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Preface

The Internet of Things (IoT) has emerged as a transformative force, weaving a
complex tapestry of interconnected devices that permeate every aspect of our lives.
From the ordinary to the extraordinary, these devices collect, process, and exchange
data, shaping our experiences and driving innovation across industries. However,
this interconnectedness comes at a cost. As we increasingly rely on IoT devices for
critical tasks and sensitive information, ensuring their security and trustworthiness
becomes paramount.

This book delves into the intricate world of IoT security, exploring the chal-
lenges and opportunities presented by this rapidly evolving landscape. It is born
from the collective efforts of the ERATOSTHENES project and several other com-
plementary research initiatives, funded by the European Commission, dedicated to
developing innovative solutions for securing the IoT.

Within these pages, we embark on a journey through the core concepts, tech-
nologies, and methodologies that underpin these cutting-edge research outcomes.
We explore the challenges posed by the heterogeneity of IoT devices, the intricacies
of identity management in a decentralized world, and the critical importance of user
privacy. We delve into the technical architecture of various frameworks, examining
key components such as verifiable data registries, intrusion detection systems, and
secure software update mechanisms, and their role in establishing trust, securing
communication, and protecting data.

We investigate the potential of blockchain technology and Self-Sovereign Iden-
tity (SSI) to enhance security in 6G networks, addressing vulnerabilities in APIs
and distributed architectures. We analyze the role of tracing techniques in securing
connected medical devices, ensuring data integrity and continuous monitoring for
enhanced trust. Furthermore, we explore the development of AI-powered intrusion

xiii
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detection systems, utilizing deep learning and federated learning approaches for
near real-time threat detection in complex IoT environments.

This book also considers the evolving regulatory landscape, with insights into
the EU’s Cyber Resilience Act and AI Act, and their implications for secure IoT
development, particularly for AI-driven connected medical devices. We delve into
risk management strategies and standards relevant to the secure development and
deployment of these devices.

This book is not merely a technical exposition; it is a testament to the power of
collaboration and knowledge sharing in addressing complex challenges. It brings
together a diverse community of researchers, practitioners, and policymakers, each
contributing their expertise and insights to advance the state of IoT security. This
collaborative spirit is reflected throughout, drawing upon the collective wisdom
and experience of numerous contributors.

As you navigate through the chapters, you will gain a deeper understanding of the
challenges and opportunities presented by the IoT. You will learn about innovative
solutions for securing IoT devices, managing their identities, and protecting user
data. You will also gain insights into the broader implications of IoT security for
individuals, organizations, and society as a whole. This book serves as a valuable
resource for anyone invested in building a more secure and trustworthy future for
the Internet of Things.

Chapter 1 [Introduction to IoT Security and Privacy]: Overall book introduc-
tion, setting the scene to IoT security and privacy and current situation. Includes
perspectives on the overall Secure and Privacy-Preserving iot and A Holistic Vision,
cyber-threat Information (CTI) Sharing, Incident response as a mentality changer,
Device lifecycle identity management needs, solutions and challenges, Threat Mod-
eling and Risk Assessment in the iot as well as Legal and Ethical Considerations in
iot Security and Privacy, and Security By Design considerations.

Chapter 2 [Technologies and Opportunities Overview]: Summary and overview
of existing technologies and opportunities in the domain of iot. Includes technolo-
gies for Holistic iot Security, privacy and Safety, Secure device design and pro-
duction, protecting communication pathways, Privacy and data security, Identity
and Access Management, Threat intelligence and security analytics. Also includes
Dynamic Trust and Identity Management approaches on Behavioral analysis,
dynamic trust management etc. Additionally, includes Lifecycle Management of
iot Devices, and AI approaches for trust and identity management in IOT.

Chapter 3 [ERATOSTHENES Project Integrated Solution]: Introduction to the
ERATOSTHENES project, a collaborative research initiative dedicated to develop-
ing innovative solutions for securing the IoT. It provides a roadmap for the book,
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inviting readers to explore the intricacies of IoT security, the technical architec-
ture of the ERATOSTHENES framework, and the collaborative efforts driving
advancements in this field.

Chapter 4 [An Architecture for Dynamic Trust Management in IoT security]:
Delving into the architecture and implementation of dynamic trust management in
IoT security. It examines the challenges of securing diverse and resource-constrained
devices in untrusted environments. The chapter explores the ERATOSTHENES
project’s approach to establishing and re-assessing trust scores for devices based on
their capabilities, context, prior knowledge, and security guarantees. It discusses key
components like the Trust Manager & Broker, Threat Modeling & Risk Assessment
module, and Trust Agent, highlighting their role in creating adaptive and resilient
IoT systems.

Chapter 5 [Decentralized Identity Management]: Exploration of the innova-
tive approach to decentralized identity management in IoT systems developed by
the ERATOSTHENES project. It focuses on the implementation of Self-Sovereign
Identity (SSI) principles, empowering IoT devices with control over their digital
identities. The chapter delves into the Ledger uSelf SSI solution, a core inno-
vation of the project, and its key components, including the PUF client, VDR-
fabric, Advanced Data Protection (ADP) module, and Identity Recovery Mecha-
nism. It also examines the integration of advanced cryptographic techniques, such
as privacy-enhancing Attribute-Based Credentials (p-ABC), and the role of dispos-
able identities in enhancing privacy and security.

Chapter 6 [Inter-ledger platform for Cyber-threat information sharing and
Lifecycle Security]: Exploration in the crucial role of cyber threat intelligence
(CTI) sharing and lifecycle security in IoT ecosystems. It examines how the
ERATOSTHENES project leverages distributed ledger technology (DLT) and an
inter-ledger approach to facilitate secure and privacy-preserving CTI exchange
across different domains. The chapter also discusses the use of Manufacturer Usage
Description (MUD) files, including the proposed Threat MUD extension, to man-
age security configurations and mitigation actions throughout the device lifecycle.
Additionally, it highlights the integration of these components to achieve a system
that dynamically responds to cybersecurity incidents, ensuring the ongoing protec-
tion of devices and domains.

Chapter 7 [Advanced/Efficient DLT/VDR for Identity and Trust Manage-
ment]: Delving into the design and implementation of a verifiable data registry
(VDR) for decentralized identity and trust management in IoT environments. The
authors utilize HyperLedger Fabric as the underlying blockchain infrastructure and
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introduce a novel hybrid consensus algorithm tailored for IoT networks. The chap-
ter also details the creation of an efficient and secure VDR using gRPC services,
emphasizing both security and scalability for IoT applications.

Chapter 8 [Intrusion detection for IoT-based context and networks]: Exploring
the implementation of a robust Monitoring and Intrusion Detection System (IDS)
within the ERATOSTHENES project. It details the integration of machine learn-
ing techniques for enhanced threat detection in complex IoT environments. The
chapter also discusses the development and implementation of FedLPy, a federated
learning approach for collaborative threat detection on edge devices, enhancing
network security through distributed intelligence

Chapter 9 [Digital Twins for Secure Software Updates to Maintain IoT Device
Trustworthiness]: Comprehensive analysis to securing software updates for IoT
devices, a critical aspect of maintaining trust and security in IoT ecosystems. It
explores the challenges of managing updates in dynamic IoT environments and
introduces a novel approach using Digital Twins to enhance the software update
lifecycle. The chapter details the integration of Digital Twins with existing secu-
rity frameworks, emphasizing the benefits of this approach in terms of timeliness,
reliability, and scalability. It also presents a proof-of-concept implementation and
discusses the practical implications for real-world IoT deployments.

Chapter 10 [Tracing Techniques for Connected Medical Devices]: Investigation
of the crucial role of tracing techniques in securing Connected Medical Devices
(CMDs) within the Internet of Things (IoT) ecosystem. It examines how these
techniques help monitor device behavior and ensure data integrity across both
high-end and low-end devices. The chapter introduces the ENTRUST framework,
which integrates tracing technologies to assess the operational integrity of CMDs
continuously. It also discusses the challenges and solutions associated with tracing
in different device categories, emphasizing the importance of continuous monitor-
ing for maintaining trust and security in healthcare IoT.

Chapter 11 [Securing the Software Supply Chain: Innovations and
Approaches]: This chapter emphasizes the critical need for securing the software
supply chain in modern development, where applications rely heavily on external
components. It introduces RESCALE, a comprehensive framework that integrates
advanced security testing with blockchain technology to create a Trusted Bill of
Materials (TBOM). This TBOM provides transparency and trust by recording the
security status of both hardware and software components, mitigating risks associ-
ated with vulnerabilities and supply chain attacks.

Chapter 12 [Cybersecurity challenges and pitfalls in 6G networks]: This chap-
ter explores the intersection of 6G technology and cybersecurity, examining the
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unique vulnerabilities of this new era of connectivity and proposing solutions based
on blockchain and Self-Sovereign Identity (SSI). It discusses the challenges of API
vulnerabilities, the expanded attack surface of distributed architecture, data privacy
risks, and the potential for user misconfigurations and insider threats. The chap-
ter argues for a combined approach, utilizing blockchain’s immutability and trans-
parency alongside SSI’s decentralized identity management to enhance security in
6G networks.

Chapter 13 [Towards a Framework and Methodology Adherent to the EU
Cyber Resilience Act – The CERTIFY Project]: Comprehensive overview of the
CERTIFY project, a research initiative focused on establishing a robust framework
for IoT security throughout the entire device lifecycle. The chapter details CER-
TIFY’s lifecycle methodology, encompassing secure design, bootstrapping, continu-
ous monitoring, update management, and decommissioning, highlighting its align-
ment with the EU’s Cyber Resilience Act (CRA). It also presents a use case of a
connected cabin system to illustrate the practical application of the framework in
a high-connectivity environment.

Chapter 14 [Developing A near-real Time AI-based Network Intrusion Detec-
tion System]: Delving into the development of an AI-powered Network Intrusion
Detection System (NIDS) designed for near-real-time threat detection in IoT net-
works. It explores the challenges of using outdated datasets for training intrusion
detection models and proposes the use of a modern, in-house dataset reflecting cur-
rent network traffic patterns and vulnerabilities. The chapter details the architecture
and implementation of a Deep Learning (DL) model based on Convolutional Neu-
ral Networks (CNNs), trained on this dataset to accurately classify network traffic
as benign or malicious. The proposed NIDS is evaluated in a realistic network envi-
ronment, demonstrating its effectiveness in detecting intrusions in near-real time.

Chapter 15 [Connected Medical Devices: The Cybersecurity Nexus of the AI
Act and MDR]: Analysis of the interplay between the EU’s Artificial Intelligence
Act (AIA) and Medical Device Regulation (MDR) concerning cybersecurity in the
context of AI-driven Connected Medical Devices (CMDs). It explores the conver-
gence of these regulations, highlighting potential challenges and opportunities for
harmonizing their cybersecurity provisions. The chapter also discusses risk manage-
ment strategies and standards relevant to the secure development and deployment
of AI-enabled CMDs.

The target audience of this book has identified and includes the following:

1. Researchers in IoT Security: Gain insights into the latest advancements
in IoT security research, including novel approaches to trust and identity
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management, secure communication protocols, and privacy-enhancing tech-
nologies. Discover practical applications of these technologies through real-
world pilot projects and case studies. Access valuable resources and contribute
to the ongoing development of open-source tools and technologies for IoT
security.

2. Practitioners in Cybersecurity: Learn about practical solutions for secur-
ing IoT devices and networks in various industries and applications. Under-
stand the challenges and opportunities associated with implementing security
measures in diverse IoT environments. Gain familiarity with the ERATOS-
THENES framework and its potential for enhancing the security posture of
IoT deployments.

3. Policymakers and Regulators: Gain insights into the policy implications of
IoT security and the need for regulatory frameworks that promote trust and
innovation. Understand the role of technology in addressing security chal-
lenges and enabling responsible IoT adoption. Learn from the ERATOS-
THENES project’s approach to balancing security, privacy, and innovation
in the IoT ecosystem.

4. Students and Educators: Access a comprehensive overview of IoT security
concepts, technologies, and challenges. Learn about cutting-edge research
and real-world applications of IoT security solutions. Gain inspiration and
guidance for pursuing careers in the growing field of IoT security.

5. Technology Enthusiasts and the General Public: Gain a better understand-
ing of the security implications of the growing IoT landscape. Learn about
the importance of protecting personal data and privacy in a connected world.
Become informed consumers of IoT technologies and make informed deci-
sions about their use.
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The ERATOSTHENES project has significantly advanced the field of IoT security
by developing and implementing a holistic Trust and Identity Management Frame-
work. This framework showcases the potential of innovative technologies to tackle
the complex security challenges inherent in the IoT landscape. The project’s empha-
sis on creating solutions that are distributed, automated, auditable, and privacy-
respectful has established a foundation for a more secure and trustworthy IoT
ecosystem.

Specifically, ERATOSTHENES focuses on addressing several critical chal-
lenges:

1. Heterogeneity of Devices: The project acknowledges the wide variety of
devices and communication protocols within the IoT, which makes it diffi-
cult to establish uniform security standards. ERATOSTHENES tackles this
challenge by developing a flexible and adaptable framework that can accom-
modate the diverse nature of IoT devices.

2. Lack of Standardized Security Measures: The absence of standardized secu-
rity measures in the IoT landscape poses a significant challenge. ERATOS-
THENES addresses this by proposing a comprehensive framework that
incorporates various security mechanisms, including trust management,
identity management, and intrusion detection, to enhance the overall secu-
rity posture of IoT networks.

3. Data Security and Privacy: With the increasing amount of data gen-
erated and transmitted by IoT devices, ensuring data security and pri-
vacy is paramount. ERATOSTHENES prioritizes these aspects by incor-
porating privacy-preserving techniques, such as advanced cryptography

xix
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and decentralized data management, to protect sensitive information and
empower users with control over their data.

4. Scalability and Interoperability: As the IoT continues to expand, scalabil-
ity and interoperability are crucial considerations. The ERATOSTHENES
framework is designed to be scalable and interoperable, enabling seamless
integration of new devices and technologies into the ecosystem while main-
taining a consistent security posture.

Through its three pilot projects, ERATOSTHENES has showcased the prac-
tical applications of its framework in diverse domains, including connected vehi-
cles, remote patient monitoring, and industrial network security. These real-world
demonstrations have validated the effectiveness of ERATOSTHENES’s technolo-
gies in detecting and mitigating cyber threats, protecting sensitive data, and ensur-
ing the reliability of critical IoT infrastructure. For instance, in the V2X pilot, the
project successfully demonstrated the ability to detect and prevent malicious soft-
ware updates in connected vehicles, ensuring the integrity and safety of critical vehi-
cle systems. In the remote patient monitoring pilot, ERATOSTHENES showcased
the secure and privacy-preserving management of sensitive health data, empower-
ing patients to receive care from the comfort of their homes while maintaining
control over their personal information.

As the pages of this book close, the journey through the details of IoT security
and the innovative solutions offered by ERATOSTHENES and several other EC
research projects comes to an end. But the story of securing the Internet of Things is
far from over. The challenges we face in this ever-evolving technological landscape
are dynamic and multifaceted, demanding continuous research, collaboration, and
adaptation.

ERATOSTHENES, with its holistic approach to trust and identity manage-
ment, has undoubtedly made significant contributions to the field. The project’s
emphasis on distributed, automated, and privacy-preserving solutions has laid a
strong foundation for building a more secure and trustworthy IoT ecosystem.
By demonstrating the practical applications of its framework in diverse domains,
ERATOSTHENES has inspired further exploration and innovation in IoT secu-
rity.

The lessons learned from ERATOSTHENES extend beyond the technical
realm. The project has highlighted the importance of collaboration and knowl-
edge sharing in addressing complex security challenges. By bringing together
researchers, practitioners, and policymakers from different disciplines and back-
grounds, ERATOSTHENES has fostered a vibrant community dedicated to
advancing the state of IoT security.
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As we move forward, it is crucial to build upon the foundation laid by ERATOS-
THENES and continue to push the boundaries of IoT security research. This
includes exploring new technologies, developing innovative solutions, and foster-
ing collaboration across different sectors. The future of the IoT depends on our
collective efforts to ensure its security and trustworthiness.

The journey towards a secure IoT is an ongoing one, but with projects like
ERATOSTHENES leading the way, we can confidently embrace the transformative
potential of this technology while safeguarding the security and privacy of individ-
uals and organizations alike.
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Chapter 1

Introduction to IoT Security and Privacy

By Konstantinos Loupos

In today’s world of ever-increasing connectivity, countless devices—from personal
gadgets and office equipment to industrial machinery—exchange information and
communicate with each other, often carrying large amounts of personal data. These
devices typically connect to private and public networks using advanced security
protocols and secure transmissions. However, the complexity and diversity of these
devices and networks raise concerns about the security and privacy of the data
involved. This chapter provides an overview of the current state of the Internet
of Things (IoT), serving as an introduction to the rest of the book. It summarizes
existing challenges and high-level solutions and measures currently used to address
these challenges. The chapter also includes background information on current
technologies and future insights into both the technology and the challenges them-
selves. The IoT is rapidly transforming, moving from a futuristic concept to a real
part of our daily lives. This network of connected devices includes everything from
smart home appliances and wearable fitness trackers to complex sensors in indus-
trial machines and systems for self-driving cars. The IoT has the potential to make
our lives more efficient, convenient, and automated. However, this interconnected
world also increases security and privacy risks. We will explore the basics of the IoT,
focusing on its main parts and the vulnerabilities that come from how it is made. We
will look at the challenges of device heterogeneity, where different devices have dif-
ferent hardware, software, and ways of communicating, which makes it difficult to
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implement standard security measures. We will also discuss the limitations of many
IoT devices, such as not having enough processing power, memory, or battery life to
support strong security measures. Additionally, we will examine the risks that come
from insecure development practices, which often happen because of the rush to
get products to market quickly. We will also look at the challenges of insecure com-
munication channels, which are often found in IoT networks. These channels can
allow eavesdropping, data manipulation, and denial-of-service attacks. The large
amount of personal data created and sent by IoT devices raises concerns about who
owns the data, how it is used, and whether it could be misused. Many users don’t
know about the security and privacy risks of IoT devices, which makes them easier
targets for social engineering and phishing attacks. The changing nature of cyber
threats means security measures need to be constantly monitored and updated. By
understanding these basic challenges, we can start to create and use comprehensive
security solutions. This book will help you understand the complicated world of
IoT security, showing you the latest research and new ways to improve security. The
goal is to give you the knowledge and tools to create an IoT world that is safer and
more trustworthy.

1.1 Introduction

The Internet of Things (IoT) is currently undergoing a rapid transformation, start-
ing from a concept confined to science fiction to an undeniable reality deeply inter-
woven into our daily lives. This interconnected network of devices, encompassing
many components of our life, from smart refrigerators in our kitchens and fitness
trackers on our wrists to the intricate sensors embedded in industrial machinery
and the sophisticated systems guiding autonomous vehicles, holds the promise of
a world characterized by unprecedented efficiency, convenience, and automation.
However, this hyper-connected world, while brimming with potential, presents a
double-edged sword. The very interconnectedness that drives its transformative
power also significantly expands the attack surface, leading to a corresponding esca-
lation in security and privacy risks.

This inherited opposition lies at the heart of the IoT revolution. On one hand,
we are experiencing a large emergence of smart homes where lighting, security
systems, and appliances seamlessly interact to optimize energy consumption and
enhance comfort and leisure. Wearable technology empowers individuals to mon-
itor their health and well-being with unprecedented precision, track sports etc.
In the industrial spectrum, sensors and control systems orchestrate manufactur-
ing processes, boosting productivity and minimizing costs. Smart cities leverage
connected infrastructure to optimize traffic flow, manage parking systems, and
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monitor environmental conditions, ultimately enhancing urban living. Even the
healthcare sector is undergoing a profound transformation, with remote patient
monitoring, smart medical devices, and connected healthcare systems promising to
revolutionize patient care. Still, this longer-term vision is shadowed by the aware-
ness of the vulnerabilities inherent in this interconnected and hyper-connected
world.

The spread of IoT devices has created an expansive network of potential entry
points for malicious actors, leaving individuals and organizations exposed to a large
threat landscapes. In later chapters, this book will provide a deep journey into
IoT security, privacy, and safety, seeking to unravel the complex challenges that
arise from this interconnectedness. It aims to provide a comprehensive understand-
ing of the multifaceted risks while presenting integrated approaches and cutting-
edge research aimed at safeguarding this increasingly interconnected world. Several
research solutions will be presented and discussed as outcomes of recent research
projects, efforts and initiatives.

Our exploration begins with a deep dive into the foundational aspects of the
Internet of Things (IoT), focusing on its core components and the unique vulner-
abilities that arise from its specific characteristics. We will investigate the complex-
ities of device heterogeneity, where the wide variety of devices—each with distinct
hardware, software, and communication protocols—poses significant challenges to
implementing uniform security standards. Additionally, the resource limitations
of many IoT devices, such as restricted processing power, memory, and battery
life, further complicate efforts to secure them effectively. We will also delve into
the risks stemming from insecure development practices, which often result from
the rush to market, leaving devices vulnerable. Moreover, the challenges related to
insecure communication channels—frequently present in IoT networks—will be
explored, highlighting the risks of data interception, manipulation, and denial-of-
service attacks. The massive amount of personal data generated and transmitted by
IoT devices raises serious concerns about data ownership, consent, and the poten-
tial for misuse. Another critical issue we will address is the lack of user awareness,
which amplifies security risks. Many users remain unaware of the threats associated
with IoT devices, making them more vulnerable to social engineering and phish-
ing attacks. Lastly, we will focus on the evolving nature of the threat landscape,
which requires ongoing monitoring, adaptation, and innovation in security mea-
sures. By understanding these core challenges, we can begin to create and apply
comprehensive security strategies. This book aims to guide readers through the
complexities of IoT security, offering insights into the latest research and showcas-
ing innovative solutions. Ultimately, the goal is to equip readers with the knowl-
edge and tools needed to build a more secure, privacy-focused, and trustworthy IoT
ecosystem.
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1.1.1 Internet of Things as an Expanding Layer

The Internet of Things (IoT) is no longer a futuristic vision; it’s the present, subtly
and pervasively integrated into our modern lives. This network of interconnected
devices extends far beyond the familiar examples of smart refrigerators and fitness
trackers. It encompasses a vast and rapidly expanding ecosystem of objects embed-
ded with sensors, software, and network connectivity, enabling them to collect and
exchange data, and often, to act autonomously based on that data. These data stem
from sensing, networking, data exchange, automation services as well as other day
to day services like transportation etc.

At the very heart of the IoT lies the ability to sense and interpret the physical
world. This is achieved through a diverse array of sensors embedded within IoT
devices. These sensors act as the eyes and ears of the IoT, capturing a wide spec-
trum of data, including: Environmental data (Temperature, humidity, air quality,
light intensity, and noise levels), Physical data (Pressure, motion, acceleration, loca-
tion, and proximity), Biological data (Heart rate, blood pressure, sleep patterns, and
activity levels) and Other Operational data (Machine performance, energy con-
sumption, and equipment status). This constant stream of sensory data provides a
real-time picture of the world around us, enabling informed decision-making and
automated responses.

The true power of the IoT lies in its ability to connect these devices, enabling
them to communicate and collaborate. This interconnectedness is facilitated by
a variety of network technologies, each with its own strengths and limitations.
Wi-Fi (used for short-range communication in homes and offices, offering high
bandwidth and relatively low latency), Bluetooth (connecting personal devices like
smartphones and wearables, low energy consumption), Cellular/GSM Networks
(wide-area coverage, enabling connectivity for devices on the move, vehicles, etc.),
Low-Power Wide-Area Networks (LPWAN) (Designed for long-range communica-
tion with low power consumption, particularly suitable for applications like smart
agriculture and environmental monitoring), Zigbee and Z-Wave (home automa-
tion, offering low-power, mesh networking capabilities). The choice of network
technology depends on the specific requirements of the IoT application, consider-
ing factors such as range, bandwidth, power consumption, and cost.

The vast amounts of data generated by IoT devices are not just raw numbers;
they are the lifeblood of the IoT leveraging their ability to scale and adapt, hold-
ing valuable insights waiting to be unlocked. This is where data processing and
analysis start to come into play, including Edge Computing (Processing data closer
to the source, at the "edge" of the network, reduces latency and bandwidth require-
ments, enabling real-time decision-making), Cloud Computing (Leveraging the
scalability and processing power of cloud platforms to store, process, and analyze
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massive datasets, facilitating complex analytics and machine learning), Data Analyt-
ics (Extracting meaningful patterns and insights from raw data, enabling informed
decision-making, predictive modeling, and anomaly detection). By transforming
raw data into actionable intelligence, the IoT unlocks the potential for optimiza-
tion, automation, and innovation.

The ultimate goal of the IoT is not just to collect and analyze data but lies into
its intelligence ability to automate tasks, optimize processes, and create personal-
ized experiences. This is where intelligent automation comes into play into Smart
Homes (e.g. Automated lighting systems that adjust based on occupancy and nat-
ural light, thermostats that learn user preferences, and security systems that detect
and respond to potential threats), Industrial Automation (Predictive maintenance
systems that anticipate equipment failures, optimizing production processes and
minimizing downtime), Autonomous Vehicles (Self-driving cars that navigate com-
plex environments, relying on sensor data and sophisticated algorithms to make
real-time decisions), Personalized Healthcare (Wearable devices that monitor vital
signs and alert healthcare providers to potential health issues, enabling proactive
interventions). Intelligent automation is the driving force behind the transforma-
tive power of the IoT, promising to revolutionize various sectors and reshape the
way we live and work.

As far as the applications of the IoT are concerned we can highlight that they
are also as diverse as the devices themselves, spanning various sectors and impacting
every aspect of modern life. Some key areas where the IoT is making a significant
impact include: Smart Cities (Connected infrastructure, traffic management sys-
tems, smart streetlights, and environmental monitoring, enhancing the efficiency
and sustainability of urban environments), Healthcare (Remote patient monitor-
ing, smart medical devices, and connected healthcare systems, improving patient
outcomes and transforming the delivery of healthcare services), Agriculture (Preci-
sion agriculture techniques leveraging sensors and data analytics to optimize irri-
gation, fertilization, and pest control, increasing crop yields and promoting sus-
tainable farming practices), Retail (Personalized shopping experiences, inventory
optimization, and supply chain management, enhancing customer satisfaction and
improving operational efficiency), Transport and Logistics (Real-time tracking of
goods, fleet management, and route optimization, improving efficiency and reduc-
ing costs in the transportation and logistics industry).

This is just a glimpse into the vast potential of the IoT. As technology continues
to evolve, we can expect even more innovative applications to emerge, further blur-
ring the lines between the physical and digital worlds. However, this rapid expan-
sion of the IoT ecosystem also brings with it a complex set of challenges, particularly
in the realm of security and privacy. The interconnected nature of the IoT creates
an expansive attack surface, exposing individuals and organizations to a myriad of
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threats. In the next section, we will delve into these challenges, exploring the unique
vulnerabilities that arise from the inherent characteristics of the IoT [1, 2].

1.2 Towards a Secure and Privacy-Preserving IoT:
A Holistic Vision

The Internet of Things holds tremendous promise, but its inherent vulnerabilities
demand a proactive and comprehensive approach to security and privacy. Building
a truly secure and trustworthy IoT ecosystem requires a paradigm shift, moving
beyond isolated solutions to embrace a holistic vision that encompasses every facet
of this interconnected world. This long-term vision must begin with a fundamen-
tal understanding that security is not an afterthought, but rather an integral part
of the design process itself as well as the network/devices lifecycle. When a new
IoT device is conceived, security considerations must be woven into its very fabric,
from the hardware components to the software that drives it. This means incorpo-
rating secure boot mechanisms to ensure that only trusted code is executed, utilizing
Hardware Security Modules (HSMs) to protect sensitive cryptographic operations,
and implementing robust memory management to prevent unauthorized access to
data. Furthermore, devices should be designed with tamper detection capabilities,
raising alarms or initiating protective measures if physical intrusion is detected. And
crucially, a secure and reliable mechanism for firmware updates is essential to patch
vulnerabilities and enhance security throughout the device’s operational life.

However, securing the device itself is only the first line of defense. The com-
munication channels, networks and devices that connect these devices are equally
vital and require robust protection. Data traversing the IoT network must be
shielded from intruder eyes, manipulation, and disruption. This necessitates the use
of strong encryption protocols like Transport Layer Security (TLS) and Advanced
Encryption Standard (AES) to ensure confidentiality and integrity. Authentication
mechanisms are equally crucial, verifying the identity of devices and users before
granting access to the network and preventing unauthorized entry. Granular access
control policies should be enforced, restricting access to sensitive data and func-
tionalities based on clearly defined roles and privileges. Furthermore, deploying
Intrusion Detection and Prevention Systems (IDPS) can provide active defense,
monitoring network traffic for suspicious activity and taking proactive measures to
prevent or mitigate potential attacks.

The exceptionally rising volume of personal data generated by IoT devices
raises profound concerns about privacy. Protecting this data is not merely a legal
obligation but also an ethical imperative. A holistic approach to IoT security must
therefore prioritize data protection and privacy. This begins with the principle of
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data minimization, collecting only the data that is absolutely necessary for the
intended purpose. Where possible, anonymization and pseudonymization tech-
niques should be employed to de-identify personal data, making it difficult to link
back to individuals while preserving its utility for analysis. Strict access control
policies are important, ensuring that only authorized individuals can access sensi-
tive information. Clear data retention policies should be established, outlining how
long data is stored and when it is deleted, minimizing the risk of data breaches and
ensuring compliance with privacy regulations like GDPR (General Data Protection
Regulation, EU) and CCPA (California Consumer Privacy Act, US). Furthermore,
exploring and implementing privacy-preserving technologies like differential pri-
vacy and federated learning can enable data analysis while safeguarding individual
privacy.

In the ever-evolving threat landscape of the IoT, a static approach to security
is inadequate. Proactive security monitoring and incident response are essential to
stay ahead of emerging threats in a dynamic approach. This involves deploying
real-time monitoring systems that can detect anomalies, suspicious activities, and
potential security breaches. Security Information and Event Management (SIEM)
systems can play a crucial role in collecting and analyzing security logs from var-
ious sources, identifying patterns and trends that may indicate potential threats.
Leveraging threat intelligence feeds can provide valuable insights into the latest
vulnerabilities and attack vectors, enabling proactive mitigation measures. Devel-
oping and regularly testing incident response plans is crucial to ensure a swift and
effective response to security incidents, minimizing damage and downtime.

However, technology alone cannot solve the security and privacy challenges of
the IoT. The human element is a critical factor, and empowering users with knowl-
edge and awareness is paramount. Security awareness training can equip users with
the skills to identify phishing attacks, social engineering attempts, and other com-
mon threats. Clear and concise guidance on secure device configuration, including
strong passwords and enabling security features, is essential. Users should also be
educated about data privacy, consent, and how to manage their privacy settings
on IoT devices. Promoting responsible usage encourages users to be mindful of the
security and privacy implications of their actions in the interconnected world. How-
ever, individual efforts are not enough still. A truly secure and privacy-preserving
IoT requires a collaborative ecosystem where stakeholders work together to estab-
lish a robust foundation. This is where regulatory frameworks and standards play a
crucial role. Governments and industry bodies must develop and enforce security
standards for IoT devices and systems, ensuring a minimum level of security and
interoperability. Privacy regulations, such as the General Data Protection Regula-
tion (GDPR) and the California Consumer Privacy Act (CCPA), provide a legal
framework for protecting personal data collected by IoT devices. Establishing clear
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liability frameworks helps address security breaches and data privacy violations, pro-
moting accountability and responsible innovation. International cooperation and
harmonization of standards are also crucial to address the global nature of the IoT
and its security challenges.

Beyond regulations, fostering and maintaining a culture of collaboration and
information sharing is essential. Encouraging the exchange of threat intelligence
and security best practices can enhance collective security. Promoting the devel-
opment and adoption of open-source security tools and technologies can foster
innovation and transparency. Public-private partnerships can facilitate collabora-
tion between governments, industry, and academia to address the complex chal-
lenges of IoT security. Continuous investment in research and development is cru-
cial to advance the state of the art in IoT security and privacy, developing innovative
solutions to address emerging threats. This collaborative approach must extend to
the users themselves. Empowering users with knowledge and tools to secure their
own devices and data is essential. This can be achieved through user-friendly inter-
faces, clear security and privacy settings, and educational resources that explain
potential risks and best practices. By fostering a sense of shared responsibility, we
can create a more secure and resilient IoT ecosystem.

The rapid pace of technological innovation, the diversity of devices and proto-
cols, and the evolving nature of cyber threats bring however constant vigilance
and adaptation. But by embracing a holistic vision, fostering collaboration, and
prioritizing security and privacy at every level, we can build a future where the
transformative power of the IoT can be fully realized without compromising the
security and privacy of individuals and organizations. This is not merely a techno-
logical challenge, but a societal one, requiring the collective effort of all stakeholders
to build a future where the benefits of the IoT can be enjoyed by all [3].

1.2.1 Cyber Threat Information (CTI) Sharing

Cyber Threat Intelligence (CTI) sharing has become increasingly vital in the ongo-
ing battle against evolving cyber threats. Organizations are recognizing the power
of collective defense, understanding that sharing information about vulnerabilities,
attack vectors, and malicious actors can significantly strengthen their overall secu-
rity posture and allow for proactive risk mitigation. This collaborative approach
is gaining traction, with more organizations realizing the value of pooling their
knowledge and insights to combat the ever-changing threat landscape.The devel-
opment of standardized frameworks, such as STIX and TAXII, has been instrumen-
tal in facilitating this exchange of information. These frameworks provide a com-
mon language for representing and sharing threat intelligence, enabling seamless
communication and interoperability between different systems and organizations.
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Furthermore, various platforms and initiatives have emerged to support CTI shar-
ing, including Information Sharing and Analysis Centers (ISACs), industry con-
sortia, and government-led programs. These platforms provide secure channels for
exchanging information, fostering trust and collaboration among participants.

Automation is also playing an increasingly important role in CTI sharing. Auto-
mated tools and platforms can collect, analyze, and disseminate threat intelligence
in real-time, enabling organizations to respond to threats more quickly and effec-
tively. This reduces the burden on security analysts, allowing them to focus on more
strategic tasks while automated systems handle the routine aspects of information
sharing. Moreover, public-private partnerships are becoming more prevalent, with
governments recognizing the importance of collaborating with the private sector
to enhance national cybersecurity. Governments are providing threat intelligence
feeds, encouraging information sharing between organizations, and facilitating col-
laboration through various initiatives.

Despite this progress, challenges remain. Sharing sensitive information requires
a high degree of trust between organizations. Concerns about confidentiality, data
ownership, and potential misuse can hinder information sharing, especially when
clear guidelines and agreements are lacking. The quality and relevance of shared
information is also paramount. Sharing inaccurate or incomplete information can
lead to false alarms and wasted resources. Therefore, providing context and action-
able insights is crucial for effective CTI sharing. Legal and regulatory barriers can
also pose challenges. Concerns about liability, privacy regulations, and intellectual
property rights can create obstacles to information sharing. Navigating these legal
and regulatory complexities can be challenging for organizations, particularly those
lacking dedicated legal expertise [4].

1.2.2 Incident Response as a Mentality Changer

The highly connected nature of the IoT introduces unique challenges for incident
response. Traditional security incident response frameworks, which are typically
designed for centralized networks with well-defined boundaries, struggle to cope
with the distributed and dynamic nature of IoT environments. This calls for a
new approach to incident response that accounts for the distinct features of this
interconnected landscape. To effectively address these challenges, a comprehensive
incident response strategy for the IoT must be developed, focusing on the following
key components:

1. Visibility and Monitoring: It is essential to maintain comprehensive visi-
bility across the IoT network by deploying monitoring tools and sensors that
collect and analyze data from multiple sources. This real-time insight is crit-
ical for understanding the security status and overall health of the network.
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Advanced technologies such as machine learning and artificial intelligence
can help analyze this data, detect anomalies, and identify potential threats
that might be missed by human analysts.

