perfect
channel knowledge is no longer achieved. In this section, we will quantify
the channel estimation errors and their detrimental impact on the ergodic
capacity, following a methodology originating from [69], [70].

We return to the block fading model introduced when describing Figure 5.9.
In this model, we treat the fading channel as being piecewise constant over
short time intervals, but on every occasion the channel changes, the new
realization is generated independently. An interval with a constant channel
realization is called a coherence block. We let Lc denote the number of symbols
that can be transmitted within each block. We must divide the symbols
between transmitting a known pilot sequence that enables channel estimation
at the receiver and unknown payload data that the receiver can decode using
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Figure 5.23: A block-fading channel has a piecewise constant channel response. Each such
segment is called a coherence block. This is an abstraction of the dashed continuously varying
channel. Lc symbols can be transmitted within each coherence block, of which Lp symbols are
used to transmit a preamble containing a pilot sequence that enables channel estimation. The
rest contains a payload with Lc − Lp data symbols.

the acquired CSI. The resulting transmission protocol is repeated in each
coherence block but for a new independent channel realization, as illustrated
in Figure 5.23. This repetition makes it sufficient to study the operation of a
single coherence block with an arbitrary random channel realization. There
are two phases of each coherence block:

• Preamble: A known pilot sequence of length Lp symbols is transmitted.

• Payload: Lc − Lp data symbols are transmitted.

We will analyze these phases in detail in the following sections.

5.5.1 Pilot-Based Channel Estimation

We begin by considering the channel estimation enabled by pilot transmis-
sion in a SIMO scenario where the channel vector h ∈ CM is subject to
i.i.d. Rayleigh fading: h ∼ NC(0, βIM ). We select the known pilot of length
Lp = 1 that equals √q and uses the maximum symbol power. The received
signal then becomes

y = h√q + n, (5.136)
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where n ∼ NC(0, N0IM ) is the receiver noise. Since the channel and noise are
independent random variables, it follows that y ∼ NC(0, (βq +N0)IM ).

The mth received signal in (5.136) has the form ym = hm
√
q + nm, where

the unknown channel realization hm ∼ NC(0, β) is observed in additive noise.
Since the antennas’ channel coefficients are independently distributed, we
can estimate them separately. The received signal has the same structure
as in Lemma 2.11, which implies that the MMSE estimate of hm given the
observation ym is

ĥm =
β
√
q

βq +N0
ym, m = 1, . . . ,M. (5.137)

Among all conceivable ways of transforming ym into a guess of hm, (5.137) is
the option that minimizes the average squared estimation error E{|hm− ĥm|2}.
The minimal value is given by (2.156) as

MSEh = E
{∣∣∣hm − ĥm∣∣∣2} = βN0

βq +N0
. (5.138)

We can collect all the MMSE estimates of the channel coefficients in the vector
form ĥ ∈ CM as

ĥ =

 ĥ1
...
ĥM

 =
β
√
q

βq +N0
y. (5.139)

This random vector also takes a new realization in every coherence block
since we repeat the estimation once per block. By using the aforementioned
distribution of y, we notice that

ĥ ∼ NC

(
0,
∣∣∣∣ β
√
q

βq +N0

∣∣∣∣2 (βq +N0)IM

)
= NC

(
0, β2q

βq +N0
IM
)

= NC (0, (β −MSEh)IM ) . (5.140)

We will denote the estimation error as h̃ = h− ĥ and each entry has a variance
that equals the MSE, such that

h̃ ∼ NC (0,MSEhIM ) . (5.141)

The entries of the estimate ĥ and the estimation error h̃ have variances
that add up to the variance of the entries of the original channel h since
(β −MSEh) + MSEh = β. Hence, the channel estimation effectively splits the
true channel into one known part ĥ with the reduced variance β −MSEh and
an unknown part h̃ with the remaining variance MSEh. Having an estimate
with a large variance is good because we want the known part of the channel
to be strong. An accurate estimate is characterized by a small MSE, implying
that the estimate is likely near the true channel realization.
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Transmitter, Receiver,
K antennas M antennas

Pilot 1
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Figure 5.24: In a MIMO setup with K transmit antennas, we need to transmit K different
pilots to enable estimation of the entire channel matrix H on the receiver side. The receiver can
be equipped with any number of antennas, M , since these listen to the same pilots.

The procedure mentioned above enables the estimation of the entire SIMO
channel vector h by transmitting only a single pilot symbol (i.e., Lp = 1).
This procedure works regardless of how many antennas the receiver has and
resembles how public speeches are carried out: any number of people can
listen simultaneously to the same speaker. However, the audience members
need to take turns when asking questions to the speaker, which can become
cumbersome when the audience is large. Analogously, the number of transmit
antennas determines how many pilots must be transmitted to estimate the
entire channel, not the number of receive antennas. We need Lp = K pilots if
there are K transmit antennas.

We now switch focus to a MIMO channel with K transmit antennas
and M receive antennas. It can be represented by the channel matrix H =
[h1, . . . ,hK ] ∈ CM×K , which contains K columns denoted as hk ∈ CM for
k = 1, . . . ,K. Suppose we transmit Lp = K pilots so that √q is transmitted
from antenna k at symbol time k. Figure 5.24 illustrates such a setup with
K = 2 transmit antennas and M = 5 receive antennas, in which case we need
to transmit two pilots. The received signal at symbol time k becomes

yk = hk
√
q + nk, k = 1, . . . ,K, (5.142)

where nk ∼ NC(0, N0IM ) is the receiver noise.
The received signal in (5.142) has the same form as in (5.136) for the SIMO

case. Hence, we can effectively divide the MIMO estimation problem into
K SIMO estimation subproblems. Suppose H is modeled by i.i.d. Rayleigh
fading with the entries independently distributed as hm,k ∼ NC(0, β), for
m = 1, . . . ,M and k = 1, . . . ,K. It then follows from the previous derivations
that the MMSE estimate is a matrix Ĥ and the estimation error is a matrix
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H̃ = H− Ĥ with entries independently distributed as

ĥm,k ∼ NC(0, β −MSEh), (5.143)
h̃m,k ∼ NC(0,MSEh). (5.144)

The receiver obtains the channel estimates, which is aligned with our standing
assumption in this chapter that the receiver has CSI but not the transmitter.
To provide the transmitter with CSI, we need to transmit in the reverse
direction, either by feeding back the estimate or sending pilots also in that
direction. This is done in some practical systems but not in this chapter.

5.5.2 Ergodic Rate with Imperfect CSI at the Receiver

We will now consider how the channel estimates from the last section can
be used for signal detection and, particularly, how the achievable data rate
is affected by the fact that the receiver has imperfect CSI. We consider the
transmission of a packet that spans L coherence blocks and will let L→∞
to characterize the ergodic capacity. To this end, we revisit the memoryless
SISO channel in (2.130). The received signal at an arbitrary time instance in
coherence block l can be expressed as

y[l] =
(
ĥ[l] + h̃[l]

)
x[l] + n[l], l = 1, . . . , L, (5.145)

where ĥ[l] is the MMSE estimated part of the channel response obtained by
sending Lp = 1 pilot and h̃[l] ∼ NC(0,MSEh) is the independent estimation
error. Similar to (5.104), the capacity is given by

C = lim
L→∞

max
fx[1],...,x[L](x[1],...,x[L])

(
1− 1

Lc

)
RL, (5.146)

where 1− Lp/Lc = 1− 1/Lc is the fraction of each coherence block used for
data transmission (while the fraction 1/Lc is used for pilots) and the average
data rate over the L coherence blocks is

RL = 1
L

(
H (x[1], . . . , x[L])−H

(
x[1], . . . , x[L]

∣∣y[1], . . . , y[L], ĥ[1], . . . , ĥ[L]
))

= 1
L

L∑
l=1
H (x[l])−H

(
x[l]
∣∣y[l], ĥ[l]

)
. (5.147)

Note that we used the alternative mutual information expression in (2.137),
which equals the entropy of the transmitted signal minus the remaining entropy
given the information known at the receiver (which is y[l] and ĥ[l] in this case).
This expression is easier to evaluate under imperfect CSI. The block-fading
assumption implies that independent realizations of ĥ[l], h̃[l] are drawn in each
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coherence block from a stationary and ergodic random process. Hence, we can
use the law of large numbers (Lemma 2.4) to compute the limit in (5.146) as

C = max
fx(x)

(
1− 1

Lc

)
E
{
H(x)−H(x

∣∣y, ĥ)
}
, (5.148)

where the mean value is computed with respect to the channel estimate
realization ĥ and the maximum is computed concerning all signal distributions
fx(x) that have a symbol power of q. There is no easy way to compute the
exact capacity when the receiver has imperfect CSI, but this remains one of
the open problems in information theory. Therefore, we will derive a tight
lower bound by following an approach from [69], [70]. To prepare for that
derivation, we begin by considering the estimation of the data signal x.

Example 5.14. What is the LMMSE estimate of x when y in (5.145) is
observed and ĥ is known? What is the resulting conditional MSE?

The LMMSE estimator has the form x̂ = ay, where a is selected to
minimize the MSE by satisfying the orthogonality principle E{x̃y∗|ĥ} = 0
with x̃ = x− x̂ being the estimation error. This condition can be expanded as

0 = E
{
x̃y∗∣∣ĥ} = E

{
(x− ay) y∗∣∣ĥ} = E

{
xy∗∣∣ĥ}− aE{|y|2∣∣ĥ} . (5.149)

By solving for a in (5.149), we obtain

a =
E
{
xy∗∣∣ĥ}

E
{
|y|2

∣∣ĥ} =
E
{
x
(

(ĥ+ h̃)x+ n
)∗ ∣∣ĥ}

E
{∣∣∣(ĥ+ h̃)x+ n

∣∣∣2 ∣∣ĥ}

=
E
{
|x|2

}(
ĥ+ E{h̃}

)∗
+ E{x}E{n∗}

E
{
|x|2

}(
|ĥ|2 + E

{
|h̃|2

})
+ E

{
|n|2

} = qĥ∗

q|ĥ|2 + qMSEh +N0
(5.150)

by using the fact that x, h̃, and n are uncorrelated and have zero mean
(conditioned on ĥ). The resulting conditional MSE for the given value of ĥ is

MSEx|ĥ = E
{
|x̃|2

∣∣ĥ} = E
{
x̃x∗

∣∣∣ĥ}− a∗ E
{
x̃y∗∣∣ĥ}︸ ︷︷ ︸
=0

= E
{
|x|2

}
− aE

{
yx∗∣∣ĥ}︸ ︷︷ ︸
=qĥ

= q − q2|ĥ|2

q|ĥ|2 + qMSEh +N0
= q2MSEh + qN0

q|ĥ|2 + qMSEh +N0
, (5.151)

where we used the orthogonality principle, reused computations from (5.150),
and finally utilized that E{|x|2} = q.
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We will make two (potentially) suboptimal assumptions to characterize
the capacity in closed form. The first assumption is that x ∼ NC(0, q). This
is the optimal signal distribution when the receiver has perfect CSI, but not
necessarily in our scenario with imperfect CSI. Under this assumption, we
can use Lemma 2.9 to compute the first term in (5.148) as

H(x) = log2(eπq). (5.152)

The second suboptimal assumption is that the receiver computes an LMMSE
estimate of x based on its available observations y, ĥ and uses the resulting
conditional MSE in (5.151) to upper bound the second term in (5.148) as

H
(
x
∣∣y, ĥ) = H

(
x− x̂

∣∣y, ĥ)
≤ H(x− x̂

∣∣ĥ)

≤ log2

(
eπMSEx|ĥ

)
. (5.153)

The equality in (5.153) follows from subtracting the LMMSE estimate x̂
obtained in Example 5.14 from x. This can be done without changing the
differential entropy since x̂ is deterministic given y and ĥ. We then obtain the
first upper bound by removing the knowledge of y since the conditioning on a
random variable cannot increase the entropy. The second upper bound follows
from Lemma 2.9 since the differential entropy is maximized by a complex
Gaussian distribution with the same variance as that of x− x̂ (conditioned
on the realization ĥ), which was given in (5.151).

By utilizing (5.152) and (5.153), we can obtain a lower bound on the
ergodic capacity in (5.148) as

C ≥
(

1− 1
Lc

)
E
{
H(x)−H

(
x
∣∣y, ĥ)}

≥
(

1− 1
Lc

)
E
{

log2

(
q

MSEx|ĥ

)}

=
(

1− 1
Lc

)
E
{

log2

(
q2|ĥ|2 + q2MSEh + qN0

q2MSEh + qN0

)}

=
(

1− 1
Lc

)
E
{

log2

(
1 + q|ĥ|2

qMSEh +N0

)}
. (5.154)

The first lower bound follows from assuming that the transmitter uses a
suboptimal signal distribution. The second lower bound follows from (5.153),
which assumes that the receiver decodes the signal in a suboptimal way. We
have now proved the following result.
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Corollary 5.2. Consider the discrete memoryless block-fading channel with
input x[l] ∈ C and output y[l] ∈ C given by

y[l] =
(
ĥ[l] + h̃[l]

)
x[l] + n[l], (5.155)

where n[l] ∼ NC(0, N0) is independent noise. Suppose the input distribution
is feasible whenever the symbol power satisfies E{|x[l]|2} ≤ q. Furthermore,
suppose the channel h[l] = ĥ[l] + h̃[l] takes independent and identically
distributed realizations in each coherence block from a distribution with finite
variance and that a fraction 1/Lc of each block is used for pilots. If the
channel estimate ĥ[l] is known at the output while the channel estimation
error h̃[l] ∼ NC(0,MSEh) is unknown and independent, the channel capacity
can be lower bounded as

C ≥
(

1− 1
Lc

)
E

log2

1 +
q
∣∣∣ĥ∣∣∣2

qMSEh +N0


 bit/symbol, (5.156)

where the bound is achieved when x[l] ∼ NC(0, q) and independent for each l.

The lower bound in (5.156) has a familiar form (1−1/Lc)E{log2(1+SINR)},
where q|ĥ|2/(qMSEh + N0) acts as the instantaneous SINR. If we compare
the new expression with the ergodic capacity E{log2(1 + q|h|2/N0)} in (5.111)
for a fast-fading channel with perfect CSI, we can notice three key differences.
Firstly, the pre-log factor (1− 1/Lc) in (5.156) accounts for the transmission
resources spent on channel estimation in each coherence block. This makes the
new expression more realistic since CSI cannot be acquired for free. Secondly,
the channel response h in (5.111) is replaced by the channel estimate ĥ in
(5.156). As the variance of these coefficients determines the average channel
gain, it has effectively reduced from β to β−MSEh. Finally, the noise variance
N0 has been replaced with qMSEh +N0, which also contains a penalty term
determined by the imperfect CSI. Its variance matches that of the signal
component h̃x received over the unknown portion of the channel, which is a
noise-like perturbation that is worst-case modeled as complex Gaussian noise
when computing the capacity bound.

We will now generalize the analysis by considering a SIMO setup with
M antennas at the receiver, in which case the received signal y ∈ CM in an
arbitrary coherence block can be expressed as

y =
(

ĥ + h̃
)
x+ n, (5.157)

where ĥ ∈ CM is the known channel estimate in (5.140) obtained using Lp = 1
pilot, h̃ ∼ NC (0,MSEhIM ) is the independent unknown estimation error in
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(5.141), and n ∼ NC (0, N0IM ) is the receiver noise. We can notice from the
SISO case in (5.154) that the ergodic capacity can be lower bounded as

C ≥
(

1− 1
Lc

)
E
{

log2

(
q

MSEx|ĥ

)}
, (5.158)

where q is the transmit power and MSEx|ĥ is the conditional MSE when
computing the LMMSE estimate of x given the received signal y and channel
estimate ĥ. This is a lower bound because it relies on the suboptimal as-
sumptions of a Gaussian codebook x ∼ NC(0, q) and that LMMSE processing
is used for signal detection at the receiver, but at least we know that the
rate can be achieved in this particular way. The LMMSE estimate of x has
the form x̂ = wHy, where w ∈ CM is receive combining vector. We can
determine the LMMSE combining vector using the orthogonality principle (as
in Example 5.14), but we will instead follow the approach from Example 3.4
to directly compute the MSE as

E
{
|x− x̂|2

∣∣ĥ} = E
{∣∣∣x(1−wH

(
ĥ + h̃

))
−wHn

∣∣∣2 ∣∣ĥ}
(a)= E

{
|x|2

}
E
{∣∣∣1−wH

(
ĥ + h̃

)∣∣∣2 ∣∣ĥ}+ E
{
|wHn|2

∣∣ĥ}
= q

(
1 + wH

(
ĥĥH + MSEhIM

)
w−wHĥ− ĥHw

)
+ wHN0IMw

= q + wH
(
qĥĥH + (qMSEh +N0)IM

)
︸ ︷︷ ︸

=B

w−wH qĥ︸︷︷︸
=a

− qĥH︸︷︷︸
=aH

w,

(5.159)

where (a) follows from utilizing the (conditional) uncorrelation E{xnH|ĥ} = 0
between the signal x and the noise n to remove some of the terms. We stress
that the combining vector was treated as deterministic when ĥ is known, but
we want to find the optimal way that it depends on the estimate. By utilizing
the notation a and B that was introduced in (5.159), we can write the MSE
as

E
{
|x− x̂|2

∣∣ĥ} = q + wHBw−wHa − aHw

= q − aHB−1a +
(
w−B−1a

)H B
(
w−B−1a

)
≥ q − aHB−1a = MSEx|ĥ, (5.160)

where we complete the squares11 and then notice that the quadratic form
in the last term attains its minimum value of zero if w = B−1a. This is the

11We utilize the fact that (w − B−1a)HB(w − B−1a) = aHB−1a + wHBw − wHa − aHw to
gather all the terms that depend on w in a quadratic form. The missing term aHB−1a must be
subtracted when doing that. This is the matrix algebra equivalent of completing the squares in
a scalar quadratic equation.
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LMMSE receive combining vector, and it can be rewritten using (2.49) as

w = B−1a

=
(
qĥĥH + (qMSEh +N0)IM

)−1
qĥ

= q

q∥ĥ∥2 + qMSEh +N0
ĥ. (5.161)

This LMMSE combining vector is the counterpart to MRC under imperfect
CSI because it projects the received signal into the direction of the channel
estimate. The minimum MSE in (5.160) can now be expressed in a concise
way using (5.161) as

MSEx|ĥ = q − aHB−1a = q − q2∥ĥ∥2

q∥ĥ∥2 + qMSEh +N0

= q(qMSEh +N0)
q∥ĥ∥2 + qMSEh +N0

. (5.162)

We can finally compute the capacity lower bound in (5.158) as

C ≥
(

1− 1
Lc

)
E
{

log2

(
q
q∥ĥ∥2 + qMSEh +N0

q(qMSEh +N0)

)}

=
(

1− 1
Lc

)
E
{

log2

(
1 + q∥ĥ∥2

qMSEh +N0

)}
. (5.163)

This is the natural SIMO extension of the SISO capacity bound in (5.156),
which has the same pre-log factor (1− 1/Lc). There is one key difference: the
channel gain in the numerator is ∥ĥ∥2 in the SIMO case instead of |ĥ|2. Since
these terms have the means M(β −MSEh) and β −MSEh, respectively, we
can conclude that a beamforming gain proportional to M is achievable in
the SIMO setup despite the imperfect CSI. Notably, the interference term
caused by the CSI imperfection remains equal to qMSEh, independently of the
number of receive antennas. This is remarkable because the total variance of
the signal received over the unknown portion of the channel is qMMSEh. Since
h̃ ∼ NC(0,MSEhIM ), that power is uniformly distributed over all M receiver
dimensions and, thus, only a fraction 1/M of it appears on average in the
dimension utilized by the LMMSE combining. This is the same phenomenon
that makes the noise power independent of the number of receive antennas in
the SNR expression, even if the total noise power in the receiver hardware
is proportional to M . In conclusion, a SIMO receiver becomes increasingly
robust to CSI imperfections as the number of antennas increases because only
the desired signal power increases with M .
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Example 5.15. What is the relative SNR loss caused by imperfect CSI? What
happens to this loss when the SNR is high?

If we define a random vector e ∼ NC(0, IM ) with unit-variance complex
Gaussian entries, we can notice that the instantaneous SNR in (5.163) satisfies

q∥ĥ∥2

qMSEh +N0
∼ q(β −MSEh)
qMSEh +N0

∥e∥2, (5.164)

where the expressions are equally distributed since β −MSEh is the variance
of each entry in ĥ. Similarly, the instantaneous SNR in (5.118) with perfect
CSI satisfies

q∥h∥2

N0
∼ qβ

N0
∥e∥2. (5.165)

The relative SNR loss caused by the CSI imperfections becomes

Loss =
q(β−MSEh)
qMSEh+N0

qβ
N0

= N0 (1−MSEh/β)
qMSEh +N0

. (5.166)

The relative loss at high SNRs can be obtained by considering the asymptotic
limit where q →∞. The MSE in (5.138) has the limit

MSEh = βN0

βq +N0
→ 0, (5.167)

but the convergence to zero is slow, so the interference term qMSEh has the
non-zero limit

qMSEh = qβN0

βq +N0
→ βN0

β
= N0. (5.168)

Hence, the relative SNR loss in (5.166) has the asymptotic limit

Loss→ N0 (1− 0/β)
N0 +N0

= 1
2 . (5.169)

In conclusion, there is a 3 dB loss in SNR in the capacity expression in the
high-SNR regime, but the capacity anyway grows unboundedly with q.

The ergodic capacity in the MIMO scenario with K transmit antennas
and M receive antennas can be lower bounded similarly to the SIMO scenario.
We recall from Section 3.4.3 that the received signal y ∈ CM when using
an arbitrary precoding matrix P = [p1, . . . ,pK ] ∈ CK×K with unit-norm
columns is

y =
(

Ĥ + H̃
)

Px̄ + n =
K∑
k=1

Ĥpkx̄k +
K∑
k=1

H̃pkx̄k︸ ︷︷ ︸
=ϵ

+n, (5.170)
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where x̄ = [x̄1, . . . , x̄K ]T ∼ NC(0,Q) contains the independent data symbols
and Q = diag(q1, . . . , qK) is a diagonal power allocation matrix. The coeffi-
cients in Q should be selected to satisfy

∑K
k=1 qk = q so that the maximum

symbol power is used. The new properties in this section are the block fading
where Ĥ ∈ CM×K is the known channel estimate with i.i.d. entries distributed
according to (5.143) as ĥm,k ∼ NC(0, β−MSEh), while H̃ is the estimation er-
ror with i.i.d. entries distributed according to (5.144) as h̃m,k ∼ NC(0,MSEh).
The estimate is obtained by transmitting K pilots, while Lc −K symbols per
coherence block are used for data transmission. The received signal in (5.170)
can be divided into the known first term, where Ĥ acts as the channel matrix,
and the unknown term ϵ, which we know from earlier in this section will act
as extra noise. This term has (conditional) zero mean E{ϵ|Ĥ} = 0 since the
data symbols have zero mean, while the conditional covariance matrix can be
computed as

E
{
ϵϵH
∣∣Ĥ} =

K∑
k=1

qkE
{

H̃pkpH
kH̃H

∣∣Ĥ} =
K∑
k=1

qkMSEh∥pk∥2IM = qMSEhIM ,

(5.171)
where the first equality follows from the independence of the data symbols and
the second equality follows from the fact that H̃pk ∼ NC(0,MSEh∥pk∥2IM ),
which is independent of Ĥ. The last equality utilizes that ∥pk∥ = 1 and∑K
k=1 qk = q by assumption.
We demonstrated in Section 3.4.3 that the maximum achievable data rate

can be achieved through the LMMSE-SIC procedure, where the K transmitted
signals are decoded sequentially while treating all other signals as noise. In
the block-fading scenario, the decoding of each signal will be subject to the
extra noise vector ϵ, which cannot be removed at the receiver since H̃ is
unknown. Hence, based on the previous results in this section, we conclude
that the variance qMSEh of the entries in ϵ can be added to the receiver noise
n. An achievable ergodic rate during the data transmission is then obtained
by generalizing (3.106) as

E
{

log2

(
det

(
IM + 1

qMSEh +N0
ĤPQPHĤH

))}
, (5.172)

where the mean value is computed with respect to the random channel
estimates in different coherence blocks. Since the channel estimate features
i.i.d. fading, we further know from Section 5.4.2 that Rx = PQPH = q

K IK
maximizes the expression in (5.172) when the transmitter is unaware of the
channel. In summary, a capacity lower bound in the MIMO case is

C ≥
(

1− K

Lc

)
E
{

log2

(
det

(
IM + q/K

qMSEh +N0
ĤĤH

))}
, (5.173)

where we also accounted for the fact that a fraction K/Lc of each coherence
block is used for transmitting pilots. This capacity bound shares all the
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Figure 5.25: The ergodic rate over i.i.d. Rayleigh fading channels, which are either modeled as
fast-fading with perfect CSI at the receiver or block-fading with imperfect CSI. We consider a
SIMO channel with M = 4 antennas and a MIMO channel with M = K = 4 antennas.

essential features with the previous bounds in this section. There is a pre-log
factor (1−K/Lc), the true channel matrix H is replaced with the estimated
channel matrix Ĥ, and the estimation errors result in an SNR loss created by
the extra noise variance qMSEh. Hence, we can achieve the same multiplexing
and beamforming gains under imperfect CSI as with perfect CSI but starting
from a worse situation with a smaller pre-log factor and a relative SNR loss.

Figure 5.25 compares the ergodic capacity with perfect CSI at the receiver
(as in Section 5.4.2) with the lower bounds obtained in this section for block-
fading with imperfect CSI. We assume coherence blocks with Lc = 200 symbols
and consider a MIMO setup with M = K = 4 antennas and a SIMO setup
with M = 4 receive antennas. The figure shows the ergodic rates as functions
of the average SNR qβ

N0
. The pre-log factor is almost one in the considered

setups, so the main impact of the imperfect CSI is the relative SNR loss in the
rate expressions. This loss results in the shift of the rate curves to the right
by approximately 3 dB in the high-SNR regime, as predicted in Example 5.15.
This loss can, for instance, be identified by comparing the rates achieved at
27 and 30 dB, which are nearly the same. The shift of the curves otherwise
confirms that the same beamforming and multiplexing gains are achieved with
perfect and imperfect CSI; thus, MIMO systems can operate effectively also
when the receiver has imperfect channel knowledge.

5.5.3 Ergodic Rate with Imperfect CSI Available Everywhere

We have derived ergodic rates achievable in a block-fading scenario where
the receiver obtains CSI through pilot transmission, but the transmitter
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is unaware of the channel realization. This section considers the scenario
where the transmitter somehow gains access to the same channel estimate,
denoted by Ĥ in the MIMO scenario with K transmit antennas and M receive
antennas. This CSI can be utilized to optimize the transmission, particularly
the precoding. We return to the achievable rate expression in (5.172) and
optimize the precoding matrix P and power allocation matrix Q:

R = E
{

max
P: ∥pk∥=1, k=1,...,K

q1≥0,...,qK≥0,
∑K

k=1
qk=q

log2

(
det

(
IM + 1

qMSEh +N0
ĤPQPHĤH

))}
.

(5.174)

The capacity is lower bounded as C ≥ (1−K/Lc)R when including the pre-log
factor caused by transmitting K pilots per coherence block. The key difference
from the previous section is that the precoding optimization is done inside the
mean value once per coherence block. This optimization problem coincides
with the problem considered in Section 3.4 for deterministic channel matrices.
More precisely, let Ĥ = UΣVH denote the SVD of the channel estimate, where
s1, . . . , sr denote the r = min(M,K) non-zero singular values.12 It follows
that P = V is the rate-maximizing precoding, while q1, . . . , qK should be
selected based on the water-filling power allocation. By utilizing Theorem 3.1,
we can rewrite (5.174) as

R = E
{

r∑
k=1

log2

(
1 + qopt

k s2
k

qMSEh +N0

)}
, (5.175)

where the power allocation in the coherence block with the singular value
realization s1, . . . , sr is

qopt
k = max

(
µ− qMSEh +N0

s2
k

, 0
)
, k = 1, . . . , r, (5.176)

and the variable µ is selected to make
∑r
k=1 q

opt
k = q. The water-filling is also

affected by the imperfect CSI since the noise variance is increased by qMSEh.
The singular values have the same distribution as those of the true channel
matrix H, except that the variance is reduced by a factor (β −MSEh)/β.

The gain in ergodic rate from having CSI at the transmitter can be
quantified under i.i.d. Rayleigh fading by computing the ratio between the
rate in (5.175) with CSI at the transmitter and the rate in (5.173) without CSI
at the transmitter. The difference in the ergodic rates is generated by whether
the precoding is based on the SVD of the estimated channel matrix or not.
Figure 5.26 shows the relative rate gain as a function of the SNR for different
numbers of transmit and receive antennas. We notice that having CSI at the

12The maximum number of non-zero singular values is min(M,K) and all these values will
be non-zero with probability 1 under i.i.d. Rayleigh fading, as explained in Example 5.4.
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Figure 5.26: The relative gain in ergodic rate from having CSI at the transmitter, which is
computed as the ratio between the rate in (5.175) with CSI and the rate in (5.173) without
CSI. We consider i.i.d. Rayleigh fading MIMO channels with different numbers of transmit and
receive antennas.

transmitter is primarily useful at lower SNRs, where transmit beamforming
gains can be achieved by only transmitting in the estimated channel’s strongest
direction(s). The gain is larger when the transmitter has more antennas than
the receiver (solid black line) and smaller when the receiver has more antennas
than the transmitter (blue dash-dotted line). The benefit of having CSI at the
transmitter vanishes asymptotically, except if K > M when it remains vital
for the transmitter to concentrate the transmit power in the signal dimensions
that reach the receiver. In conclusion, feeding back channel estimates to the
transmitter has clear benefits, particularly when the SNR is low, so transmit
beamforming gains are more valuable than multiplexing gains.

5.6 Sparse Multipath Propagation and Dual Polarization

The i.i.d. Rayleigh fading model was derived in Section 5.1.2 by considering
the deployment of half-wavelength-spaced ULAs in an isotropic rich multipath
environment. The statistical independence between the entries of the channel
vector/matrix simplifies the analysis of slow and fast fading channels, but it
is generally not an accurate model of practical channels. Multiple factors can
break the independence: other array geometries than ULAs, the use of directive
or dual-polarized antennas, and non-isotropic multipath environments. While
the system designer can control the former two factors, the propagation
environment is essentially given by nature, and its non-isotropic features
become particularly evident as the number of antennas increases and the
wavelength shrinks. Therefore, we will develop a model for the channel fading
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(φ3, θ3)

(φ2, θ2)

(φ1, θ1)

Figure 5.27: Illustration of a sparse multipath propagation environment where only signal
components that leave the transmitter in some distinct angular directions (φi, θi) reach the
receiver. The figure shows three such directions. The same setup was considered in Figure 2.14.

distribution that can be utilized in more realistic propagation environments.
We call it sparse multipath propagation to distinguish it from the rich multipath
propagation assumption made previously in this chapter. We will first consider
single-polarized antennas and then dual-polarized antennas.

We begin by considering the MISO channel in Figure 5.27 where a base
station equipped with M antennas transmits to a single-antenna user. Three
propagation paths are indicated in the figure: one direct path and two re-
flected/scattered paths. Each path is associated with a particular azimuth
angle φi and elevation angle θi, representing the direction of the path as seen
from the transmitter. We let L denote the total number of propagation paths
in this section. When the reflecting objects and receiver are in the far-field
of the transmitter, we can utilize the array response vector a(φ, θ) ∈ CM
of the transmitter array to model each propagation path. A methodology
for computing array response vectors for any specific array geometries was
provided in Section 4.5. In this section, we will treat it as an arbitrary vector
that might include antenna gains. The ith propagation path is associated
with a signal attenuation αi ∈ [0, 1] and a phase-shift ψi ∈ [−π, π), where we
utilize the same notation as in Section 5.1. The components of the radiated
signal that reach the receiver over the different paths are superimposed. The
channel vector can then be expressed as

h =
L∑
i=1

αie
−jψia(φi, θi). (5.177)

Since the array response vectors assign different phase-shifts to different
antennas, the summation in (5.177) will lead to different complex numbers for
different antennas. The signals emitted from some transmit antennas might be
superimposed constructively over the multipath channel, while the signals from



5.6. Sparse Multipath Propagation and Dual Polarization 381

Beamforming gain [dB]

Observation angle φ

Figure 5.28: The beamforming gain that is observed in different directions φ when a ULA with
M = 10 antennas transmits using MRT. The dashed curve considers the LOS case with a single
propagation path in the direction φ1 = π/6. The solid curve considers the NLOS case with
L = 4 equally strong paths in the directions φ1 = π/6, φ2 = π/12, φ3 = −π/4, and φ4 = −π/3
(and phase-shifts are progressively shifted by π/3). These angles are marked with stars. The
beam pattern becomes increasingly complex and ceases to have a distinct angular directivity
when the number of paths increases.

other antennas might superimpose destructively. Hence, the transmitter should
allocate its power differently over the antennas to maximize the SNR. The
use of MRT with the precoding vector p = h∗/∥h∥ finds the SNR-maximizing
way of utilizing the multipath propagation environment. The radiated signal
is a superposition of beams focused in the directions of the L different paths
since h is a linear combination of a(φi, θi) for i = 1, . . . , L.

Whenever the channel contains multiple paths with distinctly different
angles, the radiated signal generated by MRT will no longer look like a beam
pointing in a single angular direction. Figure 5.28 illustrates the angular
beam pattern when transmitting in a single direction (dashed curve) and
when the channel consists of L = 4 paths (solid curve). The beam pattern
is more complex in the latter case, but it has four peaks in roughly the
same directions as those leading to the objects creating the multipaths (those
directions are marked with stars). The beam pattern is a superposition of
angular beams focused precisely toward these objects, but when their main
beams and side-lobes interact, the combined angular beam pattern is smeared
out. As more paths are added to the channel vector, as is typically the case
in practice, the radiation pattern will look increasingly complex and lack a
distinct angular directivity. The main point is that one should not expect the
transmitted signal in multiple antenna communications to look like an angular
beam except in the special case of free-space LOS propagation considered in
Chapter 4. The only goal of precoding is to radiate the same signal from all
antennas so that they add constructively at the receiver location.
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5.6.1 Clustered Multipath Propagation

A key characteristic of sparse multipath propagation is that a limited number
of physical objects creates the propagation paths. These objects are located
in distinctly different angular directions, as seen from the transmitter and
receiver. We will call each such object a multipath cluster and let Ncl denote
the number of clusters. We consider an NLOS channel, so the radiated signal
can only reach the receiver via one of these clusters. A multipath cluster
can give rise to many propagation paths, but they are all associated with
approximately the same pair of azimuth and elevation angles. This definition
requires the cluster to span only a tiny angular interval from the transmitter’s
perspective; however, the physical size depends on how far away the cluster is
and how many antennas the transmitter has. Recall that the array cannot
resolve the angular differences between paths when these are smaller than the
half-power beamwidth.

Example 5.16. What is the half-power angular beamwidth when using a ULA
with M = 10 antennas and ∆ = λ/2? How physically large can a multipath
cluster be if it is located 10 or 100 meters away?

The half-power beamwidth was considered in Example 4.7, where the
approximate formula 1.772/M radians was derived. This becomes b = 0.1772
radians or 10.15◦ with M = 10 antennas. An angular interval b radians wide
becomes 2d tan(b/2) meters wide at a distance d from the transmitter. The
width becomes 1.78 m if d = 10 m and 17.8 m if d = 100 m; thus, a single
multipath cluster can be physically large, particularly when it is far from
the antenna array. The green and blue circles in Figure 5.27 might represent
different multipath clusters. It can be buildings, cars, mountains, etc.

We let (φi, θi) denote the common angles associated with all the paths
generated by the ith cluster. Moreover, we assume each cluster gives rise to
Npath different paths, each having a different attenuation αi,n and phase-shift
ψi,n, for n = 1, . . . , Npath. We then have a total of L = NclNpath propagation
paths, but some share the same angles. Hence, we can reformulate (5.177) as

h =
Ncl∑
i=1

Npath∑
n=1

αi,ne
−jψi,n

a(φi, θi). (5.178)

We can model this as a complex Gaussian distributed channel vector if Npath
is large, but it will not result in what we previously called i.i.d. Rayleigh fading.
To demonstrate this, suppose the phase-shifts ψi,n ∼ U [−π, π) are independent
and uniformly distributed random variables and that the channel attenuations
αi,n within any cluster i are independent and identically distributed random
variables with an average channel gain denoted by

E
{
α2
i,n

}
= βi
Npath

. (5.179)
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This implies that
∑Npath
n=1 E{α2

i,n} = βi irrespectively of the number of paths,
thus, the parameter βi ∈ [0, 1] determines the average channel gain of the
entire cluster i. It follows from the central limit theorem in Lemma 2.6 that

Npath∑
n=1

αi,ne
−jψi,n → NC(0, βi) (5.180)

in probability as Npath →∞. Note that the normalization by Npath in (5.179)
is essential to keep the variance βi constant as the number of paths increases;
otherwise, the summation would diverge instead of converge to a Gaussian
distribution. However, this is only a mathematical technicality because we
recall from Figure 5.4 that the convergence to the Gaussian distribution is
approximately achieved for Npath ≥ 5 if all the attenuations are equally large.

We let ci ∼ NC(0, βi) denote the fading variables in (5.180) for i =
1, . . . , Ncl, and notice that these are independent random variables. When
there are many paths per cluster, we can therefore rewrite (5.178) as

h =
Ncl∑
i=1

cia(φi, θi). (5.181)

We call this scenario clustered rich multipath propagation where the word
“rich” signifies that there are many paths, so we get Rayleigh fading. However,
these paths are not isotropically distributed over the angular domain but are
confined to a limited number of multipath clusters with distinct angles.

The channel response h in (5.181) is a linear combination of the Ncl array
response vectors a(φi, θi) using the coefficients ci that are complex Gaussian
random distributed. Hence, the channel has the random distribution

h ∼ NC(0,Rh), (5.182)

where the covariance matrix can be computed as

Rh=E{hhH}=
Ncl∑
i=1

Ncl∑
n=1

E {cic∗
n}a(φi, θi)aH(φn, θn)=

Ncl∑
i=1

βia(φi, θi)aH(φi, θi).

(5.183)

The last step in (5.183) follows from utilizing that E{cic∗
n} = 0 when i ̸= n

since the variables are independent and have zero means. We will refer to Rh

as the spatial correlation matrix since it describes how the channel coefficients
at different spatial locations (i.e., antenna locations) are correlated.

Clustered rich multipath propagation gives rise to spatially correlated
Rayleigh fading since each entry of h has a magnitude that is Rayleigh
distributed, but the entries are statistically correlated. Practical channels
generally feature spatially correlated fading. The level of correlation can vary
depending on the number of multipath clusters and their angular locations.
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One way to measure the level of correlation is by inspecting the eigenvalue
spread of Rh; a large spread represents a high correlation, while a small spread
represents a low correlation. Note that all the eigenvalues are equal when
considering i.i.d. Rayleigh fading with Rh = βIM . The MISO channel model
in (5.181)–(5.183) can also be utilized for SIMO channels by interchanging
the roles of the transmitter and receiver.

Instead of having a single angle pair (φi, θi) per cluster, we can associate
each one with a limited but continuous range of angles. For example, a
typical cluster is an object that the antenna array observes over a limited but
continuous range of angles. It then makes sense to replace the summation in
(5.183) with an integral expression. This can be done as

Rh = β

∫ π

−π

∫ π/2

−π/2
fφ,θ(φ, θ)a(φ, θ)aH(φ, θ)∂θ∂φ, (5.184)

where fφ,θ(φ, θ) is the angular density function of the multipath components
and β represents the average channel gain over all clusters. The former function
describes how the multipath components are distributed over the angular
domain. The function is normalized such that

∫ π
−π
∫ π/2

−π/2 fφ,θ(φ, θ)∂θ∂φ = 1.
The covariance model in (5.184) is a continuous generalization of the discrete
model in (5.183) because we can obtain the latter one by selecting β =

∑Ncl
i=1 βi

and fφ,θ(φ, θ) =
∑Ncl
i=1

βi
β δ(φ− φi)δ(θ − θi). Even if there is a finite number

of clusters, the continuous model is more realistic since the abrupt Dirac delta
function δ(·) can be replaced with something smoother.

Example 5.17. Suppose there is only one multipath cluster centered around
(φ1, θ1), but it spans a horizontal angular window of length 2∆φ and a vertical
angular window of length 2∆θ. What will be the spatial correlation matrix
Rh if the multipath components are uniformly distributed?

Under these conditions, the angular density function should be constant
over the specified intervals. This is achieved by

fφ,θ(φ, θ) =
{

1
4∆φ∆θ

, if |φ− φ1| ≤ ∆φ, |θ − θ1| ≤ ∆θ,

0, otherwise.
(5.185)

By substituting this into (5.184), we obtain the spatial correlation matrix

Rh = β

4∆φ∆θ

∫ φ1+∆φ

φ1−∆φ

∫ θ1+∆θ

θ1−∆θ

a(φ, θ)aH(φ, θ)∂θ∂φ. (5.186)

This model originates from [71] and is known as the one-ring model since it
appears in the hypothetical scenario where all the multipath components are
on a ring-shaped object around the single-antenna device.
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Figure 5.29: Illustration of a sparse multipath propagation environment where only signal
components that depart the transmitter in some distinct angular directions (φt,i, θt,i) will reach
the receiver, and only arrive from some distinct angular directions (φr,i, θr,i). The figure shows
Ncl such cluster directions.

We can extend the propagation model to capture a point-to-point MIMO
channel with Ncl clusters between the transmitter and receiver. Cluster i is
located in the direction (φt,i, θt,i) seen from the transmitter and in the direction
(φr,i, θr,i) seen from the receiver. This setup is illustrated in Figure 5.29. Let
aK(φ, θ) ∈ CK denote the array response vector of the ULA at the transmitter
and aM (φ, θ) ∈ CM denote the array response vector of the ULA at the
receiver, which can both be modeled as in (4.120). If isotropic antennas are
utilized, then the channel matrix H ∈ CM×K can be expressed as

H =
Ncl∑
i=1

ciaM (φr,i, θr,i)aT
K(φt,i, θt,i), (5.187)

where ci ∼ NC(0, βi) is an independent random variable that models the rich
multipath within the ith cluster. The channel matrix consists of a superposition
of Ncl components, each determined by the angular directions of the multipath
cluster via the array response vectors, and having the average channel gain
βi ∈ [0, 1]. The rank of this channel matrix is determined by the number of
antennas, the number of multipath clusters, and the angular locations of these
clusters. If the multipath clusters are well separated in the angular domain,
the summation of Ncl paths in (5.187) implies that the rank could be Ncl.
However, the rank is also upper bounded by min(M,K) since H only has that
many singular values. Hence, the maximum channel rank is min(M,K,Ncl).

Suppose the transmitter uses directive antennas with the gain function
Gt(φ, θ) and the receiver uses directive antennas with the gain function
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Gr(φ, θ), where the angles are defined as for the respective array response
vectors. In line with (4.148), we can extend the channel model in (5.187) as

H =
Ncl∑
i=1

ci

√
Gt(φt,i, θt,i)Gr(φr,i, θr,i)aM (φr,i, θr,i)aT

K(φt,i, θt,i). (5.188)

Since the multipath clusters are located in different directions, they will be
associated with different gains Gt(φt,i, θt,i)Gr(φr,i, θr,i). However, the variance
βi was already assumed to be cluster-specific, so we can simplify the notation
by absorbing the antenna gains into these variables. Hence, we can define

c̄i = ci

√
Gt(φt,i, θt,i)Gr(φr,i, θr,i) ∼ NC

(
0, β̄i

)
(5.189)

where β̄i = βiGt(φt,i, θt,i)Gr(φr,i, θr,i) and then use the original channel model
in (5.187) with c̄i instead of ci.

Example 5.18. How does the Rician fading distribution extend to the clustered
rich multipath propagation scenario?

Rician fading was introduced in Example 5.2 to model channels where
there exists an LOS path in addition to the many NLOS paths. The LOS
path has a particular set of departure angles (φt,0, θt,0) at the transmitter
and arrival angles (φr,0, θr,0) at the receiver. This is not a cluster since there
is only one path. If we add this path to (5.187), we obtain

H = α0e
−jψ0aM (φr,0, θr,0)aT

K(φt,0, θt,0) +
Ncl∑
i=1

ciaM (φr,i, θr,i)aT
K(φt,i, θt,i),

(5.190)
where α0 ∈ [0, 1] models the attenuation and ψ0 ∼ U [−π, π) models the
phase-shift of the LOS path. Each entry hm,k of this matrix has a magnitude
with the Rician distribution, thereof the name Rician fading.

When using this model, it is common to let β = E{|hm,k|2} = α2
0 +
∑Ncl
i=1 βi

denote the average gain of each channel coefficient. One can then define the
so-called κ-factor determining how the average gain is divided between the
LOS and NLOS paths: κ = α2

0/
∑Ncl
i=1 βi. Using this notation, we can generate

random MIMO channel realizations as

H =
√

κ

κ+ 1
√
βe−j·U [−π,π)aM (φr,0, θr,0)aT

K(φt,0, θt,0)

+
Ncl∑
i=1
NC(0, βi)aM (φr,i, θr,i)aT

K(φt,i, θt,i), (5.191)

where the phase of the LOS path and the Rayleigh fading of each cluster are
the sources of randomness.
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5.6.2 Beamspace Representation

Propagation channels can be sparse in the angular domain in the sense that
there is a small number of multipath clusters. Such sparsity is particularly
evident when communicating in the mmWave and THz bands because the
wireless signals then interact less favorably with objects in the propagation
environment. One example is provided in Figure 5.30, where the signal with the
higher frequency is more damped when transmitted through a blocking object
(e.g., propagating through a wall). Although the world between the transmitter
and receiver is the same regardless of the signal frequency, the number of
impactful multipath components can change drastically. The strength of
the LOS and specularly reflected paths are almost wavelength-independent,
while paths that interact with multiple objects virtually disappear at higher
frequencies—thereby leaving only a few dominant paths. The resulting angular
sparsity is not visible in the MISO channel vector h in (5.181) where all the
entries have roughly the same magnitude because each antenna reaches the
receiver with nearly the same power. However, the sparsity can be extracted
by transforming the channel vector from the antenna domain (where each
entry represents a physical antenna) to the angular domain (where each
entry represents an angular interval). The angular domain representation is
nowadays known as the beamspace [72], but was initially called the virtual
channel representation [73] and has also been named the Weichselberger model
due to Weichselberger’s seminal work [74] that generalizes the model and
highlights its connections to beamforming and multiplexing.

We recall from Section 4.3.3 that the columns of the DFT matrix FM in
(2.198) generate a grid of orthogonal beams, which spans all angular directions
when using a half-wavelength-spaced ULA with the aperture length D = M λ

2 .
Hence, it acts as an orthogonal basis for the channel, where each basis vector
represents a specific angular interval. We can denote the nth column of FM as

fM,n = 1√
M


1

e−jπ(n−1) 2
M

e−jπ2(n−1) 2
M

...
e−jπ(M−1)(n−1) 2

M


=


1√
M

aM
(

arcsin
(

2(n−1)
M

)
, 0
)
, n = 1, . . . , ⌊M2 ⌋+ 1,

1√
M

aM
(

arcsin
(

2(n−1)
M − 2

)
, 0
)
, n = ⌊M2 ⌋+ 2, . . . ,M,

(5.192)

where aM (φ, θ) ∈ CM denotes the array response vector in (4.120) for ∆ = λ/2.
We can express this relation in short form as

fM,n = 1√
M

aM

(
arcsin

([2(n− 1)
M

]
−1:1

)
, 0
)
, n = 1, . . . ,M, (5.193)
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Blocking object

Lower frequency: Smaller amplitude loss

Higher frequency: Larger amplitude loss

Figure 5.30: Signals with a higher frequency are subject to a larger amplitude loss when
transmitted through a blocking object.

where [·]−1:1 wraps the argument within the range (−1, 1] and is defined as

[x]−1:1 =
{
x, x ≤ 1,
x− 2, x > 1,

(5.194)

If we multiply the channel vector in (5.181) with the conjugate transpose of
the DFT matrix, we obtain the channel’s beamspace representation

h̆ = FH
Mh =

Ncl∑
i=1

ci

 f H
M,1a(φi, θi)

...
f H
M,Ma(φi, θi)

 , (5.195)

where each cluster only contributes to one or a few of the entries.
Figure 5.31 illustrates this transformation in a scenario with M = 10

antennas and Ncl = 4 multipath clusters, each located in one of the DFT
beam directions. The DFT beams are numbered from 1 to 10 and are the
same as in Figure 4.19(a). Each beam is associated with the interval where
it provides the largest beamforming gain. We recall that the main beams
partially overlap, so this is an approximate division of the angular domain. As
the DFT beams in (5.193) have equally-spaced sine values of their azimuth
angles, they represent equally-spaced spatial frequencies. Beam n is centered
around the spatial frequency [2(n− 1)/M ]−1:1 /λ and covers the interval
between [(2(n− 1)− 1) /M ]−1:1 /λ and [(2(n− 1) + 1) /M ]−1:1 /λ, which has
the width 2

Mλ = 1
D that is inversely proportional to the aperture length D.

Consequently, the angular spacing is wider in the end-fire directions (i.e.,
±π/2) than in the broadside direction. In the propagation scenario illustrated
in Figure 5.31, the beamspace representation h̆ of the channel has Ncl = 4
non-zero entries illustrated by the colored boxes, each associated with one of
the four clusters. The other six entries of the vector are zero (white boxes).
This illustrates how the angular sparsity created by the small number of
clusters can be exposed by transforming the channel vector to the beamspace.
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Figure 5.31: A transmitter equipped with a half-wavelength-spaced ULA with M = 10 antennas
communicates with a single-antenna receiver. The angular domain is divided into M intervals
that match the DFT beams in Figure 4.19(a). Each covers an interval of length 2/(Mλ) in
terms of spatial frequencies. The beamspace representation h̆ = FH

Mh of the channel vector has
Ncl = 4 non-zero entries, each generated by a multipath cluster located in an angular direction
that coincides with one of the DFT beams. Note that the size of the transmitter is exaggerated
compared to the propagation distances in this figure.

To shed further light on the beamspace representation, we return to the
NLOS example in Figure 5.28, where the channel contains four paths with
distinctly different angles. If we transform this channel to the beamspace,
we obtain 10 channel components, one per DFT beam direction. Figure 5.32
shows the relative strength of these channel components (in the decibel scale).
There are six large and four small components; thus, angular sparsity is also
prevalent in this scenario. However, the path directions do not precisely match
the directions of the DFT beams, which is why several paths are smeared out
over multiple beam directions. Moreover, none of the channel components are
precisely zero. This is not because there are weak signals arriving from all
directions but due to the side-lobes that show up almost everywhere; when
we look for signals in a particular beam direction, we can pick up signals from
a very different direction through a side-lobe. The behavior in this example
represents what we will experience in practical scenarios with angular sparsity.
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Figure 5.32: The strength of the 10 channel components when the NLOS channel from
Figure 5.28 is transformed to the beamspace. The channel consists of four propagation paths but
has six large channel components since some paths are smeared out over multiple DFT beams.

Example 5.19. Suppose there are Ncl = M clusters that are equally spaced
in terms of spatial frequency, such that a(φi, θi) =

√
M fM,i for i = 1, . . . ,M .

What is the spatial correlation matrix Rh?
Under the given assumptions, we can express the spatial correlation matrix

in (5.183) as

Rh =
Ncl∑
i=1

βia(φi, θi)aH(φi, θi) =
M∑
i=1

βiM fM,if H
M,i = FMBFH

M , (5.196)

where B = diag(Mβ1, . . . ,MβM ). The last expression is the eigendecomposi-
tion of the spatial correlation matrix; thus, the columns of the DFT matrix
are the eigenvectors and each associated eigenvalue Mβi is the total average
channel gain from the cluster i to all the antennas.

When using two half-wavelength-spaced ULAs, the MIMO channel matrix
in (5.187) can also be transformed to the beamspace by multiplying by DFT
matrices of matching dimensions from the left and the right:

H̆ = FH
MHF∗

K =
Ncl∑
i=1

ci× f H
M,1aM (φr,i, θr,i)aT

K(φt,i, θt,i)f∗
K,1 . . . f H

M,1aM (φr,i, θr,i)aT
K(φt,i, θt,i)f∗

K,K
... . . . ...

f H
M,MaM (φr,i, θr,i)aT

K(φt,i, θt,i)f∗
K,1 . . . f H

M,MaM (φr,i, θr,i)aT
K(φt,i, θt,i)f∗

K,K

.
(5.197)
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Figure 5.33: A transmitter equipped with a half-wavelength-spaced ULA with K = 5 antennas
communicates with a receiver with a half-wavelength-spaced ULA with M = 10 antennas. The
beamspace representation H̆ = FH

MHF∗
K of the channel matrix has Ncl = 6 non-zero entries,

each generated by a multipath cluster located in an angular direction that coincides with one
of the DFT beams at each side. The rank of the channel matrix is 4, which is the number of
linearly independent columns in H̆. Note that the transmitter and receiver sizes are exaggerated
compared to the propagation distances.

Each column of the transformed matrix represents a viable angular transmis-
sion direction seen from the transmitter, while each row represents a viable
angular reception direction. Each of the Ncl multipath clusters will appear
in one matrix entry or possibly a few neighboring entries. Figure 5.33 shows
an example where a transmitter with K = 5 antennas communicates with a
receiver with M = 10 antennas. There are Ncl = 6 clusters that connect the
transmitter and receiver, and the non-zero entries of H̆ are illustrated with col-
oring in the figure. The rank r of the channel matrix is essential to determine
how many data streams can be spatially multiplexed over the channel. As the
multiplication with unitary matrices (e.g., DFT matrices) does not change the
rank, we can utilize the beamspace representation when determining the rank.
The rank is the maximum number of linearly independent columns (or rows)
of the matrix. In this example, there are four linearly independent columns
and one empty column; thus, the rank and multiplexing gain are r = 4.

The channel rank is determined by how many dimensions the transmitter
can reach the receiver through (i.e., the number of non-zero columns of H̆)
and how many dimensions the receiver can hear the transmitter through (i.e.,
the number of non-zero rows of H̆). Figure 5.34 shows three examples of such
beamspace matrices. Case (a) is a rich multipath environment with clusters
in all directions, resulting in all entries of H̆ being non-zero. This channel
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H̆ = H̆ = H̆ =

(a) (b) (c)

TransmitterReceiver
A cluster

Figure 5.34: Three examples of MIMO channels represented in the beamspace. There are
different numbers of multipath clusters in these examples. The clusters are distributed differently
over the DFT beams, resulting in channels with different ranks and numbers of random
coefficients. There are K = 5 transmit antennas and M = 5 receive antennas in all the examples.
The white entries of the matrix H̆ are approximately zero.

has the full rank. The MK sources of randomness make it likely that all the
singular values are of comparable sizes, making this channel well-suited for
spatial multiplexing. Case (b) has many clusters around the transmitter, but
the receiver observes all of them through a single DFT beam. This could
happen when a transmitting user device is surrounded by scattering objects
while the receiving base station is elevated far above them and sees them all
from roughly the same direction. The rank of H̆ is 1, so this MIMO channel
only provides beamforming gains. Case (c) has a small number of clusters, but
these have well-separated angles that make H̆ diagonal, so the channel has
full rank. Since there are fewer sources of randomness than in Case (a), there
might be significant variations in the singular values. This setup resembles
the MIMO channel illustrated in Figure 3.16, where each singular value is
associated with a single cluster.

The rank of a MIMO channel is fundamentally limited by the aperture
lengths at the transmitter and receiver, along with the sizes and locations
of the multipath clusters. The DFT beams are equally spaced in the spatial
frequency domain from −1/λ to 1/λ. When the ULAs are half-wavelength-
spaced, each beam at the transmitter covers a spatial frequency interval of
length 2

Kλ while each beam at the receiver covers an interval of length 2
Mλ . The

rank is determined by how many such intervals are covered by the multipath
clusters, which can be interpreted as the spatial bandwidth of the channel.

Suppose the transmitter is connected to the receiver through Nt,cl multi-
path clusters visible at the transmitter in non-overlapping angular directions.
We will let the clusters have arbitrary sizes; thus, integrals are required to
obtain the resulting channel covariance matrices. In particular, we let cluster
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n extend from the angle-of-departure φstart
t,n to φend

t,n so that it covers a range
of spatial frequencies of length

Ωt,n =
∣∣sin(φend

t,n )− sin(φstart
t,n )

∣∣
λ

. (5.198)

The total range of spatial frequencies that the multipath clusters cover is∑Nt,cl
n=1 Ωt,n ∈ [0, 2/λ], which represents the channel’s spatial bandwidth from

the transmitter perspective. If the spatial bandwidth is divided equally between
the beamspace dimensions at the transmitter, the number of non-zero columns
in H̆ will be approximately∑Nt,cl

n=1 Ωt,n
2
Kλ

= Kλ

2

Nt,cl∑
n=1

Ωt,n = Dt

Nt,cl∑
n=1

Ωt,n, (5.199)

where Dt = K∆ = Kλ
2 denotes the aperture length of the transmitter. We

divided by 2/(Kλ) since this is the spatial frequency interval represented by
each column. The maximum value in (5.199) is Dt

2
λ = K, which equals the

number of transmit antennas and, thereby, the number of columns of H̆.13

Similarly, suppose the receiver is connected to the transmitter through
Nr,cl multipath clusters visible at the receiver in non-overlapping angular
directions. Cluster n extends from the angle-of-arrival φstart

r,n to φend
r,n so that

it covers a range of spatial frequencies of length

Ωr,n =
∣∣sin(φend

r,n )− sin(φstart
r,n )

∣∣
λ

. (5.200)

The total range of spatial frequencies excited by the multipath clusters is∑Nr,cl
n=1 Ωr,n ∈ [0, 2/λ], which represents the channel’s spatial bandwidth from

the receiver perspective. If the spatial bandwidth is divided equally between
the beamspace dimensions at the receiver, the number of non-zero rows in H̆
will be approximately∑Nr,cl

n=1 Ωr,n
2
Mλ

= Mλ

2

Nr,cl∑
n=1

Ωr,n = Dr

Nr,cl∑
n=1

Ωr,n, (5.201)

where Dr = M∆ = Mλ
2 denotes the aperture length of the receiver.

These principles are illustrated in Figure 5.35 for a setup with Nt,cl =
Nr,cl = 4 visible multipath clusters at the transmitter and receiver. The widths
of the colored intervals at the transmitter and receiver show the ranges of
spatial frequencies Ωt,n and Ωr,n that the respective multipath clusters are
covering, for n = 1, . . . , 4. The same cluster can cover a vastly different spatial
frequency range at the transmitter compared to the receiver, depending on its

13The maximum value is, for example, achieved when there is a single cluster covering all
angles from φstart

t,1 = −π/2 to φend
t,1 = π/2 so that Ωt,1 =

∣∣sin(φend
t,1 ) − sin(φstart

t,1 )
∣∣ /λ = 2/λ.
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Figure 5.35: The rank of a MIMO channel matrix with half-wavelength-spaced ULAs is
approximately determined by (5.202), which depends on the aperture lengths at the transmitter
and receiver, as well as the widths of the spatial frequency ranges Ωt,n and Ωr,n that the
multipath clusters are covering at the transmitter and receiver, respectively.

distance and orientation with regards to each of them. As the channel rank is
the minimum number of non-zero columns and rows, we obtain

rank(H) = rank(H̆) ≈ min

Dt

Nt,cl∑
n=1

Ωt,n, Dr

Nr,cl∑
n=1

Ωr,n

 , (5.202)

which is an approximation because the rank must be integer-valued and the
edges of the clusters might be divided between multiple matrix entries, which
could slightly increase the rank. On the other hand, the rank only specifies
the number of non-zero singular values of the channel matrix but does not
guarantee that they are of comparable size. The latter depends on the relative
strengths of the signals traveling through the respective multipath clusters.

The MIMO rank analysis can be extended to half-wavelength-spaced
UPAs, which can resolve spatial frequencies both horizontally and vertically,
as discussed in Section 4.5.3. Previously in this section, we noticed that a
half-wavelength-spaced ULA with the aperture length D = M λ

2 can achieve
a maximum rank of M = D 2

λ , where 2/λ is the maximum range of spatial
frequencies in one dimension. The UPA has a horizontal aperture length MH

2
λ

that can be used to resolve horizontal spatial frequencies and a vertical aperture
length MV

2
λ that can be used to resolve vertical spatial frequencies. By

decoupling these dimensions, one might expect from the previous analysis that
the maximum channel rank is MHMV = Area · 4

λ2 , where Area = MH
λ
2MV

λ
2

denotes the UPA’s aperture area. However, this is incorrect because only
some combinations of horizontal and vertical frequencies can coexist. The
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possible combinations lie within the circle with diameter 2/λ illustrated in
Figure 4.42, while the incorrect decoupling argument above considered all
combinations in a square with side length 2/λ. The relative area difference
between these geometrical shapes is π(1/λ)2/(2/λ)2 = π/4. Consequently, the
actual maximum MIMO channel rank that the UPA can support is Area · πλ2

when Area m2 is the aperture area. In other words, each segment with area λ2

can add (approximately) π to the channel rank. If two such half-wavelength-
spaced UPAs are placed in a realistic environment, the MIMO channel rank
is determined by how many spatial frequencies are excited by the multipath
clusters; that is, which fractions of the circle with spatial frequencies in
Figure 4.42 are excited. The rank becomes approximately Area ·min(Ωt,Ωr),
where Ωt,Ωr ∈ [0, πλ2 ] denote the total areas of the parts of the circle that
are excited at the transmitter and receiver, respectively. A precise derivation
requires more extensive mathematical notation, so we refer to [75]–[77] for such
details, which can also be used to analyze the MIMO channel rank arbitrarily
shaped antenna arrays.

The beamspace representation for a half-wavelength-spaced 9 × 9 UPA
is illustrated in Figure 5.36. We begin by revisiting the NLOS setup from
Figure 5.28 with four propagation paths having distinct azimuth and elevation
angles. Figure 5.36(a) shows the real part of the wave impinging on the array.
The UPA samples the wave at the marked antenna locations. The resulting
channel can be turned into the beamspace by taking a 2D-DFT of the channel
coefficients, which results in the 2D spatial frequency spectrum shown in
Figure 5.36(c). There are four peaks, which match the number of paths. It
was implicitly assumed in this example that the paths gave rise to plane
waves. However, the beamspace analysis can be applied regardless of the
wavefront. Figure 5.36(b) shows the real part of the impinging wave emitted
from a transmitter at a short distance of 8λ in the broadside direction. There
are large circle-shaped phase variations over the array, which is typical for
spherical waves. When turning this near-field channel into the beamspace,
we obtain the 2D spatial frequency spectrum shown in Figure 5.36(d). The
spectrum contains a range of spatial frequencies centered around zero, while a
plane wave would only contain the zero-valued frequency. Since the 2D-IDFT
recreates the channel using the discrete spatial frequencies shown in the figure,
a spherical wave can be represented as a summation of multiple plane waves.
A formal connection can be made using the Weyl identity [78]. The bottom
line is that any channel matrix can be represented in the beamspace. The
maximum channel rank result holds even in the presence of spherical waves,
which are summations of many plane waves.
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(a) Four plane waves arriving from
(φ1, θ1) = (π/6, π/6), (φ2, θ2) = (π/12,−π/4),
(φ3, θ3) = (−π/4, 0), (φ4, θ4) = (−π/3, π/3).

(b) One spherical wave from a transmitter at a
distance 8λ in the broadside direction.

(c) 2D-DFT of the channel from (a). (d) 2D-DFT of the channel from (b).

Figure 5.36: The wave that impinges on a UPA can have many different shapes. The real parts
of two waves are shown in (a) and (b) for different kinds of propagation channels. The observed
horizontal and vertical spatial frequencies differ for these channels. When the UPA has 9 × 9
half-wavelength-spaced antennas, the spatial frequencies shown in (c) and (d) are observable.
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Example 5.20. How does the wavelength impact the rank of the channel
matrix if the multipath clusters remain the same?

The rank expression in (5.202) for a ULA can be expressed as

min

Dt

λ

Nt,cl∑
n=1

∣∣∣sin(φend
t,n )− sin(φstart

t,n )
∣∣∣ , Dr

λ

Nr,cl∑
n=1

∣∣∣sin(φend
r,n )− sin(φstart

r,n )
∣∣∣
,

(5.203)
which depends on the wavelength λ through the normalized aperture lengths
Dλ,t = Dt

λ and Dλ,r = Dr
λ of the transmitter and receiver, respectively. If we

keep the aperture lengths Dt and Dr constant (i.e., constant array sizes in
meters), the rank is inversely proportional to the wavelength. Hence, we obtain
a larger channel rank as the wavelength shrinks (e.g., from the low-band to
the mmWave band). To achieve this, we need a larger number of antennas
since the antenna spacing λ/2 is also wavelength-dependent, which explains
why the spatial resolution improves so that the same clusters generate more
channel dimensions. If we instead keep the normalized aperture lengths Dλ,t
and Dλ,r fixed, then the rank becomes independent of the wavelength. This
is achieved by using a fixed number of half-wavelength-spaced antennas.

An i.i.d. Rayleigh fading channel matrix obtained using half-wavelength-
spaced ULAs can also be transformed to the beamspace. The entries of H̆ will
remain independent and identically distributed because the multiplications
with the unitary DFT matrices in (5.197) do not change the distribution. This
demonstrates how the multipath components are uniformly distributed over
all angular directions instead of clustered. The maximum diversity order of a
MIMO channel equals the number of distinguishable sources of independent
randomness, which is MK under i.i.d. Rayleigh fading and (approximately)
equal to the number of non-zero entries of H̆ under clustered scattering. In
Figure 5.34, Case (a) can represent i.i.d. Rayleigh fading if all the entries are
identically distributed. In this case, the maximum diversity order is MK = 25.
The channel matrices in Case (b) and Case (c) have 5 non-zero entries; thus,
the maximum diversity order is 5. We need to use transmit diversity in
Case (b) since the sources of randomness are only distinguishable from the
transmitter’s viewpoint. In contrast, it is sufficient to exploit receive diversity
in Case (c), while the transmitter can send the same signal in each DFT
beam direction. The diversity order generally equals the number of (large)
non-zero entries of the beamspace channel matrix. The diversity gain increases
with the number of antennas (with ∆ = λ/2) since the improved spatial
resolution will divide a multipath cluster between multiple matrix entries
in the beamspace representation, thereby creating additional distinguishable
sources of randomness.
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Figure 5.37: The ergodic rate as a function of the SNR with either i.i.d. Rayleigh fading or
correlated fading, where the beamspace representation of the channel matrix only contains a
non-zero block of size 2 × 2 (i.e., the rank is 2). The correlation reduces the multiplexing gain
compared to i.i.d. Rayleigh fading, but a beamforming gain is still achieved.

The capacity with clustered scattering can be evaluated similarly to the
cases with i.i.d. Rayleigh fading. In particular, the ergodic capacity expression
in (5.129) can be applied when the receiver has perfect CSI while the transmit-
ter has no CSI. However, the optimal covariance matrix Rx of the transmitted
signal will not be a scaled identity matrix but will depend on the clusters seen
from the transmitter. For example, in a MISO scenario in which the channel
distribution h ∼ NC(0,Rh) is given in (5.182), it can be shown that the
optimal covariance matrix Rx has the same eigenvectors as Rh and allocates
power between these dimensions based on how large their eigenvalues are. We
refer to [79], [80] for further the precise details. When the transmitter also has
perfect CSI, we can compute the maximum rate for a single channel realization
using Theorem 3.1 (i.e., transmitting in the directions of the right singular
vectors and using the water-filling power allocation) and then compute the
mean value over the fading channel.

Figure 5.37 shows the ergodic capacity achieved with M = K = 4 an-
tennas when the transmitter and receiver have perfect CSI. A channel with
i.i.d. Rayleigh fading is compared with a correlated channel where H̆ contains
a 2× 2 non-zero submatrix, representing multipath clusters that cover half of
the DFT beams. The channel matrix in the correlated scenario has the rank
r = 2 while the rank is r = 4 with i.i.d. Rayleigh fading, which implies that the
largest singular value is generally larger under correlated fading. This results
in a slightly higher capacity at low SNRs, but the benefit is lost at higher
SNRs where the larger multiplexing gain leads to a faster capacity growth
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under i.i.d. Rayleigh fading. The capacity with M = K = 2 and i.i.d. Rayleigh
fading is shown as a reference. It achieves the same multiplexing gain as in
the correlated scenario, but the capacity curve is shifted to the right by 6 dB
since the beamforming gain is 4 times smaller. In general, clustered multipath
propagation has a detrimental impact on the ergodic capacity compared to
i.i.d. fading, but spatial correlation is a naturally occurring characteristic that
must be considered when modeling practical channels.

5.6.3 Fading Channels with Dual-Polarized Antennas

The i.i.d. Rayleigh fading model was derived earlier in this chapter under the
implicit assumption of using single-polarized antenna arrays. That kind of
fading cannot be achieved with dual-polarized antennas because the channel
between a transmit antenna and a receive antenna is generally stronger if
their polarization matches compared to if they have opposite polarizations;
hence, the fading is not identically distributed. The channel model derived in
Section 4.6.3 for LOS MIMO channels with dual-polarized antennas can be
readily generalized for NLOS channels with clustered multipaths. That model
was constructed for a scenario with K/2 dual-polarized transmit antennas and
M/2 dual-polarized receive antennas. The antennas were numbered so that
transmit antennas 1, . . . ,K/2 and receive antennas 1, . . . ,M/2 have matching
polarization, while the same holds for transmit antennas K/2 + 1, . . . ,K and
receive antennas M/2 + 1, . . . ,M .

Suppose there are Ncl multipath clusters between the transmitter and
receiver, of which cluster i is located in the direction (φt,i, θt,i) seen from
the transmitter and in the direction (φr,i, θr,i) seen from the receiver. This
is the same notation as in (5.187). The channel component through each
cluster can be modeled similarly to (4.176) but with additional Rayleigh
fading coefficients that model the random amplitudes and phases. We obtain
the channel matrix

H =
Ncl∑
i=1

[√
1− κci,1,1

√
κci,1,2√

κci,2,1
√

1− κci,2,2

]
⊗
(

aM/2(φr,i, θr,i)aT
K/2(φt,i, θt,i)

)
,

(5.204)
where ci,1,1, ci,1,2, ci,2,1, ci,2,2 ∼ NC(0, βi) are independent Rayleigh fading
coefficients and βi ∈ [0, 1] models the average channel gain of cluster i. The
channel has a limited XPD in the sense that there is leakage between the or-
thogonal polarizations characterized by the parameter κ. The diagonal entries√

1− κci,1,1,
√

1− κci,2,2 characterize the signal propagation that maintains
its polarization, while the off-diagonal entries

√
κci,1,2,

√
κci,2,1 characterize

the leakage between the polarizations. We recall that κ = 0 represents perfect
discrimination, while κ = 0.5 is the worst-case situation. In the LOS scenario
considered in Section 4.6.3, the limited XPD was caused by imperfect isolation
within the transmitter and receiver hardware. The situation is different in
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NLOS scenarios. Each reflection/scattering in a multipath environment can
shift the wave’s polarization, which creates further leakage that is factored
into the parameter κ in the considered model; that is, κ is likely larger in
NLOS setups than in LOS setups.

The primary implication of adding a second polarization is that it provides
extra sources of randomness since the two polarizations fade independently,
even if the XPD creates an additional kind of spatial correlation.14 Hence,
dual polarization can double the channel matrix’s rank in a propagation
environment with few multipath clusters. It can also double the diversity
order (or even quadruple it, thanks to the imperfect XPD). Polarization has
been utilized since the early days of mobile communications [56], [58] to
enhance performance and reliability.

We have only considered single- and dual-polarized antennas so far. As
wireless signals propagate in three dimensions, up to three mutually orthogonal
linear polarization dimensions exist, which represent the x, y, and z axes in a
coordinate system. We can only utilize two of these in LOS communications
because the polarization must be perpendicular to the direction the waves
propagate to the receiver. However, NLOS channels allow waves to follow
widely different paths from the transmitter to the receiver. The signal can leave
the transmitter in any direction and reach the receiver from any direction,
and objects in the environment might allow a signal with any polarization to
(partially) maintain that polarization when reaching the receiver. It is possible
to build tri-polarized antennas, for example, with one antenna pointing along
each axis in the coordinate system. The channel measurements reported in
[82], [83] confirm the viability of building tri-polarized MIMO communication
systems. However, the improvement in data rate is slight compared to having
optimally rotated dual-polarized antennas. Hence, the main benefit is that
one can keep a consistent rate regardless of how the user device is rotated,
while the challenge is to integrate tri-polarized antennas into the form factor
of a base station and device.

14Many measurements show that there exists a slight correlation between the fading realiza-
tions ci,1,1, ci,1,2, ci,2,1, ci,2,2, which is not captured by the model used in this chapter. There
can also exist imbalances between the variances of the two polarization dimensions since the
multipath distributions generally differ horizontally and vertically. The latter effect can be
reduced by using slanted polarization [56], [57]. We refer to [81] for further details and ways to
enrich the MIMO channel model to include such characteristics.
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5.7 Exercises

Exercise 5.1. We used the central limit theorem to motivate that a SISO system has
the channel response h ∼ NC(0, β) in a rich multipath environment. In this exercise, we
will revisit the technical conditions that underpin that h =

∑L

i=1 αie
−jψi → NC(0, β)

when the number of paths L is very large. We assume that the path attenuations αi are
independent and identically distributed, the phases ψi ∼ U [−π, π) are independent, and
β > 0 is a constant.

(a) Suppose the path gains satisfy E{α2
i } = β/L2, for i = 1, . . . , L. What is the

variance of h when L → ∞? Is h complex Gaussian distributed?
(b) Suppose the path gains satisfy E{α2

i } = β/L , for i = 1, . . . , L. What is the
variance of h when L → ∞? Is h complex Gaussian distributed?

(c) Suppose the path gains satisfy E{α2
i } = β, for i = 1, . . . , L. What is the variance

of h when L → ∞? Is h complex Gaussian distributed?

Exercise 5.2. The spatial correlation expression in (5.24) is derived for isotropic scatter-
ing, for which the multipath components are uniformly distributed over the unit sphere
as stated in (5.17). When other distributions are used, one can compute the spatial
correlation differently. One such example is the Clarke model, where the joint PDF of
the azimuth and elevation angles is

fφ,θ(φ, θ) = 1
2π2 , −π ≤ φ < π, −π

2 ≤ θ ≤ π

2 . (5.205)

(a) For a ULA located along the z-axis with the channel response in (5.15), obtain
correlation E{hmh∗

n} between the channel realizations at antenna m and n.
(b) Express the correlation in (a) using the zeroth-order Bessel function of the first

kind, defined as

J0(x) = 1
π

∫ π/2

−π/2
e−jx sin θ∂θ. (5.206)

Exercise 5.3. Consider the setup in Figure 5.7 for which the SISO channel coefficient is
given in (5.29) as a function of time: h(t) = 2α cos(2π υt

λ
). What is the coherence time if

we define it as the time it takes to move from a peak to losing half the received power?

Exercise 5.4. Consider the SISO channel in (5.35) with slow fading, where y[l] =
h · x[l] + n[l]. Suppose the channel coefficient h is a realization of a random variable that
is zero with probability p and one with probability 1 − p.

(a) What is the outage probability of this channel? Express the answer as a function
of the desired rate R.

(b) Suppose we instead have two receive antennas that observe independent channel
realizations, each with the mentioned distribution. What is the outage probability
for the desired rate R?
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Exercise 5.5. Consider the SISO channel in (5.35) with slow fading, where y[l] =
h · x[l] + n[l]. The channel coefficient has the uniform distribution h ∼ U [−1, 1].

(a) Derive the outage probability of this channel. Express the answer as a function of
the desired rate R ≥ 0.

(b) Suppose we haveM receive antennas and these observe the same channel realization
h. What is the outage probability in this case?

(c) Derive expressions for the ϵ-outage capacities for the setups in (a) and (b). Sketch
a graph of the expressions for M = 1, M = 4, and M = 10 with ϵ on the horizontal
axis and the ϵ-outage capacity on the vertical axis for q/N0 = 1.

Exercise 5.6. Consider the SISO channel in (5.35) with slow fading, where y[l] =
h · x[l] + n[l]. Compute the outage probability and ϵ-outage capacity for the following
fading distributions.

(a) The channel gain |h|2 has the PDF

f|h|2 (x) =
{

2(1 − x), 0 ≤ x ≤ 1,
0, otherwise.

(5.207)

(b) The channel gain |h|2 has the PDF

f|h|2 (x) =
{ 3

√
x

2 , 0 ≤ x ≤ 1,
0, otherwise.

(5.208)

Exercise 5.7. Consider a SIMO system with M antennas.
(a) The receiver has a hardware limitation that only allows it to use one of its antennas

at a time, known as antenna selection. Which antenna should the receiver select
to maximize the rate for given realizations of h1, . . . , hM? Provide an expression
for the maximum rate.

(b) Suppose the channel is subject to slow i.i.d. Rayleigh fading and only the receiver
knows the channel realization. Formulate the outage probability when communi-
cating at a given rate R. Hint: Use the identity

Pr
{

max{|h1|2, . . . , |hM |2} < x
}

= Pr
{

|h1|2 < x, . . . , |hM |2 < x
}
.