2. Automated Response/Actions: Developing automated playbooks and
scripts that trigger predefined actions in response to specific security incidents
is crucial. This automation allows for quicker and more efficient responses
to emerging threats.

3. Collaboration and Coordination: Effective incident response requires
seamless collaboration and coordination among all stakeholders. This
includes establishing clear communication channels and protocols, as well
as developing shared incident response plans that define roles and responsi-
bilities. Information-sharing platforms can facilitate the exchange of threat
intelligence and best practices, helping to ensure a coordinated response to
new threats.

4. Continuous and Dynamic Improvement: Incident response should be seen
as a continuous process of improvement. Regular reviews and updates to inci-
dent response plans, incorporating lessons from past incidents, and staying
informed about new threats and vulnerabilities are essential. Ongoing train-
ing and exercises will help ensure that incident response teams are prepared
to tackle a range of security scenarios.

1.2.3 Device Lifecycle Identity Management Needs, Solutions
and Challenges

The need for effective device lifecycle identity management arises from several crit-
ical factors. First, the sheer scale and diversity of IoT devices make manual identity
management impractical. With billions of devices, each featuring unique character-
istics and communication protocols, automated solutions are essential for efficient
and scalable identity management. Second, the dynamic nature of the IoT involves
continuous changes, with devices being added, updated, or removed from net-
works. This necessitates a flexible identity management system capable of adapting
to these changes while maintaining security. Third, compromised device identities
pose serious security risks. A compromised device could be leveraged to attack other
devices, steal sensitive information, or disrupt essential services. As a result, strong
identity management is essential to prevent unauthorized access and safeguard the
integrity of the IoT ecosystem. To address these challenges, various solutions have
been developed for managing device identities throughout their lifecycle. Public
Key Infrastructure (PKI) is a widely adopted approach, providing a framework for
managing digital certificates that authenticate devices and secure communication
through encryption.
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For example, Sectigo offers a comprehensive IoT identity management platform
that leverages PKI to issue and manage device certificates, ensuring secure com-
munication and authentication. Device identity management platforms offer cen-
tralized solutions for managing device identities, providing functionalities such as
registration, authentication, authorization, and credential management. AWS IoT
Device Defender is a service that allows organizations to audit device fleets, moni-
tor device behavior, and enforce security policies, helping to manage device identi-
ties and security postures at scale. Google Cloud IoT Core provides a similar suite
of tools, with features like secure device provisioning and access control. Blockchain
technology is also being explored as a potential solution for device identity man-
agement, offering decentralized and tamper-proof identity registries. For instance,
IoTeX is a blockchain platform specifically designed for IoT, providing decentral-
ized identity and access management for devices. Furthermore, lightweight authen-
tication and authorization protocols have been developed specifically for resource-
constrained IoT devices, enabling secure communication without compromising
performance. The Constrained Application Protocol (CoAP) is an example of
such a protocol, designed for use in resource-constrained environments like those
found in many IoT deployments [5, 6].

1.2.4 Threat Modeling and Risk Assessment in the IoT

Threat modeling is a systematic approach used to identify potential threats and
vulnerabilities in a system. By thoroughly analyzing the system’s design, function-
ality, and environment, it helps uncover possible attack vectors and weaknesses that
could be exploited by malicious actors. This process is essential for identifying secu-
rity gaps and prioritizing mitigation efforts. There are various methodologies for
threat modeling, each with its own advantages and areas of focus. In the context
of the Internet of Things (IoT), threat modeling and risk assessment must take
into account the unique characteristics of the IoT ecosystem. The large scale and
diversity of IoT devices, communication protocols, and their distributed nature
pose significant security challenges. Additionally, many IoT devices are resource-
constrained, limiting their ability to implement advanced security measures. There-
fore, threat modeling in the IoT context must be adapted to these constraints, fac-
toring in device capabilities, network architecture, and the sensitivity of the data
involved.

There are several established tools for threat modeling. For instance, STRIDE
categorizes threats into Spoofing, Tampering, Repudiation, Information Disclo-
sure, Denial of Service, and Elevation of Privilege, enabling organizations to identify
vulnerabilities systematically. Another approach, DREAD, evaluates the Damage
potential, Reproducibility, Exploitability, Affected users, and Discoverability of a
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threat, helping organizations prioritize threats based on potential impact and likeli-
hood of exploitation. PASTA focuses on the business implications of threats, align-
ing security analysis with organizational goals. Meanwhile, the OCTAVE frame-
work provides a broader risk assessment approach that considers both technical
vulnerabilities and organizational factors. Once potential threats are identified, risk
assessment frameworks can be used to assess their likelihood and potential impact.
This evaluation includes analyzing the consequences of a successful attack, such as
financial losses, reputational harm, or disruptions to critical services. The NIST
Cybersecurity Framework offers widely recognized standards and guidelines for
managing cybersecurity risks, emphasizing a risk-based approach tailored to an
organization’s specific risk profile. Similarly, the FAIR (Factor Analysis of Infor-
mation Risk) framework quantifies risk in financial terms, aiding organizations
in making informed decisions about their security investments. There are several
tools and solutions to support threat modeling and risk assessment in the IoT. The
OWASP IoT Threat Modeling Guide offers a comprehensive framework for iden-
tifying and mitigating threats specific to IoT systems. Microsoft’s Threat Modeling
Tool provides a visual interface for mapping out threats and identifying vulnerabil-
ities. Additionally, the IoT Security Foundation’s Security Compliance Framework
offers best practices for securing IoT devices and systems. Various commercial ven-
dors also provide specialized tools and services for IoT threat modeling.

Examples of threat modeling and risk assessment in the IoT are found across
multiple sectors. In healthcare, threat modeling is used to identify vulnerabilities in
connected medical devices, like insulin pumps and pacemakers, to prevent unau-
thorized access and manipulation. In industrial settings, risk assessments help gauge
the impact of cyberattacks on critical infrastructure such as power grids or manu-
facturing plants, allowing for the implementation of necessary security measures.
In smart homes, threat modeling helps protect connected devices like smart locks
and security cameras, ensuring the privacy and safety of homeowners [7].

1.3 Legal and Ethical Considerations in IoT Security and
Privacy

1.3.1 Data Protection and Privacy

One of the key legal and ethical challenges surrounding the Internet of Things (IoT)
is safeguarding personal data. IoT devices gather vast amounts of information about
users, such as their locations, behaviors, and preferences. While this data enhances
personalized services and operational efficiency, it also raises significant privacy con-
cerns and the risk of misuse. Laws like the General Data Protection Regulation
(GDPR) in Europe and the California Consumer Privacy Act (CCPA) in the U.S.
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establish guidelines for managing personal data. These regulations give individuals
control over their data, including rights to access, correct, and delete their infor-
mation. They also require organizations to protect data from unauthorized access
or misuse. For companies in the IoT sector, complying with these rules is crucial.
This involves implementing strong technical and organizational measures, such as
encryption, access control, and data anonymization. Additionally, businesses must
be transparent about their data practices, offering clear privacy notices and obtain-
ing informed consent when necessary.

1.3.2 Liability and Accountability

The IoT ecosystem’s distributed structure gives rise to intricate issues regarding lia-
bility and accountability. In the event of a security breach or privacy infringement,
identifying the responsible party can prove challenging. The obligations may fall
on the device manufacturer, software developer, network provider, or end-users.
It is essential to create well-defined liability frameworks to ensure accountability
and provide individuals with recourse for any harm suffered. Product liability laws
can be extended to IoT devices, making manufacturers responsible for any defects
that lead to damage. Nevertheless, the complexity of IoT systems—characterized
by their interconnected components and frequent software updates—complicates
the process of pinpointing the cause of any failures. Additionally, the absence of
clear security standards and best practices contributes to uncertainty about what
may qualify as a “defect” in these devices. Guidelines such as the Cybersecurity Act
in Europe and the NIST Cybersecurity Framework in the United States offer direc-
tion on security practices and incident responses. These frameworks help establish
a foundational level of security expectations and foster accountability within the
IoT landscape. However, due to the constantly evolving nature of cyber threats and
rapid technological advancements, continual adjustment and enhancement of these
frameworks are necessary.

1.3.3 Ethical Considerations

Ethical considerations are essential for responsible IoT development and deploy-
ment, moving beyond mere legal compliance to address fairness, transparency,
and respect for human values. This involves recognizing and mitigating poten-
tial biases embedded within IoT systems. Algorithms often inherit societal biases
from their training data, leading to discriminatory outcomes. For instance, facial
recognition systems have demonstrated lower accuracy for people of color, raising
concerns about their use in law enforcement. Therefore, it’s crucial to proactively
address these biases and ensure equitable design and deployment of IoT systems.
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Furthermore, the potential for IoT devices to enable surveillance and tracking
raises ethical concerns about privacy and individual autonomy. These devices can
gather extensive data on people’s movements and activities. Organizations must
be transparent about their data collection practices, obtain informed consent, and
implement safeguards to prevent misuse for surveillance or other privacy-violating
purposes. Transparency and accountability are paramount. Organizations should
openly communicate their data collection, usage, and sharing practices. Individuals
should have access to their data and the ability to correct or delete it. Additionally,
organizations should establish mechanisms for individuals to seek redress if their
rights are violated.

1.3.4 Ethics Committees and Review Boards

The increasing complexity of ethical considerations surrounding the Internet of
Things (IoT) necessitates a greater reliance on oversight mechanisms such as ethics
committees and review boards. These entities play a vital role in guiding the respon-
sible development and utilization of IoT technologies, ensuring alignment with
societal values. Ethics committees serve as valuable resources for organizations navi-
gating the ethical landscape of IoT projects. They offer expertise on a range of issues,
including data privacy, algorithmic bias, and other ethical challenges. By engaging
with ethics committees, organizations can proactively identify and address poten-
tial concerns, ensuring that their IoT initiatives are ethically sound. Moreover, these
committees can review research proposals and product development plans to ensure
that ethical considerations are integrated from the outset. Review boards provide
an additional layer of oversight, specifically evaluating the ethical implications of
particular IoT applications. For instance, they may assess the ethical dimensions of
using facial recognition technology in public spaces or deploying connected med-
ical devices that collect sensitive patient data. Through their independent evalu-
ation, review boards help ensure that IoT technologies are deployed in a manner
that respects individual rights and promotes societal well-being. This collaborative
approach, involving both internal ethics committees and external review boards, is
essential for navigating the complex ethical landscape of the IoT. By engaging with
these oversight mechanisms, organizations can demonstrate their commitment to
responsible innovation and ensure that their IoT initiatives contribute to a more
ethical and equitable technological future.

1.4 Security By Design

Security by Design is a philosophy that emphasizes building security into every
stage of the IoT device lifecycle. It involves anticipating potential threats and
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vulnerabilities and implementing security controls to mitigate those risks. By
embedding security into the DNA of IoT systems, we can create a more resilient and
trustworthy foundation for the interconnected world. This means granting devices
and users only the necessary privileges to perform their functions, minimizing the
potential damage from unauthorized access. It also involves implementing multiple
layers of security controls to provide redundancy and resilience in case one layer is
compromised. Devices should be configured with secure settings out of the box,
reducing the reliance on users to implement security measures. Systems should be
designed to fail securely, minimizing the impact of failures and preventing cascad-
ing effects. It’s crucial to ensure that all access to resources is authenticated and
authorized, preventing unauthorized access and data breaches. Security should not
rely on the secrecy of the design or implementation. Open standards and transpar-
ent security practices promote trust and accountability. The sharing of resources
and mechanisms between different components should be minimized, reducing the
impact of a single point of failure. Finally, security measures should be user-friendly
and intuitive, encouraging adoption and compliance.

Implementing Security by Design in the IoT faces several challenges. Many
IoT devices have limited processing power and memory, making it challenging to
implement complex security mechanisms. The wide variety of devices and pro-
tocols makes standardization difficult. Integrating security into existing systems
can be complex and costly. There’s a shortage of skilled security professionals in
IoT security. Keeping up with the latest security threats and vulnerabilities is also
challenging. To address these challenges and promote Security by Design, several
standards and reference architectures have been developed. The NIST Cyberse-
curity Framework provides standards, guidelines, and best practices for managing
cybersecurity risk. The OWASP Internet of Things Project offers resources and
guidance on securing IoT devices and systems. The Industrial Internet Consortium
(IIC) Security Framework provides a security framework for industrial IoT systems.
The ISO/SAE 21434 Road Vehicles – Cybersecurity Engineering is a standard for
cybersecurity engineering in road vehicles. The ETSI EN 303 645 Cyber Security
for Consumer Internet of Things specifies security requirements for consumer IoT
products. These standards offer guidance on security best practices, risk assessment,
and secure development lifecycles.
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Chapter 2

Technologies and Opportunities Overview

By Konstantinos Loupos

With billions of devices connected and massive volumes of data being generated,
the Internet of Things (IoT) is drastically changing our world. Although this inter-
connection creates new security and privacy challenges, it also offers enormous
opportunity for efficiency and innovation. We must make sure that IoT technolo-
gies are developed and used responsibly, with security and privacy as top priorities,
as our reliance on IoT devices in our homes, workplaces, and public areas grows.
Examining the particular technologies that power this networked world is crucial
to understanding the IoT’s implications for security and privacy. This covers not
just the actual gadgets but also the data management programs, security features,
and communication protocols that make them possible. An enormous variety of
devices, each with unique capabilities and limits, are included in the Internet of
Things. Sensors and actuators are examples of resource-constrained devices that are
difficult to secure and maintain since they are frequently placed in inaccessible or
remote areas. On the other side, more potent edge computing devices can enable
stronger security measures and carry out more intricate calculations. Designing and
putting into practice suitable security measures requires an understanding of the
features of various device kinds.

This chapter explores the capabilities, constraints, and security and privacy con-
cerns of the technologies that support the Internet of Things. From resource-
constrained sensors to potent edge computing devices, we will look at the wide
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variety of gadgets that make up the Internet of Things ecosystem. Additionally,
we will examine the several communication protocols that allow these devices to
communicate and share information, pointing out both their advantages and disad-
vantages in terms of security. This chapter will also look at the ways that the Internet
of Things might improve security and privacy. We’ll look at how IoT technology
can be used to enhance security across a range of areas, including data protection,
cybersecurity, and physical security. We’ll also talk about how the Internet of Things
can enable people to take charge of their own privacy by giving them the resources
and technology they need to handle their personal information and safeguard their
online privacy.

But there are also a lot of security and privacy issues with the Internet of
Things. Implementing standardized security measures is challenging due to the IoT
ecosystem’s extreme size and variability. Many IoT devices have limited resources,
which makes it difficult for them to provide sophisticated security features. Man-
aging device identities and security credentials is made more difficult by the IoT’s
dynamic nature, which involves devices being added, updated, and withdrawn from
the network on a regular basis. Furthermore, privacy issues and possible misuse are
brought up by the way IoT devices gather and use personal data. Adoption may
be hampered by a lack of control and openness over data collection procedures.
A multifaceted strategy including technology innovation, legal frameworks, and
ethical considerations is needed to address these issues. An extensive review of the
potential and technologies influencing IoT security and privacy will be given in
this chapter. We may strive toward a future where the Internet of Things is uti-
lized responsibly and ethically, optimizing its advantages while protecting security
and privacy, by comprehending the potential and constraints of IoT technologies,
as well as the opportunities and problems they provide. The work presented in
this chapter is directly linked with the work done in the ERATOSTHENES EC
research project.

2.1 Introduction

The Internet of Things (IoT) is rapidly transforming our world, connecting billions
of devices and generating very larger amounts of data including personal or other
data. This brings large prospects for innovation and efficiency, but it also raises new
challenges for security and privacy that are constantly rising, further increasing the
technology spectrum and requirements. It us true that we are becoming increas-
ingly reliant on IoT devices in our homes, workplaces, and public spaces, while it
is crucial to ensure that these technologies are developed and deployed responsibly
and in a trusted manner, with security and privacy as paramount considerations.
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This chapter describes some technologies underpinning the IoT, exploring their
capabilities, limitations, and implications for trust, security and privacy. Later, in
this chapter and the upcoming ones, we will examine the diverse range of devices
that comprise the IoT ecosystem, from resource-constrained sensors to powerful
edge computing devices. We will also explore the various communication protocols
that enable these devices to interact and exchange data, highlighting their security
strengths and weaknesses. Furthermore, this chapter will examine the opportuni-
ties that the IoT presents for enhancing security and privacy. We will explore how
IoT technologies can be leveraged to improve security in various domains, such as
physical security, cybersecurity, and data protection.

Getting back to the challenges discussion, we need to highlight that the IoT
also presents significant challenges for security and privacy. The huge span, scale
and heterogeneity of the IoT ecosystem make it difficult to implement standard-
ized security measures. On top, the resource constraints of many IoT devices limit
their ability to support complex security mechanisms. The dynamic nature of the
IoT, with devices constantly being added, updated, and removed from the network,
poses challenges for managing device identities and security credentials. On top, the
collection and use of personal data by IoT devices raise concerns about privacy and
potential misuse. The lack of transparency and control over data collection prac-
tices can erode trust and create barriers to adoption. Addressing these challenges
requires a multiple and dynamic approaches, involving large technological innova-
tion, regulatory frameworks, and ethical considerations.

To fully grasp the implications of the IoT for security and privacy, it is essen-
tial to examine the specific technologies that drive this interconnected world. This
includes not only the devices themselves, but also the communication protocols,
data management systems, and security mechanisms that enable them to function.
The IoT encompasses a vast array of devices, each with its own capabilities and
limitations. Resource-constrained devices, such as sensors and actuators, are often
deployed in remote or inaccessible locations, making them challenging to secure
and maintain. More powerful edge computing devices, on the other hand, can per-
form more complex computations and support more robust security mechanisms.
Understanding the characteristics of different device types is crucial for design-
ing and implementing appropriate security measures. IoT devices communicate
with each other and with central servers using a variety of Communication Pro-
tocols, each with its own security strengths and weaknesses. Some protocols, like
MQTT and CoAP, are designed for lightweight communication and may not offer
strong security features. Others, like TLS and DTLS, provide robust encryption
and authentication but may be too resource-intensive for some devices. Choosing
the right communication protocol is essential for balancing security and perfor-
mance. The vast amounts of data generated by IoT devices require efficient and
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secure data management systems. Cloud platforms offer scalability and flexibil-
ity for storing and processing data, but they also raise concerns about data privacy
and security. Edge computing can address some of these concerns by processing
data closer to the source, but it also introduces new challenges for managing and
securing distributed data. A variety of security mechanisms can be employed to
protect IoT devices and data, including encryption, authentication, access control,
and intrusion detection. However, implementing these mechanisms in a resource-
constrained environment can be challenging. Lightweight security protocols and
efficient algorithms are needed to minimize the overhead on device resources.

Despite the challenges, the IoT also presents significant opportunities for
enhancing security and privacy. IoT technologies can be leveraged to improve phys-
ical security, such as through surveillance cameras, smart locks, and intrusion detec-
tion systems. In the large realm of cybersecurity, the IoT can enable real-time
threat detection and response, automated security patching, and improved net-
work visibility. Further, the IoT can empower individuals to take control of their
own privacy. Personal data management tools can help individuals track and man-
age their data, while privacy-enhancing technologies can provide anonymity and
pseudonymity. By giving individuals more control over their data, we can foster
trust and encourage the adoption of IoT technologies.

2.2 Technologies for Holistic IoT Security, Privacy and
Safety

Secure device design and production are critical to meeting the IoT industry’s
security requirements. Beginning with the design and production of the devices
themselves, security must be ingrained in the very fundamental processes and archi-
tecture of IoT systems. This entails adding security features to both software and
hardware to make sure that gadgets can withstand attacks and safeguard private
information. Hardware Security Modules (HSMs), like the OPTIGATM Trust
series from Infineon Technologies, offer secure key storage, encryption, and authen-
tication features in a hardware component. Only reliable software is loaded at
launch thanks to secure boot features, such as those in the U-Boot bootloader,
which stop malicious programs from compromising the device. Secure firmware is
equally crucial.

Another crucial component of comprehensive IoT security is protecting com-
munication pathways. This entails using strong authentication and encryption
procedures to safeguard data both at rest and in transit, guarding against denial-of-
service attacks, data tampering, and eavesdropping. A popular cryptographic tech-
nology called Transport Layer Security (TLS) encrypts data transferred between
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devices and cloud platforms to enable safe network communication. One well-
known open-source TLS implementation is the OpenSSL library. For Internet of
Things applications that demand real-time communication, Datagram Transport
Layer Security (DTLS), a variation of TLS made for use with datagram-based proto-
cols like UDP, is especially well-suited. A lightweight implementation created espe-
cially for limited IoT devices is provided by the TinyDTLS library. Secure tunnels
are created by virtual private networks (VPNs), such the well-known open-source
OpenVPN system, for sending data over open networks, protecting it from illegal
access and eavesdropping. For more secure and adaptable networking in Internet of
Things deployments, Software-Defined Networking (SDN), using platforms such
as OpenDaylight, offers centralized management over network traffic, enabling
dynamic security policies and enhanced network visibility.

Privacy and data security are also critical. Data availability, confidentiality, and
integrity must all be protected. This entails putting data security techniques like
data anonymization, access control, and encryption into practice. Data is shielded
against unwanted access and alteration by encryption, both in transit and at rest,
using methods like the popular Advanced Encryption Standard (AES). By limiting
access to sensitive information and features, access control mechanisms—such as
authorization frameworks like OAuth 2.0—make sure that only authorized parties
are able to use particular resources. Differential privacy and other data anonymiza-
tion and pseudonymization techniques de-identify personal data, making it chal-
lenging to trace it back to specific people while maintaining its analytical value.

An additional crucial element of comprehensive IoT security is Identity and
Access Management (IAM). Preventing unwanted access and data breaches
requires controlling the identities and access rights of individuals and devices. Dig-
ital certificates are used to encrypt communications and authenticate devices. Pub-
lic Key Infrastructure (PKI) offers a framework for managing these certificates.
Free TLS certificates are offered by Let’s Encrypt, a non-profit certificate authority.
As previously stated, OAuth 2.0 is an authorization framework that makes secure
delegated access possible. JSON Web Tokens (JWTs) enable authentication and
authorization in Internet of Things systems by providing a small and self-contained
method of securely transmitting data between parties.

Threat intelligence and security analytics are essential for proactively detect-
ing and reducing security threats. This entails putting threat intelligence platforms,
intrusion detection and prevention systems, and security information and event
management (SIEM) systems into place. A well-known SIEM platform, Splunk,
can gather and examine security data from several sources to reveal possible dan-
gers. An open-source IDPS called SNORT is capable of identifying and stopping
harmful network activities. A threat intelligence platform called VirusTotal exam-
ines files and URLs to find malware and other dangers.
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2.2.1 Dynamic Trust and Identity Management

A security model known as “dynamic trust management” continuously assesses
and modifies the trust relationships between IoT devices and users in light of a num-
ber of variables, including device behavior, environmental conditions, and secu-
rity policies. It makes it possible to take a more detailed and contextually aware
approach to security, enabling systems to react instantly to new threats and adjust
to shifting circumstances. Building confidence in the connected world requires a
dynamic approach to trust that reduces the dangers of harmful behavior and illegal
access while facilitating safe collaboration and data sharing. Dynamic trust man-
agement in the Internet of Things is made possible by a number of techniques and
technologies. Reputation systems are one example of this type of technology, which
uses the combined experiences of devices and users to determine how trustwor-
thy other people are. Reputation systems can detect malicious or untrustworthy
devices by combining input and observations from several sources. This enables
the system to take the necessary action, like removing the device from the network
or restricting its access rights. For instance, the European Union-funded CONFI-
DANT project created a distributed trust management system for the Internet of
Things that is based on risk assessment and reputation.

Behavioral analysis is another important tool that tracks user and device activity
to identify irregularities and possible security risks. Behavioral analysis can uncover
unwanted activities, including malware infections or unauthorized access attempts,
by establishing baseline behavior patterns and spotting variations from them. In
behavioral analysis, machine learning algorithms are essential because they allow
systems to recognize and adjust to changing threat patterns. The study by Sikorski
et al. [1], which suggests a machine learning-based method for identifying irregu-
larities in IoT networks, serves as an illustration of this. Decisions about trust can
also be influenced by contextual data, such as the location of the device, the time
of day, and the surrounding environment. For example, a device may be deemed
suspicious and subject to additional scrutiny or security measures if it suddenly
begins transmitting huge amounts of data at an odd time or location. Researchers
have presented the idea of “trustworthiness zones” in which the location of the
device and the security restrictions related to that zone dynamically modify the trust
levels. Huang et al.’s (2019) study [2], which suggests an IoT trust management
architecture based on trustworthiness zones, serves as an example of this. More-
over, security policies that specify trust relationships and access control guidelines
can be enforced thanks to policy-based trust management. The system can adjust to
new threats and vulnerabilities by dynamically updating these policies in response
to evolving security requirements or risk assessments. For instance, the policy may
be modified to limit access or demand extra authentication for specific device types
if a new vulnerability is found in those devices.
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In the Internet of Things, dynamic trust management has various advantages.
By offering a more precise and context-aware method of access control, it improves
security by allowing the system to react instantly to new threats and adjust to shift-
ing circumstances. By automating trust choices and minimizing the need for man-
ual involvement, it increases efficiency. By facilitating safe data exchange and com-
munication between people and trustworthy devices, it encourages teamwork. By
allowing the system to bounce back from security lapses and continue operating
even while hacked devices are present, it also boosts resilience. But there are draw-
backs to dynamic trust management as well. One difficulty is the intricacy of man-
aging and putting dynamic trust models into practice, which call for real-time data
processing and complex algorithms. The possibility of biasing trust judgments is
another difficulty, since the information used to gauge trust could be biased by
society. Additionally, protecting the privacy of sensitive data used in trust calcula-
tions is essential, necessitating careful consideration of privacy-preserving and data
anonymization strategies. Dynamic trust management is a crucial instrument for
IoT security in spite of these drawbacks. Systems can adjust to the changing threat
landscape and foster confidence in the globalized world by offering a more flexible
and adaptive approach to security. In order to build a more secure and reliable IoT
environment, ongoing research and development in this area is concentrated on
resolving the obstacles and constraints, creating increasingly complex trust models,
and combining dynamic trust management with other security solutions.

2.2.2 Lifecycle Management of IoT Devices

A key component of lifecycle management for IoT devices is creating and maintain-
ing distinct identities. This makes it possible to authenticate, authorize, and track
devices across the course of their lives. A popular solution for controlling device
IDs is Public Key Infrastructure (PKI), which offers a mechanism for creating and
maintaining digital certificates. These certificates can be used to authorize access
to resources, encrypt communications, and confirm the identification of devices.
For instance, a cloud-based PKI solution for controlling device IDs and protect-
ing communication in IoT installations is provided by the GlobalSign IoT Identity
Platform. Blockchain technology, which provides decentralized and impenetrable
identity registries, is also being investigated as a possible device identity manage-
ment solution. Decentralized identification and access management for IoT devices
is made possible by the IoTeX blockchain technology, guaranteeing safe and open
communication.

Setting up devices with the required settings and credentials to function safely
on the network is known as provisioning. This entails setting up secure communi-
cation channels, configuring network settings, and installing firmware. For devices
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to be correctly setup for security and to avoid unwanted access, secure provision-
ing is essential. A hardware-based security technique called the Trusted Platform
Module (TPM) can be used to store cryptographic keys, enable secure boot, and
authenticate devices.

Device performance and behavior must be continuously monitored in order to
spot irregularities, spot any security risks, and guarantee peak performance. Plat-
forms for device management offer resources for remote diagnostics, telemetry data
collection, and device health monitoring. For instance, with services like device reg-
istration, firmware updates, and remote troubleshooting, AWS IoT Device Man-
agement helps businesses to keep an eye on and manage their IoT fleets.

Patching vulnerabilities, enhancing performance, and introducing new features
to IoT devices all depend on firmware updates. However, if firmware updates are
not adequately secured, they may likewise pose security threats. Updates are verified
and authorized before being installed on devices thanks to secure firmware update
procedures, like those outlined in the Firmware Over-the-Air (FOTA) standard by
the Open Mobile Alliance.

To avoid data breaches and unwanted access, it is essential to safely decommis-
sion IoT devices when their useful lives are over or they are replaced. This entails
deleting the device’s data safely, removing it from the network, and rescinding its
login credentials. Data is permanently erased from the device using secure erasure
procedures, as those outlined in NIST Special Publication 800-88.

There are various advantages to IoT device lifecycle management done right.
Organizations may greatly increase the security of their IoT installations by con-
trolling device IDs, providing secure passwords, keeping an eye on device behavior,
and updating secure firmware. Proactive maintenance and ongoing monitoring can
help guarantee peak performance and avoid device breakdowns. Task automation
and process simplification are two ways that effective lifecycle management can
lower operating expenses. Organizations can adhere to security standards and data
protection laws with the use of lifecycle management.

2.3 AI Approaches for Trust and Identity Management
in IOT

With billions of devices connected and massive volumes of data being generated,
the Internet of Things (IoT) has completely changed the way we interact with the
outside world. Due to the possible vulnerabilities posed by each device, this inter-
connection creates new security and privacy challenges. The dynamic and changing
nature of the Internet of Things makes it difficult for traditional security methods to
keep up. More flexible, intelligent, and resilient security measures are made possible



26 Technologies and Opportunities Overview

by artificial intelligence (AI), which provides a potent suite of tools for improving
identity management and trust in the Internet of Things. AI systems are excellent
at sifting through enormous volumes of data from many sources, finding trends,
and forecasting outcomes, which makes security measures more proactive and suc-
cessful. AI can identify risks and irregularities, evaluate risk, confirm identities, and
manage trust in the context of identity and trust management including threat pre-
diction.

There are a series of added values that can be offered by automated solutions
of Artificial intelligence. These include: Anomalies and Threats detection (learn
normal behavior patterns of devices and users, enabling them to detect anomalies
that may indicate malicious activity. This can help prevent attacks before they cause
significant damage), Risk Assessment (assess the risk level of devices and users
based on various factors, such as their behavior, reputation, and context leading
to dynamic allocation of security resources and prioritization of threats), Identities
Verification (verify the identity of devices and users, using techniques such as facial
recognition, voice recognition, and behavioral biometrics preventing unauthorized
access and protect against identity theft), Trust management (dynamically manage
trust relationships between devices and users, adapting to changing conditions and
security policies towards more flexible and context-aware security mechanisms),
Future Threats Analysis and prediction (analyze historical data and identify pat-
terns that may indicate future threats, enabling proactive security measures and
preventing attacks before they occur).

There are usual AI Approaches for Trust and Identity Management in the IoT
including Machine Learning (ML) (algorithms that can learn from data without
explicit programming, enabling them to adapt to changing conditions and identify
patterns that may not be apparent to humans). Supervised learning, unsupervised
learning, and reinforcement learning are all being used in the context of IoT secu-
rity. Deep Learning (DL) (as a subset of ML uses artificial neural networks to learn
complex patterns from data. DL has been shown to be particularly effective in tasks
such as image recognition and natural language processing, which can be applied to
identity verification and threat detection in the IoT, Natural Language Processing
(NLP) (that enables computers to understand and process human language, which
can be used to analyze security logs, identify threats, and communicate security
information to users) and Computer Vision (to “see” and interpret images, which
can be used for tasks such as facial recognition and object detection).

Examples of AI-Powered Solutions are already being used to enhance trust and
identity management in the IoT such as FogHorn LightningTM (edge AI plat-
form provides real-time analytics and machine learning capabilities for IoT devices,
enabling anomaly detection, predictive maintenance, and other security functions),
Siemens MindSphere (cloud-based IoT operating system uses AI to analyze data
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from connected devices, providing insights into operations, performance, and secu-
rity), Google Cloud IoT Core (AI-powered services for IoT device management,
including anomaly detection and predictive maintenance).

Benefits of AI for Trust and Identity Management are numerous including
Improved Accuracy, Increased Efficiency, Adaptability and Scalability. There are
however serious limitations and challenges, despite the potential benefits includ-
ing Data Requirements (require large amounts of data to train and function effec-
tively. Obtaining and labeling this data can be challenging, especially in the context
of security, where sensitive data may need to be protected), Bias (AI algorithms can
inherit biases from the data they are trained on, which can lead to discriminatory
outcomes. It is important to address these biases and ensure that AI systems are
fair and equitable), Explainability (difficult to understand how some AI algorithms
make decisions, which can make it challenging to identify and correct errors or
biases), and Privacy (use of AI for security and identity management can raise pri-
vacy concerns, as it may involve collecting and analyzing sensitive data about indi-
viduals. It is important to implement privacy-preserving techniques and ensure that
data is used responsibly and ethically).
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The Internet of Things (IoT) is transforming our world, connecting countless
devices and enabling new levels of automation and data sharing. But this connec-
tivity also creates security risks, as each device becomes a potential target for attack-
ers. Traditional security methods often fall short in protecting these diverse and
widespread networks. Many IoT devices have limited resources, making it difficult
to implement strong security measures like encryption or complex authentication
protocols. The wide variety of devices and communication methods also makes it
challenging to establish consistent security standards, as a one-size-fits-all approach
simply doesn’t work in such a fragmented landscape.

The ERATOSTHENES project aims to solve these problems by creating a new
system for managing trust and identities in the IoT. This system is designed to
work across an entire network without relying on any central control point, mak-
ing it more resilient and less vulnerable to attacks that could compromise the whole
system. It’s automated for efficiency, meaning many tasks are handled automati-
cally without human intervention. It’s also transparent for accountability, allowing
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actions to be tracked and verified, which helps build trust among users and stake-
holders. Importantly, it prioritizes user privacy, giving users control over their data
and how it is used. By managing the entire lifespan of IoT devices, from initial setup
to eventual decommissioning, this system strengthens trust and security within the
network. It also complies with all relevant data protection and cybersecurity regula-
tions, like GDPR and the Cybersecurity Act, ensuring it meets the highest standards
for security and privacy.

One of the key challenges is the sheer variety of IoT devices, which makes it
difficult to get a clear picture of their security status. Existing methods for estab-
lishing trust often lack proper upkeep, and outdated software can be exploited by
attackers. This is further complicated by the fact that many IoT devices are “set it
and forget it,” meaning they are deployed in remote locations or inaccessible envi-
ronments where regular updates and maintenance are difficult. Another challenge
is managing the identities of devices and ensuring user privacy. A lack of security
training and proper protocols for both users and devices creates further risks, as
users may not be aware of the security implications of connecting their devices,
and manufacturers may prioritize functionality over security.

Blockchain technology offers a promising solution for improving IoT security.
Its decentralized and tamper-proof nature makes it well-suited for managing trust
and identities. Because blockchain records every transaction across multiple com-
puters, it’s incredibly difficult to alter or tamper with the data, ensuring its integrity
and reliability. The ERATOSTHENES solution includes several key components
to address these challenges. The Trust Manager & Broker calculates trust scores for
each device based on various factors and manages relationships between devices.
The MQTT Broker filters security-related events and stores session data, acting as
a central communication hub for security information. The Threat Modelling &
Risk Assessment component creates a virtual model of the system to identify poten-
tial threats and vulnerabilities. The MUD Manager interprets device information
and creates access control lists, determining which devices have access to which
resources. The Trust Agent Deployer manages security software on devices, ensur-
ing they are up-to-date and functioning correctly. The Trusted Execution Environ-
ment provides a secure area within the device for key services to run, protecting
them from tampering. And the Self-Sovereign Identity system gives users control
over their data and privacy, allowing them to manage their digital identities and
decide how their information is used.

ERATOSTHENES uses privacy-preserving credentials to enhance security dur-
ing authentication. This allows users to prove their identity without revealing
unnecessary personal information. It leverages Physical Unclonable Functions to
create unique keys for devices, exploiting tiny physical variations in their hard-
ware. A Distributed Ledger Technology provides a secure infrastructure for storing
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and managing critical information, ensuring its integrity and availability. A Cyber
Threat Intelligence Sharing Agent helps share security information across the net-
work, allowing different parts of the system to learn from each other and respond
to threats more effectively. And a Monitoring and Intrusion Detection System con-
stantly monitors the network for potential threats, using machine learning to iden-
tify suspicious activity and anomalies.

The effectiveness of the ERATOSTHENES solution is being tested in three real-
world pilot projects. One focuses on securing communication between vehicles
and infrastructure, ensuring the safety and reliability of connected cars. Another
secures a remote patient monitoring system, protecting sensitive patient data and
ensuring the integrity of medical devices. And the third uses unique device IDs and
secure data transfer methods to protect industrial networks, safeguarding critical
infrastructure and preventing disruptions.

3.1 Introduction

With its ability to connect billions of objects and provide previously unheard-of
levels of automation, data interchange, and ease, the Internet of Things (IoT)
is drastically changing our world. IoT devices are influencing every part of our
lives and industries, from industrial sensors and connected cars to smart homes
and wearable fitness trackers. To guarantee the security and privacy of people and
organizations, major security issues brought forth by this broad adoption must be
resolved. The enormous growth of the attack surface is one of the main security
issues with the Internet of Things. Every connected device is a possible point of
entry for bad actors, and because there are so many of them, it is very challeng-
ing to properly secure them all. Because IoT systems are scattered and heteroge-
neous, traditional security solutions—which were created for centralized networks
and personal computers—are frequently insufficient. In addition, a large number
of IoT devices are built with constrained memory, computing power, and battery
life. Because of this, it is difficult to put strong security measures in place without
sacrificing functionality or efficiency, such as encryption and authentication proce-
dures. Because of this, attackers looking to take advantage of weaknesses and obtain
sensitive information without authorization can easily target these devices. Another
major security concern is the heterogeneity of IoT devices. Numerous manufactur-
ers produce these devices, and each has unique communication protocols, software,
and hardware. It is challenging to create a single security posture and apply uniform
security standards throughout the IoT ecosystem due to this lack of standardization.

The security of data created and sent by IoT devices is another significant worry.
Large volumes of data, such as location data, behavioral patterns, and personal
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information, are gathered by these devices about users and their surroundings. This
data may be intercepted, altered, or misused in the absence of appropriate security
measures, which could result in identity theft, privacy violations, and other nega-
tive outcomes. These security issues are made worse by the intricacy of IoT ecosys-
tems. Various devices, platforms, and networks are frequently integrated into these
ecosystems, resulting in a complex web of relationships and interactions. Access
control regulations, data exchange methods, and communication protocols must
all be carefully considered in order to secure these interactions. To create uniform
security standards and best practices, stakeholders must work together at the ecosys-
tem level. Policymakers, network operators, software developers, and device man-
ufacturers are all included in this. Together, they can build an IoT ecosystem that
is more robust and safe. Another crucial component of IoT security is data gover-
nance. For the collection, storing, and processing of data produced by IoT devices,
organizations must set up explicit policies and processes. This entails putting data
anonymization and pseudonymization strategies into practice, getting user consent
before collecting data, and adhering to pertinent data protection laws.

IoT security also depends on user awareness and education in addition to these
technical precautions. Users must take precautions to protect themselves, such as
using strong passwords, updating software, and exercising caution when disclos-
ing personal information online, and be aware of the possible threats connected
devices may pose. Although the IoT presents many difficulties, they are not insur-
mountable. We can maximize the advantages of modern technology while reducing
the hazards by adopting a proactive and all-encompassing approach to security. All
parties involved—device manufacturers, software developers, network operators,
legislators, and users—must work together to accomplish this [1].

3.1.1 The ERATOSTHENES Project

Named after the famous Greek researcher, the ERATOSTHENES project seeks
to address the complex security issues affecting the Internet of Things (IoT). It
manages the full lifespan of IoT networks and focuses on a holistic approach to
security. This ambitious project is part of the European Commission’s intelligent
security and privacy management program and was given 6 million in funding.
ERATOSTHENES focuses on solutions for digital identification and distributed
trust management in these intricate networks. Under the coordination of INLE-
COM INNOVATION in Greece, a broad group of 14 partners from 8 different
countries work together on this project. The project begun in October 2021 and
will be completed on March 2025. ERATOSTHENES recognizes a number of sig-
nificant security obstacles impeding the development of an IoT environment that
is truly secure.
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First of all, it is very challenging to build trust and keep a clear image of the
overall security position due to the vast diversity of devices and providers involved
in the Internet of Things. The development of a cohesive and safe workplace is
hampered by the frequently inadequate effectiveness of current trust-enforcement
techniques and standards. Second, a lot of Internet of Things devices don’t have fre-
quent firmware updates or security patches installed. They become easy targets for
attackers as a result of being exposed to known vulnerabilities and exploits. Thirdly,
current procedures for safeguarding the privacy of user and device data frequently
lack transparency. Users are frequently kept in the dark about the handling of their
data.

Significant challenges are also created by a lack of proper security training and
the adoption of security measures for both devices and people. Simply put, a lot of
users are unaware of the security risks associated with using linked devices. Lastly,
inadequate information exchange with cyberattack response teams, such Computer
Emergency Response Teams (CERTs) and Computer Security Incident Response
Teams (CSIRTs), impedes quick reaction and security threat mitigation. ERATOS-
THENES is creating a unique Trust and Identity Management Framework espe-
cially for IoT devices in order to address these issues. This structure functions inde-
pendently of a central authority and is dispersed throughout the network. It is
more robust and less vulnerable to single points of failure because of its dispersed
approach [2].

The following fundamental ideas guided the design of the framework:

• Automation: It reduces the human strain of security management by stream-
lining procedures for greater efficiency.

• Auditability: It facilitates security audits and ensures accountability by
enabling transparent tracking and verification of actions.

• Privacy: It gives people more control over how their information is utilized
and prioritizes their data privacy.

This framework seeks to strengthen trust, protect identities, and improve the
overall resilience of the IoT ecosystem by efficiently managing the lifecycle of IoT
devices, from initial deployment to decommissioning. Crucially, the framework
will be constructed in accordance with pertinent laws, including the Cybersecurity
Act, GDPR, and the NIS Directive, guaranteeing that it satisfies moral and legal
requirements for data security and protection.

3.1.2 Challenges and Opportunities

Many IoT devices, such basic sensors or smart lightbulbs, are made with little mem-
ory and processing capability. Because of this, it is challenging to apply strong
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security measures, such as robust encryption, without compromising their effi-
ciency or functionality. Similar to attempting to place a large security door on a tiny
garden shed, it may not be feasible or even feasible. Additionally, some IoT devices
have out-of-date software or no built-in security safeguards, leaving them vulnera-
ble to manipulation, data breaches, and illegal access. Imagine someone accessing
your security camera feed to snoop on you or breaking into your smart thermostat
and turning up the heat.

Another level of complication is introduced by the IoT ecosystem’s fragmented
structure. Because of the wide variety of platforms, communication protocols, and
devices, it is challenging to create uniform security requirements. The compo-
nents may not fit together correctly, much like when you try to assemble a puzzle
with pieces from various sets. It is difficult to guarantee security and compatibility
throughout the IoT ecosystem due to this lack of standards. Lax restrictions don’t
always help, and some manufacturers regrettably put new features and usefulness
ahead of security. Users’ privacy is jeopardized and they become open to attacks.

In addition to these fundamental difficulties, there are a number of other impor-
tant problems that must be resolved in order to secure IoT networks and devices.
Numerous devices can be taken over by hackers, who can then use them to launch
botnet attacks, which are large-scale attacks. These assaults have the potential to
destroy vital infrastructure, steal data, and interfere with internet services. Con-
cerns over the usage and security of the personal data collected by numerous IoT
devices, including location data, browsing history, and health information, have
been raised. This data may be intercepted, misused, or sold to third parties without
your permission if appropriate security measures are not in place. For data trans-
ferred between devices to be protected, secure communication routes are necessary.
Imagine your voice commands being sent over the internet by your smart speaker,
unencrypted, so that anyone might listen in. To maintain confidentiality and stop
unwanted access to private data, strong encryption is essential. To confirm the iden-
tification of users and devices, authentication procedures are required. This guaran-
tees that only authorized individuals may operate your devices and stops unwanted
access. Imagine someone breaking into your house without your knowing by using
your smart lock.

It is essential to manage who can access and use IoT devices. To guarantee that
users have control over their data and devices, this involves putting user consent
procedures and access control policies into place. Security may also be jeopardized
by flaws in the production and delivery procedures. Consider a malevolent actor
tampering with devices before they are delivered to customers, introducing malware
or backdoors that could be used later. Hackers can easily crack the weak encryption
used by some devices. In addition to endangering your data, this enables hackers
to intercept and alter device-to-device connections. It can be exceedingly difficult
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to maintain security over a wide network of different devices. To efficiently moni-
tor and regulate access, identify threats, and handle incidents, centralized security
management technologies and procedures are needed. The low resources of many
IoT devices limit their capacity to identify intrusions. Because of this, they are sus-
ceptible to complex attacks that get beyond established defenses. Customers find
it challenging to select secure equipment due to the absence of defined security
testing and certification procedures. Customers are now responsible for researching
and comprehending the security features of any device they buy, which can be a dif-
ficult undertaking. Most concerning of all is the possibility that compromised IoT
devices may be exploited as entry points to assault entire networks, endangering
everything. When it comes to vital infrastructure, such as power grids or healthcare
systems, this is particularly troubling. Strong security measures are vitally necessary
in these locations to avoid possibly devastating outcomes [3].

3.1.2.1 The Heterogeneous Landscape of IoT Security Challenges

The way we live, work, and engage with the world is being revolutionized by
the Internet of Things (IoT), which is creating a complex web of interconnected
devices. However, the cost of this interconnection is a complicated security environ-
ment that is always growing and changing. Securing this digital frontier is extremely
difficult because to the wide variety of devices, specs, and suppliers that make up
the IoT ecosystem. Consider a busy metropolis with a wide variety of structures,
each with its own distinct architecture, security measures, and occupants. This is
akin to the IoT landscape, where billions of devices with varying functionalities
and security postures coexist. Because of this heterogeneity, it is quite challenging
to fully comprehend the security threats that exist in an IoT network. It’s similar
to attempting to judge a city’s level of security based on a few isolated buildings.
The IoT ecosystem’s wide range of devices are produced by numerous manufactur-
ers and sellers, each with unique design principles, security procedures, and update
schedules. This lack of standardization and coordination creates a fragmented secu-
rity landscape where establishing trust becomes a significant hurdle. How can you
be certain that a linked car from one manufacturer complies with the same secu-
rity regulations as a smart refrigerator from another? The quick development of the
Internet of Things frequently outpaces the capabilities of current trust protocols
and standards. Many devices are installed with out-of-date firmware or software,
which leaves them vulnerable to attacks. It’s similar to having a city full of struc-
tures with antiquated security, which makes them prime targets for burglars.

Furthermore, the security threats are increased when these devices are not prop-
erly maintained and controlled. Many IoT devices are placed in remote areas or in
settings where it is not feasible to perform routine security audits and updates. This
exposes them to possible threats and compromises, such as leaving a building’s doors
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open and unattended. These security problems may have far-reaching effects. IoT
devices that have been compromised may be used as springboards for assaults on
other networks or devices, the theft of private information, or even the disruption
of vital infrastructure. Consider a hacker gaining access to a hospital’s network via
a weak medical equipment or taking over a traffic light network to wreak havoc. A
multi-layered strategy is essential to navigating this dangerous terrain. Manufactur-
ers of devices must put security first while designing and developing their products,
adding strong security features and patching vulnerabilities on a regular basis. To
safeguard their infrastructure and keep an eye out for questionable activities, net-
work operators must put robust security measures in place. Additionally, users must
be aware of the security threats connected to IoT devices and take precautions to
keep themselves safe, like creating strong passwords, updating software, and sharing
data with others.

3.1.2.2 Identity Management and Training Gaps

When it comes to identity management, the Internet of Things (IoT) poses a spe-
cial difficulty. The Internet of Things is a huge network of devices, each with its
own distinct identity and potential security flaws, in contrast to traditional com-
puter networks where users are the main focus. This brings up important issues
regarding the management and security of these identities as well as the protection
of user and device privacy. Transparency is frequently lacking in current IoT iden-
tity management procedures. Users might not be aware of how their connected
devices are gathering, storing, and using their data. In a similar vein, a network’s
authorization and authentication procedures could be inadequately thought out or
executed. This lack of openness damages confidence and makes it challenging to
hold people accountable in the event of security breaches.

Imagine living in a smart house with numerous linked devices that are all gath-
ering information about your daily activities and habits. Are you aware of who has
access to this data, where it is going, and how it is being used? Users are unaware of
the security and privacy implications of their connected devices if identity manage-
ment procedures are unclear and opaque. The absence of proper security procedures
and training for both users and devices exacerbates this problem. Many consumers
might not take the required safety precautions because they are ignorant of the secu-
rity threats connected to IoT devices. Similar to this, a lot of devices are deployed
with default settings or lack fundamental security protections, making them open
to assaults. Furthermore, a lack of defined protocols and communication channels
frequently hinders the efficacy of information sharing with incident response teams,
such as Computer Emergency Response Teams (CERTs) and Computer Security
Incident Response Teams (CSIRTs). This makes it more difficult for everyone to
work together to quickly resolve security threats and vulnerabilities. It is comparable
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to a neighborhood watch in which nobody is aware of how to call the police in an
emergency. Reacting to security events and lessening their effects require efficient
information exchange.

A thorough strategy to identity management and security training is required
to address these issues. This entails creating transparent and unambiguous identity
management procedures that inform users about the collection and use of their data
and enable safe, transparent authentication and authorization of devices. In order to
educate consumers about the security threats connected with IoT devices and how
to protect themselves, it is also necessary to provide them with thorough security
training. It is crucial to put strong security standards in place for devices, making
sure they have solid security features and are updated frequently to fix vulnerabili-
ties. Lastly, timely information exchange regarding security risks and vulnerabilities
would be made possible by the establishment of efficient communication channels
with incident response teams. By addressing these challenges, we can create a more
secure and trustworthy IoT ecosystem where users can confidently embrace the
benefits of connected devices without compromising their privacy or security [4].

3.1.2.3 Blockchain

Blockchain technology provides a glimmer of light within the complicated security
environment that the Internet of Things (IoT) presents. Think of blockchain as
a digital ledger that is spread over several computers and records and verifies each
transaction. Blockchain is a potent tool for boosting security in the IoT ecosystem
because of its decentralized and impenetrable nature, which makes it extremely
impossible for anyone to change or manipulate the data.

The capacity of blockchain to handle identities and build trust in the Internet
of Things is one of its main advantages. On the blockchain, each device and user
may have a distinct, verified identity, making authorization and authentication con-
siderably simpler. This stops harmful activity and unauthorized access by limiting
network and data access to trustworthy devices and people. Consider it your IoT
devices’ digital passport system. Every device has a distinct “passport” that is kept on
the blockchain, confirming its identification and enabling safe communication with
other users and devices. This lowers the possibility of single points of failure and
does away with the requirement for a central authority to control IDs. Blockchain
can also make it easier for devices to communicate securely with one another. It
guarantees that only authorized parties can access and decode data by encrypting
and verifying it within the blockchain itself. In the Internet of Things, where sen-
sitive data is continuously transferred between devices, this is essential. Consider a
factory with a network of sensors that communicate with one another to keep an
eye on and manage the production process. By prohibiting hostile interference and
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data modification, blockchain technology can guarantee that this connection is safe
and impenetrable.

Additionally, blockchain can provide firmware update integrity. Attackers are
unable to alter or install harmful software because these changes are recorded and
validated on the blockchain. Given that many IoT devices are placed in remote areas
and might not be readily accessible for manual upgrades, this is especially crucial.
Blockchain has the potential to offer decentralized governance, data integrity, and
user privacy in the Internet of Things in addition to security. Blockchain can pro-
vide people more control over their data and how it is used by facilitating safe and
transparent data management.

3.2 The ERATOSTHENES Project Technical Scope

3.2.1 Summary of Outcomes

ERATOSTHENES is creating a new system for managing trust and identities in
the Internet of Things. This system is designed to work across an entire network of
devices without relying on any central control point. This makes it more resilient
and less vulnerable to attacks. The system is automated, which means it can handle
many tasks automatically, making it more efficient. It’s also designed to be trans-
parent, allowing actions to be tracked and verified. This ensures accountability and
helps build trust. Most importantly, the system prioritizes user privacy. It gives users
control over their data and ensures their privacy is protected. By effectively manag-
ing the entire lifespan of IoT devices, from when they are first connected to when
they are retired, this system strengthens trust and security within the network. It
also makes the entire system more resilient to attacks and disruptions. Finally, the
system is designed to comply with all relevant data protection and cybersecurity
regulations, ensuring it meets the highest standards for security and privacy [5–7].

3.2.2 Technical Description of Components

3.2.2.1 Dynamic Trust Management

To build trust within the IoT network, the ERATOSTHENES solution uses a spe-
cial “Trust Broker” mechanism. This mechanism has several components that
work together to ensure security. Initially, a “trust score” is determined for every
device. Similar to a credit score, this number indicates a device’s level of reliability.
The “trust manager,” which also maintains track of device relationships and com-
municates trust data to the network, performs this computation. It securely stores
and distributes this data using a technique known as Hyperledger Fabric. Consider
the trust manager as a central repository that collects data about every device and
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establishes its level of trustworthiness. Other components of the system are then
informed of this information. The “MQTT Broker,” which serves as a filter for all
events pertaining to trust, comes next. It also records the devices that are currently
in use and any messages that they may have overlooked.

Think of this broker as a receptionist who manages all trust-related correspon-
dence, both inbound and outbound. It ensures that no crucial signals are missed
and that only pertinent information is conveyed. The “Threat Modelling & Risk
Assessment (TMRA)” module is another crucial component of this process. To
find possible risks and determine a risk score for every device, this module builds a
virtual model of the system. Additionally, it has the ability to dynamically modify
these scores in response to fresh data or system modifications. Consider this mod-
ule as a security guard that continuously checks the system for possible threats and
evaluates each device’s risk level.

Last but not least is the “MUD manager,” which decodes data regarding the
device’s access requirements from the manufacturer. After that, it generates access
control lists (ACLs), which function similarly to digital “permission slips” and spec-
ify what each network device is allowed to access. Consider the MUD manager as
a permissions administrator who controls which network resources are accessible
to which devices. The Trust Broker mechanism offers a thorough method of con-
trolling security and trust in the Internet of Things network by integrating these
elements. It guarantees secure communication between trusted devices and restricts
access to the network.

The Trust Agent Deployer (TAD) is a unique tool used by the Trust Manager
& Broker (TMB). Consider the TAD as a manager for “trust agents”—small soft-
ware components that aid in maintaining network device security. The TAD over-
sees these agents’ whole lifecycle, not just their installation. This entails updating
them, repairing them in the event that they malfunction, and even swapping them
out for more recent, secure models. The TAD continuously collects data from the
devices it oversees in order to accomplish this efficiently. It uses this data to make
informed decisions about how to control the software on every device. It is com-
parable to a gardener who continuously checks on their plants to ensure they are
receiving enough nutrients, sunlight, and water. The TAD simultaneously main-
tains a list of every trust agent that is available. This enables it to select the appropri-
ate agent for every device according to its unique requirements and attributes. Each
item is paired with the ideal trust agent to ensure its safety, much like a dating ser-
vice. When trust agents malfunction or are compromised, the TAD is also essential
in repairing them. It can either replace them completely with a new, updated version
or return them to a safe state. It’s like a mechanic who can repair a damaged car part
or replace it with a brand new one. To put it briefly, the TAD acts as a committed
protector for the trust agents, making sure they are always operating properly and
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safeguarding the devices in the network. This helps maintain the overall security
and trustworthiness of the IoT ecosystem.

Consider certain IoT devices to have an integrated, safe vault. This “vault,”
known as a Trusted Execution Environment (TEE), guards against unauthorized
parties accessing or altering crucial software components. This safe vault is used by
several components of the ERATOSTHENES system. This secured environment,
for instance, is where the “Advanced Data Protector,” which protects sensitive data,
operates. This vault is also where components of the system that handle trust and
digital identities function. The TEE improves the system’s overall security by offer-
ing this safe area. It serves as a fortress, preventing attacks on vital operations and
guaranteeing their secure operation. Although trust, identities, and data protection
are not directly managed by the TEE, these tasks are indirectly supported by it by
offering a safe environment in which its essential components operate. It ensures
the stability and security of the entire building, acting as a foundation.

3.2.2.2 Advanced Identity Management

ERATOSTHENES puts users in control of their own digital identities and data. It
does this through a system called “Self-Sovereign Identity” (SSI), which you can
think of as a digital ID card that you own and control. This SSI system has two
main parts:

1. SSI Management: This part lives on a central server and helps create and
manage user identities. It works with a special tool called the “Ledger uSelf
Broker” to do this. Imagine this as the office where you would go to get your
ID card issued.

2. SSI Agent: This part lives directly on your IoT device. It allows your device
to use its digital ID card to interact with the system securely. Think of this
as the card reader that checks your ID card.

The Trusted Execution Environment (TEE), a secure section of your device,
is where the SSI Agent operates to further increase security. This guarantees that
all of your personal data is safe and available only in this restricted area. Keeping
your ID card kept in a safe is analogous to that. Additionally, the TEE employs
cutting-edge data protection mechanisms to provide an additional degree of secu-
rity, guaranteeing that your private data is only accessible within the safe hardware
environment. It is comparable to having a security guard guard your safe.

ERATOSTHENES employs cutting-edge technologies to safeguard your iden-
tity and private data. One of these devices functions similarly to a unique ID card,
revealing only the information that is strictly required and concealing the rest. A
method known as “privacy-preserving Attribute-Based Credentials” (p-ABC) is
used to do this. Consider having to provide proof of age in order to attend a movie



40 ERATOSTHENES Project Integrated Solution

theater. You can use this unique ID card to merely demonstrate that you are of
legal age without disclosing your name, address, or other personal information, as
opposed to presenting your full driver’s license with all of your personal informa-
tion. Additionally, the system makes use of a technology known as “Distributed
Ledger Technology” (DLT), which functions similarly to an open public record
book. Important data, including as public keys and credential types, are kept
in this record book, but your personal information is not. ERATOSTHENES
employs a unique module that enables safe authentication without disclosing
extraneous information in order to further improve privacy. It functions similarly
to a secret code that verifies your identification without disclosing any personal
information.

Privacy is safeguarded during the identity management process thanks to the
cooperation of this module with other system components. Another important
function is played by the public record book (DLT), which offers transparent
and safe means of exchanging information without jeopardizing your privacy.
ERATOSTHENES also employs other instruments to bolster security. It’s similar
to having several levels of security, such as a distinct fingerprint for every device and
a unique system to safeguard private data. Combining these cutting-edge methods,
ERATOSTHENES develops an identity management system that protects your
personal information in the Internet of Things and provides you control over your
data. Identity information security is a top priority for ERATOSTHENES, partic-
ularly when it comes to retrieving such data from your Internet of Things devices.
To protect this data, it makes use of a unique part known as the Advanced Data
Protector (ADP).

Think of the ADP as a secure storage container on your device, specifically
designed to protect your identity data. This container utilizes your device’s built-in
security features to ensure your information is encrypted and stored safely. This
secure storage is important for backing up your identity data to a separate server.
However, because the ADP is so focused on security, it makes it a bit tricky to
simply export your information. To make backup and recovery easier, ERATOS-
THENES is enhancing the ADP. The goal is to find a balance between keeping
your data secure and making it accessible when you need to recover it.

Unique and unpredictable keys are essential for strong security, and ERATOS-
THENES employs a new method known as PUFs (Physical Unclonable Functions)
to accomplish this. PUFs provide unique and unclonable keys by exploiting small,
random physical variances within each device, such as variations in the material it is
built of. It’s similar to how every device has a distinct fingerprint. The IoT devices
themselves are referred to as “low-level” entities in the ERATOSTHENES system,
while the central components that oversee the system are referred to as “high-level”
entities. Imagine it like employees and managers in a business.
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The clients (devices) can only interact with specific managers (system compo-
nents) after they’ve been registered and authorized. This registration process hap-
pens during manufacturing to ensure the devices are secure from the start. Each
device uses special applications to connect securely with the system. These applica-
tions are like secure communication channels that ensure only authorized devices
can connect. They are also tailored to each specific device, preventing counterfeits
and duplicates. For highly sensitive devices, these applications can even self-destruct
if they detect any tampering, adding an extra layer of protection. It’s like a secret
agent destroying their communication device if it falls into the wrong hands. The
system can also be combined with other security measures to protect against vari-
ous attacks, like someone trying to inject malicious code or manipulate the device’s
software. The flexible design of ERATOSTHENES allows for customized security
applications for each device. It can even be fully automated, making it work like a
security service that constantly protects the system. In essence, ERATOSTHENES
leverages PUFs and other security measures to create a robust and adaptable security
ecosystem for the IoT. This ensures that devices are authenticated, communication
is secure, and sensitive data is protected from unauthorized access and tampering.

3.2.2.3 Lifecycle Consideration of IoT Devices

“Distributed Ledger Technology” (DLT), a unique technology used by ERATOS-
THENES, functions similarly to a shared and secure digital ledger. This
blockchain-based technology facilitates the seamless operation of many system
components. Consider this digital record book as a primary repository for sharing
and storing vital information. This includes details regarding cyberthreats, trust
scores, and device IDs. This shared record book is used by various system com-
ponents, such as the Trust Manager and Identity Manager, to access and maintain
their data. Because Hyperledger Fabric provides the necessary security, flexibility,
and storage capacity, ERATOSTHENES employs it expressly for this purpose.

Different portions, referred to as “channels,” within this shared record book cor-
respond to various system components. Additionally, there is a dedicated channel
that facilitates information exchange between various regions. It’s similar to hav-
ing safe communication and information sharing amongst various departments
inside a business. Additionally, ERATOSTHENES makes use of special agents who
exchange data regarding cyberthreats. By gathering information from many sources
and disseminating it to other areas of the system, these agents serve as messengers.

Consider these agents as interconnected security personnel who work together
to maintain the system’s security. To enable other guards to respond, they collect
information about possible threats and disseminate it to them. These agents operate
in two ways: they gather data from external sources and from within the system,
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such as an intrusion detection system. Other components of the system are then
given access to this data in order to enhance their security protocols.

3.2.2.4 Intrusion Detection for IoT

Additionally, this security system employs a method known as “federated learning”
to detect attacks on network edge devices. Consider a system of security cameras
that communicate with one another to provide a comprehensive view of the sit-
uation. As a result, the system is better equipped to learn and adjust to emerging
threats. In order to keep the entire community secure, everyone shares their obser-
vations, just as in a neighborhood watch.

These elements work together to form a potent threat analysis and detection sys-
tem. They make it simple to monitor and react to security occurrences by offering
unified warnings via a common interface. Security staff can swiftly evaluate and
react to any situation thanks to a central security hub that gets notifications from
all of the network’s cameras and sensors.

Through a communication link, the system also exchanges data with other com-
ponents of the ERATOSTHENES security system. This makes it possible to react
to any risks that are identified in a coordinated manner. It functions similarly to
a direct channel of communication between the security cameras, the central hub,
and the ground-based security staff, guaranteeing that everyone is aware of any
security breaches and can cooperate to resolve them.

3.3 Results Validation and Use Cases

The deployment of all technological components (as previously mentioned) into
three industrial use cases is part of the robust integration and deployment stage
that the various technologies of the ERATOSTHENES security stack are presently
undergoing. These pilots operate as hands-on tests to confirm the ERATOS-
THENES solution’s operational and technical efficacy. Below is a discussion of the
three pilots:

V2X Communication Security: Vehicle-to-Everything (V2X) communication in
a regulated setting is the main focus of the first pilot. It looks at two important use
cases: standardized software update procedures for connected cars and cybersecurity
protocols. The pilot will illustrate the difficulties in establishing confidence in V2X
communication, especially while software updates are being implemented. Next,
it will demonstrate how ERATOSTHENES technology can identify malevolent
actors, detect network anomalies, and keep systems resilient to cyberattacks. The
project’s capacity to resolve security issues and guarantee the dependability of V2X
communication infrastructure is highlighted by this trial.
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Remote Patient Monitoring: A remote patient monitoring system for long-term
conditions like COPD or diabetes is the focus of the second trial. By enabling
patients to control their diseases and get care from home, this method encourages
self-care and lowers the number of hospital visits. The Personal Health Gateway,
which is situated in each patient’s home, is a crucial part of this study. Data from a
variety of medical sensors is gathered by this gateway and safely sent to cloud-based
services for monitoring and analysis.

Disposable IDs for Industrial Network Security: The third pilot, which aims
to secure connected devices, data transfer, and analytics in dynamic and heteroge-
neous industrial networks, is focused on Industry 4.0 applications. This project,
called “Industry 4.0 (disposable IDs),” uses PUFs and DLT in tandem to create
secure, one-of-a-kind disposable IDs for every device. By serving as unique device
fingerprints, these IDs allow for safe network identification. By guaranteeing strong
device identification and improving data security and reliability, this novel method
fortifies the industrial network’s overall security architecture.
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Contemporary IoT applications are faced with unprecedented security challenges:
they often operate in untrusted or adversarial environments, and the large number
of devices creates management complexity and amplifies attack surfaces that are
easily beyond manual control. These challenges are exacerbated by limited compu-
tational capabilities of some devices and the sheer heterogeneity in terms of tech-
nology and capability across device classes.

As traditional security by design approaches focus on introducing and impos-
ing specific countermeasures, these solutions are rigid and static by nature. They
are unfit for dealing with the highly dynamic and changing reality in which new
technologies continuously emerge, devices migrate, and new attacks and vulnera-
bilities are discovered at high frequency. In this chapter, we present our joint work
on dynamic trust, more specifically, we present a set of mutually reinforcing and
integrated technologies that contribute to the run-time assessment of device trust.
This notion of trust is highly-context specific, and takes into account (i) device
capabilities, (ii) application context, (iii) prior knowledge of devices, and (iv) exist-
ing security guarantees.
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The establishment and the continuous re-assessment of trust scores is a key
enabler for building adaptive systems that change their behavior and expectations
in function of these trust scores, and this risk-adaptive capability in the end leads
to more resilient and secure IoT systems.

Glossary of Terms and Abbreviations Used

Abbreviation Definition
ADP Advanced Data Protector (or Data Protector)
API Application Programming Interface
CPS Cyber Physical System
CPU Central Processing Unit
CTI Cyber Threat Intelligence
DFD Data Flow Diagram
DID Decentralized Identifier
DLT Distributed Ledger Technologies
DoS Denial-of-Service
DT Digital Twin
DTA Deployer of Trust Agents (or Trust Agent Deployer)
FAIR Factor Analysis of Information Risk
gRPC Google Remote Procedure Call
ID Identifier
IDS Intrusion Detection System
IoT Internet of Things
MADM Multi-Attribute Decision Making
MQTT Message Queuing Telemetry Transport, a publish-subscribe

messaging protocol
MQTTS Secure variant of MQTT
MUD Manufacturer Usage Description
OP-TEE Open-source operating system for Arm-TrustZone TEEs
OS Operating System
PDP Policy Decision Point
PoSE Proof of Secure Erasure
PUF Physical Unclonable Function
QEMU Quick Emulator
RA Remote Attestation
REST Representational State Transfer, an architectural style for APIs
RPC Remote Procedure Call
SC Smart Contract
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SP Service Provider
SPARTA Threat modeling tool developed at DistriNet
SR Service Requester
SSH Secure Shell, a protocol for secure communication
SSI Self-Sovereign Identity
SSL Secure Sockets Layer, a standard for encrypted communication
STRIDE A threat modeling acronym for Spoofing, Tampering,

Repudiation, Information disclosure, Denial of service, and
Elevation of privilege.

TA Trust Agent
TCG Trusted Computing Group
TEE Trusted Execution Environment
TLS Transport Layer Security
TMB Trust Manager and Broker
TMRA Threat Modeling and Risk Assessment
TOPSIS Technique for Order of Preference by Similarity to Ideal Solution
URL Uniform Resource Locator
UUID Universally Unique Identifier
VC Verifiable Credentials
VP Verifiable Presentations
W3C World Wide Web Consortium
ZKP Zero-Knowledge Proof

4.1 Introduction

Contemporary Internet of Things (IoT) applications rely on diverse IoT devices
embedded typically in an untrusted environment such as public spaces or within
the physical control of users that may be incentivized to attack or game the overall
system. For example, smart vehicles can be tampered with by their owners or other
malicious actors, which may negatively impact the behavior of a smart traffic appli-
cation. In other words, the trustworthiness of an IoT application depends on the
trustworthiness of the individual IoT devices. In this context, ‘trustworthiness’ of
an IoT device encompasses several aspects, including trust in the device’s identity,
trust in its behavior, and trust in the accuracy of the data produced by it. There-
fore, measures should be taken to detect devices which are not who they claim to be,
behave in unexpected ways, or produce inaccurate data, and to tackle such issues.
Furthermore, communications with IoT devices in untrusted environments should
also be secured to prevent tampering and information disclosure threats. Finally,
as IoT devices are usually heterogeneous in nature, and some may employ legacy
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Figure 4.1. High-level overview of the trust components and their interaction.

technologies, managing device trust and secure communications becomes even
more challenging. This chapter describes the efforts taken during the ERATOS-
THENES project (Horizon 2020 research and innovation program under grant
agreement No 101020416) to foster trust management throughout the device life
cycle.

From the architectural perspective, a trust layer is created in the Edge that
hinges upon the interplay between a central Trust Manager and Broker (TMB)
that interacts with a Trust Agent (TA) installed on the IoT device. This is shown in
Figure 4.1.

The TA (depicted on the left) runs on the IoT device and locally collects infor-
mation such as contextual parameters (e.g., CPU/memory/storage usage, services
available and their version numbers, etc.) and relays them to the TMB, either on
demand (via a ‘pull’ interface), or proactively/recurrently (via a ‘push’ interface).

The TMB is a subsystem residing on the computational layer near the device
– the Edge – and subscribes to and aggregates this information coming from the
devices. It also subscribes to other external sources of information related to indi-
vidual devices. For example, when a device has migrated from a different domain,
prior device information such as trust scores are fetched through the Distributed
Ledger (DLT), which is a blockchain-driven information sharing system. Based on
all these inputs, trust calculation is performed by the Trust Manager, leading to a
score that expresses the extent to which the device can be trusted, and this device
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trust information is made accessible to trust consumers. For example, when the
user or the application wants to perform a certain action in the system, the access
control system, and more specifically the Policy Decision Point (PDP) may take
into account traditional elements such as user attributes but also can base specific
access decisions on the trust score of the device.

In the presented solution, these information exchanges between the TA and the
TMB are performed using the MQTT protocol. The fetching of local device con-
text is highly dependent on the nature of the device and the implementation of the
TA. The TMB itself shares trust calculation outcomes via MQTT events, but also
stores these trust scores in the aforementioned shared ledger (DLT).

The interplay between the device and the TMB is the main point of focus of this
chapter. The TMB itself groups a number of technologies and the trust calculation
algorithms take into account different types of security mechanisms that may or
may not be at play in the specific context of a device.

Several trust-related services and tools have been incepted, implemented, and
integrated in this broader architecture:

• The Threat Modeling and Risk Assessment (TMRA) module performs threat
modeling to evaluate specific threat scenarios—specific cases that may involve
security issues—in an application-specific manner. The TMRA creates and
maintains a digital twin model of the operational systems and performs
the automated generation of STRIDE threat scenarios and FAIR-based risk
quantification. Risk scores and outcomes are then shared with the TMB.