(c) Compare the outage probability of the antenna selection scheme with that of
MRC given in (5.52). Which one is larger?

(d) Derive the high-SNR slope of the outage probability curve when using antenna
selection. Compare the results with the high-SNR slope achieved with MRC. Hint:
Use the approximation e−x ≈ 1 − x, which is tight when x is small.

Exercise 5.8. The diversity order of a channel can be defined as

lim
SNR→∞

− ln(Pout(R))
ln(SNR) , (5.209)

where SNR denotes the SNR and the outage probability Pout(R) is a function of the
SNR for any fixed value of R. Use the exact expression of the outage probability in
(5.53) for a SIMO channel and verify that the diversity order is M according to this
definition. Hint: Use the identity ex =

∑∞
m=0

xm

m! and L’Hôpital’s rule.
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Exercise 5.9. Consider a MISO system with M = 2 antennas and slow fading, where
the receiver knows the channel but not the transmitter. The channel coefficients are
distributed as h1, h2 ∼ NC(0, β) but are correlated in the sense that h1 = h∗

2 for every
channel realization. Use the Alamouti code for transmission and compute the outage
probability, both the exact value and an upper bound that exposes the diversity order.
Compare the diversity order with what is achieved when h1 and h2 are independent.
Hint: The expression in (5.73) holds for any channel distribution, so the solution can
start from that point.

Exercise 5.10. One popular definition of channel hardening is that the fading SIMO/MISO
channel vector h ∈ CM must satisfy

∥h∥2

E{∥h∥2} → 1 as M → ∞. (5.210)

This means that all realizations of ∥h∥2 will be close to the mean value E{∥h∥2} when
there are many antennas. The convergence in (5.210) can be proved in a mean-squared
sense by computing the variance of ∥h∥2

E{∥h∥2} and show that it goes to zero as M → ∞.
Follow this approach to prove that an i.i.d. Rayleigh fading channel provides channel
hardening.

Exercise 5.11. Consider a slow-fading SISO channel with a repetition scheme where the
same signal x ∼ NC(0, q) is transmitted over L time slots.

(a) Compute the conditional capacity for a given realization of the channel coefficient
h.

(b) Compare the capacity obtained in (a) with a conventional slow-fading SISO
channel without a repetition scheme. What value of L maximizes the capacity?
Hint: Use the inequality x

x+1 < ln(1 + x), for x > 0.
(c) Obtain a low-SNR approximation of the capacity in (a). How does it depend on

L?

Exercise 5.12. Consider MISO and SIMO channels with slow-fading and M transmit
and receive antennas, respectively, under i.i.d. Rayleigh fading. Only the receiver knows
the channel realization. Due to hardware limitations, we can only adjust the phase of
the precoding/combining vectors, so MRT/MRC is not possible. This is called equal
gain beamforming.

(a) Consider the MISO case and show that the full transmit diversity order can be
achieved using a repetition scheme where the same signal is repeated using M
different orthogonal beams.

(b) Consider the SIMO case and propose a way to achieve the full receive diversity
order.

Exercise 5.13. Consider a MISO channel with slow fading and i.i.d. Rayleigh fading.
There are M = 2 transmit antennas and the Alamouti code is used.

(a) Use the low-SNR approximation of the conditional capacity to compute a low-SNR
approximation of the outage probability expression.

(b) Compare the result in (a) with the low-SNR approximation of the outage proba-
bility for the corresponding SISO channel (without the Alamouti code). Which
one is better in terms of outage performance at low SNR? Hint: Use ex > x+ 1,
for x > 0.
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Exercise 5.14. Consider a SIMO system with M antennas. The symbol power is q and
the noise power spectral density is N0.

(a) Suppose the channel vector is h = [1, . . . , 1]T. What is the capacity of the channel?
What is performance gain compared to a corresponding SISO system with h = 1?
Exemplify the performance gain at low and high SNRs. What is this kind of
performance gain called?

(b) Suppose the channel vector h is instead subject to i.i.d. Rayleigh fading, so that
h ∼ NC(0, IM ). Consider a fast-fading scenario where the receiver knows the
channel but not the transmitter. What is the capacity of the channel? What are
the performance gains compared to a corresponding fast-fading SISO channel with
h ∼ NC(0, 1)?

(c) Compare the capacities in (a) and (b). Which one is the largest? What happens
with the performance difference as M → ∞? Hint: Use the channel hardening
property in (5.210).

Exercise 5.15. Consider the SISO channel with fast fading in (5.103), where the received
signal at the time instance l is y[l] = h[l] · x[l] + n[l]. The channel coefficient h[l] is a
binary random number taking the realization 1 with probability p and 0 with probability
1 − p. A new independent realization of h[l] is drawn in each time instance l and the
receiver knows the realization.

(a) What is the ergodic capacity of this SISO channel?
(b) Consider a fast-fading SIMO channel with M antennas and the channel vector

h[l] = [h[l], . . . , h[l]]T. This vector takes a new independent realization at every
time instance, but all the entries in the vector are always mutually identical. What
is the ergodic capacity of this channel?

(c) Consider a fast-fading SIMO channel with M antennas. The channel coefficients
are independent and identically distributed according to the distribution specified
above. What is the ergodic capacity in this case? Hint: Use that ∥h∥2 is the
summation of the independent Bernoulli random variables |hm|2 and write the
expectation using the binomial sum formula.

Exercise 5.16. Consider an i.i.d. Rayleigh fading MIMO channel with fast fading. The
received signal at the time instance l is y[l] = H[l]x[l] + n[l], where the noise is colored
with the distribution n[l] ∼ NC(0, N0C) and C is a non-singular matrix. The channel
takes an independent realization at each time instance, and only the receiver knows the
realization. Determine the ergodic capacity. Hint: Use whitening.

Exercise 5.17. The fast-fading MIMO capacity is expressed in (5.132) in terms of the
non-zero eigenvalues of HHH. Use a high-SNR approximation to express the ergodic
capacity in terms of mean values involving those eigenvalues.
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Exercise 5.18. Consider an i.i.d. Rayleigh fading MIMO channel with block fading. We
must estimate the channel coefficients in each block to perform spatial multiplexing.
Suppose Lc is the length of the coherence block and that M,K are larger than Lc. The
pilot length Lp is a variable that must be smaller than Lc.

(a) Which multiplexing gain can we achieve for a given value of Lp? What is the
pre-log factor in the ergodic capacity expression, which includes the multiplexing
gain and the penalty from the pilot transmission?

(b) Which value of Lp maximizes the pre-log factor in (a)? What is the multiplexing
gain in this case?

Exercise 5.19. Consider a MISO channel with Ncl multipath clusters, which has the
channel vector

h =
Ncl∑
i=1

cia(φi, θi), (5.211)

where c1, . . . , cNcl are i.i.d. NC(0, β/Ncl) random variables. The transmitter has a ULA
deployed along the y-axis with ∆ = λ/2 antenna spacing. The angles (φi, θi) are
deterministic and different for every i (i.e., a(φi, θi) is a different vector for every i).

(a) Determine if this channel provides channel hardening by following the approach
from Exercise 5.10 for a fixed number Ncl < ∞ of multipath clusters. Hint: Use
the trace property given in (2.52).

(b) Determine if this channel provides channel hardening when Ncl → ∞. Hint: It
holds that Var{∥h∥2} = tr(R2) if h ∼ NC(0,R) for any covariance matrix R.
Utilize beamwidth-like expressions to prove that 1

M
|aH(φi, θi)a(φk, θk)| → 0 as

M → ∞ when k and i are different.

Exercise 5.20. Consider two half-wavelength-spaced ULAs with 4 antennas deployed
to be parallel. What is the minimum number of multipath clusters needed to achieve a
full-rank channel matrix if all the paths in a cluster have the same angle? Suggest angle
values for these clusters to achieve full rank. Hint: Use the DFT matrix.

Exercise 5.21. A half-wavelength-spaced ULA with M antennas is deployed along the
y-axis. Consider the one-ring model from Example 5.17 with ∆θ = 0, so that the
multipath components are uniformly distributed in the azimuth plane in an interval of
width 2∆φ > 0.

(a) Generalize this one-ring model to have Ncl non-overlapping clusters in the azimuth
plane. Cluster i is centered around the azimuth angle φi, for i = 1, . . . , Ncl, and
has the average channel gain βi. Hence, the angular density function for cluster i
is

fi(φ) =

{
1

2∆φ , if |φ− φi| ≤ ∆φ,

0, otherwise.
(5.212)

Derive an expression for the spatial correlation matrix Rh.
(b) Use the width of the clusters to approximate the rank of the matrix Rh.
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Exercise 5.22. The Kronecker model is a classic model for spatially correlated Rayleigh
fading MIMO channels. The channel matrix is then given as

H = R1/2
r W

(
R1/2

t
)T
, (5.213)

where the entries of W ∈ CM×K are i.i.d. NC(0, β) random variables. The normalized
spatial correlation matrices Rr and Rt have unit diagonal entries and characterize the
spatial correlation among the channel realization at the receive and transmit antennas,
respectively. Let the eigendecomposition of Rr and Rt be denoted as Rr = UrDrUH

r
and Rt = UtDtUH

t , respectively. The eigenvalues λr,1, . . . , λr,M and λt,1, . . . , λt,K are
located along the diagonals of Dr and Dt, respectively, in descending order.

(a) Compute H̆ = UH
r HU∗

t and simplify the expression to show that its entries are
independently distributed. This is a beamspace matrix similar to H̆ = FH

MHF∗
K

in (5.197).
(b) How do the variances vary between the entries of H̆? Can any beamspace matrix

be expressed using the Kronecker model?

Exercise 5.23. Consider an antenna array in an isotropic rich scattering propagation
environment where the multipath components cover all angular dimensions uniformly.

(a) Consider a 2-antenna ULA with ∆ = λ/2. What is the spatial correlation matrix?
Hint: Use the correlation expression in (5.24).

(b) Consider a 2 × 2 UPA with ∆ = λ/2 vertical and horizontal spacing. What is the
spatial correlation matrix? Hint: The coordinate system can be rotated arbitrarily,
so the expression in (5.23) can be used when considering any pair of antennas.

(c) For which kinds of arrays will isotropic rich scattering imply i.i.d. fading?



Chapter 6

Capacity of Multi-User MIMO Channels

In this chapter, we will characterize the communication performance over
multi-user MIMO channels, also known as point-to-multipoint and multipoint-
to-point MIMO channels. We begin by explaining why the capacity gains
achieved by point-to-point MIMO are limited in many practical scenarios, as
a motivation for identifying an alternative way to use multiple antennas. The
focus will then be on serving multiple users connecting to the same wireless
system, which raises the question of whether the users should be assigned
orthogonal or non-orthogonal transmission resources. To answer this, we will
extend the capacity concept to the multi-user setting and discover how the
use of multiple antennas radically changes the situation. We will adapt the
precoding, combining, and power allocation schemes from previous chapters
to maximize performance in the multi-user context. The tradeoff between
non-linear and linear signal processing methods will finally be explored.

6.1 A Practical Issue with Point-to-Point MIMO Systems

In the previous two chapters, we have derived the capacity of point-to-point
MIMO channels in both LOS and NLOS scenarios. The largest capacity im-
provement from having multiple antennas is achieved through the multiplexing
gain. If we have M receive antennas and K transmit antennas, the capacity
ideally becomes min(M,K) times larger than in a corresponding SISO channel.
This can lead to a huge performance improvement if the channel satisfies two
properties:

1. The channel matrix H has min(M,K) singular values of similar size;

2. The SNR is high.

Unfortunately, these properties seldom appear at the same time in practice.
When the SNR is large, it is often because the channel contains one dominant
propagation path (e.g., a LOS path) while the remaining paths are substantially
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weaker. Hence, H has only one or two large singular values (depending on
whether single-polarized or dual-polarized antennas are considered), while
the remaining ones are much smaller and potentially zero-valued regardless
of how many antennas are deployed. In NLOS scenarios with isotropic rich
scattering, the channel matrix will instead have full rank, and the singular
value variations are quite small. However, the SNR is relatively low since
a large fraction of the transmitted power disappears due to the multipath
propagation; thus, only beamforming gains might be practically useful. Hence,
LOS and NLOS propagation typically provide the opposite conditions of what
is preferable from a theoretical perspective. At low SNRs, we would prefer a
low-rank channel to make the most out of the beamforming gain, while we
want a high-rank channel with many similar singular values to make the most
out of the multiplexing gain at high SNRs.

Figure 6.1 exemplifies these issues by considering a point-to-point MIMO
channel with K = 4 transmit antennas and M = 4 receive antennas. We
compare an NLOS case with i.i.d. Rayleigh fading, where the ergodic capacity
is computed using (5.131), and a single-polarized LOS case where the capacity
is computed according to (4.96). The capacity of a non-fading SISO channel
is shown as a reference. The use of multiple antennas provides the most
significant capacity gains compared to the SISO case when considering NLOS
channels with high SNR and LOS channels with low SNR. However, these
events are unlikely to happen in practice. The figure indicates two more likely
events: LOS with high SNR and NLOS with low SNR. In both cases, there are
clear gains compared to the SISO channel, but they are still modest compared
to what could be achieved in those SNR ranges.

In summary, an ideal point-to-point MIMO system operates at high SNR
and achieves a multiplexing gain. However, in practice, we are likely to mainly
achieve beamforming (and diversity) gains either because the SNR is low or the
channel has a low rank. Reality can be slightly better than was illustrated in
Figure 6.1 because LOS channels can contain a few strong reflected paths useful
for spatial multiplexing, while NLOS channels feature clustered multipath
propagation where a few directions provide better SNRs. Yet, the nature of
signal propagation seems to hinder the point-to-point MIMO from reaching
its “full capacity”, except in short-range NLOS scenarios.

Another practical issue with having multiple antennas at both the trans-
mitter and receiver is that one of them is usually a handheld user device. The
number of antennas that can fit into such a device is limited for aesthetic
reasons, particularly in the low-band and mid-band spectrum. This obser-
vation should not be interpreted as beamforming gains being pointless; on
the contrary, practical cellular networks are designed and deployed to make
good use of them. Recall from Section 3.1 that point-to-point SISO systems
can either be power-limited (i.e., operate at low SNR) or bandwidth-limited
(i.e., operate at high SNR). The capacity of a power-limited SISO system can
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NLOS with low SNR
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LOS with high SNR

Figure 6.1: A comparison of the capacities of different MIMO channels with M = K = 4
antennas. There is i.i.d. Rayleigh fading in the NLOS case, while there is a rank-one channel in
the LOS case. Since practical channels with high SNRs are often LOS channels, while NLOS
channels experience low SNRs, the large potential capacity gains of point-to-point MIMO
channels over SISO channels are hard to achieve in practice.

be greatly improved by adding antennas to achieve a beamforming gain that
increases the SNR. This is practically relevant in systems operating over large
distances (i.e., with a small channel gain per antenna) and/or using large
bandwidths (e.g., in the high-band spectrum). Beamforming is probably a
prerequisite for systems operating in mmWave and THz bands because we
need similar aperture lengths as in the lower bands to achieve similar SNRs,
which calls for using antenna arrays. However, beamforming gains have a
limited impact on the bandwidth-limited SISO systems’ capacity; thus, adding
antenna arrays to such systems might only be worthwhile if we can achieve
multiplexing gains.

An early indication of how to achieve multiplexing gains also in LOS
scenarios was provided in Figure 4.28, where a ULA transmits to a receiver
equipped with distributed antennas. Strictly speaking, this is not a point-to-
point MIMO system but a point-to-multipoint MIMO system because the
receive antennas were located at multiple geographically distributed points.
While a user device will only exist at one point, deploying base stations at
different points and letting them cooperate to serve a user is practically viable.
This is called coordinated multipoint transmission [52] or Cell-free MIMO [2].
We refer to those references for further details since this chapter considers a
different scenario: a base station at one point communicates with multiple
user devices, each located at a geographically different point. This is known
as multi-user MIMO communications.
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6.2 Capacity Definition in Uplink and Downlink

In the rest of this chapter, we consider a setup where a base station deployed
at a fixed location serves K user devices. This could represent an entire
communication system or a single cell in a larger cellular network with many
base stations that serve different geographical regions (cells). The users can
move around in the coverage area; thus, the base station must adapt its
transmissions to the current set of users. There are two relevant directions of
communication. The transmission from the base station to the user devices
is called the downlink, inspired by the fact that base stations are typically
deployed at elevated locations and transmit down toward the users. Similarly,
the transmission from the user devices to the base station is called the uplink.
These communication directions are also known as the forward link and reverse
link, respectively, especially in contexts where the down/up analogy is not
applicable (e.g., when a ground-based base station serves flying objects). In
information theory, the downlink of a multi-user system is known as the
broadcast channel, while the uplink is called the multiple access channel [42].
The downlink and uplink are illustrated in Figure 6.2. The base station is
shown as equipped with an antenna array capable of directing beams toward
each user device, a feature we will explore later in this chapter. If there are
NLOS channels to the users, the radiated signals will not look like angular
beams, as discussed in Section 5.6. The user devices radiate signals (almost)
isotropically, but only the parts directed toward the base station are indicated.
Both the downlink and uplink will be analyzed in this chapter.

The downlink is a point-to-multipoint system where we transmit from one
point (the base station location) to multiple points (the K user locations). It
resembles the point-to-multipoint example in Figure 4.28, where a transmitter
communicated with a receiver equipped with distributed antennas. However,
two fundamental properties make the downlink setup different from an op-
erational perspective. Firstly, each user only has access to its own received
signal and not those at antennas belonging to other user devices. Secondly,
the users want to access different data and are not interested in the data
intended for others. Hence, each user measures its performance in terms of its
individual channel capacity. In a system with K users, there are K different
capacities to consider. This makes the system design more complicated and
we will develop a theory in this chapter to manage it.

Let Rk bit/s be the variable denoting an achievable data rate of user k.
From previous chapters, we know how to characterize the user’s capacity when
the user is alone in the system; for example, Theorem 3.1 gives the capacity
when the base station and user operate as a point-to-point MIMO system.
We will denote that capacity value by Csu

k bit/s, where su indicates that this
is the single-user capacity. Hence, we know that the range of achievable data
rates for user k is

0 ≤ Rk ≤ Csu
k . (6.1)
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Base station

(a) Downlink (or forward link).

User 1

User 2
User k

User K

(b) Uplink (or reverse link).

Figure 6.2: In a cellular network, a fixed-location base station serves mobile user devices in a
given coverage area called a cell. It can transmit beams toward the users in the downlink and
receive signals from the users in the uplink, either simultaneously or sequentially.

It is usually impossible for two users to achieve their single-user capacities
simultaneously because they share transmission resources, namely the time,
frequency, transmit power, and spatial dimensions. Hence, a tradeoff exists
between the performance different users can achieve, which must be modeled
and dealt with in the system design. We will characterize this tradeoff in
different scenarios but begin by describing the framework that can quantify
it: the rate region. This is a set R ⊂ RK containing all the combinations of
rates (R1, . . . , RK) that are simultaneously achievable in a given system (i.e.,
for the given channel conditions and transmission resources).

Figure 6.3 illustrates a rate region for a setup with K = 2 users, where
the yellow-shaded region shows all the combinations/tuples of rates (R1, R2)
simultaneously achievable. This includes the single-user capacity points (Csu

1 , 0)
and (0, Csu

2 ). It also includes many different tradeoffs between these points,
where one user reduces its capacity to allow the other user to increase its
capacity. If a point (R1, R2) is inside the region, then any other point (R′

1, R
′
2)

that satisfies 0 ≤ R′
1 ≤ R1 and 0 ≤ R′

2 ≤ R2 is also inside the region. The
intuition is that we can always purposely reduce the users’ data rates and
still obtain an achievable system operation. However, the interesting question
is: how can we simultaneously make the rates as large as possible? The points
on the Pareto boundary, which is the curved portion of the outer boundary,
are of particular interest because these points are such that the rate cannot
be improved for any user without deteriorating the rate for at least one other
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Figure 6.3: Example of a rate region (shaded) for K = 2 users containing all the rate points
(R1, R2) that are simultaneously achievable in a multi-user system. The points on the Pareto
boundary are the ones of practical interest. The points that give maximum sum capacity and
max-min fairness (i.e., the minimum rate among the users is maximized) are indicated.

user. This stands in contrast to the points in the interior of the rate region,
where we can improve the rates for some users without reducing the rates of
other users. The Pareto boundary is formally defined as follows.

Definition 6.1. The Pareto boundary ∂R of the K-dimensional rate region
R consists of all points (R1, . . . , RK) ∈ R for which there does not exist any
(R′

1, . . . , R
′
K) ∈ R \ {(R1, . . . , RK)} with R′

k ≥ Rk for k = 1, . . . ,K.

Since there are K user rates, but we can only operate the system in one
way, there is no objectively optimal way of operating a multi-user system. The
Pareto boundary is the closest characterization of optimality that we can
obtain because any point (R1, . . . , RK) ∈ R that is not on the Pareto boundary
is suboptimal in the sense that there exist other rate points (R′

1, . . . , R
′
K) ∈ ∂R

that are better or at least as good for every user. However, there are generally
infinitely many points on the Pareto boundary. Hence, when designing the
system, we need to make a subjective tradeoff between the rates achieved by
the different users. Each point on the Pareto boundary represents one Pareto
optimal tradeoff between the K user rates, but they are mutually unordered.

To address this issue stringently, the system designer can select a utility
function u(R1, . . . , RK) that takes any rate point (R1, . . . , RK) and provides
a real scalar number representing the preference of that point; a larger value
represents larger preference. Since a larger rate should be desirable for the
system, the function should be increasing or non-decreasing with respect to all
the rates. The choice of function will impose a subjective ordering of the points
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in the rate region, leading to that we can now identify an operating point as
the optimum with respect to the selected utility function. The corresponding
optimization problem can be stated as

maximize
(R1,...,RK)∈R

u(R1, . . . , RK). (6.2)

This is called a resource allocation problem since the goal is determining
how the transmission resources (i.e., the time, frequency, power, and spatial
resources) are allocated to the K users. Depending on the utility and scenario,
there might be one or multiple solutions to (6.2). We will exemplify two ways
of selecting the utility function based on very different design principles.

6.2.1 Max-Min Fairness

The first example focuses on delivering equal rates to all users and making
that common rate value as large as possible. This utility function can be
defined as

u(R1, . . . , RK) = min
k∈{1,...,K}

Rk, (6.3)

where the preference value is the lowest rate among all the users. This is an
increasing function of all the rates, but it is not strictly increasing because
only improving the lowest rate will increase the function value. Hence, it
can also be called a non-decreasing function of the individual users’ rates.
Substituting this utility into (6.2) results in the max-min fairness problem

maximize
(R1,...,RK)∈R

min
k∈{1,...,K}

Rk. (6.4)

By solving this problem, we will identify a point (R1, . . . , RK) ∈ R that
satisfies R1 = R2 = . . . = RK since the utility gives no incentive to assign a
larger rate to any user than to the other ones.1 This condition is the equation
of a line that passes through the origin and has the slope +1 in all dimensions.
When illustrated in two dimensions, as in Figure 6.4, this line has a 45◦ angle
to both axes. Solving the optimization problem in (6.4) entails identifying
the point on this line that provides the largest rate values (i.e., is furthest
from the origin) but belongs to the rate region. Hence, the optimum is the
intersection point between the line and the Pareto boundary, as illustrated in
Figure 6.4. The optimal rate is denoted by Rmmf in the figure and satisfies
R1 = R2 = Rmmf and (Rmmf, Rmmf) ∈ ∂R. Hence, it is relatively easy to
identify the optimum by searching along the given line. The practical challenge
is that it can be computationally complex to compute the region and to find

1There exist special cases where there are multiple solutions to the max-min fairness problem.
All points provide the same max-min rate value, but some points provide higher rates for a
subset of the users. This happens when the Pareto boundary only constitutes a subset of the
outer boundary because some segments of the outer boundary are parallel to some of the axes.
An example of this is shown later in Figure 6.8.
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Figure 6.4: Example of a rate region for K = 2 users containing all the rate points (R1, R2)
that are simultaneously achievable. If the max-min utility optimization in (6.4) is used to find
the preferred operating point, the optimum (marked by a red star) is the intersection between
the Pareto boundary and a line through the origin with a slope of +1. At the optimum, the
users will have equal rates, denoted by Rmmf.

how the transmission resources should be allocated to achieve a certain point
in the region. Several detailed examples of how to characterize rate regions
will be provided later in this chapter.

The max-min utility results in the egalitarian solution to resource alloca-
tion, which builds on the principle that all users have equal rights, in this
case referring to the right to equal communication performance. When the
users have widely different channel qualities (i.e., widely different single-user
capacities), users with weak channel gains will achieve a larger fraction of their
single-user capacities than users with strong channel gains. This principle can
be observed in Figure 6.4, where user 1 has a stronger channel than user 2 but
gets the same rate Rmmf. One can argue whether that is a fair decision, but
it reinforces the point that resource allocation decisions are always subjective.

6.2.2 Maximum Sum Rate

The max-min fairness problem focuses on achieving short-term fairness by
allocating the transmission resources to give the users equal rates at every
time instance, for the current set of active users and their current channel
conditions. This can lead to the undesired side-effect that adding a single user
with weak channel conditions to the system will throttle the performance of
all other users. An alternative approach is to assume that the users will move
around in the same coverage area over time and thereby switch between being
the one with a strong channel gain and the one with a weak channel gain.
To achieve long-term fairness, it is preferable to transmit as many bits per
second as possible at every time instance, irrespective of how the sum rate is
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currently divided between the users. On average, as the users move around in
the cell, they will be allocated an equal share of the long-term average rate.

Based on this logic, we should maximize the sum of the users’ rates,
represented by the utility function

u(R1, . . . , RK) =
K∑
k=1

Rk. (6.5)

This is a strictly increasing function of all the user rates. Substituting this
utility into (6.2) results in the sum-rate maximization problem

maximize
(R1,...,RK)∈R

K∑
k=1

Rk. (6.6)

By solving this problem, we will identify a point (R1, . . . , RK) ∈ R that
satisfies R1 +R2 + . . .+RK = Rsr for the largest possible sum-rate value Rsr.
Using linear algebra terminology, this condition is the equation of a hyperplane
of dimension K − 1. When illustrated for K = 2 users, as in Figure 6.5, it
becomes the equation R2 = Rsr −R1 of a line with the slope −1. It intersects
the two axes at (Rsr, 0) and (0, Rsr), and the line has an angle 45◦ to both
axes. From the geometric perspective, the challenge in sum-rate maximization
is to find the value Rsr so that the line touches the Pareto boundary without
entering the region’s interior. The intersection point(s) are the sum-rate
maximizing solution(s) to the resource allocation problem. Finding such a
point is relatively easy in two dimensions, but as K increases, it entails
moving around a (K − 1)-dimensional hyperplane to find when it intersects a
K-dimensional rate region; this can be as computationally complicated as it
sounds. Hence, sum-rate maximization is generally a computationally complex
problem to solve, but there exists a wealth of algorithms [84], [85].

The sum-rate utility results in the utilitarian solution to resource allocation,
which builds on the principle that an efficient system produces as much value
(or goods) as possible using the given resources, in this case, measured in
bits transferred per second. The allocation of the value between the users is
not part of the utility function. Hence, when the users have widely different
channel qualities (i.e., widely different single-user capacities), users with strong
channels will achieve larger rates than users with weak channels. This principle
is illustrated in Figure 6.5, where user 1 has a stronger channel gain than
user 2. As noted earlier, the short-term differences in rates will average out if
the users move around the same coverage area in the same way.2

2In practice, the users of a communication system will likely move around in the coverage
area according to different distributions and spend a large fraction of time in their respective
homes and workplaces. Moreover, different data services might be of importance at different
locations. In summary, selecting an appropriate utility function can be very challenging. One
possible solution is to consider the weighted sum-rate u(R1, . . . , RK) =

∑K

k=1 ωkRk, where the
weights ωk ≥ 0 are tuned depending on the users’ locations, requested data service, and recent
rates to maximize the users’ perceived quality-of-service [86], [87].
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Figure 6.5: Example of a rate region for K = 2 users containing all the rate points (R1, R2)
that are simultaneously achievable. If the sum-rate optimization in (6.6) is used to find the
preferred operating point, the optimum (marked by a red square) is the intersection between
the Pareto boundary and a line with a slope of −1 slope. All the points on this line provide
R1 +R2 = Rsr but only one point (R1,sr, R2,sr) ∈ ∂R can be achieved by the system.
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6.3 Uplink Communications

We will now consider different ways to operate the uplink of a multi-user
system in terms of different resource allocation solutions and the number of
antennas at the base station. Since many different rate expressions will be
presented and compared, we define the function

C(x) = B log2 (1 + x) . (6.7)

This is the capacity of a discrete memoryless channel with bandwidth B and
SNR x, and we recall from Chapter 3 that the capacity has this form in SISO,
SIMO, and MISO scenarios. We will use this concise notation to explore how
different uplink solutions provide different rate values C(x) that differ in the
effective SNR x that is attained. We will compare three types of operation:
orthogonal and non-orthogonal multiple access, and multi-user MIMO.

6.3.1 Orthogonal Multiple Access

We begin by considering the classical setup where a single-antenna base
station receives signals from K single-antenna user devices that share a
communication channel with bandwidth BHz. The channel gain of user k is
denoted by βk ∈ [0, 1], for k = 1, . . . ,K. It then follows from (2.146) that the
single-user capacity of user k is

Csu
k = C

(
Pβk
BN0

)
= B log2

(
1 + Pβk

BN0

)
bit/s, (6.8)

where P is the maximum transmit power of the user. The transmission
resources involved in this multi-user system are time, frequency, and power.
Each user has a separate power amplifier and maximum transmit power
P ; thus, the resources that can be divided between the users are time and
frequency. In this section, we consider orthogonal multiple access (OMA),
where the users are assigned orthogonal time-frequency resources.

We begin by considering frequency-division multiple access (FDMA), which
is an OMA scheme where the users are assigned non-overlapping fractions of
the bandwidth B. We let ξk ∈ [0, 1] denote the bandwidth fraction allocated to
user k, for k = 1, . . . ,K. These fractions can be selected arbitrarily under the
constraint ξ1 + ξ2 + . . .+ ξK ≤ 1 so that each bandwidth portion is assigned
to at most one user. All users transmit continuously over their assigned bands;
thus, user k experiences a point-to-point system with bandwidth ξkB. By
replacing B with ξkB in (6.8), the data rate of user k becomes

Rk(ξk) = ξkC

(
Pβk
ξkBN0

)
= ξkB log2

(
1 + Pβk

ξkBN0

)
bit/s, (6.9)

where the notation Rk(ξk) emphasizes that the rate is a function of the fraction
of the total bandwidth assigned to the user. It can be shown (by computing the
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first-order derivative) that Rk(ξk) is an increasing function of ξk, which agrees
with the intuition that using as much bandwidth as possible is preferable. It is
crucial to notice that only the pre-log factor in (6.9) increases with ξk, while
the SNR Pβk

ξkBN0
decreases with ξk. This highlights that we can increase the

SNR in the communication by concentrating the transmit power in a narrower
frequency band, where there is less noise.

Based on the rate expression in (6.9), we can define the rate region as

R =
{(
R1(ξ1), . . . , RK(ξK)

)
: for ξ1, . . . , ξK ≥ 0, ξ1 + . . .+ ξK ≤ 1

}
, (6.10)

which is the continuous set of all points (R1(ξ1), . . . , RK(ξK)) that can be
obtained by dividing the bandwidth between the users in different ways. While
the rate of user k in (6.9) is an increasing function of the fraction ξk assigned
to this user, it is independent of how the remaining bandwidth fraction 1− ξk
is assigned to the other users. Hence, only the constraint ξ1 + ξ2 + . . .+ ξK ≤ 1
creates a tradeoff between the users’ rates. Whenever there is equality in this
constraint, we will obtain a Pareto optimal point because then the only way to
increase the rate of user k is to reallocate bandwidth from another user to user
k (e.g., increasing ξk and simultaneously decreasing ξi by an equal amount,
for some i ̸= k). The Pareto boundary is thus characterized by replacing the
inequality with equality in (6.10):

∂R =
{(
R1(ξ1), . . . , RK(ξK)

)
: for ξ1, . . . , ξK ≥ 0, ξ1 + . . .+ ξK = 1

}
.

(6.11)
The rate region is exemplified in Figure 6.6 for a setup with K = 2 users

and B = 10 MHz. In Figure 6.6(a), the two users have equal channel quality,
represented by Pβ1

BN0
= Pβ2

BN0
= 10. The rate region is then symmetric, which im-

plies that max-min fairness is achieved at the sum-rate maximizing operating
point. In this example, that operating point is (R1, R2) = (22.0, 22.0) Mbit/s.
The tradeoff created by dividing the bandwidth between the two users re-
sults in a curved Pareto boundary. In Figure 6.6(b), the users have different
channel qualities, represented by Pβ1

BN0
= 10 and Pβ2

BN0
= 5. The rate region

remains curved but is now asymmetric. Max-min fairness is achieved at
(19.1, 19.1) Mbit/s, while the sum rate is maximized at (26.7, 13.3) Mbit/s.
The maximum sum rate is 40 Mbit/s, while the max-min fairness achieves the
sum rate of 38.2 Mbit/s. The regions were generated numerically using (6.11).

Example 6.1. How does FDMA behave when the bandwidth is very large?
When B →∞, the rate in (6.9) can be approximated using (3.2) as

Rk(ξk) ≈ ξkB log2(e) Pβk
ξkBN0

= log2(e)Pβk
N0

. (6.12)

This expression is independent of the fractions ξ1, . . . , ξK , which shows that
bandwidth allocation is easy when spectrum is abundant.
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(a) Two users with equal channel quality.
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(b) Two users with different channel qualities.

Figure 6.6: Examples of the uplink rate regions for K = 2 users when using orthogonal multiple
access based on FDMA.
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For a given finite amount of bandwidth, one can prove (by differentiation)
that the maximum sum rate is achieved by selecting the weights proportionally
to the channel gains:

ξk = βk∑K
i=1 βi

. (6.13)

By substituting this value into (6.9), the rate achieved by user k is

Rk

(
βk∑K
i=1 βi

)
= βk∑K

i=1 βi
C

(
K∑
i=1

Pβi
BN0

)
. bit/s (6.14)

The bandwidth is allocated so that all users obtain the same SNR value to
prevent the system from operating too far into the logarithmic regime of the
rate function. However, users with strong channels obtain a larger rate thanks
to a larger bandwidth fraction. The sum rate becomes

K∑
k=1

Rk

(
βk∑K
i=1 βi

)
= C

(
K∑
i=1

Pβi
BN0

)
bit/s. (6.15)

Interestingly, this is the same rate as one would get over a point-to-point
MISO channel with K antennas, the channel vector h = [

√
β1, . . . ,

√
βK ]T,

and a total transmit power of P . However, in the FDMA scenario, each user
transmits from a single antenna with power P , so the total transmit power is
KP . The reason for the increased power in the multi-user system, compared
to the MISO system, is that the users transmit different signals in orthogonal
frequency bands; thus, there is no beamforming gain.

FDMA is not the only OMA scheme. Another option is time-division
multiple access (TDMA), where the users take turns transmitting over the
entire bandwidth. Suppose user k is active for a fraction of time denoted by
ξk ∈ [0, 1], for k = 1, . . . ,K, which has been selected so that ξ1+ξ2+. . .+ξK ≤
1. The user will then achieve a fraction ξk of its single-user capacity, represented
by the rate

ξkC
su
k = ξkC

(
Pβk
BN0

)
. (6.16)

Interestingly, this rate is strictly smaller than the rate ξkC( Pβk
ξkBN0

) in (6.9)
that is achieved by FDMA, if the fraction ξk assigned to the user is the same
(equality is achieved for ξk = 1 when only one user is served). It might seem
counterintuitive that FDMA outperforms TDMA since each user is assigned
the same fraction of the total time-frequency resources in both cases. The
reason behind this result is that the power amplifier is turned on and off in
TDMA; thus, even if the instantaneous transmit power is P when the user
is transmitting, the time-average transmit power is reduced to ξkP . This
explains why the SNR is ξk times smaller when using TDMA than FDMA.
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Example 6.2. Can the time resources be divided orthogonally between the
users without turning off the power amplifiers?

Yes, this can be achieved by letting the users repeat their data symbols in
a way that allows the receiver to separate the transmissions. For example, in
a setup with K = 2 users and ξ1 = ξ2 = 1/2, the users can be assigned the
orthogonal vectors [1, 1]T and [1,−1]T where all entries have unit magnitude.
The users multiply each data symbol with their respective vectors and transmit
the result as two consecutive symbols in time. The base station can undo the
operation by multiplying its received signal over the two consecutive symbol
times with the respective vectors. The SNR is improved by a factor 1/ξk = 2
(compared to TDMA) by the repeated transmission, while the orthogonality
ensures that there is no interference between the users. Since the multiplication
with the vectors spreads out each data symbol over time, the vectors are called
spreading sequences. This example represents a third type of OMA scheme
and is a special case of the general concept of code-division multiple access
(CDMA). While CDMA is a remedy to the SNR issue that TDMA suffers
from, it will not outperform FDMA and limits which values of ξk can be
selected to match with spreading sequences. Hence, based on its performance
and flexibility, FDMA remains the preferred option among the OMA schemes.
We refer to [26] for further details on CDMA and its extensions.

6.3.2 Non-Orthogonal Multiple Access

The previous section demonstrated how a base station can serve multiple
users by dividing the time-frequency resources between them in an orthogonal
manner; for example, each portion of the frequency band can be assigned to one
user. The reason for the orthogonal resource division is to avoid interference.
Still, such a protective system design might not be optimal for maximizing our
utility function (e.g., max-min fairness or maximum sum rate). An alternative
solution is non-orthogonal multiple access (NOMA), where the K users share
the same time-frequency resources, and the interference is instead managed by
signal processing. In this section, we will show that the rate region obtained
by NOMA is larger than the region achieved by FDMA (and other OMA
schemes). In fact, it is the largest rate region that can be obtained in the
considered setup, called the capacity region.

For brevity, we will describe the concept of NOMA in the case of K = 2
users that share a bandwidth of BHz. Each user has a maximum power P
and transmits with some power P ul

k ∈ [0, P ], for k = 1, 2. We consider a
discrete memoryless multiple access channel where the two users transmit
simultaneously, as illustrated in Figure 6.7. The received signal is

y[l] = h1x1[l] + h2x2[l] + n[l], (6.17)

where xk[l] is the input signal from user k at the discrete time l and the energy
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Figure 6.7: A discrete memoryless multiple access channel with K = 2 users. The two input
signals are x1[l] and x2[l], where l is a discrete-time index. The output is y[l] = h1 · x1[l] + h2 ·
x2[l] +n[l], where h1, h2 are the channel responses and n[l] is the independent complex Gaussian
receiver noise.

per symbol is P ul
k /B (because there are B symbols per second). The complex

channel response from user k is denoted by hk and assumed deterministic, so
it might be a LOS channel. The magnitude square of the channel is denoted
as βk = |hk|2. Moreover, n[l] ∼ NC(0, N0) is the independent receiver noise.
There are two input signals x1[l], x2[l] but only one output signal y[l]. It is
nevertheless possible for the receiver to extract data from both signals if
the data is appropriately encoded. Note that (6.17) is an extension of the
discrete memoryless channel in (2.130) to the case where two users transmit
simultaneously and therefore interfere with each other.

Suppose the input signals are Gaussian distributed: xk[l] ∼ NC(0, P ul
k /B)

for k = 1, 2. This is the optimal input distribution in the point-to-point case
and can be proved to be optimal also for multiple access channels. We refer to
[26, Appendix B.9] for details. If the receiver focuses on user 1, the received
signal in (6.17) can be rewritten as

y[l] = h1x1[l] + n′
1[l], (6.18)

where n′
1[l] = h2x2[l]+n[l] ∼ NC(0, P ul

2 β2/B+N0) is an independent complex
Gaussian distributed variable. It is not conventional noise since it consists of
both an interfering signal and receiver noise. However, from the perspective
of decoding the signal from user 1, it takes the role of an effective noise term
distributed in the same way as receiver noise (apart from the larger variance).
Hence, it follows from Corollary 2.1 that an achievable rate of user 1 is

R1 = C

(
P ul

1 β1

P ul
2 β2 +BN0

)
bit/s, (6.19)

where we utilized the fact that β1 = |h1|2 and β2 = |h2|2. The term Pul
1 β1

Pul
2 β2+BN0

is the SINR, but here it takes the role as an effective SNR; that is, user 1
achieves the same rate as in a point-to-point SISO channel with the SNR
value Pul

1 β1
Pul

2 β2+BN0
. This also means that the data can be encoded and decoded
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identically, which aligns with our previous assumption of having Gaussian dis-
tributed data symbols, which achieve the capacity of point-to-point channels.

Once the receiver has decoded the signal sequence {x1[l]} from user 1, it
can subtract it from the original received signal in (6.17) as

y[l]− h1x1[l] = h2x2[l] + n[l]. (6.20)

The result looks like the received signal of a conventional SISO channel with
the additive receiver noise n[l] but no interference. Hence, the achievable rate
is

R2 = C

(
P ul

2 β2

BN0

)
bit/s. (6.21)

Interestingly, user 2 achieves the same rate as if it had been assigned the entire
bandwidth in OMA. This is enabled by the procedure of first decoding the
signal from user 1 and then subtracting it from the received signal. We followed
a similar procedure in Section 3.4.3 to sequentially decode the transmitted
streams over a point-to-point MIMO channel, in which case we called it
successive interference cancellation (SIC). We will use the same terminology
here and recall that it is a non-linear receiver processing scheme because we
must decode one signal sequence entirely before subtracting interference.

It follows from (6.19) and (6.21) that the sum rate is

R1 +R2 = B log2

(
1 + P ul

1 β1

P ul
2 β2 +BN0

)
+B log2

(
1 + P ul

2 β2

BN0

)

= B log2

(
P ul

1 β1 + P ul
2 β2 +BN0

P ul
2 β2 +BN0

)
+B log2

(
P ul

2 β2 +BN0

BN0

)

= B log2

(
1 + P ul

1 β1 + P ul
2 β2

BN0

)
= C

(
P ul

1 β1 + P ul
2 β2

BN0

)
. (6.22)

We can notice from (6.22) that the sum rate is an increasing function of both
P ul

1 and P ul
2 , thus it is maximized when both users transmit at their maximum

power P . This implies that any tuple of achievable rates (R1, R2) must satisfy

R1 +R2 ≤ C
(
Pβ1 + Pβ2

BN0

)
. (6.23)

The sum-rate expression is symmetric with respect to the two users; thus, the
same sum rate can be achieved if the receiver first decodes the signal from
user 2, subtracts that signal from the originally received signal, and finally
decodes the signal from user 1. However, in the latter case, it is user 1 that
achieves the same rate as if assigned the entire bandwidth in OMA mode. In
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Figure 6.8: When using NOMA, the uplink rate region with K = 2 users is characterized by
the three line segments shown in the figure. The Pareto boundary is the diagonal line segment
between the operating points in (6.24) and (6.25), marked with filled circles, which are achieved
by decoding the signals from one user first and subtracting its interference before decoding the
signals from the other user.

summary, we know that we can achieve the points

(R1, R2) =
(
C

(
Pβ1

Pβ2 +BN0

)
, C

(
Pβ2

BN0

))
, (6.24)

(R1, R2) =
(
C

(
Pβ1

BN0

)
, C

(
Pβ2

Pβ1 +BN0

))
. (6.25)

These points are marked with filled circles in Figure 6.8, and it is indicated
that the first point is achieved by decoding the signal from user 1 first, while
the second point is achieved by decoding the signal from user 2 first. By
switching between operating at these different points over time, a procedure
called time-sharing, we can achieve any point on the dashed line segment
drawn between the two points. This is the Pareto boundary of the rate region,
and it is a segment of the line defined by the maximum sum rate equation
R1 +R2 = C(Pβ1+Pβ2

BN0
).

It is also possible to achieve any point for which the entries are strictly
smaller than the points on the Pareto boundary; that is, any point between
the axes and the dashed line segments in the figure. The vertical segment is a
portion of the line defined by R1 = C( Pβ1

BN0
), while the horizontal segment is

a portion of the line defined by R2 = C( Pβ2
BN0

). Hence, the rate region is the
pentagon determined by these three lines and can be characterized as

R =
{

(R1, R2) : 0 ≤ R1 ≤ C
(
Pβ1

BN0

)
, 0 ≤ R2 ≤ C

(
Pβ2

BN0

)
,

R1 +R2 ≤ C
(
Pβ1 + Pβ2

BN0

)}
. (6.26)
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Any point that satisfies the three equations in (6.26) belongs to the rate
region. We have demonstrated the achievability of this rate region by SIC and
time-sharing. It can also be proved that no other NOMA scheme can achieve
a larger rate region; we refer to [42, Ch. 14] for details. The Pareto boundary
is obtained when there is equality in the third equation of (6.26) so that the
maximum sum rate is achieved:

∂R =
{

(R1, R2) : 0 ≤ R1 ≤ C
(
Pβ1

BN0

)
, 0 ≤ R2 ≤ C

(
Pβ2

BN0

)
,

R1 +R2 = C

(
Pβ1 + Pβ2

BN0

)}
. (6.27)

Example 6.3. Compare the sum rate in (6.23) with that of a point-to-point
MISO channel with the channel vector h = [

√
β1,
√
β2]T.

The MISO channel capacity is given in (3.47) and by substituting q = P/B
into the expression, we obtain

B log2

(
1 + P∥h∥2

BN0

)
= C

(
Pβ1 + Pβ2

BN0

)
bit/s. (6.28)

This is the same as the sum rate in (6.23), but the latter is achieved using
a total transmit power of 2P instead of P because there are two users.
The NOMA setup is instead mathematically identical to a MISO system
that uses suboptimal precoding where each antenna transmits different data.
We first came across SIC in Section 3.4.3 when analyzing how to decode
the received data with arbitrary precoding. Using the notation from that
section, the precoding matrix is P = I2 and the power allocation matrix is
Q = diag(P/B, P/B).

To compare the rate regions attained by the orthogonal and non-orthogonal
types of multiple access, we will continue the example from Figure 6.6(b).
Recall that the two users have different channel qualities: Pβ1

BN0
= 10 and

Pβ2
BN0

= 5. Figure 6.9 shows the rate regions obtained with OMA/FDMA and
NOMA. We notice that NOMA achieves a larger rate region, containing all the
operating points OMA achieves and some additional points along the Pareto
boundary. When using NOMA, all the points on the Pareto boundary maximize
the sum rate and represent different ways of allocating the sum rate between
the users. One point on the Pareto boundary is also optimal in the max-min
fairness sense; thus, we can maximize both utility functions simultaneously
when using NOMA. Interestingly, the maximum sum rate is 40 Mbit/s for
both FDMA and NOMA. While this specific value depends on the simulation
assumptions, the equivalence is not unique to this example but can be noticed
by comparing the maximum sum rate expression for FDMA in (6.15) with
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Figure 6.9: Example of uplink rate regions for K = 2 users with different channel qualities
when using either NOMA or OMA based on FDMA. This is a continuation of the example from
Figure 6.6(b).

the corresponding expression for NOMA in (6.23), which are identical. There
is, however, a rate difference when it comes to max-min fairness, which is
achieved at (20, 20) Mbit/s with NOMA and at (19.1, 19.1) Mbit/s when using
orthogonal access. Hence, if the system is designed for max-min fairness, both
users can achieve a 5% higher rate when using NOMA.

This example indicates the benefit that NOMA provides over OMA: the
maximum sum rate value is the same but can be allocated between the users in
a variety of different ways, while FDMA only achieves it using one specific rate
division. For example, NOMA allows for the max-min fairness and sum-rate
utilities to be maximized simultaneously; however, there is generally a tradeoff
between these performance targets when considering OMA. If the users have
widely different channel gains, the max-min fairness point with NOMA might
be at a corner point of the Pareto boundary. At this point, the user with the
weakest channel gain achieves its single-user capacity by being decoded last,
while other users might achieve higher rates than that.

The rate region with NOMA for K ≥ 2 users can be formulated and
achieved similarly to what was described earlier in this section. Recall that
three equations characterize the rate region in (6.26) in the two-user case:
each user’s rate must be lower than or equal to the respective single-user
capacity, and the sum rate is upper bounded by the capacity of a point-to-
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point MISO channel with the same transmit power P . When extending this to
the K-user case, there will be 2K − 1 equations, each describing how the sum
rate of a certain subset of the users is upper bounded by the point-to-point
MISO channel capacity with a channel vector containing the users’ channel
coefficients.3 More precisely, the rate region can be characterized as follows
(where the time index l has been omitted for brevity) [42, Sec. 14.3.5].

Theorem 6.1. Consider a K-user discrete memoryless multiple access channel
with the inputs x1, . . . , xK ∈ C and the output y ∈ C given by

y =
K∑
k=1

hkxk + n, (6.29)

where n ∼ NC(0, N0) is independent noise and h1, . . . , hK ∈ C are constant
channel coefficients known at the output. Suppose the input distributions
are feasible whenever E{|xk|2} ≤ P/B, where P is the transmit power and
B is the bandwidth (and symbol rate). If Rk denotes the rate of user k and
βk = |hk|2, the capacity region is given by

R =
{

(R1, . . . , RK) : 0 ≤
∑
k∈K

Rk ≤ C
(∑
k∈K

Pβk
BN0

)
for all K ⊂ {1, . . . ,K}

}
.

(6.30)

Notice that K in (6.30) denotes a subset of the indices of the K users,
and there are 2K − 1 different non-empty subsets to consider. For example, if
K = 3, the seven subsets are {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}, and {1, 2, 3}.

Figure 6.10 exemplifies the rate region achieved with NOMA for K = 3
users, with Pβ1

BN0
= 10, Pβ2

BN0
= 5, Pβ3

BN0
= 2.5, and B = 10 MHz. The Pareto

boundary is the area enclosed by the solid line segments. The six corner points
are achieved by letting the users transmit at maximum power and then decode
their signals sequentially in different orders using SIC. Other points on the
Pareto boundary can be achieved by time-sharing between operating at the
different corner points. All the points on the Pareto boundary achieve the
same sum rate

R1 + . . .+RK = C

(
K∑
i=1

Pβi
BN0

)
, (6.31)

which is also the same as the maximum sum rate in (6.15) achieved by FDMA.
As stated earlier, the key difference is that NOMA can divide the sum rate
between the users in multiple ways, while FDMA can not.

3K of these subsets correspond to the single-user capacity bounds since each of those subsets
includes a single user. The number of subsets that include k users is

(
K
k

)
. When we add all the

subsets for k = 1, . . . ,K, it follows from the binomial theorem that there are 2K − 1 subsets.
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Figure 6.10: Example of an uplink rate region for K = 3 users when using NOMA.

6.3.3 Uplink Multi-User MIMO with Non-Linear Processing

The underlying reason that NOMA cannot increase the sum rate compared
with OMA is that the base station is only equipped with a single antenna; thus,
it can only distinguish one signal dimension per received symbol. Different
access schemes can allocate different fractions of this dimension to different
users but not create additional signal dimensions. It is instructive to compare
multiple access schemes with the operation of point-to-point channels. As
mentioned in Example 6.3, the multiple access system model is mathematically
indistinguishable from a MISO channel where the K transmit antennas are
sending different messages (instead of using MRT) and the receiver has M = 1
antenna. The achievable rate for such a setup is given by (3.106) and can be
shown to coincide with the sum rate achieved by FDMA and NOMA. Since
the base station is only equipped with a single antenna, the multiplexing gain
is min(M,K) = M = 1, which is another way to quantify that the users share
one signal dimension. However, this analogy reveals a potential solution to
the dimensionality bottleneck: if the base station would be equipped with
M antennas, for some M ≥ K, the maximum multiplexing gain becomes
min(M,K) = K. In that case, the sum rate can possibly be improved by
serving multiple users simultaneously over the entire bandwidth—the more
users the better, as long as K ≤M . This is the essence of multi-user MIMO.
Note that the MIMO terminology is utilized even when each user device only
has a single antenna because the multiple inputs are the multiple transmitting
users, and the multiple outputs are the multiple receive antennas.
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Figure 6.11: A discrete memoryless uplink multi-user MIMO channel with K = 2 single-
antenna users and M receive antennas. The two input signals are x1[l] and x2[l], where l is
a discrete-time index. The output is y[l] = h1 · x1[l] + h2 · x2[l] + n[l], where h1,h2 are the
channel vectors and n[l] is the independent complex Gaussian receiver noise.

We begin by considering a discrete memoryless channel with K = 2 single-
antenna user devices and a receiving base station equipped with M ≥ 2
antennas. Both users transmit simultaneously over a bandwidth of BHz and
their transmit powers are P ul

k ∈ [0, P ], for k = 1, 2, where P is the maximum
power. The received signal y[l] ∈ CM at the discrete time l is

y[l] = h1x1[l] + h2x2[l] + n[l], (6.32)

where xk[l] is the input signal from user k, for k = 1, 2. The energy per
symbol is P ul

k /B and we assume Gaussian codebooks, such that xk[l] ∼
NC(0, P ul

k /B). The channel vector from user k is denoted by hk ∈ CM , while
n[l] ∼ NC(0, N0IM ) is independent receiver noise. A block diagram of this
uplink multi-user MIMO channel is provided in Figure 6.11.

We will characterize the rate region by following the same non-linear
receiver processing as in the case of NOMA, namely SIC. If the receiver
focuses on user 1, the received signal in (6.32) can be rewritten as

y[l] = h1x1[l] + n′
1[l], (6.33)

where n′
1[l] = h2x2[l] + n[l] ∼ NC(0, P

ul
2
B h2hH

2 + N0IM ) is an independent
complex Gaussian distributed variable. This effective noise term contains
both an interfering signal and receiver noise. Since the covariance matrix
Pul

2
B h2hH

2 +N0IM has non-zero off-diagonal entries, the effective noise is colored.
As described in Section 2.2.4, colored noise can be whitened by multiplying
with the inverse square root of the covariance matrix of the noise:(

P ul
2
B

h2hH
2 +N0IM

)−1/2

y[l] =
(
P ul

2
B

h2hH
2 +N0IM

)−1/2

h1x1[l] + n′′
1 [l],

(6.34)
where the new effective noise n′′

1 [l] = (P
ul
2
B h2hH

2 +N0IM )−1/2n′
1[l] ∼ NC(0, IM )

is spatially white. We notice that (6.34) is the system model of a SIMO channel
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of the type considered in Corollary 3.1, but the physical channel vector h1 to
user 1 is replaced by the effective channel vector (P

ul
2
B h2hH

2 +N0IM )−1/2h1.
Hence, the achievable rate of user 1 is

R1 = B log2

1 + P ul
1
B

∥∥∥∥∥∥
(
P ul

2
B

h2hH
2 +N0IM

)−1/2

h1

∥∥∥∥∥∥
2


= B log2

(
1 + P ul

1 hH
1

(
P ul

2 h2hH
2 +BN0IM

)−1
h1

)
= C

(
P ul

1 hH
1

(
P ul

2 h2hH
2 +BN0IM

)−1
h1

)
bit/s. (6.35)

This rate is achieved by applying an MRC vector based on the effective channel
to the whitened received signal in (6.34). Instead of carrying out the whitening
and MRC as two separate steps, the combining vector

w1 =
(
P ul

2
B

h2hH
2 +N0IM

)−1/2(
P ul

2
B

h2hH
2 +N0IM

)−1/2

h1

=
(
P ul

2
B

h2hH
2 +N0IM

)−1

h1 (6.36)

can be applied to the original received signal in (6.33). Since the receiver
computes the inner product wH

1y[l], receive combining is a linear processing
scheme. We call this LMMSE combining since it can be shown similar to
Example 3.4 that x̂1[l] = Pul

1
Pul

1 wH
1 h1+BwH

1y[l] is the LMMSE estimate of x1[l].
Once the receiver has decoded the signal sequence {x1[l]} from user 1, it

can subtract it from the original received signal in (6.32) as

y[l]− h1x1[l] = h2x2[l] + n[l]. (6.37)

This resembles the received signal of a conventional SIMO channel with white
receiver noise; thus, the achievable rate is equal to the single-user capacity of
user 2:

R2 = C

(
P ul

2
BN0

∥h2∥2

)
bit/s. (6.38)

This rate is achieved by applying an MRC vector w2 = h2/∥h2∥ to the received
signal in (6.37) after the interference cancellation. Notice that the receiver
processing related to user 2 is non-linear since we are not only computing an
inner product between the received signal and a combining vector but also
subtracting interference caused by the decoded signal from user 1.

The sum rate can be computed by adding (6.35) to (6.38), but some
lengthy matrix algebra of the kind in Section 3.4.3 is required to simplify
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the expression. However, we can take a shortcut by interpreting (6.32) as a
point-to-point MIMO channel by writing the received signal as

y[l] =
[
h1 h2

]︸ ︷︷ ︸
=H

I2︸︷︷︸
=P

[
x1[l]
x2[l]

]
︸ ︷︷ ︸

=x̄[l]

+n[l], (6.39)

where P = I2 is the precoding matrix and the signal vector x̄[l] ∼ NC(0,Q)
has the covariance matrix Q = diag(P ul

1 /B, P
ul
2 /B). The diagonal precoding

matrix indicates that the two users transmit independently encoded signals,
as required in a multiple access channel. It then follows from (3.106) that the
sum rate is

R1 +R2 = B log2

(
det

(
IM + P ul

1
BN0

h1hH
1 + P ul

2
BN0

h2hH
2

))
. (6.40)

The expression in (6.40) is an increasing function of both P ul
1 and P ul

2 , thus
it is maximized when both users transmit at their maximum power P . This
implies that any tuple of achievable rates (R1, R2) must satisfy

R1 +R2 ≤ B log2

(
det

(
IM + P

BN0
h1hH

1 + P

BN0
h2hH

2

))
. (6.41)

The sum-rate expression is symmetric with respect to the two users,
indicating that there are multiple ways of achieving it. The procedure of
decoding the signal from user 1 first and removing its interference before
decoding the signal from user 2 is only one of these ways. By exchanging the
roles of the two users, another operating point can be achieved. These points
are marked with filled circles in Figure 6.12 and given by

(R1, R2) =
(
C
(
PhH

1 (Ph2hH
2 +BN0IM )−1 h1

)
, C

(
P

BN0
∥h2∥2

))
, (6.42)

(R1, R2) =
(
C

(
P

BN0
∥h1∥2

)
, C
(
PhH

2 (Ph1hH
1 +BN0IM )−1 h2

))
. (6.43)

The line segment between these points is the Pareto boundary. The pentagon
structure of the rate region is clearly the same as with NOMA, but the rate
points are computed differently; in fact, NOMA is the special case of multi-user
MIMO obtained with M = 1. The complete rate region can be defined as

R =
{

(R1, R2) : 0 ≤ R1 ≤ C
(

P

BN0
∥h1∥2

)
, 0 ≤ R2 ≤ C

(
P

BN0
∥h2∥2

)
,

R1 +R2 ≤ B log2

(
det

(
IM + P

BN0
h1hH

1 + P

BN0
h2hH

2

))}
.

(6.44)
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Figure 6.12: The uplink rate region with K = 2 users is characterized by three line segments
when using multi-user MIMO. The Pareto boundary is the diagonal line segment between the
operating points in (6.42) and (6.43), marked with filled circles, which are achieved by decoding
the signals from one user first and then subtracting its interference before decoding the signals
from the other user.

Any point that satisfies the three equations in (6.44) belongs to the rate region.
The Pareto boundary is obtained when there is equality in the third equation
so that the maximum sum rate is achieved:

∂R =
{

(R1, R2) : 0 ≤ R1 ≤ C
(

P

BN0
∥h1∥2

)
, 0 ≤ R2 ≤ C

(
P

BN0
∥h2∥2

)
,

R1 +R2 = B log2

(
det

(
IM + P

BN0
h1hH

1 + P

BN0
h2hH

2

))}
.

(6.45)

The rate region and the Pareto boundary are illustrated in Figure 6.12.
These results can be extended to the general case K ≥ 2 by following the

same approach as in the NOMA case. The critical point to notice is that
the equations defining the rate region are considering each non-empty subset
of the K users and specifying that their sum rate should be lower than or
equal to the corresponding rate achieved by point-to-point MIMO where the
considered users transmit independent signals at their maximum power P .
Even the single-user rates have this structure, which can be noticed from that

C

(
P

BN0
∥hk∥2

)
= B log2

(
1 + P

BN0
∥hk∥2

)
= B log2

(
det

(
IM + P

BN0
hkhH

k

))
. (6.46)

We obtain the following general result regarding the capacity region of uplink
multi-user MIMO.
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Theorem 6.2. Consider a K-user discrete memoryless uplink multi-user
MIMO channel with the inputs x1, . . . , xK ∈ C and the output y ∈ CM given
by

y =
K∑
k=1

hkxk + n, (6.47)

where n ∼ NC(0, N0IM ) is independent noise and h1, . . . ,hK ∈ CM are
constant channel vectors known at the output. Suppose the input distributions
are feasible whenever E{|xk|2} ≤ P/B, where P is the transmit power and B
is the bandwidth (and symbol rate). If Rk denotes the rate achieved by user
k, then the capacity region is given by

R =
{

(R1, . . . , RK) : 0 ≤
∑
k∈K

Rk ≤ B log2

(
det

(
IM +

∑
k∈K

P

BN0
hkhH

k

))

for all K ⊂ {1, . . . ,K}
}
. (6.48)

By considering (6.48) with K = {1, . . . ,K}, we obtain

K∑
k=1

Rk ≤ B log2

(
det

(
IM +

K∑
k=1

P

BN0
hkhH

k

))

= B log2

(
det

(
IM + P

BN0
HHH

))
, (6.49)

where the upper bound is the sum capacity. The last expression is obtained
using the notation H = [h1, . . . ,hK ] and is identical to the rate expression
in (3.106) for a point-to-point MIMO system if each antenna transmits a
different signal using the precoding matrix P = IK and Q = diag(PB , . . . ,

P
B ).

This means that, from a total bit rate perspective, uplink multi-user MIMO
is like a point-to-point MIMO system where the transmit antennas are not
collaborating. However, the channel modeling will be very different.

To demonstrate how the use of multiple base station antennas affects the
shape of the rate region, we will continue the example with K = 2 users from
Figure 6.9. Recall that the users have different channel qualities: Pβ1

BN0
= 10

and Pβ2
BN0

= 5. Figure 6.13 shows the rate regions that multi-user MIMO
achieves with M = 2, M = 4, and M = 8 antennas, as well as M = 1,
which represents the previously considered NOMA setup. We assume the
base station has a ULA with half-wavelength antenna spacing. We use the
LOS channel model from (4.23) and let the users be located in two different
azimuth angle directions: φ1 = −π/20 and φ2 = π/20 (i.e., there is a 18◦

angular spacing). As the number of antennas increases, the beamforming gain
increases the single-user capacities, thus pushing the horizontal and vertical
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Figure 6.13: Examples of uplink rate regions for K = 2 users with multi-user MIMO and a
varying number of antennas M , where M = 1 corresponds to NOMA. This is a continuation of
the example in Figure 6.9.

lines toward larger numbers. Moreover, the increased multiplexing gain from
1 to 2 makes it possible to deal with the inter-user interference so that the
sum rate increases with a faster slope. This can be seen from the fact that the
diagonal part of the region becomes shorter the more antennas are used. This
eventually implies that both users can simultaneously achieve rates almost
equal to their respective single-user capacities. In conclusion, this benefit from
adding antennas (i.e., increasing M) continues even if the full multiplexing
gain is achieved already at M = 2.

To understand the reason for this result, we can take a closer look at the
effective SNR in (6.42) that user 1 achieves when it is decoding its signal first:

PhH
1 (Ph2hH

2 +BN0IM )−1 h1 = PhH
1

 1
BN0

IM −
h2hH

2

(BN0)2
(

1
P + ∥h2∥2

BN0

)
h1

= P

BN0
∥h1∥2︸ ︷︷ ︸

Single-user SNR

(
1− P |hH

2 h1|2

∥h1∥2(BN0 + P∥h2∥2)

)
︸ ︷︷ ︸

Reduction due to interference

, (6.50)

where the first equality follows from Lemma 2.3.4 The last expression reveals
that the effective SNR consists of two factors. The first factor is P

BN0
∥h1∥2,

4The matrix inversion lemma is utilized with A = BN0IM , B = h2, C = P , and D = hH
2 .
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which is the SNR expression that appears in the single-user capacity expression.
The second factor also depends on the channel h2 of the interfering user and
determines the performance reduction caused by inter-user interference. This
factor takes a value between 0 and 1, representing what fraction of the single-
user SNR is achieved under interference. This factor usually approaches 1 as
we increase the number of antennas, thereby making the diagonal part of the
rate region shorter and shorter, as observed in Figure 6.13.

Example 6.4. Show that the second factor in (6.50) goes to 1 as the number
of antennas M →∞ in the setup considered in Figure 6.13.

In the simulated scenario with a ULA and LOS channel conditions, we
have h1 =

√
β1aM (−π/8) and h2 =

√
β2aM (π/8) using the array response

vector expression in (4.49). We can utilize (4.50) and (4.52) to rewrite the
second factor in (6.50) as

1− P |hH
2 h1|2

∥h1∥2(BN0 + P∥h2∥2) = 1− Pβ1β2

Mβ1(BN0 + PMβ2)
sin2 (Mπ sin(π8 )

)
sin2 (π sin(π8 )

)
≥ 1− 1

M2
1

sin2 (π sin(π8 )
) , (6.51)

where the lower bound is obtained by replacing sin2 (Mπ sin(π8 )
)

with 1 and
BN0 with 0, which are two operations that result in subtracting a larger term.
The lower bound goes to 1 when M → ∞. The mathematical explanation
is that the directions h1/∥h1∥ and h2/∥h2∥ of the channel vectors become
increasingly orthogonal as more antennas are added to the ULA, making it
easier to suppress interference without sacrificing much of the desired signal.
The physical explanation is that the beamwidth shrinks with M .

Interference is the performance limiting factor when the SNR is high, while
it drowns in the noise when the SNR is low. The last term in (6.50) can be
upper bounded as

P |hH
2 h1|2

∥h1∥2(BN0 + P∥h2∥2) ≤
|hH

2 h1|2

∥h1∥2∥h2∥2 , (6.52)

where equality is achieved at high SNR where P
BN0

→ ∞. Propagation
environments where this term vanishes when using many antennas are said to
provide favorable propagation [88] because the effective SNR then approaches
the single-user SNR. This property can be formalized as follows.

Definition 6.2. The pair of channels h1,h2 ∈ CM is said to provide favorable
propagation if

|hH
2 h1|

∥h1∥∥h2∥
→ 0 as M →∞. (6.53)
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This definition aims to evaluate if a given channel model has the desired
property that the performance loss from interference reduces gradually as we
add more antennas. However, taking the limit, M →∞, is just a mathematical
curiosity and should not be interpreted literally. In practice, we typically only
need 10-100 antennas to make the impact of interference negligibly small
for most kinds of channels. Moreover, most channel models considered in
this book were derived under a far-field assumption, which will eventually
be invalidated as the aperture length increases (i.e., the Fraunhofer distance
grows with M). A precise analysis is more complicated but can be found in
[89]. In summary, the favorable propagation property simply says: interference
is easy to suppress if we have many antennas.

6.3.4 Uplink Multi-User MIMO with Linear Processing

The last two sections demonstrated how SIC could be utilized in NOMA and
multi-user MIMO to achieve Pareto optimal operating points. Unfortunately,
this non-linear processing scheme has some practical drawbacks. Firstly, the
sequential decoding of the users’ signals leads to a decoding delay that grows
proportionally to the number of users. Secondly, practical data packets have
a finite length and, thus, a non-zero probability of decoding errors. When
one user’s data is decoded incorrectly, the interference cancellation will fail,
which implies that the users whose data are decoded later in the sequence get
more interference rather than less. This most likely leads to further decoding
errors, which is called error propagation. Thirdly, the individual users’ data
rates must be selected jointly based on the decoding order. Hence, if one
user experiences a sudden change in channel conditions, all user rates must
be updated accordingly. If we omit the SIC step instead, Pareto optimality
cannot be ensured, and most users will experience a rate reduction. However,
the practical benefits are that the receiver can now decode all the users’ data
simultaneously (e.g., using a multi-core processor), decoding errors for one
user will not cause decoding errors for other users, and the rates can be
selected independently for the different users based on only their individual
SINR. In this section, we will analyze multi-user MIMO with such linear
processing, where each user’s signal is essentially decoded as if it is the first
to be decoded. In particular, we will investigate under what conditions the
performance loss is slight when omitting the SIC procedure.

We consider a discrete memoryless channel with K single-antenna user
devices and a receiving base station equipped with M ≥ 2 antennas. Setups
with M ≥ K are particularly important, but the performance analysis does not
require that assumption. The users transmit simultaneously over a bandwidth
of BHz and their transmit powers are P ul

k ∈ [0, P ], for k = 1, . . . ,K, where P
is the maximum power. The received signal y[l] ∈ CM at the discrete time l is

y[l] =
K∑
k=1

hkxk[l] + n[l], (6.54)
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x1[l]

x2[l]

xK [l]

x̂1[l]

x̂2[l]

x̂K [l]

h1

h2

hK

y[l]

n[l]
Decode for user 1

Decode for user 2

Decode for userK

Figure 6.14: A discrete memoryless uplink multi-user MIMO channel with the inputs xk[l] for
k = 1, . . . ,K and the output y[l] =

∑K

k=1 hkxk[l] + n[l] ∈ CM , where l is a discrete-time index,
hk ∈ CM is the channel vector from user k, and n[l] is the independent Gaussian receiver noise.
The user signals are decoded in parallel by treating interference as noise.

where xk[l] is the input signal from user k, for k = 1, . . . ,K. The energy
per symbol is P ul

k /B. We assume the use of Gaussian codebooks, such that
xk[l] ∼ NC(0, P ul

k /B). The channel vector from user k is denoted by hk ∈ CM ,
while n[l] ∼ NC(0, N0IM ) is the independent receiver noise. The key difference
is how the receiver processing will be carried out, namely, each user’s data is
decoded separately and, potentially, in parallel. This setup is the same as in
the previous section and is illustrated in Figure 6.14.

Since the channel is memoryless, we can remove the time indices from
(6.54). However, we must remember that the channel vectors are constant,
while the signals and noise are random variables that take new independent
realizations at every time instance. When considering an arbitrary user k at
an arbitrary time, the received signal in (6.54) can be rewritten as

y = hkxk︸ ︷︷ ︸
Desired signal

+
K∑

i=1,i̸=k
hixi︸ ︷︷ ︸

Interference

+n = hkxk + n′
k (6.55)

where n′
k =

∑K
i=1,i̸=k hixi + n ∼ NC (0,Ck) is a colored noise term with the

non-diagonal covariance matrix

Ck = E {n′
k(n′

k)H} =
K∑

i=1,i̸=k

P ul
i

B
hihH

i +N0IM . (6.56)

Hence, if we refrain from decoding the other users’ interfering signals but treat
them as extra noise, we can view (6.55) as a SIMO channel with the additive
colored noise n′

k. We recall from Section 3.2 that we can obtain an estimate
x̂k of xk by projecting y onto a scalar value using a receive combining vector.
This is a type of linear processing. In this section, we denote the receive
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combining vector associated with user k as wk ∈ CM and we then obtain

x̂k = wH
ky = wH

khkxk + wH
kn′

k. (6.57)

We notice that (6.57) is effectively a memoryless SISO channel of the kind
in (2.130) with the received signal y = x̂k, the effective channel h = wH

khk,
and the processed noise n = wH

kn′
k ∼ NC(0,wH

kCkwk). Hence, it follows from
Corollary 2.1 that an achievable data rate (in bit/s) is

Rk = B log2

1 +
Pul
k

B |w
H
khk|2

wH
kCkwk

 = C

 Pul
k

B |w
H
khk|2∑K

i=1,i ̸=k
Pul
i

B |wH
khi|2 +N0∥wk∥2

 .
(6.58)

This rate depends on the selection of the receive combining vector wk, which
appears in the effective SNR term Pul

k

B |w
H
khk|2/(wH

kCkwk). More precisely, the
direction of the combining vector will determine the SNR, while the length
of the vector is immaterial since it affects the numerator and denominator
equally. When having white noise, as in Section 3.2, the direction of the
receive combining vector will not affect the noise variance wH

kCkwk since Ck

is a scaled identity matrix. In that case, the SNR is maximized by selecting
wk as a vector parallel to the channel hk, which we previously called MRC.
The situation changes when having the colored noise n′

k because then the
noise (or rather the interference) is stronger in some directions and weaker in
others. For example, if we compute an eigendecomposition of Ck, eigenvectors
associated with large eigenvalues represent strong directions, and eigenvectors
associated with small eigenvalues represent weaker directions. Hence, the
receive combining that maximizes the effective SNR must balance maximizing
the numerator and minimizing the denominator.

To identify the combining vector that maximizes the effective SNR in
(6.58), we can divide the receive combining vector into two parts: one part
that performs whitening of the noise and one that performs receive combining
after the whitening. Recall from the previous section that the whitening of
the colored noise is achieved by multiplying the received signal with C−1/2

k ,
thus we set

wk = C−1/2
k w̄k (6.59)

where w̄k ∈ CM is the effective combining vector after the whitening. There
is a one-to-one mapping between wk and w̄k, so we can make this assumption
without risking any loss-of-optimality. By substituting (6.59) into (6.58), we
obtain

Rk = B log2

1 +
Pul
k

B |w̄
H
kC−1/2

k hk|2

w̄H
kC−1/2

k CkC−1/2
k w̄k

= B log2

1 +
Pul
k

B |w̄
H
kC−1/2

k hk|2

∥w̄k∥2

.
(6.60)

We can now notice that the variance of the whitened noise only depends
on the squared norm ∥w̄k∥2 and not on the direction of w̄k. Hence, we
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can maximize the effective SNR in (6.60) by making w̄k parallel to the
effective channel C−1/2

k hk; that is, applying MRC to the effective channel
with w̄k = C−1/2

k hk. In conclusion, the effective SNR is maximized by selecting
the receive combining vector as

wk = C−1/2
k︸ ︷︷ ︸

Whitening

C−1/2
k hk︸ ︷︷ ︸
MRC

= C−1
k hk

=

 K∑
i=1,i̸=k

P ul
i

B
hihH

i +N0IM

−1

hk. (6.61)

By substituting this vector into the rate expression in (6.58), we obtain

Rk = B log2

1 +
Pul
k

B |h
H
kC−1

k hk|2

hH
kC−1

k CkC−1
k hk

 = B log2

(
1 + P ul

k

B
hH
kC−1

k hk

)
.

(6.62)
This is a generalization of (6.35) to the case with an arbitrary number of
users, which decode their signals separately by treating all interfering signals
as colored noise. We call this a linear processing scheme since the receiver only
computes the inner product between the received signal y and the combining
vector wk before decoding the data.

The rate-maximizing receive combining vector in (6.61) is referred to as
LMMSE combining because we can also derive it by looking for the vector
that minimizes the MSE E{|xk − x̂k|2} between the transmitted signal and
the estimate in (6.57). Such a problem was solved in Example 3.4, except that
there were no user indices in that case. By substituting q = P ul

k /B, h = hk,
and C = Ck into (3.34), we obtain the MSE-minimizing combining vector

wk = P ul
k

B

(
P ul
k

B
hkhH

k + Ck

)−1

hk = P ul
k

P ul
k hH

kC−1
k hk +B

C−1
k hk, (6.63)

which is equal to (6.61) except for the extra scaling factor P ul
k /(P ul

k hH
kC−1

k hk+
B). Strictly speaking, only the combining vector in (6.63) minimizes the MSE;
however, both expressions are commonly referred to as LMMSE combining.
The reason is that both vectors maximize the rate because the SINR only
depends on the direction of the combining vector, not on its length. The rate
expression originates from a mutual information expression that ignores the
scaling because it implicitly assumes an optimal decoder, which will scale
the received signal on its own, thereby compensating for whatever undesired
scaling has been applied earlier. The preferred scaling depends on the decoding
algorithm but is likely similar to the true LMMSE combining in (6.63).

We can summarize the results with linear processing as follows.
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Corollary 6.1. Consider the discrete memoryless uplink multi-user MIMO
channel in Figure 6.14 where the K users have the respective inputs xk ∈ C,
k = 1, . . . ,K, and the output y ∈ CM given by

y =
K∑
k=1

hkxk + n, (6.64)

where n ∼ NC(0, N0IM ) is independent noise. Suppose hk ∈ CM is a constant
vector known at the output, for k = 1, . . . ,K. If each input signal is indepen-
dently distributed as xk ∼ NC(0, P ul

k /B) and decoded separately by treating
inter-user interference as noise, the largest achievable rate for user k is

Rk = B log2

1 + P ul
k hH

k

 K∑
i=1,i̸=k

P ul
i hihH

i +BN0IM

−1

hk

 (6.65)

and is achieved by using LMMSE combining.

While it is possible to operate a multi-user MIMO system without utilizing
SIC, the pertinent question is: how large is the performance loss? The achiev-
able rate region with linear processing can be characterized by considering all
the rate tuples (R1, . . . , RK) that can be obtained for different selections of
the transmit powers:

R =
{

(R1, . . . , RK) :Rk = B log2

(
1 + P ul

k hH
k

(
K∑

i=1,i̸=k
P ul
i hihH

i +BN0IM

)−1

hk

)

for k = 1, . . . ,K, for some P ul
1 , . . . , P

ul
K ∈ [0, P ]

}
.

(6.66)
To compare this rate region with the one achieved with non-linear pro-

cessing, we continue the example from Figure 6.13. Recall that we considered
K = 2 users with different channel qualities: Pβ1

BN0
= 10 and Pβ2

BN0
= 5. Fig-

ures 6.15(a) and 6.15(b) show the rate regions obtained with M = 4 and
M = 8 antennas, respectively. The regions called “non-linear” are achieved
using SIC and are the same as those in Figure 6.13, while the regions called
“linear” are computed using (6.66). The boundary points are obtained by
assigning the maximum power P to one of the users and varying the other
user’s power from 0 to P . The corner point in the middle of the boundary is
achieved by P ul

1 = P ul
2 = P . As expected, linear processing results in a smaller

region than non-linear processing, but the difference reduces as we increase
the number of antennas. For example, the loss in sum rate from using linear
processing is 4% with M = 4 but only 0.4% with M = 8. The explanation is



6.3. Uplink Communications 441

(a) M = 4 antennas.

(b) M = 8 antennas.

Figure 6.15: Examples of uplink rate regions with K = 2 users when multi-user MIMO is used
with either non-linear or linear processing. The region obtained in (6.66) is called “linear” and
its convex hull is also shown. This is a continuation of the example from Figure 6.13.
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the favorable propagation property discussed in the previous section; that is,
the directions of the users’ channel vectors become increasingly different as M
grows, making it possible to suppress interference using LMMSE combining
without sacrificing much of the desired signal power.

All the rate regions we have considered earlier in this chapter are convex
sets, meaning that if we pick any two operating points in the region and draw
a line between them, the line stays within the region. The pentagon shape in
the two-user case with non-linear processing was achieved by drawing lines
between the operating points in (6.42) and (6.43), which are achieved with
different decoding orders, and the single-user capacities. This procedure was
called time-sharing. If we allow time-sharing when using linear processing, we
can replace the region in (6.66) with its convex hull. This way of expanding
the region is also shown in Figure 6.15. We notice that the benefit of switching
between different operating points over time shrinks as more antennas are
added to the base station. Hence, having base stations with many antennas
will increase the sum rate and simplify the system operation.

To further elaborate on these properties, Figure 6.16 shows the sum rate in
a setup with K = 4 users when the SNR is varied. The base station is equipped
with a ULA with half-wavelength-spaced antennas, and the users have equal
SNRs but have different azimuth angles-of-arrivals: −π/16,−π/32, 0,+π/24.
We compare the sum rates achieved with multi-user MIMO with non-linear
and linear processing, as well as OMA/FDMA, where each user is allocated a
quarter of the bandwidth. We will not specify the bandwidth in this example
but plot the sum rate in bit/symbol to keep it general. Figure 6.16(a) shows the
sum rate with M = 10 base station antennas. We notice that the multiplexing
gain of min(M,K) = K results in a much higher sum rate when using
multi-user MIMO than OMA. There is a substantial gap between linear and
non-linear processing, which might be surprising since M = 10 antennas only
resulted in a 3% sum-rate difference in the previous example. The reason for
the broader gap in this example is that we have doubled the number of users.
In Figure 6.15(b) we had the antenna-user ratio M/K = 4, and now we only
have M/K = 10/4 = 2.5. However, if we also double the number of antennas,
we obtain Figure 6.16(b), where the antenna-user ratio is 5. We notice that
the performance gap between linear and non-linear processing is once again
negligible, thanks to more favorable propagation that limits interference.

In summary, multi-user MIMO with linear processing performs almost the
same as its non-linear counterpart when the base station has around five times
more antennas than the number of single-antenna users. This operating regime
is often called Massive MIMO. A typical 5G NR mid-band configuration is
M = 64 and 1 ≤ K ≤ 16 (depending on the traffic load), which results in
antenna-user ratios of 4 to 64, for which linear processing works well. We
refer to the textbook [1] for a deeper theoretical analysis of Massive MIMO,
focusing on cellular networks with inter-cell interference and fading channels.
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(a) M = 10 antennas.

(b) M = 20 antennas.

Figure 6.16: The sum rate in a multi-user MIMO system with K = 4 users and either non-linear
or linear processing. All the users have the same SNR and LOS channels with different azimuth
angles: −π/16,−π/32, 0,+π/24. OMA/FDMA, where the users are allocated equal fractions of
the bandwidth, is shown as a reference and does not provide any multiplexing gain.



444 Capacity of Multi-User MIMO Channels

Example 6.5. What are the ergodic rates in a multi-user MIMO system with
fast-fading channels, linear processing, and perfect CSI at the receiver?

The ergodic capacity of SIMO channels with white noise was studied
in Section 5.4.1, where it was concluded that it is the mean value of the
conditional capacity achieved for a given channel realization. By following
that principle, in a fast-fading multi-user scenario where h1, . . . ,hK are
realizations from stationary and ergodic random processes, the ergodic rate
of user k is obtained by taking the mean value of (6.65):

Rk = B E

log2

(
1 + P ul

k hH
k

 K∑
i=1,i̸=k

P ul
i hihH

i +BN0IM

−1

hk

) . (6.67)

Apart from the mean value, the rate region can be defined similarly.

6.3.5 Alternative Linear Uplink Processing Schemes

Although LMMSE combining is the rate-maximizing linear processing scheme,
other schemes are commonly considered within the area of multi-user MIMO.
There are situations where MRC works almost equally well as LMMSE
combining, and there are other situations where a scheme called zero-forcing
(ZF) is nearly optimal. These situations are connected with the SNR at which
the system operates. If we consider the direction of the LMMSE combining
vector in (6.63), we notice that

wk

∥wk∥
=

(∑K
i=1,i̸=k

Pul
i

B hihH
i +N0IM

)−1
hk∥∥∥∥(∑K

i=1,i̸=k
Pul
i

B hihH
i +N0IM

)−1
hk
∥∥∥∥ →

(N0IM )−1 hk∥∥∥(N0IM )−1 hk
∥∥∥ = hk

∥hk∥

as P ul
1 , . . . , P

ul
K → 0. This is the same direction as when using MRC, which

proves that LMMSE combining turns into MRC when all the users experience
low SNRs. The intuition behind this result is that the inter-user interference
will be much weaker than the noise in this situation; thus, every user is
experiencing a SIMO channel with only receiver noise. If we substitute MRC
with wMRC

k = hk/∥hk∥ into the general rate expression in (6.58), we obtain

RMRC
k = B log2

1 +
Pul
k

B ∥hk∥
2∑K

i=1,i̸=k
Pul
i

B

|hH
i hk|2

∥hk∥2 +N0

. (6.68)

This is the achievable rate when using MRC in a multi-user MIMO system.
The interference term |hH

i hk|2

∥hk∥2 in the denominator resembles the expression
that appeared in the favorable propagation definition in (6.53); thus, MRC is
also considered to work well in situations with very many antennas [90].
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To study the high-SNR regime, we will utilize the channel matrix notation
H = [h1, . . . ,hK ] ∈ CM×K and the diagonal matrix Q = diag(P

ul
1
B , . . . ,

Pul
K

B ) ∈
CK×K containing the transmit powers. We assume that HHH ∈ CK×K is
invertible, which is generally the case if M ≥ K and the users are at physically
different locations so that their channel vectors become linearly independent.
Suppose we gather all the LMMSE combining vectors from (6.63) as the
columns of a combining matrix W = [w1, . . . ,wK ] ∈ CM×K . By noticing that∑K
i=1

Pul
i

B hihH
i = HQHH, we can express this matrix as

W = (HQHH +N0IM )−1 HQ
= HQ (HHHQ +N0IK)−1 = HQQ−1 (HHH +N0Q−1)−1

→ H (HHH)−1 = WZF (6.69)

as P ul
1 , . . . , P

ul
K →∞ since then N0Q−1 → 0 (a matrix with only zeros). The

second equality in (6.69) follows from the matrix identity in (2.50).5 The
resulting combining scheme is called ZF because all the interference terms
become zero when using it. This can be seen from the fact that (WZF)HH =
(HHH)−1 HHH = IK , which implies that

(wZF
k )Hhi =

{
1 if k = i,

0 if k ̸= i.
(6.70)

LMMSE combining turns into ZF at high SNR because the receiver noise
becomes negligibly small under these conditions; thus, the rate is maxi-
mized by removing all interference. The interference affecting user k exists
in the (K − 1)-dimensional subspace of CM spanned by the channel vectors
h1, . . . ,hk−1,hk+1, . . . ,hK of the K−1 other users. This subspace is removed
from the received signal when using ZF combining because wk is selected
orthogonally to it. If we substitute the ZF combining vector into the general
rate expression in (6.58), we obtain

RZF
k = B log2

1 + P ul
k

BN0

[
(HHH)−1

]
kk

 (6.71)

where the interference terms vanish thanks to (6.70) and [(HHH)−1]kk is
the kth diagonal entry of (HHH)−1. This term is obtained by utilizing the
fact that ∥wZF

k ∥2 = [(WZF)HWZF]kk = [(HHH)−1]kk when using ZF. All
users should transmit at maximum power when ZF is used since there is no
interference.

There are other ways to achieve a high SNR than to increase the transmit
powers, as was done in (6.69). In particular, we can increase the beamforming

5This matrix identity is applied with A = HQ/N0 and B = HH.
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Subspace spanned by
the interfering channels

ZF

MRC

LMMSE

Desired channel: h1

h2

h3

Figure 6.17: A geometrical interpretation of LMMSE, ZF, and MRC in a scenario with K = 3
users and M = 3 antennas. The focus is on user 1, while users 2 and 3 cause interference.

gain by adding more antennas. This will reduce the transmit power needed to
enter the high-SNR regime. Hence, in the Massive MIMO regime where the
base stations are equipped with many antennas compared to the number of
users, ZF will likely perform similarly to LMMSE combining.

Figure 6.17 provides a geometrical interpretation of LMMSE, ZF, and
MRC in a scenario with K = 3 users and M = 3 antennas. The channel
vectors h1,h2,h3 point in three different directions in the three-dimensional
vector space C3. We focus on receiving the signal from user 1; thus, all the
interference will exist in the subspace spanned by h2 and h3. This is the red-
shaded plane in the figure. The desired signal is received along the dimension
spanned by the channel vector h1. If MRC is used, the combining vector
is parallel with h1 to maximize the received signal power. If ZF is used,
the combining vector is selected orthogonally to the subspace spanned by
the h2 and h3. If M > K, there are M −K + 1 > 1 dimensions free from
interference, and ZF will collect the received signal power from all of them.
LMMSE combining is a vector between the two extremes (MRC and ZF) and
will move between them depending on the SNR.

Figure 6.18 illustrates the low and high SNR behaviors of LMMSE combin-
ing by continuing the example with K = 4 and M = 10 from Figure 6.16(a).
We notice that MRC provides the same sum rate as LMMSE combining at low
SNRs, where the system performance is noise-limited. In contrast, ZF provides
the same sum rate as LMMSE combining at high SNRs, where the system
performance is interference-limited. There is a large gap between LMMSE
combining and the other schemes at intermediate SNRs.
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Low SNR

High SNR

Figure 6.18: The uplink sum rate in a multi-user MIMO system with K = 4 users, M = 10
antennas, and different linear receive combining schemes. All users have the same SNR.

In practical systems, some users might experience high SNRs while other
users simultaneously experience low SNRs; thus, it is preferable to utilize
LMMSE combining to identify the rate-maximizing tradeoff between inter-
ference and noise suppression automatically. Nevertheless, there is a vast
literature on rate analysis for MRC and ZF, mainly focused on the respective
asymptotic regimes where these methods are optimal. The reason is that the
rate expressions obtained with these schemes are analytically simpler than
the ones obtained with LMMSE combining (e.g., there is no matrix inverse)
and more amenable to mathematical analysis and extraction of insights.

Example 6.6. When ZF combining is used, the effective SNR in (6.71) is
proportional to 1/[(HHH)−1]kk. How is this term distributed if the user
channels are subject to i.i.d. Rayleigh fading: hk ∼ NC(0M , βkIM )?

The channel gain after combining is |(wZF
k )Hhk|2/∥wZF

k ∥2 =1/[(HHH)−1]kk.
It is hard to analyze it directly, so we start from the ZF principle in Figure 6.17:
ZF projects hk orthogonally to the interfering channels. We can create a
unitary matrix Ak = [Ainterf

k ,Afree
k ] in which the K − 1 columns of Ainterf

k ∈
CM×(K−1) is an orthonormal basis of the subspace spanned by the K − 1
interfering channels. The columns of Afree

k ∈ CM×(M−K+1) span the remaining
M − (K − 1) interference-free dimensions. ZF combining reduces the user
channel to (Afree

k )Hhk ∼ NC(0M−K+1, βkIM−K+1). Hence, 1/[(HHH)−1]kk =
∥(Afree

k )Hhk∥2, which has a scaled χ2(2(M −K + 1))-distribution with the
PDF f(x) = xM−Ke

− x
βk

βM−K+1
k

(M−K)! and mean value βk(M −K + 1). This channel
behaves the same as if we would remove K−1 antennas to cancel interference.
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6.3.6 Power Control for Max-Min Fairness

The uplink transmit power coefficients P ul
k ∈ [0, P ], for k = 1, . . . ,K can

be selected to maximize a specific utility function. This is known as power
control since it entails controlling the transmit power each user uses to achieve
the preferred balance between their capacities. In this section, we consider
power control for max-min fairness. We will introduce an efficient fixed-point
algorithm that obtains the power coefficients that maximize the utility function

u(R1, . . . , RK) = min
k∈{1,...,K}

Rk. (6.72)

The max-min fairness problem was formulated in (6.4) as

maximize
(R1,...,RK)∈R

min
k∈{1,...,K}

Rk. (6.73)

The achievable rate region R depends on the adopted receive combining
scheme. When LMMSE combining is used, R is given by (6.66). However, for
any linear processing scheme, we can express the rate region in the generic
form

R =
{
(R1, . . . , RK) :Rk = B log2

(
1 + SINRk(P ul

1 , . . . , P
ul
K )
)

for k = 1, . . . ,K,

for some P ul
1 , . . . , P

ul
K ∈ [0, P ]

}
, (6.74)

where the SINR for each user is a function of the transmit power coefficients
P ul

1 , . . . , P
ul
K . The SINR of user k obtained by LMMSE combining is given in

(6.65) as

SINRLMMSE
k (P ul

1 , . . . , P
ul
K ) = P ul

k hH
k

 K∑
i=1,i̸=k

P ul
i hihH

i +BN0IM

−1

hk.

(6.75)
Similarly, the SINRs of user k when using MRC or ZF are given in (6.68) and
(6.71), respectively, as

SINRMRC
k (P ul

1 , . . . , P
ul
K ) = P ul

k ∥hk∥2∑K
i=1,i̸=k P

ul
i

|hH
i hk|2

∥hk∥2 +BN0
, (6.76)

SINRZF
k (P ul

1 , . . . , P
ul
K ) = P ul

k

BN0

[
(HHH)−1

]
kk

. (6.77)

Maximizing the minimum rate is equivalent to maximizing the minimum
SINR among the users. Hence, the max-min fairness problem in (6.73) can be
expressed for uplink multi-user MIMO with linear processing as

maximize
Pul

1 ,...,Pul
K

min
k∈{1,...,K}

SINRk(P ul
1 , . . . , P

ul
K ) (6.78)

subject to P ul
k ∈ [0, P ], for k = 1, . . . ,K.
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Since the lowest SINR determines the utility, there is no incentive to provide
any user with a larger SINR than the others. This property is crucial in
devising Algorithm 6.1 that finds the optimal solution. The algorithm starts
from arbitrarily selected non-zero power coefficients P ul

k ∈ (0, P ] and sets a
solution accuracy ϵ > 0. In Step 3, each user that achieves an SINR larger
than the current minimum SINR reduces its transmit power. Next, in Step
4, all the power coefficients are scaled so that at least one user transmits at
maximum power. These steps are repeated iteratively until a stopping criterion
is satisfied. The difference between the maximum and minimum SINRs among
the users goes to zero asymptotically; thus, the stopping criterion in Step 2
identifies when the difference becomes smaller than ϵ. The algorithm usually
converges in less than ten iterations because Step 2 is a so-called fixed-point
iteration that rapidly reduces the range of power values to consider.

The algorithm has been stated as if any SINR expression can be utilized,
but certain technical conditions must be satisfied; we refer to [91, Lem. 1, Th. 1]
for the specific details. These conditions are satisfied when using LMMSE
combining or MRC, in which case convergence to the optimal solution to
(6.78) is guaranteed. The algorithm builds on Perron-Frobenius theory and
interference functions covered in the textbooks [92], [93].

Example 6.7. Consider max-min fairness power control along with ZF com-
bining. Show that an optimal solution is to use full power for all users. Find
the corresponding max-min fair rate.

The SINR expression in (6.77) with ZF is P ul
k /(BN0[(HHH)−1]kk). The

SINR of user k is an increasing function of P ul
k , but unaffected by the powers

used by other users. Hence, the only way to improve a user’s rate is to increase
its power, and it can be done without degrading for anyone. Hence, using full
power P ul

k = P for all users is one solution to the max-min fairness problem.
The corresponding max-min fair rate is the minimum rate among the users:

rmax-min fair = min
k∈{1,...,K}

B log2

1 + P

BN0

[
(HHH)−1

]
kk

 . (6.79)

The users typically get different rates when using full power and only the user
with the largest value of [(HHH)−1]kk achieves exactly rmax-min fair, while the
others achieve larger rates. We can alternatively ensure that all users get
exactly the rate rmax-min fair by selecting the transmit powers as

P ul
k = [(HHH)−1]kk

mini∈{1,...,K}[(HHH)−1]ii
P. (6.80)

The non-uniqueness of the solution to the max-min fairness problem is why
Algorithm 6.1 might not converge when using ZF combining.
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Algorithm 6.1 Solution to the max-min fairness problem in (6.78).
1: Initialization: Select arbitrary P ul

k ∈ (0, P ], for k = 1, . . . ,K, and the
solution accuracy ϵ > 0

2: while max
i∈{1,...,K}

SINRi

(
P ul

1 , . . . , P
ul
K

)
− min
i∈{1,...,K}

SINRi

(
P ul

1 , . . . , P
ul
K

)
>ϵ do

3: P ul
k ←

min
i∈{1,...,K}

SINRi(Pul
1 ,...,Pul

K )
SINRk(Pul

1 ,...,Pul
K ) P ul

k , for k = 1, . . . ,K

4: P ul
k ←

P
max

i∈{1,...,K}
Pul
i

P ul
k , for k = 1, . . . ,K

5: end while
6: Output: P ul

1 , . . . , P
ul
K

Figure 6.19 demonstrates the max-min fairness solution obtained by Al-
gorithm 6.1 in a system with K = 4 users. The setup is the same as in
Figure 6.16(a) and Figure 6.18. Each user achieves an SNR of 10 dB when
using full power. In Figure 6.19(a), we show how the rates obtained by the
four users vary with the iterations of the algorithm for M = 6 antennas
and LMMSE combining. During the initial iterations, there are substantial
rate variations between the users. However, as the algorithm proceeds, the
four rates converge to a common value: the max-min fairness solution. The
minimum rate among the users is gradually improved, but the convergence is
not monotonic because a power reduction for some users will improve the rates
of other users. In this example, 6–8 iterations are sufficient for convergence,
but similar behavior can also be expected in other scenarios.

Figure 6.19(b) shows the minimum rate among the K = 4 users for different
numbers of antennas M . Both LMMSE combining and MRC are considered.
In addition to the max-min fairness solutions obtained by Algorithm 6.1, the
minimum rates achieved when using full power at every user are shown as
references. In all the considered cases, the minimum rate increases with M ,
which highlights how the communication performance is improved by using
more antennas. As expected, the max-min fairness power control provides
larger minimum rates than full-power transmission for both combining schemes.
With LMMSE combining, the gap between the max-min fairness solution and
full-power transmission reduces with an increasing number of antennas and
diminishes asymptotically. The reason is that LMMSE combining resembles
ZF combining when M is larger, and Example 6.7 demonstrated that all users
should then use full power.
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(a) The rates achieved by the four users at different iterations.

(b) The minimum rate versus the number of antennas M .

Figure 6.19: The max-min fairness solution obtained by Algorithm 6.1 with K = 4 users, using
the setup from Figure 6.16(a). All the users have the same SNR of 10 dB when using full power.
In (a), the rates of the four users during the algorithm’s iterations are shown when LMMSE
combining and M = 6 antennas are used. In (b), the minimum rate among the users is shown
for a varying number of antennas M when using LMMSE and MRC combining. The minimum
rate obtained using full power Pul

k = P for each user is shown as a reference.
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6.4 Downlink Communications
There are several ways to operate the downlink of a multi-user system. The
channel gains are identical in uplink and downlink, but the resource allocation
solutions differ for two main reasons. Firstly, the base station can divide its
power flexibly between the users in the downlink, while each user has an
individual power budget in the uplink. Secondly, interference has a different
impact since each user receives it through the same channel as its desired
signal in the downlink, while it is received through different user channels in
the uplink. In line with the uplink analysis in Section 6.3, we will consider
three types of downlink operation: OMA, NOMA, and multi-user MIMO.

6.4.1 Orthogonal Multiple Access

We begin by considering the scenario where a single-antenna base station
transmits to K single-antenna user devices over a shared communication
channel with the total bandwidth BHz. We will use FDMA, the OMA
scheme where the bandwidth is divided orthogonally between the users. We
let ξk ∈ [0, 1] denote the bandwidth fraction allocated to user k, for k =
1, . . . ,K, and recall that these fractions can be selected arbitrarily as long as
ξ1 + ξ2 + . . . + ξK ≤ 1. Power allocation is another design dimension. The
base station has a maximum transmit power denoted by P , which it can
divide freely between the users. We let P dl

k ∈ [0, P ] denote the power allocated
to user k, for k = 1, . . . ,K, and notice that these powers can be selected
arbitrarily under the constraint P dl

1 + P dl
2 + . . .+ P dl

K ≤ P . The channel gain
of user k is denoted by βk ∈ [0, 1]. We assume the users are ordered such that
β1 ≥ β2 ≥ . . . ≥ βK ≥ 0, which can be done without loss of generality.

Under these assumptions, user k experiences a point-to-point system with
signal power P dl

k and bandwidth ξkB, so the data rate in (6.8) becomes

Rk
(
ξk, P

dl
k

)
= ξkC

(
P dl
k βk

ξkBN0

)
= ξkB log2

(
1 + P dl

k βk
ξkBN0

)
bit/s, (6.81)

where the notation Rk(ξk, P dl
k ) emphasizes that the rate is a function of the

bandwidth and power allocated to the user. It is a strictly increasing function
of both variables (as can be shown by computing the first-order derivatives),
which shows the fundamental conflict in resource allocation: If we increase a
specific user’s rate by allocating more power or bandwidth, we must take this
power/bandwidth from other users that will experience rate reductions.

Based on the rate expression in (6.81), we can define the rate region as

R =
{(
R1(ξ1, P

dl
1 ), . . . , RK(ξK , P dl

K )
)

: Rk(ξk, P dl
k ) = ξkB log2

(
1 + P dl

k βk
ξkBN0

)
,

for ξk, P dl
k ≥ 0, k = 1, . . . ,K, ξ1 + . . .+ ξK ≤ 1, P dl

1 + . . .+ P dl
K ≤ P

}
,

(6.82)
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which is the set of all points (R1(ξ1, P
dl
1 ), . . . , RK(ξK , P dl

K )) that can be
achieved by dividing the bandwidth and power between the users in dif-
ferent permissible ways. There must be equality in the last two constraints to
reach the Pareto boundary. However, this is not a sufficient condition because
some points at the rate region’s interior also use all bandwidth and power.
This situation differs from the uplink, where the bandwidth fractions are
the only parameters varied in the rate region. For the downlink, even if a
point uses all the bandwidth/power, improving a user’s rate might be possible
without sacrificing others by jointly changing bandwidth and power values.
For simulation purposes, the Pareto boundary can be identified by generating
many points that belong to the rate region and calculating their convex hull
(i.e., the smallest convex outer boundary that encloses all the points).6

Suppose we want to achieve the maximum sum rate. For any given set of
transmit powers P dl

1 , . . . , P
dl
K , one can prove (by differentiation) that the sum

rate is maximized by selecting the bandwidth fractions proportionally to the
users’ received signal powers:

ξk = P dl
k βk∑K

i=1 P
dl
i βi

. (6.83)

By substituting this value into (6.81), the rate achieved by user k becomes

Rk

(
P dl
k βk∑K

i=1 P
dl
i βi

, P dl
k

)
= P dl

k βk∑K
i=1 P

dl
i βi

C

(
K∑
i=1

P dl
i βi
BN0

)
bit/s (6.84)

and the sum rate becomes
K∑
k=1

Rk

(
P dl
k βk∑K

i=1 P
dl
i βi

, P dl
k

)
= C

(
K∑
i=1

P dl
i βi
BN0

)
bit/s. (6.85)

We can further maximize this expression by selecting the power allocation.
The C(·) function is increasing with its argument

∑K
i=1 P

dl
i βi/(BN0). The

expression
∑K
i=1 P

dl
i βi is maximized by assigning all power to the user with the

largest βi, which is user 1 based on the assumed user ordering. Hence, the sum
rate is maximized by P dl

1 = P and P dl
i = 0 for i = 2, . . . ,K. The maximum

sum rate equals the single-user capacity Csu
1 = B log2(1 + Pβ1/(BN0)) of

user 1. It is beneficial from a sum-rate perspective only to serve one user,
while any attempt to serve multiple users will result in a sum rate reduction
(except if the served users have identical channel gains). Nevertheless, this
must be done in practical multi-user systems because everyone must be served
to some extent. This issue is different from the uplink, for which we noticed
in Section 6.3.1 that the sum-rate-maximizing solution with FDMA is to split

6A close approximation of the Pareto boundary is obtained by assuming that the power
is allocated proportionally to the bandwidth: Pdl

k = Pξk. The approximate boundary is then
generated by varying ξ1, . . . , ξK under the condition that ξ1 + ξ2 + . . .+ ξK = 1.
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h1

h2

n1[l]

n2[l]

y1[l]

y2[l]
x1[l] + x2[l]

Figure 6.20: A discrete memoryless broadcast channel with K = 2 users and l denoting the
discrete-time index. The input signal is the superposition of x1[l] and x2[l], designated for user
1 and user 2, respectively. The output at user k is yk[l] = hk(x1[l] + x2[l]) + nk[l], where hk is
the channel response and nk[l] is the independent complex Gaussian receiver noise, for k = 1, 2.

the bandwidth proportionally to the channel gains, which results in non-zero
rates for everyone. The reason for the difference is that the base station can
divide the power arbitrarily between the users in the downlink, while each
user has a fixed power budget in the uplink, so they must all be served to use
all the available transmit power.

6.4.2 Non-Orthogonal Multiple Access

We can achieve a larger rate region by letting the users share all time-frequency
resources instead of dividing them orthogonally using FDMA. This was
demonstrated in Section 6.3.2 for the uplink, while this section considers the
downlink counterpart. A downlink setup with inter-user interference is called
a broadcast channel, and the transmission scheme is called NOMA.

We will first describe the downlink NOMA scheme in the case of K = 2
users that share a bandwidth of BHz. The base station divides its maximum
transmit power P between the users so that P dl

k ∈ [0, P ] is the power assigned
to user k, for k = 1, 2. We consider a discrete memoryless broadcast channel
where the base station transmits simultaneously to both users, as illustrated
in Figure 6.20. The received signal at user k at the discrete time l is

yk[l] = hk (x1[l] + x2[l]) + nk[l], (6.86)

where x1[l] is the input signal designated for user 1, x2[l] is the input signal
meant for user 2, and nk[l] ∼ NC(0, N0) is the independent receiver noise. The
complex channel response to user k is denoted as hk and is assumed to be
deterministic. Its magnitude square is denoted as βk = |hk|2.

Each user receives a superposition of both signals, but despite the mutual
interference, it is possible to extract data if it is encoded correctly. Suppose
the two input signals are independently complex Gaussian distributed so that
xk[l] ∼ NC(0, P dl

k /B) for k = 1, 2, where the symbol power is P dl
k /B. We
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further assume that the users are ordered such that β1 ≥ β2. The received
signal at user 2 in (6.86) can be expressed as

y2[l] = h2x2[l] + n′
2[l], (6.87)

where n′
2[l] = h2x1[l] +n2[l] ∼ NC(0, P dl

1 β2/B+N0) is an effective noise term
that is independent complex Gaussian distributed. Hence, it follows from
Corollary 2.1 that an achievable rate of user 2 is

R2 = C

(
P dl

2 β2

P dl
1 β2 +BN0

)
bit/s. (6.88)

This expression resembles the ones obtained in the uplink, but an essential
difference is that the interference term P dl

1 β2 depends on the user’s own
channel gain β2 and not the channel gain β1 of the other user. The reason is
that the interfering downlink signal arrives through the same channel from
the base station as the desired signal.

If user 1 is informed of the channel coding used by user 2, it can try to
decode the signal designated for user 2. The received signal in (6.86) can then
be expressed as

y1[l] = h1x2[l] + n′
1[l], (6.89)

where n′
1[l] = h1x1[l] + n1[l] ∼ NC(0, P dl

1 β1/B + N0) is the effective noise
term. Hence, an achievable rate is

C

(
P dl

2 β1

P dl
1 β1 +BN0

)
bit/s. (6.90)

This value is larger than or equal to (6.88) because we assumed that β1 ≥ β2.
Consequently, any rate achievable for user 2 is also achievable for user 1, in the
sense that it can also decode it successfully. Although user 1 is not interested
in the actual data designated for user 2 (the data can even be encrypted so
only user 2 can extract its original meaning), it can decode it to apply SIC.
By subtracting the decoded signal sequence {x2[l]} from the original received
signal in (6.86), user 1 obtains

y1[l]− h1x2[l] = h1x1[l] + n1[l]. (6.91)

This is a conventional SISO channel without interference, so the achievable
rate for user 1 regarding its designated signal is

R1 = C

(
P dl

1 β1

BN0

)
bit/s. (6.92)

This is the same rate as if the user was assigned the entire bandwidth in OMA,
except that the power P dl

1 might be smaller than the maximum transmit
power, depending on the base station’s selected power allocation. Since the
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SIC procedure is utilized, we have obtained a non-linear receiver processing
scheme where we both scale the received signal before decoding and subtract
interference from previously decoded signals. When we utilized SIC for uplink
NOMA in Section 6.3.2, we could order the users arbitrarily. The situation
is different in the downlink because the user with the strongest channel can
decode signals encoded for users with weaker channels, but not vice versa.
This makes the rate region easier to characterize since all points are obtained
by varying the power allocation:

R =
{

(R1, R2) : 0 ≤ R1 ≤ C
(
P dl

1 β1

BN0

)
, 0 ≤ R2 ≤ C

(
P dl

2 β2

P dl
1 β2 +BN0

)
,

for some P dl
1 , P

dl
2 ≥ 0, P dl

1 + P dl
2 ≤ P

}
. (6.93)

The Pareto boundary is obtained whenever the maximum power is utilized:

∂R =
{(

C

(
P dl

1 β1

BN0

)
, C

(
P dl

2 β2

P dl
1 β2 +BN0

))
: P dl

1 , P
dl
2 ≥ 0, P dl

1 + P dl
2 = P

}
.

It follows from (6.88) and (6.92) that the sum rate with NOMA is

R1 +R2 = B log2

(
1 + P dl

1 β1

BN0

)
+B log2

(
1 + P dl

2 β2

P dl
1 β2 +BN0

)

= B log2

(
P dl

1 β1 +BN0

BN0

)
+B log2

(
(P dl

1 + P dl
2 )β2 +BN0

P dl
1 β2 +BN0

)

= B log2

(
1 + (P dl

1 + P dl
2 )β2

BN0

)
+B log2

(
P dl

1 β1 +BN0

P dl
1 β2 +BN0

)
, (6.94)

where the last equality follows from swapping the numerators between the two
logarithms. The first term depends on P dl

1 + P dl
2 , but not on how the power

is allocated between the users, so it is maximized when using the maximum
power P . The second term is an increasing function of P dl

1 but independent
of P dl

2 , thus the sum rate is maximized by setting P dl
1 = P and P dl

2 = 0.
The resulting maximum sum rate is B log2(1 + Pβ1/(BN0)) = Csu

1 , which is
the single-user capacity of user 1. This is the same maximum value as with
FDMA; thus, NOMA cannot improve the sum rate compared to OMA and
reduces to single-user transmission at the optimal point. The rate region in
(6.93) is anyway larger than the region in (6.82) obtained by FDMA.

The rate regions with NOMA and FDMA are exemplified in Figure 6.21(a)
with B = 10 MHz. This is the downlink counterpart to the two-user scenario
considered in Figure 6.9. The two users have unequal channel qualities that
become Pβ1

2BN0
= 10 and Pβ2

2BN0
= 5 if an equal power allocation of P/2 per user

is used. The rate region with FDMA has a nearly linear Pareto boundary.
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(a) Comparison of downlink NOMA with OMA based on FDMA.

Maximize sum rate
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(b) Comparison of downlink NOMA and uplink NOMA.

Figure 6.21: Example of downlink rate regions for K = 2 users with different channel qualities.
This is a continuation of the example in Figure 6.9.
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The boundary with NOMA is more curved and results in a slightly larger
region, demonstrating that it is easier to balance user performance when
using NOMA. The sum rate is maximized at the single-user capacity point
(43.9, 0) Mbit/s that both access schemes can achieve. Max-min fairness is
achieved at (20.7, 20.7) Mbit/s with NOMA and at (19.4, 19.4) Mbit/s with
FDMA, so NOMA increases this rate point by 7%. In other words, fairness is
achieved with a smaller sum-rate reduction when using NOMA.

Figure 6.21(b) compares the rate region with downlink NOMA and the
rate region with uplink NOMA, which was previously shown in Figure 6.9. The
channel gains and total transmit power are the same, but the downlink region is
nevertheless larger. This is thanks to the flexible downlink power allocation that
can divide the power unequally between the users. This benefit is particularly
large close to the single-user capacity points. The Pareto boundaries intersect
in one point, achieved by equal downlink power allocation.

Example 6.8. What is the shape of the rate region with NOMA if β1 = β2?
The users could have been ordered arbitrarily in this situation, which

implies that the rate region is symmetric. The sum rate in (6.94) reduces to

R1 +R2 = B log2

(
1 + (P dl

1 + P dl
2 )β2

BN0

)
≤ B log2

(
1 + Pβ2

BN0

)
, (6.95)

where the upper bound is achieved for any power allocation that satisfies
P dl

1 + P dl
2 = P . Hence, the Pareto boundary is the straight line between the

single-user points (Csu
1 , 0) and (0, Csu

2 ). Any point on that line is achieved by
one specific selection of P dl

1 and P dl
2 = P − P dl

1 .

The rate region with NOMA for K ≥ 2 users can be derived by following
the same principles as with two users. The received signal at user k at the
discrete time l is

yk[l] = hk

K∑
i=1

xi[l] + nk[l], (6.96)

where xi[l] ∼ NC(0, P dl
i /B) is the independent data signal transmitted to

user i with the power P dl
i , for i = 1, . . . ,K, and nk[l] ∼ NC(0, N0) is the

independent receiver noise. We assume the users are ordered such that β1 ≥
β2 ≥ . . . ≥ βK ≥ 0. User k can then decode the signals intended for users
k + 1, . . . ,K (in descending order) because it has a stronger channel than
them. By subtracting those interfering signals before decoding its desired
signal, user k will only be exposed to interference from users 1, . . . , k − 1:

yk[l]− hk
K∑

i=k+1
xi[l] = hkxk[l] + hk

k−1∑
i=1

xi[l] + nk[l]︸ ︷︷ ︸
∼NC

(
0,
∑k−1

i=1
Pdl
i βk/B+N0

)
. (6.97)
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By treating the last terms as an effective noise term, an achievable rate for
user k becomes

Rk = C

(
P dl
k βk∑k−1

i=1 P
dl
i βk +BN0

)
bit/s. (6.98)

Theorem 6.3. Consider a K-user discrete memoryless broadcast channel with
the input x1 + . . .+ xK ∈ C and the outputs y1, . . . , yK ∈ C given by

yk = hk

K∑
i=1

xi + nk, k = 1, . . . ,K, (6.99)

where nk ∼ NC(0, N0) is independent noise and h1, . . . , hK ∈ C are con-
stant channel coefficients known at the output. Suppose the input distribu-
tions are feasible whenever E{|xk|2} ≤ P dl

k /B, where the transmit powers
P dl

1 , . . . , P
dl
K ≥ 0 satisfy P dl

1 +. . .+P dl
K ≤ P , P denotes the maximum transmit

power, and B is the bandwidth (and symbol rate). If Rk denotes the rate of
user k and βk = |hk|2, the capacity region is given by

R =
{

(R1, . . . , RK) : 0 ≤ Rk ≤ C
(

P dl
k βk∑k−1

i=1 P
dl
i βk +BN0

)

for some P dl
1 , . . . , P

dl
K ≥ 0, P dl

1 + . . .+ P dl
K ≤ P

}
.

(6.100)

Figure 6.22 exemplifies the rate region achieved with NOMA for K = 3
users. The considered setup is a downlink counterpart of Figure 6.10 with
Pβ1

3BN0
= 10, Pβ2

3BN0
= 5, Pβ3

3BN0
= 2.5, and B = 10 MHz. The shape of the outer

boundary is indicated by a collection of curved lines that lie on the Pareto
boundary. The lines are generated by fixing one of the transmit powers and
then varying the others such that P dl

1 + P dl
2 + P dl

3 = P . Each point on the
boundary represents a specific tradeoff between the users’ performance. The
maximum sum rate is achieved at the single-user capacity point (Csu

1 , 0, 0).

6.4.3 Downlink Multi-User MIMO with Non-Linear Processing

The reason that NOMA cannot increase the sum rate compared with FDMA
is that all the transmitted signals propagate in the same way because the
base station utilizes a single antenna. We have M = 1 transmit antenna and
a total of K receive antennas, so the multiplexing gain of the corresponding
point-to-point MIMO channel is min(M,K) = M = 1. This means that the
sum rate in the NOMA setup cannot surpass the capacity of the point-to-point



460 Capacity of Multi-User MIMO Channels

Figure 6.22: Example of a downlink rate region for K = 3 users when using NOMA.

MIMO setup.7 Hence, it is unsurprising that the sum capacity with NOMA
is limited by what can be achieved when serving one user at a time using
FDMA. To serve K users efficiently in the downlink, the base station should
have at least M ≥ K antennas so that a multiplexing gain of min(M,K) = K
is theoretically achievable. This will enable the base station to send the K
signals with substantially different spatial directivity so that the inter-user
interference can be managed through clever processing/precoding at the
transmitter side. This brings us to a downlink multi-user MIMO setup, where
the multiple inputs are the M transmit antennas and the multiple outputs
are the K user antennas; that is, the MIMO terminology is utilized even if
each user device only has a single antenna.

We begin by considering a discrete memoryless channel with a transmitting
base station equipped with M ≥ 2 antennas and K = 2 receiving single-
antenna user devices. Both users are served simultaneously over a bandwidth
of BHz. The maximum transmit power P is divided between the users, such
that P dl

k ∈ [0, P ] is the power allocated to user k and P dl
1 +P dl

2 ≤ P . Moreover,
each user is assigned a unit-norm precoding vector pk ∈ CM . The received
signal yk[l] ∈ C at user k at the discrete time l is

yk[l] = hT
k (p1x1[l] + p2x2[l]) + nk[l], (6.101)

7The essential difference between the broadcast channel and point-to-point MIMO channel
is that the receiving users cannot decode signals cooperatively in the former setup, which is a
restriction that can only lower the sum capacity.
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where xi[l] is the date signal designated for user i, for i = 1, 2. The symbol
power is P dl

i /B and we assume Gaussian codebooks: xi[l] ∼ NC(0, P dl
i /B).

The channel vector to user k is denoted by hk ∈ CM , while nk[l] ∼ NC(0, N0)
is independent receiver noise. This channel is illustrated in Figure 6.23.

The uplink multi-user MIMO capacity region was obtained in Section 6.3.3
by utilizing two processing components: SIC and LMMSE combining. The
capacity-achieving downlink operation has counterparts to these components,
but another interference cancellation technique must replace SIC. In the
downlink NOMA scenario considered in the last section, the users were
ordered based on their channel gains as |h1|2 ≥ |h2|2, and we noticed that the
first user can always decode the second user’s signal thanks to its stronger
channel. This enabled SIC to be used to achieve the capacity. However, the
same principle cannot be applied with M ≥ 2 antennas because even if we
order the users so that ∥h1∥2 ≥ ∥h2∥2, the precoding vectors can be selected
so that neither user can decode the other user’s signal.8

Example 6.9. Consider a scenario with M = 2 antennas where the channels
are h1 = [1, 1]T and h2 = [1, 0]T. Suppose that Pdl

1
BN0

= Pdl
2

BN0
= 1 and MRT is

used for precoding. Can user 1 decode the signal meant for user 2?
If user 2 treats the interfering signal as noise, it achieves the rate

log2

(
1 + P dl

2 |hT
2p2|2

P dl
1 |hT

2p1|2 +BN0

)
= log2

(
1 + 1

0.5 + 1

)
≈ 0.74 bit/symbol,

(6.102)
because p1 = 1√

2h∗
1 and p2 = h∗

2 when MRT is used. User 1 can only decode
this signal if it is encoded at a rate that is lower than or equal to

log2

(
1 + P dl

2 |hT
1p2|2

P dl
1 |hT

1p1|2 +BN0

)
= log2

(
1 + 1

2 + 1

)
≈ 0.42 bit/symbol.

(6.103)
Since 0.42 < 0.74, user 1 cannot decode the signal designated for user 2,
even if it has a stronger channel (i.e., ∥h1∥2 = 2 and ∥h2∥2 = 1). A similar
computation will show that user 2 cannot decode the signal designated for user
1, so none of them can apply SIC. The multi-antenna precoding creates this
effect because it reduces inter-user interference compared to the single-antenna
case considered in NOMA. Another contributing factor to this result is that
there is no unique ordering of vectors from strong to weak.

Instead of relying on interference cancellation at the receiving users, the
base station can arrange a kind of interference subtraction before the data

8One can create special cases, called degraded broadcast channels, where the SIC procedure
from Section 6.4.2 can also be utilized with multiple transmit antennas. One example is when
h1 and h2 are equal except for a scaling factor. However, these cases are unlikely to occur in
practical scenarios.
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Figure 6.23: A discrete memoryless downlink multi-user MIMO channel with M transmit
antennas and K = 2 receiving single-antenna users. The two input signals are x1[l] and x2[l],
where l is a discrete-time index. The output at user k is yk[l] = hT

k (p1x1[l] + p2x2[l]) +nk[l] for
k = 1, 2, where h1,h2 are the channel vectors, p1,p2 are the precoding vectors, and n1[l], n2[l]
are the independent complex Gaussian receiver noise terms.

signals leave its antennas. This approach builds on an information-theoretic
result from [94], which considers the SISO channel shown in Figure 6.24,
which has the unique characteristic that an extra interfering signal ι is added
to the received signal. Suppose this interfering signal is random but known
to the transmitter. In that case, the channel capacity is the same as if the
interference was not there—even if the receiver is unaware of the realization
of the interference.

Theorem 6.4. Consider the discrete memoryless channel in Figure 6.24 with
input x ∈ C and output y ∈ C given by

y = h · x+ ι+ n, (6.104)

where n ∼ NC(0, N0) is independent noise and ι ∼ NC(0, Pι) is an interfering
signal that is only known at the transmitter. Suppose the input distribution
is feasible whenever the symbol power satisfies E{|x|2} ≤ q and h ∈ C is a
known constant. The channel capacity is

C = log2

(
1 + q|h|2

N0

)
bit/symbol (6.105)

and is achieved when the input is distributed as x ∼ NC(0, q).

This somewhat surprising result is known as dirty paper coding (DPC) due
to Max Costa’s analogy in [94] between the proposed transmission scheme
and how one can write a message on a paper that contains dirt spots. The
paper represents the channel and the dirt is the interference that the trans-
mitter/writer knows beforehand. The transmitter can write the message by
adding ink so that the combination of ink and dirt becomes a message that
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Figure 6.24: A discrete memoryless SISO channel with input x[l] and output y[l] = h · x[l] +
ι[l] + n[l], where l is a discrete-time index, h is the channel response, ι[l] is an interfering signal
that is known at the transmitter, and n[l] is the independent Gaussian receiver noise.

the receiver/reader can understand without distinguishing ink from dirt. The
main point is to utilize the dirt, not combat it.

We will not detail the proof of Theorem 6.4, which can be found in [94], or
convey the precise implementation details, but only describe the fundamental
principles of DPC. The transmitter and receiver take the codebook that could
have been used to achieve the capacity in the absence of the interfering signal
ι and augment it. Figure 6.25 illustrates this augmentation, where the black
points around the origin represent the original Gaussian codebook. There
are six copies of this codebook, highlighted with different colors, that are
sufficiently far away not to overlap but sufficiently close not to create holes
in between. For a given data symbol x and (normalized) interfering signal
ι
h , the transmitter determines which copy of x is closest to ι

h in the complex
plane. We denote the closest copy by x̃, as illustrated in the figure. Instead of
transmitting x̃ directly, we transmit a = x̃− ι

h , because the receiver will then
observe ha+ ι+ n = hx̃+ n which is free from interference (but still contains
noise). To make DPC efficient, the distance between the copied codebooks
must be selected precisely so that a ∼ NC(0, q). Due to the augmentation,
the receiver has many more potential constellation points to consider during
signal detection, which increases the decoding complexity, but the design does
not create extra decoding errors since the copies are relatively far apart.

In the remainder of this section, we will utilize DPC to characterize the
capacity region. When there are multiple users, their data signals must be
encoded sequentially because DPC can only eliminate interference from already
encoded signals. When there are K = 2 users, the user whose signal is encoded
first must treat interference as noise, while the other user can benefit from
DPC to get an interference-free transmission. The iterative procedure makes
this a non-linear processing scheme. For every choice of precoding vectors
and encoding order, we can generate the outer boundary of the rate region
by varying the power allocation so that P dl

1 + P dl
2 ≤ P . The capacity region

will then be the union of all these rate regions; however, it is computationally
hard to generate the region in this way. Searching over different encoding
orders and power allocations is manageable, as shown earlier in this chapter,
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Figure 6.25: Illustration of the main principle of DPC. The original codebook is augmented
with the colored codeword copies to fill the complex plane. When the data symbol x is to be
transmitted, and the interfering signal is ι, the transmitter identifies the copy of x closest to ι/h,
denoted by x̃. The transmitted signal is then selected as a = x̃− ι/h so that the summation of a
and the interfering signal becomes x̃. The interference thereby becomes invisible to the receiver.

but there are too many ways of selecting the precoding vectors. Hence, we
will look deeper into this issue to identify the optimal precoding when the
other parameters have been selected.

If the signal designated for user 1 is encoded first, the user’s received signal
in (6.101) will be affected by interference from the signal meant for user 2.
By treating this signal as additional noise with the power Pdl

2
B |h

T
1p2|2, the

achievable rate becomes

R1 = C

(
P dl

1 |hT
1p1|2

P dl
2 |hT

1p2|2 +BN0

)
. (6.106)

When the signal to user 1 has been determined, the transmission to user 2 can
be encoded using DPC. It then follows from Theorem 6.4 that the achievable
rate will be the same as in the absence of interference; that is, as if the received
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signal was y2[l] = hT
2p2x2[l] + n2[l]. The resulting rate for user 2 is

R2 = C

(
P dl

2 |hT
2p2|2

BN0

)
. (6.107)

The rates in (6.106) and (6.107) can be computed for any precoding vectors.
It is challenging to select the precoding because p2 affects the numerator of
the SINR of user 2 and the denominator of the SINR of user 1. Hence, we
must make a tradeoff between maximizing the received signal power of user 2
and limiting the interference caused to user 1. This is a crucial difference from
the uplink, where each combining vector only affected its designated user and
could be optimized without making tradeoffs. Interestingly, a mathematical
connection between the uplink and downlink can be utilized to identify the
optimal precoding. This is known as the uplink-downlink duality.

Consider the dual uplink scenario where the same two users send their
signals to the base station using the transmit powers P ul

1 and P ul
2 , respectively.

The channel vectors h1,h2 are the same as before, and the receive combining
vectors are selected based on the precoding vectors as w1 = p∗

1 and w2 = p∗
2.

If the signal from user 2 is decoded first and SIC is utilized to remove its
interference before decoding the signal from user 1, the same approach as in
Section 6.3.3 can be used to compute the achievable uplink rates as

Rul
1 = C

(
P ul

1 |pT
1h1|2

∥p1∥2BN0

)
= C

(
P ul

1 |pT
1h1|2

BN0

)
, (6.108)

Rul
2 = C

(
P ul

2 |pT
2h2|2

P ul
1 |pT

2h1|2 + ∥p2∥2BN0

)
= C

(
P ul

2 |pT
2h2|2

P ul
1 |pT

2h1|2 +BN0

)
, (6.109)

where we simplified the expressions by utilizing that the precoding vectors
have unit norm. Suppose we want user k to achieve a specific rate C(γk) in
both the uplink and downlink, for k = 1, 2, where γk ≥ 0 denotes the desired
SINR value. We can find the downlink transmit powers that lead to these
rates by solving the equation

Pdl
1 |hT

1 p1|2
Pdl

2 |hT
1 p2|2+BN0

= γ1

Pdl
2 |hT

2 p2|2
BN0

= γ2

 ⇒

 |hT
1 p1|2

γ1BN0
−|h

T
1 p2|2
BN0

0 |hT
2 p2|2

γ2BN0


︸ ︷︷ ︸

=Γ

[
P dl

1
P dl

2

]
=
[
1
1

]
. (6.110)

This is a linear system of equations, so the solution is [P dl
1 , P

dl
2 ]T = Γ−1[1, 1]T

if the matrix Γ is invertible.9 The corresponding equations for the dual uplink
9The transmit powers must be positive and this condition is only satisfied for some invertible

matrices Γ, which showcases that some rate combinations can never be achieved. The necessary
and sufficient condition is that I − Γ−1

diagΓ has eigenvalues in the range (−1, 1) [95], where Γdiag
is the diagonal matrix having the same diagonal entries as Γ. In this book, we only want to
establish that rates achievable in the uplink with non-zero power coefficients are also achievable
in the downlink with non-zero power coefficients and vice versa, which implies that the condition
is automatically satisfied.
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transmit powers P ul
1 , P

ul
2 are

Pul
1 |pT

1 h1|2
BN0

= γ1
Pul

2 |pT
2 h2|2

Pul
1 |pT

2 h1|2+BN0
= γ2

 ⇒

 |pT
1 h1|2

γ1BN0
0

−|p
T
2 h1|2
BN0

|pT
2 h2|2

γ2BN0


︸ ︷︷ ︸

=ΓT

[
P ul

1
P ul

2

]
=
[
1
1

]
. (6.111)

The only difference from the downlink is that the uplink equation system
contains ΓT instead of Γ. This showcases that the downlink and uplink SINR
expressions contain the same kind of interference terms but at different places:
the interference term |pT

2h1|2 = |hT
1p2|2 affects user 1 in the downlink and

user 2 in the uplink. Due to this asymmetry, the values of P dl
1 , P

dl
2 that deliver

the desired downlink rates are generally different from the values of P ul
1 , P

ul
2

that deliver the same uplink rates. However, the values are tightly related
because

P dl
1 + P dl

2 =
[
1
1

]T [
P dl

1
P dl

2

]
=
[
P ul

1
P ul

2

]T

Γ
[
P dl

1
P dl

2

]
=
[
P ul

1
P ul

2

]T [1
1

]
= P ul

1 + P ul
2 ,

(6.112)

where the second and third equalities follow from (6.110) and (6.111), respec-
tively. Hence, when the precoding and combining vectors are identical, the
same data rates are achievable in the downlink and uplink using the same total
transmit power but allocating it differently between the users. If the uplink
powers are known, the corresponding downlink powers can be computed as[

P dl
1
P dl

2

]
= Γ−1ΓT

[
P ul

1
P ul

2

]
. (6.113)

This result also has implications for the precoding selection. We know from
Section 6.3.3 that the uplink rate in (6.108) is maximized by p1 = h∗

1/∥h1∥,
which is MRC. Moreover, we know that the uplink rate in (6.109) is maximized
by the LMMSE combining in (6.36). By revising the notation, including
complex conjugates, and normalizing the expression to have unit norm, we
obtain the SINR-maximizing precoding vector

p2 =
(
P ul

1 h∗
1hT

1 +BN0IM
)−1 h∗

2∥∥∥(P ul
1 h∗

1hT
1 +BN0IM

)−1 h∗
2

∥∥∥ . (6.114)

The uplink-downlink duality dictates that the same rate points (C(γ1), C(γ2))
are achievable in both uplink and downlink; thus, if some points can only be
reached by the optimal uplink combining, we must use the complex conjugates
of the same vectors for downlink precoding to reach those points. We have
thereby established a mechanism to transform optimal uplink combining
vectors into downlink precoding vectors that are optimal for reaching the
same rate point, thereby resolving the complicated tradeoff. The intuition is
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that the spatial direction (in the M -dimensional vector space) in which the
base station should listen to the uplink signal from user k is the same as it
should transmit back to user k in the downlink.

The uplink rate region with two users was characterized in (6.44) for the
case when the users use the same transmit power. When we instead assign
arbitrary uplink powers P ul

1 , P
ul
2 , we can generalize the expression as

Rul
Pul

1 ,Pul
2

=
{

(R1, R2) : 0 ≤ R1 ≤ C
(
P ul

1 ∥h1∥2

BN0

)
, 0 ≤ R2 ≤ C

(
P ul

2 ∥h2∥2

BN0

)
,

R1 +R2 ≤ B log2

(
det

(
IM + P ul

1
BN0

h1hH
1 + P ul

2
BN0

h2hH
2

))}
.

(6.115)
This scenario is typically called the virtual dual uplink since we cannot allocate
the total uplink power arbitrarily between the users in practice. However,
the power allocation feature exists in the downlink, and the uplink-downlink
duality connects the downlink scenario to these hypothetical/virtual dual
uplink scenarios with arbitrary power splits between the users. In particular,
the downlink rate region that is achievable in multi-user MIMO setups with
DPC is the union of all conceivable virtual uplink rate regions:

R =
⋃

Pul
1 ,Pul

2 :Pul
1 +Pul

2 ≤P

Rul
Pul

1 ,Pul
2
. (6.116)

This is the largest achievable rate region of the downlink multi-user MIMO
channel, which is formally proved in [96], [97], so we call it the capacity region.

The downlink rate region with M = 4 and B = 10 MHz is exemplified in
Figure 6.26, as a continuation to the NOMA scenario in Figure 6.21 with
the LOS channel model in (4.23) where the UEs have the azimuth angles
φ1 = −π/20 and φ2 = π/20. The users have unequal channel qualities that
become Pβ1

2BN0
= 10 and Pβ2

2BN0
= 5 under an equal power allocation of P/2

per user. Nine virtual uplink regions, obtained by different power splits,
are illustrated using blue-dotted lines. These regions have the pentagonal
shape typical for the uplink. The downlink region is the union of all such
virtual uplink regions; thus, it is larger than any given uplink region thanks
to the ability to allocate downlink power arbitrarily between users. The
Pareto boundary has a smoother shape where each point is obtained from one
specific uplink region, following from the uplink-downlink duality. Suppose
we start from a point in the virtual uplink. In that case, we can obtain the
corresponding downlink transmission method by using the same combining
vectors as precoding vectors, transforming the uplink powers into downlink
powers using (6.113), and encoding the downlink signals using DPC in the
opposite order as the uplink signals are decoded using SIC.

The operating points that provide the maximum sum rate and max-min
fairness are indicated in Figure 6.26, and there are multiple points in the
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Maximize
sum rate

Max-min fairness

��	

�
�	

Figure 6.26: Example of the downlink rate region for K = 2 users with multi-user MIMO,
DPC, and M = 4 antennas. The region is the union of all possible dual uplink rate regions with
different transmit power divisions between the users. This is a continuation of the example in
Figure 6.21. Many red-marked points achieve the maximum sum rate, while a single point (red
star) gives max-min fairness.

former case. The sum rate with the optimal receive combining in the virtual
uplink can be computed using (6.43) with arbitrary uplink powers P ul

1 , P
ul
2 as

Rul
1 +Rul

2 = C

(
P ul

1 ∥h1∥2

BN0

)
+ C

(
P ul

2 hH
2

(
P ul

1 h1hH
1 +BN0IM

)−1
h2

)

= B log2

(
det

(
IM + P ul

1
BN0

h1hH
1 + P ul

2
BN0

h2hH
2

))
. (6.117)

This expression is symmetric with respect to the user indices, which means
that the same sum rate can be achieved irrespective of which user signal is
decoded first in the virtual uplink (i.e., encoded last in the downlink). The
maximum downlink sum rate is obtained by maximizing this expression with
respect to the uplink powers [98]:

maximize
Pul

1 ,Pul
2 :Pul

1 +Pul
2 ≤P

B log2

(
det

(
IM + P ul

1
BN0

h1hH
1 + P ul

2
BN0

h2hH
2

))
. (6.118)

There is no closed-form solution to this problem, but the objective function is
a concave function of the power variables. Hence, this is a convex optimization
problem that can be solved using general-purpose convex solvers [99].
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The derivation of the rate region can be extended to the general case of
K ≥ 2. The uplink-downlink duality is then generalized to consider a virtual
uplink scenario of the same kind as in Theorem 6.2 but with different powers
among the users. The rate region is the union of all such virtual uplink regions.
Each point in the downlink region is achieved by encoding the user signals
sequentially and applying DPC to protect each user from interference from
the previously encoded signals. We can summarize the result as follows.

Theorem 6.5. Consider a K-user discrete memoryless downlink multi-user
MIMO channel with the input p1x1 + . . . + pKxK ∈ CM , where xk ∈ C is
the input signal designated for user k and pk ∈ CM is the corresponding
unit-norm precoding vector. The outputs y1, . . . , yK ∈ C at the users are
given by

yk = hT
k

K∑
i=1

pixi + nk, k = 1, . . . ,K, (6.119)

where nk ∼ NC(0, N0) is independent noise and h1, . . . ,hK ∈ CM are constant
channel vectors known at the output. Suppose the input distributions are feasi-
ble whenever E{|xk|2} ≤ P dl

k /B, where the transmit powers P dl
1 , . . . , P

dl
K ≥ 0

satisfy P dl
1 + . . .+ P dl

K ≤ P , P denotes the maximum transmit power, and B
is the bandwidth (and symbol rate). The capacity region is given by

R =
⋃

Pul
1 ,...,Pul

K :
Pul

1 +...+Pul
K≤P

Rul
Pul

1 ,...,Pul
K
, (6.120)

which is the union of the virtual uplink regions

Rul
Pul

1 ,...,Pul
K

=
{

(R1, . . . , RK) :
∑
k∈K

Rk ≤ B log2

(
det
(

IM +
∑
k∈K

P ul
k

BN0
hkhH

k

))

for all K ⊂ {1, . . . ,K}, Rk ≥ 0 for all k
}
. (6.121)

The parameterization in (6.121) reveals the expression for the sum rate,
obtained with K = {1, . . . ,K}. Hence, we can maximize the sum rate as

maximize
Pul

1 ,...,Pul
K

Pul
1 +...+Pul

K≤P

B log2

(
det

(
IM +

K∑
k=1

P ul
k

BN0
hkhH

k

))
. (6.122)

This is a generalization of the two-user problem in (6.118), and it remains to
be a convex optimization problem that lacks a closed-form solution [98], but
can be solved efficiently using any software for solving such problems.

The benefit of increasing the number of antennas is illustrated in Figure 6.27
by revisiting the example from Figures 6.21 and 6.26. The rate regions with
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Figure 6.27: Examples of downlink rate regions for K = 2 users with multi-user MIMO and a
varying number of antennas M , where M = 1 corresponds to NOMA. This is a continuation of
the example in Figures 6.21 and 6.26. The dotted curves represent the hypothetical cases where
inter-user interference is neglected.

NOMA (i.e., M = 1) and multi-user MIMO with M = 4 or M = 8 are
compared. As the beamforming gain increases with M , the single-user capacity
points are shifted towards larger values along the two axes. The Pareto
boundaries also become increasingly curved, demonstrating how interference
becomes less of an issue thanks to favorable propagation, and the sum rate is
substantially larger than the single-user capacities. The dotted curves illustrate
the three hypothetical rate regions obtained without inter-user interference
to emphasize this effect further. The difference between the hypothetical
interference-free case and the actual Pareto boundary is large for M = 1, but
tiny for M = 8. The reason for the curvature in the interference-free cases is
the need to divide the total transmit power between the users.

6.4.4 Downlink Multi-User MIMO with Linear Processing

The last section demonstrated how DPC could be utilized in downlink multi-
user MIMO to achieve all Pareto optimal operating points in the rate region.
Unfortunately, this non-linear encoding scheme has some practical drawbacks.
Firstly, the sequential encoding of the users’ signals leads to an encoding
delay that grows proportionally to the number of users, and the encoding
complexity per user signal is also increased. Secondly, the decoding complexity
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at the user devices is increased as the codebook is augmented with many
codebook copies. Thirdly, the individual users’ data rates must be selected
jointly based on the encoding order, which makes the operation less flexible.
Finally, the transmitter might have imperfect channel knowledge in practice,
so the interference can only be partially removed. In this section, we will
analyze downlink multi-user MIMO without DPC, where each user is subject
to interference from all other users and treats it as additional noise. This is
referred to as linear processing and requires the precoding and power allocation
to be fine-tuned to suppress inter-user interference further.

We consider a K-user downlink multi-user MIMO channel of the kind
defined in Theorem 6.5. The received signal at user k is

yk = hT
k

K∑
i=1

pixi + nk, k = 1, . . . ,K, (6.123)

where xi ∼ NC(0, P dl
i /B) is the data signal sent to user i, P dl

i ≥ 0 is the
allocated transmit power, pi ∈ CM is the associated unit-norm precoding
vector, and nk ∼ NC(0, N0) is independent noise. The complete received signal
y = [y1, . . . , yK ]T for all users is expressed as

y = HTPx + n, (6.124)

where H = [h1, . . . ,hK ] ∈ CM×K is the channel matrix, P = [p1, . . . ,pK ] ∈
CM×K is the precoding matrix with unit-norm columns, x = [x1, . . . , xK ]T

contains all the data signals, and n = [n1, . . . , nK ]T contains the noise.
Under these conditions, the sum of the interfering signals at user k is

K∑
i=1,i̸=k

hT
kpixi ∼ NC

0,
K∑

i=1,i̸=k

P dl
i

B
|hT
kpi|2

 , (6.125)

which has the same distribution as receiver noise but a different variance. By
treating the interference as additional noise in the signal decoding, it follows
from Corollary 2.1 that user k can achieve the downlink rate

Rk = C

(
P dl
k |hT

kpk|2∑K
i=1,i̸=k P

dl
i |hT

kpi|2 +BN0

)
. (6.126)

The same decoding algorithm as in a single-user system can be utilized since
DPC is not used. It is instructive to compare this rate to the uplink rate
expression in (6.58), under the assumption that the receive combining vectors
are selected based on the precoding vectors as wk = p∗

k. The uplink rate can
then becomes

Rul
k = C

(
P ul
k |pT

khk|2∑K
i=1,i̸=k P

ul
i |pT

khi|2 +BN0

)
. (6.127)
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There is a striking similarity between (6.126) and (6.127), where the only
differences are the power coefficients and that the indices are switched in
the interference terms so that |hT

kpi|2 in the downlink becomes |pT
khi|2 in

the uplink. This is another instance of the uplink-downlink duality but for
systems with linear processing. By following the same approach as in the
previous section, one can prove that any combination (R1, . . . , RK) of user
rates that is achievable in the downlink is also achievable in the uplink by
selecting the combining vectors as wk = p∗

k and using the same total transmit
power but allocating it differently between the users. The duality results
with linear processing can be traced back to [100], [101]. Since the uplink
powers cannot be distributed freely between the users, the duality holds
between the downlink scenario and a virtual uplink scenario that allows
for power reallocation between users. Hence, the downlink rate region with
linear processing is obtained from the uplink region in (6.66) by changing the
constraint for how uplink powers are allocated:

R =
{

(R1, . . . , RK) : Rk=B log2

(
1 + P ul

k hH
k

(
K∑

i=1,i̸=k
P ul
i hihH

i +BN0IM

)−1

hk

)

for k = 1, . . . ,K, for some P ul
1 , . . . , P

ul
K ≥ 0 satisfying

K∑
k=1

P ul
k ≤ P

}
.

(6.128)

The rate expression and transmit power terms in (6.128) originate from the
corresponding uplink scenario, so how to achieve each specific rate in the
downlink is not apparent. Before taking a closer look at that, we will compare
(6.128) with the capacity region in Theorem 6.5, obtained with DPC.

Figure 6.28 compares the downlink rate regions achieved with non-linear
processing (using DPC) and linear processing. We continue the example with
K = 2 users considered in many previous figures, such as Figure 6.26. The
rate regions with M = 4 and M = 8 antennas are shown in Figures 6.28(a)
and 6.28(b), respectively. The boundary points with linear processing are
obtained from the parameterization in (6.128) by considering all combinations
of virtual uplink powers that satisfy P ul

1 + P ul
2 = P . Linear processing results

in a smaller region than non-linear processing, but the difference reduces as
we increase the number of antennas, just as in the uplink. The loss in sum rate
from linear processing is 4% with M = 4 but only 0.4% with M = 8, roughly
the same as in the uplink. From a mathematical perspective, the channel
vectors become more easily distinguishable as the number of dimensions in
the vector space increases, which makes it possible to find precoding vectors
that avoid causing inter-user interference without sacrificing much of the
signal strength at the intended receiver. This is an instance of the favorable
propagation property specified in Definition 6.2. We notice that the rate
region obtained with linear processing is not a convex set but has a slightly
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(a) M = 4 antennas.

(b) M = 8 antennas.

Figure 6.28: Examples of downlink rate regions with K = 2 users when multi-user MIMO is
used with either non-linear or linear processing. The region obtained in (6.128) is called “linear”
and its convex hull is also shown. This is a continuation of the example considered in Figure 6.26.
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curvy outer boundary. The convex hull of the region is also shown in the
figure, and it is achieved by the time-sharing procedure described earlier in
the chapter, where we switch between two operating points to achieve points
on the straight line in between. The region’s size can be slightly increased
by time-sharing when M = 4, while the benefit is unnoticeable when M = 8,
thanks to the more favorable propagation.

Each operating point in the rate region characterization in (6.128) is
obtained from a corresponding virtual dual uplink scenario. LMMSE combining
is the optimal linear receiver processing in the uplink; thus, the uplink-downlink
duality implies that the same operating point is achieved by some kind of
LMMSE precoding because we need pk = w∗

k. Starting from the LMMSE
combining expression in (6.63) and normalizing it to have unit norm, we
obtain

pk =

(∑K
i=1

Pul
i

B h∗
ihT

i +N0IM
)−1

h∗
k∥∥∥∥(∑K

i=1
Pul
i

B h∗
ihT

i +N0IM
)−1

h∗
k

∥∥∥∥ , (6.129)

after removing common scaling factors from the numerator and denominator.
We can express the precoding matrix P = [p1, . . . ,pK ] for all users as

P =
(

H∗Q̃HT +N0IM
)−1

H∗Z, (6.130)

using the channel matrix H and a diagonal matrix with uplink powers divided
by the bandwidth: Q̃ = diag(P

ul
1
B , . . . ,

Pul
K

B ) ∈ CK×K . The matrix Z ensures
that each column of P has unit norm by being selected as

Z = diag

 1∥∥∥∥(H∗Q̃HT +N0IM
)−1

h∗
1

∥∥∥∥ , . . . ,
1∥∥∥∥(H∗Q̃HT +N0IM

)−1
h∗
K
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 .

(6.131)
The duality also implies that the same total transmit power is needed in
uplink and downlink but usually must be allocated differently between the
users. For the given uplink powers, P ul

1 , . . . , P
ul
K , we can compute the resulting

uplink SINR values γ1, . . . , γK using (6.127). If we equate the downlink SINR
expressions in (6.126) to the same values, we obtain the equations

P dl
k |hT

kpk|2
K∑

i=1,i̸=k
P dl
i |hT

kpi|2 +BN0

= γk →
P dl
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γkBN0
|hT
kpk|2−

K∑
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P dl
i

BN0
|hT
kpi|2 = 1

(6.132)
for k = 1, . . . ,K. These are K linear equations of the K downlink transmit
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powers P dl
1 , . . . , P

dl
K , thus, we obtain the downlink powers by solving them asP

dl
1
...
P dl
K

 = Γ−1

1
...
1

 , where [Γ]ki =


|hT
kpk|2

γkBN0
if k = i,

− |hT
kpi|2

BN0
if k ̸= i,

(6.133)

contains all the equation coefficients and [Γ]ki denotes the (k, i)th entry of
the K ×K matrix Γ. We now have a way to map any point in the downlink
region, which was parameterized in (6.128) based on the dual uplink powers,
to the downlink precoding vectors and power allocation that achieves it.

6.4.5 Alternative Linear Downlink Processing Schemes

Despite the uplink-downlink duality, selecting preferable downlink precoding
and power allocation can be challenging in practice. The duality holds between
the downlink and the virtual uplink, where we are allowed to allocate power
freely between the users. Hence, even if we design the actual uplink operation
optimally in some sense (e.g., using the max-min fairness power control
described in Section 6.3.6), the corresponding downlink operation obtained
through (6.130) and (6.133) might not achieve a point on the Pareto boundary
of the downlink rate region. It is unlikely that the specific uplink power
division enforced by the maximum power per user in the uplink will happen
to be optimal in the downlink. For this reason, the duality result is typically
interpreted more loosely as the following rule of thumb [1]: the base station
should transmit to a user in the downlink in roughly the same direction as it
obtains a strong uplink SINR through receive combining. In other words, a
combining vector that works well in the uplink also works well as a precoding
vector in the downlink but might not be optimal.

A key challenge when selecting the downlink processing is that the power
allocation and precoding selection are intertwined in a complex way through
the mapping between power coefficients in the downlink and the virtual
uplink. A common approximate solution is to replace the uplink powers with
heuristically selected coefficients in the precoding expression and then optimize
the downlink power allocation separately. If we replace each uplink coefficient
P ul
k in the LMMSE precoding vector in (6.129) by the downlink coefficient
P dl
k , we obtain

pTWF
k =

(∑K
i=1

Pdl
i

B h∗
ihT

i +N0IM
)−1

h∗
k∥∥∥∥(∑K

i=1
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i

B h∗
ihT

i +N0IM
)−1

h∗
k

∥∥∥∥ . (6.134)

This alternative design was called the transmit Wiener filter (TWF) in [102],
where it was motivated by minimizing the MSE between the transmitted signal
vector and the scaled received signal vector at the users. It was also proposed
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in [103], [104] as the precoding that maximizes the signal-to-leakage-and-noise
ratio (SLNR) obtained by replacing the downlink interference term for a given
user by a sum of how much interference the user leaks to other users.

Another way of simplifying the precoding expression is to assume equal
power allocation in the virtual uplink. By substituting P ul

k = P/K into (6.130)
and moving the power and bandwidth terms to the noise term, we obtain

PRZF =
(

H∗HT + KBN0

P
IM
)−1

H∗ZRZF

= H∗
(

HTH∗ + KBN0

P
IK
)−1

ZRZF (6.135)

where the second equality follows from the matrix identity in (2.50) and

ZRZF =diag
(

1
∥(H∗HT+KBN0

P IM )−1h∗
1∥
, . . . ,

1
∥(H∗HT+KBN0

P IM )−1h∗
K∥

)
.

(6.136)
This is often referred to as regularized zero-forcing (RZF) because the ex-
pression resembles that of ZF in (6.69), but the inverse of HTH∗ has been
regularized by adding a scaled identity matrix. Regularization is a classical
way to enhance numerical stability in linear algebra algorithms, but here, it de-
termines how strong the interference is compared to the noise. By considering
the high-SNR limit P →∞, (6.135) converges to ZF precoding

PRZF → PZF = H∗ (HTH∗)−1 ZZF. (6.137)
ZF precoding has the property that HTPZF = HTH∗(HTH∗)−1ZZF = ZZF,
so the impact of the channel matrix appears to vanish from the received signal
expression in (6.124). However, the channel still impacts the selection of the
matrix ZZF that normalizes the columns of the precoding matrix. We need
one-valued diagonal entries of (PZF)HPZF, which can be expressed as(

H∗ (HTH∗)−1 ZZF
)H

H∗ (HTH∗)−1 ZZF =
(

ZZF
)H

(HTH∗)−1 ZZF.

(6.138)
We need ZZF = diag(1/

√
[(HTH∗)−1]11, . . . , 1/

√
[(HTH∗)−1]KK) to make

the diagonal entries equal to one. If we substitute the ZF precoding matrix
into the general rate expression in (6.126), we obtain the simplified expression

RZF
k = B log2

1 + P dl
k

BN0

[
(HTH∗)−1

]
kk

 . (6.139)

This expression contains no interference since ZF precoding leads to a beam-
formed transmission that creates nulls at all the co-users. The SNR-term
contains the factor 1/[(HTH∗)−1]kk that determines how strong the remaining
channel to user k is when the precoding has been restricted to cause no
interference. It is no surprise that RZF turns into ZF at high SNR because
the interference will then dominate over the noise.
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Example 6.10. How should the transmit power be allocated to maximize the
sum rate or achieve max-min fairness when ZF precoding is utilized?

Power allocation optimization is relatively simple when using ZF precoding,
thanks to the lack of interference. The sum of the rates in (6.139) is

K∑
k=1

B log2

(
1 + P dl

k s
2
k

N0

)
, (6.140)

using the notation s2
k = 1/(B[(HTH∗)−1]kk), which is the summation over K

parallel user channels. It has the same form as the rate expression in (3.67)
for a point-to-point MIMO channel, in which case the parallel channels were
created using the SVD and the sum rate was maximized by water-filling power
allocation. Hence, the corresponding way of maximizing (6.140) under the
total power constraint

∑K
k=1 P

dl
k ≤ P is to use the transmit power

P dl,sum-rate
k = max

(
µ−BN0

[
(HTH∗)−1

]
kk
, 0
)
, k = 1, . . . ,K, (6.141)

where the variable µ is selected to make
∑K
k=1 P

dl,sum-rate
k = P .

Max-min fairness is achieved by giving all users the same SINR value and
maximizing that common value. The SINR in (6.139) becomes c/(BN0) for
all users if P dl

k = c[(HTH∗)−1]kk for k = 1, . . . ,K. This common SINR
is maximized by making the scaling factor c as large as possible while
complying with the sum power constraint. The maximum is achieved for
c = P/(

∑K
i=1[(HTH∗)−1]ii) for which all the available power is used; thus,

the max-min fairness power allocation is

P dl,max-min
k = P

[(HTH∗)−1]kk∑K
i=1[(HTH∗)−1]ii

, k = 1, . . . ,K. (6.142)

To analyze the low-SNR regime, we can return to the precoding vector
expression in (6.134) and let P dl

1 , . . . , P
dl
K → 0, which leads to

pTWF
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= pMRT
k . (6.143)

We recognize this as the expression for MRT precoding from (3.44), which we
recall will maximize the SNR in the absence of interference. It also maximizes
the SINR in the multi-user setting when the interference is negligibly weak
compared to the noise. If we substitute the MRT vector into the general rate
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expression in (6.126), we obtain

RMRT
k = B log2

1 + P dl
k ∥hk∥2∑K

i=1,i̸=k P
dl
i

|hT
k
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i |2

∥hi∥2 +BN0

 . (6.144)

To compare the mentioned precoding schemes, Figure 6.29 shows the sum
rate in the downlink counterpart to Figure 6.16. There are K = 4 users
with equal channel strengths, and the SNR value in the figure represents
what is achieved with equal power allocation. The base station is equipped
with a ULA with half-wavelength-spaced antennas, and the users have LOS
channels with different azimuth angles-of-arrivals: −π/16,−π/32, 0,+π/24.
We compare multi-user MIMO with non-linear processing (using DPC) and
linear processing with LMMSE precoding, both based on the virtual uplink
power allocations that maximize the sum rate. The sum rates with RZF and
ZF using equal power allocation and the sum-rate-maximizing OMA scheme
are also shown. The case of M = 10 antennas is considered in Figure 6.29(a)
and reveals substantial differences between the curves. All the multi-user
MIMO schemes have the same slope at high SNRs, demonstrating that they
reach the same multiplexing gain of min(M,K) = K. However, there is a
substantial gap between the non-linear and linear processing schemes, which
showcases the benefit of removing interference using DPC. All the considered
linear schemes perform identically at high SNRs, as expected from the fact
that they all converge to ZF in that regime. At lower SNRs, the optimal
LMMSE precoding is better than the simplified RZF precoding and much
better than ZF. The OMA curve outperforms ZF at low SNRs, although it
has a four times smaller slope as only a single user is served at a time. Hence,
if one must choose between the simplified RZF and ZF schemes, then RZF is
preferred since it works reasonably well at all SNRs.