• The core mechanism described above hinges upon the availability and reli-
ability of Trust Agents on the IoT devices. Technology for the automated
(re)deployment of Trust Agents (DTA) on heterogenous devices has been
created with specific attention for practical feasibility and scalability of the
mechanism towards larger collections of devices (fleets) while dealing with
the spurious availability of the devices. Furthermore, to foster the availability
and integrity of the Trust Agents, specific support has been created for remote,
automatic and secure recovery/roll-back of the TA itself. In specific scenarios
where the integrity of the TA cannot be fully guaranteed, or when bootstrap-
ping new devices (e.g. upon initial enrolment), this mechanism provides a
key secure stepping stone.

• The capability of some device classes to support Trusted Execution Environ-
ments (TEE) is an enabler for trust. Trusted execution refers to the ability to
perform remote attestation, i.e. to remotely verify and ensure the correctness
of a computational outcome. Evidently, when such technology is available
on devices, it can be used and should be taken into account in trust cal-
culation, as the stronger guarantees of the correct execution on the devices
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greatly increase the trust in these devices. Specific middleware support has
been created to enable secure, remote communication to services running in
the TEE, which is crucial to attain the desired level of guarantee.

• The trust mechanism complicates the overall enrollment and bootstrapping
process of new devices. Indeed, it may occur that the overall system becomes
overly restrictive, i.e. that a new device has not yet provided any enabler for
trust, and thus is simply not allowed to perform any action, thus further
prohibiting any meaningful use. To alleviate this, and make the overall boot-
strapping process practically viable, the entire enrolment process or workflow
of a new device has been incepted, designed and implemented for a diverse
set of devices, heterogeneous in capability and level of support. The predom-
inant focus in these developments has been to come up with viable strategies
to deal with differences in device capability.

Together, these technologies contribute to a new approach of dealing with IoT
security, with dynamism and adaptiveness at the core of the trust mechanism.

The remainder of this Chapter provides a more in-depth and technological
overview of each of these technical contributions.

4.2 Trust Broker

4.2.1 Introduction to the Trust Manager and Broker

Trust is fundamental to IoT security since establishing trust between devices, net-
works, and users is essential for secure and reliable interoperability in IoT ecosys-
tems. More specifically, trust in IoT networks refers to the belief that one IoT device,
the Service Provider (SP), will behave correctly and as expected by prospective Ser-
vice Requester (SR) IoT devices. The enforcement of trust in an artificial society
such as IoT is far more difficult, as things do not have an inherent judgmental
ability to assess risks and other influencing factors to evaluate trust as humans do.
Hence, it is important to quantify “trust” in a manner that can be understood by
artificial entities such as IoT devices.

One way to quantify trust is the trust score, a value that reflects a relation-
ship between trustor and trustee, measured by trust metrics, and evaluated by a
trust assessment mechanism. Several trust management and evaluation mechanisms
focus mainly on security and privacy issues instead of considering the universal
meaning of trust and its inherently dynamic nature.

A trust algorithm must calculate a device’s trust score, considering various scenar-
ios and trustworthiness-related parameters. To this end, the trust algorithm must
be able to collect this information. Due to the high complexity and dynamic of
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IoT networks with a constantly increasing and changing number of devices, it
became apparent that the trust algorithm had to be run on several nodes with high
computational resources known as the TMB nodes. This design decision enabled
IoT devices to perform their duties without unnecessarily occupying their lim-
ited resources by offloading the computation burden to computationally powerful
nodes.

With these considerations in mind, the ERATOSTHENES project deemed it
necessary to charge the TMB with the following duties:

• To evaluate an IoT device’s trustworthiness and compute its trust score.
• To facilitate the exchange of trust-related information among IoT devices and

domain services.

To evaluate a device’s trustworthiness, the TMB aggregates trust-related informa-
tion from multiple sources, including the ERATOSTHENES Intrusion Detection
System (IDS), the TMRA (discussed in Section 4.3), and the IoT devices. This
results in a comprehensive trust evaluation approach encompassing device-specific
characteristics, network threats, and security incidents. Communication between
the devices, modules, and the TMB is facilitated through the MQTT protocol,
enabling the TMB to calculate a device’s trust score.

The MQTT protocol is a lightweight messaging protocol specifically engineered
for small sensors and mobile devices. It is optimized for operation over high-latency
or unreliable networks, common characteristics of IoT environments.

The MQTT protocol functions through two primary components: the MQTT
Broker and the MQTT Clients. The MQTT Broker serves as the server that
receives and directs client messages to the relevant destination clients. On the other
hand, MQTT clients are devices or applications that connect to the broker to pub-
lish messages, subscribe to specific topics, or engage in both activities.

To guarantee secure communication, the MQTT protocol supports client
authentication through usernames and passwords. It also encrypts the data
exchanged between clients and the broker using SSL/TLS and implements
topic-based access control to manage the permissions related to publishing and
subscribing.

An important consideration in the design and implementation of the TMB, par-
ticularly the trust score calculation algorithm, is the diversity of application contexts
in which IoT devices operate. The ERATOSTHENES project identifies three main
IoT network application contexts: (a) Connected Vehicles, (b) Industry 4.0, and (c)
Smart Health. Accordingly, different trust metrics are prioritized within each con-
text, with certain metrics carrying more weight than others in determining a device’s
overall trust score.
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4.2.2 Device Trustworthiness Evaluation

The evaluation of a device’s trustworthiness, as discussed earlier, is influenced by
various device-specific parameters (e.g., the device’s CPU utilization) as well as
assessments derived from ERATOSTHENES services, such as the TMRA and IDS.
As a result, assessing a device’s trustworthiness becomes a complex multi-attribute
problem. Additionally, an SR may need to determine which SP to approach for a
specific service. Thus, evaluating device trustworthiness is formulated as a Multi-
Attribute Decision Making (MADM) [1] problem.

To address this issue, the TMB offers two key functionalities: (a) the compu-
tation of a device’s trust score and (b) the ranking of devices within the network
based on their trustworthiness. The first functionality quantifies a device’s trust-
worthiness, while the second aids prospective SRs in selecting the appropriate SP
for the desired service.

Both functionalities rely on a set of device-related parameters (e.g., root of trust,
associated cyber risks), along with corresponding weights that reflect the signif-
icance of each parameter in determining the device’s trustworthiness. The trust
score is calculated using a weighted sum function, while the ranking of devices is
carried out via the Technique for Order of Preference by Similarity to Ideal Solution
(TOPSIS) [2], a widely adopted ranking method.

Whenever a significant event occurs for a device (e.g., a software update), the
TMB triggers the trust score calculation and TOPSIS functions to reassess the
device’s trustworthiness. The specific weights used in the weighted sum function
and TOPSIS are context-dependent, varying according to the particular application
domain in which the IoT device operates. The concept “application context” refers
to the type of IoT ecosystem the device is part of, such as Connected Vehicles,
Industry 4.0-enabled factories, or Smart Medical Devices. Even if certain trust-
related parameters remain consistent across different contexts, the weighting of
those parameters differs according to the specific ecosystem.

The TMB works as follows. Initially, an IoT device’s TA establishes an MQTT
connection to the TMB, and then the former publishes the device’s data on an
MQTT topic. The broker component of the TMB collects this data. It forwards
them to the TMB’s internal modules, namely the TMRA, Manufacturer Usage
Description (MUD) manager, IDS, and the Cyber Threat Intelligence (CTI) man-
ager, which are also MQTT clients. These modules process the device data and send
their outputs to the MQTT broker, who forwards them to the Trust Manager func-
tionality of the TMB or other MQTT clients. Then, the Trust Manager invokes
the trust score calculation function and the TOPSIS implementations to conduct
the device trust assessment. Once the trust score is calculated, the TMB invokes a
gRPC Remote Procedure Call through its gRPC client to the DLT’s gRPC server.
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Figure 4.2. High-level overview of the protocols facilitating the interaction between the

TMB, IoT Devices and ERATOSTHENES services.

Figure 4.3. Trust score calculation sequence diagram.

Through this call, it writes the trust score to the DLT while it informs the device
via an MQTT message about its corresponding trust score [3]. Figure 4.2 provides
a high-level overview of the interactions between the TMB, the devices, and the
other services of the ERATOSTHENES architecture. Furthermore, it depicts the
components that make up the TMB. The operational flow of a device’s trust score
calculation is shown in the sequence diagram depicted in Figure 4.3.

The trust evaluation is event-triggered; these events are messages transmitted
over MQTT topics. Table 4.1 describes these events and their corresponding topics.

4.2.3 Summary

In summary, the TMB plays a vital role in the ERATOSTHENES ecosystem’s archi-
tecture since it acts as the enabler of communication between the TMRA, the IoT
devices, the MUD manager, the CTI agent and the IDS. Moreover, it facilitates
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Table 4.1. MQTT events that trigger trust evaluation.

Event Topic Payload/description

New device entity/entityID/
new

Device (entity) type and parameters (A new
device sends its trust related information).

Device
removed

entity/entityID/
remove

An announcement to remove a device from the
network.

Device data device/entityID/
data

Device Data (Through this topic, the TA sends
the Device Data to the TMB.)

Trust Score
Calculation

entity/entityID/
agent/calculate

Initial or updated trust score for a device (the
TMB calculates the trust score of a device with a
specific ID and forwards it to the subscribers of
that topic.)

Risk score
calculation

entity/entityID/
tmra/riskscore

A risk score computed by the TMRA module.
(Through this topic, the TMB will receive the
risk score from the TMRA module for the device
with the specified ID.)

Interaction
with the IDS

entity/entityID/
ids

IDS monitoring score. (Through this topic, the
TMB interacts with the IDS module to obtain an
IDS monitoring score.)

Interaction
with the CTI

entity/entityID/
cti

Through this topic the CTI interacts with the
TMB and sends threat related information.

Interaction
with MUD

entity/entityID/
mud/MUDfilejson

Through this topic the MUD interacts with the
TMB and sends the MUDfile, a json file which
contains manufacturer specification and expected
behavior for a device with a specific ID.

the formation of trust relationships between entities in the IoT network as well as
evaluates the trustworthiness of IoT devices and manages trust records for every
IoT device. The most prominent feature of the TMB is that it considers multiple
aspects related to an IoT device before evaluating its trustworthiness. Finally, by
facilitating the transmission of trust information through the DLT the TMB plays
a crucial role in forming trust relationships among different domains.

4.3 Threat Modeling and Risk Assessment

Trust in an IoT system entails multiple aspects: trust in the identity of a device,
trust in it behaving according to expectations, trust in the validity of the messages
it sends, and so on. Assessing these aspects requires considering potential security
threats and their associated risk. For example, an IoT device that implements out-
dated authentication mechanisms is more likely to be spoofed, and unencrypted
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Figure 4.4. Example DFD for a connected vehicles application.

data flows are easily tampered with, which should be taken into account when cal-
culating trust scores.

One way to identify security threats and estimate their risk is threat modeling,
which involves the up-front investigation of common security threats in a system’s
design or architecture, both in terms of whether they would be feasible (likelihood)
and the consequential harm (impact). Systematic, system-centric approaches act
upon an abstraction of the system under design. This abstraction usually takes the
form of a Data Flow Diagram (DFD), which defines the envisioned or anticipated
data flows between processes, (external) entities and data stores. An example DFD
for a connected vehicles system is depicted in Figure 4.4. Based on this DFD, poten-
tial security and privacy threats can be identified by iterating over all elements, for
example that vehicles can be spoofed, and data flows can be tampered with.

Numerous threat modeling methodologies and tools [4] exist to automate (parts
of ) this workflow, for example through automated threat elicitation or risk calcula-
tion. All of these, however, consider risk at the design level, without considering that
the risk for specific entities or instances of design-level entities may differ consid-
erably based on certain parameters or the specific context. For example, spoofing a
priority vehicle is potentially more severe compared to spoofing a non-priority one,
and different vehicles may implement different authentication methods, some of
which may be stronger than others. The lack of expressivity in existing threat mod-
eling approaches has shown to be especially problematic in architectural styles such
as peer-to-peer or decentralized systems in which the modeled system elements are
not singular nor centrally governed. For example, an earlier study has identified this
particular issue hindering the threat analysis of distributed ledger applications [5].
While such approaches allow to assess risk at the basis of class-level elements, they
fail to consider and address risk factors that emerge at instance level. This, in turn,
hinders device-specific trust calculation taking into account security risk factors,
for example for the specific vehicles depicted in Figure 4.5.

4.3.1 Instance-centric Threat Modeling

To tackle this issue, and allow risk assessments for specific IoT devices, the TMRA
module implements a novel threat modeling framework called ‘instance-centric
threat modeling’ [6] which enables specifying and analyzing both the high-level
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Figure 4.5. Example of a specific connected vehicles scenario [6].

Figure 4.6. High-level overview of instance-centric threat modeling. The design model

(e.g. Figure 4.4) specifies the high-level structure of a system and can be analyzed to

reveal major flaws in the design, but the resulting risk values will be inherently uncer-

tain as the design model covers all potential configurations and scenarios. One or more

instance models (e.g. Figure 4.5) can be created to model specific instances of the enti-

ties in the design model, with concrete parameters, which allows for more precise risk

calculation [7].

design of a system (e.g., Figure 4.4) as well as specific instances of entities specified
in the design (e.g., Figure 4.5). Specifically, the main goals of the framework are
to enable structured modeling of instance-level situations and configurations, and
in turn to support more precise risk calculation based on the additional, instance-
level information. A high-level overview of the proposed threat modeling approach
is shown in Figure 4.6.

In short, the instance-centric threat modeling framework enables threat mod-
elers to capture the general structure and context of the system by creating the
design model, and manually explore different (potential) instance-level scenarios
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by modeling one or more instance models. For example, if a design-level analysis
reveals that spoofing vehicles remains a high-risk threat even though vehicles are
authenticated, threat modelers might try to identify in which situations spoofing
threats are more likely and/or impactful by systematically modeling and analyzing
scenarios. We refer to the original paper [6] for additional details.

4.3.2 Digital Twin Threat Modeling

The TMRA leverages the proposed instance-centric threat modeling approach in a
more automated manner by capturing and maintaining an instance model which
represents the digital twin of an operational system [7]. Specifically, the design
model captures types of entities (i.e., IoT devices), for example smart vehicles and
traffic lights, and the digital twin captures instances of these devices, for example
several specific vehicles with unique parameters. This digital twin can be updated
continuously based on real-world events, allowing for accurate and real-time re-
evaluation of threats and risk. The outcome of such threat analysis is then be lever-
aged during operations by the Trust Manager (Figure 4.1) to calculate trust met-
rics taking into account the likelihood of devices being spoofed. Figure 4.7 illus-
trates this approach which involves synchronizing the digital twin model at the
basis of real-world events and then leveraging the risk calculation outcomes in a
risk-adaptive security context.

The TMRA consists of three components: the digital twin model is an abstract
representation of the real-world system, the engine re-analyses the digital twin when
it is updated, and the controller interprets real-world events and updates the digital
twin model accordingly. Events and analysis results are relayed through a message
broker. We shortly summarize each of these components in what follows.

Figure 4.7. Conceptual overview of the digital twin threat model as implemented by the

TMRA [7].
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Table 4.2. Real-world events relevant to the TMRA, and the corresponding MQTT

topics.

Event Topic Payload

New device entity/entityID/new Entity type (e.g. ‘Vehicle’) and

Device removed entity/entityID/remove parameters

New communication dataflow/entityID/new SenderID;RecipientID

Parameter changed entity/entityID/atr/atr name New parameter value

Table 4.3. MQTT topics for output risk values.

Output Topic Payload

Overall risk entity/entityID/riskscore Risk value

Specific threat type entity/entityID/threatType/riskscore Risk value

Real world events are relayed to the TMRA via MQTT. This could either be
done by the devices themselves (e.g., vehicles announcing that they approach a traf-
fic light), or by some observer which detects devices and sends corresponding events
to the message broker. Relevant events for the threat model include (i) entities enter-
ing a system (e.g., a vehicle approaching a traffic light), (ii) entities being removed
from a system (a vehicle driving away from a traffic light), (iii) entities interact-
ing with one another (vehicles communicating with one another), and (iv) enti-
ties being updated (vehicles re-authenticating). A generic, context-agnostic MQTT
topic is defined for each of the above-mentioned events, as shown in Table 4.2.
Updates to the threat model are also published to the message broker, allowing
other components to subscribe to threat or risk updates. The specific output topics
are shown in Table 4.3. Interested parties (for example, the Trust Manager in Fig-
ure 4.1) can subscribe to all risk updates or to fine-grained events, for example the
risk of spoofing for a specific vehicle.

The digital twin model is a modeled abstraction of a real-world system and
corresponds to an instance model. For example, for the smart traffic case, this would
be the collection of specific traffic lights and vehicles, and instances of data flows
occurring between them. The digital twin model also captures attribute values (e.g.,
whether or not the vehicle is a priority vehicle) and security solutions (e.g., which
authentication protocol is used by each vehicle, and the elapsed time since they last
authenticated).

The engine is an extended version of SPARTA1 which runs as a service listen-
ing for changes to the digital twin and automatically re-analyses the model if any

1. https://sparta.distrinet-research.be/.

https://sparta.distrinet-research.be/
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changes are detected. It elicits threats and calculates risk estimates for each threat,
taking into account security solutions (e.g., authentication) and attributes (priority,
time since last authentication). Furthermore, it keeps track of all identified threats
and their risk scores and can be queried to request the latest updates.

The controller parses MQTT messages, updates the digital twin model accord-
ingly, and publishes the updated threats and risk estimates to the message broker.
During initialization, the controller subscribes to the topics in Table 4.2. This is
done through wildcards to allow subscribing to multiple topics at once. For exam-
ple, the topic ‘entity/ + /new’ matches with any topic where the wildcard (‘+’) is
replaced with an arbitrary string, so the controller is notified when any new entity
enters the system. As described, the MQTT topics are generic, and need to be trans-
lated to application-specific model updates. For example, if the controller receives
a message with topic ‘entity/V1/new’ and payload ‘Vehicle’, then a new vehicle
should be created and added to the digital twin. Updates to the digital twin may
induce new threats or change risk scores, as identified by the engine. The controller
tracks the threats and risk scores in the engine to be notified of any updates to the
threat landscape. Furthermore, the controller publishes such updates to the MQTT
broker.

Figure 4.8 illustrates the workflow for a smart traffic system where vehicles
announce their presence as they approach a traffic light. Such system could be used
to dynamically regulate traffic lights and minimize the amount of time vehicles
are waiting at an intersection. Furthermore, priority vehicles such as ambulances
approaching a traffic light may request immediate actions from a traffic light in case
of emergency. In this context, dynamically managing trust is critical to avoid actors
from maliciously influencing the system such that they can move along traffic as
fast as possible, potentially at the expense of other vehicles. Specific threats include
attackers claiming to be priority vehicles, sending messages from non-existent vehi-
cles to make the queue appear longer, and intercepting or tampering with messages
sent from other vehicles.

To illustrate how threats and risk scores support dynamic decision making in an
IoT system, consider the scenario where a vehicle claims to be a priority vehicle, and
requests immediate right of way at an intersection. When such vehicle announces
its presence, the threat model is updated by adding an entity to the system model,
and the new model is analysed, resulting in new threats (e.g., the vehicle being
spoofed), as well as risk scores for each threat. Depending on the specific situation,
different actions could be taken by the system:

– If the vehicle implements state-of-the-art authentication protocols, and can
thus provide strong evidence for its identity, the likelihood of that vehicle
being spoofed is low, resulting in a lower risk score and, in turn, a higher
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Figure 4.8. Sequence diagram for vehicles announcing their presence to a traffic light.

trust score, which will most likely result in immediate actions from the traffic
light.

– If the vehicle cannot provide strong evidence for its identity, the likelihood
of spoofing is higher, which may lead to the system ignoring the request, or
to the system requesting the vehicle to re-authenticate. In the latter case, re-
authentication induces changes to the digital twin model and updates to the
threats and risk scores calculated by the TMRA, and thus also updates to the
trust scores calculated by the TMB, which in turn may lead to a different
decision by the system.

4.3.3 Summary

In summary, by continuously updating a digital twin threat model, the TMRA
dynamically identifies new threats and updates risk scores based on the specific sit-
uation. In the ERATOSTHENES project, these outputs are leveraged by the Trust
Manager to calculate trust scores for IoT devices, which requires taking into account
the likelihood and potential impact of certain security threats such as devices being
spoofed, or messages being tampered with. More in general, the TMRA enables
self-adaptive security controls, for example by enforcing stronger countermeasures
when the overall risk of spoofing exceeds a certain threshold, fine-grained and
informed access control based on specific device parameters, and other run-time
policy enforcements.

4.4 Automated Deployment and Recovery of Trust
Agents

A TA is a software component deployed on IoT devices within the ERATOS-
THENES ecosystem to collect run-time information used for assessing the
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trustworthiness of the device. It collects trust-related data, such as hardware
resource usage, installed software, and security metrics. This information is then
used by the TMB to ensure that the device’s behavior aligns with predefined trust
parameters. The TA plays an important role in maintaining the security, integrity,
and reliability of IoT devices, and TA lifecycle management is an important chal-
lenge in this context. Throughout its lifecycle, a TA may undergo multiple updates
triggered by various factors, such as security vulnerabilities, software bugs, or per-
formance enhancements. By aligning the TA lifecycle with secure software update
practices, the ERATOSTHENES project ensures that the IoT devices in its ecosys-
tem remain secure, reliable, and trustworthy.

Please note that this section focuses only on managing the TA lifecycle as part of
the TMB functionality. From a broader perspective, a TA can essentially be seen as
a software component, which itself can decrease or increase the level of device trust-
worthiness depending on the presence of vulnerabilities, applied security patches,
execution traces, etc. From this perspective, supporting the lifecycle of any software
deployed and running on IoT devices is another important instrument for IoT trust
management in ERATOSTHENES, which we discuss separately in more detail in
Chapter 4.

4.4.1 Trust Agent Lifecycle

The lifecycle of a TA in the ERATOSTHENES ecosystem follows the Trusted
Computing Group’s (TCG) ‘Guidance for Secure Update of Software and Firmware
on Embedded Systems’2 and includes five main steps: secure development, secure
signing, robust distribution, secure installation, and post-installation verification.
This lifecycle, depicted in Figure 4.9, is closely tied to the lifecycle of the IoT device
itself, merging when the device is initially enrolled into the trusted ecosystem. At
this point, the IoT device receives its initial TA, marking the start of its trusted
operations. From this moment, the TA lifecycle becomes intertwined with the IoT
device lifecycle, as the device will continually receive updates to its TA during its
operational lifespan.

1. Secure Development: The secure development of TAs is expected to be
implemented by IoT device manufacturers or trusted third-party develop-
ers following strict security standards. TAs are designed with security in
mind, ensuring they do not introduce any additional threats themselves. This
includes securing the software from the ground up, considering the potential

2. https://trustedcomputinggroup.org/resource/tcg-guidance-for-secure-update-of -sof tware-and-firmware-
on-embedded-systems/.

https://trustedcomputinggroup.org/resource/tcg-guidance-for-secure-update-of-software-and-firmware-on-embedded-systems/
https://trustedcomputinggroup.org/resource/tcg-guidance-for-secure-update-of-software-and-firmware-on-embedded-systems/
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Figure 4.9. Trust Agent lifecycle supported by the Digital Twin platform.

attack vectors in the IoT environment. It is also envisioned by ERATOS-
THENES that the newly released TA versions will contain patches to cer-
tain vulnerabilities identified as a result of continuous trust monitoring and
assessment. The development process also ensures that the TA can function
across various hardware and software configurations typical in IoT systems,
like edge gateways and personal health monitoring devices used in the Smart
Healthcare pilot.

2. Secure Signing: Once developed, the TA is cryptographically signed, ensur-
ing its integrity and authenticity. In ERATOSTHENES, we assume that
device manufacturers generate and manage a pair of cryptographic keys: a
private key for signing TA updates and a corresponding public key for veri-
fying them. The private key is stored securely to prevent unauthorized access
and potential misuse. On the other hand, the public key is embedded within
the IoT devices during the manufacturing process, enabling these devices to
verify the authenticity of received updates at a later stage. The signing mech-
anism guarantees that any TA received by an IoT device can be trusted as
originating from an authorized source and has not been tampered with. This
step ensures that only verified TAs are allowed to be distributed and installed
within the managed IoT ecosystem.

3. Robust Distribution: In ERATOSTHENES, the robust distribution phase
is one of the key innovations, ensuring that TAs are deployed across a dis-
tributed network of IoT devices securely and efficiently. Inspired by the
model-driven engineering techniques [8, 9], this process is facilitated by the
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use of Digital Twins (DTs), which represent each IoT device in the virtual
space, reflecting the real-time status and context of each device [10]. The
DT platform listens for new updated contextual information collected by
device-side monitoring agents, and then uses this cyber-physical-social con-
text of each device to ensure that the correct TA is assigned. This means that
various factors such as hardware capabilities, network conditions, and the
operational context of the IoT device are considered during the assignment
of TAs, making sure that the right TA is deployed for each device. A key
part of this phase is the asynchronous installation, enabled by the Desired-
Reported Property pattern of DTs. The system first applies updates to the
DT, where the desired state of the TA is written to the corresponding prop-
erty. This desired state is then continuously communicated to the real physi-
cal device. Noteworthy, the device might be temporarily offline, but as soon
as it gets back online it eventually receives its desired state. This pattern sup-
ports a scalable approach, allowing updates to occur even across large fleets of
devices, potentially numbering in the hundreds or thousands. This way, DTs
also help in scalability, as they allow ERATOSTHENES to manage updates
across large fleets of devices in parallel. The use of publish-subscribe com-
munication via MQTT ensures efficient and timely distribution of updates,
while the DTs enable real-time tracking and coordination, making the sys-
tem robust enough to handle a large number of devices in varying states of
readiness for updates.

4. Secure Installation: After robust distribution, the secure installation of TAs
ensures that the update is applied safely to the IoT device. This is imple-
mented using device- and platform-specific adapters instantiated for each
device (or a group of functionally identical devices) [11]. Mostly, at this step
ERATOSTHENES relies on the existing tools for software installation over
the network. Some common examples include adapters for interacting with
the Docker Engine API, over SSH, or using a RESTful API. The IoT device
then reports back with its reported state after installation, creating a smooth
update process that does not require synchronous communication.

5. Post-installation Verification: The final phase of the TA lifecycle involves
verifying that the newly installed TA is functioning as expected. In ERATOS-
THENES, this step involves confirming that the TA is successfully running
on the IoT device and is providing accurate trust metrics. This is verified
through the DT, which compares the desired state (the expected TA version)
with the reported state (the actual state of the device post-installation). If
the reported state matches the desired state, the TA is considered success-
fully installed. If discrepancies are detected, the system can initiate recovery
or roll-back procedures.
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4.4.2 Trust Agent Updates, Roll-back and Recovery

TA lifecycle management in the ERATOSTHENES ecosystem is a threefold pro-
cess, encompassing actual updates, roll-back, and recovery. Each of these processes
is designed to maintain the security, stability, and functionality of TAs, and thus –
of the host IoT devices, ensuring that they remain trustworthy throughout their
lifecycle.

• Actual updates are the primary type of TA lifecycle activities and are typ-
ically triggered in response to identified security vulnerabilities, threats or
risks. These updates are released either by the device manufacturer or a trusted
third-party software developer to patch known security flaws or improve the
performance and functionality of the TA. Such updates are critical for pro-
actively maintaining the trustworthiness of IoT devices, especially as new
threats or weaknesses are discovered in the broader ecosystem. The update
process follows the principles of secure distribution and installation to ensure
that the IoT device receives and applies the update in a secure and reliable
manner.

• Roll-backs occur when the system needs to revert to a previous stable version
of the TA, or even the very initial default version. Roll-backs are usually trig-
gered in response to malfunctioning or operational issues rather than cyberse-
curity incidents. For instance, if a recently installed TA version causes perfor-
mance problems or system instability, the system can perform a roll-back to
restore the device to a previously stable state. This process ensures that devices
continue to function smoothly without being affected by faulty or incom-
patible updates. Roll-backs are different from recovery in that they generally
address software issues rather than failures caused by attacks or significant
disruptions. In relation to this, ERATOSTHENES employs a blue-green
deployment strategy, where two environments (blue and green) are main-
tained on each IoT device. The new TA version is first deployed to the green
environment for testing and validation. If everything functions as expected,
traffic is switched from the blue (previous version) to the green (new version)
environment. This seamless transition reduces downtime and ensures a fall-
back option is available. If any issues arise during installation, the system can
roll back to the blue environment, effectively reverting to the previous TA
version without causing disruptions.

• Recovery involves the re-installation of the TA along with the recovery of its
state from a stored backup, typically in the DLT system. Unlike roll-backs,
recoveries are often triggered by more severe incidents, such as device failures
or cyberattacks, where the TA has been compromised or rendered inoperable.
In these cases, the system not only reinstalls the TA but also restores its state,
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including key contextual information and trust metrics, to ensure continuity
of service and the integrity of the device. Recoveries are designed to restore
the trustworthiness of the device after significant disruptions, which is an
important aspect of maintaining IoT security and reliability.

4.4.3 State Preservation

State preservation is crucial when updating, recovering, or rolling back TAs because
it maintains the continuity and integrity of operations within IoT devices. A stateful
approach, as implemented in the ERATOSTHENES project, allows the system to
maintain important contextual information and trust metrics across these processes.
This is essential for IoT ecosystems where the history of device actions, configura-
tions, and security settings play a significant role in determining the trustworthiness
and proper functioning of devices.

In contrast to stateless methods, which only focus on reinstating functionality
without keeping track of the device’s operational history, a stateful approach allows
for a more accurate recovery and update process [12]. Stateless updates or recovery
would simply re-apply the software without regard for the previously held config-
uration or operational data, potentially leading to gaps in trust, security, and per-
formance continuity. For instance, critical settings such as device identity, security
logs, or resource usage would be lost during a stateless recovery, potentially mak-
ing the device vulnerable to security threats or operational inefficiencies. A stateful
recovery or update preserves these critical parameters, so that the device resumes
operations as they were before the interruption.

In ERATOSTHENES, stateful transitions of TAs are made possible by storing
the device and TA states in a DLT system, specifically Hyperledger Fabric. The DLT
serves as a tamper-proof, decentralized repository where key contextual information
and operational data about each IoT device and its TA are stored as assets. This
includes data such as the installed software packages, hardware usage metrics, trust
scores, etc. By storing this information in the DLT, it is possible to retrieve it later
in a secure and non-mutable manner whenever necessary. During updates, roll-
backs, or recoveries, the stored state information is fetched from the DLT and ‘re-
applied’ to the newly deployed or restored TA. For instance, in the Smart Healthcare
context, this could include retrieving the list of critical software packages installed
on a healthcare gateway or past resource usage readings to assess the device’s health.
Without this stateful transition, devices might return to a default state, losing key
operational data and compromising the continuity of service. In this context, the
stateful recovery process ensures that devices can not only restore functionality but
also regain their previous level of trust and reliability without losing important
historical data.
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The use of DTs in ERATOSTHENES further facilitates the stateful transition by
acting as a recovery checkpoint representing the last-known status and context of
each device before. When an update or recovery is triggered, the DT helps compare
the desired state (what the TA or device should be) with the reported state (what it
currently is), ensuring that any state differences are identified and corrected. This
state preservation and comparison process serves to bring the IoT device back to a
fully operational and trustworthy state after an update or recovery, with its critical
operational history intact.

4.4.4 Summary

TAs are deployed on the IoT devices and collect run-time information which is
used by the TMB to assess the overall trustworthiness of a device. To safeguard
the correctness of this run-time information, and thus of the calculated trust scores
associated with devices, it is crucial to protect the TA itself from tampering and
other security threats. The ERATOSTHENES project therefore defines a secure
lifecycle for the TA, as well as strategies for secure roll-backs and recovery, with a
particular focus on state preservation to ensure continuity as the TA are updated or
recovered.

4.5 Trusted Execution Environments and Remote
Communication

The ERATOSTHENES architecture includes several components deployed on the
IoT devices themselves, such as the TA described in the previous section or an SSI
Agent, which are required to assess the trustworthiness of the device. However, IoT
devices may be deployed in untrusted environments, and malicious applications
may be running on them, so additional protections are needed to guarantee the
integrity components on the IoT devices, and the confidentiality of the data they
process. The ERATOSTHENES architecture therefore leverages Trusted Execution
Environments (TEEs).

A TEE is a set of hardware and software components that realizes a secure area of
memory on the main processor (the Secure World) and guarantees that the code and
data loaded in the Secure World is protected from untrusted software running in the
Normal World. Additionally, a root of trust3 ensures that authenticity and integrity
hold for the code that is loaded during boot. The TEE can run arbitrary code that
can be loaded at boot or at runtime. As such, a TEE offers an isolated computational

3. https://csrc.nist.gov/glossary/term/roots_of_trust.

https://csrc.nist.gov/glossary/term/roots_of_trust
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Figure 4.10. Overview of multiple types of data and their allowed processing on IoT

devices.

environment that provides authenticity, integrity and confidentiality of all code
running in it as well as data and runtime state of the environment stored inside. An
overview is shown in Figure 4.10.

The ERATOSTHENES project provides a generic TEE and supporting services
for IoT devices, building upon state-of-the-art technologies such as i.MX6,4 the
QEMU5 emulator, Arm TrustZone,6 OP-TEE7 operating system, the GlobalPlat-
form Sockets8 API, and Mbed TLS 3.6.0. The TEE acts as a root of trust on IoT
devices that can deliver security features throughout an IoT device’s software lifecy-
cle, even in the presence of untrusted applications. Two enhancements to existing
TEE technologies were made as part of the ERATOSTHENES project, which will
be summarized in this section.

4.5.1 Secure Scheduling and Sharing of Peripherals

While existing TEE technologies provide confidentiality and integrity for resources
in the Secure World, they do not protect critical tasks running in the Secure World

4. i.MX6 platform: https://boundarydevices.com/product/bd-sl-i-mx6/

5. QEMU: https://optee.readthedocs.io/en/latest/building/gits/build.html#get-and-build-the-solution.

6. ARM Trustzone: https://www.arm.com/technologies/trustzone-for-cortex-a.

7. OP-TEE: https://www.trustedf irmware.org/projects/op-tee/.

8. GlobalPlatform Sockets API: https://globalplatform.org/specs-library/tee-client-api-specif ication/.

https://boundarydevices.com/product/bd-sl-i-mx6/
https://optee.readthedocs.io/en/latest/building/gits/build.html#get-and-build-the-solution
https://www.arm.com/technologies/trustzone-for-cortex-a
https://www.trustedfirmware.org/projects/op-tee/
https://globalplatform.org/specs-library/tee-client-api-specification/
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Figure 4.11. Architecture of Mr-TEE.

from Denial of Service (DoS) attacks. Especially in Cyber Physical Systems (CPSs),
which interact continuously with the physical world and are hence bound by strin-
gent timing and safety requirements, this can cause serious security and safety haz-
ards, for example by delaying sensor readings. This problem is exacerbated by the
fact that CPSs are increasingly connected to the internet, for example with Indus-
try 4.0, where industrial assets such as machines, robots and production lines are
connected with real-time analytics and control systems. In practice, CPSs are con-
nected to the internet by using reputable commodity OS components and applica-
tions because of their ease of implementation and well-tested nature. Unfortunately,
these significantly increase the attack surface due to their large code base, exposing
vulnerabilities which range from nuisances to life-threatening malfunctions.

To prevent attackers from tampering with the schedule of real-time tasks or
overloading resources, Mr-TEE [13], a novel, hardware-enabled TEE to host and
schedule safety-critical code, was developed as part of the ERATOSTHENES
project. Concretely, Mr-TEE protects against remote adversaries which may exploit
software vulnerabilities to launch DoS attacks on system resources or critical
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peripherals by executing arbitrary code in the Normal World. An overview of the
Mr-TEE architecture is shown in Figure 4.11. A short summary of the main com-
ponents is provided below.

• Secure Scheduler. Most existing TEE implementations lack a full-featured
scheduler, depending instead on the Normal World scheduler. To provide
availability guarantees, we integrate a minimal yet sound real-time sched-
uler in the Secure World, which makes it possible to schedule critical tasks in
real-time independently from the Normal World. This provides a mechanism
through which developers can partition computational resources between
critical and non-critical functionality.

• Secure Peripherals. To protect peripherals against bugs or attacks from the
(compromised) Normal World, Mr-TEE provides the ability to map certain
peripherals to the Secure World. This mapping disables direct access to these
peripherals by any Normal World process, forcing all interactions through
the Secure World. Naturally, because of the trusted state of the Secure World,
applications running in the Secure World can still access peripherals mapped
to the Normal World. As the criticality of each peripheral is application-
dependent, Mr-TEE gives the designer of the system the choice as to which
peripherals are mapped to which world. This ensures the best response time
for peripherals that will be exclusively used in only one of the worlds, while
minimizing code base size and developer effort by avoiding the need to man-
age all peripherals in the Secure World.

• Shared Peripherals. Not all peripherals can be mapped to a single world, as
software in both worlds may require access to the same peripheral for normal
operation. In this case, Mr-TEE provides a novel mechanism called Shared
Secure Peripherals, shown in Figure 4.2, wherein the Secure World provides a
Secure Driver that is responsible not only for providing access to these periph-
erals for Trusted Applications, but also for providing interfaces via which the
Normal World can access the functionality of these same peripherals. The
Secure Driver is thus able to control the access of the Normal World to the
peripheral, preventing any untrusted applications from blocking peripheral
access for critical software running in the TEE.

• Normal World Observer. Building upon the presence of a real-time sched-
uler in the Secure World and a notification system to the Normal World, Mr-
TEE offers a Normal World Observer, which is capable of periodically check-
ing the running state of the Normal World OS. Whenever scheduled, the
Normal World Observer challenges the Normal World kernel to respond in
a certain time frame. The fulfilment of the challenge implies that the Normal
World is still actively running and is neither frozen nor crashed. Additionally,
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Figure 4.12. Overview of the end-to-end encrypted communication channel.

if the Normal World has crashed, a status report can be obtained through a
snapshot of the Normal World registers and memory. In this way, the Secure
World can trigger positive actions in the case of unexpected behaviour.

In summary, Mr-TEE provides a sound yet minimal real-time scheduler in the
Secure World to guarantee safe execution of critical tasks, as well as the means
to securely share critical peripherals between the Secure World and the Normal
World to guarantee availability yet enable Normal World applications to execute as
normal.

4.5.2 Secure Communication

Next to the TEE itself, which secures resources on IoT devices, the ERATOS-
THENES project also provides a generic, end-to-end encrypted communication
channel to move private data in or out of the TEE, allowing outside devices and
remote servers to initiate connections with those applications. A high-level overview
of this communication channel is shown in Figure 4.12. The main components are
the following.

• The Communicator library in the TEE provides a generic interface for
trusted applications to initiate end-to-end encrypted communications chan-
nels for connections to remote devices or servers.

• Because applications inside the TEE can only be called by applications run-
ning in the Normal World, remote devices or servers cannot directly initiate
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Figure 4.13. Message flow for a connection request to an IoT device.

connections. The Common endpoint in the Normal world is therefore
responsible for listening for connection requests coming from outside the
device and forwarding these requests to the trusted applications in the TEE.

• Connection requests are delivered through an MQTT broker to facilitate
communications between multiple devices and servers, and should specify
the UUID of the trusted application that is addressed by the requester, the
URL the trusted application should connect to, and an optional port to make
this connection to.

When receiving a connection request, the trusted application is solely responsi-
ble for opening the connection, so that certain (application-specific) security con-
ditions can be verified before connecting. For example, if the trusted application
decides that the timing of the request is suspicious, or if the parameters of the
request do not align with the expected values, the trusted application can refuse
this connection attempt. An overview of the message flow is shown in Figure 4.13.

4.5.3 Use Cases

The next sections describe how the enhanced TEE can be used to more easily extend
the ERATOSTHENES architecture with two applications, remote attestation and
proof of secure erasure, which are classically difficult to design and implement well.
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4.5.3.1 Remote Attestation

Remote Attestation (RA) is a technique for remotely verifying the correct operation
of a device, often used with IoT devices. However, the difficulty of implement-
ing many RA schemes on IoT devices is often immense; not only is the hardware
limited due to the low-cost nature of the IoT, executing RA limits the available
time and energy for tasks that are more important to the functionality of the IoT
devices.

Most of the complexity of RA comes from the assumed threat model: malicious
software has the same access and execution privileges as the RA software. Conse-
quently, a multitude of complex techniques need to be employed to prevent the
malicious software from interfering with the RA process, heavily influencing the
total performance of the IoT device.

By moving the RA process to the TEE, the confidentiality and integrity of the
TEE can instantly be leveraged to safeguard RA execution. This decreases the com-
plexity of both the RA process and the backend services that support it, which
only need to trust the TEE to trust the result of the process. Additionally, because
the TEE has full access to and control over the device, more complex attestation
can be performed with only limited impact on the overall performance of the
device.

4.5.3.2 Proof of Secure Erasure

Proof of Secure Erasure (PoSE) is a process wherein a piece of memory is erased
by the IoT device and a proof is generated for the verifying party that the memory
actually was erased. PoSE can be used to ensure secret data is securely removed or
malicious software is completely erased from the device.

As with RA, the process of PoSE is difficult to complete securely on a
device where malicious code has the same privileges as the PoSE process. Classic
approaches to these problems have relied on the generation of random data, which
is used to overwrite the secret data or malicious software, and a time limit to ensure
malicious code cannot generate similar data before the completion of the process is
expected. As a result, the overhead on both the network between the verifier and the
IoT device and the computational effort for the verifier is non-negligible, making
the system less scalable.

Similar to the RA example, by moving the PoSE process inside the TEE, the secu-
rity properties of that TEE are gained, with little to no cost. Additionally, because
the environment in which the PoSE process is now running can be trusted, there
is no need to employ techniques like explained in the previous paragraph, and a
simple algorithm can be used to execute PoSE of which the result can inherently
be trusted by the verifier.
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4.5.4 Summary

The enhanced TEE capabilities offered by the ERATOSTHENES project are a key
enabler for trust management in IoT systems. For example, correctly calculating the
risk associated to IoT devices in the TMRA (Section 4.3) requires integrity of the
data provided by the Trust Manager, which can be safeguarded by running the Trust
Manager in a TEE and securing communications as described above. Furthermore,
the TEE and secure communication channel enable securely deploying updates to
the Trust Manager itself (Section 4). More in general, the provided TEE capabilities
provide the necessary building blocks for confidentiality and integrity for multiple
ERATOSTHENES components, namely the TA, SSI agent, and Data Protector.

4.6 Device Network Enrolment

In the context of the ERATOSTHENES project, the device enrolment process
enables devices to obtain identities with limited lifetimes based on various tech-
nologies such as PUF, TEE, and Decentralized Identifiers (DIDs). To enroll in a
domain, a device must first produce encryption and authentication material using
its root of trust (PUF or TEE). This material includes identity proofs such as Ver-
ifiable Credentials (VCs) and DID ownership claims, as well as owner informa-
tion. The domain can check through this identity-related information trust values
through the DLT deployed in the domain and the multi-domain DLT. If there is
prior information related to the device from any domain, it can be used for the
enrolment process and the initial trust computations. Another important aspect
of device enrolment is that it binds the device’s owner identity with the device’s
identity for accountability and nonrepudiation of actions.

Device network enrolment plays a crucial role in recovering an IoT device’s iden-
tity and software components in case a device is compromised during an attack or
fails. That is because the IoT device’s identity is associated with a certain configu-
ration and a user during enrolment. Recovery examines the list of applications and
software installed in the enrolled device and attempts to recover the IoT device to its
most genuine status possible. There are two types of enrolment: domain enrolment
and cross-domain enrolment.

4.6.1 Components Involved in the Device Network Enrolment
Process

To facilitate the device network enrolment process, a set of components from
the ERATOSTHENES architecture [14, 15] must collaborate. These components
reside on the device side and the ERATOSTHENES domain side.
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The following entities from the infrastructure’s side participate in the enrolment
process:

The TMB [3] is responsible for evaluating the trustworthiness of IoT devices
and acts as an MQTT broker to enable the communication between its various
submodules: the TMRA module, MUD Management module, CTI Sharing Agent,
Monitoring IDS, and the Trust Manager. It is the entry point for device enrolment
and continuous usage of the ERATOSTHENES trust framework.

The Self-Sovereign Identity (SSI) Management module is a crucial component
for the enrolment of devices, issuing the VCs used by devices to show their identity
attributes during the authentication and authorization processes.

The SC/DLT enables different components and features in the ERATOS-
THENES architecture to share and verify public information needed for their
proper functioning, such as registering and retrieving DIDs, CTI data, trust scores,
and identity verification-related information. Therefore, it makes the process of
sharing information secure, reliable, verifiable, and transparent.

The Management and Recovery module manages devices in the ERATOS-
THENES ecosystem, particularly regarding monitoring and recovery processes.
During enrolment, it participates in the linkage of the device’s identity to its intro-
ducer or owner.

The device introducer/owner, though not per se a component of the architec-
ture, plays a key role in the device’s enrolment process. Specifically, the introducer
is a human user who associates themselves with the device they install in the IoT
ecosystem for accountability. They are the IoT ecosystem’s security manager.

The Inter-DLT is a platform that enables the interactions between DLTs from
different ERATOSTHENES domains.

The following entities from the device’s side participate in the enrolment
process:

• The Data Protector (ADP) supports other components or subcomponents
with features for handling data encryption that must be securely stored
employing device hardware or software security features (e.g., TEE). More-
over, the ADP provides features of secure data (e.g., private key) exchange for
fine-grained, confidential information sharing.

• The TEE (Section 4.5) is an area on a device’s main processor separated from
the system’s main OS, creating a secure world for executing trustworthy code.
It ensures that data is stored, processed, and protected in a secure and isolated
environment. It can generate cryptographic material (e.g., keys and creden-
tials) that serves as a basis for authentication in ERATOSTHENES. It coop-
erates with the ADP to enable other components to use said credentials.

• The PUF client handles the interconnection/interaction with the PUF Auth
Server securely, acting as a root of trust for the identification/authentication
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of the device. It can generate cryptographic material that serves as a basis for
authentication in ERATOSTHENES, cooperating with the ADP to enable
the usage of said credentials by other components (e.g., SSI Agent).

• The SSI Agent is responsible for supporting the flows for collecting and
manipulating identity data, including cryptographic operations like the gen-
eration of Zero-Knowledge Proofs (ZKP). It will manipulate VCs and gen-
erate Verifiable Presentations (VPs) for a given access policy following a SSI
approach using DIDs and VCs, both published by the World Wide Web
Consortium (W3C). Additionally, it will take advantage of the TEE and the
ADP module for the secure storage and retrieval of the necessary private cryp-
tographic material.

• The TA handles multiple activities related to Trust Management on the
device’s side, such as software boot and monitoring. Mainly, it handles inter-
actions with the TMB to calculate trust and reputation during interac-
tions, including the initial enrolment of the device in the system that results
in the initial trust score evaluation and the culmination of the enrolment
process.

4.6.2 IoT Device Network Enrolment Background

Enrolling an IoT device is a key process within its lifecycle, serving as an enabler
for all functionalities that will occur during the operational time. Before enrolment
occurs, it is assumed that the initial bootstrapping of devices during the manufac-
turing process is carried out, and right after the device is deployed, the initial boot-
strapping is finished. The ERATOSTHENES enrolment covers three cases depend-
ing on the device’s root of trust (PUF, TEE, or none), demonstrating the flexibility
of the ERATOSTHENES architecture to deal with heterogeneous devices and net-
work settings.

To achieve the above objectives, the enrolment process deals with identity and
trustworthiness. Regarding identity, the ERATOSTHENES enrolment process fol-
lows the SSI paradigm, where each device manages its own credentials that com-
prise its identity in the IoT ecosystem. This facilitates fine-grained, attribute-based
control when devices access services in the IoT ecosystem. To obtain the afore-
mentioned credentials, the device has to undergo an onboarding process, where it
registers its DID document, which contains the public keys that enable the device’s
identification and the VCs that contain its identity attributes through an issuance
process against the SSI Management component in the domain’s infrastructure.
During this process, the device is subjected to a proof of identity process, where
the root of trust for identifying the device plays a key role. Ideally, PUF-based
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authentication is used, but alternatives are possible and are considered. Conse-
quently, in this process, the device’s PUF authentication module facilitates device
authentication and identification, while the SSI agent deployed on the device man-
ages the interactions and processes relevant to the DIDs and VCs, supported by the
ADP as a secure environment for storing and managing cryptographic material. On
the ecosystem’s infrastructure side, the SSI management module plays the role of
the credential issuer, providing devices with the identity material as a result of the
enrolment. A DLT supports the enrolment as a verifiable data registry, while man-
ufacturer services such as PUF authentication servers facilitate the initial identity
proof.

The device’s enrolment process includes an additional step for the inclusion of
the device in the ecosystem’s trust framework. The device, through its TA, will
connect to the domain’s TMB and be given an initial evaluation of its trustwor-
thiness that depends on parameters including but not limited to its identity, the
endorsement of the introducer (e.g., a security domain manager), or threat model-
ing and risk assessment (with the TMB’s subcomponents collaborating). As indi-
cated before, a crucial source for this evaluation is the trustworthiness of the iden-
tification mechanism of the device through the identity’s root of trust. Once the
evaluation process is completed, an initial trust score is assigned to the device. It
will be updated throughout its operation in the domain depending on events related
to its behavior or the discovery of new threats.

Only when both processes are completed, and a device has the corresponding
identity and trust information, is it fully enrolled and can interact with other ele-
ments in the domain as part of its operational phase.

4.6.3 IoT Devices Single Domain Network Enrollment
Operation Flow

The IoT Devices Network Enrollment mechanism has three phases of operations:
Phase 1 – Onboarding and Creation of Public DID, Phase 2 – Introducer-device
pairing, and Phase 3 – Device enrolment and initial calculation of trust. Enrolling
IoT devices within the ERATOSTHENES framework is accompanied by the
completion of formal registration as a recognized ERATOSTHENES ecosystem
member.

During the first phase, two suboperations occur: generating a public DID and
registering it in the SSI Management. Creating a public DID involves generat-
ing a unique DID for the device and crafting a DID document that complies
with the specifications outlined in the DID W3C standard. In this sub-process,
the SSI Agent (ID client) component must utilize the associated cryptographic
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keys within the system to generate the DID Document. The cryptographic mate-
rial is generated, stored, and obtained through three distinct sources: Hyperledger
Aries (legacy), TEE, and PUF cryptographic material generation. The source can
be selected by configuring an environmental variable.

The value of this variable is established based on the specific requirements and
needs of the ERATOSTHENES ecosystem. This flexibility in configuration allows
the SSI Agent component to adapt to the unique requirements of the ERATOS-
THENES ecosystem.

When the variable is set to ‘ADP + PUF’, the SSI Agent utilizes the PUF
client library through the ADP component to acquire physically unclonable cryp-
tographic material. However, when the value is set to ‘ADP+TEE’, the SSI Agent
utilizes the TEE through the ADP. Conversely, when the value is set to ‘default’,
the SSI Agent component generates its own cryptographic material by utilizing the
SSI standard by the W3C.9

Once the SSI Agent possesses the cryptographic keys, it generates the DID Doc-
ument. However, before generating the DID Document, the DID itself is created,
offering two distinct methods for publishing the public DID:

• did:web: adhering to the did:web standard9

• did:erat: a customized method developed for the ERATOSTHENES project
that enables the publication of the DID into a permissioned blockchain
implemented with Hyperledger Fabric.

Upon successfully publishing a new DID linked to its identity, the next step
involves registering the IoT device in the SSI Management module. Afterward, the
device generates a VC that includes its unique footprint. It then requests the SSI
Management module to issue the credential.

The second phase is the Introducer-Device pairing, during which the device’s
certificate generated during Phase 1 is associated with the introducer for account-
ability purposes. A typical envisioned association between the introducer and the
device occurs as follows. Initially, the device requests from the Management and
Recovery service to be linked to the introducer. Upon receiving that request,
the Management and Recovery service requests the introducer to authenticate.
The introducer authenticates to the Management and Recovery Service and then
receives a request to approve the device’s DID from the latter. The introducer
approves the device, resulting in a signed DID, which the Management and Recov-
ery Service sends to the device.

9. https://www.w3.org/TR/did-core/.

https://www.w3.org/TR/did-core/
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Finally, in the third phase, the device enrolment and initial calculation of trust
commences, during which the device sends its trust data along with its, signed by
the introducer, DID, to the TMB. The TMB calculates the device’s initial trust
score and, via its gRPC client, sends it along with the device’s DID to the gRPC
server of the DLT. The gRPC server invokes the chaincode that writes the trust score
to the DLT. Once the trust score is recorded in the DLT, the chaincode will send
an acknowledgment to the TMB. Afterward, the TMB forwards the trust score to
the IoT device.

4.6.4 IoT Devices Cross-domain Network Enrollment
Operation Flow

The cross-domain network enrolment focuses on the enrolment of a device from
domain A to domain B. The process starts with the SSI Agent generating a VP from
a VC obtained from domain A. Then, the information related to the enrolment of
the device to domain A, along with the VP, is sent to the SSI Management module
of domain B, which in turn validates the identity proofs and retrieves the issuer’s
DID from the Inter-DLT service. Once the SSI Management module retrieves the
DID of the issuer from domain A, the respective VP is validated. Upon successful
validation, the SSI Management module sends the device enrolment response to
the SSI Agent. Afterward, domain B’s Management & Recovery service links the
device’s identity with its owner’s. Once the linking is done, the TA sends the trust-
related data to the TMB, which checks in the Inter-DLT for prior trust evaluation-
related data and retrieves them through smart contracts. Then, it computes the
device’s initial trust score for domain B by considering its context and the trust
data from domain A. The calculated trust score is stored on the DLT of domain B,
and then the TMB sends the enrollment result to the device.

4.6.5 Summary

In summary, enrolment is pivotal in enhancing accountability within IoT ecosys-
tems, fostering traceability, and reinforcing security auditing procedures. This is
achieved by linking the device owner’s identity to that of their IoT device, thereby
ensuring accountability and non-repudiation of actions. Additionally, all outcomes
stemming from the three phases of the enrolment process are logged onto the DLT,
serving as an immutable ledger. Thus, regardless of how much malicious actors
endeavor to disassociate themselves from the connected IoT device, the process
remains resilient, making it arduous to complete disassociation. Furthermore, the
enrolment process provides valuable insight into a device’s trustworthiness once
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it joins the IoT ecosystem, enabling prospective IoT service consumers to make
informed decisions when choosing an IoT service provider.

4.7 Conclusion

IoT-based applications involve devices that are deployed typically in uncontrolled
and uncontrollable environments. For example, in a smart traffic system, IoT
devices are installed in the public domain as part of the infrastructure (e.g., a traffic
light) or within vehicles, in a remote patient monitoring service, devices are handed
out to patients who use them at home, and in a smart manufacturing case, devices
are deployed at large scale in complex factory settings.

Distributed trust – the ability to evaluate trust from an externalized perspec-
tive – therefore is the only viable approach in such environments. Yet, there is no
single-size-fits-all solution to establish trust in heterogeneous devices and dynamic
environments, and careful application-specific trade-offs must be made by applica-
tion engineers and operators, taking into account many factors such as device capa-
bilities (e.g. hardware provisions for trusted execution, computational cost, battery
cost, bandwidth), level of security and assurance, and residual risk.

This chapter presented an architecture – and the integration of diverse architec-
tural enablers therein – to accomplish exactly this. This solution is customizable,
as this toolkit of diverse technologies can be selected and composed in a mix-and-
match manner to accomplish trust in a way that is tailored to the specific use case
at hand. A dynamic calculation of trust is performed by the TMB, which considers
these enablers in terms of their trust contributions and residual risks. This trust
qualification is then used to inform run-time systems (for example to inform access
control decisions), and even to drive proactive or reactive actions (e.g., dynamic
re-deployment or rollback of software state on a specific device).

While the ensuing tool kit by no real means can be considered complete, it does
yield a diverse and versatile set of technological enablers, which have been success-
fully technically integrated within the scope and intent of the ERATOSTHENES
project.
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Chapter 5

Decentralized Identity Management

By Angel Palomares Perez and Laura Esbri Vidal

The ERATOSTHENES project aims to revolutionize identity management in IoT
systems by leveraging Self-Sovereign Identity (SSI) principles, which allow IoT
devices to maintain control over their digital identities throughout their lifecycle.
Traditional centralized identity management systems often face scalability and secu-
rity issues when applied to IoT environments, which contain a vast number of inter-
connected devices. By contrast, SSI offers a decentralized approach that not only
enhances security and privacy but also simplifies identity management processes.

The Ledger uSelf SSI solution, a core innovation of the ERATOSTHENES
project, plays a pivotal role in this decentralized framework. This solution integrates
key components such as the PUF client, VDR-fabric, Advanced Data Protection
(ADP) module, and the Identity Recovery Mechanism to provide a holistic identity
management system. Through the creation of Decentralized Identifiers (DIDs) and
Verifiable Credentials (VC), IoT devices are empowered with unique, cryptograph-
ically secure identities that can be used for authentication and authorization. These
identities are self-managed, allowing devices to independently prove their identity
while maintaining privacy, reducing the risks of tracking, profiling, or identity theft.

The importance of SSI in IoT environments lies in its ability to address the
specific challenges that come with managing billions of devices, each with dif-
ferent hardware and software requirements. Ledger uSelf has been designed to

82

http://dx.doi.org/10.1561/9781638285076.ch5


Introduction 83

accommodate these constraints, offering flexibility through environmental con-
figurations that support the deployment across various devices. Furthermore, the
system’s integration with advanced cryptographic techniques, such as privacy-
enhancing Attribute-Based Credentials (p-ABC), ensures minimal data disclosure
and enhances security through zero-knowledge proofs.

By applying SSI principles, the ERATOSTHENES project not only ensures
secure device onboarding, identity verification, and authorization processes but also
builds a zero-trust framework that aligns with modern privacy regulations. The use
of disposable identities further bolsters privacy by creating unique identifiers for
specific interactions, minimizing the risk of tracking.

In conclusion, the ERATOSTHENES project demonstrates the potential of SSI
in transforming identity management for IoT devices, offering a scalable, privacy-
centric, and secure solution that addresses the challenges of the increasingly inter-
connected digital landscape. The Ledger uSelf solution exemplifies the project’s
commitment to advancing secure, decentralized identity management in the IoT
domain.

5.1 Introduction

Decentralized Identity represents a paradigm shift in how individuals, machines
and IoT devices manage and control their digital identities. Traditional identity
systems are typically centralized or federated, where a central authority, such as
a government or large tech company, is responsible for verifying and controlling
an individual’s identity. This centralized approach is vulnerable to data breaches,
privacy violations, and the concentration of power in single entities, leading to
concerns about trust, security, and privacy.

Since IoT environments are typically distributed and highly dynamic, decen-
tralized identity management has emerged as a transformative solution for address-
ing the challenges posed by centralized identity systems. Key principles such as
self-sovereignty, verifiable credentials, trustless networks, and data minimization
enable IoT devices to authenticate and interact securely, without over-exposing
sensitive data. In contrast to traditional systems, decentralized identity reduces the
risks of data breaches, enhances user control, and scales better with the exponential
growth of IoT devices, making it a vital innovation in securing the future of IoT
networks.

One of the primary objectives of the ERATOSTHENES project is to implement
a Decentralized Identity Management system based on the Self-Sovereign Identity
(SSI) paradigm throughout the entire lifecycle of IoT devices.
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5.2 Overview of Decentralized Identity Frameworks and
Standards

The Self-Sovereign Identity (SSI) community is still in an early stage of definition
and implementation, and as a result, many of its main standards are continuously
evolving, adapting, and being refined. Despite these changes, there is consensus
within the community regarding the core building blocks needed to design and
implement solutions following the SSI paradigm. These standards are essential for
ensuring interoperability and security in decentralized identity systems. This chap-
ter outlines the main findings related to these standards and how they will be applied
in the solution developed for the ERATOSTHENES project.

The building blocks for SSI can be classified into tree main groups: standards
that define the format of identity information, standards that define how identity
information is transmitted between different actors, stakeholders and credential
standard formats.

5.2.1 Identity Information Format Standard

In this category, two key standards from the World Wide Web Consortium
(W3C)1 play a crucial role:

• W3C – Decentralized Identifiers (DID)2: This standard defines a method
for generating unique identifiers in a decentralized environment. DIDs are
Uniform Resource Identifiers (URIs) that link a DID subject (such as a per-
son, organization, or IoT device) with a DID Document. This DID Doc-
ument contains cryptographic information, including public keys, which
enable trusted interactions with the subject. The cryptographic proofs facili-
tate services like verification and authentication, essential for securing digital
identities.

The DID specification also introduces DID methods, which define how
the DIDs are created, resolved, updated, and deactivated across various decen-
tralized registries. The ERATOSTHENES project will implement two DID
methods:

◦ did:web3: This DID method, defined by W3C, uses standard web
infrastructure to host DID Documents. It is particularly useful when

1. https://www.w3.org/standards/.

2. https://www.w3.org/TR/did-core/.

3. https://github.com/w3c-ccg/did-method-web.

https://www.w3.org/standards/
https://www.w3.org/TR/did-core/
https://github.com/w3c-ccg/did-method-web
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decentralized registries are not needed, allowing DIDs to be hosted on
trusted websites.

◦ did:erat: This is an ad-hoc DID method developed specifically for the
ERATOSTHENES project. It stores DID Documents within Hyper-
ledger Fabric, a permissioned blockchain framework developed for the
project. This approach ensures that identities are managed securely within
a controlled, permissioned environment.

A Decentralized Identifier (DID) follows a structured format, as illustrated in
the image below. It is a simple text string consisting of three main components: the
DID URI scheme identifier, the identifier for the specific DID method, and the
method-specific unique identifier.

Figure 5.1. Example of a decentralized identifier (DID).

As mentioned before, the DID resolves to a DID Document that contains the
DID and the associated cryptographic information such us public keys or verifi-
cation methods, which are essential for authentication and verification processes.
In the figure below shows an example of a DID Document that uses the “did:erat”
method.

Figure 5.2. Example of a DID Document, did:erat method.



86 Decentralized Identity Management

• W3C – Verifiable Credentials (VC)4: VC offer a cryptographic mechanism
to express and verify claims about an entity (such as an IoT device or individ-
ual) in a privacy-preserving and machine-verifiable manner. These credentials
are essential for ensuring that sensitive data, like identity or device attributes,
can be shared securely across decentralized networks. VCs are structured into
three main roles:

◦ Holder: The entity possessing one or more verifiable credentials and gener-
ating verifiable presentations from them. For instance, in an IoT context,
the holder could be a device carrying a certificate of authenticity. Holders
include students, employees, and customers.

◦ Issuer: The entity responsible for creating a verifiable credential by asserting
claims about a subject. Examples include corporations, governments, non-
profit organizations, trade associations and individuals issuing credentials
that confirm device provenance or user identity.

◦ Verifier: The entity responsible for receiving and validating verifiable cre-
dentials, often in the context of access control or authentication. Exam-
ples include services that validate the credentials of devices before allowing
them onto a secure network that might include employers, security per-
sonnel, and websites.

◦ Verifiable Data Registry: a system that mediates the creation, verifica-
tion, and revocation of credentials. It maintains public keys, credential
schemas, and revocation registries to ensure that credentials are valid and
trustworthy.

The following figure shows the different roles in action and how they interact
with each other.

Figure 5.3. W3C Verifiable Credentials description.

4. https://www.w3.org/TR/vc-data-model/.

https://www.w3.org/TR/vc-data-model/
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5.2.2 Communication Protocols for Decentralized Identity

In addition to defining the format of identity information, the Self-Sovereign Iden-
tity (SSI) community has proposed several standards to address how identity infor-
mation that is transmitted between different roles and stakeholders. Two prominent
standards in this area are:

• DID Communication Messaging (DID Comm) v2.05 is a communication
protocol that facilitates secure and confidential messaging between stakehold-
ers when interchanging identity information. It is designed to enable verifi-
able data exchange between SSI actors while maintaining privacy and security.
This standard provides a robust mechanism for transmitting identity infor-
mation across decentralized networks. DIDComm v2.0 defines protocols and
workflows that specify how different SSI operations are executed, such as
issuing credentials or presenting proof of a verifiable credential. These work-
flows enable the seamless exchange of identity-related information between
holders, issuers, and verifiers. DIDComm also supports encryption, digital
signatures, and message integrity checks, ensuring that identity information
cannot be tampered with during transmission.

Importantly, DIDComm v2.0 was specifically designed for Self-Sovereign
Identity solutions, making it tailor-made for decentralized identity use cases.
Major projects within the SSI community, such as Hyperledger Indy and
Hyperledger Aries, utilize DIDComm to enable trusted communication
between decentralized entities. By using DIDComm, decentralized identi-
ties can securely interact in a privacy-preserving way without needing inter-
mediaries or central authorities. This communication framework allows for
flexible and scalable identity management, which is essential for large-scale
IoT systems, where billions of devices must interact securely.

• Self-Issued OpenID Provider (SIOP) v2.06 extends the widely adopted
OpenID Connect protocol by introducing the concept of a Self-Issued
OpenID Provider (Self-Issued OP). Unlike traditional OpenID Providers
(OPs), which are controlled by third parties, a Self-Issued OP is fully con-
trolled by the end-user. This means that individuals or entities can self-issue
ID Tokens and present self-attested claims directly to Relying Parties (such
as service providers), without needing a central authority to validate those
claims. This approach aligns with the principles of SSI, as it empowers users
to manage their own identities while interacting with services that rely on

5. https://identity.foundation/didcomm-messaging/spec/v2.0/.

6. https://openid.net/specs/openid-connect-self -issued-v2-1_0.html.

https://identity.foundation/didcomm-messaging/spec/v2.0/
https://openid.net/specs/openid-connect-self-issued-v2-1_0.html
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identity verification. SIOP v2.0 provides a way to bridge SSI solutions with
existing identity management systems, making it possible to integrate mod-
ern, decentralized identities into traditional federated systems.

5.2.3 Credentials Format Standards

JSON Web Token (JWT)

As previously mentioned, the Self-Sovereign Identity (SSI) community is still in
the early stages of defining and implementing its core concepts. Consequently, the
primary standards are continuously evolving and adapting. During the ERATOS-
THENES project, the W3C Verifiable Credential7 standard was updated to support
the JSON Web Token (JWT) format, which is a significant advancement.

JWT is an open standard that provides a compact and self-contained way of
securely transmitting information between parties in the form of a JSON object.
The data it carries can be verified and trusted because the tokens are cryptographi-
cally signed.

By incorporating support for JWT, the W3C Verifiable Credential standard sim-
plifies the integration of verifiable credentials with existing Identity Management
systems that already utilize the JWT format. This is particularly beneficial for sys-
tems based on OpenID Connect, making it easier to incorporate SSI principles
without a complete overhaul of legacy infrastructure.

The following figures illustrate an example of how to apply the JWT format
to verifiable credentials. The first Figure 5.4 displays a credential in JSON format,
which includes the “credentialSubject” field that is used to hold the claims associated
with the subject.

Figure 5.4. Example of Verifiable Credential in JSON format.

7. https://www.w3.org/TR/vc-data-model-2.0.

https://www.w3.org/TR/vc-data-model-2.0
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Figure 5.5 illustrates the same verifiable credential as before, but this version
includes the “proof ” field, which contains the cryptographic data required to ver-
ify the integrity of the credential. The proof field ensures that the claims made
within the credential can be trusted by allowing verifiers to check the credential’s
digital signature or other cryptographic elements. This feature has been present in
earlier versions of the standard and remains a critical component for establishing
trustworthiness in verifiable credentials.

Figure 5.5. Example of Verifiable Credential in JSON format with secured data integrity.

Figure 5.6 presents the same credential, this time shown in its decoded JSON
Web Token (JWT) format. Readers familiar with tokens used in OpenID Con-
nect will notice significant similarities between this format and the structure used
in traditional Identity Management protocols. This resemblance allows for easier
integration between modern Self-Sovereign Identity systems and legacy identity
frameworks.
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Figure 5.6. Example of Verifiable Credential in decoded JSON Web Token format with

secured data integrity.

Lastly, Figure 5.7 illustrates a verifiable credential encoded in JSON Web Token
(JWT) format.

Figure 5.7. Example of Verifiable Credential in encoded JSON Web Token format with

secured data integrity.
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The addition of JSON Web Token (JWT) support to verifiable credentials sim-
plifies their integration with legacy Identity Management systems by allowing cre-
dentials to be included in request headers, similar to OpenID and OAuth. The
ERATOSTHENES consortium has adopted these changes to enhance their Self-
Sovereign Identity solution for managing the entire lifecycle of IoT devices, from
onboarding to decommissioning.

Selective Disclosure for JWT’s (SD-JWT)

Selective Disclosure JWT (SD-JWT)8 is an extension of the standard JWT that
introduces the capability for selective disclosure of information. In SSI contexts,
selective disclosure is a critical privacy feature because it allows users to share only
specific pieces of their credentials with verifiers, rather than the full set of claims.

The process of issuing a Verifiable Credential with selectively hidden claims is
outlined as follows. First, the Verifiable Credential (VC) is created. Then, the issuer
designates specific claims as selectively disclosable by generating disclosures. These
hidden claims are incorporated into the credential, producing an SD-JWT that
conforms to a data model compatible with a Verifiable Credential containing con-
cealed claims.

The process of issuing a Verifiable Credential with hidden claims is illustrated
in Figure 5.8. First, a Verifiable Credential (VC) is created. After that, the issuer
marks specific claims as selectively hidden, generating disclosures. These hidden
claims are then embedded into the credential. The final result, known as SD-JWT,
follows a data structure that ensures it is compatible with a Verifiable Credential
containing concealed claims.

Figure 5.8. Issuing process following SD-JWT standard.

8. https://datatracker.ietf .org/doc/draft-ietf-oauth-selective-disclosure-jwt/.

https://datatracker.ietf.org/doc/draft-ietf-oauth-selective-disclosure-jwt/
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The following section outlines the process of issuing a credential using real data.
The first step involves collecting the necessary information and formatting it in
accordance with the W3C Verifiable Credentials Data Model v1.19 standard. The
figure below shows an example of a verifiable credential that is prepared for issuance.

Figure 5.9. Original Verifiable Credential before issuing process.

The next step involves calculating the disclosure values by applying the SHA-256
hashing method.

Figure 5.10. Calculating disclose values.

9. https://www.w3.org/TR/vc-data-model/.

https://www.w3.org/TR/vc-data-model/
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With the disclosed values, the Verifiable Credential is formed.

Figure 5.11. Verifiable credential woth the disclosed calculated values.

For issuing the credential, it must be in JWT format. The process is illustrated
in the image below.

Figure 5.12. Issued verifiable credential following SD-JWT standard.

Figure 5.12 shows an example that includes both the signed SD-JWT and the
disclosure information, which are separated by a “∼” character.
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The following Figure 5.13 provides a detailed view of the format used.

Figure 5.13. Combined format for issuance.

SD-JWT-based Verifiable Credentials (SD-JWT VC)

This standard builds upon the SD-JWT approach by incorporating specific updates
from the latest W3C Verifiable Credentials Data Model 2.0, which introduces sev-
eral changes from previous versions. Among these updates is the addition of new
parameters, such as the “vct” parameter, which defines the type of content in a Ver-
ifiable Credential (VC). The “vct” parameter dictates rules regarding which claims
can or must be included in the Unsecured Payload of the SD-JWT VC,10 and
whether these claims can be selectively disclosed. While the standard does not spec-
ify preset “vct” values, it expects individual ecosystems to define them, including
the corresponding semantics and rules for issuing and validating credentials.