The number of antennas is increased to M = 20 in Figure 6.29(b), and
then all the multi-user MIMO schemes provide indistinguishable performance.
The antenna-user ratio is M/4 = 5. The same kind of behavior was observed
in the uplink: linear processing is nearly optimal when the base station has
around five times more antennas than the number of single-antenna users.
This is the Massive MIMO operating regime for which 5G NR systems (in the
mid-band) are designed by having M = 64 antennas and serving 1 ≤ K ≤ 16
users, depending on the traffic load. These systems are purposely designed not
to need complex non-linear processing, and the sizeable antenna-user ratio
gives robustness to various practical imperfections, such as imperfect channel
knowledge and hardware imperfections; see [1] for further details.



6.4. Downlink Communications 479

(a) M = 10 antennas.

(b) M = 20 antennas.

Figure 6.29: The downlink sum rate in a multi-user MIMO system with K = 4 users and
either non-linear or linear processing. All the users have the same SNR if equal power allocation
is used. The non-linear and LMMSE processing curves are obtained using sum-rate maximizing
power allocation, while RZF and ZF use equal power allocation. OMA, where only one user is
served, is shown as a reference and does not provide any multiplexing gain.
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Example 6.11. Can we reduce the gap between DPC-based processing and
LMMSE precoding without using DPC?

Yes, one way to increase the sum rate is to use the rate-splitting technique
[105]. The core idea is to transmit an additional data signal xc using the
power P dl

c and the precoding vector pc. This signal contains a collection of
data for everyone and is decoded by all users while treating other interfering
signals as noise. The common signal can be encoded at the rate

Rc = min
k∈{1,...,K}

C

(
P dl

c |hT
kpc|2∑K

i=1 P
dl
i |hT

kpi|2 +BN0

)
, (6.145)

where the minimization over the user indices allows all users to decode it. The
data contained in the common signal is divided between the users, but any
user k can remove the entire common signal from its received signal before
decoding xk as described earlier in this section. The sum rate is therefore

Rc +
K∑
k=1

C

(
P dl
k |hT

kpk|2∑K
i=1,i̸=k P

dl
i |hT

kpi|2 +BN0

)
, (6.146)

and can be maximized with respect to the precoding vectors pc,p1, . . . ,pK
and transmit power coefficients P dl

c , P
dl
1 , . . . , P

dl
K , which must satisfy the

constraint P dl
c +

∑K
k=1 P

dl
k ≤ P . The term rate-splitting refers to how each

user’s data rate is split into a “public” part contained in xc and a “private”
part contained in xk. With an informed design, communication with rate-
splitting cannot be worse than linear precoding since that is a special case
obtained by setting P dl

c = 0. On the other hand, it relies on SIC, which has
the many practical downsides described earlier in this chapter. Moreover, it
can only give a noticeable improvement in scenarios such as Figure 6.29(a),
where there is a substantial gap between DPC-based processing and LMMSE
precoding. The most attractive gains might exist in situations with limited
channel knowledge, which are beyond the scope of this book.

6.4.6 Power Allocation for Max-Min Fairness

Once the linear precoding scheme is determined, the downlink transmit
power coefficients P dl

1 , . . . , P
dl
K ≥ 0 can be selected to maximize a specific

utility function, under the constraint
∑K
k=1 P

dl
k ≤ P . This is known as power

allocation since it entails distributing the available transmit power among
the users to achieve the desired balance among their achieved rates. In this
section, we consider power allocation for max-min fairness. We will introduce
the downlink counterpart to the efficient fixed-point algorithm previously given
in Algorithm 6.1 for the uplink. Hence, we aim to find the power coefficients
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that achieve the solution to the max-min fairness problem

maximize
(R1,...,RK)∈R

min
k∈{1,...,K}

Rk, (6.147)

where the downlink rate region R depends on the adopted linear precoding
scheme. For any such scheme, it can be expressed in the generic form

R =
{

(R1, . . . , RK) : Rk = B log2

(
1 + SINRk(P dl

1 , . . . , P
dl
K )
)

for k = 1, . . . ,K, for some P dl
1 , . . . , P

dl
K ≥ 0 satisfying

K∑
k=1

P dl
k ≤ P

}
,

(6.148)

where the SINR for each user is a function of the transmit power coefficients
P dl

1 , . . . , P
dl
K . When ZF precoding is used, the downlink power allocation that

achieves max-min fairness was already derived in Example 6.10. When any
other fixed normalized precoding vectors p1, . . . ,pK that are independent of
the downlink power coefficients (e.g., RZF precoding in (6.135) or MRT) are
used, the SINR of user k can be expressed using (6.126) as

SINRk(P dl
1 , . . . , P

dl
K ) = P dl

k |hT
kpk|2∑K

i=1,i ̸=k P
dl
i |hT

kpi|2 +BN0
, (6.149)

where the numerators and denominators are linear functions of the downlink
power coefficients P dl

k , for k = 1, . . . ,K.
Since maximizing the minimum rate is equivalent to maximizing the

minimum SINR value among the users, (6.147) can be expressed for fixed
precoding vectors as

maximize
Pdl

1 ,...,Pdl
K

≥0
min

k∈{1,...,K}
SINRk(P dl

1 , . . . , P
dl
K ) (6.150)

subject to
K∑
k=1

P dl
k ≤ P.

Algorithm 6.2 states a fixed-point iteration that finds the optimal solution.
The algorithm starts from arbitrarily selected non-zero power coefficients
P dl
k ∈ (0, P ] and sets a solution accuracy ϵ > 0. As in the uplink counterpart

in Algorithm 6.1, each user that achieves an SINR larger than the minimum
SINR is assigned a reduced transmit power in Step 3. Next, in Step 4, all
the power coefficients are scaled so that the total transmit power equals
the maximum value of P . In fact, it can be proved that the optimal power
allocation must use all the available power. The process continues iteratively
until a stopping criterion is satisfied. The difference between the maximum
and minimum SINRs among the users gradually diminishes, and the stopping
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Algorithm 6.2 Solution to the max-min fairness problem in (6.150).
1: Initialization: Select arbitrary P dl

k ∈ (0, P ], for k = 1, . . . ,K, and the
solution accuracy ϵ > 0

2: while max
i∈{1,...,K}

SINRi

(
P dl

1 , . . . , P
dl
K

)
− min
i∈{1,...,K}

SINRi

(
P dl

1 , . . . , P
dl
K

)
>ϵ do

3: P dl
k ←

min
i∈{1,...,K}

SINRi(Pdl
1 ,...,Pdl

K )
SINRk(Pdl

1 ,...,Pdl
K ) P dl

k , for k = 1, . . . ,K

4: P dl
k ←

P∑K

i=1 P
dl
i

P dl
k , for k = 1, . . . ,K

5: end while
6: Output: P dl

1 , . . . , P
dl
K

criterion in Step 2 determines when the difference becomes less than ϵ. As in
the uplink, the algorithm usually converges in fewer than ten iterations.

The convergence to the optimal solution to the max-min fairness problem
is guaranteed if certain technical conditions are satisfied [91, Lem. 1, Th. 1],
which is the case when the downlink SINR has the generic form in (6.149).

Figure 6.30 demonstrates the max-min fairness solution obtained by Al-
gorithm 6.2 in a system with K = 4 users. The setup is the same as in
Figure 6.29(a) and each user achieves an SNR of 10 dB if equal power alloca-
tion is used. Figure 6.30(a) shows the variations in the rates obtained by the
four users throughout the algorithm’s iterations when using M = 6 antennas
and RZF precoding. Initially, there are significant rate discrepancies among
the users because the initial equal power allocation is suboptimal. However,
as the algorithm progresses, the rates of all four users gradually converge to a
common value, representing the max-min fairness solution. The minimum rate
among the users experiences gradual enhancement; however, the convergence
behavior is not strictly monotonic because reducing the power for some users
can improve the rates of other users after the power normalization.

Figure 6.30(b) demonstrates the minimum rate among the K = 4 users
as the number of antennas M increases, considering both RZF and MRT
precoding. In addition to the max-min fairness solutions obtained by Algo-
rithm 6.2, the minimum rates achieved by equal power allocation among the
users are shown as references. For both RZF and MRT, employing max-min
fair power allocation increases the minimum rate as M grows, indicating
improved communication performance with a greater number of antennas. As
expected, the max-min fairness power allocation yields higher minimum rates
than equal power allocation, regardless of the precoding scheme employed.
However, a non-monotonic trend is observed when increasing M and using
RZF precoding with equal power allocation. This peculiarity arises since
the power is not allocated based on the interference levels generated by the
precoding.
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(a) The rates achieved by the four users at different iterations.

(b) The minimum rate versus the number of antennas M .

Figure 6.30: The max-min fairness solution obtained by Algorithm 6.2 with K = 4 users, in
the same setup as in Figure 6.29(a). All the users have the same SNR of 10 dB when using
equal power allocation. In (a), the rates of the four users during the fixed-point iterations are
shown when RZF precoding and M = 6 antennas are used. In (b), the minimum rate among
the users is shown for a varying number of antennas M when using RZF and MRT precoding.
The minimum rate obtained using equal power allocation is shown as a reference.
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6.5 Exercises

Exercise 6.1. The uplink rate region of a multi-user MIMO system with K = 2 is

R =
{

(R1, R2) : R1, R2 ≥ 0, R1

2 +R2 ≤ 10 Mbit/s
}
. (6.151)

(a) Find the expression for the Pareto boundary.
(b) Find the maximum achievable rate of the second user if R1 ≥ 15 Mbit/s is required.

Exercise 6.2. The Pareto boundary of the uplink rate region for a multi-user MIMO
system with K = 2 is

∂R =
{

(R1, R2) : R1, R2 ≥ 0, R2
1 + 2R2 = 48 Mbit/s

}
. (6.152)

(a) Find the max-min fairness point on the Pareto boundary.
(b) Find the maximum sum-rate point on the Pareto boundary.
(c) Find the point on the Pareto boundary that maximizes the weighted sum rate

3R1 +R2.

Exercise 6.3. The bandwidth allocation that maximizes the uplink sum rate with FDMA
is stated in (6.13). Derive this expression by maximizing

∑K

k=1 ξkB log2(1 + Pβk
ξkBN0

)
with respect to ξk ≥ 0, for k = 1, . . . ,K, under the condition ξ1 + . . .+ ξK = 1.

Exercise 6.4. Consider the uplink multi-user MIMO channel in Theorem 6.2 with M = 4
base station antennas, K = 2 users, and B = 10 MHz.

(a) Suppose P
BN0

= 3
4 , h1 = [1, 1, 1, 1]T, and h2 = [1, −1, 1, −1]T. Sketch the

capacity region and explain its shape.
(b) Suppose P

BN0
= 3

4 , h1 = [1, 1, 1, 1]T, and h2 = [1, 1, 1, 1]T. Sketch the capacity
region and explain its shape.

(c) Suppose P
BN0

= 1, h1 = [1, 1, . . .]T, and h1 = [1, −1, 1, −1, . . .]T. For which
values of M is the sum rate greater or equal to 100 Mbit/s?

Exercise 6.5. Consider the uplink rate region in Figure 6.10 with NOMA and K = 3.

(a) Which user data decoding order is needed to operate at the top-left corner of the
Pareto boundary? Is time-sharing required?

(b) Which user data decoding order is needed to operate at the top-right corner of
the Pareto boundary? Is time-sharing required?

(c) How can we achieve an arbitrary point on the line between the two top corners of
the Pareto boundary?

Exercise 6.6. Prove that at least one user must use maximum uplink power when
achieving the max-min fairness solution with any linear receive combining scheme that
gives |wH

khk|2 > 0 for all users. Hint: Use a proof-by-contradiction approach.

Exercise 6.7. Consider an uplink multi-user MIMO system with linear processing. Show
that the optimal receive combining is a linear combination of the channels: wk = Hw̆k

for some w̆k ∈ CK for k = 1, . . . ,K. Hint: An arbitrary combining vector can be
expressed as wk = Hw̆k + ẇk, where ẇk ∈ CM is orthogonal to the channel vectors,
i.e., HHẇk = 0. It is sufficient to prove that picking ẇk = 0 does not reduce the rates.
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Exercise 6.8. Consider an uplink multi-user MIMO system with linear processing and
K = 2. Show that the optimal combining vector wk for user k, for k = 1, 2, is a linear
combination of the MRC and ZF combining vectors:

wk = αMRC
k wMRC

k + αZF
k wZF

k for some αMRC
k , αZF

k ∈ C. (6.153)

Hint: Use the result from Exercise 6.7 to express the optimal receive combining vector
as wk = αk,1h1 + αk,2h2 for some values of αk,1, αk,2 ∈ C. Show that for any αk,1, αk,2,
one can find αMRC

k , αZF
k ∈ C so that wk = αMRC

k wMRC
k + αZF

k wZF
k holds.

Exercise 6.9. The ZF combining matrix was defined as WZF = H
(
HHH

)−1 in (6.69),
which leads to the rate expression in (6.71). Alternatively, the ZF vector can be inter-
preted as an orthogonal projection of the desired channel vector onto the null space of
the interfering channels. By following this approach in a system with K = 2 users, the
ZF combining vector of user 1 becomes

wZF-alternative
1 =

(
IM − h2

∥h2∥
hH

2
∥h2∥

)
h1, (6.154)

which is the orthogonal projection of h1 onto the null space of the other user’s channel
h2. Show that user 1 achieves the rate in (6.71) when using wZF-alternative

1 .

Exercise 6.10. Consider downlink communication to K = 2 users from an M -antenna
base station, where M is an even number. The channels to the users are decomposed as
h1 = [hT

1,1 hT
1,2]T and h2 = [hT

2,1 hT
2,2]T, respectively, where h1,1 ∈ CM/2 and h2,1 ∈ CM/2

correspond to the channels from the first M/2 antennas of the base station to the users.
Similarly, h1,2 ∈ CM/2 and h2,2 ∈ CM/2 are the channels from the last M/2 antennas
to the users. Suppose the channels are orthogonal in the sense that hH

1,1h2,1 = 0 and
hH

1,2h2,2 = 0. Moreover, it holds that ∥h1,1∥2 = ∥h1,2∥2 = ∥h2,1∥2 = ∥h2,2∥2 = Mβ/2,
where β is the common channel gain.

(a) Suppose the first user is served only by the first M/2 antennas, and the second
user is served only by the last M/2 antennas. What are the rates of the users if
MRT and equal power allocation are used? What is the sum rate?

(b) Suppose all the antennas are used for serving both users with MRT precoding.
What are the rates of the users with equal power allocation? What is the sum rate?
Compare the results with those obtained in (a) when each antenna is assigned to
a single user.

Exercise 6.11. Consider a base station with a ULA with M = 4 antennas and half-
wavelength antenna spacing. There are free-space LOS channels with zero elevation
angle to all K users.

(a) Suppose we transmit with MRT to a user with the channel gain β1 located in
the azimuth angular direction φ1. The transmit power is denoted by P . What is
the power of the received interfering signal at another user, located in some other
azimuth direction φ2 and having the channel gain β2?

(b) How should the angles φ1 and φ2 in (a) be related to have zero interference?
(c) Find a set of four user angles φ1, φ2, φ3, φ4 so that we can transmit to all the

users using MRT without causing any interference.
(d) Suppose the four user angles are all different but do not satisfy the condition

derived in (c). Suggest a precoding matrix that removes the interference.
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Exercise 6.12. A telecom operator divides its customers into two categories: i) standard
and ii) premium. It promises that a premium user will always get four times higher SINR
than any standard user. Consider the downlink of a multi-user MIMO with some arbitrary
fixed linear precoding. Suppose that the Kp users with the indices k = 1, . . . ,Kp are
premium users while the remaining K −Kp users are standard users with the indices
k = Kp + 1, . . . ,K.

(a) For an arbitrary transmit precoding scheme, design a fixed-point algorithm that
obtains the optimal solution to the problem

maximize
Pdl

1 ,...,Pdl
K

≥0
SINR (6.155)

subject to SINRk ≥ 4SINR, k = 1, . . . ,Kp,

SINRk ≥ SINR, k = Kp + 1, . . . ,K,
K∑
k=1

P dl
k ≤ P.

(b) Suppose ZF precoding is utilized. Find a closed-form solution to the power
allocation problem in (6.155).

Exercise 6.13. Consider a base station with a ULA with M antennas and half-wavelength
antenna spacing. Free-space LOS channels and K = 2 users are considered in the uplink.
Suppose the users have equal channel gains β1 = β2 = β and transmit with maximum
power: P ul

1 = P ul
2 = P . Moreover, assume B = 10 MHz and Pβ

BN0
= 1. The users are

located in the azimuth angle directions φ1 = 0 and φ2 = π/8, while the elevation angles
are zero.

(a) For M = 4, compute the sum rate achieved with FDMA using MRC with the
optimal bandwidth allocation.

(b) For M = 4, compute the sum rate achieved with multi-user MIMO based on MRC.
Compare the result with that of FDMA from (a).

(c) Increase the number of base station antennas to M = 8. Compute the maximum
sum rate achieved with FDMA.

(d) For M = 8, compute the sum rate achieved with multi-user MIMO based on MRC.
Compare the result with that of FDMA from (c). Is the gap between FDMA and
multi-user MIMO increasing with the number of antennas?

Exercise 6.14. Consider uplink multi-user MIMO with fast-fading channels, linear
processing, and perfect CSI at the receiver.

(a) What are the ergodic rate expressions when using MRC and ZF combining?
(b) Assume i.i.d. Rayleigh fading. Compute closed-form lower bounds on the ergodic

rates using Jensen’s inequality from Lemma 5.1. How do the resulting expressions
depend on M? Hint: Apply Jensen’s inequality to the convex function f(x) =
log2(1 + x−1), x > 0. Use that E{ 1

|hk|2 } = 1
βk(M−1) and E

{
[(HHH)−1]kk

}
=

1
βk(M−K) for i.i.d. Rayleigh fading channels [3, App. B.3].

(c) Simplify the lower bounds from (b) by assuming the same channel gain β and
transmission with maximum power P for all users. What happens to the ratio
of the lower bounds achieved with ZF and MRC as M → ∞? What happens to
their difference as M → ∞?
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Exercise 6.15. Consider downlink multi-user MIMO with fast-fading channels, linear
processing, and perfect CSI at the receiver.

(a) What are the ergodic rates when using MRT and ZF precoding?
(b) Assume i.i.d. Rayleigh fading. Compute closed-form lower bounds on the ergodic

rates using Jensen’s inequality from Lemma 5.1. How do the resulting expres-
sions depend on M? Hint: Apply Jensen’s inequality to the convex function
f(x) = log2(1 +x−1), x > 0. Use that E

{
1

|hk|2

}
= 1

βk(M−1) , E
{

[(HHH)−1]kk
}

=
1

βk(M−K) , and E
{

h∗
i hT
i

∥hi∥2

}
= 1

M
IM for i.i.d. Rayleigh fading channels [3, App. B.3].

(c) Simplify the lower bounds from (b) by assuming the same channel gain β and
equal power allocation P dl

k = P/K among the users. What happens to the ratio
of the lower bounds achieved with ZF combining and MRT as M → ∞? What
happens to their difference as M → ∞?

Exercise 6.16. Consider an uplink multi-user MIMO system with K = 2 users and
block-fading channels with inputs x1[l] ∈ C and x2[l] ∈ C, for l = 1, . . . , Lc, where Lc
is the number of symbols transmitted in each coherence block. The two users send
simultaneous pilot sequences that span the initial Lp = 2 symbols of each coherence
block. For the base station to distinguish between the users’ channels, the pilot sequences
are selected as

ϕ1 =
[
x1[1]
x1[2]

]
=
√
P

B

[
1
1

]
, ϕ2 =

[
x2[1]
x2[2]

]
=
√
P

B

[
1

−1

]
, (6.156)

which are orthogonal vectors since ϕH
1ϕ2 = 0. During the pilot transmission phase, the

maximum uplink power P is used by both users. The received signal at the initial two
time instances is [

y[1] y[2]
]

= h1ϕ
T
1 + h2ϕ

T
2 +

[
n[1] n[2]

]
, (6.157)

where n[l] ∼ NC(0, N0IM ) is the independent receiver noise. During the Lc −Lp = Lc −2
remaining symbols of each coherence block, the received signal is

y[l] = h1x1[l] + h2x2[l] + n[l], l = 3, . . . , Lc, (6.158)

where x1[l] ∼ NC(0, P ul
1 /B) and x2[l] ∼ NC(0, P ul

2 /B).

(a) Compute the MMSE estimates of h1,h2 based on the received signal in (6.157),
assuming that hk ∼ NC(0, βkIM ), for k = 1, 2. Hint: Multiply with ϕ∗

1
∥ϕ1∥ and ϕ∗

2
∥ϕ2∥

from the right-hand side in (6.157) to obtain two interference-free received signals.
You can then follow the approach from (5.137).

(b) Suppose the base station applies MRC to the received signals in (6.158) based on
the estimated channels: wk = ĥk

∥ĥk∥
, for k = 1, 2. Obtain the ergodic rate of user

k, for k = 1, 2, by treating the channel estimation error and the interference as
noise. Hint: Use Corollary 5.2.
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Exercise 6.17. Consider uplink multi-user MIMO with i.i.d. Rayleigh slow-fading chan-
nels, ZF combining, and perfect CSI at the receiver.

(a) Show that the outage probability Pout,k(Rk) when the rate Rk [bit/s] is used
for user k can be expressed involving a (M − K + 1)-dimensional vector h̆k ∼
NC(0, βkIM−K+1). This is equivalent to showing that each user experiences an
interference-free channel with M −K + 1 degrees of freedom. Hint: Use the result
from Example 6.6 with h̆k = (Afree

k )Hhk.
(b) Obtain an upper bound on the outage probability Pout,k(Rk) using the bound

from (5.54), and find the diversity order.

Exercise 6.18. Consider a multi-user MIMO where each user has N antennas, and
perfect CSI is available everywhere.

(a) Consider the uplink and suppose that user k uses a specific precoding matrix
Pul
k ∈ CN×N , which has unit-norm columns and is known at the base station. The

transmitted signal is generated as Pul
k x̄ul

k where the data vector is distributed as
x̄ul
k ∼ NC(0,Qul

k ), for k = 1, . . . ,K. The covariance matrix Qul
k ∈ CN×N is the

diagonal power allocation matrix with tr
(
Qul
k

)
being the user’s total transmit

power. The received signal at the base station is

yul =
K∑
k=1

HkPul
k x̄ul

k + nul, (6.159)

where Hk ∈ CM×N is the channel vector from user k to the base station and
nul ∼ NC(0, N0IM ) is the independent receiver noise. What is the achievable data
rate for user k if the interference from other users is treated as colored noise (i.e.,
linear receiver processing is used)?

(b) Consider the downlink and suppose that the base station uses a specific precoding
matrix Pdl

k ∈ CM×M for user k, for k = 1, . . . ,K, which has unit-norm columns
and is known at the users. The transmitted signal is generated as

∑K

i=1 Pdl
i x̄dl

i .
The data vector is distributed as x̄dl

i ∼ NC(0,Qdl
i ), where Qdl

i ∈ CM×M is the
diagonal power allocation matrix with

∑K

i=1 tr
(
Qdl
i

)
being the total transmit

power. The received signal at user k is

ydl
k = HT

k

K∑
i=1

Pdl
i x̄dl

i + ndl
k , (6.160)

where ndl
k ∼ NC(0, N0IN ) is the independent receiver noise. What is the achievable

data rate for user k if the interference from signals meant for other users is treated
as colored noise (i.e., linear receiver processing is used)?



Chapter 7

Wideband MIMO Channels and Practical Aspects

Practical communication systems utilize vast bandwidths to the extent that the
channel coefficients vary over it, which might result in inter-symbol interference.
In this chapter, we extend the previously developed MIMO theory to handle
these situations. We will first show how multicarrier modulation appears as
the natural transmission method when dealing with inter-symbol interference.
We then derive the resulting multicarrier MIMO capacity and describe how
the subcarrier channels depend on the multipath clusters. Next, we discuss
practical hardware implementation of precoding and combining, and when
the typical digital architecture can be simplified into an analog or hybrid
architecture. Finally, we will exemplify two practical MIMO implementations
and elaborate on different MIMO-related terminologies and their meanings.

7.1 Basics of Multicarrier Modulation

The analysis and algorithmic development in previous chapters were based
on the discrete memoryless channel model derived in Section 2.3.4. To reach
that model, we made the narrowband signal assumption, which essentially
means that the time interval 1/B between two transmitted symbols is much
larger than the delay spread, which is the variation in delay between the
fastest and slowest propagation paths in the propagation environment. Under
that condition, delayed copies of the previous symbols will not interfere with
the currently transmitted symbol. One can get an intuitive sense of this
phenomenon by listening to acoustic waves. When we hear speech or music,
the waves will be reflected on various objects before reaching the listener. In a
normal-sized room, the delay spread of acoustic waves is smaller than 50 ms,
giving rise to the reverberation effect where each distinct sound becomes less
sharp but still apprehensible and sometimes perceived as more pleasant to the
ears. In contrast, in a large room or outdoor environment with a delay spread
larger than 50 ms, there can be distinct echoes that disturb the listening
experience. When there are echoes of this kind, the acoustic channel is said
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to have a memory. The same physical principles apply to radio waves, but
the bandwidth and propagation speed are entirely different.

Many wireless communication systems designed for broadband connectivity
use more bandwidth than permitted under the narrowband signal assumption.
Hence, we want to design systems that function irrespective of whether the
environment has a long or short delay spread. To model such wideband
channels, we return to the received signal y[l] in (2.128) at symbol time l,
which was obtained before making the narrowband signal assumption:

y[l] =
∞∑

k=−∞
h[l − k]x[k] + n[l], (7.1)

where x[k] is the transmitted symbol at time k, n[l] ∼ NC(0, N0) is the
additive receiver noise, and the communication channel is represented by the
coefficients

h[k] =
L∑
i=1

αie
−j2πfc(τi−η)sinc

(
k +B(η − τi)

)
. (7.2)

These coefficients describe L propagation paths for which path i has the
attenuation αi and the delay τi, while η is the sampling delay at the receiver.
The important thing in this chapter will not be the exact channel model in
(7.2) but the general structure in (7.1). The received signal y[l] contains a
weighted summation of many transmitted symbols {x[k]}. The copy of x[k]
received at time l is multiplied by the weight denoted by h[l − k].

The sinc-function appears in (7.2) because it was utilized in Section 2.3.2 as
the pulse p(t) in the PAM transmission and for bandpass receiver filtering that
removes noise outside the signal band. This function satisfies the transmission
design requirements from that section while requiring the minimum bandwidth.
However, the downside is that it has a long time duration around its peak value,
spanning both forward and backward in time. Strictly speaking, sinc(Bt) has
an infinite duration, but 90% of its energy is in the interval t ∈ [−1/B, 1/B]
and 99% in the interval t ∈ [−8/B, 8/B]. We will refer to the latter as the
effective time duration of the pulse, and the fact that it is much larger than
the symbol time is important when characterizing the channel coefficients in
(7.2). Recall that (7.2) is obtained in (2.126) by sampling the function

(p ∗ g ∗ p)(t) =
L∑
i=1

αie
−j2πfc(τi−η)sinc(B(t+ η − τi)) (7.3)

at the time instance t = k
B where k is an integer. This function is illustrated

in Figure 7.1 for L = 3 paths with amplitudes and delays specified in the
legend. The three path components in (7.3) are shown individually, and all
take the form of an attenuated and delayed sinc-function. The summation of
these components results in the dotted curve that represents (p ∗ g ∗ p)(t). By
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Figure 7.1: Example of a channel with L = 3 distinct paths with different amplitudes and delays
(the complex phase-shifts are neglected). The summation of these paths results in (p ∗ g ∗ p)(t)
in (7.3). By sampling this signal at k/B, where k is an integer, we get the channel coefficients
h[k] defined in (7.2).

taking samples of this function at time instances k/B, where k is an integer,
we get the channel coefficients h[k] in (7.2). Interestingly, these coefficients
are non-zero for both positive and negative values of k, but the oscillations
become smaller as |k| increases. The fact that h[k] can be non-zero for negative
indices should not be interpreted as having an unrealistic non-causal system
but highlights that real pulse functions start long before they reach their
peak values. Importantly, the three paths give rise to much more than three
non-zero channel coefficients due to the pulse’s long effective time duration.

Practical systems mitigate this effect by using pulses with a shorter effective
time duration than the sinc-function, represented by a faster decay around the
peak value. However, all feasible pulses have a non-zero effective time duration,
so this issue cannot be fully alleviated.1 Hence, even if the sampling delay
is selected as η = mini τi to match with the peak of the fastest propagation
path (as was done in Figure 7.1), there will be h[k] ̸= 0 for negative values of
k. To achieve a causal discrete-time system model, we should instead select η
to take the first sample of the received signal at the beginning of the pulse

1The pulse p(t) must satisfy the Nyquist criterion, which for a given symbol rate B requires
that p(k/B) = 0 for non-zero integers k and results in a signal bandwidth that is larger than B.
In theory, we could minimize the effective time duration by using a rectangle-shaped pulse that
is only non-zero in the interval t ∈ [−1/(2B), 1/(2B)], but it will have a huge bandwidth (the
Fourier transform is a sinc-function). A common practical choice is the so-called root-raised-
cosine pulse, for which one can conveniently control the tradeoff between the effective time
duration and the excess bandwidth compared to B (required by the sinc-pulse). For example,
with 25% excess bandwidth, 99% of the energy is contained in the interval t ∈ [−2/B, 2/B].
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that arrives through the fastest propagation path. The number of samples
should be selected to take the last sample at the end of the pulse that arrives
through the slowest propagation path. The relevant parameters are then the
delay spread

τspread = max
i∈{1,...,L}

τi − min
i∈{1,...,L}

τi (7.4)

of the channel and the integer number of periods Npulse for which the pulse
takes values that cannot be approximated as zero; that is, Npulse is the smallest
even2 integer so that (p ∗ p)(t) = sinc(Bt) ≈ 0 for |t| ≥ Npulse/(2B). Since
Npulse and τspread are finite in practice, we can describe the channel using a
finite number of channel coefficients h[k] that we will denote as T + 1 in the
remainder of this chapter. If we select the sampling delay as

η = min
i∈{1,...,L}

τi −
Npulse − 2

2B , (7.5)

then the fastest path in (7.2), with the smallest τi, will contain the time-
shifted pulse sinc(k − Npulse

2 + 1), which can be approximated as zero for all
k < 0. Since all other propagation paths are slower, we can conclude that
h[k] ≈ 0 for all k < 0 in (7.1). Moreover, the slowest path (with the largest τi)
will contain the time-shifted pulse sinc(k −Bτspread − Npulse

2 + 1), which can
be approximated as zero for k ≥ Bτspread + Npulse − 1. Hence, the channel
coefficient with the largest time index that we need to consider in (7.1) is
h[T ] with

T = ⌊Bτspread⌋+Npulse − 1, (7.6)
where ⌊·⌋ truncates its argument to the nearest smaller integer.

In summary, when selecting the sampling delay as in (7.5), the summation
in (7.1) will approximately end at k = l and contain T + 1 terms:

y[l] =
l∑

k=l−T
h[l − k]x[k] + n[l]

=
T∑
ℓ=0

h[ℓ]x[l − ℓ] + n[l], (7.7)

where the equality follows from changing the summation index from k to
ℓ = l − k. We notice that the channel now behaves as a causal FIR filter of
order T with the non-zero coefficients h[0], . . . , h[T ] as the impulse response.
These coefficients are the discrete-time representation of the channel and can
be computed based on the physical channel using (7.2) and (7.5).

2The considered sinc-pulse is symmetric around its peak value in the time domain; thus, we
should consider the same number of periods before and after the peak value. Since the fastest
path is typically the strongest one, it is essential to take samples when the pulse received over
that path reaches its peak value to make the corresponding path as strong as possible.
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The discrete-time system model in (7.7) describes a dispersive channel with
a memory of T previous symbols; that is, the received signal y[l] contains not
only the currently transmitted signal x[l] but also inter-symbol interference
from x[l−1], . . . , x[l−T ]. There are multiple ways of dealing with interference.
We can remove the interference by “transmitting” T zero-valued symbols after
each data symbol so that the inter-symbol interference becomes zero. This
approach will reduce the symbol rate from B to B/(T + 1) and is more-or-less
equivalent to the narrowband signal assumption since we effectively reduce
the signal bandwidth to alleviate inter-symbol interference. Another option is
to design a digital receiver filter that inverts the operation of the FIR filter
of the channel. This is known as single-carrier transmission. In this chapter,
we will focus on a third option: divide the bandwidth into multiple frequency
subcarriers that each can be modeled as a memoryless channel.

7.1.1 Orthogonal Frequency-Division Multiplexing (OFDM)

If a narrowband signal can be transmitted over a small piece of bandwidth
Bnarrow without generating inter-symbol interference, then it must be possible
to take a larger bandwidth B, divide it equally into B/Bnarrow pieces with
bandwidth Bnarrow, and transmit separate narrowband signals in each of them.
Orthogonal frequency-division multiplexing (OFDM) is a way to implement this
procedure without requiring a strict bandwidth division or separate hardware
components for each piece of bandwidth. OFDM has become the standard
digital transmission method in WiFi, LTE, NR, and many other standards.

The main characteristic of OFDM is that the transmitted time-domain
symbols {x[k]} in (7.7) are not equal to the data symbols, but they are instead
designed to convey different data over different parts of the frequency band.
To achieve this, we would like to transform the wideband channel in (7.7)
into the frequency domain using the DFT that was defined in Section 2.8. In
this section, we will show that this is the optimal way of operating under the
assumption that the time-domain signal has a block-wise cyclic structure.

Suppose we want to transmit a block of S symbols, called χ[0], . . . , χ[S−1],
over the channel in (7.7). For any given value of T , determined by the
propagation environment, we can always select S > T since we are the ones
designing the communication protocol. Since the channel has a memory of T
previous symbols, we must control what was transmitted at the previous T
symbol times before time 0. In particular, we will append a cyclic prefix to
obtain the following cyclic sequence of length S + T :

x[k] =
{
χ[k] k = 0, . . . , S − 1,
χ[k + S] k = −T, . . . ,−1.

(7.8)

This procedure of creating one transmission block is illustrated in Figure 7.2,
where the complete transmitted signal consists of {x[k] : k = −T, . . . , S − 1}.
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S data symbols

χ[S−1]χ[S−1] χ[S−T ]χ[S−T ] χ[0]

Cyclic prefix Last T symbols

Figure 7.2: Each block in an OFDM transmission consists of S data symbols and a cyclic
prefix containing the last T symbols.

Since we added the last T symbols as a prefix, we can interpret the received
signal in (7.7) as the cyclic convolution

y[l] =
T∑
ℓ=0

h[ℓ]x[l − ℓ] + n[l] =
T∑
ℓ=0

h[ℓ]χ[(l − ℓ)modS ] + n[l], l = 0, . . . , S − 1,

(7.9)

between the input signal sequence {χ[s] : s = 0, . . . , S − 1} and the sequence
{h[ℓ] : ℓ = 0, . . . , T} with the channel taps, plus the independent noise
n[l] ∼ NC(0, N0).3 The cyclic convolution and its properties were previously
discussed in Section 2.8.2. Thanks to the cyclic prefix, we can write the
relationship between the S received signals and S transmitted signals in
matrix-vector form as y[0]

...
y[S − 1]


︸ ︷︷ ︸

=y

= Ch

 χ[0]
...

χ[S − 1]


︸ ︷︷ ︸

=χ

+

 n[0]
...

n[S − 1]


︸ ︷︷ ︸

=n

, (7.10)

where the channel is represented by the S × S circulant matrix

Ch =



h[0] h[S − 1] . . . h[2] h[1]
h[1] h[0] h[S − 1] . . . h[2]

... h[1] h[0] . . . ...

h[S − 2] . . . . . . . . . h[S − 1]
h[S − 1] h[S − 2] . . . h[1] h[0]

 , (7.11)

3In principle, we could also consider the previously received signals y[−T ], . . . , y[−1] that
contain a combination of the signals in the cyclic prefix and signals that were transmitted even
earlier in time, but these received signals are normally discarded in OFDM since they contain
interference from even earlier signals that are generally unknown. Even if these are previous
data symbols for which estimates are available at the receiver, error propagation effects can be
created if we rely on them for decoding the new block of symbols.
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+χ Ch y

n

Figure 7.3: The operation of an OFDM system is divided into blocks of S symbols (plus a
cyclic prefix). The transmission in a block can be expressed as a discrete memoryless MIMO
channel with vector input χ ∈ CS and vector output y ∈ CS . The channel matrix Ch in (7.11)
is circulant and the independent noise vector n is complex Gaussian distributed.

which contains the FIR filter taps h[0], . . . , h[T ] that have been padded with
the zero-valued taps h[T + 1] = . . . = h[S − 1] = 0 when S − 1 > T for
notational convenience.

Interestingly, there is a mathematical equivalence between (7.10) and the
system model of a point-to-point MIMO channel with S inputs, S outputs,
and the channel matrix Ch. We can write (7.10) in the familiar MIMO-like
form

y = Chχ+ n (7.12)
and Figure 7.3 shows the corresponding block diagram. We recall from Sec-
tion 3.4 that the capacity of such a channel is achieved by diagonalizing
the channel matrix, thereby creating S parallel memoryless subchannels.
Since the channel matrix Ch of an OFDM system is a circulant matrix, its
eigendecomposition has a simple form that was derived in Section 2.8.2:

Ch = FH
SDh̄FS , (7.13)

where FS is the DFT matrix defined in (2.198) and Dh̄ is the diagonal matrix

Dh̄ =


h̄[0] 0 . . . 0

0 h̄[1] . . . ...
... . . . . . . 0
0 . . . 0 h̄[S − 1]

 (7.14)

containing the frequency response of the FIR filter. It is computed as

h̄[ν] =
T∑
ℓ=0

h[ℓ]e−j2πℓν/S , for ν = 0, . . . , S − 1. (7.15)

Suppose we let the transmitter generate the time-domain signal sequence χ as

χ = FH
Sχ̄ (7.16)

for some data-bearing vector χ̄ ∈ CS . If the receiver multiplies the received
signal sequence y with the DFT matrix as FSy, it will obtain
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ȳ = FSy = FS(ChFH
Sχ̄+ n) = FSFH

S︸ ︷︷ ︸
=IS

Dh̄ FSFH
S︸ ︷︷ ︸

=IS

χ̄+ FSn

= Dh̄χ̄+ n̄, (7.17)

which has the same form as a MIMO channel with the diagonal channel matrix
Dh̄ and the rotated noise vector

n̄ =

 n̄[0]
...

n̄[S − 1]

 = FSn ∼ NC(0, N0IS). (7.18)

To obtain this result, we have utilized the eigendecomposition in (7.13) and the
fact that the DFT matrix FS is unitary. The latter property makes FSFH

S = IS
and ensures that the rotated noise vector n̄ contains independent entries with
the same variance as n. The transmitter and receiver processing that creates
the S parallel SISO channels is summarized in Figure 7.4(a).

We used the eigendecomposition to diagonalize the channel matrix Ch,
while the SVD was used for the same purpose in Section 3.4. These decom-
positions are closely related but differ in whether the diagonal matrix is real
or complex.4 The eigendecomposition has a simpler form but only exists for
square matrices (as in this section), while the SVD always exists.

Example 7.1. Compute the frequency responses with S = 4 subcarriers for
the following channels. The first channel has h1[0] = 1 but h1[ℓ] = 0 for ℓ ̸= 0.
The second channel has h2[0] = h2[1] = 1, while h2[ℓ] = 0 for any other ℓ.

The frequency responses of these channels are obtained from (7.15) as

h̄1[ν] = h1[0]e−j2π·0·ν/4 = 1, (7.19)
h̄2[ν] = h2[0]e−j2π·0·ν/4 + h2[1]e−j2π·1·ν/4 = 1 + e−jπν/2

= 2e−jπν/4 cos (πν/4) , (7.20)

for ν = 0, . . . , 3, where the last equality follows from Euler’s formula.
The magnitude of the first channel’s frequency response is 1 on all subcar-

riers, so this channel is frequency-flat. This is a consequence of only having
a single tap. On the other hand, the magnitude of the second channel’s
frequency response is 2| cos(πν/4)|, which results in the values |h̄2[0]| = 2,
|h̄2[1]| =

√
2, |h̄2[2]| = 0, |h̄2[3]| =

√
2 on the different subcarriers. This

channel has frequency-varying characteristics since the two taps superimpose
differently between the subcarriers.

4The SVD UΣVH of Ch has the matrix Σ = diag(|h̄[0]|, . . . , |h̄[S− 1]|) with singular values,
which are the magnitudes of the corresponding entries of Dh̄ in the eigendecomposition. The
unitary matrices can be selected as U = FH

SDh̄Σ−1 and V = FH
S .
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n

(a) Transmitter and receiver processing that diagonalizes the OFDM channel.

+

+
.  .  .

.  .  .
h̄[0]

h̄[S − 1]

ȳ[0]

ȳ[S − 1]

χ̄[0]

χ̄[S − 1]

n̄[0]

n̄[S − 1]

(b) Equivalent representation with S parallel SISO channels.

Figure 7.4: The transmission of an S-length block in an OFDM system can be represented as
a MIMO channel where the channel matrix has the eigendecomposition Ch = FH

SDh̄FS . Hence,
the transmitter and receiver can process the signals using the S × S DFT matrix as shown in
(a) to achieve S parallel SISO channels as shown in (b).

We have now derived the system operation generally referred to as OFDM.
The reason for calling it orthogonal frequency-division multiplexing is that
we multiplex the S data symbols in χ̄ using the frequency domain. More
precisely, we generate the transmitted sequence χ of time-domain symbols
using the IDFT as χ = FH

Sχ̄, which implies that χ̄ is the frequency-domain
representation of the transmitted signal. Similarly, the receiver obtains the
received signals y in the time domain and computes its DFT ȳ = FSy. We
thereby obtain S parallel (orthogonal) discrete memoryless channels

ȳ[ν] = h̄[ν]χ̄[ν] + n̄[ν], for ν = 0, . . . , S − 1,

as illustrated in Figure 7.4(b). We call these subcarriers since OFDM divides
the wideband channel into S equally spaced subchannels in the frequency
domain. The frequency value of a given subcarrier depends on how we measure
frequencies. Subcarrier ν utilizes the normalized frequency ν/S, but since we
use a symbol rate equal to the bandwidth B, this corresponds to the unnor-
malized frequency νB/S in the complex baseband. Moreover, as described in
Section 2.8.1, the DFT is a periodic function where each normalized frequency
has aliases at ν/S+n for any integer n. This ambiguity is due to the sampling
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Figure 7.5: The S subcarriers in an OFDM system are equally spaced over the bandwidth B
and centered around the carrier frequency, which is 0 in the complex baseband representation
shown in (a) and fc in the real passband representation shown in (b). The subcarrier index ν
counts subcarriers from the center towards the right and then continues from left to center.

and implies that many different continuous-time frequencies can give rise to
the same discrete-time frequency. Since we analyze the complex baseband
representation of a passband signal and take samples at the symbol rate, we
know from Figure 2.9 that the actual frequencies occur in the interval from
−B/2 to B/2. Each subcarrier ν only has one alias in that range; hence, its
true frequency is {

νB
S , if 0 ≤ ν < S

2 ,
(ν−S)B

S , if S
2 ≤ ν < S,

(7.21)

which is aligned with the symmetric range of positive and negative normalized
frequencies shown in Figure 2.29. Figure 7.5(a) illustrates the location of
the subcarriers along the frequency axis and which subcarrier index ν gives
rise to each of them. The figure considers the case when S is odd, while the
outermost frequency values change slightly when S is even. We can multiply
(2.207) by B to obtain a list of all the subcarrier frequencies in the complex
baseband: {

B⌈S2 ⌉
S
−B, . . . ,−B

S
, 0, B

S
, . . . ,

B
⌈
S
2
⌉
−B

S

}

=
{
−B2 , . . . ,

B
2 −

B
S , if S is even,

−B2 + B
2S , . . . ,

B
2 −

B
2S , if S is odd.

(7.22)

The separation B/S between two adjacent subcarrier frequencies is called
the subcarrier spacing. The theory for OFDM is developed in the complex
baseband, but the physical communications occur in a passband centered
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around some carrier frequency fc. We can obtain the corresponding subcar-
rier frequencies by shifting the entire spectrum to be centered around that
frequency. The resulting real passband representation is illustrated in Fig-
ure 7.5(b), which shows the positive subcarrier frequencies around +fc (there
is also a copy around −fc, as illustrated in Figure 2.9).

When transmitting a large amount of data, the OFDM system operation
is divided into many consecutive blocks, each managed as described above.
Each block is called an OFDM symbol. The structure of an OFDM symbol is
illustrated in Figure 7.6, which shows both the time- and frequency-domain
representations. Since we transmit T + S time-domain symbols with a symbol
rate of BHz, the total time duration of an OFDM symbol is (T + S)/B
seconds. The OFDM symbol spans the entire bandwidth B, as shown in
Figure 7.6(a). Since each time-domain symbol has a duration of 1/B seconds
and a bandwidth of BHz, it covers an area of 1

BB = 1 in the time-frequency
plane. This unit area is dimensionless but is sometimes called one complex
degree of freedom because it represents the minimum component from which
time-frequency signals can be created. Just as any molecule is made of a group
of atoms, any communication signal is made from a group of complex degrees
of freedom.

Figure 7.6(b) shows how χ̄[0], . . . , χ̄[S−1] represent the transmitted signals
over S subcarriers. The subcarriers are equally spaced over the frequency
domain, each utilizing a bandwidth of B/S Hz. Since an OFDM symbol has a
time duration of (T + S)/B seconds, each subcarrier covers an area of

T + S

B

B

S
= 1 + T

S
degrees of freedom (7.23)

in the time-frequency plane. This is larger than the unit area of a time-domain
symbol because each OFDM symbol consists of a sequence of T + S time-
domain symbols, of which T symbols are sacrificed in the cyclic prefix to
remove inter-symbol interference. However, if we select S ≫ T , then 1 + T

S ≈ 1
so that the loss is small in relative terms.

The complete transmitter and receiver implementations of OFDM are
illustrated in Figures 7.7(a) and (b), respectively. The transmitter first encodes
data into the S symbols χ̄ = [χ̄[0], . . . , χ̄[S − 1]]T. It then computes the IDFT
to obtain χ = [χ[0], . . . , χ[S − 1]]T = FH

Sχ̄. The transmitter then appends
the cyclic prefix to obtain a sequence χ[S − T ], . . . , χ[S − 1], χ[0], . . . , χ[S −
1] of T + S time-domain symbols, which are transmitted serially over the
communication channel. The receiver stores a sequence of T + S time-domain
symbols y[−T ], . . . , y[S − 1] but discards the cyclic prefix to obtain y =
[y[0], . . . , y[S − 1]]T. It then computes the frequency-domain signals ȳ =
[ȳ[0], . . . , ȳ[S − 1]]T = FSy using the DFT.

The IDFT χ = FH
Sχ̄ at the transmitter and DFT ȳ = FSy at the receiver

are obtained as matrix-vector multiplications. The multiplication between an
S × S matrix and an S-length vector generally requires the computation of
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B

χ[k]
1
B

(a) Time-domain representation of an OFDM symbol.

Time

Frequency

(T + S) 1
B

S subcarriersB
S

χ̄[ν]

(b) Frequency-domain representation of an OFDM symbol.

Figure 7.6: OFDM systems divide the transmission into blocks called OFDM symbols, which
span the entire bandwidth B and T + S time-domain symbols. This block is utilized to generate
S memoryless subcarrier channels in the frequency domain.
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Figure 7.7: Block diagrams of the transmitter and receiver in an OFDM system.

S2 multiplications and S(S − 1) additions, but the DFT matrix has a special
structure with repeated entries that can be utilized to lower the computational
complexity. In particular, there is a classical algorithm called the fast Fourier
transform [106] that computes the DFT or IDFT using a number of arithmetic
operations proportional to S log2(S) instead of S2. This fast implementation
is typically used in practical systems.

Example 7.2. The OFDM symbols in 4G LTE and 5G NR use the subcarrier
spacing B/S = 15 kHz, irrespectively of the bandwidth; thus, the block length
S grows proportionally to the bandwidth B. The cyclic prefix is selected to
have the time duration 4.69µs, which specifies a particular largest admissible
delay spread and corresponds to T ≈ B · 4.69 · 10−6. How many complex
degrees of freedom does each subcarrier utilize?

We can compute the complex degrees of freedom directly using (7.23) as

1 + T

S
≈ 1 + 4.69 · 10−6B

S
= 1 + 4.69 · 10−6 · 15 · 103 ≈ 1.07. (7.24)

This indicates that the cyclic prefix increases the utilization of signal resources
by 7%, which is the price to pay for dealing with inter-symbol interference.

There are alternative OFDM configurations in 5G NR [107], including
an extended cyclic prefix option that can be selected to manage larger delay
spreads and increased subcarrier spacings (by a factor of 2n for n ∈ {1, 2, 3, 4})
to handle latency-critical services and small-cell deployments with low delay
spread. In the latter case, the cyclic prefix is shortened accordingly to maintain
the same number of degrees of freedom per subcarrier.

There are other multicarrier modulation schemes than OFDM, and some
alleviate the cyclic prefix to increase the resource efficiency; however, this
can only increase the capacity by 7%. A more important reason to avoid
OFDM is that the IDFT operation creates a time-domain signal with relatively
large power variations, which makes it hard to build efficient power amplifiers.
Hence, some low-power communication systems use other modulation schemes.
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7.1.2 Capacity of SISO-OFDM Channels

We will now determine the channel capacity of the OFDM system in (7.17),
which we will refer to as the SISO-OFDM channel because we have a single-
antenna transmitter and a single-antenna receiver. By using DFT matrices
for transmitter and receiver processing, as illustrated in Figure 7.4, we create
the S memoryless subcarrier channels

ȳ[ν] = h̄[ν]χ̄[ν] + n̄[ν], for ν = 0, . . . , S − 1. (7.25)
Suppose we use the symbol power qν when sending the data symbol χ̄[ν] at
subcarrier ν; that is, E{|χ̄[ν]|2} = qν . We can then utilize Corollary 2.1 to
conclude that the resulting data rate at subcarrier ν is

log2

(
1 + qν |h̄[ν]|2

N0

)
bit per subcarrier symbol. (7.26)

This rate is achieved when the data symbol is distributed as χ̄[ν] ∼ NC(0, qν).
The accumulated data rate within one OFDM symbol is the summation of
(7.26) for all S subcarriers:

S−1∑
ν=0

log2

(
1 + qν |h̄[ν]|2

N0

)
bit per OFDM symbol. (7.27)

Since each OFDM symbol has a time duration of (T + S)/B seconds, we can
equivalently express (7.27) as

B

T + S

S−1∑
ν=0

log2

(
1 + qν |h̄[ν]|2

N0

)
bit/s. (7.28)

This expression is almost the bandwidth B multiplied by the average rate
of the S subcarriers, but we are dividing by T + S instead of S, which is
the price to pay for the cyclic prefix. We have referred to (7.26)–(7.28) as
data rates, not the capacities, because we initially assumed arbitrary symbol
powers q0, . . . , qS−1 on the subcarriers. Since the channel capacity is the
maximum data rate, it can be obtained by maximizing (7.27) with respect
to all permissible ways of selecting these power parameters. We used q in
previous chapters to denote the maximum symbol power in the time domain.
The corresponding requirement in the OFDM case is that E{|χ[s]|2} ≤ q for
the time-domain symbols, for s = 0, . . . , S − 1. We can utilize the definition
χ[s] = 1√

S

∑S−1
ν=0 χ̄[ν]ej2πsν/S of the IDFT to connect this requirement to the

data symbols χ̄[0], . . . , χ̄[S − 1] that are transmitted in the frequency domain:

E
{
|χ[s]|2

}
= E


∣∣∣∣∣ 1√
S

S−1∑
ν=0

χ̄[ν]ej2πsν/S

∣∣∣∣∣
2

= 1
S

S−1∑
ν=0

E
{∣∣∣χ̄[ν]ej2πsν/S

∣∣∣2} = 1
S

S−1∑
ν=0

qν , (7.29)
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where we utilized the fact that the data symbols are independent and have
zero mean when achieving the aforementioned rates. The conclusion is that
we can select the (non-negative) symbol powers q0, . . . , qS−1 at the different
subcarriers freely under the power constraint

1
S

S−1∑
ν=0

qν ≤ q. (7.30)

This constraint says that the average power over the subcarriers should equal
the power per time-domain symbol. Another way to phrase it is that the
sum power of the S subcarriers should be smaller or equal to the power of S
time-domain symbols:

∑S−1
ν=0 qν ≤ qS. The capacity of the OFDM channel (in

bit per OFDM symbol) is therefore obtained by maximizing the sum rate of
S memoryless channels under a sum power constraint:

C = max
q0≥0,...,qS−1≥0:

S−1∑
ν=0

qν=qS

S−1∑
ν=0

log2

(
1 + qν |h̄[ν]|2

N0

)
. (7.31)

Apart from a somewhat different notation, this is precisely what we did when
considering the point-to-point MIMO capacity in Theorem 3.1. The optimal
solution was obtained by the water-filling power allocation:

qopt
ν = max

(
µ− N0

|h̄[ν]|2
, 0
)
, ν = 0, . . . , S − 1, (7.32)

where the variable µ is selected to make
∑S−1
ν=0 qν = qS.

When we previously utilized water-filling to achieve the MIMO channel
capacity, we divided the power between different spatial dimensions. It is
common that a few spatial dimensions are much stronger than the other
dimensions since more power reaches the receiver when transmitting towards
some specific multipath clusters. This can result in only allocating power to a
subset of the subchannels, particularly at low SNRs or when considering LOS
channels. In contrast, the S subcarrier channels h̄[0], . . . , h̄[S − 1] are often
of similar strength because they are all created as linear combinations of the
same channel taps, as can be seen from (7.15). Hence, except in very low SNR
scenarios, we will allocate power to all subcarriers. When that happens, we
can utilize (3.72) to identify the optimal value of µ in (7.32):

µ = q + 1
S

S−1∑
ν=0

N0

|h̄[ν]|2
. (7.33)

The channel capacity of a SISO-OFDM system can be summarized as follows.
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Theorem 7.1. Consider the SISO-OFDM system in Figure 7.3 with input
χ ∈ CS and output y ∈ CS given by

y = Chχ+ n, (7.34)

where n ∼ NC(0, N0IS) is independent noise. Suppose the input distribution
is feasible whenever the symbol power satisfies E{∥χ∥2} ≤ qS. The channel
matrix Ch has the eigenvalues h̄[0], . . . , h̄[S − 1] given by (7.15) and the
corresponding eigenvectors are columns of the IDFT matrix FH

S . If the channel
matrix is constant and known at the input and output, the channel capacity
is

C = B

T + S

S−1∑
ν=0

log2

(
1 + qopt

ν |h̄[ν]|2

N0

)
bit/s, (7.35)

where T is the length of the cyclic prefix,

qopt
ν = max

(
µ− N0

|h̄[ν]|2
, 0
)
, ν = 0, . . . , S − 1, (7.36)

and the variable µ is selected to make
∑S−1
ν=0 q

opt
ν = qS.

The capacity is achieved by the input distribution χ ∼ NC(0,FH
SQoptFS),

where Qopt = diag(qopt
0 , . . . , qopt

S−1) is an S × S diagonal matrix.

In summary, OFDM is the capacity-achieving way to communicate over
wideband SISO channels under the assumption that a cyclic prefix is appended
to the data transmission. We observed this by rewriting the transmission of
a block of S symbols into a MIMO-like matrix form and showing that the
resulting channel matrix Ch is diagonalized by DFT and IDFT operations at
the receiver and transmitter, respectively. We then obtain S parallel subcarrier
channels, similar to Section 3.4, and achieve the capacity by dividing the
power between them using water-filling.

7.2 Capacity of MIMO-OFDM Channels

We will now extend the capacity analysis from the last section to cover OFDM
systems with multiple antennas at both the transmitter and the receiver. When
there are M receive antennas, each of the received signals can be modeled
using an FIR channel filter as in (7.7), but with the essential difference that
signals are received simultaneously from K transmit antennas. Hence, the
received signal on antenna m at time l can be expressed as

ym[l] =
T∑
ℓ=0

K∑
k=1

hm,k[ℓ]xk[l − ℓ] + nm[l], (7.37)



7.2. Capacity of MIMO-OFDM Channels 505

where hm,k[0], . . . , hm,k[T ] are the channel coefficients between receive antenna
m and transmit antenna k, xk[l] is the transmitted signal from antenna k
at time l, and nm[l] ∼ NC(0, N0) is the independent receiver noise. This is a
messy system model because the received signal at a given time instance l
depends on the signals transmitted from K antennas at T + 1 time instances.
However, we can resolve this inter-symbol interference as in the SISO case.

Suppose a T -length cyclic prefix is applied in accordance to (7.8), then the
collection of received signals at antenna m in a block containing S time-domain
symbols can be expressed as ym[0]

...
ym[S − 1]


︸ ︷︷ ︸

=ym

=
K∑
k=1

Chm,k

 χk[0]
...

χk[S − 1]


︸ ︷︷ ︸

=χk

+

 nm[0]
...

nm[S − 1]


︸ ︷︷ ︸

=nm

, (7.38)

where χk ∈ CS is the signal sequence transmitted from antenna k, nm ∼
NC(0, N0IS) is the receiver noise, and the channel between receive antenna
m and transmit antenna k is represented by the S × S circulant matrix

Chm,k =



hm,k[0] hm,k[S − 1] . . . hm,k[2] hm,k[1]
hm,k[1] hm,k[0] hm,k[S − 1] . . . hm,k[2]

... hm,k[1] hm,k[0] . . . ...

hm,k[S − 2] . . . . . . . . . hm,k[S − 1]
hm,k[S − 1] hm,k[S − 2] . . . hm,k[1] hm,k[0]

 .
(7.39)

This matrix has the same shape as (7.11), which implies that its eigenvectors
also coincide with the columns of the IDFT matrix FH

S in (2.198). In particular,
the eigendecomposition of Chm,k is

Chm,k = FH
SDh̄m,k

FS , (7.40)

where the diagonal matrix Dh̄m,k
= diag(h̄m,k[0], . . . , h̄m,k[S − 1]) contains

the frequency response coefficients of the FIR filter that describes the channel:

h̄m,k[ν] =
T∑
ℓ=0

hm,k[ℓ]e−j2πℓν/S , ν = 0, . . . , S − 1. (7.41)

This implies that we can diagonalize the matrix Chm,k by considering signals
transmitted and received in the frequency domain instead of the time domain.
If we express the DFT of the transmitted signal at antenna k as χ̄k = FSχk,
we can write the DFT ȳm = FSym of the received signal in (7.38) as

ȳm =

 ȳm[0]
...

ȳm[S − 1]

 = FS

(
K∑
k=1

Chm,kFH
Sχ̄k + nm

)
=

K∑
k=1

Dh̄m,k
χ̄k + n̄m,

(7.42)
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where we utilized (7.40) and denoted the noise vector in the frequency domain
as n̄m = [n̄m[0], . . . , n̄m[S − 1]]T = FSnm ∼ NC(0, N0IS). We notice that
the νth entry in ȳm is independent of the other entries in the sense of only
depending on variables with the same index. Hence, we can separately describe
the signals received over the M receive antennas at subcarrier ν as ȳ1[ν]

...
ȳM [ν]


︸ ︷︷ ︸

=ȳ[ν]

=

 h̄1,1[ν] . . . h̄1,K [ν]
... . . . ...

h̄M,1[ν] . . . h̄M,K [ν]


︸ ︷︷ ︸

=H̄[ν]

 χ̄1[ν]
...

χ̄K [ν]


︸ ︷︷ ︸

=χ̄[ν]

+

 n̄1[ν]
...

n̄M [ν]


︸ ︷︷ ︸

=n̄[ν]

, (7.43)

which we can write in short form as

ȳ[ν] = H̄[ν]χ̄[ν] + n̄[ν], ν = 0, . . . , S − 1. (7.44)

This looks precisely like a MIMO channel of the kind considered in Section 3.4,
but it is based on the frequency-domain channel matrix H̄[ν] ∈ CM×K that
is a weighted sum of the channel matrices at the different channel taps:

H̄[ν] =
T∑
ℓ=0

H[ℓ]e−j2πℓν/S , ν = 0, . . . , S − 1, (7.45)

where H[ℓ] ∈ CM×K is the time-domain channel matrix at the tap with index
ℓ, whose (m, k)th entry is hm,k[ℓ]. The matrices H̄[0], . . . , H̄[S − 1] is the
frequency response of the considered MIMO channel.

Thanks to the cyclic prefix, we managed to rewrite the system model in
(7.37) for one S-length block with inter-symbol interference into the S separate
subcarrier channels in (7.44). This is the model of a MIMO-OFDM system
and is summarized in Figure 7.8. The subcarriers are mutually independent
in the sense of depending on different signal vectors χ̄[ν] and independent
noise terms n̄[ν]. The only thing that couples them is the power budget of the
transmitter: the total energy per block is limited to qS. This power constraint
can be expressed in different ways:

K∑
k=1

E{∥χk∥2} =
K∑
k=1

E{∥χ̄k∥2} =
S−1∑
ν=0

E{∥χ̄[ν]∥2} ≤ qS. (7.46)

The first and second summations consider the time-domain and frequency-
domain signals at the K antennas, respectively. The third summation considers
the frequency-domain signals at the S subcarriers. It showcases that the power
limit applies to the average sum of the symbol powers ∥χ̄[ν]∥2 per subcarrier.
We know from Theorem 3.1 that the capacity of a point-to-point MIMO
channel is achieved by transmitting in the right singular vector directions and
applying water-filling power allocation. The same can be done in the OFDM
case, with the only exception that water-filling is carried out by considering
all subcarriers and their respective spatial dimensions.
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Figure 7.8: A MIMO-OFDM system can be represented as S parallel MIMO channels.

Theorem 7.2. Consider the point-to-point MIMO-OFDM system in Figure 7.8,
where subcarrier ν has the input χ̄[ν] ∈ CK and output ȳ[ν] ∈ CM given by

ȳ[ν] = H̄[ν]χ̄[ν] + n̄[ν], ν = 0, . . . , S − 1, (7.47)

where n̄[ν] ∼ NC(0, N0IM ) is independent noise. Suppose the input distribu-
tion is feasible whenever

∑S−1
ν=0 E{∥χ̄[ν]∥2} ≤ qS. The channel matrices H̄[ν]

are constant and known at the transmitter and receiver. Let the rν non-zero
singular values of H̄[ν] be denoted as sν,1, . . . , sν,rν . The channel capacity is

C = B

T + S

S−1∑
ν=0

rν∑
k=1

log2

(
1 +

qopt
ν,k s

2
ν,k

N0

)
bit/s, (7.48)

where T is the length of the cyclic prefix,

qopt
ν,k = max

(
µ− N0

s2
ν,k

, 0
)
, ν = 0, . . . , S − 1, k = 1, . . . , rν , (7.49)

and the variable µ is selected to make
∑S−1
ν=0

∑rν
k=1 q

opt
ν,k = qS.

The capacity is achieved by the input distribution χ̄[ν] ∼ NC(0,VνQopt
ν VH

ν),
where Qopt

ν = diag(qopt
ν,1 , . . . , q

opt
ν,rν , 0, . . . , 0) is a K ×K diagonal matrix and

Vν contains the ordered right singular vectors of H̄[ν].

If we would instead use an arbitrary precoding matrix Pν and diagonal
power allocation matrix Qν on subcarrier ν, the resulting achievable rate can
be expressed similarly to (3.106) as

C = B

T + S

S−1∑
ν=0

log2

(
det

(
IM + 1

N0
H̄[ν]PνQνPH

νH̄H[ν]
))

bit/s. (7.50)
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BBU BBU

PA LNA ADCDAC Up Down

(a) Transmitter. (b) Receiver.

Figure 7.9: Block diagrams of the main components between the baseband unit and the
antennas when using the digital beamforming architecture with K = M = 4 antennas.

7.2.1 Digital Beamforming Architecture
The theory and algorithms in this and previous chapters were developed using
discrete-time complex baseband signals and channel models. There is a direct
mapping between these models and the real continuous-time passband models
used for practical communications, which was described in Section 2.3.1. In
practice, this transformation is done by a sequence of hardware components
at the transmitter and receiver. Figure 7.9 exemplifies the digital beamforming
architecture, where each antenna has a dedicated chain of components between
itself and the baseband processor [108]. This versatile architecture is capable
of implementing all the features considered in this book.

At the transmitter, the discrete-time OFDM signal sequence is generated
in the baseband unit (BBU) and then converted to an analog baseband signal
using a digital-to-analog converter (DAC). The signal is then up-converted to
the passband through multiplication with a sinusoidal carrier frequency signal
generated by a local oscillator. The passband signal is then fed to a power
amplifier (PA) that greatly increases the power before the signal reaches the
antenna, which radiates it as an electromagnetic wave. Each antenna has a
dedicated branch in Figure 7.9(a) with a DAC, up-converter, and PA.

The receiver performs similar processing but in the opposite order. The
receive antenna converts the incoming wave into an electric current that is
typically very weak and, therefore, fed to a low-noise amplifier (LNA) for
immediate amplification. Next, the signal is down-converted to the baseband
through multiplication with a sinusoidal carrier frequency signal and lowpass
filtering. Finally, the signal is sampled using an analog-to-digital converter
(ADC), and the output signal sequence reaches the BBU. Each antenna has a
dedicated branch in Figure 7.9(b) with an LNA, down-converter, and ADC.

This is a high-level description of the digital beamforming architecture,
which highlights the essential processing blocks. In practice, there are also
bandpass filters next to the amplifiers to reject out-of-band distortion. Some-
times, the down-conversion is done in two stages: from the carrier to an
intermediate frequency, where the bandpass filtering is done more conve-
niently and then converted to the baseband. The number of components of
each kind is directly proportional to the number of antennas.
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7.3 Clustered Multipath Propagation and Hybrid Beamforming

The clustered rich multipath propagation model was introduced in Sec-
tion 5.6.1 to determine the MIMO channel matrix in an environment with
Ncl clusters that scatter signals from the transmitter to the receiver. Cluster
i ∈ {1, . . . , Ncl} is located in the direction (φt,i, θt,i) seen from the transmitter
and in the direction (φr,i, θr,i) seen from the receiver. In this section, we will
extend this model to the OFDM case and explore what kind of hardware
implementation is necessary to achieve the MIMO capacity.

We consider a ULA with K antennas at the transmitter and a ULA
with M antennas at the receiver. The array response vectors are denoted as
aK(φ, θ) ∈ CK and aM (φ, θ) ∈ CM , respectively, and can be modeled as in
(4.120). Each multipath cluster contains a large number of paths with varying
delays, which are spread out so that the cluster might contribute to multiple
channel taps. Hence, the channel matrix H[ℓ] ∈ CM×K at tap ℓ is modeled as

H[ℓ] =
Ncl∑
i=1

ci[ℓ]aM (φr,i, θr,i)aT
K(φt,i, θt,i), ℓ = 0, . . . , T, (7.51)

which is a generalization of (5.187) where the new channel coefficient ci[ℓ] ∼
NC(0, βi[ℓ]) depends on the tap index. The shape of the sequence βi[0], . . . , βi[T ]
of variances is known as the power-delay profile and is characterized by the
cluster arrival time (i.e., the first tap index with a non-zero variance) and
how the power decays with time as the propagation distance increases. The
channel model in (7.51) is commonly considered in the analysis of mmWave
channels [109], which typically contain fewer clusters than in the low-band and
mid-band because of the greater penetration losses and negligible diffraction
in those bands. We refer to [110], [111] for further motivations of this model,
which is also appropriate for sub-THz bands [13].

Example 7.3. In the Saleh-Valenzuela model from [112], the power-delay
profile is determined by the power-delay coefficients Γ > 0 and γ > 0 for the
clusters and individual paths, respectively. Each cluster i is associated with a
discrete arrival time ti, and the variances of the respective channel coefficients
are given by

βi[ℓ] =
{

0, if ℓ ∈ {0, . . . , ti − 1},
β0e

−ℓ/Γe−(ℓ−ti)/γ , if ℓ ∈ {ti, . . . , T}.
(7.52)

The factor β0e
−ℓ/Γ describes how all channel gain coefficients decay expo-

nentially with time since the waves spread out, while the factor e−(ℓ−ti)/γ

determines how much weaker the slower paths in a cluster are compared to
the quickest path. This model was originally proposed for SISO channels but
is commonly used with the clustered MIMO channel model in (7.51).
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If we substitute the time-domain channel matrices in (7.51) into (7.45),
we obtain the channel matrices at each of the S OFDM subcarriers:

H̄[ν] =
Ncl∑
i=1

(
T∑
ℓ=0

ci[ℓ]e−j2πℓν/S

)
aM (φr,i, θr,i)aT

K(φt,i, θt,i), ν = 0, . . . , S−1.

(7.53)
Each matrix is a weighted sum of all clusters, with the weights being the S-
length DFT of the sequence ci[0], . . . , ci[T ] of time-domain channel coefficients.
The weights vary with the subcarrier index, which creates frequency-dependent
fading variations depending on whether the channel coefficients superimpose
constructively or destructively. However, the large-scale geometric channel
properties, such as the number of clusters, their angular directions, and
average strength, are the same for all subcarriers. These large-scale properties
primarily determine the rank of the channel matrix. For example, the rank of
each matrix in (7.53) is upper bounded by min(M,K,Ncl), which is equal to
Ncl when the clusters have well-separated angles from both the transmitter’s
and receiver’s perspective (and min(M,K) ≥ Ncl); see Figure 5.34(c) for an
example. In situations where the number of clusters is small compared to
the number of antennas so that the channel matrix has at most rank Ncl, a
simplified hardware architecture is sufficient to achieve the channel capacity.
These practical aspects will be the focus of the remainder of this chapter.

Example 7.4. Suppose the channel coefficients are distributed as ci[ℓ] ∼
NC(0, βi[ℓ]) and independent across the clusters i and tap indices ℓ. What is
the average squared Frobenius norm of the channel matrix in (7.53)? How
does it depend on the subcarrier index?

The average squared Frobenius norm at subcarrier ν ∈ {0, . . . , S − 1} is

E{∥H̄[ν]∥2
F} = E


∣∣∣∣∣
Ncl∑
i=1

(
T∑
ℓ=0

ci[ℓ]e−j2πℓν/S

)∣∣∣∣∣
2MK

= MK
Ncl∑
i=1

T∑
ℓ=0

E
{
|ci[ℓ]|2

}
= MK

Ncl∑
i=1

T∑
ℓ=0

βi[ℓ], (7.54)

which is independent of the subcarrier index. The channel realizations will be
different between subcarriers so that some are stronger than others momen-
tarily, but all subcarriers are equally good statistically.

In practice, the channel coefficients of different clusters are independent
since they involve different physical paths. However, the channel taps of
a given cluster can be slightly correlated since the pulse functions have a
non-zero effective time duration, so each physical path affects multiple taps.
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7.3.1 One Dominant Cluster: Analog Beamforming is Sufficient

There are propagation scenarios where one of the clusters is significantly
stronger than the others, for example, because it provides specular reflection
while all other clusters provide diffuse scattering. Moreover, if there is a LOS
path, it is typically much stronger than the scattered paths and can be modeled
similarly to a cluster but with a deterministic ci[ℓ] and a short power-delay
profile.5 In this section, we assume that i = 1 is the dominant cluster. The
general subcarrier channel matrix in (7.53) can then be approximated as

H̄[ν] ≈
(

T∑
ℓ=0

c1[ℓ]e−j2πℓν/S

)
aM (φr,1, θr,1)aT

K(φt,1, θt,1), ν = 0, . . . , S − 1.

(7.55)
This is an approximately rank-one matrix with

√
MK|

∑T
ℓ=0 c1[ℓ]e−j2πℓν/S |

being the only non-zero singular value. This value varies with the subcarrier
index, ν, but the eigenvectors remain the same. At every subcarrier, it is
optimal for the transmitter to apply MRT with p1 = a∗

K(φt,1, θt,1)/
√
K and

for the receiver to use MRC with w1 = aM (φr,1, θr,1)/
√
M . The resulting

effective SISO channel on subcarrier ν is

wH
1H̄[ν]p1 ≈

(
T∑
ℓ=0

c1[ℓ]e−j2πℓν/S

)
∥aM (φr,1, θr,1)∥2

√
M

∥aK(φt,1, θt,1)∥2
√
K

=
(

T∑
ℓ=0

c1[ℓ]e−j2πℓν/S

)
√
MK. (7.56)

Thanks to MRT and MRC, the amplitude of each channel tap is increased
by a factor

√
MK; thus, the maximum beamforming gain of MK is achieved

in this setup. Since we only transmit one signal per subcarrier and use
the same precoding/combining vectors on all subcarriers, we can implement
the transmitter and receiver using a simpler architecture than the digital
beamforming architecture illustrated in Figure 7.9.

The simplified analog beamforming architecture is shown in Figure 7.10.
The transmitter only generates one OFDM signal sequence in the BBU and
uses a DAC and up-converter to transform it into an analog passband signal
centered at the carrier frequency. This signal is then divided into K branches,
one per antenna. Each branch contains a phase shifter (PS) and a PA, which is
sufficient to implement the multiplication with the phase-shift and amplitude
of one of the entries in p1. This is called analog beamforming (or a phased
array) because the beamforming operation is implemented in the analog
part of the transmitter, in contrast to the digital baseband as in the digital
beamforming architecture. There are multiple ways to implement PSs. If

5The addition of a LOS path to the clustered multipath model was previously considered
in Example 5.18. Although there is only a single LOS path, it can contribute to multiple taps
since the sinc-pulse has a long time duration.
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(a) Transmitter. (b) Receiver.

Figure 7.10: Block diagrams of the main components between the baseband unit and the
antennas when using the analog beamforming architecture with K = M = 4 antennas. The
phase shifters at the transmitter are used to implement a precoding vector common to all
subcarriers, while the phase shifters at the receiver implement a combining vector common to
all subcarriers.

a few predefined phase-shift values are sufficient to choose between (which
restricts the selection of p1), then the circuit can contain transmission lines of
different lengths, each causing a propagation delay that matches one of those
phase-shifts. This kind of digital PS circuit controls the phase by switching
between which transmission line the signal propagates through. There are also
analog PS circuits that can control the phase continuously, for example, by
controlling a voltage that determines which phase-shift the circuit imposes on
the signal. Each PS causes a relative power loss of a few dBs when shifting the
phase, called an insertion loss. There are similar losses in the power divider.
Hence, to minimize the total power dissipation in the transmitter (and the
need for cooling), the signals are not amplified until right before the antennas,
which is why the PAs are placed after the PSs in Figure 7.10. In principle,
the PAs could operate at different powers, but this feature is not needed in
the LOS and single-cluster scenarios that analog beamforming is meant for.

The receiver carries out nearly the same operations but in the opposite
order. The real passband signal received at a specific antenna is amplified by
an LNA and then phase-shifted using a PS unit. The M phase-shifted received
signals are then added to obtain a combined signal that is down-converted
and sampled by an ADC. The LNA is placed before the PS since the received
signals to the antennas are typically much weaker than the minimum input
power that a PS can handle. Since the received signal power can vary by many
tens of dB depending on the propagation conditions, the amplification level in
the LNA must be dynamically adjusted to maintain an almost constant output
power. This feature is called automatic gain control and is implemented as a
feedback loop between the amplifier output and the regulating circuit. This is
done in both analog and digital architectures.

The analog beamforming architecture is tailored to propagation scenar-
ios with a single dominant cluster (or LOS path). We can thereby reduce
the number of converters (i.e., DAC, ADC, up/down converters) since all
antennas share these, but it comes at the expense of adding PSs and power
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dividers/combiners. We can obtain beamforming gains and spatial diversity
gains in this way but no multiplexing gains. If the channel contains more than
one strong cluster, then the achievable beamforming gain is less than what
can be reached using digital beamforming, and the achievable rate can be
much below the capacity since spatial multiplexing cannot be used.

Figure 7.11 exemplifies the effective channel gain that can be achieved on
different subcarriers by beamforming in different angular directions. There
are K = 5 transmit antennas and S = 200 subcarriers. The channel gains
are normalized so that the maximum is 0 dB. There is Ncl = 1 cluster in
Figure 7.11(a), and it spans one channel tap and is seen from the azimuth
angle 0◦. The channel gain is the same on all subcarriers, and the beam
pattern with its main beam and side-lobes is seen over the angles. This is a
situation where analog beamforming is capacity-achieving.

Figure 7.11(b) considers a case with Ncl = 3 clusters, which are located in
the angular directions 0◦, 25◦,−35◦. The clusters have equally strong channel
gains but different time delays, so they appear in three different channel
taps. Hence, the clusters interact to create channel variations between the
subcarriers, known as frequency-selective fading. There is no angular direction
that simultaneously maximizes the channel gain on all subcarriers, but we
will have to vary the precoding over the subcarriers and utilize MRT. Analog
beamforming cannot achieve the maximum beamforming gain in this case
and can also not utilize the three clusters for spatial multiplexing. The next
section will determine a simplified hardware architecture tailored to the case
with min(M,K) > Ncl > 1.

The precoding and combining are applied to the time-domain passband sig-
nals when using analog beamforming, while it is done in the frequency-domain
in digital beamforming. The equivalence between these implementations can
be established mathematically. We begin by taking the IDFT of the MIMO-
OFDM received signal in (7.44), which is given at time instance l as

y[l] = 1√
S

S−1∑
ν=0

ȳ[ν]ej2πlν/S

= 1√
S

S−1∑
ν=0

H̄[ν]χ̄[ν]ej2πlν/S + 1√
S

S−1∑
ν=0

n̄[ν]ej2πlν/S

︸ ︷︷ ︸
=n[l]

=
T∑
ℓ=0

H[ℓ]χ[(l − ℓ)modS ] + n[l], l = 0, . . . , S − 1, (7.57)

where we used the cyclic convolution theorem from Lemma 2.15. By inserting
the time-domain channel H[ℓ] from (7.51) with Ncl = 1 cluster into (7.57),
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(a) One multipath cluster appearing in one tap and seen in the direction 0◦.

(b) Three multipath clusters appearing in different taps and seen in the directions 0◦, 25◦,−35◦.

Figure 7.11: The effective channel gain (i.e., the squared norm of the inner product between
the channel and precoding vector) can vary with the subcarrier index and beam angle (assuming
that the precoding vector is an array response vector). The variations’ size depends on the
number of multipath clusters and their respective time delays. There are K = 5 antennas and
S = 200 subcarriers, but different numbers of clusters in (a) and (b).



7.3. Clustered Multipath Propagation and Hybrid Beamforming 515

we obtain

y[l] =
T∑
ℓ=0

c1[ℓ]aM (φr,1, θr,1)aT
K(φt,1, θt,1)χ[(l − ℓ)modS ] + n[l]. (7.58)

At every time instance l ∈ {0, . . . , S − 1}, we maximize the received power
by applying the precoding vector p1 = a∗

K(φt,1, θt,1)/
√
K and combining

vector w1 = aM (φr,1, θr,1)/
√
M . By writing the transmitted signal with time-

domain precoding as χ[l] = p1χ[l], and applying receive combining to y[l] as
y[l] = wH

1y[l], we obtain the equivalent SISO-OFDM system

y[l] =
T∑
ℓ=0

c1[ℓ]
√
MKχ[(l − ℓ)modS ] + n[l], (7.59)

where n[l] = wH
1n[l] is the noise. Every tap is scaled by a factor

√
MK,

precisely as in (7.56) that was derived based on frequency-domain precod-
ing/combining. Hence, the frequency-domain representation of the effective
SISO channel in (7.59) is the same as in (7.56). We stress that time-domain
precoding/combining leads to using the same precoding/combining vectors
on all subcarriers, so the equivalence only holds when this is our goal (i.e.,
when having one dominant cluster).6

7.3.2 A Few Dominant Clusters: Hybrid Beamforming is Sufficient

A more general scenario where the hardware architecture can also be simplified
is when the number of clusters Ncl is any number smaller than min(M,K).
In this case, the rank of the channel matrices in (7.53) equals Ncl (or could
possibly be even smaller), and this is the maximum number of parallel data
streams that need to be transmitted and received per subcarrier. We can
express the channel matrix on subcarrier ν as

H̄[ν] = ArD[ν]AH
t (7.60)

by using the matrix notation

Ar =
[
aM (φr,1, θr,1) . . . aM (φr,Ncl , θr,Ncl)

]
∈ CM×Ncl , (7.61)

D[ν] = diag
(

T∑
ℓ=0

c1[ℓ]e−j2πℓν/S , . . . ,
T∑
ℓ=0

cNcl [ℓ]e−j2πℓν/S

)
∈ CNcl×Ncl , (7.62)

At =
[
a∗
K(φt,1, θt,1) . . . a∗

K(φt,Ncl , θt,Ncl)
]
∈ CK×Ncl . (7.63)

The Ncl×Ncl diagonal matrix D[ν] varies between the subcarriers. In contrast,
the matrices At,Ar with array response vectors remain the same since these

6In principle, any linear frequency-domain precoding/combining that is constant over an
OFDM symbol can alternatively be implemented using time-domain filters, but it generally
requires more complex impulse responses than what can be implemented using PSs.
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describe the cluster geometry. When Ncl < min(M,K), these matrices expand
the channel dimension from Ncl ×Ncl in D[ν] to M ×K in H̄[ν].

If the transmitter uses a precoding vector that is not within the span of
At (i.e., it cannot be written as a linear combination of its columns), then the
unspanned component cannot reach the receiver. This would be a waste of
signal power; thus, any transmit precoding matrix P[ν] of practical interest
on subcarrier ν can be expressed

P[ν] = AtPBB[ν], (7.64)

where PBB[ν] ∈ CNcl×Ncl is the subcarrier-unique part with a dimension that
matches with the channel’s rank. The subscript indicates that this part of the
precoding matrix must be generated in the baseband (BB) before the IDFT
is used to generate the time-domain OFDM signal sequence.

Similarly, if the receiver uses a receive combining vector w that is not
within the span of Ar, it will try to extract signals from dimensions in CM
where the channel matrix can never place any signal components. Hence, any
combining matrix W[ν] of practical interest on subcarrier ν can be expressed

W[ν] = ArWBB[ν], (7.65)

where WBB[ν] ∈ CNcl×Ncl is the subcarrier-unique part of reduced dimension.
Suppose we generate the transmitted signal on subcarrier ν as χ̄[ν] =

P[ν]¯̄χ[ν], where ¯̄χ[ν] ∈ CNcl is the data signal. By applying the combining
matrix in (7.65) to the received signal in (7.47), we obtain

WH[ν]ȳ[ν] = WH
BB[ν] AH

r H̄[ν]At︸ ︷︷ ︸
Analog domain

PBB[ν]¯̄χ[ν] + WH
BB[ν]AH

r n̄[ν]︸ ︷︷ ︸
Effective noise

. (7.66)

The pre-processing by At at the transmitter and post-processing by Ar can
be implemented in the analog domain in the transceiver hardware since these
matrices are common to all subcarriers. Since these matrices contain array
response vectors, each entry represents a phase-shift that can be implemented
using a PS, as in the previous case of analog beamforming.

Figure 7.12 illustrates a possible hardware architecture for the case of
M = K = 4 and Ncl = 2. The transmitter generates Ncl = 2 OFDM signals
in the BBU, each representing one of the entries of PBB[ν]¯̄χ[ν] ∈ C2 for
ν = 0, . . . , S − 1. Each OFDM signal is transformed into an analog passband
signal using a DAC and up-converter, and then multiplied with the respective
columns of At ∈ C4×2 by using the upper and lower collection of PSs,
respectively. Each collection contains K = 4 PSs. The phase-shifted signals
are then sent to the respective antennas, where they are added up before
being amplified and radiated.

The opposite procedure is carried out at the receiver side, where the
received signal at any given antenna is first amplified by an LNA. The signal is
then divided into two parts that are sent to different sets of PSs, representing
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(a) Transmitter. (b) Receiver.

Figure 7.12: Block diagrams of the main components between the baseband unit and the
antennas when using the hybrid beamforming architecture with K = M = 4 antennas. The
power dividers and combiners are illustrated with circles as in Figure 7.10, but not labeled with
text to avoid clutter.

the different rows of AH
r . The signals are then added up within each branch,

down-converted, and sampled to obtain two output signals in the BBU. The
effective noise in (7.66) has the covariance matrix

N0WH
BB[ν]AH

r ArWBB[ν], (7.67)

which should preferably equal N0INcl so the noise is white. This condition is
satisfied by combining matrices of the kind WBB[ν] = (AH

r Ar)−1/2UBB[ν],
where UBB[ν] ∈ CNcl×Ncl can be any unitary matrix.

We have described an instance of the hybrid analog-digital beamforming
architecture [72], [113]. The name indicates that the precoding and combining
operations are divided between the analog and digital domains. One could view
this as a generalized architecture since Ncl = 1 results in analog beamforming
and Ncl = M = K is equivalent to digital beamforming. However, the reality is
more complicated because Ncl is a variable that changes with the propagation
environment where the transmitter/receiver is utilized while the hardware
architecture must remain fixed. Hence, it is more suitable to decouple these
variables and let NRF denote the number of radio-frequency (RF) signals
generated in the transmitter’s BBU and sampled at the receiver; that is, the
number of DACs/ADCs and up/down converters. The hybrid architecture is
sufficient to achieve the MIMO capacity if Ncl ≤ NRF. The following table
summarizes the number of hardware components needed in the transmitter
(or receiver by replacing K with M):

Component Digital Hybrid Analog
Converters K NRF 1

Phase shifters 0 NRFK K
Power amplifiers K K K

The choice between these architectures requires making tradeoffs. The
number of converters (i.e., ADC/DAC, up/down) can be reduced by going
from a digital to a hybrid or analog architecture, but at the expense of
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requiring PSs and being unable to achieve the capacity when Ncl > NRF.
Digital beamforming is predominant in systems operating in the low-band
and mid-band, while analog/hybrid beamforming is common in the high-
band. A general trend seems to be that the frequency range for which digital
architectures are practically feasible gradually increases. However, this does
not change the fact that some propagation environments (e.g., LOS-dominant
scenarios) do not require the extra capabilities the digital architecture provides.

When using an arbitrary value of NRF, we can denote the hybrid precoding
matrix on subcarrier ν as P[ν] = PRFPBB[ν], where PRF ∈ CK×NRF is the
analog part and the subcarrier-specific digital part is PBB[ν] ∈ CNRF×NRF . The
latter part can be further factorized as PBB[ν] = (PH

RFPRF)−1/2VBB[ν] where
VBB[ν] ∈ CNRF×NRF is the effective precoding matrix that the transmitter
can freely select because it has the same power as P[ν]:

∥P[ν]∥2
F = ∥VBB[ν]∥2

F, (7.68)

where ∥ · ∥F denotes the Frobenius norm defined in (5.87).
Similarly, the combining matrix is denoted as W[ν] = WRFWBB[ν], where

WRF ∈ CM×NRF is the analog part and WBB[ν] = (WH
RFWRF)−1/2UBB[ν] ∈

CNRF×NRF is the digital part with UBB[ν] being a unitary matrix.
Using this notation, the received signal in (7.66) can be reformulated as

WH[ν]ȳ[ν] = UH
BB[ν] ˘̄H[ν]VBB[ν]¯̄χ[ν] + WH

BB[ν]WH
RFn̄[ν]︸ ︷︷ ︸

∼NC(0,N0INRF )

, (7.69)

where the data signal is ¯̄χ[ν] ∼ NC(0,Q[ν]) and Q[ν] is the diagonal matrix
with power coefficients. The effective channel matrix is denoted by ˘̄H[ν] ∈
CNRF×NRF and defined as

˘̄H[ν] = (WH
RFWRF)−1/2WH

RFH̄[ν]PRF(PH
RFPRF)−1/2. (7.70)

It follows from (3.106) that an achievable rate (in bit per subcarrier symbol)
is

log2

(
det

(
INRF + 1

N0

˘̄H[ν]VBB[ν]Q[ν]VH
BB[ν] ˘̄HH[ν]

))
. (7.71)

This rate can be maximized by selecting VBB[ν] as the right singular vectors
of ˘̄H[ν] and Q[ν] according to water-filling power allocation.

The expression in (7.70) demonstrates how the analog parts of the precod-
ing and combining matrices transform the M ×K channel matrix H̄[ν] into
an effective channel matrix ˘̄H[ν] with the reduced dimensions NRF × NRF.
This limits the maximum multiplexing gain to NRF and reduces the maximum
achievable rate if the original channel matrix had a higher rank.
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(a) Multipath clusters. (b) Digital beamforming. (c) Hybrid beamforming.

Figure 7.13: A sparse multipath propagation scenario with M = K = 5 antennas and Ncl = 5
clusters distributed in angle to match perfectly with the beamspace representation, as illustrated
in (a). The transmitter is to the right, the receiver to the left, and the dotted lines show the
boundaries between the angular intervals considered in the beamspace representation. The
digital beamforming architecture achieves the MIMO capacity by transmitting/receiving one
beam per cluster as in (b). The hybrid beamforming architecture can only transmit as many
beams as there are RF inputs/outputs, which is NRF = 2 in (c).

Example 7.5. Consider a hybrid ULA architecture with M = K antennas
and NRF RF inputs/outputs. What rate can be achieved over the channel
in (7.47) if each of At and Ar contains Ncl ≥ NRF columns from the scaled
DFT matrix

√
MFM , and cn[ℓ] =

√
β/Ncl if ℓ = n and cn[ℓ] = 0 otherwise?

The columns of At are orthogonal, and the same holds for Ar. Hence, we
can only use NRF ≤ Ncl clusters. Since all clusters are equally strong, we can
select PRF as the first NRF columns of At and WRF as the first NRF columns
of Ar without loss of optimality. As these columns originate from the DFT
matrix, the channel can be represented in the beamspace, and the hybrid
transmitter/receiver will point beams directly toward NRF of the Ncl clusters,
as illustrated in Figure 7.13(c) for NRF = 2 and Ncl = 5. The effective channel
matrix in (7.70) simplifies to

˘̄H[ν] =

√
β

Ncl

√
MKdiag

(
e−j2πν/S , . . . , e−j2πNRFν/S

)
(7.72)

since PH
RFPRF = WH

RFWRF = MINRF and WH
RFAr = PH

RFAt = [MINRF ,0].
All NRF singular values of ˘̄H[ν] equals

√
β/NclM , which turns water-filling

into equal power allocation of q/NRF and VBB[ν]Q[ν]VH
BB[ν] = q/NRFINRF .

Hence, the rate in (7.71) becomes

NRF log2

(
1 + qβ

N0

MK

NclNRF

)
bit per subcarrier symbol. (7.73)
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Figure 7.14: The capacity per OFDM subcarrier symbol achieved in a setup with M = K = 5
antennas and either Ncl = 2 or Ncl = 5 multipath clusters. The digital beamforming architecture
is compared with the hybrid architecture with NRF = 2. The architectures achieve different
capacities when Ncl > NRF.

The simplified rate expression in (7.73) for hybrid beamforming showcases
the essential limitations of this architecture. The multiplexing gain isNRF, even
if the channel supports a larger multiplexing gain Ncl. The full beamforming
gainMK is achieved but divided byNcl since the total channel gain β is equally
distributed between that many clusters. It is also divided by NRF since the
total transmit power is divided into that many pieces when performing spatial
multiplexing. The channel capacity in the considered setup is Ncl log2(1 +
SNRMK/N2

cl), where SNR = qβ/N0, and can be achieved using the digital
beamforming architecture as shown in Figure 7.13(b). The main difference is
the multiplexing gain that is different if Ncl > NRF.

Figure 7.14 compares the rates achieved by the digital and hybrid archi-
tectures with M = K = 5. We consider the same setup as in Example 7.5
with NRF = 2 and Ncl ∈ {2, 5}. The digital and hybrid architectures provide
exactly the same rate when Ncl = NRF = 2. By contrast, there is a large gap
at high SNRs when Ncl = 5 because the hybrid architecture achieves a multi-
plexing gain of 2 instead of 5. This result confirms that hybrid beamforming is
only a suitable alternative in propagation environments with a small number
of clusters, not more than NRF.

The selection of the analog precoding/combining matrices PRF,WRF
is easy when the clusters are located in orthogonal angular directions, as
in Example 7.5 where they match with the DFT beam directions. This
situation is unlikely to arise in practice, which makes the selection more
challenging. For example, we might have Ncl > NRF, but the clusters are
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unevenly distributed over the angles so that we can capture most of the signal
power using NRF carefully selected beam directions. There is a vast literature
on this topic [114], where the main principle is that we want to retain as much
as possible of the average channel gain over the subcarriers when applying
analog precoding/combining. Specifically, it holds that

1
S

S−1∑
ν=0
∥WH

RFH̄[ν]PRF∥2
F ≤

1
S

S−1∑
ν=0
∥H̄[ν]∥2

F (7.74)

since we lose some channel dimensions when using hybrid beamforming.
Intuitively, we want to make the gap between the two expressions in (7.74)
small. Hence, we want to maximize

1
S

S−1∑
ν=0
∥WH

RFH̄[ν]PRF∥2
F = 1

S

S−1∑
ν=0

tr
(
PH

RF H̄H[ν]WRFWH
RFH̄[ν]︸ ︷︷ ︸

≈H̄H[ν]H̄[ν]

PRF
)

(7.75)

≈ tr
(

PH
RF

(
1
S

S−1∑
ν=0

H̄H[ν]H̄[ν]
)

PRF

)
, (7.76)

where the approximation is motivated by having a receiver that can capture
all the signal power in the NRF-dimensional subspace where the transmitted
signals exist. Based on this approximation, it follows that the analog precoding
matrix PRF should be selected based on the average channel matrix expression
1
S

∑S−1
ν=0 H̄H[ν]H̄[ν] ∈ CK×K . More precisely, it should use the NRF strongest

dimensions of this matrix, which are spanned by the eigenvectors associated
with its NRF largest eigenvalues. Since these eigenvectors generally have
entries with varying magnitudes that cannot be implemented using PSs, a
transformation step is required; we refer to [115] for the precise details. When
PRF has been selected, one can further argue that WRF should be selected
to contain the eigenvectors corresponding to the NRF strongest eigenvalues
of 1

S

∑S−1
ν=0 H̄[ν]PRFPH

RFH̄H[ν], but this can also only be done approximately.
When the analog precoding/combining matrices have been selected, the digital
precoding/combining matrices are computed separately on each subcarrier
based on the SVD of ˘̄H[ν] in (7.70), and the water-filling power allocation is
finally performed over all the subcarriers.

7.3.3 Beam-Squint Effect

In the clustered multipath propagation model, the channel taps in (7.51)
depend on the array response vectors of the ULAs at the transmitter and
receiver. The array response vector expression was initially derived in Sec-
tion 4.2.1 under two assumptions: far-field propagation and frequency flatness.
The latter condition can be invalidated when the bandwidth B is very large
because the array response expression depends on the wavelength, and it varies
with the frequency. This can lead to issues when using analog beamforming.
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To analyze this phenomenon in detail, we revisit the array response ex-
pression in (4.120). We let λc = c/fc denote the wavelength at the carrier
frequency and assume an antenna spacing of ∆ = λc/2. The array response
vector for a signal with frequency f that arrives from the azimuth angle φ
and elevation angle θ then becomes

aM (φ, θ, f) =


1

e−j2π (λc/2) sin(φ) cos(θ)
c/f

...
e−j2π (M−1)(λc/2) sin(φ) cos(θ)

c/f

=


1

e−jπ f
fc sin(φ) cos(θ)

...
e−jπ(M−1) ffc sin(φ) cos(θ)

 .
(7.77)

This is the same expression as in (4.120) when f = fc. When considering
OFDM, we are interested in frequencies that can be expressed as f = fc + νB

S
for subcarrier indices in the range ν ∈ [−S/2, S/2], where S is the number of
subcarriers. By substituting this into (7.77), we obtain

aM
(
φ, θ, fc + νB

S

)
=


1

e−jπ
fc+ νB

S
fc sin(φ) cos(θ)

...

e−jπ(M−1)
fc+ νB

S
fc sin(φ) cos(θ)



= diag
(
b0[ν], . . . , bM−1[ν]

)
1

e−jπ sin(φ) cos(θ)

...
e−jπ(M−1) sin(φ) cos(θ)


︸ ︷︷ ︸

=aM (φ,θ,fc)

,

(7.78)

where b[ν] = e−jπ νB
Sfc sin(φ) cos(θ). The last term is the conventional array

response vector for a half-wavelength-spaced ULA, while the diagonal matrix
shifts the phases of the entries depending on the subcarrier index.

The frequency-dependent array response affects the subcarrier channels
in an OFDM system. For example, the M × K MIMO channel matrix on
subcarrier ν in (7.53) must be revised as

H̄[ν] =
Ncl∑
i=1

(
T∑
ℓ=0

ci[ℓ]e−j2πℓν/S

)
aM
(
φr,i, θr,i, fc+ νB

S

)
aT
K

(
φt,i, θt,i, fc+ νB

S

)
,

(7.79)
where the two array response vectors now depend on the subcarrier index.
We recall that the beamwidth depends on the aperture length compared to
the wavelength. Since the physical aperture length is constant in a practical
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array, the relative length varies over the signal bandwidth, so the beamwidth
shrinks or grows. This is a minor issue when using the digital beamforming
architecture because we can then adapt the precoding/combining to the
channel conditions on each subcarrier. The frequency dependence is more
problematic when using the analog beamforming architecture because it can
lead to the beam-squint effect. To showcase the phenomenon, we consider a
SIMO channel with Ncl = 1 cluster where the channel vector on subcarrier ν
is

h̄[ν] =
(

T∑
ℓ=0

c[ℓ]e−j2πℓν/S

)
aM
(
φ, θ, fc+ νB

S

)
. (7.80)

Suppose the receiver is built using the analog beamforming architecture
and applies the MRC vector w = aM (φ, θ, fc)/

√
M designed for the carrier

frequency fc. The effective channel on subcarrier ν becomes

wHh̄[ν] =
(

T∑
ℓ=0

c[ℓ]e−j2πℓν/S

)
aH
M (φ, θ, fc)diag(b0[ν], . . . , bM−1[ν])aM (φ, θ, fc)√

M

=
(

T∑
ℓ=0

c[ℓ]e−j2πℓν/S

)
1√
M

M∑
m=1

bm−1[ν], (7.81)

where we utilized the expression in (7.78). The term in parenthesis is obtained
also in the single-antenna case, while the rest is due to having multiple antennas.
Hence, the beamforming gain on subcarrier ν is | 1√

M

∑M
m=1 b

m−1[ν]|2 and
becomes M if b[ν] = 1, as we normally expect when using MRC. This property
holds at the center subcarrier with ν = 0 or when the transmitter is located
in a direction where sin(φ) cos(θ) = 0 (e.g., φ = 0). In other cases, we get∣∣∣∣∣ 1√

M

M∑
m=1

bm−1[ν]
∣∣∣∣∣
2

= 1
M

∣∣∣∣∣
M∑
m=1

e−jπ(m−1) νBSfc sin(φ) cos(θ)

∣∣∣∣∣
2

= 1
M

sin2
(
M νB

Sfc

π sin(φ) cos(θ)
2

)
sin2

(
νB
Sfc

π sin(φ) cos(θ)
2

) , (7.82)

where the last equality follows in the same way as the beamwidth calculation
in (4.52). This is generally a decreasing function of the magnitude |ν| of the
subcarrier index but can sometimes oscillate. The function also depends on the
number of antennas and ratio B/fc of how large the bandwidth is compared
to the carrier frequency.

Figure 7.15 shows the beamforming gain in (7.82) at different subcarriers
with indices ν ∈ [−S/2, S/2], where S is the total number of subcarriers. We
consider a setup with M = 20 antennas, B/fc = 0.1, and transmitters located
in the azimuth plane in three directions: φ ∈ {0, π/6, π/3}. The beamforming
gain is the same on all subcarriers if φ = 0, but for all other directions,
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Figure 7.15: The beamforming gain in (7.82) achieved at different subcarriers in a setup with
M = 20, B/fc = 0.1, and θ = 0.

the gain is reduced as |ν| increases. The reason is that MRC is supposed to
compensate for the phase differences between adjacent antennas, and these
vary substantially between subcarriers when the bandwidth is large compared
to the carrier frequency. The figure shows that there can be several dB of
gain losses at the edge of the band. The results shown in this figure could
appear in the mid-band if fc = 3 GHz and B = 300 MHz, or in the mmWave
band if fc = 30 GHz and B = 3 GHz. Those specific bandwidth values might
be larger than what practical systems use; it is more typical to consider a
third of it so that B/fc = 0.1/3. In that case, the gain losses observed in
the middle third of the figure (i.e., ν ∈ [−S/6, S/6]) should be anticipated in
analog beamforming systems.

The noun “squint” is used to describe a mismatch in the directions that a
person’s eyes are pointing. A similar directional mismatch causes beam-squint.
Figure 7.16 shows the beamforming gain

1
M

∣∣∣∣aH
M (φ, 0, fc) aM

(
π/3, 0, fc + νB

S

)∣∣∣∣2 (7.83)

obtained using MRC vectors with different observation angles φ when the true
signal arrives from the angle π/3. We still consider M = 20 and B/fc = 0.1.
The beam pattern has its peak at the correct angle φ = π/3 at the center
frequency (ν = 0), but when we consider subcarriers further from the center,
the pattern is shifted outwards; that is, the beam is not pointing in the
direction we expect it to do. With analog beamforming, we would use φ = π/3
on all subcarriers, leading to the gain losses observed previously since the
actual beam direction changes.
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Figure 7.16: The beamforming gain in (7.83) obtained using MRC vectors with different angles
φ. The pattern is shown for different subcarrier indices when the signal arrives from the azimuth
angle π/3, M = 20, and B/fc = 0.1.

The beam-squint effect is present in the analog beamforming architecture
and limits how large bandwidths can be used effectively. When a signal
arrives from the angle φ, the propagation delay dm/c at receive antenna m is
frequency-independent and only depends on the propagation distance dm and
speed of light c. However, the phase-shift 2πdm/λ is not since the wavelength
λ depends on the frequency. Conventional PSs nevertheless assign the same
phase-shift to the entire signal band, giving rise to the described beam-squint.
An implementation solution is to replace the PSs with more complex true
time delay (TTD) units that assign the same delay to all frequencies; this
alleviates the beam-squint effect when the signal is transmitted/received in a
single direction. However, it does not address the general limitation of analog
beamforming when it comes to multipath propagation.

7.4 Practical Implementations and Terminology

MIMO communication technology has existed for decades, but in the 5G era,
it switched from being an optional high-end feature to becoming mainstream.
It is utilized in both mid-band and mmWave deployments, at both base
stations and user devices. In this section, we will take a look at two specific
implementations, highlight some practical design characteristics, and shed
light on a few ambiguities that exist in academic and industrial terminology.

Figure 7.17 shows a mmWave transmitter designed for the 28 GHz band.
It consists of 16 single-polarized antenna elements, arranged on a 4× 4 square
grid. The horizontal and vertical element spacings are λ/2 ≈ 5.3 mm, so this
is a critically spaced array. Four RF inputs are visible at the bottom of the
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Figure 7.17: The photo shows the antenna array in the TMYTEK Developer Kit from 2022,
which is designed for the 28 GHz band. It consists of 16 antenna elements, which are arranged
into subarrays. Each column is a subarray that shares an RF input and, therefore, always
transmits the same signal. Hence, from a MIMO communication perspective, this is a horizontal
ULA with directive antennas, and it uses an analog beamforming architecture.

photo, and these are connected to the antenna elements so that elements in
the same column are always sending the same signal. The set of elements that
share the same RF input is called a subarray in the industry; however, from
the perspective of this book, each column corresponds to a single antenna.
Hence, this is a horizontal ULA with half-wavelength spacing, but with
directive antennas implemented using subarrays consisting of a few elements.
Each individual element has a 3 dBi directivity gain while each antenna
has a 3 + 10 log10(4) = 9 dBi gain. The extra 6 dB comes from the fixed
“beamforming” gain obtained when feeding four elements with the same signal.
The consequence of this design is that the array has a limited beamwidth
both horizontally and vertically, but it can only control the beamforming in
the horizontal plane. This is sufficient when the transmitter and prospective
receivers are located in roughly the same plane (e.g., a person carrying a
device in a room or along a street). The four RF inputs are connected to
individual PSs located behind the antenna arrays; thus, this device uses the
analog beamforming architecture.

Figure 7.18 shows a base station array for the 3.5 GHz band, and it has
32 RF input/output signals, which is referred to as 32T32R. This kind of
product is marketed as “Massive MIMO”. If we look inside the box, it contains
64 dual-polarized antenna elements arranged on a 8 × 8 grid, so the total
number of elements is 128. These elements are arranged into subarrays, each
consisting of four vertically stacked elements having the same polarization.
Hence, using the terminology of this book, we are considering a UPA with 8
dual-polarized antennas per row and 2 dual-polarized antennas per column.
Each dual-polarized antenna uses ±45◦ polarizations, which are illustrated
using red and blue colors in the figure. This subarray arrangement gives the
maximum beamforming capability in the horizontal plane for the given 8× 8
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Figure 7.18: The photo shows the Ericsson AIR 3268 base station from 2021. It is designed
for the 3.5 GHz band and has 32 antennas (16 dual-polarized antennas) and RF/BBU hardware
integrated into the box, following the digital architecture. Each antenna is designed as a subarray
with four vertically stacked elements having the same polarization. The array is dual-polarized
and each element location contains two elements with orthogonal polarization (±45◦). This
product supports a bandwidth of 200 MHz, a total transmit power of 200 W, and passive cooling.

element grid. However, it has a limited ability to change the vertical beam
directivity. A product of this kind is meant for deployments in geographical
areas with low-rise buildings, where the base station sees all the users and
multipath clusters from roughly the same elevation angle, so there is no need for
drastically changing the vertical beam directivity. There are other base station
products with the same number of elements but more RF inputs/outputs, each
connected to PAs/LNAs, DACs/ADCs, filters, etc. These products are thicker,
heavier, and more expensive, but are capable of spatial multiplexing of users
on different floors in high-rise buildings. This particular product weighs 12 kg
and is implemented using the digital architecture, and all the components
are integrated into a box with the dimensions 0.5× 0.7 m. It is clear that the
word “massive” refers to the number of antennas, not the weight or size. This
base station array is rectangular, although the dual-polarized elements are
deployed on an 8× 8 grid. The reason is that the horizontal element spacing is
λ/2, while the vertical element spacing is 0.7λ. The latter is a sparsely spaced
array configuration that reduces the vertical beamwidth at the expense of
occasionally creating grating lobes, but these point into the sky, where they
cause no interference to users on the ground.
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(a) 1G–3G (b) 4G (c) 5G

2D beamforming 3D beamforming

Figure 7.19: Multiple antennas have been gradually integrated into cellular technology. Fixed
beams are used in 1G-3G, while 4G uses horizontal dual-polarized ULAs and 5G uses dual-
polarized UPAs. Subarrays of the kind illustrated in Figure 7.18 are used in all three cases.

7.4.1 Evolution of Cellular Technology

The base station technology has thus far evolved in three main steps toward
integrating MIMO technology. A traditional base station is illustrated in Fig-
ure 7.19(a) and has a fixed radiation pattern, which is broad in the horizontal
plane but relatively narrow vertically. The base station can thereby aim signals
toward the ground and cover a 120◦ sector where the intended users reside.
This radiation pattern is typically achieved using a single subarray with mul-
tiple vertically stacked antenna elements, resulting in fixed beamforming. The
base station might have dual-polarized antennas, which enables polarization
diversity. 1G-3G technology featured such base stations.

Figure 7.19(b) illustrates how basic MIMO features were enabled in 4G by
deploying two traditional dual-polarized antennas next to each other horizon-
tally. The horizontal beamwidth can then be halved compared to Figure 7.19(a)
and the beamforming gain doubled. The typical array configuration is a dual-
polarized horizontal ULA where each antenna consists of a subarray with
multiple vertically stacked antenna elements. The directivity can only be
adapted in the horizontal plane, which is called 2D beamforming. The 4G
standard supports basic spatial multiplexing and diversity features.

Figure 7.19(c) shows a typical 5G base station configuration with a UPA
that enables both horizontal and vertical beamforming, so-called 3D beam-
forming. The illustrated configuration is the same as in Figure 7.18, which
contains subarrays because many telecom operators want the beamforming
gain provided by having many antenna elements but save costs by reducing the
number of RF components. The 5G MIMO implementation is called Massive
MIMO and supports beamforming, diversity, and spatial multiplexing. One
reason that 5G can support many more antennas than in the past is that
all the components in the digital beamforming architecture in Figure 7.9,
except the BBU, nowadays can be integrated into a single box. In previous
generations, each chain required separate boxes, which made MIMO bulky
and heavy. 5G base stations for mmWave frequencies can be similar to the
4G example, except that each subarray is an analog beamforming array.
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7.4.2 MIMO-Related Terminology

The history of multiple antenna communications spans more than a century,
and several ambiguities in the terminology have appeared along the way. One
reason is that different people prefer different terms for roughly the same
concepts. Another reason is that the MIMO functionalities and use cases
have expanded with time, which raises the question of whether one should
generalize existing terms to cover these changes or make up new terms. We
have selected a particular terminology in this book and tried to define its
meaning rigorously, but in this section, we will describe additional terms and
briefly explain what different meanings they might have.

Antenna port: The mapping between physical antenna elements and
what we call “antennas” in the baseband processing can be rather complicated
and implementation-specific, as exemplified by the subarrays in Figures 7.17
and 7.18. Therefore, 3GPP uses the term antenna port to refer to what is
perceived as an antenna in the BBU; in other words, a typical MIMO channel
in this book has K antenna ports at the transmitter and M antenna ports at
the receiver. How these “logical” antennas are mapped to physical antenna
elements needs not to be standardized, as long as we have a mechanism to
obtain the corresponding channel matrix H. It is even possible for a practical
MIMO system to vary its number of antenna ports with time, by changing
how large groups of elements constitute a subarray with a common logical
antenna port. The traffic and device capabilities might trigger these changes.

Beamsteering: This refers to the mechanism of varying the angular
direction of the beam transmitted from an antenna array. This can be achieved
using either the analog, hybrid, or digital architecture. The term is usually used
when the beam direction is changed over time to cover different geographical
regions, but without aiming the beam at a known user location. This feature
is used for broadcasting common messages over different parts of the coverage
area (as discussed in Section 4.3.3) or for scanning an area in radar applications.

Beamforming, precoding, combining: This refers to the tuning of
amplitudes and phases in antenna arrays to achieve directional signal transmis-
sion and reception that maximize communication performance. Beamforming
was originally considered in LOS scenarios, where the optimal design creates
beams that point in specific angular directions leading to the intended re-
ceivers. When the concept is applied in NLOS scenarios, MRT instead results
in sending a signal with no apparent angular directivity. These two cases
are illustrated in Figure 7.20. Some people use the beamforming term also
in NLOS scenarios, while others prefer to call it generalized beamforming to
highlight that the transmission has an entirely different physical shape than in
LOS scenarios. In this book, we avoid using the beamforming term in NLOS
scenarios to limit the risk of confusion. Instead, we have used the generalized
terms transmit precoding and receive combining. The SNR gain that is ob-
tained when focusing signals using multiple antennas is called beamforming
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Figure 7.20: The SNR-maximizing transmission takes a different physical shape in LOS and
NLOS scenarios because it is based on the channel. Some people use “beamforming” to refer
to both cases, while some people use the terms precoding or generalized beamforming in the
NLOS case.

gain, array gain, aperture gain, or power gain.
Multi-stream or multi-user beamforming: When spatial multiplexing

is used in point-to-point MIMO scenarios, each signal is transmitted and
received using a different “beam”, which might not point in specific angular
directions. This is sometimes called multi-stream or multi-layer beamforming,
to extend the classical beamforming terminology further. In this book, we have
instead used the precoding and combining terms, and we let the power alloca-
tion (e.g., water-filling) determine how many parallel signals are transmitted
and received. The signals can be called streams or layers. Similarly, some
people refer to the transmission and reception in multi-user MIMO scenarios
as multi-user beamforming. Furthermore, it happens that the term precoding
is viewed as a combination of beamforming (selection of the signal direction)
and power allocation (distribution of power between different beams).

Full-dimensional and three-dimensional beamforming: This refers
to beamforming using UPAs or other array geometries that can control the
beam directivity both horizontally and vertically. The industry introduced
the term to highlight this new feature in their product lines because the first
multiple antenna features in 3G and 4G systems used horizontal ULAs only
capable of beamforming in the two-dimensional horizontal plane.

Block-level and symbol-level precoding: The previous chapters de-
scribed block-level precoding, where a fixed set of precoding vectors is used
for a block of data symbols. Specifically, the transmitted signal was expressed
as
∑K
i=1 pixi, where the value of the symbol xi changes at every time in-

stance based on the user data, while the precoding vector pi only depends
on the channels and is fixed for as long as the channels are. This structure
is capacity-achieving when an infinitely large block of data is transmitted,
but other options can be considered when transmitting a finite data block
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in practice. In symbol-level precoding [116], the precoding vectors change
at every time instance, based on which data symbols will be transmitted.
Instead of sending signals through fixed beams, the transmission is optimized
so that each receiver observes a signal that is seemingly interference-free and
as close to the transmitted constellation point as possible. The shape of the
decision regions for the constellation points is exploited to accept interference
when it will not increase the decoding error probability. The downside with
symbol-level precoding is that the precoding optimization is computationally
complex and must be redone at every symbol time instance.

Spatial layers: The parallel data streams that are spatially multiplexed
to one or multiple devices are called spatial layers in 3GPP standards. In
theory, the maximum number of spatial layers r = min(M,K) is determined
by the number of antenna ports, but it can be smaller in practice. The number
of orthogonal pilot sequences is predefined by the standard and manifests
the maximum number of spatial layers, because we need a mechanism to
estimate each column of the effective channel matrix HP that is obtained
when applying the precoding matrix. Hence, once the standard has been
defined, we can build base stations and devices with arbitrarily many antenna
elements and antenna ports but the maximum number of spatial layers remains
fixed. On the other hand, standards are revised when needed to utilize new
functionalities, so adding more antenna ports and supporting more spatial
layers typically come hand-in-hand.

Null-steering, MMSE, and other linear precoding schemes: The
optimal linear precoding vectors are given by (6.129), but they depend on the
virtual uplink power coefficients that are generally challenging to compute for
a given performance metric (e.g., maximum sum rate). The TWF, RZF, and
ZF schemes were described in Section 6.4.5 as simplifications of the optimal
precoding. One can find many other heuristic/simplified precoding schemes
in the literature [85, Remark 3.2], having names such as null-steering, SLNR
precoding, multi-cell MMSE precoding, minimum-variance distortionless re-
sponse (MVDR) precoding, and virtual SINR beamforming. These schemes
are motivated through (slightly) different heuristic arguments, which are often
connected to the uplink-downlink duality. Nevertheless, they usually perform
roughly the same and are nearly optimal, so it can be puzzling that there are
many names for almost the same thing. There are fewer alternative uplink
schemes since MMSE combining is optimal for any performance metric. How-
ever, the MMSE scheme has alternative names, such as MVDR beamforming
and interference-rejection combining.

Holographic MIMO: This term is used to describe densely spaced
antenna arrays with antenna spacings much smaller than λ/2. The small
spacing leads to spatial oversampling and mutual coupling effects. The latter
can be exploited to achieve superdirectivity with beamforming gains that
can be larger than usual in specific directions. The holographic terminology
indicates that a densely spaced array can be implemented by having a surface
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Extremely large aperture array

Near-field focused signals

Figure 7.21: An ELAA consists of many antennas distributed over a huge aperture area, here
exemplified as the facade of a building. The antenna spacing can be larger than in conventional
arrays (e.g., one antenna per window) since the goal is to achieve tiny “beams” that have a
finite depth and can be focused on individual user devices.

with a specific impedance pattern (i.e., the hologram) that is illuminated by
a reference wave from a nearby antenna to generate an emitted wave [117],
[118]. Each desired wavefront corresponds to a specific hologram that can be
synthesized if the surface contains a dense grid of dielectric microstructures.
The term large intelligent surface has also been used for similar purposes [76].
There exist commercial metamaterial antennas inspired by the holographic
principle for both terrestrial and satellite communications, but as a way to
implement the analog beamforming architecture without traditional PSs.

Extremely large aperture array (ELAA): This term was coined
in [118] to refer to antenna arrays with an aperture size that is very large
compared to the wavelength. Different from holographic MIMO, the antenna
spacing might be larger than in conventional arrays. The motivation for
the vast aperture is that the prospective receivers will be in its radiative
near-field, where the propagation phenomena differ from the conventional
far-field models. In particular, “beams” can both be focused in angle and
depth, thereby creating an elliptical region with a strong beamforming gain
around the intended receiver [119]. This could enable spatial multiplexing of
very many devices and data streams per device as a way to manage more
traffic without requiring more bandwidth. An example skyscraper deployment
is illustrated in Figure 7.21. Another option is to deploy circular arrays in the
radiative near-field, which is called orbital angular momentum (OAM) because
it results in helical beams [120]. The MIMO capacity expressions from earlier
chapters can still be utilized in these cases, but the far-field approximations
cannot be used when computing the channel matrix H. Indications of the
propagation phenomena that appear in the radiative near-field were provided
in Sections 4.4.2 and 4.4.3, which showed how high-rank channel matrices can
be achieved in LOS conditions when using distributed or large arrays.
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7.5 Exercises

Exercise 7.1. Consider a SISO-OFDM channel with T + 1 taps, S subcarriers, and
h[ℓ] = 1 for all ℓ ∈ {0, . . . , T}. The subcarrier spacing is B/S = 15 kHz.

(a) Compute the subcarrier channels h̄[ν], for ν ∈ {0, . . . , S − 1}.
(b) Express the channel gains |h̄[ν]|2, for ν ∈ {0, . . . , S − 1} in terms of sinusoidal

functions. Hint: Rewrite the expression using (4.52).
(c) Assume that T = 3 and S = 32. The maximum channel gain in (b) is obtained at

ν = 0. The first-null coherence bandwidth can be measured as 2(B/S)ν⋆, where
ν⋆ is the smallest subcarrier index in {1, . . . , 31} for which h̄[ν] = 0. This is the
frequency interval (in Hz) between two nulls. What is the coherence bandwidth in
this setup?

(d) What is the first-null coherence bandwidth if T = 7 and S = 32? Is it smaller or
larger than in (c)?

Exercise 7.2. Prove the identity in (7.68): ∥P[ν]∥2
F = ∥VBB[ν]∥2

F.

Exercise 7.3. Suppose the pulse used in the PAM is selected such that

(p ∗ p)(t) =


1 for |t| ≤ 1/B,
3 − 2B|t| for 1/B < |t| ≤ 1.5/B,
0 otherwise.

(7.84)

Recall that (p ∗ p)(t) appears in (2.126) when computing the coefficients of a multipath
channel. Consider a channel with three propagation paths having the lengths 30 m, 45 m,
and 108 m, respectively. The bandwidth is B = 20 MHz and the carrier frequency is
fc = 3 GHz.

(a) What is the delay spread τspread?
(b) Determine the sampling delay η according to (7.5).
(c) Compute the channel taps h[ℓ], for ℓ ∈ 0, . . . , T , by sampling (2.126) using η from

(b). The attenuations α1, α2, and α3 have arbitrary values.

Exercise 7.4. The subcarrier spacing in 5G NR can either be 15, 30, or 60 kHz. Consider
an OFDM setup with S = 4000 subcarriers, τspread = 4 µs, and T ≈ Bτspread.

(a) Which of the three subcarrier spacings minimizes the OFDM symbol duration
while ensuring that the cyclic prefix does not increase the signal resource utilization
(i.e., the complex degrees of freedom) by more than 20%?

(b) What is the total bandwidth when using the subcarrier spacing from (a)?

Exercise 7.5. Consider a SISO-OFDM channel with T+1 = 4 taps and S = 32 subcarriers.
Each channel tap features independent and identical Rayleigh fading: h[ℓ] ∼ NC(0, β/4).

(a) Compute the correlation between the frequency-domain channel coefficients at
two different subcarriers ν and ν′.

(b) How does the squared magnitude of the correlation vary as the difference |ν − ν′|
increases?
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Exercise 7.6. Consider a SISO-OFDM channel with S subcarriers and T + 1 channel
taps. We would like to estimate the channels on all subcarriers, and therefore, the
deterministic symbol √

q is transmitted on all subcarriers. The received signal on
subcarrier ν ∈ {0, S − 1} is

ȳ[ν] = √
qh̄[ν] + n̄[ν], (7.85)

where h̄[ν] is given in (7.15) and n̄[ν] ∼ NC(0, N0) is independent receiver noise. We will
follow the estimation methodology from Section 4.2.4.

(a) Suppose the channel on subcarrier ν is estimated as ˆ̄h[ν] = ȳ[ν]/√q. What is the
variance of the estimation error h̄[ν]− ˆ̄h[ν]? What is the total error variance across
the S subcarriers?

(b) The S subcarrier channels h̄ = [h̄[0], . . . , h̄[S − 1]]T are determined by the T + 1
channel taps h = [h[0], . . . , h[T ]]T as

h̄ = FS,T+1h, (7.86)

where FS,T+1 = CS×(T+1) contains the first T + 1 columns of the DFT matrix
FS . Suppose we estimate the time-domain channel taps as

ĥ = 1
√
q

FH
S,T+1[ȳ[0], . . . , ȳ[S − 1]]T (7.87)

and then transform it to an estimate of h̄ as ˆ̄h = FS,T+1ĥ. What is the total error
variance across the S subcarriers? Hint: FS,T+1FH

S,T+1h̄ = h̄.

(c) Suppose S = 2000 and T + 1 = 20. How large is the difference between the total
error variances in (a) and (b)? Explain the difference.

Exercise 7.7. Consider the dual-polarized array shown in Figure 7.18 and assume it
consists of isotropic antenna elements.

(a) What are the horizontal and vertical first-null beamwidths (in radians) in the
broadside direction?

(b) Consider a receiver located 50 m from the array in the broadside direction. How
wide is the beam in meters in the horizontal and vertical directions?

(c) Consider another 8 × 2 UPA consisting of isotropic antennas with no subarrays.
The horizontal antenna spacing is 0.5λ and the vertical antenna spacing is 0.7λ;
thus, the array aperture is smaller than in Figure 7.18. What are the horizontal and
vertical first-null beamwidths of this array in the broadside direction? Compare
the beamwidths and the maximum beamforming gain with those obtained by the
original array in Figure 7.18.

Exercise 7.8. Consider a hybrid ULA architecture with M = K antennas and NRF
RF inputs/outputs. What rate can be achieved over the channel in (7.47) if each of
At and Ar contain Ncl ≥ NRF columns from the scaled DFT matrix

√
MFM , and

ci[ℓ] =
√
β0e

−ℓ/Γ if ℓ = i − 1 and ci[ℓ] = 0 otherwise, where β0 > 0 is a constant and
Γ > 0 specifies power-decay behavior? Assume that NRF data streams are transmitted
with equal power allocation.
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Exercise 7.9. Consider the channel in (7.60) with Ncl = M = K. Suppose Ar and At
are two DFT matrices. Each cluster only appears in one specific channel tap, such that
ci[ℓ] =

√
βi for ℓ+ 1 = i, but ci[ℓ] = 0 otherwise. The channel gains β1, . . . , βNcl will be

treated as variables that can be selected freely under the constraint
∑Ncl

i=1 βi = β, where
β is the total channel gain.

(a) For a given value of β, which selection of β1, . . . , βNcl maximizes the achievable
rate at low SNRs? Answer this question for three different architectures: analog
beamforming, hybrid beamforming with NRF < Ncl RF inputs/outputs, and
digital beamforming.

(b) Repeat (a) but consider the achievable rate at high SNRs.

Exercise 7.10. Consider a MIMO-OFDM channel with T + 1 = 2 channel taps, S ≥ 2
subcarriers, and M = K = 2 antennas. The channel matrices are

H[0] =
√
β

[
1 1
1 1

]
, H[1] =

√
β

[
1 −1

−1 1

]
. (7.88)

(a) Compute the MIMO-OFDM capacity in terms of bit per OFDM symbol.
(b) What is the capacity-achieving input distribution on subcarrier ν?

Exercise 7.11. Consider a Rician fading MIMO-OFDM channel with T + 1 = 2 taps.
The first tap is the LOS path and the second tap is an i.i.d. fading matrix. Using the
κ-factor notation from Example 5.2, the two taps of this channel are defined as

H[0] =
√

κ

κ+ 1
√
βe−jψaM (φr, θr)aT

K(φt, θt), H[1] =
√

1
κ+ 1

√
βHiid, (7.89)

where the entries of Hiid ∈ CM×K are i.i.d. NC(0, 1)-distributed. Suppose an analog
beamforming architecture is used, and the transmit precoding and receive combining
are based on the LOS path in H[0]. What fraction of the total channel gain MKβ will
be received on the average? Is it an increasing or decreasing function of the κ-factor?

Exercise 7.12. When using analog beamforming and large bandwidth, the beam-squint
effect can change the beam direction at the edges of the signal bandwidth. Consider the
beamforming gain in (7.83) with B/fc = 0.1.

(a) At what observation angle φ is the gain maximized? Hint: The answer is an
expression that depends on ν/S.

(b) Does the answer in (a) depend on M?
(c) How many degrees is the beam shifted if ν/S = 1/2?

Exercise 7.13. The approximation H̄H[ν]WRFWH
RFH̄[ν] ≈ H̄H[ν]H̄[ν] is used in (7.75).

Quantify the approximation error by computing the squared Frobenius norm of the
difference

H̄H[ν]WRFWH
RFH̄[ν] − H̄H[ν]H̄[ν]. (7.90)

Assume that WRF contains the first NRF columns of U, which comes from the SVD
H̄[ν] = UΣVH of the channel matrix on subcarrier ν.



Chapter 8

Localization and Sensing with MIMO

The previous chapters considered different forms of MIMO communications.
Apart from communications, antenna arrays are also used for classical radar
applications such as direction-of-arrival (DOA) estimation, target detection,
localization, velocity estimation, etc. These topics are covered under the
umbrella of (sensor/radar) array signal processing [51], [121], [122]. Commu-
nication and radar technologies have evolved along separate paths for many
years, requiring different physical equipment and separate deployments. A
commonality is that progressively more antennas/sensors have been utilized
to exploit the spatial dimension further to improve the respective performance
metrics. As the radio hardware becomes more versatile and software-defined,
it is desirable to use the same physical network equipment for multiple ap-
plications, including communication, localization, and sensing. This design
paradigm is called integrated sensing and communication (ISAC) [123] and can
enable cost savings and new innovative use cases but also require fundamen-
tal design tradeoffs. Since existing wireless communication networks feature
wide-area coverage, it is a suitable platform to evolve into an ISAC system.
The integration can take place by sharing the hardware and/or waveforms.

Sensing refers to radar-like applications that aim to obtain spatial knowl-
edge of the physical environment by transmitting known signals and observing
their reflections on various objects. Typical sensing applications are target
detection, target range and velocity estimation, and target tracking. Local-
ization refers to determining the map coordinates of an object. This chapter
covers the following fundamental applications: 1) far-field DOA estimation,
2) localization, and 3) target detection. The aim is to analyze how having
multiple antennas helps carry out the respective tasks.

8.1 Direction-of-Arrival Estimation

In this section, we consider DOA estimation, where the goal is to determine
the angular directions (φ, θ) of multiple waves that impinge on an antenna
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array. We consider the free-space LOS channel model, developed in Chapter 4.
The transmitters/sources that radiate the waves are assumed to be in the far-
field of the receiver array, and we will use the narrowband signal assumption
from Section 2.3.4. In other words, we assume the maximum difference in
the propagation delay over the array is much shorter than the symbol time
as in (4.7). This results in frequency flatness and the system model in (4.9).
We note that estimation of the angles (φ, θ) is the first step towards solving
a LOS localization problem, where the physical locations of the sources are
determined by also estimating what distance each signal has traveled.

We consider a receiver array with M antennas that has K single-antenna
radiating sources (transmitters) in its far-field. The signal radiated by source
k impinges on the array as a planar wave from some angular direction (φk, θk),
and the common channel gain to all the receive antennas is denoted by βk ≥ 0.
The location of the receive antenna m is denoted by um ∈ R3, as in Chapter 4.
It follows from (4.113) that the array response vector for source k is

a(φk, θk) =


ej 2π

λ uT
1 ρk

ej 2π
λ uT

2 ρk

...
ej 2π

λ uT
Mρk

 , (8.1)

where ρk the unit-length vector that points from the origin to source k:

ρk =

cos(φk) cos(θk)
sin(φk) cos(θk)

sin(θk)

 . (8.2)

The received signal y[l] ∈ CM at integer sample index l can be expressed as

y[l] =
K∑
k=1

√
βke

−jψka(φk, θk)xk[l] + n[l], (8.3)

where xk[l] is the baseband equivalent of the signal emitted by source k, that
is sampled at time index l and ψk is the phase-shift introduced along the
respective propagation path. The signals xk[l] have zero mean and variance
Pk and might contain data because they are random and unknown to the
receiver. The independent receiver noise is distributed as n[l] ∼ NC(0, σ2IM ).
We assume the source signals xk[l] and xi[l] are independent for k ̸= i.

The DOA estimation problem is to estimate (φk, θk), for k = 1, . . . ,K,
using the received signals y[l], for l = 1, . . . , L. We assume the channel gains,
phase-shifts, and array response vectors are constant during these consecutive
L samples. Exploiting multiple samples is useful to increase the estimation
accuracy by improving the SNR and averaging out randomness in the source
signals. We assume the number of sources, K, is known.1 We further assume
that K < M , which is required by some of the algorithms we will describe.

1There are algorithms that detect the number of sources; see [122] for details.
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The DOA estimation algorithms can be classified under two main branches:

• Non-parametric (model-free) methods;

• Parametric (model-based) methods.

The non-parametric methods assume that the characteristics of the signals
xk[l] are unknown. However, the structure of the array response vector in (8.1)
is assumed to be known because it is only based on the array geometry. On the
other hand, the parametric methods utilize the statistics of the input signals
xk[l] in addition to the structure of the array response vector. Since they
exploit the specific system model parameters, they generally perform better
than the non-parametric methods. In the following, we will first cover two
non-parametric beamforming methods for DOA estimation and then describe
a parametric subspace-based method that exploits the noise subspace.

8.1.1 Conventional Non-Parametric Beamforming Method

The beamforming methods considered for DOA estimation in this chapter are
non-parametric. They are sometimes called spectral-based since they construct
a DFT-like spatial spectrum that shows how much power is received from
different angles (φ, θ). The main peaks of that spectrum are the DOA estimates,
but there will also be ripples created by side-lobes from receive beamforming.

We recall that there are K sources whose angular directions are to be
estimated. In beamforming techniques, a receive combining vector w ∈ CM is
applied to all the received signals in (8.3): wHy[l], for l = 1, . . . , L. Then, the
average squared magnitude of the combined signals is computed as

P (w) = 1
L

L∑
l=1
|wHy[l]|2 = wH

(
1
L

L∑
l=1

y[l]yH[l]
)

︸ ︷︷ ︸
=R̂L

w = wHR̂Lw. (8.4)

We recognize R̂L as the unbiased sample average estimator (i.e., a matrix
generalization of (2.171)) of the correlation matrix of y[l], which is defined as

R = E {y[l]yH[l]} . (8.5)

The randomness in y[l] is assumed independent across the L samples. Hence,
the sample average correlation matrix R̂L approaches its statistical mean,
R, when the number of samples L goes to infinity, as previously discussed
in Section 2.6.1. This implies that P (w) in (8.4) is the sample estimate of
E{|wHy[l]|2}, which is the average power of the signal obtained when the
receive combining vector w is applied.

Suppose one of the true DOAs is (φk, θk). We can maximize |wHa(φk, θk)|2
(among all unit-norm combining vectors) by selecting w equal to a(φk, θk).
This corresponds to an MRC receiver, and we recall from Figure 4.8 that
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MRC is a spatial bandpass filter that only provides a large power value if the
angle used for MRC matches the angle of the incoming signal. Based on this
principle, in the conventional beamforming method, we select the combining
vector w(φ, θ) as a function of (φ, θ) to match the array response vector:

w(φ, θ) = a(φ, θ). (8.6)

Therefore, P (w(φ, θ)) is an estimate of how much power is received from the
direction (φ, θ), and estimating the DOAs corresponds to finding the K peaks
of the function P (w(φ, θ)). The peaks will be clearly noticeable when the
SNR is high and/or the number of symbols L is sufficiently large.

Inserting (8.6) into the power spectrum in (8.4), the DOA estimates
(φ̂k, θ̂k), for k = 1, . . . ,K, are obtained as the K highest peaks of the function

Pconv(φ, θ) = 1
L

L∑
l=1
|aH(φ, θ)y[l]|2 = aH(φ, θ)R̂La(φ, θ). (8.7)

This method can be applied when having any array geometry. The only
requirement is that the array response vector is known for any angle pair
(φ, θ), which implies that the antennas must be phase-synchronized.

Suppose we have a ULA with M antennas, and the K sources are in the
same horizontal plane as the array. The array response vector is then given in
(4.74) as

a(φ) =



1
e−j2π∆ sin(φ)

λ

e−j2π 2∆ sin(φ)
λ

...
e−j2π (M−1)∆ sin(φ)

λ


, (8.8)

which is only a function of the azimuth angle. In this case, the DOA estimation
problem turns into estimating the azimuth angles φ1, . . . , φK . The power
spectrum in (8.7) whose K highest peaks are the DOA estimates simplifies to

Pconv(φ) = 1
L

L∑
l=1
|aH(φ)y[l]|2 = 1

L

L∑
l=1

∣∣∣∣∣
M∑
m=1

ej2π (m−1)∆ sin(φ)
λ ym[l]

∣∣∣∣∣
2

. (8.9)

Consider DOA estimation of a single source (K = 1) located at the DOA
angle φ = π/6 in the same plane as the receiver. The receiver has a ULA
with M = 2 or M = 10 antennas and ∆ = λ/2 spacing. Figure 8.1 shows the
normalized power spectrum obtained with 0 dB SNR and L = 25 time samples.
The normalization ensures that the peak value on each curve is 0 dB.2 The

2The normalization is done by dividing the power spectrum Pconv(φ) by its maximum value
Pmax = maxφ Pconv(φ). It becomes easier to compare power spectra obtained with different
SNRs and different numbers of antennas when applying the normalization.
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Figure 8.1: The normalized power spectrum obtained with four random realizations of the
source signals and noise with an M -antenna ULA and conventional beamforming. There is one
source, and its DOA is φ = π/6. L = 25 time samples are used to find the generate the power
spectrum. The respective DOA estimates are the horizontal values at the peaks of the curves.
The peaks are marked with black and yellow crosses for M = 2 and M = 10, respectively.

shape of the estimated power spectrum is affected by the random source signals
and noise samples, which are all Gaussian distributed. We show four curves
with different random realizations in the figure to showcase the variations one
can expect. The black and yellow crosses denote the peak values on the curves
with M = 2 and M = 10, respectively. The corresponding angle value is the
DOA estimate φ̂. The curves resemble beam patterns (recall the terminology
in Figure 4.14) with narrower main beams and smaller side-lobes with M = 10
antennas compared to M = 2. This results in more accurate angle estimates
with M = 10, in the sense that the yellow crosses are very close to the true
DOA angle. The randomness shifts the curves and, particularly, modifies the
side-lobes. However, the system becomes more robust to randomness when
there are more antennas, thanks to the higher spatial resolution (i.e., smaller
beamwidth) and larger beamforming gain.

In Figure 8.2, we show the MSE between the true DOA π/6 and the
estimate obtained (in radians) using conventional beamforming. The setup
is the same as in Figure 8.1, except that we vary the number of samples,
L, on the horizontal axis and consider two different SNR values: 0 dB and
10 dB. As expected, the lowest MSE is achieved using the most antennas and
having the highest SNR. All four curves show that increasing the number
of samples improves the DOA estimation quality. This happens because the
sample average estimator R̂L in (8.4) approaches the true correlation matrix
R = E {y[l]yH[l]} as L→∞, which progressively makes the power spectrum
less dependent on the random signals and noise.
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Figure 8.2: The MSE of the DOA estimation with conventional beamforming. A ULA is
considered with either M = 2 or M = 10 antennas and SNR = 0 or SNR = 10 dB. There is a
single source with the DOA φ1 = π/6.

The estimation performance can be studied analytically in the limit L→∞,
where the power spectrum Pconv(φ) with the ULA has the limit

Pconv(φ)→ P conv(φ) = aH(φ)Ra(φ). (8.10)

There is K = 1 source that sends the zero-mean signal x1[l] with power P1.
The correlation matrix R of the received signal in (8.3) can then be computed
as

R = E {y[l]yH[l]} = P1β1a(φ1)aH(φ1) + σ2IM . (8.11)
By inserting this expression into the right-hand side of (8.10), we obtain

P conv(φ) = aH(φ)
(
P1β1a(φ1)aH(φ1) + σ2IM

)
a(φ)

= P1β1 |aH(φ)a(φ1)|2 + σ2∥a(φ)∥2

≤ P1β1∥a(φ)∥2∥a(φ1)∥2 + σ2M

= P1β1M
2 + σ2M, (8.12)

where we utilized the Cauchy-Schwartz inequality from (2.18) and that array
response vectors satisfy ∥a(φ)∥2 = M . The inequality is only satisfied with
equality when a(φ) and a(φ1) are parallel vectors, which happens for φ = φ1
and φ = π − φ1 when using a ULA with half-wavelength spacing (recall the
mirror ambiguity from Figure 4.7). If the ULA is deployed so that only sources
in the range φ ∈ [−π/2, π/2] can occur, φ = φ1 is the unique maximum of the
asymptotic power spectrum P conv(φ). Since this asymptotic DOA estimate is
exact, the conventional beamforming method is a consistent DOA estimator.
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Example 8.1. Is the power spectrum in (8.9) related to the Fourier transform?
By introducing the variable ν = −M∆ sin(φ)/λ, we can express the power

spectrum in (8.9) as

Pconv(φ) = 1
L

L∑
l=1

∣∣∣∣M−1∑
m=0

ym+1[l]e−j2πmν/M

︸ ︷︷ ︸
=

√
MFd{ym+1[l]}

∣∣∣∣2. (8.13)

If ν is an integer, we can recognize the term inside the magnitude square as√
M times the DFT of the M -length spatial sequence y1[l], . . . , yM [l], based

on the definition in (2.195). Since the DFT is applied to the antenna index
domain instead of the time domain, we call this the spatial DFT, and ν is
the normalized spatial frequency. The power spectrum is the average of these
spatial DFTs with respect to the time samples l = 1, . . . , L. Different from the
classical DFT that only considers the normalized frequencies ν = 0, 1, . . . ,M−
1, we consider a real-valued spatial frequency variable ν = −M∆ sin(φ)/λ
because we want to evaluate the power spectrum Pconv(φ) for any search
direction φ ∈ [−π/2, π/2] to find its peaks. Hence, the Fourier transform
appearing in this context is the spatial counterpart to the discrete-time Fourier
transform (DTFT), defined as the DFT but with real-valued frequencies ν.
We might call it the discrete-space Fourier transform (DSFT).

Thus far, we have considered a half-wavelength-spaced ULA to avoid
spatial undersampling. As discussed in Section 4.3.4, grating lobes appear
in directions other than the main beam’s direction when ∆ is greater than
λ/2 in a ULA. Grating lobes can be acceptable in communications because
the total interference level is unaffected; instead of sending interference to
places close to the intended receiver when ∆ = λ/2, the same amount is sent
somewhere else when ∆ > λ/2. The issue is more severe in DOA estimation
since the grating lobes make the ULA unable to distinguish between some
widely different directions. To showcase this phenomenon, we consider the
same setup as in Figure 8.1 but increase the antenna spacing to ∆ = λ in
Figure 8.3. The power spectrum now has two equally tall peaks: one at the
true DOA φ = π/6 and another at φ = −π/6. The estimator cannot determine
which one is the true DOA because the array response vectors a(π/6) and
a(−π/6) are equal, as can be seen by computing (8.8) with ∆ = λ:

a(π/6)=



1
e−j2π λ sin(π/6)

λ

e−j2π 2λ sin(π/6)
λ

...
e−j2π (M−1)λ sin(π/6)

λ


=


1
−1
1
...

(−1)M−1

=



1
e−j2π λ sin(−π/6)

λ

e−j2π 2λ sin(−π/6)
λ

...
e−j2π (M−1)λ sin(−π/6)

λ


. (8.14)
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Figure 8.3: The normalized power spectrum in the same setup as in Figure 8.1 but for a single
random realization and with the antenna spacing ∆ = λ instead of ∆ = λ/2. The large spacing
results in two indistinguishable peaks in the power spectrum: One at the correct angle π/6 and
a grating lobe at −π/6.

It is the spatial undersampling (i.e., aliasing) that creates the grating lobe
at φ = −π/6, and the ambiguity remains when L, M , or the SNR goes to
infinity. The beamforming method cannot be consistent with such ambiguity;
thus, one should only use ULAs with ∆ ≤ λ/2 for DOA estimation.

Example 8.2. Consider a ULA with antenna spacing ∆ = 2λ/3 and a source
with the DOA φ = π/6. Is there any ambiguity in the DOA estimator? Can
it be resolved by increasing the number of antennas?

For the given spacing, the mth entry of the array response vector a(π/6)
is

e−j2π 2λ/3·(m−1) sin(π/6)
λ = e−j 2π

3 (m−1). (8.15)

If we can find another angle φ ∈ [−π/2, π/2] for which the mth entry of a(φ)
coincides with (8.15), we have a grating lobe at that angle and this results
in DOA ambiguity. To check for such an angle, we equate e−j 2π

3 (m−1) to the
mth element of a(φ):

e−j2π 2λ/3·(m−1) sin(φ)
λ = e−j 2π

3 (m−1) ⇒ 4π
3 sin(φ) = 2π

3 + 2π · n (8.16)

for some integer n. The equality is satisfied for n = 0 and n = −1. For n = 0,
we obtain φ = π/6, which is the true DOA. For n = −1, we obtain φ = −π/2
as another solution, so there is a grating lobe at that angle. This ambiguity
cannot be resolved by changing the number of antennas.
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Figure 8.4: The normalized power spectrum with an M-antenna ULA and conventional
beamforming for a single random realization. There are K = 2 sources with the DOAs φ1 = π/6
and φ2 = π/3. L = 25 time samples are used to compute the power spectrum. The peaks of the
power spectrum are the DOA estimates. The black and yellow crosses denote the peaks with
M = 2 and M = 10, respectively.

Next, we consider K = 2 sources located in the same horizontal plane as
the ULA. The sources have the DOAs φ1 = π/6 and φ2 = π/3. The ULA
has M = 2 or M = 10 antennas with ∆ = λ/2 spacing. Figure 8.4 shows
the normalized power spectrum obtained using L = 25 time samples where
the SNR is 0 dB. We show the spectrum for a single random signal/noise
realization for each value of M . In this case, the DOA estimates φ̂1, φ̂2 should
be the two tallest power spectrum peaks. When M = 2, there is only a single
peak, which is located between the true DOAs and marked with a black cross.
This ULA cannot distinguish between the two sources using its small number
of antennas. This effect can be explained following the beamwidth discussion
in Section 4.3.2. Suppose that the ULA points its beamforming toward one of
the sources in the receiver processing. If the other source is located within
the main beam (i.e., closer than the first nulls), it will disturb the angle
estimation. The receiver observes constructive interference of the signals from
both sources, which makes the power spectrum look as if there were only
one source. As the number of antennas increases, the beamwidth becomes
narrower, and we can observe two distinct peaks in the power spectrum. This
can be seen in the case of M = 10, where the peak values are marked with
yellow crosses. To get a rough idea of how many antennas are needed to resolve
two sources, we can use the approximation in (4.62) of the distance between
the beam direction and first null: 2/M radians. If the angular separation of
the sources is larger than this, we can expect them to be distinguishable in
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Figure 8.5: The normalized power spectrum with an M-antenna ULA and conventional
beamforming for a single random realization. There are K = 2 sources with the DOAs φ1 = π/6
and φ2 = π/5. L = 25 time samples are used to compute the power spectrum. The peaks of the
power spectrum are the DOA estimates. The black and yellow crosses denote the peaks with
M = 10 and M = 30, respectively.

the power spectrum (when the SNR or L is sufficiently large). Hence, this is a
measure of the array’s spatial resolutions. In Figure 8.4, the angle difference
between φ1 = π/6 and φ2 = π/3 is φ2 − φ1 = π/6 ≈ 0.52 rad. When using
M = 2 antennas, we need the spacing to be greater than 2/M = 1 rad to
ensure that two distinct peaks are visible in the spectrum. The corresponding
minimum separation is 2/M = 0.2 rad when M = 10, which is sufficient to
clearly distinguish the sources, as seen in the figure.

We will now change the DOA of the second source to φ2 = π/5, which
reduces the angular separation to φ2 − φ1 = π/30 ≈ 0.1 rad. Figure 8.5 shows
the normalized power spectrum for this scenario with either M = 10 or M = 30
antennas. In this case, we cannot resolve the sources using 10 antennas, but
we only observe a single peak marked with a black cross. However, we can
separate the sources with M = 30 antennas because 2/M = 2/30 ≈ 0.07,
which is smaller than 0.1. The two peaks in the power spectrum are marked
with yellow crosses and are close to the true DOAs.

The above principles also apply to cases with K > 2 sources. The num-
bering of the sources is arbitrary in the system model. The conventional
beamforming method finds K DOA estimates (when the spatial resolution is
sufficient) but cannot determine how the sources were numbered. Further in-
formation regarding the transmitted signals is required to distinguish between
sources, which is assumed unavailable when using non-parametric methods.



546 Localization and Sensing with MIMO

8.1.2 Non-Parametric Capon Beamforming

The conventional beamforming method works very well for DOA estimation in
the single-source scenario. However, several modifications exist to enhance the
resolution in multi-source scenarios. The general idea is to go beyond array
response vectors and use other combining vectors w that make it easier to
distinguish the sources. This is reminiscent of how MRC can be replaced by
LMMSE combining in the uplink of multi-user MIMO to suppress inter-user
interference and thereby achieve a higher data rate.

One important technique is Capon beamforming, named after its originator
Jack Capon [124]. This technique is also known as minimum-variance distor-
tionless response (MVDR) beamforming. As the latter name indicates, when
inspecting a specific direction (φ, θ), we should use the beamforming vector
w that minimizes the variance of the received signal while not distorting the
signal that arrives from the intended direction. The variance is the received
power P (w) = wHR̂Lw defined in (8.4), while wHa(φ, θ) = 1 is required not
to distort the impinging wave coming from the direction (φ, θ). We find the
Capon beamforming by solving the optimization problem

minimize
w∈CM

wHR̂Lw (8.17)

subject to wHa(φ, θ) = 1.
When there are L ≥ M received signal samples, the estimate R̂L of the
correlation matrix is almost always non-singular due to the noise. By defining
w = R̂1/2

L w as a new optimization variable, the problem in (8.17) can be
rewritten (by utilizing the invertibility of R̂L) as

minimize
w∈CM

wHw (8.18)

subject to wHR̂−1/2
L a(φ, θ) = 1.

The vector w = R̂−1/2
L a(φ, θ)/∥R̂−1/2

L a(φ, θ)∥2 gives equality in the constraint
and has the minimum norm among all potential solutions because it is parallel
to R̂−1/2

L a(φ, θ). Hence, this is the solution to (8.18). The corresponding
solution to (8.17) is

w = R̂−1/2
L w = R̂−1

L a(φ, θ)
aH(φ, θ)R̂−1

L a(φ, θ)
, (8.19)

which is called Capon/MVDR beamforming. If we insert this vector into the
general power spectrum expression in (8.4), we obtain the Capon spectrum

PCapon(φ, θ) = aH(φ, θ)R̂−1
L R̂LR̂−1

L a(φ, θ)(
aH(φ, θ)R̂−1

L a(φ, θ)
)2 = aH(φ, θ)R̂−1

L a(φ, θ)(
aH(φ, θ)R̂−1

L a(φ, θ)
)2

= 1
aH(φ, θ)R̂−1

L a(φ, θ)
. (8.20)
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Figure 8.6: The normalized power spectrum with conventional and Capon beamforming for a
single random realization. A ULA with M = 10 antennas and ∆ = λ/2 is considered. There is a
single source with the DOA φ = π/6.

The DOA estimates {φ̂k, θ̂k}, for k = 1, . . . ,K, are obtained as the K highest
peaks of the Capon spectrum.

Figure 8.6 compares the normalized power spectrum of conventional and
Capon beamforming for a single random realization. A ULA with M = 10
antennas and ∆ = λ/2 is considered. There is a single source with the DOA
φ = π/6, L = 25 samples are used, and the SNR is 0 dB. The figure shows that
the beamwidth of the Capon beamformer is narrower; thus, it has a higher
spatial resolution. The price to pay is that the peak of the power spectrum
can be shifted more from the true DOA when Capon beamforming is used.

The consequence of the larger deviation of the peak is highlighted in
Figure 8.7, which shows the MSE of the DOA estimates with conventional and
Capon beamforming for the same setup as in the last figure. This time, we
vary the number of samples L and consider two SNR values: 0 dB and 10 dB.
Conventional beamforming provides a smaller MSE than Capon beamforming
in this single-source scenario when the number of samples is low. However, as
L increases, the MSE gap diminishes.

The bottom line is that Capon beamforming is unnecessary in the single-
source scenario. However, it is designed to deal with situations with multiple
sources, where the improved spatial resolution can help resolve closely spaced
sources for which conventional beamforming fails. An example of this is
provided in Figure 8.8, where we consider K = 2 sources with the DOAs
φ1 = π/6 and φ2 = π/5. A ULA with M = 20 antennas and ∆ = λ/2 is
considered. Figure 8.8 shows the normalized power spectrum of conventional
and Capon beamforming for a single random realization. The spectrum with
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Figure 8.7: The MSE of DOA estimation with conventional and Capon beamforming as a
function of the number of samples used to compute the power spectra. A ULA with M = 10
antennas and ∆ = λ/2 is considered. There is a single source with the DOA φ = π/6, and the
SNR is varied.

Figure 8.8: The normalized power spectrum with conventional and Capon beamforming for
a single random realization. A ULA with M = 20 antennas and ∆ = λ/2 antenna spacing is
considered. There are K = 2 sources with the DOAs φ1 = π/6 and φ2 = π/5. The peaks of the
power spectrum are the DOA estimates.

conventional beamforming only has one peak, so it cannot resolve the two
sources. On the other hand, the Capon spectrum has two clearly distinguishable
peaks thanks to its increased spatial resolution. The locations of the peaks are
slightly biased/shifted compared to the true DOAs, but Capon beamforming
can at least provide two decent DOA estimates in this challenging setup.
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Example 8.3. Prove that Capon beamforming is a consistent DOA estimator
when there is a single source, ∆ = λ/2, and φ ∈ [−π/2, π/2] is of interest.

An estimator is consistent if the estimation error vanishes asymptotically.
When L→∞, it follows that R̂L → R and the Capon spectrum approaches

PCapon(φ, θ)→ PCapon(φ, θ) = 1
aH(φ, θ)R−1a(φ, θ) , (8.21)

where the correlation matrix R is given by (8.11) for the single-source case.
Using the matrix inversion lemma from Lemma 2.3, R−1 can be expressed as

R−1 =
(
P1β1a(φ1, θ1)aH(φ1, θ1) + σ2IM

)−1

= σ−2IM −
σ−2P1β1

σ2 + P1β1M
a(φ1, θ1)aH(φ1, θ1). (8.22)

Hence, aH(φ, θ)R−1a(φ, θ) in the denominator of (8.21) becomes

σ−2aH(φ, θ)IMa(φ, θ)− σ−2P1β1

σ2 + P1β1M
|aH(φ, θ)a(φ1, θ1)|2

= σ−2M − σ−2P1β1

σ2 + P1β1M
|aH(φ, θ)a(φ1, θ1)|2 . (8.23)

Inserting this expression into the right-hand side of (8.21), we obtain

PCapon(φ, θ) = 1
σ−2M − σ−2P1β1

σ2+P1β1M
|aH(φ, θ)a(φ1, θ1)|2

. (8.24)

The asymptotic Capon spectrum is maximized when |aH(φ, θ)a(φ1, θ1)|2 is
maximized, which according to the Cauchy-Schwartz inequality in (2.18)
only happens if a(φ, θ) = a(φ1, θ1). This equation has only one solution
φ ∈ [−π/2, π/2]; thus, Capon beamforming is a consistent DOA estimator.

The DOA estimation performance changes if the sources transmit correlated
signals. We will consider a ULA with M = 3 antennas and ∆ = λ/2 to
exemplify this. There are K = 2 sources with the DOAs φ1 = 0 and φ2 = π/6.
The corresponding array response vectors can be computed using (8.8) as

a(φ1 = 0) =

 1
e−jπ sin(0)

e−jπ2 sin(0)

 =

1
1
1

, a(φ2 = π/6) =

 1
e−jπ sin(π/6)

e−jπ2 sin(π/6)

 =

 1
−j
−1

.
(8.25)

Suppose the random source signals x1[l], x2[l] in (8.3) are always equal except
for a phase-shift: x1[l] = x2[l]ejϕ. Such sources are called coherent. This
scenario can happen when the same beacon signal is broadcasted from two
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sources or when the signal from one source is reflected on two objects before
reaching the receiver. For simplicity, suppose that β1 = β2 = β, ψ1 = ψ2 = 0,
and ϕ = 0. The received signal in (8.3) then becomes

y[l] =
√
β1a(φ1)x1[l] +

√
β2a2(φ2)x2[l] + n[l]

=
√
β
(

a(0) + a(π/6)︸ ︷︷ ︸
=a

)
x[l] + n[l]. (8.26)

Hence, when the source signals are coherent, the received signal is the same
as if there were a single source with the effective array response vector

a =

1
1
1

+

 1
−j
−1

 =

 2
1− j

0

 . (8.27)

The asymptotic power spectra in (8.12) and (8.24) for conventional and Capon
beamforming, respectively, are proportional to |aH(φ)a|. To obtain consistent
estimates, we expect the power spectra to have their peaks at φ = φ1 = 0
and φ = φ2 = π/6. However, this is not the case because |aH(0)a| ≈ 3.16
and |aH(π/6)a| ≈ 1.41, while |aH(arcsin(1/4))a| ≈ 3.41 gives a larger value.
This specific angle gives a(arcsin(1/4)) = [1, (1− j)/

√
2,−j]T, which resembles

(8.27). Hence, the conventional and Capon beamforming methods are not
consistent DOA estimators when the sources are coherent.