The “vct” parameter is represented by a unique URI, such as “https://creden
tials.example.com/identity_credential”. For instance, this credential type spec-
ifies that certain claims, like given_name, family_name, birthdate, and address,
are mandatory in the Unsecured Payload. Additionally, other claims such as email,
phone_number, and private claims like is_over_18 or is_over_21 may be included.
The standard also allows selective disclosure of these claims when needed.

5.3 Ledger uSelf: Decentralized Identity Solution for IoT
Devices

5.3.1 Architectural Positioning within the ERATOSTHENES
Framework

The diagram in Figure 5.14 illustrates the ERATOSTHENES architecture, high-
lighting the main components and services developed by the project. The lower sec-
tion of the diagram (in purple) represents the elements embedded in IoT devices,
while the upper section shows the servers that host the various ERATOSTHENES
framework services.

Focusing specifically on the components responsible for the project’s Self-
Sovereign Identity (SSI) solution, the architecture includes two key elements: the
SSI Management service on the server side and the SSI Agent within the IoT

10. https://datatracker.ietf .org/doc/draft-ietf-oauth-sd-jwt-vc/

https://credentials.example.com/identity_credential
https://credentials.example.com/identity_credential
https://datatracker.ietf.org/doc/draft-ietf-oauth-sd-jwt-vc/
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Figure 5.14. ERATOSTHENES general architecture diagram.

devices. The SSI Management service, known as the Ledger uSelf IdM component,
operates on the server, while the SSI Agent, referred to as the Ledger uSelf IoT com-
ponent, is deployed directly on the IoT devices. Although not explicitly shown in
the diagram, the Context-aware component has been fully integrated within the
Ledger uSelf IoT, ensuring seamless functionality across the SSI solution.

5.3.2 Integration of SSI in IoT Devices: Components Overview

The Ledger uSelf solution plays a pivotal role within the IoT device architecture,
integrating several essential components that enhance both security and function-
ality:
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Figure 5.15. IoT components final integration for SSI solution.

• Context-Aware Component: This module enables the collection of crucial
hardware and software information necessary to create a verifiable creden-
tial, which includes a unique device footprint for enhanced identification
and authentication.

• PUF Client and PUF Library: These components utilize Physical Unclon-
able Functions (PUF), a form of hardware-based cryptography, to generate
the public DID (Decentralized Identifier) associated with the device. This
ensures robust device identification.

• p-ABC Module: This module provides advanced cryptographic capabilities
that enable the generation of verifiable presentations and zero-knowledge
proofs. This ensures that only necessary data is disclosed, protecting the pri-
vacy of the device’s credentials.

• Verifiable Data Registry Fabric (VDR-Fabric): This module is responsible
for generating public DIDs by leveraging a Hyperledger Fabric network. It
stores DID documents, playing a crucial role in establishing the public DID
for the device during the onboarding process.

• Advanced Data Protection (ADP) Module: The ADP module is designed
to securely store identity information within the device. It also acts as a bridge
to the Trusted Execution Environment (TEE), ensuring that sensitive identity
data is protected.
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• Identity Recovery Mechanism: This feature ensures that even in cases of
device loss or replacement, the continuity and security of IoT data manage-
ment are maintained, allowing for smooth identity recovery.

5.3.3 Key features of Ledger uSelf

5.3.3.1 Ledger uSelf Context Aware

The Context Aware component is specifically designed to assist in identifying IoT
devices. While individual hardware and software characteristics alone may not be
enough to distinctly identify a device, their combined use can form a unique profile.
This combination of attributes creates a signature that helps in the recognition of
each IoT device.

The key goal of this component is to generate a unique identifier that can be used
in Authentication and Authorization services. In alignment with the Self-Sovereign
Identity (SSI) model used by the ERATOSTHENES project, the unique footprint
of the device is transformed into a verifiable credential. This verifiable credential
is issued, signed, and secured by a Trusted Entity during the device’s onboarding
process. Once issued, this credential can be used within any SSI-compliant authen-
tication framework.

Figure 5.16. Context Aware sequence diagram.
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Figure 5.16 illustrates the step-by-step process of gathering unique information
from an IoT device, with access to this data dependent on the user’s permission level.
Superuser or root permissions allow for broader access to device information, while
users with lesser permissions have more restricted access. This feature enables the
service to generate distinct device profiles for each case. In the ERATOSTHENES
project, it is expected that the process will typically run with superuser permissions.
However, the component is also capable of generating a device footprint even when
root access is not available, ensuring a flexible approach that strengthens the security
of the overall process.

5.3.3.2 Ledger uSelf IoT Device

The primary purpose of the Ledger uSelf IoT component is to provide identity
management for IoT devices within the ERATOSTHENES project, adhering to
the principles of Self-Sovereign Identity (SSI). To meet the project’s specific needs,
this component has been designed as a single executable, integrating all necessary
functions. This design choice simplifies the installation, management, and execu-
tion of the identity solution for IoT devices.

The final architecture of the SSI solution for the ERATOSTHENES project has
been optimized to meet the project’s unique requirements. Built on the Hyper-
ledger Aries framework, the Ledger uSelf component acts as the core of the system,
integrating with other essential project modules. Enhancements have been made to
boost performance, add new features, and ensure smoother integrations. The solu-
tion is initially deployed in a containerized environment, which not only enhances
operational efficiency but also facilitates better performance and scalability as new
features are introduced.

The key features of the Ledger uSelf solution will be outlined in the following
sections.

5.3.3.2.1 Create Public DID

The process of creating a Public Decentralized Identifier (DID) involves generat-
ing a unique identifier for the IoT device and developing a corresponding DID
Document that adheres to the W3C DID specifications. This step is crucial for the
onboarding process, as it establishes the device as a recognized participant within
the system. The Identity Management component of the project plays a significant
role in this functionality.
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Figure 5.17. Create DID sequence diagram.

To accommodate the diverse needs of the ERATOSTHENES project, the system
offers two methods for publishing the public DID:

• did:web This method follows established DID standards.
• did:erat A custom method specifically developed for the ERATOSTHENES

project, this approach enables the DID to be published on a permissioned
blockchain using Hyperledger Fabric. This ensures secure storage of decen-
tralized identifiers while leveraging blockchain technology. The system incor-
porates the vdr-erat component, which includes a gRPC server and a Verifi-
able Data Registry (VDR), as illustrated previously in Figure 5.15.

The generation of cryptographic materials within the Ledger uSelf IoT is
dynamic and involves three main sources:

1. PUF Client Library: This source produces physically unclonable crypto-
graphic keys.

2. dP-ABC Module: This module offers cryptographic functionalities for gen-
erating derived verifiable presentations.

3. Hyperledger Aries: The framework manages its own cryptographic material
generation.
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5.3.3.2.2 Establish Connection

This method facilitates connections with other entities using the DID Exchange
Protocol 1.0 and the Out-Of-Band Protocol (OOB) 1.1, as specified by Aries.
Establishing a connection is essential for implementing any of the DID Commu-
nication standards.

To initiate a connection, each participant must generate a unique DID peer,
followed by the exchange of these DIDs. This exchange enables secure commu-
nication between participants, utilizing the cryptographic methods linked to their
respective DIDs.

From the device’s perspective, the connection setup process is straightforward.
The agent can simply invoke the connection functionality via the server-side URL,
streamlining the establishment of the connection (see Figure 5.18 below).

Figure 5.18. Establish Connection sequence diagram.

5.3.3.2.3 Device Onboarding

The management of Self-Sovereign Identity (SSI) is vital for the enrollment of IoT
devices, as it involves issuing verifiable credentials that authenticate and authorize
device identity attributes. Enrolling devices in the ERATOSTHENES framework
formally registers them as members of its ecosystem, marking the second phase
of the onboarding process, which begins with creating a Decentralized Identifier
(DID).
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The onboarding starts when the Ledger uSelf IoT component receives an
onboarding request. Two primary tasks are performed: generating a public DID
and registering it in the Identity Manager (IdM). The creation of a public DID
includes generating a unique identifier for the device and constructing a corre-
sponding DID Document that complies with the W3C DID standards. This pro-
cess relies on cryptographic keys generated from three distinct sources, which are
specified through environmental variables during installation.

The Ledger uSelf IoT component operates with a Hyperledger Aries agent,
allowing flexibility to adapt to the specific requirements of the ERATOSTHENES
project. After obtaining the necessary cryptographic keys, the system generates the
DID Document using one of two methods: did:web or did:erat. Once the new DID
is published, the device registers with the Ledger uSelf IdM agent and generates a
verifiable credential that encapsulates its unique identity attributes, requesting the
trusted entity to issue this credential (see Figure 5.19 below).

Figure 5.19. Onboarding sequence diagram.
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5.3.3.2.4 Issue Credential

The implementation of this feature adheres to the guidelines established in the
Issue Credential Protocol 2.011 from Hyperledger Aries and aligns with the DID
Comm Messaging12 standards set by the Identity Foundation. This protocol recog-
nizes that communication between the Issuer and the Holder can be asynchronous,
accounting for potential delays when the end user interacts with the system through
a mobile or web wallet. However, adaptations have been made for situations requir-
ing synchronous communication with IoT devices.

Figure 5.20. Issue Credential sequence diagram.

The process, illustrated in Figure 5.20, begins with the IoT device establishing
a secure connection with the domain agent. Once the connection is in place, the
Ledger uSelf IoT agent proposes to initiate the issuance process to the Ledger uSelf

11. https://github.com/hyperledger/aries-rfcs/tree/main/features/0453-issue-credential-v2.

12. https://identity.foundation/didcomm-messaging/spec/v2.0/.

https://github.com/hyperledger/aries-rfcs/tree/main/features/0453-issue-credential-v2
https://identity.foundation/didcomm-messaging/spec/v2.0/
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IdM component, pending the issuer’s agreement. This proposal includes a unique
thread ID to track the process.

With the thread ID secured, the device then requests the Ledger uSelf IdM to
issue the credential, providing the necessary verifiable credential content as a param-
eter. Upon receiving the signed verifiable credential from the issuer, the device stores
it for future use.

5.3.3.2.5 Present Proof

The Present Proof feature enables IoT devices to prove ownership of a verifiable
credential by presenting it to a verifier. This functionality is implemented in accor-
dance with Hyperledger Aries’ Present Proof Protocol 2.013 and complies with the
DID Communication standards established by the Decentralized Identity Foun-
dation (DIF).

Figure 5.21. Present Proof sequence diagram.

The process typically begins with the device establishing a secure connection
with the verifier. Once connected, the verifier provides a thread ID and defines the
criteria for the proof. The device then searches its stored credentials to find one that
matches the verifier’s requirements. After identifying the appropriate credential, the

13. https://github.com/hyperledger/aries-rfcs/tree/main/features/0454-present-proof-v2.

https://github.com/hyperledger/aries-rfcs/tree/main/features/0454-present-proof-v2
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device generates a verifiable presentation, demonstrating ownership of the creden-
tial. The presentation is then sent to the verifier for validation. If successful, the
proof is accepted, allowing further steps in the process to proceed.

5.3.3.2.6 Get Verifiable Presentation

This feature allows IoT devices to create a verifiable presentation that proves their
ownership and confirms their successful onboarding into the system. The process
begins by retrieving the verifiable credential issued during onboarding. The device
then uses this credential to generate a new verifiable presentation, which is re-signed
for added security. Finally, the signed presentation is sent back to the device, con-
firming its authenticity and integration into the system.

Figure 5.22. Get Verifiable Presentation sequence diagram.

5.3.3.2.7 Disposable ID

Disposable identities are temporary and limited-use identifiers, making them ideal
for IoT devices in Self-Sovereign Identity (SSI) systems. Their short lifespan
enhances privacy by preventing tracking and reducing the risk of identity theft,
as a unique identifier is created for each interaction. This approach ensures that
devices retain control over their data while complying with privacy standards.

In ERATOSTHENES, the disposable identity feature can be tailored to specific
project needs through the configurable variable “USELF_EXPIRATION_TIME,”
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which defines the identity’s validity period in minutes. Once the IoT device is
onboarded, its identity is created with a set expiration time. The “present proof”
function is used to confirm if the identity remains valid. If expired, the system sig-
nals that the “verifiable presentation” is no longer valid. Additionally, the verifiable
credential includes an “expirationDate” field, indicating when the credential will
expire in a standard UTC format, ensuring clear timing for all parties involved.

5.4 Research and Scientific Innovation

In recent times, significant advancements have occurred in the realm of Self-
Sovereign Identity (SSI), particularly within the European Union (EU). The EU
has taken major steps towards establishing a unified framework for European
Digital Identity. This initiative, aimed at benefiting all EU citizens, residents,
and businesses, is grounded in decentralized identity management technologies.
To support this, the EU has introduced a new regulation on electronic identifi-
cation and trust services, known as eIDAS 2.0.14 This regulation mandates that
Member States provide digital wallets that link national digital identities with var-
ious personal attributes (such as driving licenses, diplomas, and bank accounts).

While the technical details of the European Digital Identity framework are still
being refined, an important document, the Architecture and Reference Framework
(ARF),15 outlines the key elements of the system. The ARF, in its latest version,
defines the use of several core standards related to Self-Sovereign Identity. These
include:

• W3C Verifiable Credentials Data Model 1.1 (W3C VC-DM)16: A frame-
work for creating verifiable credentials that allow individuals to share trust-
worthy, tamper-evident digital credentials.

• OpenID for Verifiable Credential Issuance (OpenID VCI)17: A protocol
for issuing verifiable credentials through OpenID Connect standards.

• OpenID Connect for Verifiable Presentations (OpenID VP)18: Facilitates
the presentation of verifiable credentials using OpenID Connect.

14. https://digital-strategy.ec.europa.eu/en/policies/eidas-regulation.

15. https://github.com/eu-digital-identity-wallet/eudi-doc-architecture-and-reference-framework/blob/main/
docs/arf .md.

16. https://www.w3.org/TR/vc-data-model/.

17. https://openid.net/specs/openid-4-verifiable-credential-issuance-1_0.html.

18. https://openid.net/specs/openid-4-verifiable-presentations-1_0.html.

https://digital-strategy.ec.europa.eu/en/policies/eidas-regulation
https://github.com/eu-digital-identity-wallet/eudi-doc-architecture-and-reference-framework/blob/main/docs/arf.md
https://github.com/eu-digital-identity-wallet/eudi-doc-architecture-and-reference-framework/blob/main/docs/arf.md
https://www.w3.org/TR/vc-data-model/
https://openid.net/specs/openid-4-verifiable-credential-issuance-1_0.html
https://openid.net/specs/openid-4-verifiable-presentations-1_0.html
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• Selective Disclosure for JWTs (SD-JWT)19: Enables users to selectively dis-
close information from JSON Web Tokens (JWTs), ensuring greater privacy
control.

• SD-JWT-based Verifiable Credentials (SD-JWT VC)20: Extends SD-JWT
for verifiable credentials, allowing users to selectively disclose specific claims
from their identity information.

The Ledger uSelf solution for the ERATOSTHENES project adheres to all
relevant standards and integrates cutting-edge advancements in identity manage-
ment technology. Its implementation includes innovations such as p-ABC (privacy-
Attribute-Based Credentials) cryptography.

The solution holistically addresses the challenges of IoT identity management,
starting from the creation of a root of trust for device identities, followed by
enrollment, identification, and ongoing participation in a zero-trust and privacy-
preserving framework for authorization. It supports Self-Sovereign Identity (SSI)
principles for direct authentication and enables delegation of the authorization pro-
cess to a Policy Decision Point (PDP) and Policy Enforcement Point (PEP) infras-
tructure. Furthermore, Distributed Ledger Technologies (DLTs) are employed to
securely manage data, such as policies and trust scores, while preserving privacy
using SSI methodologies.

An important innovation is the integration of p-ABCs with the W3C Verifiable
Credentials (VC) specification. This combination allows for minimal disclosure
and unlinkability, offering better privacy protection compared to other implemen-
tations like JWT-SD. This breakthrough addresses one of the previous limitations
of p-ABCs, which lacked interoperability with other identity solutions, enhancing
both scalability and efficiency.

Ultimately, the Ledger uSelf solution provides a flexible application of technolo-
gies, balancing security, privacy, and computational costs to cater to the diverse
nature of IoT scenarios.

5.5 Conclusions

The ERATOSTHENES project has successfully achieved one of its core objec-
tives: developing a decentralized identity management system grounded in Self-
Sovereign Identity (SSI) principles for IoT devices throughout their lifecycle. This

19. https://datatracker.ietf .org/doc/draft-ietf-oauth-selective-disclosure-jwt/.

20. https://datatracker.ietf .org/doc/draft-ietf-oauth-sd-jwt-vc/.

https://datatracker.ietf.org/doc/draft-ietf-oauth-selective-disclosure-jwt/
https://datatracker.ietf.org/doc/draft-ietf-oauth-sd-jwt-vc/
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SSI approach represents a significant leap forward, offering a decentralized, user-
controlled identity management framework that contrasts with traditional central-
ized systems. By empowering IoT devices with autonomy over their identities, the
solution greatly simplifies the complexities of device management while ensuring
greater security and privacy.

In terms of technological development, the project concentrated on the integra-
tion and deployment of key components within IoT devices. The Ledger uSelf solu-
tion, in particular, serves as the central identity management component, seamlessly
incorporating other essential features such as the PUF client, p-ABC cryptography,
VDR-fabric, Advanced Data Protection (ADP) module, and the Identity Recov-
ery Mechanism. These components were developed across multiple work packages,
ensuring the solution meets the security, scalability, and performance needs of IoT
environments.

A significant achievement in this project was the successful adaptation of these
components to the specific hardware and software constraints of IoT devices, ensur-
ing compatibility and ease of deployment. The modularity of the Ledger uSelf
framework not only supports the devices used within ERATOSTHENES but also
demonstrates the potential for broader application across various IoT systems. This
adaptability allows for straightforward installation, execution, and management on
different types of devices, offering a flexible, scalable solution that can be ported to
other IoT contexts beyond the project.

In conclusion, the ERATOSTHENES project has created an innovative decen-
tralized identity management framework that simplifies IoT device management
while providing strong privacy, security, and scalability benefits, positioning it as a
pioneering solution for the future of IoT identity systems.
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Chapter 6

Inter-Ledger Platform for Cyber-Threat
Information Sharing and Lifecycle Security

By Jesús García-Rodríguez, Ekam Puri Nieto,
Juan Francisco Martínez Gil and Agustín Marín Frutos

The security configuration of devices within their deployment context is a key chal-
lenge for the secure management of IoT ecosystems in scientific and industrial envi-
ronments. The challenge is not limited to the initial deployment of the device but
branches out to the whole lifecycle of the device where it can be affected by dynamic
environments and the arrival of new threats. The cybersecurity of the solution,
particularly regarding the latter, hinges on an effective Cyber-Threat Intelligence
(CTI) exchange, as pointed out by the NIS2 directive. However, the process of
sharing CTI data must be itself secure, privacy-respecting and far-reaching to ensure
meaningful participation and results. This chapter describes the solution developed
within the ERATOSTHENES project for achieving privacy-preserving CTI shar-
ing in IoT scenarios. It consists of dedicated components within security domains to
share and receive this information, backed by an inter-ledger approach as trustwor-
thy backbone for the inter-domain data exchange. Additionally, the chapter intro-
duces the application and extension of Manufacturer Usage Description (MUD)
files for applying security configurations and mitigation actions related to devices
or threats within a domain. These components help achieve a system that reacts to
cyber-security incidents across the whole lifecycle of devices and security domains.

108

http://dx.doi.org/10.1561/9781638285076.ch6


Privacy-Preserving CTI Sharing 109

6.1 Introduction

IoT devices are intended to improve people’s daily life and business environments.
However, several aspects, such as their generally low capabilities, long lifetimes, or
ubiquitous access, make them an attractive attack vector, becoming a risk in any
deployment. Thus, it is necessary to establish mechanisms for managing security
aspects comprehensively throughout their lifecycle, including not only an initial
secure deployment but also the protection and reaction to events during their oper-
ational phase. Because of the dynamic nature of threats and attacks, it is important
to share up to date Cyber-Threat Intelligence (CTI), as highlighted by EU’s Net-
work and Information Security (NIS2) Directive. However, there are barriers to
the adoption of such measures, such as the potential security and privacy risks that
come from data sharing. In this chapter, we delve into the topics and techniques for
privacy-preserving CTI sharing, and showcase how, in conjunction with the Man-
ufacturer Usage Description (MUD) initiative for IoT devices and threats, it eases
tackling aspects of lifecycle security in IoT ecosystems.

6.2 Privacy-Preserving CTI Sharing

Security-related events incur in many direct and indirect loses for business and
industries. Thus, a key challenge in the IoT sector is the need for increased cyber-
security. To achieve meaningful results in terms of detection and mitigation of
cyberthreats, it is imperative that information on cyber-threats is exchanged, as
pointed out by the NIS2 directive [1]. This is not a trivial matter, with many
of the associated challenges already pointed out in said document. This chapter
describes a series of components that together provide a platform for inter-domain
CTI sharing. Before going into the detailed description of the solution, we give
a quick overview highlighting its relationship with the NIS2 directives. The solu-
tion applies Distributed Ledger Technology (DLT) as a supporting tool for sharing
of CTI and threat data across domains and with the whole ecosystem, including
CSIRTs, as specified in multiple directives (e.g., directive such as 18 or directive
26). Immutable DLTs enable the auditability of cyberthreat sharing and actions,
taking into account the sentiment of the directive, e.g., established in article 19.
For the sharing of information, we consider privacy means like anonymisation and
pseudonymisation, as suggested, e.g., in directive 121. Lastly, the solution makes
heavy use of open-source security tools and open standards that, as argued in direc-
tive 52, can contribute to improved security through transparency, diversification,
and interoperability.
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6.2.1 Cyber-Threat Intelligence

IDSs, IPSs, SIEMs, Firewalls, among many others, are elements provided for secur-
ing networks. This aims to protect the system both proactively and reactively against
possible intrusions. The operation of these security elements traditionally consists
of analysing traffic and matching it with a database containing signatures and pat-
terns of known attacks, to detect and block possible intrusions. However, since
protecting a system depends on many different factors, even with a robust active
security plan in place, the security of a system is not guaranteed. When presented
with novel attack vectors, it is possible for these devices to trigger false negatives and
allow an attacker to intrude. This is why additional methods must be incorporated
to secure the systems, complementing the active security they already have.

Cyber intelligence is an information gathering and analysis activity aimed at
identifying, tracking and predicting capabilities, intentions and activities of hos-
tile actors in the cybersecurity domain. CTI can be defined as evidence-based
knowledge, including context, mechanisms, indicators, implications and actionable
advice, about an existing or emerging threat that can be used to make decisions
regarding similar threats. CTI is comprised of attributes that give overall mean-
ing to such a report - malicious IP addresses or hashes alone are not considered
CTI, but grouped in context along with other information they can form part of
a CTI report. One of the crucial elements of Cyber Threat Intelligence are Indi-
cators of Compromise (IoCs). They are the most easily actionable attributes and
the ones that most tools working with this information focus on. IoCs are widely
used in applications such as Intrusion Detection Systems, web blockers, identifi-
cation of compromised hosts or malware. These indicators can be easily related to
other indicators that have occurred previously, taking advantage of big data analysis
techniques on stored indicators.

To facilitate and accelerate the intelligence sharing process between organiza-
tions, it is necessary to structure the information so that an automated exchange
can take place. Therefore, there are different standards for sharing threat intel-
ligence and different platforms that favour automation through the exchange of
this type of information. Survey [2] explains the development paths of the cyber-
intelligence domain, its usefulness and use cases, the main standards that have
been adopted in the industry, the most widespread platforms, and a comparison
between them. The study describes standards like STIX (Structured Threat Infor-
mation Expression) and TAXII (Trusted Automated Exchange of Indicator Infor-
mation), as well as OpenTPX, MAEC, IODEF or VERIS. Among these, STIX is
currently considered the de facto standard for describing Threat-Intelligence related
data and the most widely used in Threat Intelligence Sharing Platforms (TIPs). As
for the most widespread platforms for exchanging Cyber Intelligence Information,
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Figure 6.1. Example MISP event [4].

the survey highlights MISP, NC4 CTX, ThreatConnect, AlienVault, IBM X-Force
Exchange, Anomali, and CrowdStrike among others. In particular, MISP (Mal-
ware Information Sharing Platform) [3] is a TIP for collecting, sharing, storing
and correlating indicators of compromise (IOCs), targeted attacks, cyber intelli-
gence, financial fraud, vulnerability information, and even counter-terrorism infor-
mation. MISP is open-source software, and its objective is to foster the exchange
of structured information between the computer security community, to support
the daily work of incident and malware analysts. and malware analysts. MISP uti-
lizes the MISP Core Format, a subset of JSON, to represent threat information,
and events can be published in the platform using the STIX 1.1.1 and STIX 2.0
specifications.

However, CTI in many cases can contain information that should only be trans-
mitted to trusted stakeholders or not transmitted at all, such as Personally Identi-
fiable Information (PII) which is irrelevant to create situation awareness. In wrong
hands, this information can lead to a successful attack that could severely damage
the reputation of the stakeholder. Therefore, a trust mechanism and a way to pro-
tect sensitive data before sharing must be implemented in almost any CTI environ-
ment. In recent years, the importance of this mitigation measures has been reflected
in various research works. For instance, [5] presented a privacy-preserving protocol
for threat intelligence sharing, based on the collaborative training of a decision tree
classifier, and exchanging training data between organizations in a private way using
homomorphic encryption. Another approach is shown in [6], where authors pro-
pose a framework that allows different providers to share their information accord-
ing to privacy requirements contained in a Data Sharing Agreement (DSA) and
apply data mining techniques to extract additional knowledge from it.
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In order to increase the privacy level of the raw CTI data itself shared through
a platform such as MISP, we focus on applying Privacy Preserving Techniques
(PPTs) on the events. These events will thus have masked sensitive data with the
main objective of maintaining a satisfactory level of meaning while simultaneously
increasing privacy and avoiding risks related to identity disclosure, attribute disclo-
sure or membership disclosure. More specifically, non-perturbative masking tech-
niques such as generalization and suppression, perturbative masking techniques
such as noise addition through Differential Privacy (DP), and finally PPTs such as
k-anonymity and l-diversity are described and considered.

6.2.2 Data Anonymisation Techniques

There are some risks involved in CTI Sharing that make organizations often reluc-
tant to share information on such platforms. This is partly because they feel that
revealing information about intrusions could damage their reputation. Further-
more, this information can also carry IP addresses, email accounts, names, and
other PII which can be used against the sharing organization if it falls into the
possession of an attacker and the organization has not addressed security issues in
their system yet. Particularly relevant with PII is the fact that this information can
potentially fall into the hands of a dishonest partner, who can then make fraudulent
use of this information. Data anonymisation/pseudonymisation techniques aim to
solve these issues by transforming sensitive data in such a way that the new data
cannot be used by an attacker to extract sensitive information about the organiza-
tion, or alternatively the extent of the sensitive information conveyed by the data is
reduced enough to render it useless to the attacker. Data pseudonymisation applies
a reversible process and allows authorized parties to retrieve the hidden information
by using identifiers or pseudonyms, while data anonymisation is used to irreversibly
modify the data to guarantee the loss of sensitive information.

For the anonymisation of these identifiers’ values, there are privacy preserving
and data transformation techniques such as suppression, generalization, sampling,
k-anonymity, l-diversity, t-closeness, d-presence, etc. These techniques attempt to
minimize data risks related to identity disclosure (the ability of an adversary to cor-
rectly associate an individual within a dataset), attribute disclosure (the ability of
an attacker to infer the value of an attribute due to the distribution of attribute
values in the table), and membership disclosure (the ability of an attacker to be
able to determine, with very high confidence, whether or not a particular individ-
ual is present in the dataset). They are derived from Statistical Disclosure Control
(SDC) [7]. SDC, also known as Disclosure Avoidance, is the discipline that man-
ages the balance between the privacy of respondent data and the usefulness of this
data for research purposes. In the following, we give a brief description of some of
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Figure 6.2. Example of k-anonimity applied to a table of patients1.

the most widespread mechanisms, which have been implemented in the solution
described in this chapter.

K-anonymity is a data protection model/dataset property proposed by Latanya
Sweeney in [8]. Its objective is to minimize the risks of re-identification of indi-
viduals within anonymised datasets, stating that for a data publication to meet the
k-anonymity condition, the information about any one individual in the dataset
must be indistinguishable from at least k-1 other individuals in the same dataset.
k-anonymity focuses on identity-disclosure by guaranteeing that k records hold the
same values in a set of attributes, so that if an attacker had another external database
containing data of individuals from the dataset, he would not be able to relate one
of them within the privatized dataset to a degree of accuracy of no more than k
individuals.

L-diversity [9] improves the k-anonymity proposition by aiming to decrease
the attribute-disclosure risks that k-anonymity is susceptible to. To achieve this,
it defines a new type of attribute, called sensitive, which contains sensitive data
about an individual that is less identifiable than quasi-identifier data but whose
distribution in the dataset can reveal information about it. An equivalence class is
said to achieve l-diversity if there are at least l well represented values for a sensitive
attribute. A dataset has l-diversity when all its equivalence classes satisfy l-diversity.
l-diversity defines the concept “well-represented” in three separate ways, resulting
in three alternative conditions. The first one defines “distinct l-diversity”, where a
well-represented element is one that appears at least once. The second one defines
“entropy l-diversity”, which places a lower bound on the entropy level of the ele-
ment frequency. Finally, the “recursive (c, l)-diversity” variant seeks to guarantee
that the most frequent value within an equivalence class appears less, and the least
frequent value does not appear so little.

1. Source: https://blog.csdn.net/scuLVLV/article/details/71077689.

https://blog.csdn.net/scuLVLV/article/details/71077689
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Despite improving the weaknesses of k-anonymity, l-diversity continues to
present vulnerabilities related to attribute disclosure to a lesser extent. This is why
T-closeness [10] is introduced, to overcome these risks and to introduce a model in
which semantic meaning of values is considered. The way t-closeness works focuses
on calculating the distance between the distributions of each equivalence class with
respect to the rest of the dataset, to avoid problems arising from an uneven or
skewed distribution of sensitive values.

Differential privacy [11] establishes a rigorous mathematical definition of the
concept of privacy that guarantees the probability that the result of an anonymi-
sation process applied on a dataset is virtually unchanged if any individual in the
dataset is removed or added. This model attempts to provide privacy by perturbing
the data through the addition of small amounts of noise.

6.2.3 Inter-Ledger Approach for Verifiable Data Sharing

The integration of Distributed Ledger Technologies (DLTs) has been a catalyst for
significant advancements in the secure and verifiable exchange of data across various
domains. However, in the context of sharing security data, it is usually necessary to
connect many different security domains, and particularly make most of the data
as available as possible. Thus, it is necessary to adopt DLT solutions that ensure
interoperability of various instances and that enable global outreach for data sharing
mechanisms. While there exist multiple approaches to this challenge, we in this
chapter, we focus on the conceptualised concept of “Blockchain of blockchains,” so
that it is possible to facilitate smooth and secure transitions through smart contracts
(instantiated as chaincodes) among different domains, tailored to the needs of the
CTI sharing ecosystem.

The approach is based on the the creation of an inter-domain DLT instantiated
as an inter-domain channel within Hyperledger Fabric.2 This channel serves as the
foundation for inter-domain communication. Essential elements include partici-
pants from various domains, their respective permissions, and endorsement poli-
cies. For example, each domain contributes at least one peer to this channel, and it
ensures a majority endorsement policy. This strategy provides robustness and allows
for a decentralized governance structure where domains participate in the sharing
process as equals. Additionally, this enables the direct use of smart contracts across
different channels within the same ecosystem. This approach boosts transaction
efficiency and enhances security, interoperability, and scalability.

The inter-ledger approach is designed to address each domain’s specific needs for
data exchange. Using Hyperledger Fabric, each domain maintains private ledgers

2. https://github.com/hyperledger/f abric.

https://github.com/hyperledger/fabric
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Figure 6.3. Inter-DLT deployment and functional interaction overview.

while also participating in an inter-domain channel. In this way, domains can take
advantage of the adequate DLT capabilities according to the characteristics of the
data sharing process in mind. For instance, the CTI sharing solution described in
this chapter may create private records for auditability while also producing data
sharing events that reach the whole ecosystem and relevant stakeholders through the
inter-DLT. Smart contract invocations across channels facilitate communication,
with data traceability linked to genesis hashes. A gRPC server supports efficient
data management by directing it to appropriate channels, ensuring transparent and
configurable operations for components handling data in the domain.

The diagram in Figure 6.3 provides a visual representation showcasing the
deployment and interaction between different security domains using the inter-
DLT framework. The diagram features Domain A and Domain B, each with
their private ledgers within Hyperledger Fabric. Within these domains, various
smart contracts provide functionality related to the DLT, such as the management
of Decentralized Identifiers. Particularly, the CTI smart contracts handle Cyber
Threat Intelligence data as part of the security information sharing process. As
detailed in the following, this enables an auditable, secure and widespread solu-
tion for sharing CTI data across different security domains.

6.2.4 The CTI Sharing Agent

Figure 6.4 shows the detailed description of the CTI Sharing Agent as part of a
Trust Manager and Broker, as well as the main communication flows involving the
subcomponents.
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Figure 6.4. CTI sharing agent.

The CTI Sharing Agent consists of:

CTI Agent Connector: This component is in charge of communication to other
components of the security and trust framework in the domain. Particularly, our
instantiation includes communication through the Trust Manager and Broker
using a publish/subscribe MQTT approach. The connector will be the interme-
diary that receives threat alerts coming from the Monitoring components. It also
retrieves events from the CTI sharing platform for later forwarding them to rele-
vant components through the broker. Lastly, it governs the authorization of sharing
processes with CTI Sharing Agents from other domains.

Anonymizer: Receives a threat-related event coming from the CTI Agent Connec-
tor and applies anonymisation techniques that are specified in the privacy policy file
related to that type of event. After the anonymisation process the resultant event
is published on the domain’s instance of the CTI sharing tool, e.g. MISP. Addi-
tionally, the DLT is used for auditability and signalling of this publication process.
The techniques implemented in this component are generalization, suppression,
k-anonymity, l-diversity, and noise addition by differential privacy.

MISP: An instance of the MISP platform for publication and sharing of security
events. It acts as the repository of threat events received. Its synchronization capa-
bilities are useful to keep instances within a security domain synchronized (i.e., for
distributed instantiations of the security framework to provide resilience and scal-
ability). What is more, it can be synchronized with external MISP instances, such
as those of manufacturers or public CSIRTs/CERTs, so that the database of threats
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Figure 6.5. Threat detection and sharing.

Figure 6.6. Threat list update from CTI sharing.

reaches relevant people in the security sector and improves the security of the overall
ecosystem.

Figures 6.5 and 6.6 show diagrams for the threat detection, sharing and threat list
update processes. The first flow starts when the monitoring tools detect a threat,
at which point they notify the domain’s CTI Sharing Agent with detailed infor-
mation about the threat. The sharing agent then transforms the event data using
the Anonymizer to obfuscate sensitive information. The anonymized event is then
made available, and the DLT infrastructure is used to register this event. Particu-
larly, the domain’s DLT is used for registering the publication of the threat so as to
allow for auditability of the process. Additionally, the inter-DLT is used as a means
to register and make available summaries of the published information to other
domains, so that relevant stakeholders are notified of the event.