Example 8.4. Consider K sources that transmit independent data signals
with power P and suppose the noise variance is σ2. How is Capon beamforming
related to LMMSE combining in this case?

In this setup, the Capon beamforming expression in (8.19) has the limit

w→ cR−1a(φ, θ) = c

(
K∑
k=1

Pβka(φk, θk)aH(φk, θk) + σ2IM

)−1

a(φ, θ)

(8.28)
as L → ∞, where c = 1/(aH(φ, θ)R̂−1

L a(φ, θ)) is a scalar. When inspecting
the kth source direction by setting φ = φk and θ = θk, the limit in (8.28)
coincides with the LMMSE combining vector in (6.63) for an uplink multi-user
MIMO system where the users transmit with power P and have the LOS
channels hk = a(φk, θk) for k = 1, . . . ,K. The only difference between the
two expressions is the scalar c, which is selected to get a distortionless signal
in Capon beamforming, while it is picked to minimize the MSE in LMMSE
combining. The vital difference is the application: LMMSE combining is
implemented to receive uplink data signals when the channels are known,
while Capon beamforming aims at estimating the channel parameters without
knowing the signals. However, the similarities between the system models
imply that Capon beamforming is an approximate form of LMMSE combining.
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In summary, conventional and Capon beamforming are consistent DOA
estimators when there is a single source, if the array deployment causes no DOA
ambiguity. The main beam with Capon beamforming can be slightly shifted;
thus, it requires more samples to be as accurate as conventional beamforming
when there is a single source. On the other hand, Capon beamforming has a
higher spatial resolution, and when multiple sources have close DOAs, it can
resolve sources that conventional beamforming cannot. There is a limit on
how closely spaced sources these methods can distinguish for a given number
of antennas. Correlation between the source signals will reduce the accuracy of
the DOA estimates. These are the main reasons for developing more advanced
methods that exploit the source and signal statistics. Later in this chapter,
we will present a subspace-based technique belonging to that category.

8.1.3 Joint Azimuth and Elevation DOA Estimation

The Capon spectrum in (8.20) can be applied with arbitrary array geometries
and source locations, but all the previous simulation examples have considered
ULAs and sources with zero elevation angles. In this section, we will have a
closer look at how the theory can be used to jointly estimate the azimuth and
elevation angles of the sources.

Figure 8.9 shows the normalized power spectrum with Capon beamforming
for a single random realization containing L = 25 time samples. A ULA is
considered with M = 16 antennas and ∆ = λ/2. There is a single source
with the azimuth and elevation DOAs φ = π/4 and θ = −π/4, respectively.
The SNR is 0 dB. The figure shows infinitely many peak values along the
yellow arc in the azimuth-elevation plane. Hence, there is a DOA estimation
ambiguity when using a ULA to simultaneously estimate the azimuth and
elevation angles. The true source location is marked with a green circle and is
on the arc, but we cannot distinguish it from the other points. This reason
can be identified by analyzing the array response vector of the source:

a(π/4,−π/4) =


1

e−jπ sin(π/4) cos(−π/4)

...
e−jπ(M−1) sin(π/4) cos(−π/4)

 =


1

e−jπ/2

...
e−jπ(M−1)/2

 . (8.29)

The same array response vector can be obtained for φ = π/6 and θ = 0:

a(π/6, 0) =


1

e−jπ sin(π/6) cos(0)

...
e−jπ(M−1) sin(π/6) cos(0)

 =


1

e−jπ/2

...
e−jπ(M−1)/2

 . (8.30)

Suppose we somehow know the elevation angle to the source (as in previous
examples where it was zero). In that case, we only need to look for the peak



552 Localization and Sensing with MIMO

Figure 8.9: The normalized 2D power spectrum of DOA estimation for a ULA with M = 16
antennas, L = 25 samples, 0 dB SNR, and Capon beamforming. There is one source with the
azimuth and elevation DOAs φ = π/4 and θ = −π/4, indicated by the green circle. The color
shows the spectrum value. It has infinitely many peaks along the yellow arc, which results in
ambiguity. The correct point is only found if the receiver somehow knows the correct elevation
DOA. The red cross, red stars, and red circle show the alternative DOA estimates obtained if
the receiver knows that the elevation DOA is θ = 0, θ = ±π/3, or θ = π/4, respectively.

value along the corresponding horizontal line in Figure 8.9, and there is only
a single yellow peak on that line. For example, if we know that θ = −π/4, we
will find the correct DOA estimate. However, if we incorrectly believe that
θ = 0, the red cross at φ = π/6 denotes the unique but incorrect solution we
will get. Similarly, if we incorrectly believe that the correct elevation DOA is
θ = ±π/3, we will obtain φ = π/2 as the azimuth DOA estimate because it
also gives the same array response vector as in (8.29):

a(π/2,±π/3) =


1

e−jπ sin(π/2) cos(±π/3)

...
e−jπ(M−1) sin(π/2) cos(±π/3)

 =


1

e−jπ/2

...
e−jπ(M−1)/2

 . (8.31)

The red stars in the figure show these DOA estimates.
On the other hand, it is not enough to know that φ = π/4 is the correct

azimuth angle because there are two peaks on the corresponding vertical
line, resulting in an ambiguity between θ = ±π/4 (marked with circles). The
bottom line is that a ULA cannot estimate the azimuth and elevation DOAs
jointly, but we must know the elevation angle to find the correct DOA.
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Figure 8.10: The normalized power spectrum of DOA estimation for a UPA with MH = MV = 4,
∆ = λ/2, and Capon beamforming. The parameters are otherwise the same as in the ULA case
in Figure 8.9. Unlike that case, a single peak is located at the true DOA when using a UPA.

One way to resolve the ambiguity is to use a two-dimensional array, capable
of 3D beamforming, to resolve signals both horizontally and vertically. We will
exemplify this feature by considering a UPA with MH = 4 horizontal antennas,
MV = 4 vertical antennas, and ∆ = λ/2. The total number of antennas is the
same as in the ULA, and all other parameters are unchanged. Figure 8.10
shows the normalized power spectrum of Capon beamforming for a single
random realization. In this case, there is only a single peak, and it is located
at the true azimuth and elevation DOAs (i.e., φ = π/4 and θ = −π/4). This
implies that switching from a ULA to a UPA resolves the angular ambiguity
issue. The enabling factor is that the array response vector can be expressed
using (4.128) as

a4,4(π/4,−π/4) = a4(−π/4, 0)⊗ a4(π/4,−π/4), (8.32)

which is the Kronecker product of the array responses of two 4-antenna ULAs.
When considering the ULA earlier in this section, we noticed that multiple
DOA pairs give rise to the same vector as in the second factor in (8.32). These
are all the values (φ, θ) that give sin(φ) cos(θ) = sin(π/4) cos(−π/4) = 1/2.
If we pick the wrong angle pair, it will give the wrong vector in the first
factor in (8.32). Hence, the array response vector is unique, and the UPA can
provide a consistent estimate of both the azimuth and elevation angle. The
only necessary condition is that the antenna spacing satisfies ∆ ≤ λ/2 and
that we only consider azimuth angles on one side of the array: φ ∈ [−π/2, π/2].
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Example 8.5. Consider a UPA with MH = MV = 2 and the antenna spacing
∆ = λ. If there is a single source with the azimuth and elevation DOAs
φ1 = π/4 and θ1 = −π/4, is there a unique peak in the Capon spectrum?

Following (4.128), the array response vector is

a2,2(φ, θ) =
[

1
e−j2π sin(θ)

]
⊗
[

1
e−j2π sin(φ) cos(θ)

]
. (8.33)

If there is an extra peak at some angle pair (φ̃, θ̃) in the Capon spectrum,
then both factors in (8.33) must be the same as for the true source angles.
We begin by comparing the first factors, which are equal if

−2π sin(−π/4) =
√

2π = −2π sin(θ̃) + 2πn1 ⇒ sin(θ̃) = n1 −
1√
2

(8.34)

for any integer n1. Two elevation angles satisfy this condition: the true DOA
θ̃1 = −π/4 (for n1 = 0) and the extra solution (for n1 = 1)

θ̃2 = arcsin
(

1− 1√
2

)
≈ 0.297 rad. (8.35)

For any given value of θ̃, the second factor in (8.33) is the same as for the
source if

− 2π sin(π/4) cos(−π/4) = −π = −2π sin(φ̃) cos(θ̃) + 2πn2

⇒ sin(φ̃) cos(θ̃) = n2 + 1
2 ⇒ φ̃ = arcsin

(
n2 + 1/2

cos(θ̃)

)
(8.36)

for any integer n2. This equation has the two solutions: φ̃1,1 = π/4 (for
n2 = 0) and φ̃1,2 = −π/4 (for n2 = −1) when θ̃1 = −π/4 is considered. For
θ̃2, we obtain the additionalsolutions

φ̃2,1 = arcsin
(

1/2
cos(θ̃2)

)
≈ 0.55 rad, φ̃2,2 = arcsin

(
−1/2

cos(θ̃2)

)
≈ −0.55 rad.

(8.37)

Hence, the power spectrum has the four peaks (φ̃1,1, θ̃1), (φ̃1,2, θ̃1), (φ̃2,1, θ̃2),
and (φ̃2,2, θ̃2). The reason for not having a unique peak is the large antenna
spacing of ∆ = λ, which creates one grating lobe in the azimuth plane and
one in the elevation plane. The latter one has a grating lobe on its own.
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8.1.4 Parametric Subspace-Based Methods

Subspace-based methods can provide better DOA estimation accuracy than
beamforming methods by exploiting further information regarding the source
signals. Similar to beamforming methods, they exploit the estimate R̂L of the
received signal’s correlation matrix. As the name “subspace-based” suggests,
these methods rely on explicitly separating the eigendecomposition of R̂L into
signal and noise subspaces [51]. MUltiple SIgnal Classification (MUSIC) [125],
[126] and Estimation of Signal Parameters by Rotational Invariance Techniques
(ESPRIT) [127], [128] are two classic subspace-based DOA estimation methods.
The former method exploits the noise subspace, which is spanned by the
eigenvectors of the smallest eigenvalues of R̂L, while the latter technique uses
the signal subspace spanned by the eigenvectors of the largest eigenvalues.
In this section, we will describe the basic form of the MUSIC algorithm and
compare it to Capon beamforming. We refer to the textbook [129] for a
detailed description of ESPRIT and variations on MUSIC.

We revisit the signal model in (8.3), where the received signal at time l is

y[l] =
K∑
k=1

√
βke

−jψka(φk, θk)xk[l] + n[l]. (8.38)

We assume the number of sources is smaller than the number of antennas (i.e.,
K < M) and define the vector p[l] = [

√
β1e

−jψ1x1[l], . . . ,
√
βKe

−jψKxK [l]]T

containing the received signals at the first antenna. If we denote its correlation
matrix as P = E{p[l]pH[l]}, the correlation matrix of y[l] can be expressed as

R = E {y[l]yH[l]} = APAH + σ2IM , (8.39)

where A ∈ CM×K contains the array response vectors of the sources as its
columns:

A =
[
a(φ1, θ1) . . . a(φK , θK)

]
. (8.40)

The eigendecomposition of the positive semi-definite Hermitian matrix APAH

in (8.39) always exists and can be expressed as

APAH = UDUH, (8.41)

where the diagonal entries of D contain the real-valued positive eigenvalues in
decreasing order and the columns of U are the corresponding unit-length eigen-
vectors. Adding a scaled identity matrix to UDUH preserves the eigenvectors
but increases all the eigenvalues (see Example 2.7). Hence, the eigendecompo-
sition of R in (8.39) is

R = APAH + σ2IM = U
(
D + σ2IM

)
UH. (8.42)

If the matrix APAH has rank of r, then r eigenvalues of R are strictly greater
than σ2 and the remaining M − r eigenvalues are exactly σ2. Since we index
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the eigenvalues in decreasing order, we can decompose U as U = [Us,Un],
where Us ∈ CM×r contains the eigenvectors corresponding to the non-zero
eigenvalues of APAH. These r eigenvectors span the signal subspace of R, as
the subscript s indicates. This subspace contains all the received signals and
additive noise. On the other hand, the columns of Un ∈ CM×(M−r) contain
the eigenvectors corresponding to the zero-valued eigenvalues of APAH. These
M − r eigenvectors span the noise subspace of R, as the subscript n indicates.
This subspace only contains noise with variance σ2.

Since the eigenvectors in Un correspond to the zero-valued eigenvalues of
APAH, we have the relation

APAHUn = 0. (8.43)

From linear algebra, we know that if AP ∈ CM×K has the full rank of K
(recall the assumption K < M), then (8.43) implies

AHUn = 0 ⇒ aH(φk, θk)Un = 0, k = 1, . . . ,K
⇒ aH(φk, θk)UnUH

na(φk, θk) = 0, k = 1, . . . ,K. (8.44)

The rank of AP is equal to the rank of APAH. To achieve full rank, we need
both A and P to have full rank. The correlation matrix P is non-singular when
the source signals are not fully correlated (coherent). Secondly, the matrix A
has full rank if and only if the K array response vectors a(φk, θk) are linearly
independent. When the second condition is satisfied, the array is said to be
unambigious, which enables unique DOA estimates [51]. This is a necessary
condition for the existence of a consistent estimator, but in non-asymptotic
cases, there might nevertheless be multiple peaks in the spectrum even if
there is only a single source, and the DOA estimate might be erroneous. The
unambiguity is a usual assumption valid for the most commonly used arrays.
The following lemma presents the conditions for a ULA.

Lemma 8.1. The array response vectors a(φk, θk) for k = 1, . . . ,K, where
K ≤M , are linearly independent for a horizontal ULA with ∆ ≤ λ/2 if the
K DOAs result in distinctly different values of sin(φk) cos(θk).

Suppose that the source angles satisfy θk = 0 and φk ∈ [−π/2, π/2], for
k = 1, . . . ,K. If the K azimuth angles φk are different, then Lemma 8.1
implies that the array response vectors a(φk, θk) are linearly independent
when using a ULA with ∆ ≤ λ/2.

If we know Un and the array is unambiguous, we can find the DOA angles
of the sources by searching for K linearly independent array response vectors
that give equality in (8.44). The MUSIC algorithm builds on this principle
but deals with the situation where Un is estimated from the received signals.

Under the assumption that APAH has full rank (i.e., r = K), the MUSIC
algorithm estimates the DOA angles by first constructing the sample average
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estimator of R using L samples as

R̂L = 1
L

L∑
l=1

y[l]yH[l]. (8.45)

We then compute the eigendecomposition of R̂L and let Ûn ∈ CM×(M−K) be
the matrix whose columns are the unit-length eigenvectors corresponding to the
M−K smallest eigenvalues. Inspired by the fact that aH(φ, θ)UnUH

na(φ, θ) = 0
when considering the DOA of a source, we define the MUSIC spectrum as

PMUSIC(φ, θ) = 1
aH(φ, θ)ÛnÛH

na(φ, θ)
(8.46)

for azimuth angles φ ∈ [−π/2, π/2] and elevation angles θ ∈ [−π/2, π/2].
The denominator is nearly zero when the angle (φ, θ) is close to a source,
which will generate a peak in the spectrum. If Ûn is exactly equal to Un
(i.e., R̂L = R), then the MUSIC spectrum is infinite at the true DOAs.
Since we only have access to the estimate Ûn, the peak values and locations
are approximations. When K is known, the K tallest peaks of the MUSIC
spectrum are declared as the DOA estimates. When K is unknown, the MUSIC
algorithm can also detect the number of sources by inspecting the eigenvalues
of R̂L. By comparing them with a threshold, we can determine how many are
substantially larger than σ2 and use this value as the estimate of K. We then
proceed by identifying the K tallest peaks of the MUSIC spectrum.

In Figure 8.11, we show the normalized power spectra using either Capon
beamforming or the MUSIC algorithm for DOA estimation. A ULA is consid-
ered with M = 50 antennas and ∆ = λ/2. There are K = 2 sources with the
azimuth DOAs φ1 = π/6 and φ2 = π/5, respectively. The elevation angles
are zero. The source signals are independent and Gaussian distributed. The
transmit power and channel gains are the same, and the common SNR is
0 dB. We use L = 100 samples in Figure 8.11(a). In this case, both Capon
beamforming and the MUSIC algorithm have peaks around the true DOAs,
although the peak values are not exactly centered at the true values, so the
DOA estimates are not exact. However, the resolution of MUSIC is superior
since the main beams are narrower. When we decrease the number of samples
to L = 50 in Figure 8.11(b), we see that the performance of Capon beam-
forming deteriorates, while MUSIC still performs roughly the same. Since
the MUSIC algorithm explicitly exploits the eigenstructure of R by only
using the estimated noise subspace when constructing the power spectrum, it
generally provides higher resolution than beamforming methods. The differ-
ence is particularly large when L is small; thus, MUSIC is said to be more
sample-efficient than the beamforming methods.

In Figure 8.12, we consider the same setup as in 8.11(b), but reduce the
number of antennas to M = 10. In this scenario, neither MUSIC nor Capon
beamforming can provide useful DOA estimates. Although MUSIC generally
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(a) L = 100 samples.

(b) L = 50 samples.

Figure 8.11: The normalized power spectrum for a single random realization. Capon beam-
forming and the MUSIC algorithm are used for DOA estimation using a ULA with M = 50
and ∆ = λ/2. There are K = 2 sources with the DOAs φ1 = π/6 and φ2 = π/5, respectively.
Different numbers of samples are considered when generating the spectra.
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Figure 8.12: The normalized power spectrum with Capon beamforming and the MUSIC
algorithm in the same setup as in 8.11(b) but with M = 10 antennas.

provides higher estimation accuracy than the beamforming methods, the
number of antennas limits the spatial resolution. The MUSIC algorithm also
fails if the sources are closely located, compared to the beamwidth.

Example 8.6. Consider DOA estimation with K = 2 fully correlated sources.
What is the correlation matrix P? What is the rank of APAH?

For K = 2 sources, we have p[l] = [
√
β1e

−jψ1x1[l],
√
β2e

−jψ2x2[l]]T. When
the sources are fully correlated, their correlation coefficient has a magnitude
of one. Assuming the correlation coefficient is 1 (real-valued) and ψ1 = ψ2 = 0
for notational convenience, we have E{x1[l]x∗

2[l]} =
√
P1P2. The correlation

matrix P = E{p[l]pH[l]} then becomes

P =
[

β1P1
√
β1β2P1P2√

β1β2P1P2 β2P2

]
=
[√

β1P1√
β2P2

] [√
β1P1

√
β2P2

]
, (8.47)

which has rank one since it can be decomposed as the outer product of two
vectors. Irrespective of the rank of A, the rank of APAH is also one because

APAH =
[
a(φ1, θ1) a(φ2, θ2)

] [√β1P1√
β2P2

] [√
β1P1

√
β2P2

] [aH(φ1, θ1)
aH(φ2, θ2)

]
=
(√

β1P1a(φ1, θ1)+
√
β2P2a(φ2, θ2)

)(√
β1P1a(φ1, θ1)+

√
β2P2a(φ2, θ2)

)H

(8.48)

is the outer product of two vectors. When the correlation coefficient is smaller
than 1, P has rank 2, so rank deficiency only occurs with full correlation.
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(a) The correlation coefficient is 0.9.

(b) The correlation coefficient is 1 (i.e., fully correlated sources).

Figure 8.13: The normalized power spectrum in the same setup as in 8.11(b) except that the
source signals are either highly correlated or fully correlated.
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We have seen previously in Section 8.1.2 that statistical correlation between
the source signals can degrade the DOA estimation accuracy when using Capon
beamforming. To further explore this phenomenon, Figure 8.13 considers the
same setup as in 8.11(b), but now the source signals are correlated with
Gaussian distributions. The correlation coefficient is 0.9 in Figure 8.13(a),
whereas it is 1 in Figure 8.13(b). Capon beamforming cannot provide accurate
DOA estimates in any of these cases, but it gets even worse when the sources
are fully correlated. In contrast, the MUSIC algorithm is relatively robust to
source correlation. The rank of APAH is two when the correlation coefficient
is 0.9, and MUSIC proves peaks around the true DOAs. When the sources
are fully correlated, the peaks are slightly shifted since the rank of APAH

drops to 1 but remains fairly accurate. This demonstrates that subspace-based
methods can handle source correlation relatively efficiently.

Despite the better resolution, the MUSIC algorithm cannot jointly estimate
the azimuth and elevation DOA angles when a ULA is utilized. Hence, it
is required to use a two-dimensional array (e.g., a UPA) capable of 3D
beamforming to solve the general DOA estimation problem.

Example 8.7. Consider a UPA with MH > 1 horizontal and MV > 1 vertical
antennas with the spacing ∆ ≤ λ/2. Show that the array response vectors
aMH,MV(φk, θk), for k = 1, 2, are linearly independent for any combination of
φ1, θ1, φ2, θ2 ∈ [−π/2, π/2], except if both φ1 = φ2 and θ1 = θ2.

The UPA array response vector is given in (4.128) as

aMH,MV(φ, θ) = aMV(θ, 0)⊗ aMH(φ, θ), (8.49)

which is the Kronecker product of two array response vectors for ULAs. For
aMH,MV(φ1, θ1) and aMH,MV(φ2, θ2) to be linearly dependent, both factors
in the Kronecker product must be equal. We know from Lemma 8.1 that
aMV(θ1, 0) and aMV(θ2, 0) are only linearly dependent if sin(θ1) cos(0) =
sin(θ2) cos(0). The only solution in the range [−π/2, π/2] is θ1 = θ2. Hence,
linear dependence requires the elevation angles to be equal.

The same lemma says that aMH(φk, θk), for k = 1, 2, are only linearly
dependent when sin(φk) cos(θk) has the same value for both sources. Since we
already know that θ1 = θ2 is required for linear dependence, this implies that
we further need sin(φ1) = sin(φ2). The only solution in the range [−π/2, π/2]
is φ1 = φ2. Hence, a UPA can uniquely identify sources located in different
directions thanks to its ability to resolve sources in the elevation angle domain.

In Figure 8.14, we show the normalized 2D power spectrum obtained
with either Capon beamforming or the MUSIC algorithm when using a UPA
with MH = 10, MV = 5, and ∆ = λ/2. There are K = 4 sources located at
the intersection points of the red dashed lines; that is, at the DOA azimuth
and elevation angle pairs (π/20, π/20), (π/20,−π/20), (−π/20, π/20), and
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(−π/20,−π/20). L = 50 time samples are used to compute the power spectra
and the SNR is 0 dB. The source signals are independent and Gaussian
distributed. By comparing the peaks of the Capon and MUSIC spectra, we
note that MUSIC is more accurate and gives peaks close to the true DOA
locations. Although the four DOAs share the same azimuth or elevation angles
pairwise, the MUSIC algorithm can resolve these similar sources using a UPA.

The MUSIC spectrum in (8.46) is generated under the assumption that
there are K sources by using the eigenvectors corresponding to the M −K
smallest eigenvalues of R̂L. We will now look at the impact of wrongly
estimating the number of sources. We consider the same setup as in Figure 8.14
but only consider the MUSIC algorithm. There are K = 4 sources but Ûn
is constructed by incorrectly assuming K̂ = 3 sources in Figure 8.15(a) and
K̂ = 10 sources in Figure 8.15(b). When we underestimate the number of
sources, we effectively treat one dimension of the signal space as a part of the
noise subspace. Since that dimension generally contains components from all
four source signals (except in the special case where the array response vectors
are mutually orthogonal), the result is that we lose the ability to estimate the
DOAs of all the sources. On the other hand, the MUSIC algorithm is much
more robust to overestimating the number of sources. When ten sources are
assumed, the dimension of the noise subspace is reduced from 47 to 40, but it
remains orthogonal to the signal space, so the peaks of the spectrum appear
roughly at the correct locations. Hence, it is better first to overestimate the
number of sources and then refine the estimate if the spectrum contains fewer
peaks. If we know that K̂ might overestimate K, we need an extra step in
the algorithm to determine how many peaks to consider as source estimates.

In summary, the subspace-based MUSIC algorithm provides higher DOA
estimation accuracy than the beamforming methods. It is relatively robust to
source signal correlation and can be used with an unknown number of sources.
There exist modified versions of the MUSIC algorithm that are even better at
managing signal correlation [129]. Other than that, there are more advanced
parametric methods that further exploit the structure of the source signals
for better accuracy [51]. Although the theoretical development of the MUSIC
algorithm relies on the rank of P, this matrix is not explicitly considered
when generating the MUSIC spectrum in (8.46). The correlation matrix
estimate R̂L and the corresponding noise subspace Ûn are used instead.
There also exist parametric ML methods (i.e., extensions of the method
described in Section 4.2.5) that exploit further knowledge of the source signal’s
characteristics for enhanced estimation [51]. The more is known about the
source signals, the higher DOA estimation accuracy can be achieved, but the
computational complexity might also grow. In all the considered methods,
we need to evaluate the power spectra for a dense grid of discrete angles to
identify the peaks, which is especially complex in the 2D case.
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(a) 2D spectrum with Capon beamforming.

(b) 2D spectrum with the MUSIC algorithm.

Figure 8.14: The normalized power spectrum for a single random realization when using a
UPA with MH = 10, MV = 5, and ∆ = λ/2. There are K = 4 sources located at the intersection
points of the red dashed lines: (π/20, π/20), (π/20,−π/20), (−π/20, π/20), and (−π/20,−π/20).
L = 50 time samples are used to compute the power spectra. Capon beamforming is compared
with the MUSIC algorithm.
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(a) Power spectrum when believing there are K̂ = 3 sources (too few).

(b) Power spectrum when believing there are K̂ = 10 sources (too many).

Figure 8.15: The normalized power spectrum obtained by the MUSIC algorithm in the same
setup as in Figure 8.14. There are K = 4 sources, but the noise subspace is constructed by
the eigenvectors corresponding to the M − K̂ smallest eigenvalues. The number of sources is
presumed to either be K̂ = 3 or K̂ = 10.
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8.2 Localization

Source localization or simply localization is an extensively studied topic, where
the aim is to estimate the unknown location of a source node, object, or person
by using the measured data from multiple other sensors that have known
locations [130]. We will call the object of interest (with an unknown location)
the target node and other sensors that collect measurements the receivers.
The location refers to a point in a selected coordinate system [131], such as a
2D location in R2 or a 3D location in R3. The origin is at an arbitrary but
predefined location.

We will consider so-called cooperative localization, where the measurements
collected at M receivers are fused to estimate the target node’s location. When
the target transmits a signal, the receivers constitute a distributed receive
antenna array. The signal propagates over an M -dimensional SIMO channel,
but the goal is not to estimate its M complex coefficients (as in previous
chapters) but only to extract the location. To this end, each receiver can
measure the time-of-arrival (TOA) of the transmitted signal. If the target
node and the receivers have synchronized clocks, the propagation delays to
the respective receivers can be computed by knowing the time the signal
was transmitted.3 In a LOS scenario, these measurements can be used to
deduce the respective distances to the target node by multiplying the delay
by the speed of light. The distance measurements can be combined with
the known locations of the receivers to extract the target location. If the
receivers are synchronized but the transmission time is uncertain, they can
compare their TOA measurements instead and determine the time-difference-
of-arrival (TDOA). This scenario is of practical interest because it is hard
to maintain precise synchronization between a mobile target node at an
unknown location and a network of receivers. On the other hand, cables
can be drawn between the fixed receivers to enable sharing of measurements
and synchronization. When each receiver is equipped with multiple antennas,
the receivers can individually estimate their DOA from the target node. By
combining these DOA measurements with the known receiver locations, the
target node’s location can be precisely estimated. Many practical systems use
hybrid localization methods that fuse different kinds of physical measurements
(e.g., angles, signal strengths, inertial sensor measures, different radio systems,
etc.) so their respective weaknesses can be counteracted. In this section, we
only cover the fundamentals of localization. We begin by exemplifying the
basic principles of TOA-based localization and then cover the details of the
TDOA- and DOA-based localization techniques.

3Alternatively, the round-trip delay can be measured by sending a signal from a receiver
to the target node, which immediately sends it back [131]. Half the round-trip delay plus the
initial transmission time can then be treated as the TOA. This procedure does not require clock
synchronization but must be repeated M times when there are M receivers, making it inefficient
for implementing cooperative localization.
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8.2.1 TOA-Based Localization

We will focus on 2D localization for notational convenience. Hence, the aim is
to estimate the (x, y) ∈ R2 coordinates of the target node using M receivers
that are distributed over the azimuth plane. A setup of this kind is shown in
Figure 8.16(a), where the target node is denoted by a red star and located
at the (unknown) coordinate (100, 0) m. There are M = 3 receivers shown
as blue squares at the known coordinates (−100, 0), (0, 100), and (0,−100).
Note that the target and receivers are equally spaced on a circle with a 100 m
radius centered at the origin. We assume there are free-space LOS channels
from the target node to each receiver.

If a signal is transmitted by the target node at time 0 (or any other known
time instance), the TOA at receiver m becomes

tm =
√

(xm − x)2 + (ym − y)2

c
, (8.50)

where c is the speed of light and (xm, ym) denotes the 2D coordinates of
receiver m, for m = 1, . . . ,M . Suppose the TOAs are measured perfectly.
Receive m can then compute the corresponding propagation distance

dm = tmc =
√

(xm − x)2 + (ym − y)2 (8.51)

and knows that the target node is located somewhere on a circle around
receiver m with radius dm. Figure 8.16(a) shows these circles for the M = 3
receivers. The three circles only intersect at the precise location of the target
node; thus, three distance measurements are sufficient to uniquely estimate
the location, which is known as trilateration. However, if we remove one of the
receivers, the remaining two circles intersect at two locations, which creates
ambiguity. In conclusion, at least M = 3 TOAs must be measured to find the
2D target location in the noise-free case.

In practice, the location estimate will be imperfect due to TOA measure-
ment errors. The receiver noise creates an upper limit on the TOA measurement
accuracy for a given bandwidth and SNR. Other error sources are multipath
propagation (in addition to the LOS path) and synchronization mismatches.
Suppose the total errors can be modeled as additive Gaussian noise so that
the noisy distance measured at receiver m is

rm = dm + nm =
√

(xm − x)2 + (ym − y)2 + nm, m = 1, . . . ,M, (8.52)

where nm ∼ N (0, σ2
d). The variance σ2

d depends on the wireless technology,
bandwidth, carrier frequency, range, etc. The aim of TOA-based localization
is then to estimate the target location (x, y) as accurately as possible based on
the noisy measurements rm, for m = 1, . . . ,M . In Figure 8.16(b), we consider
the same setup as in Figure 8.16(a), but the receivers only know the noisy
measurements r1, . . . , rM and the variance σ2

d. Based on this information, each
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(a) M = 3 receivers and noise-free measurements.

(b) M = 3 receivers and noisy measurements.

(c) M = 10 receivers and noisy measurements.

Figure 8.16: Example of TOA-based localization in the azimuth plane with M receivers and a
single target node. The location of the target node is indicated by a red star, and the locations
of the receivers are shown as blue squares. The circle (or yellow annulus between two circles)
indicates where each receiver believes the target is located. The intersection points/regions can
be used to estimate the target’s location.
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receiver can construct a confidence interval for the true value of dm. If we
plot the lower and upper interval limits as two circles, the annulus between
them contains the likely locations of the target node.

In Figure 8.16(b), we consider the noise standard deviation σd = 5 m
and construct our confidence intervals to contain three standard deviations:
dm ∈ [rm − 15, rm + 15]. Hence, the confidence interval for receiver m is
represented by the yellow annulus between an inner circle around the receiver
with radius rm−15 and an outer circle with radius rm+15. We can confidently
say that the target node is located somewhere in the overlapping area between
the M = 3 annuluses. We notice that the red star is in this area, but there is
always an uncertainty in the location estimation when measurement errors
occur. If the errors were smaller, each annulus shrinks, which improves the
localization accuracy since the overlapping area also shrinks. Another way to
improve the accuracy (for a fixed noise variance) is to fuse the measurements
from more receivers. To see this impact visually, we consider M = 10 receivers
in Figure 8.16(c) and distribute them uniformly on the left half of a circle
centered at the origin with radius 100 m. The confidence intervals are generated
as before, and we can be certain that the receiver is located in the area where
all the ten annuluses intersect. This area shrinks with an increased number of
receivers as the confidence intervals point in different directions and thereby
have less overlap.

8.2.2 TDOA-Based Localization

As mentioned earlier, TOA-based localization requires clock synchronization
between the target node and all the receivers to turn the TOA measurements
into distance measurements. In practice, it is desirable to alleviate the need
for the target node to be precisely synchronized with the receiver because that
is hard to achieve when the location is unknown and there is only a wireless
connection to it. Even a tiny clock bias of 1 µs can lead to a bias of 300 m
in the distance measurement because the speed of light is immense. In this
section, we consider TDOA-based localization that does not rely on target
node synchronization but only requires that the receivers have a common
reference clock. The target node is assumed to transmit a signal at some
unknown time δ, according to the receivers’ clock. The TOA at receiver m
(in the absence of noise) is then changed from (8.50) to

tm = dm
c

+ δ =
√

(xm − x)2 + (ym − y)2

c
+ δ, m = 1, . . . ,M. (8.53)

To remove the unknown δ from these equations, in TDOA-based cooperative
localization, we compute the differences between the TOAs measured at
different receivers. In particular, we pick a reference receiver and give it the
index 1. The TDOA between receivers m and 1 is tm − t1, and becomes
independent of δ. If we can measure this TDOA perfectly, the corresponding
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distance difference can be computed as

dm,1 = (tm − t1)c

=
√

(xm − x)2 + (ym − y)2 −
√

(x1 − x)2 + (y1 − y)2. (8.54)

For a given measurement value dm,1 and known receiver locations (x1, y1) and
(xm, ym), the equation (8.54) defines one branch of a hyperbola with respect to
(x, y) in the 2D Cartesian coordinate system.4 This bowl-like curve identifies
all potential target locations that would give rise to the measured TDOA. In
Figure 8.17(a), we revisit the setup from Figure 8.16(a) with M = 3 receivers.
We let the receiver located at (0, 100) m have the index 1 and be used as the
reference for the TDOAs. By knowing the distance differences d2,1 and d3,1,
and the receiver locations, we can draw two hyperbola branches. One of the
curves is straight while the other is bent, and they intersect at one point: the
target node location (x, y) = (100, 0) m. In this noise-free case, we notice that
at least M = 3 receivers are needed for unambiguous 2D localization based
on TDOAs. This is the same as for TOA-based localization.

TDOA-based localization can be utilized even if the distance measurements
are noisy. Similarly to (8.52), we let nm ∼ N (0, σ2

d) denote the independent
additive noise at receiver m. The M−1 noisy distance difference measurements
are then given as

rm,1 = dm − d1 + nm − n1︸ ︷︷ ︸
=nm,1

=
√

(xm − x)2 + (ym − y)2 −
√

(x1 − x)2 + (y1 − y)2 + nm,1, (8.55)

for m = 2, . . . ,M . This equation with respect to (x, y) also defines one
branch of a hyperbola, but we cannot draw it due to the noise. We would
like to have an equation of the kind dm,1 =

√
(xm − x)2 + (ym − y)2 −√

(x1 − x)2 + (y1 − y)2 as in (8.54). However, the term dm,1 is replaced by
rm,1 − nm,1 in (8.55) where the collective noise realization nm,1 ∼ N (0, 2σ2

d)
is unknown. Since the measurement value rm,1 and the noise distribution are
known, we can compute a confidence interval for the value of dm,1 and use its
limits to draw two hyperbola branches. We can then be confident that the
target node is located in between these curves.

In Figure 8.17(b), we consider the same setup as in Figure 8.17(a) but
perform localization based on the noisy measurements rm,1 for m = 2, 3.
We assume the noise has the standard deviation σd = 5 m, which implies
that the collective noise realization nm,1 has the standard deviation 5

√
2 m.

4A hyperbola is the curve obtained when a double-cone is cut by a plane. The general
equation is |

√
(xm − x)2 + (ym − y)2 −

√
(x1 − x)2 + (y1 − y)2| = dm,1, where (x1, y1) and

(xm, ym) are the two focal points and dm,1 > 0 is a constant. A hyperbola contains two branches,
which are two unconnected bent curves. Only one of these branches remains when the absolute
value is removed as in (8.54).
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(a) M = 3 receivers and noise-free measurements.

(b) M = 3 receivers and noisy measurements.

(c) M = 10 receivers and noisy measurements.

Figure 8.17: Example of TDOA-based localization in the azimuth plane with M receivers and
a single target node. The location of the target node is indicated by a red star, and the locations
of the receivers are shown as blue squares. The hyperbola branch (or yellow regions between
two branches) indicates where each receiver believes the target is located. The intersection
points/regions can be used to estimate the target’s location.
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We construct our confidence intervals to contain three standard deviations:
dm,1 ∈ [rm,1 − 15

√
2, rm,1 + 15

√
2]. The hyperbola branches obtained using

the lower and upper limits of this interval are shown as curves in the figure,
and the area in between is marked in yellow. We can be confident that the
target node (red star) is located somewhere in the region where the two
yellow areas intersect. This is also the case, but the intersection is pretty
large—particularly compared to Figure 8.16(b), where we considered the same
setup but with TOA-based localization. Hence, the price to pay for not having
a clock-synchronized target node is reduced localization accuracy.

We increase the number of receivers to M = 10 in Figure 8.17(c). There
are now M − 1 = 9 yellow regions to consider, and their intersection region
determines where the target node might be. The localization accuracy increases
monotonically with the number of receivers. Since all the receivers in this
example are located on the left-hand side of the target node, the intersection
region has a long tail toward the right. This can be dealt with in practice by
surrounding the potential target location with receivers.

The yellow confidence areas in Figure 8.17 indicate where the target node
might be, but some points in the areas are more likely than others. This
statistical information can be utilized to obtain a specific localization estimate
(x̂, ŷ). Unfortunately, there is no simple closed-form solution to this estimation
problem because the equations are nonlinear and the noise terms n2,1, . . . , nM,1
are correlated. Several algorithms have been developed to tackle this problem
[131]. One approach is to compute the ML estimate of (x, y) given the noisy
observations rm,1, for m = 2, . . . ,M . In this case, it is convenient to define the
distance measurement vector r = [r2,1, . . . , rM,1]T ∈ RM−1, the noise vector
n = [n2,1, . . . , nM,1] ∈ RM−1, and the theoretical distance difference vector
function d̄(x, y) = [d̄2,1(x, y), . . . , d̄M,1(x, y)]T ∈ RM−1, where the distance
difference for receiver m is given by the function

d̄m,1(x, y) =
√

(xm − x)2 + (ym − y)2 −
√

(x1 − x)2 + (y1 − y)2. (8.56)

This function computes what the distance difference would be for a specific
guess (x, y) of the target node location. The ML estimation approach assumes
that the target node’s unknown location (x, y) is deterministic. The received
signal r = d̄(x, y) + n then has the real Gaussian multivariate distribution
N (d̄(x, y),C), where C = E{nnT} is the covariance matrix of the noise vector.
We know from (2.87) that the PDF of r is

fr(r) = 1
(2π)M−1

2
√

det(C)
e− 1

2 (r−d̄(x,y))TC−1(r−d̄(x,y)). (8.57)

We recall that the measurement errors nm in (8.55) were assumed to be
independent and identically distributed as nm ∼ N (0, σ2

d). This implies that
the (m− 1)th diagonal entry of C can be computed as

E
{
n2
m,1
}

= E
{
(nm − n1)2} = E

{
n2
m

}
+ E

{
n2

1
}

= 2σ2
d, (8.58)
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for m = 2, . . . ,M . The (m− 1, i− 1)th off-diagonal entry of C is given as

E {nm,1ni,1} = E {(nm − n1) (ni − n1)} = E
{
n2

1
}

= σ2
d. (8.59)

The noise covariance matrix is

C =


2σ2

d σ2
d . . . σ2

d

σ2
d 2σ2

d
. . . ...

... . . . . . . σ2
d

σ2
d . . . σ2

d 2σ2
d

 (8.60)

and it is non-diagonal since the noise at the reference receiver affects all the
TDOAs. The ML estimates of x and y are the values that jointly maximize
(8.57), which is equivalent to maximizing the argument of the exponential
function or minimizing (r − d̄(x, y))TC−1(r − d̄(x, y)). Therefore, the ML
estimates are obtained by solving the problem

(x̂, ŷ) = arg min
(x,y)

(
r− d̄(x, y)

)T

C−1
(

r− d̄(x, y)
)
. (8.61)

The objective function to be minimized in (8.61) is not convex with respect
to (x, y). This makes it computationally expensive to find the solution, for
example, by evaluating the objective function on a dense grid of potential
(x, y)-values and picking the best of them. The complexity can be managed
using an iterative gradient descent algorithm, but it might not converge to
the global optimum. If sufficient computational resources can be assigned to
solve the ML estimation problem, it will provide better accuracy than other
methods; however, alternative lower-complexity methods exist [131].

The estimation accuracy can be evaluated using the root MSE (RMSE) of
the distance, which is defined as

RMSE =
√
E
{

(x− x̂)2 + (y − ŷ)2
}
, (8.62)

where the expectation is computed with respect to the measurement noise.
The RMSE is shown in Figure 8.18 for the same setup as in Figure 8.17(c),

but with a varying number of receivers. The location estimate (x̂, ŷ) is obtained
by minimizing the objective in (8.61) using a gradient-descent algorithm. We
consider two values of the noise standard deviation: σd = 10 m and σd = 5 m.
This figure shows that increasing the number of receivers leads to improved
localization accuracy. This effect is particularly noticeable up until 15 receivers,
after which the RMSE decays more slowly because the extra receivers are
placed next to existing ones on the edge of the same half circle. The noise
standard deviation greatly impacts the localization accuracy, both for a
given number of receivers and when considering the saturation level that is
approached when M is large.
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Figure 8.18: The RMSE of localization in (8.62) with respect to the number of receivers. The
TDOA-based location estimate (x̂, ŷ) is obtained by minimizing the ML objective function in
(8.61) using a gradient-descent algorithm. The same setup is considered as in Figure 8.17(c),
where the receivers are located along the edge of a half circle.

Example 8.8. The TOA measurement errors limit the accuracy of TOA- and
TDOA-based localization methods. How are these measurements made?

The TOA is measured by sending a known signal from the target node with
some time duration T , carrier frequency fc, and bandwidth B. The receiver
correlates the received noisy signal with different time-delayed versions of
the transmitted signal to determine which delay matches the most with the
observation. The peak of the resulting crosscorrelation function is the TOA
estimate. The variance of the TOA measurement depends on the mentioned
parameters and the SNR. In particular, the variance in a free-space LOS
channel can be lower bounded as [130, Eq. (5)]

Var{TOA} ≥ 1
8π2BTf2

c SNR (8.63)

when fc ≫ B. The TOA measurement accuracy improves as the bandwidth
and carrier frequency increase. Since new wireless systems designed for high-
capacity communications progressively use higher carrier frequencies to make
more bandwidth available, the TOA/TDOA-based localization accuracy can
gradually improve if localization features are integrated into these systems. For
example, a shift from a mid-band system with fc = 3 GHz and B = 100 MHz
to a high-band system with fc = 30 GHz and B = 500 MHz will result in
a 500 times lower TOA measurement variance, if all other parameters are
unchanged.
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8.2.3 DOA-Based Localization

In TOA- and TDOA-based localization, the measurements are taken in the
time domain, and we assumed that each receiver provides a single TOA
measurement. When the receiver is equipped with multiple antennas, each
one can measure a TOA. When the target node is in the far-field of the
receiver, the TOA is approximately equal at all the receive antennas, but
there are noticeable phase-shift differences that enable DOA estimation using
the methods described in Section 8.1.5 In DOA-based localization, also called
AOA-based localization, each of the M receivers uses its multiple antennas to
estimate the DOA from the target node. To explain the basics of DOA-based
localization, we consider 2D localization, where the target node and all the
receiver arrays are located in the azimuth plane. The DOA is then represented
by an azimuth angle, which for a target node at the location (x, y) and receiver
m at (xm, ym) with x > xm becomes6

φm = arctan
(
y − ym
x− xm

)
, m = 1, . . . ,M. (8.64)

If the value of φm is measured perfectly and the receiver location is known,
we can treat (8.64) as an equation with respect to (x, y). In particular, the
relation can be rearranged as y = tan(φm)x+ ym − tan(φm)xm, which is the
equation of a straight line in the 2D Cartesian coordinate system.

In Figure 8.19(a), we revisit the localization scenario from Figure 8.16(a)
and Figure 8.17(a). By measuring the three angles φ1, φ2, φ3 ∈ [−π/2, π/2] in
(8.64), we can draw three straight lines. Each line starts from the respective
receiver location and extends towards the positive x-axis direction since we
assume x > xm. These lines intersect at one point: the target node location.
This is the only intersection point in the figure because any two non-identical
lines can intersect at most once. Hence, having two multiple antenna receivers
is sufficient for unambiguous 2D localization in the noise-free case if φ1 ̸= φ2.
This principle is known as triangulation because the two lines plus the line
between the receivers define a triangle. Since we know the length of one side
of the triangle (between the receivers) and two angles (to the target), we can
compute anything related to this triangle—including the target location.

In practice, the DOA estimates will be subject to measurement errors.
Suppose we can model the estimate as

rm = φm + nm, (8.65)
5When the receiver is in the radiative near-field of the target node, the TOA differences over

the receiver array are so large that range estimation is also possible—similar to when having M
distributed receivers. We refer to [132] for further details.

6For notational convenience, we assume that x > xm so that the angle to the target node
is between −π/2 and π/2, and can be obtained using the arctan function. For x < xm, we
must add ±π to (8.64) to get the correct angle. If the receiver array is subject to mirror-like
ambiguity, as illustrated in Figure 4.7 for ULAs, this ambiguity must also be resolved. This can,
for instance, be done using rough TDOA estimation that determines which side the target is at.



8.2. Localization 575

(a) M = 3 receivers and noise-free measurements.

(b) M = 3 receivers and noisy measurements.

(c) M = 10 receivers and noisy measurements.

Figure 8.19: Example of DOA-based localization in the azimuth plane with M multi-antenna
receivers and a single target node. The location of the target node is indicated by a red star,
and the locations of the receivers are shown as blue squares. The straight line (or yellow areas
between two lines) indicates where each receiver believes the target is located. The intersection
points/regions can be used to estimate the target’s location.
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which is the true DOA from (8.64) plus a Gaussian random noise realization
nm ∼ N (0, σ2

φ). The noise is independent between the receivers, but we let
the variance σ2

φ be the same for simplicity. The noise variance will depend
on the number of antennas and SNR. It also depends on the wavelength
because we get better angular resolution when the wavelength shrinks (for a
given physical length of the array), so the measurement noise will be reduced.
Based on the measured received signal rm, we know that the true DOA is
φm = rm − nm. Although the noise realization is unknown, we can use this
relation to deduce a confidence interval for the DOA. By considering the lower
and upper limits of this interval, we can draw two lines that start at receiver
m and point in slightly different directions. We can then be confident that
the target node is located somewhere between these lines.

In Figure 8.19(b), we consider the same localization setup as in Fig-
ure 8.19(a), but with noisy angle measurements with the standard deviation
σφ = 4◦. We construct our confidence interval as φm ∈ [rm − 12◦, rm + 12◦]
by considering three standard deviations. In the figure, we show the straight
lines obtained using the lower and upper limits of this interval, and the area
in between is yellow. There are three such yellow areas whose intersection
region specifies where the receiver must be located. The target node (red star)
is located in this area, which is relatively small because the three receivers
observe the target from very different angles, but it would be even smaller
if σφ was reduced. In Figure 8.19(c), we increase the number of receivers to
M = 10 by adding extra receivers on the edge of the half-circle where the
original receivers are located. There are many more yellow areas in this case,
but their intersection region remains roughly the same as in Figure 8.19(b)
because the new receivers cover angular directions between the previous ones.
We need to deploy receivers that observe the target from the right-hand side
or reduce the noise variance to get even higher estimation accuracy.

Since the measurement error is Gaussian distributed, the true DOA is more
likely to be at the center of the confidence interval than at the edges. We can
identify the most likely target location among those in the intersection region
of the yellow areas. This would be the ML estimate (x̂, ŷ) of the target node
location. To formulate the ML estimation problem, we first introduce suitable
notation: the measurement vector r = [r1, . . . , rM ]T ∈ RM , the noise vector
n = [n1, . . . , nM ] ∈ RM , and the theoretical azimuth DOA vector function
φ̄(x, y) = [φ̄1(x, y), . . . , φ̄M (x, y)]T ∈ RM , where the DOA at receiver m is
given by the function

φ̄m(x, y) = arctan
(
y − ym
x− xm

)
. (8.66)

This function computes what the DOA angle would be for a specific guess
(x, y) of the target node location.

The ML estimation approach assumes that the target node’s unknown lo-
cation (x, y) is deterministic. The received signal r = φ̄(x, y)+n is distributed
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Figure 8.20: The RMSE of localization in (8.62) with respect to the number of receivers. The
DOA-based location estimate (x̂, ŷ) is obtained by minimizing the ML objective function in
(8.68) using a gradient-descent algorithm. The same setup is considered as in Figure 8.19(c),
where the receivers are located along the edge of a half circle.

according to the real Gaussian multivariate distribution N (φ̄(x, y),C) where
C = E{nnT} is the covariance matrix of n. We know from (2.87) that the
PDF of r is

fr(r) = 1
(2π)M2

√
det(C)

e− 1
2 (r−φ̄(x,y))TC−1(r−φ̄(x,y)). (8.67)

The ML estimates of x and y are the values that jointly maximize (8.67),
which is equivalent to maximizing the argument of the exponential function
or minimizing (r− φ̄(x, y))TC−1(r− φ̄(x, y)). Therefore, the ML estimates
are obtained by solving the problem

(x̂, ŷ) = arg min
(x,y)

(r− φ̄(x, y))T C−1 (r− φ̄(x, y)) . (8.68)

We have previously assumed that C = σ2
φIM , but this problem can be solved

with arbitrary noise covariance matrices (e.g., when some receivers have more
accurate measurements than others). The main issue is that φ̄m(x, y) is a
nonlinear function of x and y, which makes it computationally complicated
to compute the solution to (8.68). As in the case of TDOA-based localization,
we can find the solution to a predefined accuracy by evaluating the objective
function on a dense grid of potential (x, y)-values and picking the best of these
points. Using an iterative gradient descent algorithm leads to a more tractable
complexity, but convergence to the global optimum is not guaranteed.

In Figure 8.20, we plot the RMSE of the distance in (8.62) with respect
to the number of DOA receivers. The location estimate (x̂, ŷ) is obtained by
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minimizing the objective in (8.68) using a gradient-descent algorithm. We
consider the same setup as in Figure 8.19(c), except that we consider a varying
number of receivers and two different standard deviations of the measurement
noise: σφ = 6◦ and σφ = 3◦. The figure shows that the RMSE decreases
consistently with an increasing M , so having more receivers lead to better
localization accuracy. We previously noticed in Figure 8.19 that the intersection
region was nearly the same with M = 3 and M = 10 receivers. However,
the probability distribution within the region becomes more favorable as M
increases, which makes the ML estimate more accurate. Moreover, the noise
variance greatly impacts the localization accuracy; if the standard deviation
is cut in half, so is the RMSE.

Example 8.9. We have seen that M = 3 receivers are sufficient to estimate the
target’s 2D location unambiguously with TOA- and TDOA-based methods,
while M = 2 is sufficient in DOA-based localization. How many receivers are
needed for 3D localization?

The M circles determined by the TOA measurements in noise-free TOA-
based 2D localization turn into M spheres in the 3D coordinate system. In
the noise-free case, there will be a unique intersection point (x, y, z) if there
are at least M = 4 spheres. In noise-free TDOA localization, the TDOA
measurements define M − 1 hyperboloids in the 3D coordinate system. We
need at least M − 1 = 3 hyperboloids to get a unique intersection point; thus,
at least M = 4 receivers are needed for unambiguous localization with these
two methods [133]. Hence, we can get away with the same number of receivers
regardless of whether the target node is synchronized with the receivers or
not. The TOA-based method will, however, provide more accurate location
estimates in the noisy case.

If each of the M receivers can estimate its azimuth and elevation DOA
from the target node without noise, these measurements will define M lines in
the 3D coordinate system. Since two non-identical lines can only intersect at
one point, M = 2 receivers are sufficient for unambiguous 3D localization. This
is the same triangulation principle as in the 2D case. Note that the receivers
need two-dimensional arrays (e.g., UPAs) to estimate both the azimuth and
elevation angles. If each receiver is instead equipped with a horizontal ULA,
then there will be an ambiguity in the azimuth-elevation plane, as exemplified
in Figure 8.9. In such a case, each DOA measurement defines a surface in the
3D coordinate system, and we need at least M = 3 receivers to locate the
target node unambiguously.

DOA-based localization requires multiple antennas, unlike the TOA- and
TDOA-based approaches that only require a single antenna. These methods
build on different principles by measuring angles and ranges, respectively, and
can be combined for even higher estimation accuracy.
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8.3 Target Detection

The methods described thus far in this chapter rely on the target node actively
transmitting a signal so that physical parameters (e.g., time delays, angles,
and location) can be estimated by a wireless system equipped with receive
antennas. In radar applications, the target is instead passive, so the wireless
system must both transmit signals and receive them. Radar is originally an
abbreviation of radio detection and ranging; thus, its first aim is to detect
targets, and its second aim is to estimate physical parameters such as the
range. We will focus on the detection part in this section because the previous
section described the fundamental principles for parameter estimation.

Target detection is the core problem of detecting whether there is an object
of interest at a particular location by sending known signal pulses toward
that target location. A receiver located near the transmitter (or at another
predefined location) listens to the noisy echoes of the transmitted signal, which
might be reflected off the target of interest. If there is no target, the received
signal in a free-space LOS scenario contains only noise. On the other hand,
if there is a target, the attenuated reflected signal is received along with the
noise. The task of the detector is to determine whether there is a target or not
by processing the received signal and exploiting prior information regarding
the signal characteristics. There are two events in target detection:

• There is no target;

• The target exists.

The binary hypothesis testing framework outlined in Section 2.7 is commonly
used for target detection. In hypothesis testing, the absence of the target
represents the null hypothesis H0, whereas the alternative hypothesis H1
corresponds to the existence of the target. The detection method should take
the reflection properties of the target into account. Intuitively, it is easier to
detect an object if it is large, made of reflecting material, or happens to focus
its reflected signal toward the receiver. When a planar wavefront impinges on
the object from a specific angle, the reflected wave will have a complicated
shape determined by the object’s physical characteristics, as illustrated in
Figure 8.21. The receiver only observes the signal component that is reflected
toward it; thus, we can quantify the reflection using a single number σRCS
called the radar cross section (RCS). Using antenna terminology, the RCS
is the effective area of the object when facing the transmitter multiplied by
the antenna gain toward the receiver for the reflected wave, which makes it
measured in m2. Suppose the power flux density of the impinging wave (i.e.,
the power of the electromagnetic field at the target location per unit area) is
Q, measured in W/m2. The reflected power by the target is then

P = QσRCS. (8.69)
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Transmitter Receiver

Target object
Effective area

Impinging wavefront
Reflected wavefront

Figure 8.21: The RCS σRCS [m2] quantifies how the target object reflects an impinging signal
from the transmitter toward the receiver. It can be interpreted as the effective area of the object
toward the transmitter multiplied by the antenna gain achieved by the reflected wavefront in the
receiver direction. The RCS depends on the object’s physical properties and the location/rotation
of the transmitter, receiver, and object.

The RCS is the cumulative effect of the diffuse/specular reflection at different
parts of the target. The value fluctuates as the target moves and is rotated
because the effective area toward the transmitter and the antenna gain toward
the receiver are angle-dependent. Several approaches exist in the radar litera-
ture to statistically characterize the reflection of a target [134]. One key factor
that creates modeling differences is the fluctuation frequency. The so-called
Swerling models developed by Peter Swerling in the 1950s [134]–[136] take
into account different fluctuating conditions and use different probability dis-
tributions. In this chapter, we will outline the basic target detection methods
for two such models: Swerling 1 and Swerling 2.

Apart from the target reflection, the numbers of the transmitters and
receivers, and their locations, also affect the detection problem and solution
method. In Figure 8.22, we illustrate three categories of setups used for target
detection. Each category can also be used for radar and sensing applications
other than target detection. The basic setup is mono-static sensing, shown
in Figure 8.22(a), where the transmitter and receiver are co-located. In this
figure, the solid lines represent the radiated signal from the transmitter(s)
toward the target, and the dashed lines represent the received signals at
the receiver(s) after being reflected by the target. The antenna array is
typically divided into two parts, where one is used for transmission and the
other for reception. Figure 8.22(b) shows a bi-static sensing setup where
the transmitter and the receiver are at different locations, thereby viewing
the target from different angles. The RCS will be different in the bi-static
and mono-static cases because the angles from the transmitter and receiver
determine the RCS. The detection performance can be improved using multiple
transmitters and receivers, which operate in mono-static or bi-static sensing
mode. Figure 8.22(c) illustrates the corresponding multi-static sensing case.
For example, the operation represented by purple lines is mono-static, whereas
the red lines represent a bi-static setup. It is also possible to exploit the
received signals at multiple receivers for detection, as shown by the green lines.
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(a) Mono-static sensing for target detection.

(b) Bi-static sensing for target detection.

(c) Multi-static sensing for target detection.

Figure 8.22: Three categories of sensing systems are illustrated: mono-static, bi-static, and
multi-static. Each system can be used for target detection but also other sensing applications.
The solid lines represent the transmitted signal from each transmitter toward the potential target
location. The dashed lines represent the received signal at each receiver after being reflected by
the target object.
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Another alternative is combining the mono-static and bi-static setups, as the
blue lines show. Each of these propagation paths experiences a different RCS
value for the same object due to the different transmission/reception angles.
The primary purpose of multi-static sensing is to exploit spatial diversity
because the RCS value can be very small for some angles and transmit-receiver
pairs but likely not for all combinations simultaneously.

8.3.1 Radar Range Equation

We will now derive the radar range equation, which describes the average
received power when a signal with a specific power is transmitted toward and
reflected by the target object. The received power depends on the transmit
power, frequency, antenna gains, distances to the target, and the RCS. We
begin by considering the radar range equation for the bi-static sensing case in
Figure 8.22(b). Initially, we assume a single-antenna transmitter that sends a
signal with power Pt and has the antenna gain function Gt(φt, θt), where the
angles (φt, θt) lead from the transmitter to the target. In a free-space LOS
propagation scenario with the distance dt to the target, the power flux density
at the target location will be

Q = PtGt(φt, θt)
4πd2

t
W/m2 (8.70)

because the power is divided over a sphere with surface area 4πd2
t .

The RCS of the target is denoted σRCS in m2. Practical RCS values can
vary immensely; thus, the decibel scale is often used when specifying them.
By taking one square meter as the reference value, the RCS can be reported
in decibel-of-square-meter (dBsm) as 10 log10

(
σRCS
1 m2

)
. Measured values from

−50 dBsm (insects) to 60 dBsm (large ships, aircraft carriers) are reported in
[134]. The RCS value is not always proportional to the size of the object; for
example, the typical RCS value of a small truck is 20 dBsm while it is only
8 dBsm for a large fighter aircraft and even smaller for stealth aircrafts [137].
We will now determine how the RCS value affects the received signal power.
For a given value of σRCS, the effective isotropic reflected power from the target
towards the receiver is QσRCS. We use the term “effective isotropic” similar to
how the EIRP concept was defined in Section 4.5.5: the reflected power emitted
towards the receiver is the same as if the target had an isotropic antenna
that transmits with power QσRCS. The total reflected power can be entirely
different because an object typically does not reflect power isotropically, but
σRCS depends on the angles that lead to the transmitter and receiver.

Suppose the receiver is also equipped with a single antenna and has the
antenna gain function Gr(φr, θr), where the angles (φr, θr) lead from the
receiver to the target. In a free-space LOS propagation scenario with the
distance dr from the target to the receiver, the channel gain from an isotropic
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transmitter (effective isotropic reflector in this case) to the receiver is given
by (1.40) as β = λ2

(4πdr)2Gr(φr, θr). Hence, the received signal power is

Pr = QσRCSβ = PtGt(φt, θt)
4πd2

t
σRCS

λ2

(4πdr)2Gr(φr, θr)

= PtGt(φt, θt)Gr(φr, θr)λ2σRCS

(4π)3d2
td

2
r

. (8.71)

This is known as the radar range equation and applies to a bi-static setup. The
received power is proportional to the RCS and will later be used to distinguish
the signal from the noise. An object with a small RCS provides a smaller SNR
and is, therefore, more challenging to detect.

We can use (8.71) to determine the mono-static radar range equation.
Since the angles and distances are now the same to and from the target, it
holds that φt = φr = φ, θt = θr = θ, and dt = dr = d. Inserting these values
without subscripts into (8.71), we obtain the radar range equation for the
mono-static case as

Pr = PtGt(φ, θ)Gr(φ, θ)λ2σRCS

(4π)3d4 . (8.72)

One crucial difference from the bi-static case is that the RCS σRCS depends
on the location and orientation of two nodes instead of three.

Example 8.10. Suppose an SNR of −10 dB is needed to detect the tar-
get. What is the smallest RCS that enables target detection if Pt = 10 W,
Gt(φ, θ) = Gr(φ, θ) = 2, λ = 0.01 m (i.e., f = 30 GHz), B = 100 MHz,
d = 100 m, and N0 = 10−20.4 W/Hz?

By substituting the given values into (8.72) and dividing by the noise
variance N0B = 10−20.4+8 = 10−12.4 W, we obtain the SNR as

SNR = Pr

N0B
= 10 · 22 · 0.012σRCS

(4π)3 · 1004 · 10−12.4 . (8.73)

We can now solve the equation SNR ≥ −10 dB for σRCS to obtain that the
RCS should be at least

σRCS ≥ 0.1(4π)3 · 10−4.4

4 · 10−3 ≈ 1.98 ≈ 2.96 dBsm. (8.74)

The bi-static received power in (8.71) is proportional to the squared
wavelength, which implies that it reduces when the carrier frequency is
increased if the antenna gain functions and RCS are fixed. However, we
can also rewrite the received power in terms of the effective areas At(φt, θt) =
λ2

4πGt(φt, θt) and Ar(φr, θr) = λ2

4πGr(φr, θr) of the transmitter and receiver. In
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this case, (8.71) becomes

Pr = PtAt(φt, θt)Ar(φr, θr)σRCS

4πλ2d2
td

2
r

. (8.75)

This expression is inversely proportional to the squared wavelength, which
implies that it increases when the carrier frequency is increased if the effective
antenna areas and RCS are constant. Hence, target detection can become
easier at higher frequencies, particularly if antenna arrays are utilized to
achieve large effective areas toward the target.

The radar range equation can be easily extended to manage the case where
the transmitter is equipped with K antennas, whereas the receiver has M
antennas. When inspecting whether a target exists at a specific location, the
transmitter can apply MRT precoding towards the prospective target location,
while the receiver can apply MRC. We then achieve a combined beamforming
gain of MK over a LOS channel, as shown in Section 4.4. The radar range
equation in (8.71) for the bi-static setup is generalized by multiplying with
the beamforming gain, which results in

Pr = PtGt(φt, θt)Gr(φr, θr)MKλ2σRCS

(4π)3d2
td

2
r

. (8.76)

MRT focuses the transmission in a specific direction. If the target location is
unknown (e.g., we want to detect if a vehicle exists somewhere on the road),
the transmitter must scan for the target by sending beamformed signals in
different directions. The orthogonal DFT beams described in Section 4.3.3 can
be used to cover all dimensions, but a denser grid of non-orthogonal beams
can also be used to ensure that nearly the maximum beamforming gain is
achieved in any potential target direction. This kind of radar sweeping is
often presented as a circle with a rotating beam in movies, and the detected
targets show up as dots. Conventional radar systems perform mechanical
beamforming by rotating the array instead of using electrical beamforming.

Example 8.11. Consider the mono-static setup from Example 8.10. What is
the minimum RCS value that a detectable target can have if the number of
antennas at the transmitter and receiver is M = K = 4?

Due to beamforming gain of MK = 4 · 4 = 16, the SNR is improved by
a factor of 16 compared to the single-antenna case in (8.73). If we solve the
equation SNR ≥ −10 dB for σRCS, we obtain

σRCS ≥
0.1
16

(4π)3 · 10−4.4

4 · 10−3 ≈ 0.12 ≈ −9.1 dBsm. (8.77)

A target with 16 times smaller RCS can be detected thanks to the beamforming
gain. Even smaller targets can be found by using more antennas.
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In the remainder of this chapter, we will consider the Swerling 1 and
Swerling 2 target models, in which the target consists of many small diffuse
reflectors that contribute to the overall effective RCS. Similar to the derivation
of the Rayleigh fading channel in Section 5.1.1, the independent random-like
phase-variations across the many reflectors give rise to a complex Gaussian
coefficient in the complex baseband: cRCS ∼ NC(0, σRCS). In fact, the target
behaves as a multipath cluster when interacting with wireless signals. The
magnitude |cRCS| has a Rayleigh distribution, while the RCS realization
|cRCS|2 has an exponential distribution that satisfies E{|cRCS|2} = σRCS.
Hence, we will now treat σRCS as the average RCS value and cRCS as the
random realization. In analogy with the slow fading case in Chapter 5, in the
Swerling 1 target model, the RCS realization is assumed to be fixed throughout
the signal transmission interval used for target detection. When the target’s
RCS fluctuates more rapidly, the Swerling 2 target model can be used, where
the RCS takes a new independent realization for each transmitted symbol. The
latter is the radar counterpart of the fast fading in communication channels.
We will analyze the target detection problem for each of these models.

8.3.2 Target Detection with the Swerling 1 Target Model

In the Swerling 1 model, the target’s RCS is assumed to fluctuate slowly, so
it is fixed throughout the L received symbols collected for target detection.
If the target exists at the analyzed location, the received signal power is
Pr|cRCS|2, where Pr is the average power given by the radar range equation
in (8.76) and cRCS ∼ NC(0, 1) models the randomness. Note that, unlike the
last section, cRCS has unit variance because the average RCS σRCS is now
included in Pr for notational convenience. We assume that a constant symbol
“1” is transmitted during the L transmissions without loss of generality. Hence,
the corresponding binary hypothesis test is

H0 : y[l] = n[l], l = 1, . . . , L, (8.78)
H1 : y[l] =

√
PrcRCS + n[l], l = 1, . . . , L, (8.79)

where the additive noise samples n[l] ∼ NC(0, σ2) are independent.
In radar applications, there is typically no prior knowledge of the hypothesis

probabilities. Hence, the Neyman-Pearson detector from Section 2.7 can be
used to maximize the detection probability PD for a desired value PFA = α of
the false alarm probability. The Neyman-Pearson detector, which is optimal
in this sense, was presented in Lemma 2.14. It states that H1 is selected if

fy|H1 (y|H1)
fy|H0 (y|H0) ≥ γ, (8.80)

where the threshold γ ≥ 0 will later be selected so that PFA = α. To particu-
larize the Neyman-Pearson detector for the hypothesis test in (8.78)-(8.79),
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we collect all the received samples in a vector y = [y[1], . . . , y[L]]T ∈ CL, and
define the noise vector n = [n[1], . . . , n[L]]T ∈ CL. By letting 1L denote the
L-dimensional vector with only ones, the received signal vector in (8.79) under
the hypothesis H1 can be expressed as

y =
√
Pr1LcRCS + n ∼ NC(0, Pr1L1H

L + σ2IL). (8.81)

On the other hand, we have y ∼ NC(0, σ2IL) when the hypothesis H0 is true.
We can use the PDF of a complex Gaussian vector in (2.85) to evaluate the
likelihood ratio in (8.80) as

γ ≤
fy|H1(y|H1)
fy|H0(y|H0) =

1
πL det(Pr1L1H

L
+σ2IL)e

−yH(Pr1L1H
L+σ2IL)−1y

1
πL det(σ2IL)e

−yH(σ2IL)−1y
. (8.82)

Using the fact that ln(γ) is a monotonically increasing function for γ ≥ 0, the
Neyman-Pearson detector in (8.82) decides on the hypothesis H1 if

σ−2yHy− yH
(
Pr1L1H

L + σ2IL
)−1 y ≥ ln(γ)− ln(b), (8.83)

where the constant b = det
(
σ2IL

)
/ det

(
Pr1L1H

L + σ2IL
)

is independent of
the received signal y. Using the rank-one update formula in (2.48), we have

(
Pr1L1H

L + σ2IL
)−1 = σ−2IL −

Prσ
−4

1 + PrLσ−2 1L1H
L. (8.84)

Inserting this result into (8.83), the detector decides on H1 if

|1H
Ly|2 ≥ (1 + PrLσ

−2)(ln(γ)− ln(b))
Prσ−4︸ ︷︷ ︸

=γ′

, (8.85)

where γ′ is the revised threshold variable that must be selected so that
PFA = α. We have 1H

Ly ∼ NC(0, Lσ2) if hypothesis H0 is true, which implies
that |1H

Ly|2 ∼ Exp(1/(Lσ2)). Hence, we can compute the threshold using
(2.91) as

PFA = α =
∫
|1H
L

y|2≥γ′
fy|H0 (y|H0) ∂y =

∫ ∞

γ′

1
Lσ2 e

− z
Lσ2 ∂z = e− γ′

Lσ2

⇒ γ′ = Lσ2 ln(α−1). (8.86)

This threshold is inversely proportional to the specified false alarm probability
α. If α is reduced, the threshold γ′ increases but the detection probability

PD =
∫
|1H
L

y|2≥γ′=Lσ2 ln(α−1)
fy|H1 (y|H1) ∂y (8.87)
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becomes smaller since we integrate the PDF over a smaller set of values. This
result highlights a fundamental tradeoff in target detection: a large detection
probability is associated with a large false alarm probability, and vice versa.

The term |1H
Ly|2 in (8.85) is called the sufficient statistics for target detec-

tion because it is only this variable that must be measured and compared to
the threshold γ′ to implement the Neyman-Pearson detector, and it determines
the detection probability in (8.87). Hence, the optimal receiver processing for
target detection coherently combines the L received signal as 1H

Ly and then
compares its power (i.e., its squared magnitude) to the predefined threshold
γ′. We note that the realization of cRCS is unknown, but coherent combining
is achievable anyway because the realization is the same for all the L received
symbols. In particular, under hypothesis H1, it holds that

E
{
|1H
Ly|2

}
= 1H

L

(
Pr1L1H

L + σ2IL
)

1L = L
(
PrL+ σ2) . (8.88)

The average effective SNR is PrL/σ
2, which increases proportionally to L. We

also recall from (8.76) that Pr is proportional to the beamforming gain MK.
To exemplify the Neyman-Pearson detector for solving the binary hy-

pothesis test with the Swerling 1 target model, we consider the false alarm
probability PFA = α = 10−3. Figure 8.23 shows the resulting detection proba-
bility, PD, versus the single-antenna SNR, which is computed by dividing the
received power at a single antenna in (8.71) by the noise power σ2 = BN0.
We consider a symmetric setup where both the transmitter and receiver have
M antennas (i.e., K = M). Hence, the effective SNR is obtained by multi-
plying the single-antenna SNR at the horizontal axis by the beamforming
gain M2. We compare three setups: i) M = 1 antenna and L = 10 symbols;
ii) M = 10 antennas and L = 10 symbols; and iii) M = 10 antennas and
L = 100 symbols. We notice that the detection probability improves with the
SNR in all three cases, which is logical since target detection revolves around
distinguishing signals from noise. The three curves have identical shapes but
are shifted horizontally. The solid black curve is furthest to the right since it
has the fewest antennas and symbols. The dashed red curve is shifted 20 dB
to the left because it has M = 10 antennas instead of one, which results in
a beamforming gain of M2 = 100 = 20 dB. When the single-antenna SNR is
−10 dB, PD increases from 0.03 to 0.93 when M = 1 is increased to M = 10;
thus, the use of multiple antennas can make a huge difference. When M = 10,
an additional performance improvement can be achieved by increasing the
number of symbols. When going from L = 10 to L = 100, the total received
power is increased by a factor of 10 thanks to the coherent combining. This
explains why the dash-dotted blue curve is shifted 10 dB to the left compared
to the red curve. Hence, it is possible to obtain reasonable detection probabil-
ity values at very low SNR values by utilizing many antennas or symbols. In
practice, there is a limit on how large L can be made before the realization of
cRCS changes due to target movement.
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Figure 8.23: The detection probability for different numbers of transmit/receive antennas and
received symbols with respect to the single-antenna SNR for the Swerling 1 model.

Example 8.12. We assumed that the transmitter sends the constant symbol
“1” throughout the L symbol times when formulating the hypothesis test in
(8.78)-(8.79). What changes in the Neyman-Pearson detector if the transmitted
signal is x = [x[1], . . . , x[L]]T ∈ CL, which is known at the receiver?

The new received signal vector can be expressed as y =
√
PrxcRCS+n under

the hypothesis H1. This vector is distributed as y ∼ NC(0, PrxxH + σ2IL),
while it still holds that y ∼ NC(0, σ2IL) when the hypothesis H0 is true.
Following similar steps as in (8.82)-(8.85), we end up with a Neyman-Pearson
detector that decides on the hypothesis H1 if |xHy|2 ≥ γ′, where the threshold
γ′ is selected to have the desired value PFA = α as

PFA = α =
∫

|xHy|2≥γ′
fy|H0 (y|H0) ∂y =

∫ ∞

γ′

1
∥x∥2σ2 e

− z
∥x∥2σ2 ∂z = e

− γ′

∥x∥2σ2

⇒ γ′ = ∥x∥2σ2 ln(α−1). (8.89)

The optimal detector combines the received signal as xHy, where each received
signal y[l] is multiplied by x∗[l] before being summed up. The multiplication
aligns the L signals in phase, and if the magnitudes |x[1]|, . . . , |x[L]| are varying,
it also weighs them to maximize the SNR according to the MRC principle.
Finally, the detector compares |xHy|2 with the threshold γ′ = ∥x∥2σ2 ln(α−1).
The average received power is E{|xHy|2} = Pr∥x∥4 + σ2∥x∥2, which shows
that it is the value ∥x∥2 that matters not the individual symbols. This is why
x = 1L works equally well as any other sequence that satisfies ∥x∥2 = L.



8.3. Target Detection 589

8.3.3 Target Detection with the Swerling 2 Target Model

In the Swerling 2 model, the target’s RCS is assumed to fluctuate so rapidly
that it takes a new independent realization at each symbol time. The realization
at time l is denoted by cRCS[l] ∼ NC(0, 1). We assume that L received
signals are collected for target detection and that the constant symbol “1” is
transmitted during all of them, as in the previous section. The corresponding
binary hypothesis test is

H0 : y[l] = n[l], l = 1, . . . , L, (8.90)
H1 : y[l] =

√
PrcRCS[l] + n[l], l = 1, . . . , L, (8.91)

where Pr is the average received power reflected through the target, which
can be computed using the radar range equation in (8.76). The noise n[l] ∼
NC(0, σ2) and channel coefficients cRCS[l] are independent.

We will now particularize the Neyman-Pearson detector for this scenario,
where the channel coefficients fluctuate. To prepare for this, we define the vec-
tors y = [y[1], . . . , y[L]] ∈ CL, cRCS = [cRCS[1], . . . , cRCS[L]]T ∈ CL, and n =
[n[1], . . . , n[L]]T ∈ CL. We note that cRCS ∼ NC(0, IL) and n ∼ NC(0, σ2IL).
When the null hypothesis H0 is correct, the received signal vector becomes
y = n ∼ NC(0, σ2IL). When the hypothesis H1 is true, the received signal
instead becomes y =

√
PrcRCS + n ∼ NC(0, (Pr + σ2)IL). We can use the

PDF of a complex Gaussian vector in (2.85) to evaluate the likelihood ratio
in (2.191) from Lemma 2.14 as

γ ≤
fy|H1(y|H1)
fy|H0(y|H0) =

1
πL det((Pr+σ2)IL)e

−yH((Pr+σ2)IL)−1y

1
πL det(σ2IL)e

−yH(σ2IL)−1y
. (8.92)

Using the fact that ln(γ) is a monotonically increasing function for γ ≥ 0, the
Neyman-Pearson detector in (8.92) decides on the hypothesis H1 if

yHy
σ2 −

yHy
Pr + σ2 ≥ ln(γ)− ln(b), (8.93)

where the constant b = det
(
σ2IL

)
/ det

(
(Pr + σ2)IL

)
=
(
σ2/(Pr + σ2)

)L is
independent of the received signal y. By arranging the terms in (8.93), we
can express the condition for selecting hypothesis H1 as

yHy ≥ σ2(Pr + σ2)(ln(γ)− ln(b))
Pr︸ ︷︷ ︸
=γ′

, (8.94)

where γ′ is the revised threshold variable that must be selected so that

PFA = α =
∫

yHy≥γ′
fy|H0 (y|H0) ∂y =

∫ ∞

γ′

zL−1e− z
σ2

(σ2)L(L− 1)!∂z, (8.95)
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where the last equality follows from (2.99) because yHy = ∥y∥2 has a scaled
χ2-distribution under the hypothesis H0. The integral can be computed using
the incomplete gamma function, but it lacks a closed-form inverse, so (8.95)
must be solved numerically.

The term yHy =
∑L
l=1 |y[l]|2 in (8.94) is the sufficient statistics for target

detection in this scenario. Hence, the optimal receiver processing for target
detection adds up the powers of the individual received signals y[l] and
compares the result to the predefined threshold γ′. This approach differs from
the detector derived for the Swerling 1 target model. The reason is that the
channel coefficient cRCS[l] takes a new unknown realization at every time
instant, so the receiver cannot coherently combine the signals. One way to
quantify the difference is to compute the total power of the received signal:

E
{
∥y∥2} = tr

(
(Pr + σ2)IL

)
= L(Pr + σ2). (8.96)

The average effective SNR is Pr/σ
2, which is independent of L. This is different

from (8.88) where an L times larger SNR value was achieved with the Swerling
1 target model, thanks to the coherent combining at the receiver. Fortunately,
the term Pr remains proportional to the beamforming gain MK, so we still
benefit from having multiple antennas because the RCS realization is the
same for all antennas.

For a selected threshold γ′, the detection probability PD is given as

PD =
∫

yHy≥γ′
fy|H1 (y|H1) ∂y. (8.97)

To exemplify the Neyman-Pearson detector for solving the binary hy-
pothesis test with the Swerling 2 target model, we consider the false alarm
probability PFA = α = 10−3. Figure 8.24 shows the detection probability,
PD, versus the single-antenna SNR, which is computed as in Figure 8.23. We
consider a symmetric setup where both the transmitter and receiver have M
antennas (i.e., K = M). Hence, the effective SNR is obtained by multiplying
the single-antenna SNR at the horizontal axis by the beamforming gain M2.
There are three curves, which represent different numbers of antennas M
and symbols L. As expected, the detection probability improves as the SNR
increases. When the number of antennas increases from M = 1 to M = 10 (i.e.,
from solid black to dashed red), a beamforming gain of M2 = 100 = 20 dB is
achieved. This shifts the detection probability curve to the left by 20 dB. This
can make an immense difference: when the single-antenna SNR is −10 dB,
PD increases from almost zero to almost one. If we increase the number of
symbols from L = 10 to L = 100, the detection probability curve is further
shifted to the left, but the gain is much less than 10 dB, even if we receive
10 times more power. It might come as a surprise that the curve is shifted at
all because we observed in (8.96) that the average SNR is independent of L.
Although the receive combining does not provide any coherent power gain,
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Figure 8.24: The detection probability for different numbers of transmit/receive antennas and
received symbols with respect to the single-antenna SNR for the Swerling 2 model.

we achieve a time diversity gain that makes the distribution of ∥y∥2 more
confined around its mean when L is increased. Such diversity is beneficial
when we try to reach small probabilities, such as PFA = 10−3.

By comparing Figure 8.24 with the Swerling 1 counterpart in Figure 8.23,
we can notice two main things. Firstly, the SNR values that give 0.5 (i.e., the
median) are shifted to the right in Swerling 2, so the increased randomness
generally leads to performance degradation. Secondly, the detection probability
curves are steeper with Swerling 2 due to the time diversity that suppresses
the channel’s randomness. When the SNR is low, the power gain brought
by coherent combining with Swerling 1 is preferable over the diversity gain.
However, the diversity gain obtained in Swerling 2 dominates the loss due
to non-coherent combining at high SNR, where the noise level is already
much smaller than the average signal level. Hence, Swerling 2 provides better
performance than Swerling 1 in these situations.

The choice of the RCS model clearly impacts the target detection perfor-
mance. The Swerling 1 model is suitable when the target is approximately
static during the transmission time, while the Swerling 2 is suitable for highly
mobile targets. One could also create an intermediate block-fading-like model
where the RCS realization is constant for multiple symbols but not the entire
transmission time. There are further Swerling models where the RCS parame-
ter has a different distribution than complex Gaussian [134]–[136]. As shown
in Figure 5.4, the Gaussian distribution appears when there are at least five
equally strong scattering objects on the target object, but some targets might
have a shape that is not well modeled like that.
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Example 8.13. Consider a multi-static target detection setup with a sin-
gle transmitter and two spatially separated receivers. Derive the sufficient
statistics of the Neyman-Pearson detector with the Swerling 2 target model.

In this scenario, we can express the binary hypothesis test as

H0 : y1[l] = n1[l], y2[l] = n2[l], l = 1, . . . , L, (8.98)

H1 : y1[l] =
√
Pr,1c1[l] + n1[l], y2[l] =

√
Pr,2c2[l] + n2[l], l = 1, . . . , L,

(8.99)

where c1[l] ∼ NC(0, 1) and c2[l] ∼ NC(0, 1) are the independent random RCS
coefficients, while Pr,1 and Pr,2 denote the average received powers at the
two receivers. These might be different since the average RCS depends on
the receivers’ angles to the target. The noise samples n1[l] ∼ NC(0, σ2) and
n2[l] ∼ NC(0, σ2) are independent since the receivers are spatially separated.

We define ym = [ym[1], . . . , ym[L]]T ∈ CL, cm = [cm[1], . . . , cm[L]]T ∈ CL,
and nm = [nm[1], . . . , nm[L]]T ∈ CL, for m = 1, 2. We can now note that
cm ∼ NC(0, IL) and nm ∼ NC(0, σ2IL). Since y1 and y2 are independent
under both hypotheses, we construct the likelihood ratio in (2.191) as

γ ≤
fy1,y2|H1(y1,y2|H1)
fy1,y2|H0(y1,y2|H0) =

1
π2L(Pr,1+σ2)L(Pr,2+σ2)L e

−
yH

1 y1
Pr,1+σ2 e

−
yH

2 y2
Pr,2+σ2

1
π2Lσ2L e

−
yH

1 y1
σ2 e−

yH
2 y2
σ2

.

(8.100)

Taking the logarithm of both sides and omitting the constant coefficients, the
sufficient statistics for the Neyman-Pearson detector can be expressed as( 1

σ2 −
1

Pr,1 + σ2

)
yH

1y1 +
( 1
σ2 −

1
Pr,2 + σ2

)
yH

2y2. (8.101)

This is a weighted sum of the sufficient statistics the receivers would use in
the single-receiver case. The receiver that experiences the largest received
power uses the largest weight, but both receivers are useful.

8.3.4 Different Types of Radar Antenna Arrays

The radar technology dates back to Christian Hülsmeyer, who filed a patent
in 1904 on a system that uses electromagnetic waves to detect metallic objects
[138], and it was demonstrated for target detection at sea to avoid ship
collisions. The technology was not utilized at scale until the Second World
War, which is when the United States Navy introduced the radar abbreviation.
A classical radar consists of a highly directive antenna that is mechanically
rotated over time to scan different angular directions sequentially. The passive



8.3. Target Detection 593

electronically scanned array (PESA) technology appeared in the 1960s based
on the analog beamforming architecture, previously illustrated in Figure 7.10.
The directivity is controlled by electrical beamforming in PESA radars, which
enables faster scanning and flexibility in which directions are considered than
mechanical beamforming. These features are particularly useful for target
tracking. Some PESA radars can emit/receive multiple beams simultaneously,
which resembles the hybrid beamforming architecture in Figure 7.12.

The most capable radars use the digital beamforming architecture, where
each antenna is directly connected to the digital baseband as in Figure 7.9.
This is called the active electronically scanned array (AESA) technology
and enables simultaneous beamforming in different directions at different
frequencies. Practical implementations began in the 1990s, but the higher
implementation cost has thus far led to AESA radars primarily being used
in mission-critical military applications where many targets must be simul-
taneously detected, localized, tracked, and potentially attacked. This might
change when MIMO communication systems evolve into ISAC systems, where
the digital architecture required for high-capacity MIMO communications is
also used for sensing applications. For this reason, the theory described in
this chapter presumes the use of the digital architecture.

The term MIMO radar has been used for decades [139], [140] and created
some controversy [141] because not all MIMO communication features are
helpful for radars. For example, the ergodic capacity in (5.131) over a point-to-
point MIMO channel is achieved by spreading many independent data signals
in different directions, and the sum capacity of a multi-user MIMO channel
is achieved by sending many simultaneous signals even if this reduces the
capacity of individual streams and users. In radar applications, the accuracy of
individual sensing tasks might be more important than the ability to spatially
multiplex many sensing tasks if the latter comes with reduced accuracy. The
pragmatic view is that MIMO radar theory [142] describes how to operate
AESA radars in different situations, which sometimes results in the same
functionality as a PESA radar—similar to how beamforming of one signal
is capacity-achieving in point-to-point MIMO systems that have low SNR.
In other situations, AESA radars can benefit from simultaneous detection of
multiple targets, higher spatial resolution, flexible interference suppression,
and different directivity at different frequencies [118].

An additional way to improve spatial resolution is to utilize a synthetic
aperture created by moving the antennas during the measurement period. If
the deployment location is fixed, the antennas can be moved around at that
location. If the radar is deployed on a satellite that travels around the Earth,
a synthetic aperture is created even if the antennas are fixed at the satellite.
In any case, by combining the measurements made at different times, the
resolution of radar sensing becomes identical to using a physical array that
simultaneously has antennas at all the measurement locations.
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8.3.5 Integrated Sensing and Communication

The term ISAC is used to describe network deployments that are jointly
designed for sensing and communication applications [123], in contrast to how
communication networks and radar systems have been developed and deployed
independently in the past. The fusing of these technologies became particularly
interesting when communication systems began to use mmWave bands, which
is the spectrum range traditionally used for radar [143]. Apart from cost
savings, a dual-functional network might provide performance benefits to the
different applications by sharing information between them, and new joint
radar communication services might arise [144].

The integration can come at different levels of which three are illustrated
in Figure 8.25. At the first level, shown in Figure 8.25(a), the deployment
sites for communication networks are reused for deploying radar transceivers,
but the systems are otherwise independent: they use different hardware and
frequency bands. At the second level, shown in Figure 8.25(b), the same
transceiver hardware is used for both applications, but they use orthogonal
signal resources. The network can either switch between sensing and communi-
cation over time or use non-overlapping frequency bands, which are sufficiently
similar so the same hardware components can be used for dual purposes. The
benefit of this approach is that the signal waveforms can be optimized for the
respective applications without making tradeoffs. At the third level, shown in
Figure 8.25(c), the same time-frequency resources are used for both sensing
and communication purposes. The benefit of this approach is that more signal
resources are available for both applications, while the drawback is interference
and signal transmissions that are not optimized for dual purposes.

The theory for sensing provided in this chapter directly applies to the first
two integration levels, while the third level gives rise to different system models.
A basic mono-static level-three ISAC setup is illustrated in Figure 8.25(c),
where the base station transmits a communication signal to a data-receiving
user but also listens to the reflection of the data signal from the target. Since
the transmitter knows the data signal, it can be used for target detection; we
recall from Example 8.12 that any signal with a specified average power works
equally well for that purpose. However, the user prefers data transmission
with MRT precoding, while the target detection probability is maximized
if the signal is beamformed towards the potential target location. This is
an example of the inherent tradeoff between sensing and communication,
which materializes in conflicting precoding designs in this basic scenario. We
refer to [145] for a more profound overview of ISAC, also known as joint
communication and sensing.
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(a) First integration level: Site-sharing but separate hardware and frequency bands.

(b) Second integration level: Hardware-sharing but orthogonal time/frequency signals.

(c) Third integration level: Hardware- and signal-sharing for sensing/communication.

Figure 8.25: Example of three integration levels for sensing and communication. Different
hardware, technology, and spectrum are used in (a), but the site location is shared. The same
hardware is used in (b), but the time/frequency resources differ. The same hardware and
resources are used for both applications in (c).
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8.4 Exercises

Exercise 8.1. When deriving the Capon spectrum in (8.20), it is implicitly assumed that
the sample average estimate R̂L in (8.4) is an invertible matrix. In this exercise, we will
analyze the opposite case when R̂L is rank-deficient. By defining YL = [y[1], . . . ,y[L]] ∈
CM×L, we can write R̂L = YLYH

L/L. Let the SVD of YL be denoted as YL = UΣVH.
Then, the eigendecomposition of R̂L can be expressed as R̂L = UΣVHVΣTUH/L =
U
(
ΣΣT/L

)
UH.

(a) Show that if L < M , R̂L is rank-deficient. Hint: You can use the SVD of YL to
compute the number of non-zero eigenvalues of R̂L.

(b) Assume L < M so that YL has L positive singular values. The left singular
vector matrix can be factorized as U = [Ū, Ũ], where Ū ∈ CM×L corresponds
to the strictly positive singular values (in decreasing order) and Ũ ∈ CM×(M−L)

corresponds to the zero singular values. We can express any array response vector
as a(φ, θ) = Ūx̄ + Ũx̃ in terms of the vectors x̄ = ŪHa(φ, θ) and x̃ = ŨHa(φ, θ).
Show that the objective function of the Capon spectrum in (8.17) becomes zero
for a(φ, θ) that satisfies x̃ = ŨHa(φ, θ) ̸= 0.

(c) According to (b), the Capon spectrum becomes zero when x̃ = ŨHa(φ, θ) ̸= 0,
regardless of the value of x̄ = ŪHa(φ, θ). A more noise-robust version of the
Capon spectrum that differentiates between the power of x̄ for different array
response vectors can be constructed by so-called diagonal loading. In this method,
a regularization term ϵIM with a small ϵ > 0 is added to R̂L to make it invertible,
and the modified Capon spectrum is obtained as

P (φ, θ) = 1
aH(φ, θ)

(
R̂L + ϵIM

)−1 a(φ, θ)
. (8.102)

Assuming L < M and that YL has the singular values s1 ≥ . . . ≥ sL > 0, express
the value of the Capon spectrum for an arbitrary a(φ, θ) = Ūx̄+Ũx̃ = U[x̄T, x̃T]T

in terms of x̄ and x̃. Does the spectrum value differ for the array response vectors
that satisfy x̃ = ŨHa(φ, θ) ̸= 0? Hint: Use the relation(

R̂L + ϵIM
)−1 =

(
U
(
ΣΣT/L

)
UH + ϵUUH

)−1

= U
(
ΣΣT/L+ ϵIM

)−1 UH. (8.103)

Exercise 8.2. When generating the MUSIC spectrum in (8.46), we need to create a grid
of angles and evaluate the value of the spectrum at each grid point. Hence, the accuracy
of the DOA estimation highly depends on the grid resolution. Although having a dense
grid for better accuracy is good, one major drawback of the original MUSIC algorithm,
called spectral MUSIC, is the high computational complexity. A modified version of the
MUSIC algorithm that avoids the grid search is called root MUSIC [146].

(a) Define the complex variable z = e−j2π∆ sin(φ)
λ and express the array response vector

for the ULA in (8.8) as a function a(z) of z.
(b) Suppose that there are K sources. Show that the DOA estimates φ̂k can be

obtained from the angular positions −2π∆ sin(φ̂k)
λ

of the K complex roots, which
are closest to the unit circle and appear in pairs of reciprocal, of the equation
aT(z−1)ÛnÛH

n a(z) = 0.
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Exercise 8.3. Consider a DOA estimation problem in the 2D plane with the elevation
angle θ = 0. There are M = 3 antennas in a triangular array with the antenna positions
(0, 0), (∆, 0), and (0,∆).

(a) If ∆ = λ/2, can we unambiguously estimate the DOA for all the angles φ ∈ [0, 2π)?
If not, what are the azimuth angles that create ambiguity?

(b) If ∆ = λ/2 − ϵ for some arbitrary 0 < ϵ < λ/2, can we unambiguously estimate
the DOA for all the angles φ ∈ [0, 2π)? If not, what are the azimuth angles that
create ambiguity?

Exercise 8.4. Non-linear least squares (NLS) is a parametric DOA estimation method,
where the DOA estimates are obtained as the angles that minimize the norm square of
the difference between the received noisy signals and the noise-free part in (8.3):

L∑
l=1

∥∥∥∥∥y[l] −
K∑
k=1

√
βka(φk, θk)xk[l]

∥∥∥∥∥
2

=
L∑
l=1

∥y[l] − Ap[l]∥2 , (8.104)

where A = [a(φ1, θ1), . . . , a(φK , θK)] and p[l] = [
√
β1x1[l], . . . ,

√
βKxK [l]]. The unknown

source signals p[l] are treated as deterministic in the NLS method. Assume the rank of
A equals K.

(a) Find the vectors p[l] that minimize (8.104) by expressing the objective function
as a quadratic function of p[l], for l = 1, . . . , L.

(b) Insert the optimal p[l] found in (a) into the objective function in (8.104) and show
that the DOA estimates are found as

{(φ̂k, θ̂k)}Kk=1 = arg max
{φk,θk}K

k=1

L∑
l=1

yH[l]A
(
AHA

)−1 AHy[l]. (8.105)

(c) Show that the NLS method becomes equivalent to conventional beamforming if
K = 1.

Exercise 8.5. Consider the received signal given in (8.38) for DOA estimation, which
can be expressed as

y[l] = Ap[l] + n[l], (8.106)

where K < M , A = [a(φ1, θ1), . . . ,a(φK , θK)] and p[l] = [
√
β1x1[l], . . . ,

√
βKxK [l]].

(a) Suppose the noise signal is colored with an invertible covariance matrix C, i.e.,
n[l] ∼ NC(0,C). To apply the MUSIC algorithm, we must first whiten the signals
y[l]. What is the resulting MUSIC spectrum?

(b) In practice, mutual coupling can occur due to interaction between closely spaced
antennas in an array. There exist array calibration methods that can mitigate
these effects, but there will be residual calibration errors. Suppose the received
signal can be modeled as [147]

y[l] = MAp[l] + n[l], (8.107)

where M ∈ CM×M is a non-singular matrix. If n[l] ∼ NC(0, σ2IM ), obtain the
MUSIC spectrum for this signal model.
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Exercise 8.6. In this exercise, we consider mixed TDOA/DOA localization. A single target
node is located at (x, y) and M receivers. The 2D coordinates of receiver m is denoted by
(xm, ym). Suppose the receivers with the indices 2, . . . ,M , where M < M , provide TDOA
measurements with respect to the reference receiver 1. The remaining receivers with the
indices M+1, . . . ,M provide DOA estimates. Let rTDOA = [r2,1, . . . , rM,1]T and rDOA =
[rM+1, . . . , rM ]T be the noisy distance measurements obtained with TDOA and DOA
measurements, respectively. The respective measurement noise is denoted by nTDOA =
[n2,1, . . . , nM,1]T ∼ NC(0,CTDOA) and nDOA = [n

M+1, . . . , nM ]T ∼ NC(0,CDOA).
(a) Derive the ML cost function for the mixed TDOA/DOA localization, assuming

that the measurement noises are independent.
(b) What is the minimum number of receivers for unambiguous 2D localization under

the condition 2 ≤ M < M if the azimuth and elevation DOAs can be estimated
separately?

(c) What is the minimum number of receivers for unambiguous 3D localization under
the condition 2 ≤ M < M if the receivers that estimate DOA have ULAs?

Exercise 8.7. Consider 2D TOA-based localization with a single target node and M
receivers with the received signals given in (8.52). One approach is to arrange the
equations in (8.52) to obtain a linear relation with zero-mean additive noise. The LS
solution can then be obtained in closed form. The aim of this exercise is to obtain a
relation in the form of b = Az + w, where z consists of unknown variables, b and A
are fixed, and w has zero-mean noise entries. Given such a model, the LS solution is
obtained as ẑ =

(
ATA

)−1 ATb if ATA is invertible, and we can obtain (x̂, ŷ) using ẑ.
(a) Let us define z = [x, y, x2 + y2]T ∈ R3. Find the matrix A ∈ RM×3 that contains

only the known receiver locations (xm, ym) and constants. Obtain also the ob-
servation vector b and noise vector w. Hint: Take the squares on both sides of

rm =
√

(xm − x)2 + (ym − y)2 + nm, m = 1, . . . ,M, (8.108)

where nm ∼ N (0, σ2
d).

(b) Do the entries of w have zero mean? If not, under what conditions can we
approximate it as a zero-mean vector?

Exercise 8.8. One of the main contributors to the reduced localization accuracy is NLOS
paths between the target node and some of the receivers due to the blockage of the
LOS path. In TOA, the effect of NLOS paths can be modeled as a positive bias to the
true TOAs with much larger power than the measurement errors. Suppose there is a
single target node located at (x, y) and M receivers. The 2D coordinates of receiver m
is denoted by (xm, ym). Suppose the receivers with the indices 1, . . . ,M , where M < M ,
have a blocked LOS towards the target node, and the NLOS bias is modeled as an
exponential random variable bm ∼ Exp(1/σ2

b ) with the PDF from (2.91). For the other
receivers M + 1, . . . ,M , the relations in (8.52) are valid. The distance measurements for
this TOA-based localization setup can be expressed as

rm =
√

(xm − x)2 + (ym − y)2 + bm, m = 1, . . . ,M, (8.109)

rm =
√

(xm − x)2 + (ym − y)2 + nm, m = M + 1, . . . ,M, (8.110)

where we have omitted the measurement noise nm for m = 1, . . . ,M since the NLOS
bias is much stronger. Assuming that nm ∼ N (0, σ2

d) and all bm and nm are mutually
independent, derive the cost function to be minimized for ML estimation of (x, y).
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Exercise 8.9. Consider target detection with the binary hypothesis test

H0 : y[l] = n[l], l = 1, . . . , L, (8.111)
H1 : y[l] =

√
PrcRCS + n[l], l = 1, . . . , L, (8.112)

where the RCS coefficient cRCS is constant and known at the receiver (called the Swerling
0 model). Derive the sufficient statistics for the Neyman-Pearson detector when the
noise samples n[l] ∼ NC(0, σ2) are independent.

Exercise 8.10. Consider the sufficient statistics
∣∣1H
Ly
∣∣2 in (8.85) of the Neyman-Pearson

detector with the Swerling 1 target model. The SNR of the coherently combined signal
1H
Ly under the target existence determines the detection performance of the radar

detector.
(a) Let ϱ denote the average single-antenna SNR of the considered radar channel.

Under the target existence, express the SNR of the coherently combined signal 1H
Ly

for a given number of transmit/receive antennas M and the number of coherently
combined symbols L.

(b) Suppose the average power consumption of the system is

L
P

0.25 + LM · 1 + L̄M · 1 W, (8.113)

where the first term includes a power amplifier efficiency of 25%. The second term
models that each transmit antenna consumes 1 W and is turned on for L symbols.
The third term models that each receive antenna consumes 1 W and must be
active for a fixed window of L̄ symbols to capture the reflected signal. Which
combination of L and M minimizes the average power consumption in (8.113)
while guaranteeing an SNR of at least 10 dB for 1H

Ly if ϱ = −10 dB, P = 10 W,
and L̄ = 100?

Exercise 8.11. Consider a mono-static setup with a single transmit/receive antenna for
a target detection task. Suppose the propagation between the transmitter/receiver and
the potential target is modeled using the radar range equation. Moreover, assume that
a target having RCS of 0 dBsm is detectable at a distance of 100 m when L = 1. It is
desired to detect a smaller target with an RCS of −10 dBsm at a distance of 200 m. The
antenna gains are assumed to be fixed in this exercise.

(a) How many transmit/receive antennas M are needed to achieve the given task
without changing any other parameters?

(b) If the target follows the Swerling 1 model, how many symbols L are needed to
achieve the given task without changing any other parameters?

Exercise 8.12. Consider a multi-static target detection setup with a single transmitter
and two spatially separated receivers. Assuming the target reflection follows the Swerling
1 model, we can express the binary hypothesis test as

H0 : y1[l] = n1[l], y2[l] = n2[l], l = 1, . . . , L, (8.114)

H1 : y1[l] =
√
Pr,1c1 + n1[l], y2[l] =

√
Pr,2c2 + n2[l], l = 1, . . . , L, (8.115)

where c1 ∼ NC(0, 1) and c2 ∼ NC(0, 1) are the random RCSs of the target towards
the receiver 1 and 2, respectively. Similarly, the subscript in the other symbols refers
to the receiver index. The noise samples have the distributions n1[l] ∼ NC(0, σ2) and
n2[l] ∼ NC(0, σ2). Derive the sufficient statistics in the Neyman-Pearson detector if all
the random variables are independent.
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Exercise 8.13. In the hypothesis test stated in (8.90)-(8.91) for the Swerling 2 target
model, we have assumed that the transmitter sends the constant symbol “1” throughout
the L symbol times. What are the sufficient statistics of the Neyman-Pearson detector
if the transmitter instead sends x = [x[1], . . . , x[L]]T ∈ CL, which is deterministic and
known at the receiver?

Exercise 8.14. Consider target detection setup with the binary hypothesis test

H0 : y[l] = n[l], l = 1, . . . , L, (8.116)
H1 : y[l] =

√
PrcRCS[l] + n[l], l = 1, . . . , L, (8.117)

where the noise is colored such that n = [n[1], . . . , n[L]]T ∼ NC(0,C) with an invertible
covariance matrix C.

(a) Consider the Swerling 1 target model with cRCS[l] = cRCS ∼ NC(0, 1), for l =
1, . . . , L. Derive the sufficient statistics of the Neyman-Pearson detector. Interpret
the result.

(b) Consider the Swerling 2 target model with independent cRCS[l] ∼ NC(0, 1), for
l = 1, . . . , L. Derive the sufficient statistics of the Neyman-Pearson detector.
Interpret the result.

Exercise 8.15. Consider a mono-static ISAC transceiver with K transmit and K receive
antennas. The transceiver sends data to a single user. At the same time, it wants to
detect the existence of a target at a specific location. The channels from the ISAC
transceiver to the data user and the target location are denoted as hu ∈ CK and ht ∈ CK ,
respectively. The channel from the target location to the receiver is hr ∈ CK . Suppose
ps is transmitted where s ∼ NC(0, P ) is the data signal and p ∈ CK is the unit-norm
precoding vector. The target detection is done based on the received signal for one time
instance at the ISAC receiver, which is reflected by the target. A receive combining
vector w ∈ CK is applied to the received signal. The RCS variance is σRCS. Suppose
that the receiver noises at the user and ISAC receiver are both zero-mean and have the
variance σ2.

(a) What is the SNR of the received signal at the ISAC transceiver if the target exists?
(b) What is the combining vector w that maximizes the sensing SNR in (a)?
(c) Suppose that P∥hu∥2/σ2 = 9 and the user requires an SNR of 1. How should the

precoding vector p be selected to maximize the sensing SNR subject to the user
SNR constraint if hH

t hu = 0?



Chapter 9

Reconfigurable Surfaces

The previous chapters have demonstrated how the signal strength can be
increased by equipping the transmitter and receiver with multiple antennas
used for precoding and combining. Unfortunately, the MIMO technology can
hardly turn a weak channel into a strong one; if the channel gain β is tiny,
then MKβ will remain mediocre. Communication systems that operate under
NLOS conditions rely heavily on reflections by various surfaces for the signals
to reach the intended receivers. This might lead to multiple propagation
paths but often immense signal losses along these paths, particularly in the
mmWave and THz bands. Figure 9.1 illustrates such a scenario, where the
NLOS receiver can only be reached by beamforming towards a building that
reflects the signal. Unfortunately, the building in this example is rotated such
that the signal is mainly reflected away from the receiver, following the solid
arrow. Can we change the reflection properties somehow so the signal bends
around the corner and follows the dashed arrow instead? Yes, this can be
achieved using reconfigurable surfaces, which is the topic of this chapter.

This chapter will explore how the reflection properties can be dynamically
tuned using reconfigurable surfaces to aid the communication between a
transmitter and receiver. We begin by explaining how reflections can be
interpreted using the beamforming characteristics from previous chapters and
how reconfigurable surfaces can control these characteristics. We will then
analyze how these surfaces can be configured to maximize the capacity of
narrowband and wideband SISO channels and MIMO channels.

9.1 Basic Physics of Reflecting Surfaces

There are two primary categories of reflections: specular and diffuse. These
categories are illustrated in Figure 9.2 and represent the extremes in how a
plane wave can interact with a reflecting object. In the specular case, the
reflected wave remains planar but changes its direction. If angles are measured
counterclockwise with 0◦ being the broadside direction, then a wave with
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Transmitter

Receiver in LOS
Receiver in NLOS

Figure 9.1: A downlink scenario where the transmitter can easily reach the LOS receiver. By
contrast, the NLOS receiver has rather weak channel conditions since the wall reflection directs
the signal along the solid arrow. If a reconfigurable surface is deployed on that building, the
signal can be reflected following the dashed arrow instead.

Incident plane wave
Reflected plane wave

Incident plane wave

(a) Specular reflection. (b) Diffuse reflection/scattering.

Reflected wave

φ −φ

Figure 9.2: A plane wave that reaches an object can be reflected in different ways, with specular
reflection and diffuse reflection/scattering being the two extremes.

the incident angle φ is reflecting having the outgoing angle −φ. This is a
consequence of Snell’s law of refraction, often considered in optics [148]. By
contrast, in the diffuse scattering case, the reflected wave has a spherical shape
with no particular directivity; thus, the wave’s energy is further diffused over
the propagation environments.

These categories might seem familiar because we constantly observe how
visible light interacts with objects around us to create specular reflections on
smooth surfaces (e.g., mirrors that provide an undistorted image) and diffuse
reflections on rough surfaces (e.g., white walls that spread the light through
the room). The smoothness level is measured compared to the wavelength
and size of the object. Firstly, the object must be many wavelengths wide to
have the chance to provide (approximately) specular reflection. Secondly, the
surface roughness must be small compared to the wavelength. Hence, a large
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object that is smooth enough to provide specular reflection for radio waves
might be too rough to provide that for visible light. On the other hand, a
perfectly smooth but physically small object might be a specular reflector for
visible light but be too small to act that way for radio waves since these have
a roughly 105 times larger wavelength.1 In fact, the physics that underpins
the specular reflection case assumes an infinitely large surface. If a finite-sized
mirror approximately provides specular reflection for visible light, it must be
105 times larger to give the same approximation accuracy for radio waves. It is
not only specular reflection that is an idealization, but ideal diffuse scattering
that is uniform in all directions (as in Figure 9.2) is also unlikely to occur in
wireless channels; even a rough object has a specific geometry that affects the
reflected wave’s shape.

The properties of the reflected signal from a finite-sized flat object can
be derived using similar methods as in Chapter 4, where we studied antenna
arrays. Figure 9.3(a) shows a plane wave impinging on a surface from the angle
φ. We will measure the resulting phase-shifts at three points on the surface,
which are selected as a ULA with the separation ∆. If we use the left-most
point as the phase reference, then the second point observes a phase-shift
of 2π∆ sin(φ)

λ and the third point observes a phase-shift of 2π 2∆ sin(φ)
λ . These

phases are obtained from the wave needing to travel the additional distances
∆ sin(φ) and 2∆ sin(φ) to reach these points. In general, we obtain the relative
phase-shifts at M points in a ULA configuration with separation ∆ from the
array response vector in (4.19):

a(φ) =



1
e−j2π∆ sin(φ)

λ

e−j2π 2∆ sin(φ)
λ

...
e−j2π (M−1)∆ sin(φ)

λ


∈ CM . (9.1)

If the same M points retransmit the signal isotropically with the mentioned
phase-shifts, we obtain the situation illustrated in Figure 9.3(b). The signal is
beamformed using the precoding vector p = a(φ), which can be expressed as

p =



1
e−j2π∆ sin(φ)

λ

e−j2π 2∆ sin(φ)
λ

...
e−j2π (M−1)∆ sin(φ)

λ


=



1
e−j2π∆ sin(−φ)

λ

e−j2π 2∆ sin(−φ)
λ

...
e−j2π (M−1)∆ sin(−φ)

λ



∗

= a∗(−φ) (9.2)

since sin(φ) = − sin(−φ). We recognize this as the MRT vector (without a
normalization factor) for transmission in the angular direction −φ; thus, this

1This number is obtained by comparing green light having the carrier frequency 600 THz
with a wireless communication signal at 6 GHz.
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Incident plane wave
from the angle φ

Beam pointing in
the direction −φ

∆φ

φ

1 e−j2π∆ sin(φ)
λ e−j2π 2∆ sin(φ)

λ 1 e−j2π∆ sin(φ)
λ e−j2π 2∆ sin(φ)

λ

(a) Phase-shifts in signal reception. (b) Transmission with the same phases.

Figure 9.3: When a plane wave impinges on a plane surface from the direction φ, the phase-
shifts over the surface can be computed by viewing it as a ULA as in (a). If the same points on
the surface retransmit the signal with the phase-shifts obtained from (a), then a beam will be
formed in the opposite direction −φ as shown in (b).

is where the retransmitted beam is pointing. This observation is essential to
determining the shape of the reflected signal from a plane finite-sized surface
and is an instance of the Huygens-Fresnel principle. This principle says that
when a wavefront interacts with an object, every point on that object can be
viewed as a new source that emits spherical waves (isotropically). These waves’
constructive/destructive combinations determine the new wavefront [149]. The
reason that a plane wave that arrives from the angle φ is beamformed with
the angle −φ is that the distance to a far-away receiver in that direction is
identical through all the elements in the ULA shown in Figure 9.3; thus, there
will be constructive interference in that direction. The reflected wavefront can
be determined using the methodology for computing beam patterns developed
in Chapter 4.

9.1.1 Beam Pattern from a Reflecting Surface

We will now compute the angular shape of the reflected signal from the two-
dimensional surface illustrated in Figure 9.4, which is deployed in the yz-plane.
We denote its horizontal length as LH and vertical length as LV to follow the
notation from the analysis of UPAs in Section 4.5.3. The considered surface is
a homogeneous perfect electric conductor (PEC), but we will first treat it as
a UPA by (hypothetically) cutting it into many tiny pieces that each has the
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Incident plane wave
from angle (φi, θi)

Observation angle (φo, θo)
LH

LV

Figure 9.4: A plane wave impinges on a flat homogenous PEC surface in the yz-plane of size
LH × LV meters. The channel gain observed in different observation directions (φo, θo) can be
computed similarly to the beam pattern of a UPA, which was characterized in Chapter 4.

physical dimension ∆×∆ for some ∆ ≤ λ/4. Hence, the horizontal/vertical
antenna spacing is ∆. Each antenna has an area ∆2 that is smaller than that
of an isotropic antenna, implying that it also has an approximately isotropic
radiation pattern. The number of horizontal and vertical antennas can be
computed as NH = LH/∆ and NV = LV/∆, respectively. We will use this
notation to determine the beam pattern and then let ∆→ 0 so that the UPA
is made of asymptotically many small antennas that we will call atoms. The
considered setup is shown in Figure 9.4.

If a plane wave impinges on the surface from the azimuth angle φi ∈
[−π/2, π/2] and elevation angle θi ∈ [−π/2, π/2], then the relative phase-
shifts among the atoms are given by the respective entries of the array
response vector aNH,NV(φi, θi) in (4.128). By following the Huygens-Fresnel
principle, we can obtain the reflected signal by considering transmission using
the precoding vector

p = aNH,NV(φi, θi) = a∗
NH,NV

(−φi,−θi), (9.3)

which corresponds to MRT (without power normalization) in the direction
(−φi,−θi). The beamforming gain that is observed in an arbitrary observation
direction, represented by the azimuth angle φo ∈ [−π/2, π/2] and elevation
angle θo ∈ [−π/2, π/2], is obtained by multiplying with the array response
vector aT

NH,NV
(φo, θo) representing the channel in that direction:

B(φo, θo) =
∣∣aT
NH,NV

(φo, θo)p
∣∣2

=
∣∣aT
NH,NV

(φo, θo)a∗
NH,NV

(−φi,−θi)
∣∣2 . (9.4)
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A compact formula for this kind of expression was previously derived in
Section 4.5.3, using a slightly different notation. In our case, (4.139) turns
into

B(φo, θo) = sin2 (πLHΦ/λ)
sin2 (π∆Φ/λ)

sin2 (πLVΩ/λ)
sin2 (π∆Ω/λ)

, (9.5)

where the impact of the angles is captured by the variables

Φ = sin(φo) cos(θo) + sin(φi) cos(θi), (9.6)
Ω = sin(θo) + sin(θi). (9.7)

Suppose the channel gain from the transmitter to a hypothetical isotropic
antenna inside the surface is βt. Each of the atoms has the (effective) area ∆2

and will experience the channel gain βt∆2/Aiso from the transmitter, where
Aiso = λ2

4π is the area of an isotropic antenna. This is the fraction of the
transmitted power that reaches a single atom and will be reflected by it.
Similarly, suppose the channel gain from the hypothetical isotropic antenna
to a receiver in the observation direction is βr. Each atom with area ∆2 will
then experience the channel gain βr∆2/Aiso, which is the propagation loss
from an atom to the receiver. In conclusion, the end-to-end channel gain from
the transmitter to the receiver via the reflecting surface is

β = βt
∆2

Aiso
βr

∆2

Aiso
B(φo, θo)

= βtβr
∆4

A2
iso

sin2 (πLHΦ/λ)
sin2 (π∆Φ/λ)

sin2 (πLVΩ/λ)
sin2 (π∆Ω/λ)

≈ βtβr
∆4

A2
iso

sin2 (πLHΦ/λ)
(π∆Φ/λ)2

sin2 (πLVΩ/λ)
(π∆Ω/λ)2

= βtβr
L2

HL
2
V

A2
iso

sinc2
(
LHΦ
λ

)
sinc2

(
LVΩ
λ

)
, (9.8)

where the approximation utilizes the fact that sin(x) ≈ x when x ≈ 0 and is
tight when ∆→ 0. The last equality identifies the sinc-function expression.
The expression in (9.8) shows how the channel gain depends on the angles
and captures all the essential channel properties, except for polarization. The
potential polarization mismatch between the transmitter and receiver can be
included in βt and βr but are also angle-dependent [150].

The largest channel gain is obtained in (9.8) when Φ = Ω = 0. By
inspecting (9.6) and (9.7), we can conclude that the maximum is obtained
for the observation angles φo = −φi and θo = −θi, which is expected from
Snell’s law and the previous discussion. If the reflected signal were a plane
wave, the channel gain would be zero in all other directions, which is not the
case. Instead, the angular gain variations are the same as for a UPA with the
same physical size and can be analyzed as in Section 4.5.3.
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Example 9.1. What are the reflected signal’s first-null horizontal and vertical
beamwidths when a plane wave impinges from φi = θi = 0?

The first nulls appear when the argument of one of the sinc-functions
in (9.8) is ±1. In the horizontal plane (i.e., θo = 0), this happens for
φo = ± arcsin(λ/LH) ≈ λ/LH. Hence, the first-null horizontal beamwidth
is approximately 2λ/LH. It follows from the same computation that the
first-null vertical beamwidth is approximately 2λ/LV. The beamwidths are
proportional to the wavelength, which demonstrates how a PEC surface of a
given physical size can give an extremely narrow beamwidth for visible light
but a relatively wide beamwidth for radio spectrum.

As the surface’s lengths LH, LV grow large, for a given wavelength, the
beamwidths approach zero. This implies the reflected signal will be a plane
wave with zero beamwidth in the asymptotic limit. This corresponds to ideal
specular reflection where the incident plane wave only changes direction.

The maximum gain value in (9.8) can be factorized as

β = βt · LHLV

Aiso︸ ︷︷ ︸
=Aperture gain for reception

· βr · LHLV

Aiso︸ ︷︷ ︸
=Beamforming gain for retransmission

. (9.9)

Recall that LHLV is the total area of the surface. The first term in (9.9) is the
channel gain from the transmitter to an isotropic-antenna-sized receiver surface,
while the second term LHLV/Aiso determines how much larger aperture the
surface has. Hence, we will call the second term the aperture gain, but it could
also be interpreted as a receive beamforming gain. This part of the expression
models the fact that a surface collects an amount of power from the impinging
plane wave that is proportional to its area. The third term in (9.9) is the
channel gain from an isotropic-antenna-sized transmitter surface to the receiver,
while the fourth term LHLV/Aiso determines the transmit beamforming gain
delivered by the surface. This part of the expression highlights how a big
surface can beamform/reflect the signal with a narrower beamwidth and a
power concentration in the main beam proportional to its area.

Figure 9.5 shows the end-to-end channel gain in (9.8) observed in different
angle directions φo in the azimuth plane (where θo = 0) when a plane wave
impinges from the direction φi = π/6, θi = 0. We consider a square surface
with the side lengths L = LH = LV ∈ {4λ, 16λ} and a propagation scenario
with βtβr = 10−8. The figure shows how the reflected signals are beams
pointing in the direction φo = −π/6 = −φi, as expected. The horizontal
beamwidth shrinks slightly when the surface increases in size, but the more
dominant effect is the increased channel gain, which grows quadratically with
the surface area. Hence, when each side increases by a factor of 4, the channel
gain grows by 44 = 24 dB. This is the combination of the aperture gain and
the transmit beamforming gain.
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End-to-end channel gain [dB]

Observation angle φo

AAU

Incident angle

Figure 9.5: The end-to-end channel gain in (9.8) from a transmitter in the direction φi = π/6
via a reflecting PEC surface to a receiver in a varying observation angle direction φo. The
channel gain depends on the surface’s size L× L and the observation angle.

Example 9.2. How does the end-to-end channel gain in (9.8) relate to the
radar range equation in (8.71)?

The connection between these expressions can be identified by using the
notation βt = Gt(φt, θt) λ2

(4πdt)2 and βr = Gr(φr, θr) λ2

(4πdr)2 for the channel
gains of the LOS paths to and from the radar target, respectively. These
channel gains depend on the propagation distances and antenna gains at the
transmitter and receiver. The received power in (8.71) can then be expressed
as

Pr = Ptβtβr
σRCS

Aiso
. (9.10)

The corresponding received power when using the reflecting surface is Ptβ so
by comparing (9.10) with (9.8), we can identify the RCS of the surface as

σRCS = L2
HL

2
V

Aiso
sinc2

(
LHΦ
λ

)
sinc2

(
LVΩ
λ

)
. (9.11)

This expression characterizes how the RCS depends on the incident and
observation angles through Φ and Ω. The largest value is achieved when
Φ = Ω = 0, but we can also achieve zero RCS if Φ = ±λ/LH or Ω = ±λ/LV.

If the surface would be rotated randomly with respect to the transmitter
and receiver, then Φ and Ω are random, and so is the angle-dependent RCS
σRCS. This is the core principle that leads to randomness in radar sensing.



9.1. Basic Physics of Reflecting Surfaces 609

Impedance: Z0 (free space) Impedance: Z1

Incident signal:
√
Pej2πfc(t− x

c )

Reflected signal:
√
PΓ01e

j2πfc(t+ x
c )

Transmitted signal
with power P (1 − |Γ01|2)

x0

Figure 9.6: When the plane wave
√
Pej2πfc(t− x

c ) reaches the boundary between two mediums,
a fraction of it is reflected backward and the remaining is transmitted into the new medium.
The reflection coefficient Γ01 determines these behaviors.

9.1.2 Reconfigurable Reflection from Heterogeneous Surfaces

The previous section analyzed the reflection from a homogeneous surface,
which reflects all the power of the incident wave as a beam pointing in the
specular reflection direction. The situation is different when the surface is
heterogeneous. We need the reflection coefficient to study that scenario.

When a sinusoidal wave reaches the boundary between two mediums, their
respective characteristic impedances determine what fraction of the signal is
reflected back versus transmitted into the new medium. We let Z0 denote the
impedance of the first medium (e.g., free space) and Z1 denote the impedance
of the second medium (e.g., the surface). The reflection coefficient can then
be computed as [151, Sec. 1.7]

Γ01 = Z1 − Z0

Z1 + Z0
(9.12)

and is the reflected signal divided by the incident signal at the boundary
between the mediums. The reflection coefficient can be complex, in which
case arg(Γ01) represents the phase-shift incurred to the signal before it is
reflected. This scenario is illustrated in Figure 9.6, where the first medium is
free space (vacuum) for which the speed of light has been denoted c earlier
in this book. A fraction |Γ01|2 of the power is reflected, while the remaining
fraction 1−|Γ01|2 is transmitted into the new medium and might be absorbed
by it. We will focus on the reflected signal.

A homogenous surface has a constant impedance Z1, which results in a
reduced power by a factor of |Γ01|2 ∈ [0, 1], but otherwise, the same reflection
behavior as in the previous section. However, suppose the surface is divided into
N small units that are structurally similar but have heterogeneous electrical
properties. We call these metaatoms and each has a specific impedance Zn for
n = 1, . . . , N . The corresponding reflection coefficients then become

Γ0n = Zn − Z0

Zn + Z0
. (9.13)
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The characteristic impedance of free space is Z0 ≈ 376.7 ≈ 120π ohm, so it is
real-valued. Suppose we design the metaatom using a reactance element with
a purely imaginary impedance Zn = jXn for some Xn ∈ R. It then follows
that

|Γ0n| =
∣∣∣∣ jXn − Z0

jXn + Z0

∣∣∣∣ =
√
X2
n + Z2

0√
X2
n + Z2

0
= 1, (9.14)

arg(Γ0n) = arg
( jXn − Z0

jXn + Z0

)
=

π − 2 arctan
(
Xn
Z0

)
, if Xn ≥ 0,

−π − 2 arctan
(
Xn
Z0

)
, if Xn < 0.

(9.15)

Such a metaatom will reflect all the incident power since |Γ0n| = 1 and it
causes a phase-shift ψn = arg(Γ0n) that can be continuously tuned between
−π and π by varying Xn. Such tuning can be achieved by configuring a
capacitor that determines the capacitive part of the reactance, which can be
implemented using a varactor diode.2 This feature is the key to designing
reconfigurable surfaces that can shape the reflected signals.

We will now return to the reflection example in Figure 9.4 that analyzed a
homogeneous PEC surface. Suppose that surface is replaced by the one shown
in Figure 9.7, which consists of N = NHNV metaatoms that have varying
impedance values corresponding to phase-shifts between −π and π. Each
color represents a specific phase value, and we let ψn ∈ [−π, π) denote the
phase-shift incurred by the nth metaatom. If the incident plane wave arrives
from the angular direction (φi, θi), then the incident phase-shifts over the
surface are given by the array response vector aNH,NV(φi, θi). Each metaatom
then adjusts its local incident phase value by ψn; therefore, the phase profile
of the retransmitted/reflected signals is given by the precoding vector

p = DψaNH,NV(φi, θi) = Dψa∗
NH,NV

(−φi,−θi), (9.16)
where the surface’s phase adjustments are applied using the diagonal reflection
matrix

Dψ = diag
(
ejψ1 , . . . , ejψN

)
. (9.17)

The beamforming gain expression in (9.4) can then be updated as

B(φo, θo) =
∣∣aT
NH,NV

(φo, θo)p
∣∣2

=
∣∣aT
NH,NV

(φo, θo)Dψa∗
NH,NV

(−φi,−θi)
∣∣2 . (9.18)

Since each entry of an array response vector is a complex exponential entirely
determined by a phase value, we can turn p into any array response vector
of our choice by selecting Dψ accordingly. We can thereby control the main
direction of the reflected beam. We can also generate precoding vectors that
are not array response vectors if we happen to prefer that.

2A capacitor adds a positive value to Xn and an inductor adds a negative value. If the
metaatom is a circuit consisting of both fixed inductive elements and variable capacitive elements,
then we can control Xn over a range of both positive and negative values, resulting in the range
of positive and negative phase-shifts shown in Figure 9.17.
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Incident plane wave
from angle (φi, θi)

Observation angle
(φo, θo)
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Figure 9.7: A plane wave impinges on a flat surface in the yz-plane that consists of NH ×NV
reflecting metaatoms with heterogeneous properties. The metaatoms’ varying impedances cause
different phase-shifts between −π and π, as exemplified using colors. This enables the surface to
control the channel gain in the observation directions (φo, θo).

Example 9.3. How should the surface’s phase-shifts be selected to point the
reflected beam in a specific desired direction (φd, θd)?

The reflected beam will point in that direction if p = a∗
NH,NV

(φd, θd). By
equating (9.16) to this value, we obtain the relation

Dψ a∗
NH,NV

(−φi,−θi)︸ ︷︷ ︸
=[ai,1,...,ai,N ]T

= a∗
NH,NV

(φd, θd)︸ ︷︷ ︸
=[ad,1,...,ad,N ]T

. (9.19)

The nth entry can be expressed as ejψnai,n = ad,n, which holds if ψn =
arg(ad,n/ai,n). Hence, each metaatom compensates for the phase difference
between the desired array response and the actual array response of the
incident wave. Since the phase varies gradually in both vectors, the phase
profile of the surface will also vary gradually, as exemplified in Figure 9.7.

Another way to control the direction of the reflected beam would be to
rotate the surface mechanically, but greater flexibility is achieved by the
electrical implementation described above. A similar discussion was made
in relation to Example 4.22, which compared the mechanical and electrical
downtilt of an antenna array. When considering reflecting surfaces, we seek a
way to deploy them on building facades, as illustrated in Figure 9.1, to point
the reflection angle toward the receiving user without mechanical rotations.
Using the radar sensing terminology from Section 8.3, we want to configure
the electrical properties of the surface to achieve the largest possible RCS in
the direction leading to the receiver.
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End-to-end channel gain [dB]

Observation angle φo

AAU

Incident angle

Figure 9.8: The end-to-end channel gain in (9.8) from a transmitter in the direction φi = π/6
via a reflecting surface of size L× L to a receiver in a varying observation angle direction φo.
The smaller the reflector is, the more circular/isotropic its radiation pattern is.

We use the term “metaatom” when referring to each controllable piece of
the surface to signify that they are tiny compared to the wavelength. This
is because a small object provides approximately diffuse reflection with no
preferred directivity, even if it is flat. Figure 9.8 shows the end-to-end channel
gain in (9.8) observed in different azimuth angle directions φo when a plane
wave impinges from the direction φi = π/6, θi = 0. The setup is the same as
in Figure 9.5, but now the surface dimensions are L× L with L ∈ {λ/6, λ/2}.
Both sizes result in a reflected signal that is spread over all angles, even back
toward the transmitter, but the radiation pattern becomes more circular (i.e.,
closer to isotropic) as the size shrinks. For the reconfigurable surface to fully
steer the direction of the reflected signal, it should be made of many tiny
controllable pieces that each lack a preferable directivity but can be used to
jointly beamform the reflected signal where we want it to go.

9.1.3 Terminology and Implementation Aspects

Reconfigurable surfaces are often associated with metamaterials, which are
engineered materials typically containing sub-wavelength-sized structures that
create a heterogeneous impedance profile over the surface. These structures
are typically referred to as metaatoms, which is why we have already adopted
that terminology in this chapter. The engineered material concept was first
utilized in communications to design static reflectarrays with a fixed reflection
matrix Dψ that was not a scaled identity matrix. This results in an anomalous
reflection angle that differs from Snell’s law [152]. This was followed by
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Figure 9.9: The photo shows the reconfigurable surface prototype from [159], which is designed
for the 5.8 GHz band. It consists of N = 1100 metaatoms, arranged as a UPA with NV = 20
rows and NH = 55 metaatoms per row. The impedance of each metaatom is controlled using
two varactor diodes, which enable phase control of the reflected signals over a range of 240◦.

reconfigurable reflectarrays that can electrically tune the reflection matrix
[153]. The purpose was to build transmitters/receivers consisting of a single
antenna pointing towards the reflectarray that controls the beam direction.
This is an alternative implementation of the analog beamforming architecture,
discussed in Section 7.3.1, that is particularly used for satellite communications
and radars but has also been commercialized for mmWave transceivers.

The alternative concept of deploying reconfigurable surfaces in the propa-
gation environment to relay signals between a transmitter and receiver gained
traction in the late 2010s. This concept has been called software-controlled
metasurfaces [154], reconfigurable intelligent surfaces (RIS) [155], intelligent
reflecting surfaces (IRS) [156], and reconfigurable intelligent metasurfaces [157].
In this book, we will call them reconfigurable surfaces. There is a wealth of
implementation challenges and details that go beyond the purpose of this book.
We refer to [158] for a review of software-controlled metasurfaces designed
for everything from the low-band to the infrared frequency range. While it
is possible to build reconfigurable surfaces that can vary the phase-shifts
continuously using varactor diodes, many designs use PIN diodes that can be
switched on and off to shift between a discrete set of phase values.

A reconfigurable surface prototype from [159] with N = 1100 metaatoms is
shown in Figure 9.9. Each metaatom contains two metallic patches connected
to varactor diodes, which are controlled by an external bias voltage to tune
the impedance. This enables the prototype to select phases ψn ∈ [−120◦, 120◦]
and the corresponding power loss varies slightly with the phase but satisfies
1 − |Γ0n|2 < −3 dB. The indoor and outdoor measurements presented in
[159] verify that the prototype can change the angle of the reflected beam as
described above. In conclusion, reconfigurable surfaces can be implemented,
and the remainder of this chapter will analyze how they can aid communication
and radar systems.
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9.2 Narrowband Communication using Reconfigurable Surfaces

We will now analyze how a reconfigurable surface can be tuned to aid a point-
to-point communication system. We begin by considering a narrowband SISO
channel between a single-antenna transmitter and a single-antenna receiver.
The received signal was stated in (2.144) as

y = h · x+ n, (9.20)

where h is the channel coefficient, x ∼ NC(0, q) is the capacity-achieving trans-
mit signal, and n ∼ NC(0, N0) is independent noise. According to Corollary 2.1,
the capacity of such a channel can be expressed as

C = log2

(
1 + q|h|2

N0

)
bit/symbol. (9.21)

When a reconfigurable surface is deployed in the propagation environment, it
affects how the channel coefficient h is modeled. Suppose the surface consists
of N metaatoms that reflect all the incident power with the controllable
phase-shifts ψn for n = 1, . . . , N . This setup is illustrated in Figure 9.10. In
general, the end-to-end channel can be modeled as

h = hs +
N∑
n=1

hr,ne
jψnht,n, (9.22)

where the static channel hs ∈ C includes all propagation paths unaffected by
the surface. The propagation path via metaatom n is described by the channel
coefficient ht,n ∈ C from the transmitter to the metaatom, the phase-shift
ejψn incurred by the metaatom, and the channel coefficient hr,n ∈ C from
the metaatom to the receiver. These three coefficients are multiplied together
following Section 9.1.1. Since waves that travel through different paths are
superimposed at the receive antenna, the channel coefficients are added up as
in (9.22). We can express (9.22) in the matrix/vector form

h = hs + hT
r Dψht (9.23)

by introducing the notation

ht =

ht,1...
ht,N

 , hr =

hr,1...
hr,N

 , (9.24)

and recalling the reflection matrix notation Dψ = diag
(
ejψ1 , . . . , ejψN

)
from

(9.17). Using this notation, the capacity in (9.21) for a given value of Dψ

becomes
log2

(
1 + q|hs + hT

r Dψht|2

N0

)
. (9.25)
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Figure 9.10: An example of a narrowband SISO channel aided by a reconfigurable surface with
N metaatoms. The SIMO channel from the single-antenna transmitter to the surface is denoted
by ht and the MISO channel from the surface to the single-antenna receiver is denoted by hr.
Each metaatom incurs a tunable phase-shift ejψn and the static channel that does not involve
the surface is denoted as hs. The end-to-end channel coefficient becomes h = hs + hT

r Dψht,
where Dψ = diag(ejψ1 , . . . , ejψN ) is the reflection matrix.

We can aid the system by identifying the matrix that maximizes this capacity
expression. In particular, we want to maximize

|hs + hT
r Dψht|2 =

∣∣∣∣∣∣∣∣∣∣


√
|hs|√

|hr,1ht,1|
...√

|hr,Nht,N |


H

√
|hs|ej arg(hs)√

|hr,1ht,1|ej(arg(hr,1ht,1)+ψ1)

...√
|hr,Nht,N |ej(arg(hr,Nht,N )+ψN )


∣∣∣∣∣∣∣∣∣∣

2

≤

∥∥∥∥∥∥∥∥∥


√
|hs|√

|hr,1ht,1|
...√

|hr,Nht,N |


∥∥∥∥∥∥∥∥∥

2 ∥∥∥∥∥∥∥∥∥


√
|hs|ej arg(hs)√

|hr,1ht,1|ej(arg(hr,1ht,1)+ψ1)

...√
|hr,Nht,N |ej(arg(hr,Nht,N )+ψN )


∥∥∥∥∥∥∥∥∥

2

=
(
|hs|+

N∑
n=1
|hr,nht,n|

)2

(9.26)

where the second row follows from the Cauchy-Schwartz inequality in (2.18).
The upper bound in that inequality is achieved if and only if the two vectors
are equal, except for a scaling factor. The first entries of the two vectors
differ by the phase-shift ej arg(hs), which is determined by the static channel
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coefficient and cannot be changed. The other entries differ by a phase-shift that
the surface can control; thus, we can attain the upper bound by matching their
phases to the first entry. In particular, the entry corresponding to metaatom n
must be configured such that

ej arg(hr,nht,n)ejψn = ej arg(hs) ⇒ ψn = arg(hs)− arg(hr,nht,n) + 2πkn
(9.27)

for the integer kn that gives that ψn ∈ [−π, π). This solution is also obtained
as ψn = arg (hs/(hr,nht,n)) if hs ̸= 0 and hr,nht,n ≠ 0. We notice that
the capacity-maximizing configuration removes the phase-shift arg(hr,nht,n)
created by the channels to and from the metaatom and replaces it with the
phase-shift arg(hs) of the static channel. In this way, the signals that the N
metaatoms reflect reach the receiver with a phase that matches the signal that
propagates through the static channel. We have proved the following result.

Corollary 9.1. Consider a discrete memoryless SISO channel aided by a
reconfigurable surface, for which the channel coefficient is

h = hs +
N∑
n=1

hr,ne
jψnht,n. (9.28)

The channel capacity is maximized by configuring the surface as ψn =
arg(hs)−arg(hr,nht,n)+2πkn, where kn is the integer that gives ψn ∈ [−π, π),
for n = 1, . . . , N . This results in the capacity

C = log2

1 +
q
(
|hs|+

∑N
n=1 |hr,nht,n|

)2

N0

 bit/symbol. (9.29)

The maximum end-to-end channel gain is the squared sum of the amplitudes
|hs| and |hr,nht,n| for n = 1, . . . , N . If we define the effective channel vector

ȟ =


hs

hr,1ht,1
...

hr,Nht,N

 , (9.30)

we can alternatively express the end-to-end channel gain using the 1-norm3 as(
|hs|+

N∑
n=1
|hr,nht,n|

)2

=
∥∥ȟ∥∥2

1. (9.31)

3The 1-norm is defined for an arbitrary vector x ∈ CM as ∥x∥1 =
∑M

m=1 |xm|. It is also
known as the Manhattan norm since it adds up the distances in the M dimensions as if one has
to travel along straight perpendicular streets on a map.
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Example 9.4. Suppose the N reflected paths have the same propagation
losses: |ht,n|2 = βt and |hr,n|2 = βr for n = 1, . . . , N . How does the end-to-end
channel gain behave when the channel gain |hs|2 = βs of the static path is
either relatively weak or strong?

The contribution from the metaatoms to (9.29) is
∑N
n=1 |hr,nht,n| =

N
√
βrβt under these assumptions. Hence, the end-to-end channel gain becomes

(√
βs +N

√
βrβt

)2
≈
{
N2βrβt, if βs is small,
βs, if βs is large,

(9.32)

where “small” means that βs ≪ N2βrβt and “large” means that βs ≫ N2βrβt.
In the former case, when the vast majority of the received power comes from
the surface, the end-to-end channel gain is proportional to N2βrβt. This term
grows quadratically with the number of metaatoms, thanks to an aperture
gain of N and a transmit beamforming gain of N . When the static path is
relatively strong (i.e., βs ≫ N2βrβt), the reconfigurable surface barely affects
the end-to-end channel gain, which is approximately equal to βs.

The conclusion is that physically large reconfigurable surfaces are much
more effective than small surfaces, thanks to the quadratic scaling law. This
is important because the N2 factor is multiplied by βrβt, which is the product
of two channel gains that both can be very small numbers.

We will now use the exact expression on the left-hand side of (9.32)
to demonstrate how the number of metaatoms affects communication per-
formance. Figure 9.11 shows the capacity as a function of the number of
metaatoms when βt = −80 dB, βr = −60 dB, and q/N0 = 100 dB. We com-
pare two types of static paths: βs = −80 dB (strong) and βs = −110 dB (weak).
When the static path is weak, the capacity is nearly zero for N = 0 but grows
rapidly as metaatoms are added to the surface. In this case, the N2 SNR
growth from (9.32) dominates. By contrast, when the static path is strong,
the capacity is already quite high for N = 0, and a huge surface is needed
before it has a noticeable impact on the capacity. The relative strength of the
propagation path provided by the surface matters, not how much power it
provides in an absolute sense. This indicates that reconfigurable surfaces are
particularly valuable in deployment scenarios with weak static paths, where
even a small surface makes a significant difference.

While Section 9.1 considered reflections in LOS scenarios, we have not
assumed any specific channel model in this section. By optimizing the re-
flection matrix, we can find the phase-shift profile of a surface with fixed
dimensions that maximizes the received signal power in a given propagation
environment. We could mechanically bend and deform a homogeneous surface
to obtain the corresponding physical shape, but instead, a reconfigurable
surface synthesizes that shape using a heterogeneous impedance pattern. This
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Figure 9.11: The capacity of a SISO channel that is aided by a reconfigurable surface. The
capacity increases with the number of metaatoms, and the relative improvement is particularly
large when the channel gain βs of the static path is weak.

(a) Reflection from a bent surface. (b) Reflection from a reconfigurable surface.

Phase-shifts in
the surface

Incident wave Incident wave

Figure 9.12: The shape and electric properties of the reflecting surface jointly determine the
reflection direction. In (a), a homogenous surface is bent to reflect the incident wave toward the
receiver. In (b), a flat reconfigurable surface has a phase-shift profile that achieves the same
result by adding extra phase-shifts to signals in the center compared to the edges.

enables us to reconfigure the reflection properties rapidly when the environ-
ment or transmitter/receiver locations change. Figure 9.12 illustrates this
principle. When the wave reaches the surface from the right, a parabolically
bent surface will reflect the signal toward the indicated receiver, as shown in
Figure 9.12(a). A flat, reconfigurable surface can synthesize the same reflection
behavior by adding extra phase-shifts to the wave components reflected at
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its center compared to its edges. This is illustrated in Figure 9.12(b), where
the coloring behind the surface represents the phase-shifts using the same
scale as in Figure 9.7. The phase-shifts are negative in this scenario since they
represent extra delays incurred by the metaatoms to synthesize a bent surface.

9.2.1 Line-of-Sight Channel Modeling and Surface Placement

The channel gain can be computed precisely in free-space LOS propagation
using the formulas provided in Section 1.1.4. Suppose the distance from the
transmitter to the surface is dt and the distance from the surface to the
receiver is dr. If the transmitter has the antenna gain Gt(φt, θt) towards the
surface and each small metaatom has the area Am (i.e., the antenna gain is
4π
λ2Am), it follows from (1.40) that the channel gain between them is

βt = λ2

(4πdt)2Gt(φt, θt)
4π
λ2Am = Gt(φt, θt)Am

4πd2
t

. (9.33)

Similarly, if the receiver has the antenna gain Gr(φr, θr) towards the surface,
then the channel gain between them is

βr = λ2

(4πdr)2Gr(φr, θr)
4π
λ2Am = Gr(φr, θr)Am

4πd2
r

. (9.34)

When the propagation path via the surface dominates over the static path, it
follows from (9.32) that the end-to-end channel gain can be expressed as

N2βrβt =N2Gt(φt, θt)Am

4πd2
t

Gr(φr, θr)Am

4πd2
r

=N2Gt(φt, θt)Gr(φr, θr)A2
m

(4πdtdr)2 , (9.35)

where we utilized the gain expressions in (9.33) and (9.34). There are many
squares in (9.35) because the end-to-end channel gain is the product of two
conventional channel gain expressions. First, the metaatom’s area is squared
because it appears in both gain expressions. It is also multiplied by N2, which
implies that it is the total area NAm of the surface that determines the
end-to-end gain. Second, the squared propagation distances d2

t and d2
r appear

in the expression since the signal power attenuates inversely proportional to
them in free-space propagation. The distances are also multiplied together.

In NLOS propagation scenarios, any channel model could be used for the
individual channels. The only important aspect is to account for the small
area Am of each metaatom, which results in a gain 4π

λ2Am. This value is smaller
than one since we consider sufficiently small-sized metaatoms to be able to
capture and retransmit power almost isotropically.

It is not only the number of metaatoms that determines the end-to-end
channel gain but also where the reconfigurable surface is deployed. Ideally,
the transmitter and receiver should have LOS channels to the surface because
these are generally stronger than NLOS channels. When multiple deployment
locations satisfy that condition, further characteristics can be considered. The
following example highlights one key property.



620 Reconfigurable Surfaces

Example 9.5. Suppose a transmitter and a receiver with isotropic antennas
are located in the same horizontal plane. They are both 10 m from a long wall
but 100 m apart from each other. There is no static path between them, but
they can see any point on the wall. Where on the wall should a reconfigurable
surface be deployed to maximize the end-to-end channel gain?

We let N denote the number of metaatoms, Am denote the area per
metaatom, and

√
102 + d2

w be the distance between the transmitter and the
surface, where dw ∈ [0, 100] m is the distance along the wall. The distance
between the surface and the receiver is then given as

√
102 + (100− dw)2.

Since we have LOS channels and isotropic transmit and receive antennas, the
end-to-end channel gain can be expressed using (9.35) as

N2βrβt = N2 Am

4π(102 + (100− dw)2)
Am

4π(102 + d2
w) . (9.36)

The deployment location affects the term (102 + (100− dw)2)(102 + d2
w) in

the denominator. This term has the first-order derivative
∂

∂dw

(
102 + (100− dw)2) (102 + d2

w
)

= 4d3
w − 600d2

w + 20400dw − 20000

= 4(dw − 50)
(
d2

w − 100dw + 100
)
, (9.37)

which has the roots dw = 50 m, dw = 50−20
√

6 ≈ 1 m, and dw = 50+20
√

6 ≈
99 m. The former value is a maximum and the latter values are two minima,
as can be proved by checking the signs of the second-order derivative. Hence,
the channel gain is minimized when the surface is deployed in the middle and
maximized when it is close to the transmitter or receiver.

The conclusion from this example is that we should look for all deployment
locations where the surface has LOS conditions to both the base station and
prospective user locations. Among these locations, we should pick the one
that is closest to either of them since this maximizes the channel gain. This
insight motivates the holographic MIMO architecture, mentioned briefly in
Section 7.4.2, where a metasurface is deployed as a part of the base station to
create an analog beamforming architecture with small antenna spacing. In
this chapter, the reconfigurable surface is meant to be decoupled from the
transmitter and receiver, but it should preferably be quite near one of them.

Figure 9.13 shows the end-to-end channel gain in (9.36) for N = 200
metaatoms that each has the area Am = (λ/4)2 where λ = 0.1 m is the
wavelength. As expected from the example above, the maximum channel gain
is achieved close to either the transmitter or receiver, while the minimum
value is obtained in the middle. The difference is around 8 dB in this example,
which is substantial but not huge compared to the fact that all the considered
channel gains are at the order of −100 dB.
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Figure 9.13: The end-to-end channel gain in (9.36) depending on how far the reconfigurable
surface is from the transmitter, when the total distance between the transmitter and receiver is
100 m. The stars show the maximum and minimum values, which were derived in Example 9.5.

9.2.2 Acquiring Channel State Information and Feedback Signaling

The reconfigurable surface requires CSI to compute the capacity-maximizing
reflection matrix. Specifically, (9.27) shows that it must know the phase of
the static channel arg(hs) and the phases arg(hr,nht,n) of the paths through
each of the N metaatoms. It is sufficient to know the phase of the cascaded
channel coefficient hr,nht,n, while the individual characteristics of hr,n and
ht,n are unimportant. These N + 1 real-valued phase coefficients can be
estimated by sending a pilot sequence similar to the point-to-point scenario
described in Section 4.2.4. The precise details are somewhat different since the
reconfigurable surface can only reflect signals, not measure them. To describe
the procedure, we begin by factorizing the end-to-end channel in (9.22) as

h = hs +
N∑
n=1

hr,ne
jψnht,n =


1
ejψ1

...
ejψN


T

︸ ︷︷ ︸
=ψT


hs

hr,1ht,1
...

hr,Nht,N


︸ ︷︷ ︸

=ȟ

, (9.38)

where ψ ∈ CN+1 contains all the configurable phase-shifts (including a 1 for
the static path) and ȟ ∈ CN+1 contains all the necessary channel coefficients.
This vector was previously defined in (9.30). Every time a signal is transmitted
over the channel, it will experience the scalar channel coefficient h obtained
as the inner product between the channel vector ȟ and the complex conjugate
of the phase-shift vector ψ. Hence, only the one-dimensional part of the
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(N+1)-dimensional channel vector that is aligned with ψ∗ is utilized to reflect
the signal toward the receiver, while the remaining dimensions are invisible to
the receiver. For the receiver to observe the entire channel vector, we must
send multiple pilot signals and vary the phase-shift configuration vector to
explore all the dimensions of CN+1 where ȟ might have a component.

By following the notation from Section 4.2.4, we consider the transmission
of a preamble of length Lp designed to enable channel estimation. Specifically, a
constant pilot sequence x[l] = √q is transmitted for l = 1, . . . , Lp and we reflect
it using a sequence of different configuration vectors: ψ[1], . . . ,ψ[Lp] ∈ CN+1.
The received signal at time instance l can then be expressed as

y[l] = ψT[l]ȟ√q + n[l], l = 1, . . . , Lp, (9.39)
but it is convenient to write it in matrix/vector form as y[1]

...
y[Lp]


︸ ︷︷ ︸

=y̌

=
[
ψ[1] . . . ψ[Lp]

]T︸ ︷︷ ︸
=Ψ

ȟ√q +

 n[1]
...

n[Lp]


︸ ︷︷ ︸

=ň

. (9.40)

If the channel vector ȟ is treated as deterministic but unknown, the PDF of
y̌ ∈ CLp can be expressed using (2.80) as

fy̌(y̌) = 1
(πN0)Lp

e− ∥y̌−Ψȟ√
q∥2

N0 (9.41)

because y̌ −Ψȟ√q ∼ NC(0, N0ILp). The ML estimate ̂̌h of ȟ is the vector
that maximizes the PDF, which corresponds to minimizing the squared norm
expression in its exponent. By equating the argument of the norm to zero, we
obtain

y̌−Ψ̂̌h√q = 0 ⇒ ̂̌h = 1
√
q

Ψ−1y̌ (9.42)

if the matrix Ψ ∈ CLp×(N+1) is invertible. This requires that Lp = N+1 since
only square matrices are invertible. Moreover, we need to find an invertible
matrix of that size that satisfies two conditions: all entries of the first column
are equal to 1, and all other entries are complex exponentials that can be
implemented using the phase-shifting ability of a reconfigurable surface. Both
properties are satisfied by the DFT matrix in (2.198) if it is scaled properly:

Ψ =
√
N + 1FN+1. (9.43)

For this particular choice, the ML estimate in (9.42) can be expressed aŝ̌h = 1
√
q

Ψ−1
(

Ψȟ√q + n
)

= ȟ + 1√
q(N + 1)

FH
N+1n, (9.44)

which is the true channel vector plus a scaled noise term with i.i.d. entries
distributed as NC(0, N0/(q(N + 1))). The estimation error vanishes as q →∞
as expected from a well-crafted estimator.
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Example 9.6. Can an ML estimate of ȟ be computed if Lp ̸= N + 1?
Yes, we can always do our best to maximize the PDF in (9.41) even if the

performance varies. If Lp > N + 1, we can pick Ψ as a full-rank matrix. We
still want to solve the linear system of equations y̌−Ψȟ√q = 0 with respect
to ȟ. This system is overdetermined and might lack a solution. However, the
channel vector can only be observed in the subspace spanned by the columns
of Ψ; thus, we can project the equation to that subspace and then solve it:

ΨHy̌−ΨHΨ̂̌h√q = 0 ⇒ ̂̌h = 1
√
q

(ΨHΨ)−1ΨHy̌ = ȟ + 1
√
q

(ΨHΨ)−1ΨHn.

(9.45)

The matrix (ΨHΨ)−1ΨH is called the left pseudo-inverse of Ψ. The estimate
is more precise than with Lp = N + 1 since it builds on more observations.

If Lp < N + 1, the linear system of equations y̌−Ψȟ√q = 0 is underde-
termined and has many solutions. Instead of picking an arbitrary solution,
which leads to estimation errors that remain as q →∞, it can be desirable
to reformulate the entire problem to reduce the number of unknowns. We
can group Ns adjacent metaatoms together into a subarray that must use the
same phase-shift value, motivated by the fact that the optimal phase-shift
pattern often varies slowly over the surface. A single channel coefficient can
then represent the cascaded channel through one subarray. Hence, in the
reformulated estimation problem, detailed in [160], there are only N/Ns + 1
unknown coefficients. For any Lp ≥ 2, we can pick the subarray size Ns such
that Lp ≥ N/Ns + 1 to avoid an underdetermined estimation problem.

The ML estimate is computed at the receiver, not the reconfigurable
surface that needs it. A possible solution is that the receiver (e.g., the base
station) computes the estimate, then determines the desirable configuration
by putting the estimates into (9.27), and finally feeds this information back
to the surface. This procedure is illustrated in Figure 9.14. The feedback link
requires the reconfigurable surface to be equipped with a transceiver.

We will now compare the capacity-maximizing configuration (based on
perfect CSI) with the capacities obtained when the reconfigurable surface is
tuned based on the ML estimate (imperfect CSI) and when random phase-
shifts uniformly distributed in [−π, π) are used. Since randomness affects h in
the latter cases, we present the average capacity values in Figure 9.15. These
values are computed assuming the receiver knows h perfectly during data
transmission, so the randomness only affects how the surface is configured. We
consider N = 200 metaatoms, βt = −80 dB, βr = −60 dB, and βs = −110 dB
(as in Figure 9.11). The SNR shown on the horizontal axis is defined based
on the static path as qβs/N0. The estimation accuracy is low when the SNR
is small; thus, random phase-shifts give the same capacity as when the ML
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1) Repeated pilot
transmission

2) The surface switches between
predefined configurations in Ψ

3) Estimate channel,
send configuration
to the surface

Figure 9.14: A reconfigurable surface can be configured by letting the transmitter repeat a
pilot transmission while the surface reflects it using different predefined configurations. The
receiver then computes an estimate of the channel vector and uses it to compute the desirable
configuration. This information is then sent to the surface using a feedback link.

Figure 9.15: The capacity as a function of the SNR, considering a SISO channel aided by a
reconfigurable surface with N = 200 metaatoms. Three different configurations are compared:
the capacity-maximizing one based on perfect CSI, one based on the ML estimator (imperfect
CSI), and one using random phase-shifts.
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estimate is used for selecting the phases. As the SNR increases, the imperfect
CSI curve improves rapidly, thanks to the better estimation accuracy, and
converges to the perfect CSI curve. The gap to the case with random phase-
shifts is then large. It is important to note that the SNR per metaatom,
qβrβt/N0, is 30 dB smaller than what is shown on the horizontal axis; on
the other hand, the 201-length pilot sequence increases the SNR during the
channel estimation by 10 log10(201) ≈ 23 dB. In conclusion, assessing what
SNR value is small versus large in this context is complicated.

The ML estimator derived and discussed above is non-parametric, which
means that we look for any conceivable channel vector in CN+1. When the ML
estimation framework was previously applied in Section 4.2.5, we restricted
the search to LOS channels that are parametrized by the angle-of-arrival to a
multi-antenna receiver. A similar parametric ML estimator can be developed
when the channels to and from the surface are array response vectors, but we
refer to [161] for the precise details.

9.3 Wideband Communication using Reconfigurable Surfaces

In this section, we will analyze how reconfigurable surfaces can be utilized
to enhance communication over wideband channels. To ensure we capture
the essential new characteristics, we must revisit how practical continuous
passband channels were transformed into discrete complex baseband chan-
nels in Section 2.3. The previous analysis considered the general setup in
Figure 9.16(a), where a passband signal zp(t) is transmitted over a wireless
channel and υp(t) denotes the filtered version that reaches the receiver before
noise is added to it. The channel was described by the impulse response gp(t),
and it depends on the propagation environment that the reconfigurable surface
can control. Hence, we will now denote the impulse response as gp;ψ(t), where
the vector ψ represents the surface configuration.

The end-to-end channel impulse response gp;ψ(t) is the sum of the impulse
responses of the different propagation paths. We begin by defining the impulse
response gs,p(t) of the static LTI channel that the signal propagates over in
the absence of the reconfigurable surface. The transmitted signal zp(t) also
propagates to each of the N metaatoms in the reconfigurable surface through
a separate LTI channel represented by an arbitrary impulse response gt,n,p(t),
for n = 1, . . . , N . When the signal reaches metaatom n, it will be filtered by
its internal circuitry and then reradiated. The filtering happens in the analog
domain and will be modeled as an LTI filter. We denote the impulse response
as ϑn,p;ψn(t) and stress that it is reconfigurable in the sense that it depends
on an external stimulus represented by the variable ψn from the vector ψ.
In other words, we can choose from a set of possible impulse responses by
selecting ψn. To be consistent with the LTI assumption, only one value of ψn
can be used during the considered signal transmission.
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gp(t)zp(t)

Channel

υp(t) = (gp ∗ zp)(t)

(a) The general relation between the transmitted and received passband signals.