Later, a different security domain may desire to update its threat information
database to improve its security. Then, its CTI Sharing Agent queries the inter-
domain DLT (through a smart contract) for recorded relevant threat information.
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From this query, the agent receives threat event records, which include both threat
information as well as contact information for the sharing agent that originally
reported the threat. The domain’s sharing agent then initiates a process of threat
evaluation where, based on the specific domain properties, it selects those threat
events which are pertinent to the domain and queries the external sharing agent
for additional information. This threat exchange is subject to an authorisation pro-
cess overviewed by the publisher CTI agent, according to information relevant in
the application scenario. For instance, this may include checks of the requestor’s
identity or its inclusion on trusted entity lists maintained in the own DLT infras-
tructure. This process is repeated for every relevant threat event. Finally, once all
the threat information is gathered, the domain’s sharing agent forwards the updated
information to both the IDS and the risk assessment module in order to update the
relevant databases.

6.3 Manufacturer Usage Description Files

The large-scale nature of IoT deployments, the heterogeneity of device character-
istics, the distributed and replicated nature of deployments, or the involvement of
people with low or no technical background result in important needs for certifica-
tion and security configuration for automatized lifecycle management. On the one
hand, this topic includes the challenge of easing and automatizing the deployment
of devices in a secure way. On the other hand, it is necessary to go beyond those
initial steps, covering the whole lifecycle of the device including the necessary adap-
tations as security contexts change, because of configuration changes, addition of
new devices, or the arrival of new threats.

Our proposed solution leverages Manufacturer Usage Description (MUD) files
to address these challenges, integrating their use with other components in a
domain’s security and trust framework. This integration enables the discovery and
parsing of behavioural information for devices enrolling in the framework, which
is instrumental in enhancing analytical models, trust evaluations, and domain-
specific monitoring. Furthermore, we account for the dynamic nature of secu-
rity requirements by allowing updates to MUD files and incorporating new secu-
rity information through threat-specific MUDs. In a holistic solution, by incor-
porating monitoring and cyber-threat intelligence sharing tools, our approach
facilitates the exchange of security measures and mitigation strategies among rel-
evant stakeholders, in alignment with guidelines such as those outlined in the
NIS2 directive [1]. Overall, the outcomes of our research provide a crucial mech-
anism for ensuring secure lifecycle management of IoT devices, from their ini-
tial security configuration, during deployment and registration, to their eventual
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decommissioning, thereby addressing a significant business and technical challenge
in the IoT domain.

6.3.1 MUD Standard

The heterogeneity of IoT environments, spanning from dynamic home settings to
industrial IoT (IIoT), and the wide variety of devices using different technologies
and communication protocols, introduces several challenges. These include ensur-
ing compatibility across devices, managing diverse communication patterns, and
addressing security vulnerabilities that vary depending on the specific environment
and device capabilities. Furthermore, the restrictions inherent to certain IoT devices
(e.g., the lack of user interface) make management of IoT devices cumbersome for
non-expert users. Despite these complexities, it remains important to understand
or predict the expected behaviour of these devices in order to effectively detect and
mitigate security threats. Given these challenges, standardization in identifying and
managing device behaviour is essential for tackling the unique demands of these
varied IoT ecosystems.

In this direction, Manufacturer Usage Description (MUD) standard was pub-
lished in 2019 by the Internet Engineering Task Force (IETF) [12]. The MUD
specification’s major goal is to limit the threat and attack surface of a certain IoT
device by allowing manufacturers to establish network behaviour profiles for their
devices. Each profile is specified through Access Control Lists (ACLs), which estab-
lish policies for communication endpoints. They are defined using Yet Another
Next Generation (YANG) [13] to model network restrictions, and JavaScript
Object Notation (JSON) [14] as the serialization format. Figure 6.2 shows an exam-
ple of a MUD file, where we can appreciate the two core containers of the specifi-
cation. The first “ietf-mud:mud” container provides information about the MUD
file itself, such as its URL, how long it should be cached and information about the
device. Additionally, the MUD model is extended with the “ietf-access-control-
list:acls” container based on [15], including network communication restrictions
to configure the forwarding behaviour in the device, e.g., representing communi-
cations with certain hosts, ports or protocols. An example of a MUD file showing
these characteristics can be found in Figure 6.7.

Additionally, the standard introduces a comprehensive architecture designed to
manage MUDs, and mechanisms for its implementations. Also, it defines several
extensions for the transmission mechanism of the MUD such as an DHCP option,
an LLDP extension, a X.509 extension that links device’s identity and MUD profile
together, signature verification and extensibility considerations.

Figure 6.8 shows said architecture, where the device emits the MUD URL
(through one of the capable protocols) to router or switch, which forwards the
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Figure 6.7. Example of a MUD file [12].

URL to the MUD Manager and then retrieve the MUD file from the MUD File
Server on the manufacturer’s premises.

Since its adoption, MUD has been object of interest both from researchers
and standardization bodies. In particular, the National Institute of Standards and
Technology (NIST), and the European Union Agency for Cybersecurity (ENISA)
consider the use of MUD as part of future IoT security good practices to increase
security against cyberattacks in IoT domains [1, 16].
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Figure 6.8. MUD Standard Architecture [12].

6.3.2 Threat MUD Proposal

The task of securing environments that incorporate IoT devices extends far beyond
the initial installation. Numerous vulnerabilities and potential attacks often emerge
during the operational lifecycle of these devices, making continuous monitoring
and protection essential. For example, in 2022 alone, over 25,000 vulnerabilities
were identified [17]. Manufacturers often face challenges in addressing these vul-
nerabilities promptly, as updates require navigating a complex process. Additionally,
the involvement of third-party services can further complicate timely resolutions.
Although MUD files can be updated, this method fails to address the majority
of vulnerable scenarios. In these circumstances, security-information sharing sys-
tems play a crucial role by enabling the rapid, collaborative exchange, analysis, and
mitigation of vulnerabilities or attacks, even before a patch becomes available. In
fact, the importance of cyber-threat information sharing to strengthen cybersecu-
rity capabilities has been a significant focus of ENISA’s NIS2 Directive [1].

In this context, the NIST introduced the concept of Threat Manufacturer Usage
Description (Threat MUD) [16], aimed at facilitating the sharing of vulnerability
information and corresponding mitigations. Threat MUD builds upon the MUD
standard maintaining a similar structural foundation. Despite this close connection,
Threat MUD stands as an independent concept focused on mitigation strategies.
However, NIST provides only partial guidance on the Threat MUD model, leaving
some aspects undefined but still framed within broader guidelines.

In the following section, we examine the Threat MUD model as described
in [18]. The NIST guidelines and this work serve as a foundation for our approach,
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Figure 6.9. Extract of a Threat MUD file.

though we adapt certain elements, such as differences in the way the flows are imple-
mented in the solution’s architecture.

A key aspect to highlight about Threat MUD is the contrast in purpose with
respect to the original MUD standard. Unlike regular MUDs, which describe the
expected behaviour of a device, Threat MUD shifts its focus from the device to
the threat itself, specifying network communication rules for sites linked to the
identified threat. As a result, Threat MUD does not need to be tied to a particular
device. Furthermore, instead of being developed by the manufacturer, the creation
of Threat MUD files may fall under the responsibility of different threat intelligence
providers and stakeholders, emphasizing its role in threat-centric rather than device-
centric mitigation strategies.

As with the standard MUD, the Threat MUD model is structured into two
key modules (c.f. Figure 6.9 for an example). The first module provides informa-
tion about the Threat MUD itself, maintaining fields similar to those in the orig-
inal MUD standard, such as version, URL, cache-validity, and signature. How-
ever, several fields are adapted to align with the threat-centric focus. For instance,
the “manufacturer name” is replaced by “intelligence provider,” and “device model
name” is substituted with “threat name.” Also, fields that are no longer relevant,
such as those related to the specific device (e.g., system or firmware information),
are removed. Additionally, new fields are introduced, such as cvss-vector, related to
the CVSS (Common Vulnerability Scoring System) and documentation related, to
offer detailed information about the threat and its mitigation strategies.

The second module is related to Access Control Lists (ACLs) that define the con-
ditions and restrictions for network communication. Unlike the traditional MUD,
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where these ACLs are tailored to a specific device, Threat MUD applies these con-
figurations more generically, given its focus on threat mitigation rather than device
behaviour.

6.3.3 Shortcomings and Extensions

A notable limitation of the standard is the inability to implement security con-
straints beyond the network layer. This limitation is significant in this scope because
it restricts the expressiveness of the MUD files, thereby hindering their potential to
address a broader spectrum of security concerns. The definition of rules or condi-
tions that extend beyond this layer could help to add substantial expressive capa-
bilities that enhance the identification and mitigation of a wide range of attacks,
including those targeting the application layer such as slow DDoS attacks.

In the following, we describe several potential extensions to enhance the expres-
siveness of MUD files. These extensions may cover characteristics known at design
time or during updates, which the original MUD standard does not address.
Additionally, they could be useful for defining mitigation actions through Threat
MUDs, particularly in the context of this work.

• Application layer protocols significantly influence how devices should com-
municate within a network. In the context of the MUD standard, this selec-
tion directly relates to the application role of the devices, affecting the device’s
network behaviour. Allowing the specification of protocol restrictions at the
application layer not only influences network layer functionality but also
enables more granular control over the device within any given infrastructure.

• Exposed resources offered by the device, like HTTP/CoAP endpoints to
retrieve information, which could be used both for discoverability of devices
and to consider the expected behaviour for threat and risk models.

• Cryptographic algorithms, specify the supported algorithms of the device and
its preferences or add restrictions to the communications. This could be use-
ful for both communications (establishing secure channels) and higher-level
needs of the infrastructure, like determining which cryptographic algorithms
are preferred or supported, and the appropriate security level for managing
identities, e.g. digital signatures that either or not support zero-knowledge
proofs depending on the capabilities of the device.

• Known vulnerabilities associated with the device, through continuous MUD
file updates, following the CVE entry format and additional details like CVSS
scores, which could be associated with mitigations measures or restrictions to
reduce the threat risk.

• Software and firmware restrictions designed to support and enhance auto-
matic software update and deployment processes, such as defining a
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minimum software version for optimal operation or establishing an update
as part of a mitigation action.

Additionally, as identified in [19], the application of the MUD standard con-
fronts several operational challenges, and extension points are being researched in
many works on the topic.

Firstly, the standard does not address the dynamic nature of MUD files nor pro-
tocol for updates during deployment lifecycle. Another challenge is the necessary
authentication during MUD acquisition so that the infrastructure may know that
the MUD URL corresponds to the device sending it, and not to some other entity.
Moreover, the described method in the standard for obtaining MUD files, typically
via requests to switches or routers, may not be suitable for all operational environ-
ments. Lastly, the standard currently lacks detailed guidelines for applying MUD
in specific sectors such as the Industrial Internet of Things (IIoT), where advanced
functionalities and extended MUD models are crucial. This work aligns specifi-
cally with these areas of concern, in addition with the extension of the MUD file
expressivity.

6.3.4 The Adapted MUD Solution

Within the proposed security and trust framework, the MUD approach is inte-
grated as a key source of behavioral information for devices that enroll a domain. As
in the standard, MUD file servers are located outside the framework domains, typ-
ically hosted by the device manufacturers. MUD components within each domain
can communicate with these external servers to retrieve the relevant MUD files, for
instance through a simple REST API. However, different approaches of retrieval
could be used such as periodic requests or publish/subscribe models, enabling addi-
tional interactions such as MUD file updates. Similarly, threat MUD files will be
controlled by external entities, such as cybersecurity agencies. On the other hand,
the main functional components of the MUD standard and Threat MUD pro-
posal will be active in each security domain, as part of the security and trust frame-
work (e.g., the Trust Manager and Broker—TMB—component in the ERATOS-
THENES solution).

Figure 6.4 shows the detailed instantiation of the MUD components and an
overview on their interfaces. Note that the MUD management module is an aggre-
gation of subcomponents, incorporating both the standard MUD and Threat
MUD manager functionalities, alongside a Translation module.

• MUD Manager: the component is in charge of receiving MUD file resolu-
tion requests according to the URL associated to a device, e.g. through an
MQTT broker. It then utilizes the URL to retrieve the MUD File from the
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Figure 6.10. Instantiation of the MUD management module.

MUD File Server. Once done it returns the MUD File to the Translator mod-
ule.

• Translator: transforms MUD and Threat MUD files into applicable security
policies, ensuring seamless integration with the broader domain management
processes. Receives the MUD & Threat MUD File related to a device and
converts its conditions and restrictions into corresponding actions in MSPL
format. Once translated it adds to the MSPL the information of the device
or threat to which it’s addressed and sends it to the rest of the infrastructure
through the corresponding topic.

• Threat MUD Manager: similar to the MUD Manager, collects the Threat
MUD File tied to the specific threat identifier received after a trigger from
security components. After retrieving the file from the MUD File Server, it
forwards it to the Translator module for its translation and sharing.

• MUD File Server: this service belongs to the manufacturer premises and con-
tains the MUD files associated to the manufacturer devices. It’s a single server
for each manufacturer, leading to several servers3 according to the number of
manufacturers in the ecosystem.

• Threat MUD File Server: stores Threat MUD files associated to threat iden-
tifiers. Unlike the MUD File Servers, in this case the server does not belong
to the manufacturers but acts as a common access point for entities within
the framework serving mitigation strategies related to the threats present in

3. From a practical point of view this server may instead be distributed to improve scalability and resilience of
the solution.
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the ecosystem. Various security actors may control Threat MUD servers to
create and share policies.

The main contrast with the standard MUD architecture in Figure 6.10 is the
abstraction of the network layer. Indeed, one of the key advances over the MUD
obtaining process in the standard comes from the integration of the MUD pro-
cessing into a full-fledged trust framework. Now, we take advantage of the domain
enrolment phase to get the MUD URL from the device. The integration in such
flow, and within the complete ecosystem, also allows the exploration of further
improvements for the MUD flow.

For instance, while the server-side communication can be simply secured with
standard mechanisms (e.g., HTTPS), there is a security risk in the standard spec-
ification regarding the potential spoofing of a MUD URL by the device. In
the application-level integration proposed, the authentication of the URL dur-
ing MUD file obtention can be tackled through the domain’s identity framework.
Specifically, the manufacturer will associate the URL to the root of trust for identifi-
cation of the device, for instance through the use of Physical Unclonable Functions
as a root identity. When receiving the URL and retrieving the file, it is then possible
to check that the device possesses the proper root identity, otherwise rejecting its
claim. Furthermore, the extension of the MUD model and language with higher
level concepts, like software updates or cryptographic parameters restrictions, is
even more relevant through this layer abstraction. Nonetheless, the MUD solution
will not ignore networking elements by working at the application level. As MUD
files will be associated to devices that are relevant to an application domain, the
networking rules will also be relevant to the specific deployment and must simply
be translated to the appropriate enforcement measures.

Additionally, in the specific instantiation within ERATOSTHENES, the inclu-
sion of the MUD elements in the TMB allows simple interactions with other
domain components relevant to the application of its functionality and the manage-
ment of the lifecycle of devices. For instance, as previously mentioned, the informa-
tion provided in the MUD file can be leveraged by the Threat Modelling and Risk
Assessment (TMRA) component to influence the trust level assigned to a device.
Additionally, monitoring systems such as Intrusion Detection Systems (IDS) can
utilize MUD data to understand the expected traffic patterns for each device. This
allows IDS to more effectively identify deviations from expected behaviour and
respond swiftly to potential threats. These interactions open various enforcement
possibilities, not only at the network level through direct policy application, but also
through indirect control by continuously evaluating device behaviour and adjusting
its trust level based on its interactions within the domain. This approach strength-
ens the overall security posture and response capability within the network.
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Figure 6.11. Extract of the MSPL YANG model tree.

To facilitate these communications, we rely on the Translator component, which
converts MUD files into intermediate security policies. The policies provide a
set of actions suitable to the most common applicable security settings. For this
medium level of abstraction, we work with the Medium-level Security Policy Lan-
guage (MSPL) [20]. The MSPL language specification is based on a YANG model,
allowing it to be encoded in XML or JSON formats, providing flexibility in how
MUD information is utilized (c.f. Figure 6.11).

This flexibility ensures that the data contained in MUD & Threat MUD files can
be efficiently applied across different components. Assets in the security domain will
have access to the medium-level policies and take advantage of them for improv-
ing their performance in their tasks, possibly with another translation into their
own structures. For instance, the TMRA may use the policy directly to increase its
knowledge base for building models, while the IDS may translate policies into rules
that detect related events, and further authorization enforcement policies may be
derived by PDPs.
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6.4 Lifecycle Security Through Information Sharing

One of the main aspects of the cybersecurity world is the ever-changing nature of
security contexts and threats. Thus, there is a need to dynamically change the secu-
rity assessment and measures, especially in the heterogeneous and changeful world
of IoT, with different phases along lifecycles. At the device level, while MUD files
are especially relevant during bootstrapping and enrolment, they can be updated
with new information (e.g., known vulnerabilities, recommended software updates)
by the manufacturers, and uploaded to file servers. Those updates can then be used
to improve the security protocols around the device and avoid obsolete informa-
tion. Another tool for dynamic assessment, in this case mostly focused on threats
and potential malicious actors themselves, is the sharing and analysis of threats
through threat MUD files, which is carried out during the operation of a security
domain. This knowledge can be taken advantage of in security domains with tools
that can take into account and apply the threat information and mitigation actions
defined in these files.

On this note, a key topic of the NIS2 directive by ENISA [1] is the impor-
tance of providing mechanisms for privacy-preserving and secure CTI sharing. As
described above, the sharing processes should include relevant entities such as man-
ufacturers, vulnerability databases, or cyber-response teams. With such solution, it
is possible to improve detection, monitoring and assessment of threats and secu-
rity domains. What is more, it enables widespread awareness of threats, resulting in
a more secure ecosystem, for instance through the creation of mitigation policies.
With this in mind, the tools and processes introduced in this chapter can be used
to enhance security along the lifecycle of devices and IoT ecosystems, as we discuss
in the following.

6.4.1 Secure Deployment of IoT Devices

A critical security event during the lifecycle of devices is their deployment within the
domain of operation. During this process, several checks must be made to ensure
the safety of the domain, from the identification of the device to the initial eval-
uation of its characteristics in a zero-trust approach. These processes are further
explored in other chapters in the book. Here, we focus on how the security infor-
mation coming from the MUD solution can be used to enhance the initial boot-
strapping and enrolment process, acting within the context of a holistic solution. In
this sense, we part from the MUD management solution based on an application-
level interaction with the trust services of a security domain.

Figure 6.12 shows an extract of an enrolment process in such an integrated
ecosystem, highlighting the interactions related to MUD files. The process takes
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Figure 6.12. MUD Management during bootstrapping and enrolment.

advantage of the enrolment of a device within the trust framework of a domain to
kickstart the MUD retrieval process. This MUD file contains information about
expected behaviour, known vulnerabilities and general security data about the
device. The MUD Management Module then translates the file into security poli-
cies in the MSPL language, which are shared throughout the security and trust
framework of the domain. Thus, actions adapted to the security context can be
taken to ensure a safe onboarding process. As related in the figure, it is possible,
for instance, to take advantage of other tools described in this book, improving the
monitoring capabilities of the detection systems and adapting the evaluation of the
trustworthiness of the device according to the gathered information.

During the deployment of the device, its identification and the provisioning of
identity in the domain are important steps for the security of the process and later
operation of the device. Of course, this also affects the application of security mea-
sures according to device information, as it is necessary to ensure that the retrieved
MUD file is adequate for the device. To do so, the MUD URL associated to a
device can be linked to the root of trust for its identification process, which is set
up by the manufacturer during the initial provisioning of the device. For instance,
the MUD URL can be bound to a Physical Unclonable Function output, achieving
strong unforgeability guarantees.

A simple extension of this secure deployment process can be done to account
for the changing nature of security aspects throughout device lifecycles. MUD files
are stored within the MUD Manager during their lifetime, and once expired they
are retrieved again, checking for changes and if necessary, updating the MSPL
policy associated with the device so that the other tools can take advantage of
the new information. In some deployments, the fileserver may instead allow a
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Figure 6.13. Threat detection and sharing.

subscribe-publish approach, so that immediately after a new version of a MUD
file is generated, it will reach the relevant MUD managers.

6.4.2 Threat Sharing and Mitigation

While the previous section focuses on the aspects related to adopting initial and
updated security configurations of a device within a domain, in the following the
focus within the lifecycle security is on the functionalities achieved through the
sharing of CTI information. As previously discussed, this is a critical process for
ensuring the security of both the devices and the domain throughout their entire
lifecycle, as well as enabling appropriate responses to information received in order
to implement necessary mitigation measures.

Figure 6.13 gives a general overview of a threat sharing process that involves a
new threat for which mitigation actions will be generated. First, a threat or attack
is detected through the monitoring tools within a security domain, and the CTI
information reaches the CTI Sharing Agent. The agent parses the data and applies
anonymization techniques to protect sensitive data. The anonymized information
about the threat is then shared outside the security domain, through sharing tools
like MISP. The data will reach relevant cybersecurity actors, such as CSIRT or
CERT teams, for instance of a device manufacturer The identified threat may
include new information that can be analyzed by the appropriate tools or personnel,
initiating the process of generating a suitable mitigation response. In some cases,
the threat may already be known, including mitigation actions related to it, so that
the mitigation process automatically starts from the domain tools.

In case the new mitigation is generated, it can be published as a Threat MUD
file. A notification of the creation of the new file is sent through the CTI shar-
ing network, so that it can reach any security domain where the threat is relevant.
Particularly, following the previous example, the CTI Sharing Agent of the secu-
rity domain receives the information and notifies through the broker about the
existence of the new Threat MUD file associated to the previously detected threat.
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Figure 6.14. Threat mitigation sharing and enforcement.

The Threat MUD Manager receives the notification and retrieves the file, then for-
wards it to the Translator. The Translator generates an MSPL language policy based
on the file’s contents, tailoring the mitigation to the specific domain (e.g., adjusting
IP addresses to those relevant within the domain). This MSPL policy contains mit-
igation actions for the specified threat. The policy is then published on the MQTT
broker, so that its enforcement can take place according to the necessary actions.
For instance, the flow in the image includes a mitigation action at the network level,
so that the monitoring and protection tools can execute the policy by adding rules
for detecting and stopping specific traffic. Other mitigation actions may be used
depending on the context of the threat and the domain, such as having the digital
twin fleet management tools issue a software update after a compromise.

These procedures are fully automated, except for specialized personnel who may
be needed to develop appropriate mitigation actions. This automation enables the
ecosystem to respond to cybersecurity incidents throughout the entire lifecycle of
the devices and security domains. The approach is flexible, allowing various com-
ponents to address different situations, including known threats and their mitiga-
tions. Moreover, these processes enhance the overall security ecosystem by ensuring
that relevant CTI information—covering existing threats and their mitigations—
reaches all stakeholders. Additionally, the tools facilitate the adaptation of measures
to specific domain scenarios by considering the security context during information
parsing and utilizing generic policies that can be modified by various tools for dif-
ferent enforcement procedures, such as traffic management and automated software
upgrades. For instance, threat modelling and risk assessment tools can dynamically
incorporate both the existence of a threat and the implementation of a mitiga-
tion action, allowing models to evolve in response to changing conditions. This
adaptability can influence the perceived trustworthiness of participants and inform
decisions on whether to authorize their actions.
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Chapter 7

An Efficient Verifiable Data Registry for
Identity and Trust Management in IoT

By Sokratis Vavilis, Fotis Michalopoulos, Harris Niavis,
George Misiakoulis and Konstantinos Loupos

In today’s world, IoT devices play an integral role in various aspects of our daily lives,
ranging from smart home appliances to healthcare systems and industrial applica-
tions, offering innovative services. However, the inherent diversity and heterogene-
ity of IoT networks introduce new challenges, particularly in managing devices.
This diversity also opens vulnerabilities that malicious actors may exploit, compro-
mising the security of IoT ecosystems. In this chapter, we present a verifiable data
registry (VDR) solution designed for decentralized identity and trust management
in IoT environments. Our approach leverages Blockchain and gRPC technolo-
gies, utilizing HyperLedger Fabric as the underlying blockchain infrastructure. We
extend this with a novel hybrid consensus algorithm tailored to the specific needs of
IoT networks. Additionally, we expose the VDR’s identity and trust management
capabilities through gRPC services. The proposed solution emphasizes both secu-
rity and scalability, enhancing its relevance and effectiveness in IoT applications.

7.1 Introduction

Modern IoT networks consist of a wide range of heterogeneous devices that vary
in nature, technical specifications, and are designed to fulfil different objectives
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across diverse domains [1, 2]. This heterogeneity introduces challenges in terms
of management, deployment, maintenance, commissioning, inter-communication,
and overall lifecycle management. Additionally, the subtle differences among IoT
devices make security concerns more evident [3]. For example, the absence of com-
mon trust mechanisms and standardized security frameworks makes IoT devices
particularly attractive targets for attackers. Unfortunately, there are currently no
comprehensive solutions that can securely manage IoT devices while simultane-
ously addressing decentralization and privacy concerns. As noted in [4, 5], most
existing IoT trust management frameworks focus only on specific aspects, such as
security, flexibility, or privacy, while others are limited to particular domains, like
smart mobility [6] and healthcare [8], where the heterogeneity of IoT devices is
more controlled.

To address these challenges, the ERATOSTHENES research project proposes
an innovative decentralized solution for the holistic lifecycle management of IoT
devices. Specifically, ERATOSTHENES aims to achieve this through: (a) secure
and privacy-preserving identity management for IoT devices, enabling decentral-
ized enrolment, discovery, and overall management across various domains, (b) reli-
able communication and network operation via a trust mechanism that assesses
the trustworthiness of nodes, and (c) sharing cyber-threat intelligence (CTI) infor-
mation to strengthen the network and its devices against ongoing attacks. The
ERATOSTHENES Trust Framework is designed to be versatile and applicable
across multiple domains, such as smart mobility, remote healthcare, and Indus-
try 4.0. Thus, the proposed solutions are intended to be flexible and efficient,
accommodating heterogeneous and resource-constrained devices (e.g., IoT) with-
out compromising security. Further details on the requirements are discussed
in [9].

In this context, the current chapter introduces a new solution to enable the secure
storage, retrieval, management, and sharing of identity data (i.e., DID Docs) along-
side additional information, such as trust scores linked to IoT devices and CTI data.
This solution enhances the resilience of the entire ERATOSTHENES IoT ecosys-
tem, where various architectural components leverage the services provided by this
approach. The solution is built upon the W3C Decentralized Identifiers (DIDs)
standard,1 implementing the concept of Self-Sovereign Identities (SSIs) for verifi-
able and decentralized identity management. In particular, we propose a secure and
efficient Verifiable Document Registry (VDR) for decentralized identity and trust
management. To achieve this, we utilize the Hyperledger Fabric (HLF) blockchain
framework for storing information and create scalable and secure gRPC services

1. Decentralized Identifiers (DIDs) v1.0, https://www.w3.org/TR/did-core.

https://www.w3.org/TR/did-core
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to expose its functionality. Additionally, we extend HLF with a novel, fair, and
lightweight consensus algorithm to meet the specific needs of the IoT ecosystem
and the ERATOSTHENES project.

The remainder of this chapter is structured as follows: The next section intro-
duces the preliminary knowledge required to understand the contributions of this
work. Section 7.3 presents the proposed VDR solution and its design. Section 7.4
details the creation of an efficient and secure VDR using gRPC services and a hybrid
consensus algorithm. Lastly, Section 7.5 provides an experimental evaluation of the
proposed innovations, and Section 7.6 concludes the chapter.

7.2 Preliminaries

In this section we introduce the fundamental concepts necessary for understanding
the work presented in this chapter.

7.2.1 Self-Sovereign Identity

Self-Sovereign Identity (SSI) is a digital identity model that empowers individuals
to control their personal data.2 Unlike traditional systems where third parties man-
age and store identity information, SSI allows users to own, manage, and securely
share their credentials through decentralized technologies like blockchain. This
reduces dependency on centralized authorities, enhances privacy, and gives users
the ability to decide what information to share and with whom, promoting greater
autonomy and data security.

To support this, the World Wide Web Consortium (W3C) has standardized
Decentralized Identifiers (DIDs), which enable verifiable and decentralized identity
management.3 As illustrated in Figure 7.1, DIDs refer to a subject and are managed
by a DID controller (i.e., identity controller). Each DID is associated with a DID
document that specifies the verification methods required to prove the authority of
the DID controller over the DID, along with available interactions with the sub-
ject. This functionality is facilitated by a Verifiable Data Registry (VDR), which
can be implemented as a blockchain network to store and manage information
such as DIDs and DID documents. The VDR is a key component of SSI infras-
tructure, and its design and implementation significantly impact the achievement

2. The Path to Self-Sovereigh Identity, https://www.lifewithalacrity.com/article/the-path-to-self-soverereign-
identity/.

3. Decentralized Identifiers (DIDs) v1.0, https://www.w3.org/TR/did-core.

https://www.lifewithalacrity.com/article/the-path-to-self-soverereign-identity/
https://www.lifewithalacrity.com/article/the-path-to-self-soverereign-identity/
https://www.w3.org/TR/did-core
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Figure 7.1. DID architecture.

of SSI objectives. In particular, implementing a secure, and scalable VDR for iden-
tity management is an open challenge, especially in resource-constrained environ-
ments like IoT [9]. To this end, in this work we present an efficient VDR aimed to
facilitate the management of identity and trust information.

7.2.2 Blockchain

In today’s interconnected world of IoT devices, security challenges in decentral-
ized environments can be addressed using distributed ledger technology (DLT),
which ensures secure and trustworthy access to records and data storage. The most
widely recognized and mature DLT is blockchain. Originally developed to support
Bitcoin in 2008 [10] as a verifiable append-only database for recording financial
transactions, blockchain has since evolved into a powerful tool for decentralized
data management.

A blockchain is essentially a chain of data blocks, each containing specific infor-
mation and linked to the previous block through a cryptographic hash function.
This structure guarantees the integrity and proper sequencing of data. Blockchain
networks are designed for read-only traversal or the addition of new blocks, ensur-
ing that data cannot be altered once recorded.

What sets blockchain apart from other distributed storage technologies is its
decentralized and peer-to-peer nature. Each node in the blockchain network stores
a local copy of the entire blockchain and collaborates with other nodes to add new
blocks through consensus algorithms. These algorithms define the process for nodes
to agree on the inclusion of new blocks, ensuring that all participants in the network
maintain a shared and consistent view of the blockchain, even in a decentralized
setup.

Blockchain networks can vary based on membership criteria. Public blockchains
allow any node to join and access the chain, while private blockchains restrict
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participation to authorized nodes. Furthermore, blockchains can be permissioned,
where only selected nodes can add new blocks, or permissionless, where any net-
work participant can propose new blocks.

Another key feature of blockchain technology is the introduction of smart con-
tracts, which debuted with Ethereum [11]. Smart contracts are immutable pieces
of code executed on the blockchain, allowing for automated processes while main-
taining transparency and auditability. This high level of programmability enables
the automation of complex tasks with minimal human intervention.

Blockchain has a wide range of applications, including secure supply chain man-
agement, healthcare data management, and smart energy services. It is also seen as a
foundational technology for Web 3.0, which aims to decentralize and democratize
the internet. One significant example of this trend is Self-Sovereign Identity (SSI),
which is discussed in this work.

7.2.2.1 HyperLedger Fabric

HyperLedger Fabric (HLF) is one of the leading frameworks for building permis-
sioned blockchain networks. In HLF, each network is structured into channels,
which represent well-defined groups of nodes (i.e., consortium) that may belong to
different organizations. The nodes in an HLF network serve distinct functions and
are classified as either Peers or Orderers. Peer nodes are responsible for hosting the
ledger, executing chaincode (i.e., smart contracts), and providing services like the
Fabric Gateway [12]. They play a key role in the smooth operation of the network
by endorsing and validating transactions for inclusion in the blockchain. Transac-
tions are submitted to the blockchain through the Fabric Gateway. Orderer nodes,
on the other hand, are tasked with ordering these endorsed transactions into blocks
and distributing them to Peer nodes. The collection of Orderer nodes across vari-
ous organizations, all connected to the same channel, forms the network’s Ordering
service.

Most blockchain networks follow an order-execute architecture, where the con-
sensus protocol first validates and organizes transactions into blocks, which are then
propagated to all peer nodes for sequential execution. HLF, however, introduces
an innovative execute-order-validate architecture. In this model, transactions are
first executed and endorsed by Peer nodes, then ordered into blocks by the Order-
ing service. Afterward, the Peers validate the transactions within the block based on
the network’s endorsement policy before committing them to the ledger.

The transaction lifecycle in HLF begins with a client from one of the network’s
organizations. The client application connects to the Fabric Gateway in a Peer
node, and the transaction goes through three key phases before being added to
the blockchain:
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• Proposal phase: The client sends a transaction proposal to the network’s par-
ticipating organizations. Each Peer executes the proposed transaction and
signs it according to the network’s endorsement policy.

• Ordering phase: The Fabric Gateway submits the endorsed transaction to an
Orderer node, based on the consensus mechanism in place. For example, in
Raft consensus algorithm, the signed transaction is sent to a specific Orderer,
whereas in SmartBFT, it is broadcast to all members of the Ordering service.
The Ordering service organizes the transaction into a block and forwards it
back to the Fabric Gateway.

• Validation phase: Each Peer validates the transactions within the block. Valid
transactions are committed to the ledger, and the client receives a confir-
mation from each Peer, signalling that the transaction has been successfully
appended to the blockchain.

In this work we leverage HLF advanced functionalities to create the basis of the
proposed VDR. To this end, on the one hand we incorporate a new consensus
algorithm to it. On the other hand we expose the implemented identity and trust
management functionalities via a gRPC interface to boost efficiency and security.
We elaborate on this in Section 7.3.

7.2.2.2 Consensus Algorithms

Consensus algorithms are fundamental to blockchain technology, ensuring the
secure storage and integrity of data on the blockchain. These mechanisms provide
the core process by which nodes in a decentralized network agree on adding new
blocks to the chain. Consensus algorithms can be broadly categorized into two types
[13–15]. The first category consists of voting-based or leader-based approaches,
which originate from distributed systems and rely on agreement protocols that
mimic human decision-making processes. In these algorithms, nodes use a voting
system to elect a leader, who is then responsible for adding a block to the chain.
These approaches are typically used in permissioned blockchains, and the algo-
rithms supported by HyperLedger Fabric (HLF), such as Raft and smartBFT, fall
into this category.

The second category includes modern consensus algorithms, commonly found
in public blockchains, which use randomness and competition. For example, in
Proof-of-Work (PoW) algorithms [10], nodes compete to solve a cryptographic
puzzle, with the winner adding the next block. In Proof-of-Stake (PoS) algo-
rithms [16], nodes are selected based on the amount of stake they hold in the
network, with higher stakes increasing the likelihood of selection. As already men-
tioned, in this work we integrate a novel hybrid consensus algorithm to HLF. This
algorithm draws inspiration from modern approaches consensus while incorporat-
ing elements of voting mechanisms.
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7.3 VDR Design

In this section we present the design of the proposed VDR solution. First we dis-
cuss the overall architecture of our VDR and its components. Then we move for-
ward presenting the W3C compliant DID method we defined to manage identities
through our VDR.

7.3.1 Architecture

Our goal is to create an efficient VDR to manage identities and trust informa-
tion in a decentralized manner. The overall architecture of the proposed approach
is depicted in Figure 7.2. At the core of the proposed VDR component lies the
blockchain module, implemented using HLF, which is responsible for storing and
managing DID documents and Trust information (i.e., trust scores). To facilitate
the coordination of different nodes, the blockchain module utilizes different con-
sensus algorithms, such as Raft, smartBFT and a novel hybrid consensus algorithm
(see Section 4.2). Next to that, we create smart contracts, in the form of HLF
chaincode, to manage the information stored in the blockchain infrastructure. In
particular, we have implemented smart contracts to cover all the necessary CRUD
(Create, Read, Update, Delete/Deactivate) operations for both DID Docs and Trust
scores, and also share these data across multiple IoT networks (i.e., domains).