• • •

• • •

• • •

+zp(t) υp(t)

Static channel
gs,p(t)

To metaatom 1
gt,1,p(t)

Metaatom 1
ϑ1,p;ψ1 (t)

To receiver
gr,1,p(t)

To metaatom 2
gt,2,p(t)

Metaatom 2
ϑ2,p;ψ2 (t)

To receiver
gr,2,p(t)

To metaatomN

gt,N,p(t)
MetaatomN

ϑN,p;ψN (t)
To receiver
gr,N,p(t)

End-to-end system with impulse response gp;ψ(t)

(b) A detailed channel description when utilizing a reconfigurable surface.

Figure 9.16: The received passband signal υp(t) is the convolution between the transmitted
signal zp(t) and the channel impulse response gp(t), as shown in (a). When utilizing a reconfig-
urable surface with N metaatoms, the impulse response is the superposition/addition of the
impulse response gs,p(t) of the static channel and the N controllable impulse responses of the
channels via each of the N metaatoms, as shown in (b).

When the signal is reradiated from metaatom n, it propagates to the
receiver over yet another LTI channel with an arbitrary impulse response
gr,n,p(t). Since the transmitted signal propagates via metaatom n to the
receiver through a cascade of three LTI filters, the joint impulse response is
the convolution of their impulse responses: (gr,n,p ∗ ϑn,p;ψn ∗ gt,n,p)(t). We
thereby obtain the input-output relation illustrated in Figure 9.16(b):

υp(t) = (gs,p ∗ zp)(t) +
N∑
n=1

(gr,n,p ∗ ϑn,p;ψn ∗ gt,n,p ∗ zp)(t)

=
([

gs,p +
N∑
n=1

gr,n,p ∗ ϑn,p;ψn ∗ gt,n,p

]
︸ ︷︷ ︸

=gp;ψ

∗zp

)
(t), (9.46)

where we identify the impulse response of the end-to-end system as

gp;ψ(t) = gs,p(t) +
N∑
n=1

(gr,n,p ∗ ϑn,p;ψn ∗ gt,n,p)(t). (9.47)
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We recall from (2.116)-(2.117) that filtering of a passband signal can be
represented by filtering the equivalent complex-baseband signal using impulse
responses that are downshifted. By applying this principle to each component
of gp;ψ(t), the complex baseband representation of (9.46) becomes

υ(t) = (gs ∗ z)(t) +
N∑
n=1

(gr,n ∗ ϑn;ψn ∗ gt,n ∗ z)(t), (9.48)

where the impulse responses of the downshifted channels and filters are defined
as

gs(t) = gs,p(t)e−j2πfct, (9.49)
gt,n(t) = gt,n,p(t)e−j2πfct, (9.50)
gr,n(t) = gr,n,p(t)e−j2πfct, (9.51)

ϑn;ψn(t) = ϑn,p;ψn(t)e−j2πfct. (9.52)

The end-to-end channel has the impulse response

gψ(t) = gs(t) +
N∑
n=1

(gr,n ∗ ϑn;ψn ∗ gt,n)(t). (9.53)

We notice that the convolution of a chain of impulse responses in the passband
becomes the convolution of the corresponding chain of complex-baseband
impulse responses. This property seems natural but is actually a feature of
the definitions previously made in Section 2.3.1. We considered a passband
signal that is sent over a channel with arbitrary frequency support and defined
how the signal and channel/filter are transformed to the baseband differently.
This can be called the pseudo-baseband representation since the channel is
not a baseband filter, but the output is a baseband signal since the input
is a baseband signal. By contrast, many other textbooks consider a stricter
complex-baseband representation, where each channel is a passband filter that
is transformed to the baseband identically to the signal. That definition is less
practical since wireless channels are not passband filters but support signals
of any frequency. More importantly, it gives rise to extra scaling factors, and
these multiply when considering convolutions of filters, making the stricter
model inappropriate when studying reconfigurable surfaces.

When a discrete sequence of data symbols x[k] is transmitted using PAM,
bandpass filtered at the receiver, and sampled on the symbol rate, the resulting
received signal sequence y[l] was expressed in (7.7) as

y[l] =
T∑
ℓ=0

hψ[ℓ]x[l − ℓ] + n[l], (9.54)
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Impedance: Z0 Impedance: Zn(vn)

L1

L2

R

C(vn)

Incident signal

Reflected signal

Metatom nFree space propagation environment

Figure 9.17: An example of a lumped-element model of a metaatom containing two inductors
(L1,L2), one resistor (R), and a varactor with a controllable capacitance C(vn).

where the T + 1 discrete-time channel coefficients hψ[0], . . . , hψ[T ] are com-
puted based on the end-to-end channel model in (9.53) as

hψ[ℓ] = (p ∗ gψ ∗ p) (t)
∣∣∣
t=ℓ/B

= (p ∗ gs ∗ p)(t)
∣∣∣
t=ℓ/B

+
N∑
n=1

(p ∗ gr,n ∗ ϑn;ψn ∗ gt,n ∗ p)(t)
∣∣∣
t=ℓ/B

. (9.55)

Conventional propagation models can be used for the impulse responses gs(t),
gt,n(t), gr,n(t) of the wireless channels, by accounting for the effective areas of
antennas and metaatoms. To compute an expression of (9.55), we must also
characterize the impulse response ϑn;ψn(t) of a metaatom.

9.3.1 Impulse Response of a Metaatom

We will showcase a basic model of the impulse response ϑn;ψn(t) of a metaatom
by analyzing a practical implementation. Figure 9.17 shows a lumped-element
model of metaatom n containing two parallel branches where the first contains
an inductor with inductance L1 and the second contains a series with an
inductor with inductance L2, a resistor with resistance R, and a varactor
with a capacitance C(vn) controlled by the bias voltage vn. This parallel
resonance circuit is a simplified version of the metaatom design in [162]
and was considered for reconfigurable surfaces in [163]. Using circuit theory
methods, the impedance of the metaatom can be shown to be

Zn(vn) =
j2πfL1

(
j2πfL2 + R + 1

j2πfC(vn)

)
j2πfL1 +

(
j2πfL2 + R + 1

j2πfC(vn)

) , (9.56)

for a signal with the frequency f . We can compute the frequency-dependent
reflection coefficient by substituting this expression into (9.13).

Figure 9.18 shows the frequency response of the metaatom for frequen-
cies around an intended carrier frequency of fc = 3 GHz. The parameters
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of the lumped-element model in Figure 9.17 are L1 = 2.5 nH, L2 = 0.7 nH,
Z0 = 377 ohm, and R = 1 ohm. Since the reflection coefficient is complex,
the phase and amplitude responses are presented in (a) and (b), respectively.
There are curves in Figure 9.18(a) for four different capacitance values ob-
tained by controlling the bias voltage of the varactor. The specific values
have been selected to give the phase-shifts 3π/4, π/4,−π/4,−3π/4 at the
carrier frequency. The phase begins close to +π on all the curves because the
reradiated electric field is inverted (upside down). The phase variations are
large when considering the GHz range, which is natural for all filters. The
simplest representation of reflection would be a pure time delay τ , which has
the impulse response δ(t−τ) and frequency response e−j2πfτ with a phase that
varies linearly with the frequency. Since the curves are approximately linear
next to the carrier frequency, this model is suitable if the signal bandwidth
B is limited to a few hundred MHz. Outside this range, the phase response
curves have non-linear shapes that will distort the signal in the time domain;
thus, a metaatom has a limited useful bandwidth range. As long as the system
uses a smaller bandwidth, the reflected signal will be undistorted, and the
propagation channels will determine whether the communication system is
narrowband or wideband. The four curves have roughly the same shape but
are shifted in the frequency domain; it is this shift that the varactor controls.

The amplitude responses are shown in Figure 9.18(b) for the same ca-
pacitance values, but different resistances: R = 1 ohm and R = 0 ohm. The
theoretical maximum amplitude response is 0 dB since the metaatom is a
passive circuit that reflects the signal without amplification.4 All the signal
power is reflected when the resistance is negligible, while there are a few dB
of amplitude losses when the resistance is non-zero. In the latter case, the
amplitude loss is also frequency-dependent. The loss is largest at the frequency
where the phase response is zero due to resonance in the circuit. While build-
ing metaatoms with minimal reflection losses is desirable, we should keep in
mind that a few dB is minor compared to the propagation losses over wireless
channels that are typically at the order of 100 dB.

In summary, an ideal metaatom design has no amplitude losses and a linear
phase within the signal band. Hence, its impulse response can be expressed as
ϑn,p;ψn(t) = δ(t− τψn) in the passband, which results in the downshifted filter

ϑn;ψn(t) = δ(t− τψn)e−j2πfct, (9.57)

where the controllable delay is denoted by τψn . We will soon show that (9.57)
results in a phase-shift of ψn = −2πfcτψn in the system model; thus, the
phase-shift caused by a metaatom is controlled by tuning the reflection delay.

4The passiveness is a key feature since active components (e.g., an amplifier) add noise to
the reflected signal, which is not the case when using reconfigurable surfaces. Retransmitting
devices that contain amplifiers are normally referred to as repeaters or relays and must be
studied using different system models than in this chapter.
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(a) Phase response for different frequencies when R = 1 ohm.

(b) Amplitude response for different frequencies.

Figure 9.18: The frequency response when a metaatom with the impedance in (9.56) reflects a
signal in free space. The curves are obtained for different capacitances of the varactor, which
are selected to give the phase-shifts 3π/4, π/4,−π/4,−3π/4 at 3 GHz. The phase response is
shown in (a) and the the amplitude response is shown in (b).
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9.3.2 OFDM-Based Channel Model with a Reconfigurable Surface

In this section, we will determine the channel coefficients in an OFDM system
aided by a reconfigurable surface. We can use the basic channel model from
(2.124) to express a static channel with Ls propagation paths as

gs,p(t) =
Ls∑
i=1

αs,iδ(t+ η − τs,i) ⇒ gs(t) =
Ls∑
i=1

αs,ie
−j2πfctδ(t+ η − τs,i),

(9.58)
where αs,i ∈ [0, 1] is the attenuation and τs,i ≥ 0 is the delay of path i, for
i = 1, . . . , Ls. We recall that η denotes the receiver’s clock delay, which ensures
that the receiver takes samples when the signal reaches it and not when the
signal leaves the transmitter. This parameter must be selected as described in
Section 7.1 to achieve the causal FIR filter representation in (9.54). We denote
the number of propagation paths between the transmitter and reconfigurable
surface as Lt and between the surface and receiver as Lr. Similarly to (9.58), we
can then model the impulse responses to and from metaatom n as gt,n,p(t) =∑Lt
i=1 αt,n,iδ(t− τt,n,i) and gr,n,p(t) =

∑Lr
j=1 αr,n,jδ(t+ η − τr,n,j). These can

be expressed in the complex baseband as

gt,n(t) =
Lt∑
i=1

αt,n,ie
−j2πfctδ(t− τt,n,i), (9.59)

gr,n(t) =
Lr∑
j=1

αr,n,je
−j2πfctδ(t+ η − τr,n,j), (9.60)

where αt,n,i, αr,n,j ∈ [0, 1] are the attenuations and τt,n,i, τr,n,j ≥ 0 are the
propagation delays. Note that the receiver’s timing delay η is only included
in the channels that lead to the receiver. By substituting the metaatom’s
impulse response in (9.57) and the channel impulse responses in (9.58)–(9.60)
into (9.55), the channel coefficients can be computed as5

hψ[ℓ] =
Ls∑
i=1

αs,ie
−j2πfc(τs,i−η)sinc

(
ℓ+B(η − τs,i)

)
+

N∑
n=1

Lr∑
j=1

Lt∑
i=1

αr,n,jαt,n,ie
−j2πfc(τr,n,j+τt,n,i+τψn−η)sinc

(
ℓ+B(η − τr,n,j − τt,n,i)

)
(9.61)

for ℓ = 0, . . . , T , by utilizing the facts that (p ∗ p)(t) = sinc(Bt) and that the
convolution between sinc(Bt) and e−j2πfctδ(t− τ) is sinc(B(t− τ))e−j2πfcτ .

5The last sinc-term in (9.61) becomes sinc(ℓ + B(η − τr,n,j − τt,n,i − τψn)) but the term
containing τψn can be dropped since the delay caused by the reflection is negligible compared
to the symbol time 1/B, in the sense that τψn/(1/B) = Bτψn ≈ 0. The metaatom nevertheless
creates a noticeable phase-shift since fc ≫ B.
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We notice that (9.61) contains Ls static paths from the transmitter to the
receiver and NLtLr paths involving the reconfigurable surface. Each of the lat-
ter paths has an attenuation αr,n,jαt,n,i that is the product of the attenuation
from the transmitter to the metaatom and from the metaatom to the receiver.
Each such path is also associated with a phase-shift e−j2πfc(τr,n,j+τt,n,i+τψn−η)

containing the accumulated delays. The sinc-function determines how the
signal energy carried by the path is divided between the T + 1 channel taps.

When the reconfigurable surface is in the far-field of the transmitter,
receiver, and other objects in the propagation environment, we can represent
the channel using array response vectors. We assume that the surface is a
UPA with NV rows and NH metaatoms per row. The ith incident path to the
surface can be associated with an angle pair (φi,i, θi,i), measured from the
broadside direction of the surface, and the jth outgoing path can be associated
with an angle pair (φo,j , θo,j). If we gather the N phase-shifts related to such
a path, they match with the array response vector expression in (4.128):

aNH,NV(φi,i, θi,i) =


1

e−j2πfc(τt,2,i−τt,1,i)

...
e−j2πfc(τt,N,i−τt,1,i)

 , (9.62)

aNH,NV(φo,j , θo,j) =


1

e−j2πfc(τr,2,j−τr,1,j)

...
e−j2πfc(τr,N,j−τr,1,j)

 . (9.63)

Furthermore, the attenuation is the same for all the metaatoms: αt,n,i = αt,1,i
and αr,n,j = αr,1,j for all n, where we take the first metaatom as the reference.
For a given path, the delay variations across the surface are negligible in the
sense that Bτr,n,j ≈ Bτr,1,j and Bτt,n,i ≈ Bτt,1,i, for all n. We can utilize
these properties to rewrite the channel coefficients in (9.61) as

hψ[ℓ] = cs[ℓ] +
Lr∑
j=1

Lt∑
i=1

ci,j [ℓ]aT
NH,NV

(φo,j , θo,j)DψaNH,NV(φi,i, θi,i), (9.64)

where Dψ = diag(ejψ1 , . . . , ejψN ) contains the controllable phase-shifts

ψn = −2πfcτψn (9.65)

created by each of the metaatoms, and the channel coefficients that depend
on the tap index are gathered in the sequences

cs[ℓ] =
Ls∑
i=1

αs,ie
−j2πfc(τs,i−η)sinc

(
ℓ+B(η − τs,i)

)
, (9.66)

ci,j [ℓ] = αr,1,jαt,1,ie
−j2πfc(τr,1,j+τt,1,i−η)sinc

(
ℓ+B(η − τr,1,j − τt,1,i)

)
. (9.67)
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The channel coefficient at the ℓth tap has the same structure as the narrowband
channel expression in (9.23), but the fact that there are multiple taps calls
for a different kind of signal transmission. If we apply OFDM with S data
symbols per block and a cyclic prefix of length T , it follows from (7.25) that
we obtain S memoryless subcarriers of the kind

ȳ[ν] = h̄ψ[ν]χ̄[ν] + n̄[ν], for ν = 0, . . . , S − 1, (9.68)

with the reconfigurable frequency-domain channel coefficients

h̄ψ[ν] = c̄s[ν] +
Lr∑
j=1

Lt∑
i=1

c̄i,j [ν]aT
NH,NV

(φo,j , θo,j)DψaNH,NV(φi,i, θi,i) (9.69)

that depend on the DFTs of the time-domain channel coefficients:

c̄s[ν] =
T∑
ℓ=0

cs[ℓ]e−j2πℓν/S , ν = 0, . . . , S − 1, (9.70)

c̄i,j [ν] =
T∑
ℓ=0

ci,j [ℓ]e−j2πℓν/S , ν = 0, . . . , S − 1. (9.71)

The expression in (9.69) might seem complicated but can be expressed as

h̄ψ[ν] =


1
ejψ1

...
ejψN


T

︸ ︷︷ ︸
=ψT

 c̄s[ν]
Lr∑
j=1

Lt∑
i=1

c̄i,j [ν]aNH,NV(φo,j , θo,j)⊙ aNH,NV(φi,i, θi,i)


︸ ︷︷ ︸

=ȟ[ν]

,

(9.72)
where ⊙ denotes the entry-wise product between two vectors. The expression
h̄ψ[ν] = ψTȟ[ν] is the simplest we can obtain for the subcarrier channel
coefficient when using a reconfigurable surface. It is the inner product between
ψ∗ and ȟ[ν], where the former vector depends on the surface configuration,
while the latter fully characterizes the channel on subcarrier ν.

9.3.3 Wideband Capacity Maximization

The capacity of a SISO-OFDM system was presented in Theorem 7.1 with
arbitrary but static channel coefficients. For a given surface configuration ψ,
as defined in (9.72), the capacity becomes

C = B

T + S

S−1∑
ν=0

log2

1 +
qopt
ν

∣∣∣ψTȟ[ν]
∣∣∣2

N0

 bit/s, (9.73)
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where T is the length of the cyclic prefix,

qopt
ν = max

µ− N0∣∣∣ψTȟ[ν]
∣∣∣2 , 0

 , ν = 0, . . . , S − 1, (9.74)

and the variable µ is selected to make
∑S−1
ν=0 q

opt
ν = qS.

The capacity value in (9.73) depends on the configuration ψ. Corollary 9.1
showed which configuration maximizes the SNR in the narrowband case,
which also leads to the maximum capacity in that case. The solution was
to select ψ so that the N + 1 terms in the inner product ψTȟ, where ȟ
was defined in (9.38), get the same phase. The optimization task is more
challenging in the wideband OFDM scenario because there are S different
SNRs among the S subcarriers. The SNR on subcarrier ν is proportional to
|ψTȟ[ν]|2, where the channel vector ȟ[ν] is subcarrier-dependent while the
surface configuration vector ψ is not. This resembles the analog beamforming
situation in Section 7.3.1, where the same beamforming vector had to be
used on all subcarriers. The wideband capacity maximization problem is
computationally challenging but is partially addressed in [164], [165]. In this
section, we will cover a suboptimal but effective way to configure the surface
in these situations.

The optimal surface configuration in the narrowband case maximizes the
channel gain. We can aim to do the same in the wideband case by maximizing
the total channel gain over all subcarriers:

S−1∑
ν=0

∣∣∣h̄ψ[ν]
∣∣∣2 =

S−1∑
ν=0

∣∣∣ψTȟ[ν]
∣∣∣2 = ψH

(
S−1∑
ν=0

ȟ∗[ν]ȟT[ν]
)

︸ ︷︷ ︸
=A

ψ. (9.75)

If we could pick ψ as any unit-norm vector, this quadratic form would be max-
imized by selecting ψ as the dominant eigenvector of A =

∑S−1
ν=0 ȟ∗[ν]ȟT[ν]

(associated with the largest positive eigenvalue). However, we have a stricter
constraint on the configuration vector because the first entry must be 1, and
the remaining ones must have unit magnitude. There is no simple way to
maximize (9.75) under this constraint, but an efficient iterative algorithm
was proposed in [166]. The starting point is the power iteration method [167],
which finds the dominant eigenvector of A by the iterative computation

wi+1 = Awi

∥Awi∥
, i = 0, 1, . . . , (9.76)

which is initialized from arbitrary non-zero vector w0 ∈ CN+1. In each
iteration, the multiplication Awi amplifies the component of wi that is
aligned with the dominant eigenvector relative to all other components. The
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convergence speed of the power iteration method depends on how much larger
the largest eigenvalue is compared to the second largest eigenvalue.

A modified power iteration is described in Algorithm 9.1, which is initialized
from ψ0 = [1, . . . , 1]T, where the surface is not changing the phases. In each
iteration, the computation in (9.76) is made using wi = ψi. The result is
used to determine the next surface configuration ψi+1 by only keeping the
phases of the entries of wi+1 while replacing their magnitudes by 1. Since the
same value is obtained in (9.75) for ψ and e−jϕψ, for any common phase-shift
ϕ, we can shift the phase of all the entries so that the first entry in ψi+1
becomes 1. This shift is necessary since the phase of the static channel cannot
be modified. Note that [w]n denotes the nth entry of w in the algorithm.

Example 9.7. Suppose there is only one path to and from the reconfigurable
surface (i.e., Lt = Lr = 1). Which phase-shift configuration maximizes (9.75)?

Under these conditions, the channel vector in (9.72) simplifies to

ȟ[ν] =
[
c̄s[ν]
c̄[ν]a

]
, (9.77)

where a = aNH,NV(φo, θo)⊙ aNH,NV(φi, θi) and we dropped the path indices.
Hence, the matrix A in (9.75) can be expressed as

A =
S−1∑
ν=0

ȟ∗[ν]ȟT[ν]

=
S−1∑
ν=0

[
|c̄s[ν]|2 c̄∗

s [ν]c̄[ν]aT

c̄s[ν]c̄∗[ν]a∗ |c̄[ν]|2a∗aT

]
=
[
bss bsaT

b∗
s a∗ ba∗aT

]
, (9.78)

where bss =
∑S−1
ν=0 |c̄s[ν]|2 ≥ 0, b =

∑S−1
ν=0 |c̄[ν]|2 ≥ 0, and bs =

∑S−1
ν=0 c̄

∗
s [ν]c̄[ν].

If the phase-shift configuration is expressed as ψ = [1,wT]T, then

ψHAψ = bss + bsaTw + b∗
s wHa∗ + bwHa∗aTw

= bss + 2ℜ{bsaTw}+ b|aTw|2. (9.79)

Among all vectors that satisfy ∥w∥2 = N , the third term is maximized when
w = e−jϕa∗ for any ϕ, while the second term is maximized similarly but only
for ϕ = arg(bs). The resulting solution w = e−j arg(bs)a∗ is achievable with
a reconfigurable surface since a is a vector with phase-shifts obtained from
two array response vectors. Hence, the configuration that maximizes the total
channel gain is parallel to the complex conjugate of the element-wise product
a of the array response vectors to/from the surface and has an additional
common phase-shift arg(

∑S−1
ν=0 c̄

∗
s [ν]c̄[ν]) that aligns the static and controllable

paths to the extent possible in an OFDM system.
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Algorithm 9.1 Constrained power iteration to maximize (9.75).
1: Initialization: Select ψ0 = [1, . . . , 1]T and number of iterations L
2: for i = 0, . . . , L− 1 do
3: wi+1 ← Aψi

∥Aψi∥
4: ϕ← arg ([wi+1]1)
5: ψi+1 =

[
1, ej(arg([wi+1]2)−ϕ), . . . , ej(arg([wi+1]N+1)−ϕ)

]T

6: end for
7: Output: ψL

To evaluate the effectiveness of the power iteration method in general
propagation scenarios, we can compare the capacity that it achieves with an
upper bound. Suppose we could select a different value of ψ on each subcarrier.
We could then simultaneously maximize the channel gains of all subcarriers by
following the approach in (9.30)–(9.31) in the narrowband case. The resulting
upper bound on the capacity can be expressed as

C ≤ B

T + S

S−1∑
ν=0

log2

1 +
qν
∥∥ȟ[ν]

∥∥2
1

N0

 , (9.80)

where ∥ · ∥1 denotes the 1-norm and qν = max(µ − N0/∥ȟ[ν]∥2
1, 0), for ν =

0, . . . , S− 1, with µ selected to make
∑S−1
ν=0 qν = qS. The upper bound is only

achieved with equality in the unlikely event that the same surface configuration
happens to maximize the channel gains on all subcarriers simultaneously.

Figure 9.19 shows how the capacity varies with the bandwidth in a scenario
of the kind illustrated in Figure 9.10. Specifically, a reconfigurable surface is
deployed along the yz-plane with its reflective side facing the positive x-axis
and its center at (0, 0, 0) m. The base station and the user are located at
(40,−200, 0) m and (20, 0, 0) m, respectively. We assume LOS channels with
multiple reflected paths to and from the surface, while the static channel is
of NLOS nature. The surface has the size 0.5 × 0.5 m, which for a carrier
frequency of 3 GHz corresponds to N = 400 metaatoms that each has the
dimension λ/4×λ/4. The channels are modeled similarly to the 3GPP channel
model in [168], and the capacity is averaged over random realizations of the
multipath components’ characteristics. The capacity in (9.73) is shown in
Figure 9.19 as a function of the bandwidth B, assuming that the transmit
power grows proportionally to the bandwidth so that the signal power spectral
density is 1 W per MHz. The subcarrier spacing is 150 kHz, so the number of
subcarriers increases with B as well as the number of channel taps.

The dashed-dotted curve in Figure 9.19 uses the power iteration method,
and it provides 96–99% of the upper bound from (9.80). This method will find a
configuration that takes the signal power from the strongest incident direction
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Figure 9.19: The capacity achieved over a wideband OFDM channel grows proportionally to
the bandwidth and can be improved using a reconfigurable surface. The capacity achieved when
configuring the surface using the power iteration in Algorithm 9.1 is compared with the upper
bound in (9.80), the use of a random configuration, and the removal of the surface.

and reflects it in the direction that maximizes the received signal power. Since
there are LOS channels to and from the surface, this is approximately equal
to taking the signal from the LOS path and beamform it along the LOS
path to the receiver. The performance gap grows with B due to the increased
frequency-selectivity, but since the LOS paths to/from the surface are stronger
than the scattered paths, it is possible to find a single surface configuration
that works well over the entire band. This is reminiscent of how the analog
beamforming architecture can provide rates close to the capacity in LOS-
dominant scenarios. A part of the gap between the power iteration method
and the upper bound can be closed using a more advanced configuration
algorithm (examples are given in [164], [165]), but at the expense of increased
computational complexity.

The importance of properly configuring the surface is also illustrated in
Figure 9.19. The dashed curve considers the average capacity over random
phase-shift configurations with independent uniformly distributed phases from
[−π, π), while the dotted curve considers the absence of a surface (i.e., it is
replaced by an absorbing material). There is barely any difference between
these curves, but there is a huge performance gap compared to the power
iteration method. Hence, deploying a reflecting surface in this setup is only
meaningful if it is configured to beamform the signal toward the receiver. The
capacity is increased by 2–3 times when doing that, which results in large bit
rate differences when many MHz of bandwidth are used.
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9.4 MIMO Applications of Reconfigurable Surfaces

Reconfigurable surfaces can also be used to enhance MIMO channels, but
there are limitations to what can be achieved since all signals reflected by
a particular metaatom are phase-shifted identically. To shed light on the
fundamentals using simple notation, we return to the narrowband case in
this section and consider three different scenarios: point-to-point MIMO and
multi-user MIMO communications, as well as multi-antenna target detection.

9.4.1 Enhanced Point-to-Point MIMO Communication

In the point-to-point SISO case considered previously in this chapter, the
end-to-end channel coefficient was expressed in (9.23) as h = hs + hT

r Dψht.
In a point-to-point MIMO scenario with K transmit antennas and M receive
antennas, the channel matrix H ∈ CM×K can be expressed similarly as

H = Hs + HrDψHt, (9.81)

where Hs ∈ CM×K is the static channel, Ht ∈ CN×K is the channel from the
transmitter to the surface, and Hr ∈ CM×N is the channel from the surface to
the receiver. These channel matrices can be modeled just as any other MIMO
channels because the propagation to/from the surface is the same as if the
array of metaatoms were an array of antennas.

The reflection matrix does not change in the MIMO case but is defined
as in (9.17): Dψ = diag

(
ejψ1 , . . . , ejψN

)
. This matrix can adjust how the

matrices Hr and Ht are multiplied in (9.81), but the flexibility is limited since
it contains N controllable phase parameters while there are respectively MN
and KN coefficients in the channel matrices. These numbers were equal in the
SISO case with M = K = 1, while there are many more channel coefficients
than controllable parameters in the MIMO case.

When matrices are multiplied, the rank of the resulting matrix is always
smaller or equal to the minimum rank of the individual matrices. The reflection
matrix always has full rank. However, the rank of HrDψHt cannot surpass
the minimum rank of the channel matrices Hr and Ht. This implies that
the reconfigurable surface cannot improve the channel rank in any dramatic
fashion. However, it can be configured to improve specific singular values,
match the strongest channel dimensions from the two channel matrices, and
ensure that the static and configurable terms in (9.81) fit well together. Since
many possibilities exist, we should identify the surface configuration that
maximizes the MIMO channel capacity. In this section, we will first provide
some geometrical insights into what can be achieved and then derive a general
algorithm that iteratively refines the configuration to increase capacity.
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Example 9.8. Suppose the surface is deployed to have far-field LOS channels
to both the transmitter and receiver. How should the surface be configured
to maximize the total end-to-end channel gain ∥H∥2

F?
The matrices Hr and Ht have rank one under these conditions, as explained

in Section 4.4.1. They could be expressed as outer products of array response
vectors, but for notational convenience, we will express them as

Hr = arbT
r , Ht = atbT

t , (9.82)

where ar ∈ CM , br = [br,1, . . . , br,N ]T ∈ CN , at = [at,1, . . . , at,N ]T ∈ CN , and
bt ∈ CK are vectors. We can then simplify (9.81) as

H = Hs + ar bT
r Dψat︸ ︷︷ ︸

=α

bT
t , (9.83)

where α = bT
r Dψat ∈ C is a scalar. The second term adds the rank-one matrix

arbT
t to the static channel with a scaling that is determined by the reflection

matrix. The total end-to-end channel gain can be rewritten using (5.88) as

∥H∥2
F = tr (HHH)

= tr (HH
s Hs) + |α|2tr (b∗

t aH
r arbT

t ) + tr (αHH
s arbT

t ) + tr (α∗b∗
t aH

r Hs)
= ∥Hs∥2

F + |α|2∥ar∥2∥bt∥2 + 2ℜ (αbT
t HH

s ar) , (9.84)

where the last equality follows from (2.52) that states how one can shift the
order of matrices in the trace function. The final expression is maximized
when |α| takes its largest possible value while its phase makes the last term
positive. This happens when ψn = − arg(bT

t HH
s ar) − arg(br,nat,n) + 2πkn,

where kn is the integer that gives ψn ∈ [−π, π), for n = 1, . . . , N . When
the static channel is weak, maximizing ∥H∥2

F is approximately equivalent
to maximizing the channel capacity because there will only be one strong
singular value, which is amplified using the surface.

As noted earlier in this chapter, deploying the reconfigurable surface to
have LOS channels to the transmitter and receiver is desirable. However,
in contrast to the example, the channel matrices will not have rank one in
practice due to multipath propagation. This makes it harder to compute the
optimal phase-shift configuration directly. The design principle remains the
same, as can be showcased using the beamspace representation. Suppose the
transmitter and receiver are equipped with half-wavelength-spaced ULAs. As
explained in Section 5.6.2, we can then transform the channel matrix to the
beamspace by multiplying by DFT matrices from the left and the right:

H̆ = FH
MHF∗

K = FH
MHsF∗

K + FH
MHrDψHtF∗

K . (9.85)

The first term represents all the static multipath clusters, while the second
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Figure 9.20: A transmitter with a half-wavelength-spaced ULA with K = 5 antennas com-
municates with a receiver having a half-wavelength-spaced ULA with M = 10 antennas. The
communication is aided by a reconfigurable surface that adds extra paths to the MIMO channel.
In the beamspace representation, these extra paths are concentrated around a few angular
directions since the surface mostly interacts with multipath components in its vicinity. This is a
continuation of Figure 5.33 where no reconfigurable surfaces existed. Note that the transmitter
and receiver sizes are exaggerated compared to the propagation distances.

term represents the propagation paths affected by the reconfigurable surface.
Figure 9.20 exemplifies how these matrices depend on the angular geometry
and is a continuation of Figure 5.33, which considered the same setup without
a reconfigurable surface. Each of the six static multipath clusters contributes
to the entry of FH

MHsF∗
K with the matching color. A white entry means

its value is nearly zero because no propagation path connects that pair of
transmit/receive directions. Since we consider deployment with LOS to the
transmitter and receiver, the reconfigurable surface mainly contributes to one
entry, determined by its physical location. However, it could slightly affect a
few neighboring entries using the multipath clusters around it, as illustrated
by the brightness of the coloring (brighter means smaller).

The rank of H is the same as the rank of H̆. The static channel matrix de-
scribes the contributions from all multipath clusters that create paths between
the transmitter and the receiver. Clusters seen from very different angles barely
interact and contribute to different singular values in H̆. The reconfigurable
surface can increase the channel rank by creating new non-zero entries. Since
the surface is deployed at a specific location, it will primarily interact with the
propagation environment in its vicinity. Hence, all the new propagation paths
it creates have similar angles from the transmitter’s and receiver’s perspectives.
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This implies that we should expect the surface to mainly contribute to one or
a few singular values in H̆. The reconfigurable surface can raise the channel
capacity by selecting a good phase-shift configuration, but the increase will
resemble the SISO case since only one channel dimension is improved. Multiple
reconfigurable surfaces deployed at physically diverse locations are generally
required to enhance multiple singular values substantially. An analogy can
be made with the analog/hybrid beamforming considered in Sections 7.3.1
and 7.3.2: a single surface is like an analog beamforming architecture that can
only receive/transmit one signal, while multiple surfaces are like the hybrid
beamforming architecture that can jointly receive/transmit as many signals
as there are surfaces. While this is generally true, there are specific scenarios
where the surface contributes to many singular values [169]. This happens
when the arrays and surface are very large compared to the wavelength so
that spherical wavefronts can be utilized to achieve high-rank channels via
the surface. The enabling factor is the same as in Section 4.4.3, where we
showed how to achieve full-rank LOS channels by making the antenna spac-
ing sufficiently large compared to the propagation distance. Similarly, one
can make the reconfigurable surface so large compared to the propagation
distances that it acts as multiple surfaces.

For a given MIMO channel matrix, the capacity is achieved by transmitting
along the right singular vectors and allocating power using water-filling (see
Theorem 3.1). If we modify the channel matrix by refining the reflection
matrix Dψ, the singular vectors and values will change, and so will the
capacity-achieving precoding. We will describe an algorithm from [170] that
progressively improves the MIMO capacity by iterating between updating the
precoding/water-filling and reflection matrix. We recall from (3.100) that the
capacity for a given channel matrix H can be expressed as

C = log2

(
det

(
IM + 1

N0
HVQoptVHHH

))
. (9.86)

We introduce the notation Hr = [hr,1, . . . ,hr,N ] and Ht = [h⃗t,1, . . . , h⃗t,N ]T,
where h⃗T

t,n is the nth row and the arrow notation points out that rows are
horizontal. We can then rewrite the channel matrix in (9.81) as

H = Hs + HrDψHt = Hs +
N∑
i=1

hr,ie
jψih⃗T

t,i = Hn + ejψnhr,nh⃗T
t,n, (9.87)

where Hn = Hs +
∑N
i=1,i̸=n hr,ie

jψih⃗T
t,i contains all the terms except the one

involving ψn. We want to reconfigure this phase-shift to increase the capacity
when all other parameters are fixed. By substituting (9.87) into (9.86), we
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can express the capacity as

log2

(
det

(
IM + 1

N0

(
Hn + ejψnhr,nh⃗T

t,n

)
VQoptVH

(
Hn + ejψnhr,nh⃗T

t,n

)H
))

= log2

(
det

(
An + ejψnhr,nbH

n + e−jψnbnhH
r,n

))
,

= log2 (det (An)) + log2

(
det

(
IM + ejψnA−1

n hr,nbH
n + e−jψnA−1

n bnhH
r,n

))
,

(9.88)

where the terms that are independent of ψn are included in

An = IM + 1
N0

HnVQoptVHHH
n + 1

N0
hr,nh⃗T

t,nVQoptVHh⃗∗
t,nhH

r,n, (9.89)

bn = 1
N0

HnVQoptVHh⃗∗
t,n. (9.90)

Only the determinant in the second term of (9.88) depends on the phase-shift.
This determinant can be computed as

det
(

IM +
[
A−1
n hr,n A−1

n bn
] [ ejψnbH

n

e−jψnhH
r,n

])
= det

(
I2 +

[
ejψnbH

n

e−jψnhH
r,n

] [
A−1
n hr,n A−1

n bn
])

= (1 + ejψnbH
nA−1

n hr,n)(1 + e−jψnhH
r,nA−1

n bn)− bH
nA−1

n bnhH
r,nA−1

n hr,n

= ejψnbH
nA−1

n hr,n + e−jψnhH
r,nA−1

n bn + constants, (9.91)

where the first equality follows from Sylvester’s determinant theorem in (2.53),
and we then compute the determinant for the resulting 2 × 2 matrix. The
final expression in (9.91) is maximized when the first two terms are positive,
which is achieved by

ψn = − arg(bH
nA−1

n hr,n). (9.92)

We can utilize this result to obtain the iterative procedure described in
Algorithm 9.2. The algorithm begins by computing the capacity-achieving
signal covariance matrix VQoptVH for an initial set of phase-shifts. It then
refines the N phase-shifts sequentially using (9.92). When this is done, the
capacity-achieving signal covariance matrix is recomputed for the new channel
matrix obtained with the new reflection matrix, and the procedure is repeated
L times. Each step in the algorithm either improves the achievable rate or
keeps it fixed because we can always choose not to modify the phase. The
rate will eventually converge when no further changes are beneficial. However,
a consequence of sequential optimization is that the algorithm might not
converge to the best possible configuration but only a locally optimal solution
where one cannot further increase the capacity unless multiple phases are
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Algorithm 9.2 Reconfigurable surface configuration for point-to-point
MIMO capacity maximization.

1: Initialization: Set ψ1, . . . , ψN randomly and select the number of
iterations L

2: for i = 1, . . . , L do
3: Compute the capacity-achieving covariance matrix VQoptVH for
. the channel matrix in (9.81) with Dψ = diag(ejψ1 , . . . , ejψN )

4: for n = 1, . . . , N do
5: Compute An in (9.89) and bn in (9.90) for fixed ψ1, . . . , ψN
6: ψn ← − arg(bH

nA−1
n hr,n)

7: end for
8: end for
9: Output: ψ1, . . . , ψN

updated simultaneously.6 The channel matrices must be estimated before
running Algorithm 9.2. No extra wireless signaling is required while running
the algorithm, which can be executed at the receiver. Hence, the procedure
shown in Figure 9.14 can still be followed: the transmitter sends pilots while
the surface switches between predefined configurations, and then the receiver
computes the preferred configuration and sends it to the surface.

Figure 9.21 shows how the capacity is improved with the iteration index
from Algorithm 9.2 in a point-to-point MIMO scenario with M = K ∈
{1, 2, 4, 8} antennas and N = 100 metaatoms. The SNR of the static path is
0 dB and Hs has i.i.d. Rayleigh fading entries. The channel matrices Hr and
Ht via the surface are subject to Rician fading with the κ-factor κ = 10 and
the NLOS part having an i.i.d. Rayleigh fading distribution (see Example 5.18).
The cascaded path via a single metaatom has the SNR −10 dB. The results
are averaged over many channel realizations.

The iteration index 0 in Figure 9.21 represents the initial state when the
phase-shifts are uniformly distributed between 0 and 2π, thereby approximat-
ing diffuse scattering. The first iteration of Algorithm 9.2 leads to a substantial
capacity improvement, while only minor improvements occur in the subse-
quent iterations. The vertical gaps between the curves grow when comparing
the first and last points on the curves. This shows that a system with more
antennas benefits slightly more from having a well-configured surface, but
the difference is small because the surface mainly contributes to one singular
value. We use the optimal configuration from Corollary 9.1 when considering
the SISO case with M = K = 1, which is why that curve does not vary with

6The initial phase-shifts determine which configuration that Algorithm 9.2 converges to.
A simple way to explore if better solutions exist is to consider multiple random phase-shift
initializations and compare the capacity values they converge to.
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Figure 9.21: The point-to-point MIMO capacity as a function of the iteration index when
running Algorithm 9.2 to iteratively select the phase-shifts of the reconfigurable surface to
increase the capacity. The index 0 represents the initial random configuration. The optimal
configuration is directly used in the SISO case (M = K = 1) since it is known in closed form.

the iteration index. Interestingly, the optimal SISO configuration leads to a
higher capacity than the initial capacity in the 2× 2 and 4× 4 MIMO setups,
reiterating the importance of correctly configuring the surface. In summary,
the deployment of a reconfigurable surface can greatly improve the capacity
of a point-to-point MIMO system.

9.4.2 Enhanced Multi-User MIMO Communication

A reconfigurable surface can also improve the communication performance
over multi-user MIMO channels. As explained in Chapter 6, the precoding
and combining differ substantially from the point-to-point case because users
are not collaborating in the signal processing and measure their capacity
separately. Nevertheless, the sum capacity expression in multi-user MIMO
resembles the capacity expression in point-to-point MIMO, which implies that
we can use similar algorithms to optimize the reconfigurable surface.

The uplink sum capacity in a multi-user MIMO system with K single-
antenna users and M antennas at the base station is given in (6.49) as

log2

(
det

(
IM + q

N0
HHH

))
bit/symbol, (9.93)

where H = [h1, . . . ,hK ] ∈ CM×K is the channel matrix and q = P/B is the
signal energy per symbol. When the uplink is aided by a reconfigurable surface
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with N metaatoms, the channel hk ∈ CM from user k can be expressed as

hk = hs,k + HrDψht,k, (9.94)

where hs,k ∈ CM is the static channel, ht,k ∈ CN is the channel from the
user to the surface, and Hr ∈ CM×N is the channel from the surface to the
receiver. This is the SIMO counterpart to the channel model in (9.81). The
term HrDψht,k in (9.94) can be viewed as the projection of the user-specific
channel vector ht,k onto the span of the matrix HrDψ, which is the same for
all users but controllable using the reflection matrix Dψ = diag(ejψ1 , . . . , ejψN ).
The combined channel matrix of all users becomes

H = [h1, . . . ,hK ] = [hs,1, . . . ,hs,K ]︸ ︷︷ ︸
=Hs

+HrDψ [ht,1, . . . ,ht,K ]︸ ︷︷ ︸
=Ht

, (9.95)

which has the same form H = Hs + HrDψHt as in the point-to-point MIMO
case. In particular, the reflection matrix enters into the equation identically.

Example 9.9. Suppose the surface is deployed to have a far-field LOS channel
to the base station. How can it modify the user channels in this case?

The matrix Hr has rank one under these conditions, as explained in
Section 4.4.1, and can be expressed as Hr = arbT

r for some vectors ar ∈ CM
and br ∈ CN . The channel of user k in (9.94) then becomes

hk = hs,k + ar bT
r Dψht,k︸ ︷︷ ︸

=αk

. (9.96)

This implies that the surface adds a component αkar to the static channel
vector, where only the complex scaling factor αk can be controlled and depends
on the user index. In case the static channels are blocked (i.e., hs,k = 0 for
all k), the K channel vectors are parallel. We cannot suppress interference
under such circumstances; thus, FDMA achieves the same sum capacity as
multi-user MIMO in this case. In conclusion, the reconfigurable surface cannot
enable multi-user MIMO communications on its own, but it can improve
performance by making the channels hk more diverse than the original static
channels by adding the components αkar.

Since there are K user capacities to consider in multi-user MIMO systems,
different phase-shift configurations are preferred for different users. In other
words, the reconfigurable surface bends the shape of the capacity region, and
there is typically no configuration that results in a region that is larger than
all other achievable regions in all user dimensions. In this section, we will
concentrate on maximizing the sum capacity in (9.93). Similarly to the last
section, we will develop an iterative algorithm that updates one of the N
phase-shifts at a time to increase the capacity. When refining the phase ψn of
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metaatom n, it is convenient to express the channel matrix H = Hs +HrDψHt
in (9.95) as

H = Hs +
N∑
i=1

hr,ie
jψih⃗T

t,i = Hs +
N∑

i=1,i̸=n
hr,ie

jψih⃗T
t,i︸ ︷︷ ︸

=Hn

+ejψnhr,nh⃗T
t,n, (9.97)

using the notation Hr = [hr,1, . . . ,hr,N ] and Ht = [h⃗t,1, . . . , h⃗t,N ]T. Note
that h⃗T

t,n is the nth row of Ht and differs from the user channel vector ht,k
appearing as the kth column of the matrix. By substituting (9.97) into (9.93),
we can express the sum capacity as

log2

(
det

(
IM + q

N0

(
Hn + ejψnhr,nh⃗T

t,n

)(
Hn + ejψnhr,nh⃗T

t,n

)H
))

= log2

(
det

(
An + ejψnhr,nbH

n + e−jψnbnhH
r,n

))
,

= log2 (det (An)) + log2

(
det

(
IM + ejψnA−1

n hr,nbH
n + e−jψnA−1

n bnhH
r,n

))
,

(9.98)

where the terms that are independent of ψn are included in

bn = q

N0
Hnh⃗∗

t,n, An = IM + q

N0
HnHH

n + q

N0
hr,nh⃗T

t,nh⃗∗
t,nhH

r,n. (9.99)

It remains to select the phase-shift to maximize the second determinant in
(9.98), and this problem has the same form as in (9.91) of the point-to-point
MIMO case. Hence, the optimal phase is obtained from (9.92) as

ψn = − arg(bH
nA−1

n hr,n), (9.100)

but using the expressions for bn and An defined above. By sequentially up-
dating the N phases using (9.100), we obtain Algorithm 9.3. This algorithm
resembles Algorithm 9.2 for the point-to-point MIMO case, but a key differ-
ence is that the precoding is not updated in multi-user MIMO because the
sum capacity is always achieved when the users transmit their signals using
maximum power. Each step in the algorithm either improves the sum capacity
or keeps it fixed because we can always choose not to modify the phase; thus,
the sum capacity gradually increases and converges to a final value. We let
L denote the predefined number of iterations to consider, but the algorithm
can also be terminated earlier when the sum capacity has not been improved
much from one iteration to the next. Although the sum capacity improves
monotonically, there is no guarantee that the algorithm will converge to the
best conceivable configuration because the variables are optimized sequentially
rather than jointly.

Figure 9.22 shows how the sum capacity of an uplink multi-user MIMO
system increases with the number of metaatoms. There are K = 4 users,
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Algorithm 9.3 Reconfigurable surface configuration for uplink multi-user
MIMO sum capacity maximization.

1: Initialization: Set ψ1, . . . , ψN randomly and select the number of
iterations L

2: for i = 1, . . . , L do
3: for n = 1, . . . , N do
4: Compute An and bn in (9.99) using current ψ1, . . . , ψN
5: ψn ← − arg(bH

nA−1
n hr,n)

6: end for
7: end for
8: Output: ψ1, . . . , ψN

M = 10 receive antennas, and the static channel is modeled as in Figure 6.16.
The channel matrix Hr between the base station and reconfigurable surface is
modeled as Rician fading with the κ-factor κ = 10 and the channels between
the users and surface are subject to i.i.d. Rayleigh fading. SNR of the static
path is 0 dB, while the cascaded path via a single metaatom has the SNR
−20 dB. The results are averaged over many channel realizations. We notice
that the sum capacity grows rapidly with the number of metaatoms when
Algorithm 9.3 is used; hence, deploying the reconfigurable surface in this
particular setup makes a great difference. L = 1 iteration of the algorithm
is sufficient to outperform the initial configuration with random phase-shifts.
Further capacity improvements are achieved by running L = 5 iterations of
the algorithm, especially when there are many metaatoms to configure.

We have focused on the uplink thus far, but the results are also useful for
the downlink because the uplink-downlink duality implies that we can achieve
the same user rates in both directions. Hence, if the surface is configured to
provide a high uplink sum capacity, we can achieve the same downlink sum rate
using the same power without changing the surface configuration. However,
this will generally not be the downlink sum capacity because we might have a
different total downlink transmit power and can allocate it arbitrarily between
the users. The downlink sum capacity was stated in (6.122) as the problem
of maximizing the sum rate in the virtual uplink with respect to the virtual
uplink powers, and it can be solved efficiently using convex optimization tools.
It is straightforward to devise an iterative algorithm that switches between
solving (6.122) for given user channels and enhancing the channels using
Algorithm 9.3 for given virtual uplink powers.

The uplink sum capacity requires SIC, while the downlink sum capacity is
achieved using DPC. It is easier to implement uplink and downlink multi-user
MIMO systems with linear signal processing, but unfortunately, it comes at
the price of more complex parameter optimization problems. For example, the
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Figure 9.22: The sum capacity of an uplink multi-user MIMO system that is aided by a
reconfigurable surface with a varying number of metaatoms. The phase-shift configuration is
either selected randomly or by running Algorithm 9.3 with L = 1 or L = 5 iterations.

uplink sum capacity is achieved when all users transmit with their maximum
power, while the maximum uplink sum rate with linear combining requires
power control optimization (as exemplified in Section 6.3.6). Similarly, the
parameters required to achieve the downlink sum capacity are obtained by
solving the convex optimization problem in (6.122), while the linear precoding
that maximizes the downlink sum rate can only be computed using high-
complexity global optimization algorithms [84], [85]. The structure of the rate
expressions causes increased complexity and makes phase-shift optimization
more complicated when a reconfigurable surface supports a multi-user MIMO
system that employs linear processing. We refer to [155], [171], [172] for further
details and solutions to these problems. The bottom line is that reconfigurable
surfaces can improve the user rates in multi-user MIMO systems, and many
algorithms for phase-shift optimization can be developed for various utility
functions and kinds of signal processing for data transmission and reception.

9.4.3 Enhanced Target Detection

A reconfigurable surface can also be used to improve the wireless channel
properties for sensing applications [173], [174], particularly to increase the
SNR and reliability. To exemplify this, we will consider a mono-static target
detection scenario, where a multi-antenna radar system must determine
whether a target exists at a specific location or not. A reconfigurable surface
is deployed in the same area, and there are free-space LOS channels between
the different locations, as illustrated in Figure 9.23. The radar transceiver
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Reconfigurable surface

Radar transceiver:
K transmit antennas
K receive antennasTarget

Figure 9.23: A radar transceiver with K transmit antennas and K receive antennas wants to
detect the presence of a target with assistance from a reconfigurable surface with N metaatoms.
There are two paths from the transmitter to the target and two paths from the target to the
receiver, resulting in four propagation paths. Solid lines represent paths leading to the target
and dashed lines are paths leading back to the receiver.

has K transmit antennas and K receive antennas, which are symmetrically
arranged to achieve identical array response vectors. The surface consists of
N metaatoms.

A predefined radar signal px is transmitted using the precoding vector
p ∈ CK , and it reaches the target location in two ways: through the direct LOS
path or via the reflection by the surface. If the target exists, it will reflect the
signals, and these can reach the receiver either through the direct LOS path
or via reflection by the surface. This gives rise to a total of four propagation
paths from the transmitter to the receiver. We let hs ∈ CK denote the static
LOS channel between the transmitter and target location. Furthermore, the
cascaded channel from the radar to the target via the reconfigurable surface
is represented by the vector

hc = atbT
t Dψhr, (9.101)

where atbT
t ∈ CK×N is the rank-one LOS channel matrix between the radar

transceiver and surface, Dψ ∈ CN×N is the reflection matrix, and hr ∈ CN
is the channel between the surface and target. For notational simplicity, we
will not include any channel gains in hs, at, bt, and hr but model them
separately. Hence, these are four array response vectors that describe the LOS
propagation between the different locations, which implies that the squared
norm of each vector equals the number of entries it has.

If the target exists, the effective end-to-end channel to the receiver is

h =
(
c1hshT

s︸ ︷︷ ︸
LOS path

+ c2hchT
c︸ ︷︷ ︸

Via surface

+ c3hshT
c + c3hchT

s︸ ︷︷ ︸
Mix of LOS and surface paths

)
p, (9.102)

where we included the precoding vector and c1 ∼ NC(0, β1), c2 ∼ NC(0, β2),
and c3 ∼ NC(0, β3) are three independent RCS realizations for the target,
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which include the channel gains as well. Multiple realizations are required
because we consider signals reaching and leaving the target in different direc-
tions. However, the coefficient c3 appears twice due to channel reciprocity,
which implies that the RCS is the same when the signal propagates from the
transmitter to the target and back via the surface, and when the signal travels
in the opposite direction. There are four terms in (9.102) representing the four
propagation paths from the transmitter to the receiver. The first term is the
direct reflection by the target that would also happen in the absence of the
surface. The second term is the path that reaches the target via the surface
and then goes back to the receiver in the same way. The third term is the
path that reaches the target via the surface and then is reflected through the
LOS path, while the fourth term takes the opposite direction. The variances
β1, β2, β3 are generally different because they include the multiplication of the
channel gains between the different locations that the radar signal passes on
its way from the transmitter to the receiver. We can expect that β1 > β3 > β2
since the LOS path is typically stronger than the path via a single metaatom;
however, with an appropriate surface configuration, the combined effect of
the N metaatoms can make a large difference for target detection.

We assume that the signal
√
P is transmitted, denote the received signal

by y ∈ CK , and formulate the binary hypothesis test

H0 : y = n, (9.103)
H1 : y =

√
Ph + n, (9.104)

where n ∼ NC(0, σ2IK) is the additive noise vector.
If the hypothesis H1 is true, the channel covariance matrix is

R = E {hhH} = β1|hT
s p|2hshH

s + β2|hT
c p|2hchH

c

+ β3
(
(hT

c p)hs + (hT
s p)hc

)(
(hT

c p)hs + (hT
s p)hc

)H
. (9.105)

This matrix consists of three terms, where the first term only utilizes the LOS
path while the remaining two terms are created thanks to the reconfigurable
surface. Each of the terms has rank one because they are outer products of
vectors, but all terms are spanned by hs and hc so R has rank two (if K ≥ 2).

The precoding and surface configuration can be selected to optimize this
covariance matrix. The reflection matrix Dψ only affects the norm of the
cascaded channel vector hc in (9.101) since bT

t Dψhr is a scalar. We showed
in Section 9.2 that the magnitude of this term is maximized by (9.27), where
the phase-shifts ensure that we sum up N phase-aligned terms. Since hr and
bt are array response vectors where each entry has unit magnitude, it follows
that bT

t Dψhr = N when using the optimal configuration.
The precoding vector should be a linear combination of hs and hc = Nat

since these are the two transmission directions that lead to the target. To
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maximize the average SNR, we can select the precoding vector that maximizes

E
{
∥h∥2} = tr(R)

= β1|hT
s p|2∥hs∥2 + β2|hT

c p|2∥hc∥2 + β3∥(hT
c p)hs+(hT

s p)hc∥2

= pH
(

(β1∥hs∥2 + β3∥hc∥2)h∗
s hT

s + (β2∥hc∥2 + β3∥hs∥2)h∗
chT

c

+ β3(hH
s hc)h∗

chT
s + β3(hH

c hs)h∗
s hT

c

)
p. (9.106)

This is a quadratic form with respect to the precoding vector and with a
Hermitian matrix in the middle. Hence, it is maximized when p is selected as
the unit-length eigenvector associated with the largest eigenvalue.

With the optimized precoding vector and surface configuration described
above, the covariance matrix R will take a particular value that we will denote
as R̄. Based on this matrix, we can derive the Neyman-Pearson detector that
gives a desired false alarm probability PFA = α following the approach from
Section 8.3.2. In particular, y ∼ NC(0, σ2IK) under the hypothesis H0 and
y ∼ NC(0, P R̄ + σ2IK) under the hypothesis H1. Lemma 2.14 says that we
should decide on the hypothesis H1 if

γ ≤
fy|H1 (y|H1)
fy|H0 (y|H0) =

1
πK det(P R̄+σ2IK)e

−yH(P R̄+σ2IK)−1y

1
πK det(σ2IK)e

−yH(σ2IK)−1y
. (9.107)

We can rewrite this condition by using the fact that ln(γ) is a monotonically
increasing function for γ ≥ 0:

ln(γ)− ln(b) ≤ σ−2yHy− yH
(
P R̄ + σ2IK

)−1
y, (9.108)

where the constant b = det(σ2IK)/ det(P R̄ + σ2IK) is independent of the
received signal y. Hence, the Neyman-Pearson detector decides on H1 if

∥y∥2 − yH

(
P

σ2 R̄ + IK
)−1

y ≥ σ2 (ln(γ)− ln(b))︸ ︷︷ ︸
=γ′

, (9.109)

where γ′ is the revised threshold variable that must be selected so that

PFA = α =
∫

∥y∥2−yH( P
σ2 R̄+IK)−1y≥γ′

fy|H0 (y|H0) ∂y. (9.110)

The sufficient statistics for target detection is ∥y∥2−yH
(
P
σ2 R̄ + IK

)−1
y and

is affected by the precoding and surface configuration through R̄.
Figure 9.24 shows the detection probability, PD, versus the reference

SNR obtained if the radar transceiver has a single antenna and there is no
reconfigurable surface. The Neyman-Pearson detector is used with the false
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Figure 9.24: The detection probability with respect to the reference SNR in a setup with or
without a reconfigurable surface. The surface either has a random phase-shift configuration or is
optimized to maximize the received power.

alarm probability PFA = α = 10−3. The radar transceiver is equipped with a
half-wavelength-spaced ULA with K = 10 transmit and receive antennas. The
target location is in the direction φ = 0 seen from the transceiver, while a
reconfigurable surface with N = 100 elements is seen in the direction φ = π/6.
We let β1 = β2N

4 = β3N
2 so all the propagation paths are equally strong

when the surface is optimally configured. The solid black curve shows the
detection performance without the surface, in which case MRT is the optimal
precoding. The dashed red curve is obtained when the reconfigurable surface
is added to the setup, but it has a random configuration and the precoding
still points the signal directly toward the target. The detection probability
is improved, but the effect is negligible since the extra paths are weak. It
is when the precoding and surface configuration are jointly optimized that
we can observe large improvements. The dash-dotted blue curve represents
this case and is shifted by roughly 4 dB to the left, compared to the original
black curve. This is explained by the fact that total received power P tr(R) is
increased by 3.9 dB. The blue curve is steeper thanks to the spatial diversity
gain obtained by having three random RCS coefficients instead of one.

Beyond this basic example, there are many other MIMO radar system
configurations and more complex propagation channels where a reconfigurable
surface can enhance detection performance. The expected gains are created
by ensuring that a larger fraction of the transmitted power reaches the target
location and is then reflected toward the receivers, as well as by creating extra
spatially distinguishable paths that provide diversity against randomness and
improved spatial resolution. We refer to [175], [176] for further details.
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9.5 Exercises

Exercise 9.1. Consider the setup from Example 9.4 with equal propagation losses to
all elements, such that the end-to-end channel gain is (

√
βs + N

√
βrβt)2. How many

metaatoms N are required for the reconfigurable surface to double the received power,
compared to the case of N = 0?

(a) Answer the question when βs = βt = βr = 10−8.
(b) Answer the question when βs = 10−10, βt = 10−8, and βr = 10−6.

Exercise 9.2. The end-to-end channel in (9.28) becomes h =
∑N

n=1 hr,ne
jψnht,n if the

static channel is totally blocked. Suppose the channels are equally strong to/from all
metaatoms: hr,n =

√
βr and ht,n =

√
βt, n = 1, . . . , N .

(a) What is the average channel gain E{|h|2} if the phase-shifts ψn are selected as
independent random variables that are uniformly distributed between 0 and 2π?

(b) What will |h|2 become if the phase-shifts are selected to maximize it?
(c) Compare the results in (a) and (b). What kind of gain is missing in (a)?

Exercise 9.3. The end-to-end channel gain in (9.25) becomes |hT
r Dψht|2 if the static

channel is totally blocked by some objects (e.g., at high frequencies). Suppose ht ∼
NC(0, βtIN ) and hr ∼ NC(0, βrIN ) and they are independent.

(a) What is the average channel gain with a static surface with Dψ = IN?
(b) What is the average channel gain with a reconfigurable surface that is configured

to maximize the channel gain? Hint: E{|ht,n|} =
√
βt
√
π/4.

Exercise 9.4. The LOS end-to-end channel gain is stated in (9.35) when the static
channel is negligible. Suppose the transmitter and receiver are equipped with isotropic
antennas, while each metaatom has the effective area Am = (λ/4)2.

(a) Determine an expression of the end-to-end channel gain when the distance between
the transmitter and the surface is dt and the distance between the surface and
the receiver is dr.

(b) How many metaatoms are needed to achieve an end-to-end channel gain of 10−9

if the wavelength is λ = 0.1 m (i.e., 3 GHz), dt = 50 m, and dr = 2 m? How large
is the total area NAm of the surface?

(c) How many metaatoms are needed to achieve the same channel gain as in (b) when
λ = 0.01 m (i.e., 30 GHz). How large is the total area NAm of the surface?

Exercise 9.5. Suppose the reconfigurable surface can turn off specific metaatoms so they
absorb all incident signal energy instead of reflecting anything.

(a) Use this feature to estimate each of the cascaded channels hr,nht,n sequentially
while the remaining N − 1 metaatoms are turned off. Follow the ML estimation
framework in Section 9.2.2 and assume that hs = 0.

(b) Suppose all metaatoms are turned on during the ML estimation and simplify the
ML estimator in (9.42) for the case when hs = 0.

(c) Show that the ML estimate can be expressed as ̂̌h = ȟ + effective noise in both
(a) and (b). Compare the variances of the noise terms. Is it preferable to turn
metaatoms on/off during the channel estimation? Explain the result.
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Exercise 9.6. Consider a reconfigurable surface designed as a uniform planar array with
NH columns and NV metaatoms per column. Suppose a plane wave impinges from the
direction φi in the azimuth plane and should be reflected towards a user in the direction
φo in the azimuth plane (i.e., θi = θo = 0).

(a) Prove that the cascaded channel coefficient hr,nht,n is equal for all the NV
metaatoms located in the same column.

(b) Based on the property proved in (a), if we deploy the reconfigurable surface
in an environment where signals only propagate in the azimuth plane, we can
reduce the number of phase-shift variables from NHNV to NH. This is achieved
by assigning the same phase-shift to metaatoms in the same column. Write up
the corresponding end-to-end channel and factorize it similarly to (9.38).

(c) Write up a new ML estimator that utilizes the new factorization from (b). Show
that the minimum pilot length is now Lp = NH + 1.

(d) Suppose the same total energy (N + 1)q is utilized for pilot transmission with
the new ML estimator as with one considered in (9.44). How much smaller total
variance will the scaled noise term have with the new estimator?

Exercise 9.7. A classic way of extending wireless coverage (e.g., into tunnels) is to use a
repeater that picks up the signal using one antenna and immediately retransmits an
amplified version using another antenna. In this exercise, it will be compared with a
reconfigurable surface in the same deployment scenario.

(a) The received signal at the repeater is y1 =
√
βtx1 + n1 and the received signal

at the receiver is y2 =
√
βrx2 + n2, where n1, n2 ∼ NC(0, N0). Suppose the data

signal x1 ∼ NC(0, q1) is transmitted and that the repeater sends x2 =
√
ay1, where

a is the amplification gain. How should a be selected to ensure that E{|x2|2} = q2?
(b) What is the SNR at the receiver when using the repeater with the amplification

gain obtained in (a)?
(c) If a reconfigurable surface is used in the same scenario, the SNR would be

qN2βtβr/N0. Derive an expression for how many metaatoms N are required to
achieve a larger SNR with the surface than with the repeater.

(d) Compute the number of metaatoms in (c) if βt = βr = 10−8 and q/N0 = 108. To
make the total transmit power the same in both setups, we let q1 = q2 = q/2.

Exercise 9.8. The end-to-end channel gain in (9.31) with an optimal phase-shift config-
uration is ∥ȟ∥2

1, where the 1-norm is used.

(a) A MISO channel with the same channel vector achieves the channel gain ∥ȟ∥2,
where the Euclidean norm (2-norm) is used. Which of the two squared norms is
the largest? Under which conditions are they equal?

(b) The phase-shift vector ψ acts as a beamforming vector with ∥ψ∥2 = N + 1. If
MRT is used with a precoding vector that has the same squared norm, what will
be the resulting channel gain? Is it larger than ∥ȟ∥2

1?

Exercise 9.9. Derive (9.61) from (9.55) step-by-step by utilizing the two properties
stated after the equation. Hint: Use the commutative and associative properties of the
convolution. The commutative property states that (f ∗g)(t) = (g∗f)(t). The associative
property of the convolution is (f ∗ g ∗ h)(t) = (f ∗ g) ∗ (h)(t) = (f) ∗ (g ∗ h)(t).
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Exercise 9.10. Consider the reflection coefficient Γ0n when the metaatom’s impedance
Zn is given by (9.56).

(a) What does Γ0n converge to as f → 0? What is its amplitude and phase?
(b) What does Γ0n converge to as f → ∞? What is its amplitude and phase?
(c) Show that |Γ0n| = 1 for all f if R = 0.

Exercise 9.11. If a known pilot signal is transmitted on all subcarriers, the ML estimator
described in Section 9.2.2 can be applied to separately estimate each of the channel
vectors ȟ[0], . . . , ȟ[S − 1]. However, this is unnecessary because adjacent subcarriers
have similar channel vectors.

(a) Show that hψ[ℓ] in (9.64) can be expressed as ψTh[ℓ], where ψ = [1, ejψ1 , . . . , ejψN ]T.
(b) Relate hψ[0], . . . , hψ[T ] to ȟ[0], . . . , ȟ[S − 1] using a DFT matrix.
(c) Use the property in (b) to determine an ML estimator of h[0], . . . ,h[T ], based on

the received signals from pilot transmission on T + 1 subcarriers.

Exercise 9.12. Consider a SIMO channel aided by a reconfigurable surface where the
channel vector is

h = hs + HrDψht. (9.111)
Suppose there is a free-space LOS channel Hr = arbT

r between the surface and receiver,
where ar,br are vectors. Determine the surface configuration that maximizes the capacity.

Exercise 9.13. Consider a point-to-point MIMO system with M = K where the channel
matrix H ∈ CM×M has full rank. The system operates at high SNR so that equal power
allocation is optimal.

(a) Prove that the high-SNR capacity is upper bounded by M log2(1 + q∥H∥2
F

M2N0
). Under

what conditions on H is the upper bound achieved? Hint: Use the inequality of
arithmetic and geometric means from Lemma 3.2.

(b) The channel contains a reconfigurable surface, so the channel matrix is modeled
according to (9.81) as H = Hs + HrDψHt. How should the surface be configured
to maximize the high-SNR capacity if Hs, Hr, and Ht are rank-one matrices?

Exercise 9.14. Propose an algorithm for downlink sum capacity maximization that
switches between solving (6.122) for given user channels and updating the phase-shifts
similarly to Algorithm 9.3.
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Mathematical Notation

Upper-case boldface letters are used to denote matrices (e.g., X,Y), while
column vectors are denoted with lower-case boldface letters (e.g., x,y). Scalars
are denoted by lower/upper-case italic letters (e.g., x, y,X, Y ) and sets by
calligraphic letters (e.g., X ,Y).

The following general mathematical notations are used:

R The space of real-valued numbers
C The space of complex-valued numbers
RN The space of real-valued N -dimensional vectors
CN The space of complex-valued N -dimensional vectors
CN×M The set of complex-valued N ×M matrices
A = {a1, . . . , aN} A set with the members a1, . . . , aN
x ∈ A x is a member of the set A
x ̸∈ A x is not a member of the set A
A ⊂ B A is a subset of B
{(R1, R2) : cond} The set of all (R1, R2) that satisfy the condition
[x]i The ith entry of a vector x
[X]ij The (i, j)th entry of a matrix X
diag(d1, . . . , dN ) Diagonal matrix with d1, . . . , dN on the diagonal
IM The M ×M identity matrix
0 A matrix with only zeros with matching size
X∗ The entry-wise complex conjugate of X
XT The transpose of X
XH The conjugate/Hermitian transpose of X
X−1 The inverse of a square matrix X
X1/2 The square root of a square matrix X
tr(X) Trace of a square matrix X
det(X) Determinant of a square matrix X
x⊙ y Entry-wise (Hadamard) product of x, y
X⊗Y Kronecker product of X and Y
∥x∥ The Euclidean norm ∥x∥ =

√∑
i |[x]i|2 of x

∥X∥F The Frobenius norm of X, defined in (5.87)
ℜ(x),ℑ(x) Real part and imaginary part of x
j The imaginary unit

√
−1
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√
x The square root of x

n
√
x The nth root x1/n of x > 0
|x| Magnitude (or absolute value) of a scalar x
arg(x) The phase in [−π, π) of complex number x
⌊x⌋ Closest integer smaller or equal to x
⌈x⌉ Closest integer greater or equal to x
n! The factorial function for positive integers n
e Euler’s number (e ≈ 2.71828)
min(x, y) The minimum of x and y
max(x, y) The maximum of x and y
modS Modulo operation (the remainder after division by S)
[x]−1:1 Wraps x within the range (−1, 1), see (5.194)
loga(x) The logarithm of x using the base a > 0
ln(x) The natural logarithm of x (base e)
sin(x), cos(x) The sine and cosine functions of x
tan(x) The tangent function of x
arcsin(x) The inverse sine function
arctan(x) The inverse tangent function
ejx The complex exponential function of x
sinc(x) The sinc function sinc(x) = sin(πx)/(πx)
δ(t) The Dirac delta function
(f ∗ g)(t) Convolution of the continuous functions f(t), g(t)
(f ∗ g)[k] Linear convolution of the discrete sequences f [k], g[k]
(f ⊛ g)[k] Cyclic convolution of the discrete sequences f [k], g[k]
F{a(t)} Fourier transform of the continuous function a(t)
Fd{χ[s]} DFT of the discrete sequence χ[s]
∼ Means “distributed as”
N (µ, σ2) Gaussian distribution with mean µ and variance σ2

NC(0,R) Circularly symmetric complex Gaussian distribution
with zero mean and covariance matrix R

Rayleigh(σ) Rayleigh distribution with the scale parameter σ ≥ 0
Rice(ν, σ) Rician distribution with the parameters ν, σ ≥ 0
Exp(x) Exponential distribution with the rate x > 0
χ2(N) Chi-squared distribution with N degrees of freedom
U [a, b] Uniform distribution between a and b
E{x} The mean of a random variable x
Var{x} The variance of a random variable x
Cov{x} The covariance matrix of a random vector x
Pr{cond} The probability that the condition “cond” is satisfied
H(y) The differential entropy of y, see (2.134)
H(y|x) The conditional differential entropy, see (2.135)
I(x; y) The mutual information between x and y
H0,H1 The null hypothesis and alternative hypothesis
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Specific Notation

Many variables are used in the different chapters and some names are used
for multiple purposes. The following is a non-exhaustive list of such notation:

αi Attenuation of path i
a(φ),aM (φ) Array response vector of a ULA in 2D
aM (φ, θ) Array response vector of a ULA in 3D
aMH,MV(φ, θ) Array response vector of a UPA
Aiso Area of an isotropic antenna [m2]
Am Area of a metaatom [m2]
A(φ, θ) Effective area function of an antenna [m2]
B The signal bandwidth [Hz] and symbol rate [symbol/s]
β The channel gain
c The speed of light in free space (vacuum) [m/s]
C The capacity of a channel [bit/s] or [bit/symbol]
Cϵ The ϵ-outage capacity of a channel [bit/s] or [bit/symbol]
Csu
k The single-user capacity [bit/s]

C(x) Capacity function in (6.7) [bit/s]
d, dm, di, dt, dr The propagation distance (for paths or to antennas)
D,Dλ The aperture length and normalized length Dλ = D/λ
D A diagonal matrix, often from the SVD
Dψ Reflection matrix in (9.17) of a reconfigurable surface
∆,∆λ The antenna spacing and normalized spacing ∆λ = ∆/λ
η The sampling delay at the receiver [s]
f A frequency variable [Hz]
fc Carrier frequency of the signal [Hz]
fx(x) The PDF of a random variable x
Fx(x) The CDF of a random variable x
FS The S × S DFT matrix defined in (2.198)
G(φ, θ) Antenna gain function
h A scalar channel coefficient
h A SIMO/MISO channel vector
H A MIMO channel matrix
ĥ, ĥ, Ĥ Estimates of a channel scalar/vector/matrix
h̃, h̃, H̃ Estimation errors of a channel scalar/vector/matrix
H̆ Beamspace representation of the channel matrix
i(m), j(m) Horizontal/vertical indices in a UPA, see (4.124)–(4.125)
K,M Number of transmit or receive antennas
κ XPD-related variable, see (4.171)
λ, λm Wavelength [m] or an eigenvalue of a matrix
L Number of variables in different contexts
LV, LH Vertical and horizontal length of a UPA
Lc, Lp Length of a coherence block and pilot length [symbols]
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MV,MH Number of antennas per column and row in a UPA
MSEx The MSE of an estimate of x
N Number of metaatoms in a reconfigurable surface
N0 Noise power spectral density [W/Hz]
Ncl, Npath Number of clusters/paths in a multipath channel
NRF Number of RF inputs/outputs in hybrid beamforming
p(t) The pulse used in PAM, often p(t) =

√
Bsinc(Bt)

p A transmit precoding vector
P,PBB,PRF Arbitrary digital and hybrid precoding matrices
P, Pt Transmitted signal power [W]
Pr Received signal power [W]
P ul
k , P

dl
k Transmit power in uplink/downlink

PD The correct detection probability
PFA The false alarm probability
PM The missing probability
Pconv(φ, θ) Power spectrum with conventional beamforming
PCapon(φ, θ) Power spectrum with Capon beamforming
Pout(R) The outage probability given the rate R
φ,φt, φr, φi, φo Azimuth angle
φbeam, θbeam The beam direction
ψn Phase-shift of metaatom n
R,Rk Achievable rates [bit/s] or [bit/symbol]
Rh The covariance matrix of a random vector h
R, ∂R Rate region and its Pareto boundary
q The symbol power q = P/B [Joule]
qk The symbol power assigned to the kth channel
Q Diagonal matrix with q1, . . . , qK
r The rank of a matrix
S Number of subcarriers in OFDM
Σ Diagonal matrix with singular values
sk The kth singular value in the SVD of a matrix
σ2 Variance of the noise [W] or of another variable
σRCS The RCS of a target object
SNR SNR variable
t A time variable [s]
τi Propagation delay of path i [s]
θ, θt, θr, θi, θo Elevation angle
T The memory of an FIR filter [symbols]
Tc Channel coherence time [s]
υ Speed of movement [m/s]
U,V Unitary matrices, often obtained from the SVD
w A receive combining vector
W,WBB,WRF Arbitrary digital and hybrid combining matrices



660 Appendix

Abbreviations

The following acronyms and abbreviations are used in this book:

2D two-dimensional
3D three-dimensional
3GPP 3rd generation partnership project (an organization)
5G,4G,3G,2G fifth/fourth/third/second generation
ADC analog-to-digital converter
AESA active electronically scanned array
AWGN additive white Gaussian noise
BB baseband
BBU baseband unit
CDF cumulative distribution function
CDMA code-division multiple access
CDMA2000 name of a CDMA-based 3G standard
CSI channel state information
DAC digital-to-analog converter
dBi decibels referenced to an isotropic antenna
dBm decibels referenced to 1 mW
DFT discrete Fourier transform
dl downlink
DOA direction-of-arrival
DPC dirty paper coding
DSFT discrete-space Fourier transform
DTFT discrete-time Fourier transform
eCDF empirical cumulative distribution function
EIRP effective isotropic radiated power
ELAA extremely large aperture array
ESPRIT estimation of signal parameters by

rotational invariance techniques
EV-DO Evolution-data optimized (4G standard)
FDMA frequency-division multiple access
FIR finite impulse response
GSM Global system for mobile communications (2G standard)
i.i.d. independent and identically distributed
IDFT inverse DFT
IEEE Institute of electrical and electronics engineers
IRS intelligent reflecting surfaces
IS-95 Interim standard 95 (2G standard)
ISAC integrated sensing and communication
ITU International telecommunication union
LDPC low-density parity-check
LMMSE linear MMSE
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LNA low-noise amplifier
LOS line-of-sight
LTE Long-term evolution (4G standard)
LTI linear time-invariant
MCS modulation and coding scheme
MIMO multiple-input multiple-output
MISO multiple-input single-output
ML maximum likelihood
mmf max-min fairness
MMSE minimum mean-squared error
mmWave millimeter-wave
MRC maximum-ratio combining
MRT maximum-ratio transmission
MSE mean-squared error
MUSIC multiple signal classification
MVDR minimum-variance distortionless response
NFC Near-field communication (a wireless standard)
NLOS non-LOS
NMSE normalized MSE
NOMA non-orthogonal multiple access
NR New radio (5G standard)
OAM orbital angular momentum
OFDM orthogonal frequency-division multiplexing
OMA orthogonal multiple access
opt optimal
PA power amplifier
PAM pulse-amplitude modulation
PDF probability density function
PEC perfect electric conductor
PESA passive electronically scanned array
PS phase shifter
PSS primary synchronization signal
QAM quadrature amplitude modulation
RCS radar cross section
RF radio-frequency
RIS reconfigurable intelligent surfaces
RMSE root MSE
RZF regularized zero-forcing
SDMA space-division multiple access
SIC successive interference cancellation
SIMO single-input multiple-output
SINR signal-to-interference-plus-noise ratio
SISO single-input single-output
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SLNR signal-to-leakage-and-noise ratio
SNR signal-to-noise ratio
sr sum rate
STBC space-time block code
su single user
SVD singular-value decomposition
TDMA time-division multiple access
TDOA time-difference-of-arrival
TOA time-of-arrival
TTD true time delay
TWF transmit Wiener filter
ul uplink
ULA uniform linear array
UMi urban microcell
UMTS Universal mobile telecommunications system (3G standard)
UPA uniform planar array
WiFi Trademark used for WLAN
WLAN wireless local area network
XPD cross-polar discrimination
ZF zero-forcing
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