Despite their usefulness, interacting with the blockchain using smart contract
in an IoT network can be challenging. That would require different services, such
as the IdM and the TMB service, to implement their respective blockchain infras-
tructure and call the related smart contracts when needed to perform a particular
operation. This can be proven to be a challenging task, both in terms of implemen-
tation and efficiency. Therefore, to facilitate the interaction with the VDR’s smart
contracts, we have built and external facing interface utilizing the gRPC protocol.

Figure 7.2. ERAT VDR architecture.
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gRPC is an open source, cross-platform Remote Procedure Call protocol, initially
developed by Google, which aims at providing high performance. This interface
is exposed by a gRPC server, which implements services for the subscription of a
DID agent or Trust agent, and the CRUD of DID Documents and Trust Scores.
Internally, the gRPC server employs the Fabric SDK Go for the management and
communication with the HLF network, translating the received request to smart
contract calls. Compared to existing approaches [9, 17–19], which typically employ
other protocols like REST and, the integration of gRPC enhances both security and
scalability. We further discuss this aspect in Section 4.1. We note that our VDR also
supports the management and sharing of Cyber Threat Intelligence (CTI) infor-
mation, and to this end implements the related smart contracts and gRPC calls. A
more comprehensive discussion on this matter can be found in Chapter 6.

To interact with our VDR solutions, the identity and trust agents need to imple-
ment gRPC clients that consume the functionality exposed by the VDR. Such com-
munication requires a valid subscription to the respective service, by each compo-
nent. Upon successful subscription, a DID or TMB agent can request the creation,
resolution, update of deletion of a particular DID Doc or Trust Score. We note that
such DID and TMB agents, are responsible for the logic behind managing identity
and trust information, while the proposed VDR is only responsible for providing
an efficient infrastructure for their management. In the case of the IdM, the Hyper-
ledger Aries Framework Go [17] was used as a baseline and was extended with the
gRPC client.

Example: We assume that a particular IdM agent is already subscribed to the gRPC
service and wants to create a new DID document for an IoT device. The IdM agent
constructs the DID Document using the public key related to the IoT device and
sends it to the gRPC Server by calling the createDoc() gRPC service. The request is
validated and authenticated by the gRPC server which then forwards it to the corre-
sponding smart contract function that handles the storage of the DID Document
in the Blockchain. This action triggers the emission of the docResolution event
which, through the gRPC server reaches the DID agent and verifies the creation of
the new identity in the Blockchain. We note that a similar process is followed for
the other supported operation for both identity and trust information. It is worth
mentioning, however, that in the case of identity information the agent must follow
a standardized approach, complying to the W3C conformant erat DID method,
which is described in the following section.

7.3.2 Erat DID Method

A DID method defines how designers and developers should materialise the fea-
tures described by the W3C DID method specification [20] in association with a
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Table 7.1. erat DID method syntax.

The erat DID Method Syntax ABNF Rules

did = "did:erat:" genesishash ":" identifier

genesishash = 64(hexdigit)

identifier = 64(hexdigit)

hexdigit = "0" / "1" / "2" / "3" / "4" / "5" / "6" / "7" / "8" / "9" / "a" / "b" / "c" / "d" / "e" / "f"

particular VDR. In this work, we have created the erat DID method, to define
the DID scheme used in the context of the ERATOSTHENES project. The erat
DID method has been published as an official DID method in the list of known
DID Methods by W3C https://www.w3.org/TR/did-extensions-methods/#did
-methods.

As the DID method specification suggests, each DID is described by a unique
DID URI that is conformant with the Uniform Resource Identifier (URI) generic
syntax. In our system we have defined the erat DID method to describe DIDs. The
rules and decisions to produce DID URIs that belong to the erat method and the
DID Syntax ABNF Rules are presented in Table 7.1.

An erat DID URI consists of four key components. It starts with the prefix
"did:", which is a universal identifier required by all DID URIs to conform to the
official DID standard. According to RFC 3986[RFC] this "did:" prefix is followed
by the method name—in this case, erat—which defines the ERATOSTHENES
namespace. The remaining segments are specific to the method and must be glob-
ally unique within the ecosystem. The third segment is a globally unique identifier,
which is the SHA-256 hash of the genesis block of the VDR ledger that the DID
is associated with. Since each ledger has a unique genesis block, this hash allows a
DID agent to identify a specific VDR. The final segment is an identifier linking to
a specific entity. It is calculated as the SHA-256 hash of a combination of a ran-
dom nonce, the genesis block hash, and the public key of the DID controller. The
inclusion of a random nonce enhances privacy and prevents linkability, adding extra
randomness to the identifier. This design prevents malicious actors from tracking a
DID controller across networks by using its public key, ensuring that the identifier
remains globally unique due to the nonce.

For the erat DID method specification, we have also defined key opera-
tions, including authorization mechanisms (e.g., cryptographic keys) and standard
CRUD operations. The creation process is initiated by the DID agent via a service
provided by the gRPC server, where the agent sends the controller’s public key, the
ledger’s genesis hash, and the cryptographic details necessary for verification (as per
W3C standards) to request the creation of a DID by the VDR. To resolve (i.e.,
read) a DID, the agent submits the DID URI to the VDR, which then returns

https://www.w3.org/TR/did-extensions-methods/#did-methods
https://www.w3.org/TR/did-extensions-methods/#did-methods
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the corresponding DID Document. For updates, the agent must provide the DID
URI along with the requested changes, such as adding a new verification method.
Finally, for deletion, the agent sends a deactivation request to the VDR using the
DID and the associated public key. For both update and deactivation operations,
the VDR ensures that the requester is the controller of the DID in question. The
authentication method defined in the DID Document is used to verify the con-
troller’s identity before performing these operations.

7.4 Towards an Efficient Solution

The most defining property of the proposed VDR solution is its focus on efficiency.
Towards this direction our contribution is twofold; on the one hand we increase the
communication efficiency and scalability of blockchain-based VDR by integrating
gRPC technology and on the other hand we integrate a novel hybrid consensus
algorithm to HLF. In the remainder of this section, we elaborate on our key con-
tributions.

7.4.1 gRPC Integration

As already mentioned, creating efficient and scalable VDR solutions is an open
challenge. To expose their services in a user-friendly manner, most of the existing
solutions [9, 17–19] rely on different protocols such as REST and WebSockets.
However, compared to these approaches, research shows that gRPC technology can
provide increased throughput and security [21]. This performance gain is largely
attributed to its use of the HTTP/2.0 protocol, which allows for faster and more
efficient bidirectional data transmission compared to the older HTTP/1.1.

In our solution the gRPC protocol was chosen to facilitate the interaction with
the VDR due to its superior performance and robust security features (e.g., TLS
for data confidentiality and authenticity). We note that such a choice is further
justified by gRPC widespread adoption in various other platforms and frame-
works, such as HyperLedger Fabric,4 Dropbox,5 and Uber.6 As outlined in Sec-
tion 7.3, we developed a bidirectional gRPC server to expose the VDR’s func-
tionalities. This server can manage multiple secure channels, with each channel
corresponding to a distinct gRPC client, such as DID agents within an IoT net-
work. This design significantly improves the scalability of the system. The gRPC

4. https://hyperledger-fabric.readthedocs.io/en/release-2.5/network/network.html.

5. https://dropbox.tech/inf rastructure/how-we-migrated-dropbox-from-nginx-to-envoy

6. https://www.uber.com/en-GR/blog/architecture-api-gateway.

https://hyperledger-fabric.readthedocs.io/en/release-2.5/network/network.html
https://dropbox.tech/infrastructure/how-we-migrated-dropbox-from-nginx-to-envoy
https://www.uber.com/en-GR/blog/architecture-api-gateway
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server implements various essential methods, including Subscribe, CreateDoc, and
CreateTrustScore, to effectively manage identity and trust information stored in
the VDR. To minimize the overhead associated with multiple TLS handshakes and
enhance performance, both the gRPC server and clients make use of “Keepalive
Settings.” This configuration ensures that only a single TLS handshake occurs at
the beginning of the connection, allowing the secure channel to remain open and
available for event transmission with the blockchain without repeated handshakes.

Next to the above, gRPC protocol performance is closely tied to the serialization
method employed for data transmission, particularly the codec used for encoding
messages between the server and clients. Several serialization protocols are available
for use over a gRPC channel, each offering specific advantages based on the use
case. Among the most prominent are Protocol Buffers,7 Gob,8 and JSON. Gob
is a serialization format unique to the Go programming language, optimized for
encoding Go data types but lacking cross-language support. Protocol Buffers (pro-
tobufs), developed by Google, provide efficient serialization of structured data and
support a variety of programming languages. JSON, a well-established and stan-
dardized format, remains a popular choice for structured data representation due
to its broad compatibility. To select which encoding method is more suitable for
our VDR implementation, we performed benchmarks to assess the performance
of various codec implementations. We present our experiments and discuss their
results in Section 7.5.

7.4.2 Fair and Lightweight Consensus

The second major novelty of our efficient VDR solution is the integration of a novel
hybrid consensus algorithm in HLF [27]. Below we discuss its fundamental design
principles and we proceed with presenting it implementation in HLF.

7.4.2.1 Algorithm Design Principles

As already discussed, consensus algorithms are one of the most critical compo-
nents of blockchain technology, defining its key properties. Traditional leader-based
approaches, such as the ones found in HLF, rely solely on voting and leader elec-
tions. Although quite efficient, these approaches lack flexibility and are not designed
to cope with networks with fluid membership, such as dynamic IoT networks where
nodes (e.g., devices) are frequently introduced or disbanded. Next to that, sim-
pler algorithms like Raft cannot handle malicious entities, while more sophisticated
approaches (e.g. smartBFT) introduce significant communication complexity.

7. https://protobuf .dev/overview/

8. https://pkg.go.dev/encoding/gob

https://protobuf.dev/overview/
https://pkg.go.dev/encoding/gob
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Figure 7.3. Consensus algorithm structure overview.

On the other hand, modern blockchain consensus algorithms address the limi-
tations of traditional approaches, effectively cope with variable membership in the
network (e.g., public networks) while showcasing increased tolerance to malicious
nodes. Due to their design however, the most prominent algorithms of these cate-
gory cannot be applied to an IoT context. In particular, algorithms such as Proof-of-
Work require considerable resources (e.g., computational power, space, TEEs etc.)
which are not available in the resource-constrained IoT ecosystem. Next to that,
less heavy-weight approaches such as Proof-of-Stake (PoS) or Proof-of-Importance
(PoI) [28] may give an unfair advantage to particular nodes of the network (e.g.,
favouring nodes with high monetary investments in the network) related to the
block proposal, effectively demotivating newcomers or nodes with less involvement
in the network.

To mitigate these challenges, we propose an innovative hybrid consensus algo-
rithm designed specifically for IoT systems, with a focus on being lightweight and
fair. As shown in Figure 7.3, the algorithm is structured into two main components:
a decentralized lottery-based mechanism for block proposal and a reputation-driven
voting process for block finalization. The lottery mechanism leverages Verifiable
Random Functions (VRFs), which enable nodes to independently and securely
generate a random lot in a decentralized and verifiable manner. In particular, a
VRF [22] operates by taking a public/private key pair and a seed as inputs, and
then generating a hash as its output. While only the holder of the private key can
compute the VRF hash, anyone with access to the corresponding public key can
independently verify its correctness. The VRF output is uniquely determined by the
combination of the private key and seed, resulting in a uniformly distributed out-
come that enhances the element of randomness and fairness in the block proposal
phase [23]. Therefore, using VRFs nodes are able to compute a unique verifiable
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lot (i.e., hash) for a particular round defined by the corresponding seed. We note
that VRFs have been widely adopted in various consensus algorithms, including
Algorand’s Pure Proof of Stake (PoS) model [24].

In the voting phase, a consortium of trusted nodes votes on the best seen block
proposal (i.e., with highest lotter number) for the given round. The trustworthiness
of each node is evaluated through an external reputation system. It is important to
note that our proposed approach is flexible and not limited to any [29] specific
reputation model, however, in the context of ERATOSTHENES we leverage the
Trust Score information produced by the TMB component. In this work, we refer
to trusted Orderer nodes (i.e., nodes with high reputation) as reputable and we
allow them to participate in the voting phase. On the other hand, non-trusted
nodes are called non-reputable.

Summarizing, the proposed algorithm deviates from traditional leader-based
consensus models in Hyperledger Fabric (HLF) by eliminating the need for a des-
ignated leader to propose blocks. Instead, block proposals can originate from any
network node through a randomized lottery process, with the final decision being
made through a voting mechanism among trusted nodes. This lightweight, hybrid
design is particularly suited for resource-constrained environments, such as those
found in IoT networks, as it avoids the need for energy-intensive operations. Next,
we delve into the implementation details of our solution.

7.4.2.2 HLF Implementation Details

We implemented the proposed consensus algorithm using Go programming lan-
guage and integrated in HLF. The consensus process consists of three distinct
phases: Proposal, Voting, and Commit, which we present below.

The Proposal phase begins when an Orderer node within the HLF network
receives and organizes a batch of transactions into a block. During this process,
the transactions included in the block are removed from the Orderer’s transaction
pool to prevent duplication. Each Orderer then proposes its block to be appended
to the shared ledger. To ensure fairness and randomness, each Orderer computes a
Verifiable Random Function (VRF) using its private key and a seed derived from
the previous block’s header.

The seed for the VRF is extracted from the header of the last confirmed block in
the ledger, allowing any network node to verify the VRF hash using the seed and the
corresponding public key of the Orderer. For consistency, the first block added to
the ledger uses a VRF generated from a "genesis seed," which is randomly generated
for each system to serve as the initialization point for the consensus mechanism.

Once the blocks are prepared, each Orderer broadcasts its proposed block to
other Orderers while simultaneously listening for block proposals from others. In
parallel, each Orderer continues to listen for incoming transactions from Peers,
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Figure 7.4. Proposal phase algorithm.

Figure 7.5. Voting phase algorithm.

which are stored in the transaction pool for future proposals. The steps of this
process are outlined in Figure 7.4.

This approach ensures decentralization by enabling any node to participate in
block proposals, reducing potential bottlenecks caused by leader-based models,
while maintaining security and randomness through the use of VRFs.

Followingly, the Voting Phase (see Figure 7.5) is responsible for determining
which block will be appended to the shared ledger. A key requirement for partici-
pation in this phase is the reputation of the Orderer. Specifically, only nodes with
established reputations are allowed to take part in the voting process. The steps
involved in this phase are detailed in the algorithm provided below. By the end of
the Voting Phase, each Orderer should have reached a consensus on the winning
block to be committed to the ledger.

Lastly, in the Commit phase each Orderer commits the winning block to the
shared ledger. Once the block is successfully validated, indicating that consensus
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has been reached across all Orderers, each node updates its state in preparation for
the next round of consensus.

There are two scenarios that an Orderer must account for: (a) if the accepted
block was self-proposed, and (b) if the accepted block was proposed by another
Orderer. In the first case, the Orderer takes no further action. If there are any
remaining transactions in the transaction pool, the Orderer moves on to the next
round and proposes a new block. In the second case, where the block was proposed
by another Orderer, the node must update its transaction pool by removing any
transactions that were processed in the accepted block.For this, the Orderer cleans
its self-proposed block, eliminating from its pool any transactions that overlap with
those in the accepted block. The remaining transactions from the self-proposed
block are returned to the pool. The Orderer also removes any transactions that
appear in the accepted block from the transaction pool.

An important aspect of this phase is handling transactions that are not yet known
to an Orderer but appear in the accepted block, which could result in duplicates
in future blocks. To mitigate this risk, any unknown transaction from the accepted
block is temporarily stored and later crosschecked to ensure it is not reprocessed in
subsequent rounds. The Commit Phase process is shown in Figure 7.6.

7.5 Experimental Evaluation

In this section we present the experimental evaluation of the proposed VDR solu-
tion. First, we discuss the assessment of the different serialization methods for the
gRPC service of the VDR. Then we present the experimental evaluation of our
integrated consensus algorithm in HLF.

7.5.1 gRPC Benchmarks

As discussed in Section 7.4, different serialization methods have significant impact
on the performance of the gRPC service (in terms of communication overhead).
This evaluation will allow us to select a suitable serialization method for identity
and trust information.

Existing benchmarks9 typically evaluate codecs based on their performance and
correctness. However, many of these assessments include redundant initialization
phases, which can negatively impact the performance of certain codecs. In our
evaluation we followed a similar approach, however, to improve accuracy, we opti-
mized the approach by eliminating unnecessary encoding and decoding steps and

9. https://github.com/alecthomas/go_serialization_benchmarks.

https://github.com/alecthomas/go_serialization_benchmarks
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Figure 7.6. Commit phase algorithm.

enhancing the overall implementation. This allowed for a more reliable evaluation
of each codec’s performance, focusing on time efficiency and memory usage during
the serialization and deserialization processes. Furthermore, in our benchmark we
extended the test to assess various serialization methods using different data struc-
tures (e.g., DID Documents) specific to our use case.

In more detail, we evaluated three codecs: Protocol Buffers, Gob, and JSON, as
outlined in These were tested by sending a range of data structures—such as a basic
struct, a DID Document, and an x509 Certificate—over the gRPC channel. The
selection of these data structures reflected different levels of complexity, providing
a comprehensive evaluation of each codec’s performance under diverse conditions.
The experiments were conducted on a Linux system equipped with an Intel Core i7-
9750H @2.6GHz and 16GB of RAM, ensuring a robust environment for testing.

To evaluate the performance of serialization (encoding) and deserialization
(decoding), we conducted experiments using the aforementioned data structures.
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Table 7.2. Benchmarking different codecs with gRPC for encoding operation.

struct didDoc X509 cert

Benchmarks proto json gob proto json gob proto json gob

time/iter 56 95 280 1096 9110 3656 2682 27537 11352

bytes/op 8 27 39 1280 2571 4869 2304 8213 6484

alloc/op 1 1 0 1 33 3 1 25 35

Table 7.3. Benchmark different codecs with gRPC for decoding operation.

struct didDoc X509 cert

Benchmarks proto json gob proto json gob proto json gob

time/iter 156 1659 1173 1292 255725 3095 5621 30808 19993

bytes/op 72 224 24 1976 134858 1584 5096 5452 8389

alloc/op 2 5 1 29 1539 25 80 90 177

We followed a similar approach to the existing benchmarks, and we evaluated the
performance utilizing Go’s default benchmarking metrics such as the time per itera-
tion, bytes allocated per operation, and the number of distinct memory allocations
per iteration. The time per iteration captures overall performance and CPU usage,
while the memory-related metrics focus on memory consumption during the oper-
ations. For each case 500 iterations were performed.

The serialization benchmark results are displayed in Table 7.2 while the deserial-
ization results are presented in Table 7.3. Our findings reveal that Protocol Buffers
(protobufs) consistently provide the fastest serialization times, outperforming the
other codecs. In two exceptional instances, however, Gob surpasses Protocol Buffers
in both memory consumption and CPU utilization. In particular, the better perfor-
mance of Gob was shown when decoding simple structures and DID Document
structures. The relatively poor performance of JSON when decoding DID Doc-
uments can be attributed to the nested nature of these structures, which requires
JSON to handle multiple layers during the deserialization process, thereby increas-
ing its complexity and processing time. Further information about the data struc-
tures, experimental setup, results, and the associated source code is available in our
open-source repository.10 This repository provides additional insights into the per-
formance of different codecs in serialization and deserialization operations.

10. https://gitlab.com/eratosthenes-h2020/grpc-benchmarks.

https://gitlab.com/eratosthenes-h2020/grpc-benchmarks


152 An Efficient Verifiable Data Registry for Identity

7.5.2 Consensus Evaluation

The aim of this experiments is to evaluate the performance of our consensus algo-
rithm implementation in HLF and determine how it compares with the existing
algorithms in HLF, namely Raft and smartBFT. The primary objective of this eval-
uation was not only to assess the throughput and resource utilization of the new
algorithm but also to observe its overall behaviour and stability under various work-
loads and network conditions. We designed the experiments to provide a robust
comparison by employing a range of configurations and scenarios.

The experiments were conducted in a controlled virtual machine environment
with the following hardware specifications:

• 24-core AMD EPYC 7452 x86-64 CPU
• 64GB of RAM
• SSD storage for improved data access speeds

To ensure the benchmarking process was standardized and the results were repro-
ducible, we employed Hyperledger Caliper, a dedicated benchmarking tool devel-
oped by the Hyperledger Foundation to evaluate the performance of blockchain
frameworks [25]. Caliper provides a comprehensive suite of metrics that allows
users to measure various performance aspects, such as throughput, latency, and
resource consumption, across different blockchain configurations.

In the experiments, Caliper was configured to generate a pool of 15,000 trans-
actions, which were transmitted by a client application at a fixed rate of 1,500
transactions per second. This transaction rate was chosen to simulate realistic con-
ditions, effectively stress-testing the consensus mechanisms. The transactions were
distributed to each Orderer node by 24 concurrent worker processes. This setup
provided a reliable framework to observe how the newly implemented consen-
sus algorithm behaves under heavy workloads and how it compares to Raft and
smartBFT in terms of performance.

We followed the benchmarking approach outlined in the smartBFT study [26],
designing test scenarios with varying configurations of Orderers. These scenarios
were structured to include clusters of different sizes and multiple transaction batch
sizes. Specifically, for smartBFT, we used clusters composed of 4, 7, and 10 Order-
ers. In contrast, for the Raft and hybrid consensus algorithms, clusters of 5, 7, and
11 Orderers were employed. In each cluster configuration, transaction batch sizes
of 250, 500, and 1000 transactions per block were tested to evaluate performance
under differing workloads.
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Figure 7.7. Hybrid consensus results.

7.5.2.1 Results and Discussion

In our testing process, each configuration described above was subjected to six rep-
etitions to ensure robust and consistent results. The performance metrics for the
hybrid consensus algorithm, Raft, and smartBFT are presented in Figures 7.7, 7.8,
and 7.9 respectively. Each figure presents the average value derived from the six
iterations, providing a comprehensive overview of the system’s behaviour under
different conditions.

By looking at the results, we see that Raft consistently demonstrated greater
throughput compared to both smartBFT and the hybrid consensus approach. This
performance advantage can largely be explained by Raft’s lower communication
overhead. As a leader-based mechanism, Raft operates by electing a leader respon-
sible for making decisions regarding which blocks to append to the ledger. Once this
decision is made, the leader broadcasts the block to the other nodes (Orderers), thus
significantly streamlining the block addition process. This results in a reduced trans-
action lifecycle, as it requires only a single phase of communication between nodes,
minimizing the amount of inter-node messaging required. In contrast, smartBFT,
despite being leader-based, incurs additional communication overhead due to its
multi-phase message validation process. Specifically, smartBFT required additional
message exchanges during the Pre-prepare, Prepare, and Commit phases, adding
complexity and slowing down the overall throughput. The hybrid consensus algo-
rithm diverges from the leader-based paradigm, and although fairer in nature, it
requires additional message exchanges between the nodes for proposing blocks and
voting. In particular, in the hybrid consensus approach every node is expected to
create a block proposal, while information dissemination is done using a gossip
protocol.
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Figure 7.8. RAFT consensus results.

Interestingly, despite smartBFT better performance compared to our implemen-
tation, a deeper analysis of the results revealed several critical insights:

• Reliability Concerns: One of the most significant findings was the issue of
transaction failures observed with smartBFT, particularly as the number of
Orderers increased. For instance, in the 7-Orderer configuration, transac-
tion failures ranged from 0 to 17, while in the 11-Orderer setup, failures
increased and varied between 0 and 226, representing approximately 1.5%
of total transactions. In extreme cases, transaction failures exceeded 2000,
accounting for roughly 13% of all transactions. We, however, excluded such
edge cases in our final analysis as we did not consider them representative of
smartBFT average behavior. In contrast, both Raft and the hybrid consensus
demonstrated strong reliability, with no reported transaction failures.

• Duplicate Transactions: Another observation was the significantly higher
number of duplicate transactions generated by smartBFT when compared to
Raft and the hybrid consensus. In scenarios involving 11 Orderers, smartBFT
recorded over 200 duplicate transactions, indicating inefficiencies in transac-
tion handling and network synchronization, which could further complicate
system performance under heavy loads.

• Handling of Batch Sizes: While the batch size (the number of transactions
per block) was explicitly configured to specific values (e.g., 1000 transac-
tions per block), smartBFT frequently committed blocks containing far fewer
transactions than the specified batch size limit. This suggests that smartBFT
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Figure 7.9. smartBFT consensus results.

treats the batch size as a theoretical maximum, rather than a strict guide-
line, likely optimizing for other factors, such as network latency or node syn-
chronization. This practice potentially gives smartBFT a throughput advan-
tage, but it complicates direct comparisons with Raft and the hybrid consen-
sus, both of which adhere strictly to the configured batch size. The lack of
such optimizations in the hybrid consensus implementation means that while
smartBFT may appear to outperform in some scenarios, the comparison is
not entirely fair, as the two systems are optimized differently.

The impact of batch size on algorithm throughput was another key area of inves-
tigation. Increasing the block size from 250 to 500 transactions generally resulted
in improved performance across all the tested configurations. However, the hybrid
consensus displayed a unique pattern: its throughput continued to increase even
with batch sizes of 1000 transactions, whereas smartBFT exhibited a slight decline,
and Raft experienced a more severe drop in performance. This suggests that the
hybrid consensus can better handle larger batch sizes without sacrificing through-
put, while Raft and smartBFT might encounter bottlenecks or inefficiencies as the
batch size grows. Moreover, our analysis revealed that increasing the number of
Orderers (i.e., cluster size) generally had a negative impact on throughput across
all algorithms. This decline in performance is primarily attributed to the addi-
tional communication overhead that comes with managing larger networks, as
more nodes need to be coordinated, increasing the time and resources required
to achieve consensus. However, one notable exception was Raft, which showed
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improved performance with a batch size of 500 transactions and 7 Orderers, sug-
gesting that under certain conditions, Raft can manage increased network size more
efficiently than the other algorithms.

In conclusion, while our implementation demonstrated promising results, par-
ticularly in terms of its ability to scale without transaction failures, further opti-
mization is needed. Our current implementation, although functional, is still in
the proof-of-concept stage and is not yet ready for production deployment. Future
work will focus on reducing communication costs by optimizing message sizes and
streamlining inter-node interactions. Additionally, we plan to enhance the robust-
ness of the algorithm by incorporating features to handle node failures and dynamic
network changes post-initialization.

7.6 Conclusion

In this chapter, we introduced a secure and efficient solution for managing identities
and trust information in decentralized IoT environments. Unlike existing methods,
our approach capitalizes on the robust security features of Blockchain technology
while enhancing scalability through a fine-tuned gRPC implementation. To meet
the increased decentralization demands of IoT networks, we integrated a novel
hybrid consensus algorithm into the chosen blockchain infrastructure, specifically
HyperLedger Fabric (HLF). We provided a detailed explanation of our design and
presented evaluation results of the proposed Verifiable Data Registry (VDR) within
the scope of the ERATOSTHENES project. As part of our ongoing efforts, we are
currently working on validating these solutions in the project’s pilot implementa-
tions to further support and refine their functionality.
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Chapter 8

Intrusion Detection for IoT-based Context
and Networks

By Rosella Omana Mancilla, Francesca Costantino,
Cesar Caramazana Zarzosa and Juan Manuel Vera Diaz

This chapter discusses the importance of establishing robust monitoring and detec-
tion capabilities in IoT ecosystems to identify emerging cybersecurity threats, in
alignment with NIST guidelines and the NIS directive. Intrusion Detection Sys-
tems (IDS) play a critical role in monitoring network traffic, identifying suspicious
activities, and responding to potential threats. The chapter also addresses the lim-
itations of traditional IDS in modern IoT environments, such as handling large
volumes of data and ensuring real-time detection. To address these challenges, the
ERATOSTHENES project proposes an integrated solution using Machine Learn-
ing to distinguish between normal and malicious device behaviours, complemented
by Federated Learning techniques to optimize data transmission and enhance col-
laborative AI model development.

8.1 Introduction

To strengthen IoT ecosystems and align with the NIST guidelines [1] and NIS
directive [2], it is crucial to establish monitoring and detection capabilities to
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identify emerging cybersecurity threats. According to NIST, intrusion detection is
defined as “the process of monitoring the events occurring in a computer system or
network and analysing them for signs of possible incidents, which are violations or
imminent threats of violation of computer security policies, acceptable use policies,
or standard security practices” [3].

By monitoring and analysing network traffic, we can ensure that each identi-
fied and authenticated device is generating legitimate activity and not acting as
a shadow IoT device. Incidents may not always stem from malicious intent—
employees might inadvertently attempt to access restricted areas, for example. Such
events should be reported to ensure the ecosystem can respond promptly and stay
secure.

Intrusion Detection Systems (IDS) are vital in establishing a robust security
framework. An IDS monitors network traffic for suspicious behaviour and raises
alerts when potential threats are detected. In some cases, IDS can automatically
respond to malicious activity, such as blocking traffic from suspicious IP addresses.
When this proactive capability is integrated, the system becomes known as an Intru-
sion Prevention System (IPS).

However, modern IoT ecosystems present significant challenges for traditional
IDS, including the need to handle massive amounts of network data, maintain
detection efficiency, and provide real-time monitoring. As highlighted in directive
51 [2], member states are encouraged to adopt innovative technologies such as Arti-
ficial Intelligence to overcome these challenges, therefore ERATOSTHENES pro-
poses an integrated solution that uses Machine Learning techniques to adequately
and efficiently classify normal behaviours or habits of devices from new types of
attack from the domain point of view. Additionally, novel solutions based on Fed-
erated Learning techniques leverage the distributed properties inherent to IoT net-
works, thereby optimising the amount of data transmitted through the network
and facilitating the collaborative generation of more accurate AI-based models.

This chapter is divided into two subsections, one for the Network Intrusion Pre-
vention Detection System IDPS) and one for the FedLPy, their integration com-
poses the Monitoring,IDS which is a Trust Manager & Broker (TMB) submod-
ule in charge of analysing traffic data and identifying threats (and potential
threats).

8.2 Network Intrusion Detection Prevention System

From the State of the Art, IDPS focuses on enhancing detection accuracy, scalabil-
ity, and efficiency through the integration of advanced technologies such as machine
learning, deep learning, and cloud computing.
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One of the ERATOSTHENES project scopes is to enhance the security on com-
munication among enrolled, and not, devices and edge, and to do so innovative
approaches have been adopted to define an effective Network Intrusion Detection
Protection System, including:

• Introduction of Anomaly detection
• Zero-trust on device
• Cyber-Threat Information Sharing and application of external Mitigation

action (from MUD files)

Hereafter, Section 8.2.1, the studies that have suggested the innovation brought
by the project.

Section 8.2.2 reports the overall architecture of the solution, and the implemen-
tation of its building blocks is listed into Section 8.2.3. It is worth mentioning that
the implementation was driven by state of the art on technologies at the beginning
of the project. Further studies are in place to continue to improve the proposed
solution following trends on Network Intrusion Detection and Prevention.

Lastly in Section 8.2.4 the interconnections with other ERATOSTHENES
modules are provided.

8.2.1 State of the Art and beyond SOTA

In today’s highly interconnected world, cybersecurity threats are evolving at an
unprecedented pace, posing significant risks to organizations and their digital
infrastructures. The rapid expansion of Internet of Things (IoT) ecosystems and the
increasing reliance on complex networks have made it more challenging to detect
and mitigate potential security breaches. To address these growing concerns, the
implementation of robust security measures has become essential for safeguarding
sensitive information and ensuring the stability of critical systems.

One of the core components in modern cybersecurity frameworks is the Intru-
sion Detection and Prevention System (IDPS). An IDPS combines two essential
security functions: intrusion detection, which monitors network traffic for suspi-
cious activity, and intrusion prevention, which takes proactive steps to block or
mitigate identified threats. By incorporating both detection and response capabil-
ities, IDPS plays a pivotal role in identifying emerging cyber threats, preventing
unauthorized access, and ensuring the overall integrity of the network.

Traditional signature-based IDS, faces several challenges, including:

• High false positive rates: IDS often generate false alarms by flagging benign
activities as malicious, which overwhelms security teams and reduces overall
effectiveness.

• Scalability: As network traffic grows, the ability to process and analyse large
volumes of data in real-time becomes difficult.
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• Evolving threats: Attackers continuously develop new methods, such as zero-
day exploits and advanced persistent threats (APTs), that evade traditional
IDS signature-based detection.

• Encrypted traffic: The rise in encrypted communications limits the visibility
of traditional IDS, making it harder to inspect and detect malicious activity.

On the other hand, anomaly-based detection poses bases for detecting new or
unknown threats, as it focuses on unusual behaviour rather than specific signa-
tures with the help of the Artificial Intelligence (AI): anomaly detection is a pow-
erful technique for detecting deviations in data, hence it could help in identifying
anomalous traffic, unknown patterns than can suggest a threat is being performed.
A particular AI field of study, Machine Learning (ML) can be used to build models
that automatically learn what constitutes normal and abnormal behaviour.

There are three primary paradigms in machine learning:

• Supervised learning: The model is trained on a labelled dataset, where both
input and output data are provided. The goal of supervised learning is to
predict labels for new, unseen data based on the input. This approach is often
used for tasks such as classifying whether an email is spam.

• Unsupervised learning: In this case, the dataset is unlabelled, meaning there
is no predefined relationship between input and output. The model identifies
patterns and relationships within the data on its own. A common problem
addressed by unsupervised learning is clustering, which involves grouping
similar data points together.

• Reinforcement learning: There is no predefined input or output data for
the model to learn from. Instead, the model learns through trial and error,
improving its decision-making over time based on feedback from previous
actions. Reinforcement learning is commonly applied in areas like video
games and robotics.

Even though heuristic methodologies on intrusion detection have been stud-
ied for more than a decade, implemented solutions are less common than
signature/rule-based tools. Research is still ongoing giving space for our proposed
solution. The ERATHOSTENES project introduces a novel approach by com-
bining unsupervised and supervised learning to implement anomaly detection
(details in Section 8.2.3.1). Although this method has been explored in other areas,
its application to intrusion anomaly detection holds potentials [4, 5]. The idea is
that by first applying a clustering algorithm to unlabelled datasets, the subsequent
classifier’s accuracy improves. The classification algorithms are then trained using
the output from the clustering process. Later studies have been released providing
similar approach in anomaly-detection [6] making our solution a valid one.
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Also, the core principle of a Zero-Trust Security Model [7], “do not trust anyone,
verify everyone”, is that both internal and external threats exist, meaning no users
or devices are automatically trusted. Instead, Zero Trust continuously verifies user
identities, access privileges, and device security. Following this principle, detection
capability can influence the device Trustability: when a device is generating mali-
cious traffic to a specific/set of device/server (DOS or DDOS attacks) it could be
identified as a threat to the trusted network; in terms of behaviours, this device is not
behaving correctly and other members of the network should not trust it as they did,
or they should be monitored and periodically verified. ERATOSTHENES project
introduces a process to generate a behavioural score for devices that influence
their trust score (details in Section 8.2.3.2).

8.2.2 Architecture

Internally the solution is divided into four main blocks:

• Engine + Anomaly Detection Inspector (ADI)
• Threat and Rules manager
• Score calculator
• Alert GUI

The Engine+ADI is the block that combines signatures-based detection and
applies a Machine Learning based procedure to identify known threats and mis-
behaviours or anomalies in network traffic data. When a threat or potential threat
is identified an alert in generated.

The Threats and Rules Manager collects alerts generated by the Engine+ADI and
forwards them to the Alert GUI and MQTT Broker. It also applies reactions or
controls received from the MUD Management Module and the CTI Agent (such
as implementing new detection rules) via the MQTT Broker.

The Score Calculator is the block influenced by the “Zero trust” paradigm, it
notifies the TMB if bad behaviour (high-priority alerts) is identified, the notifi-
cation can request the update of the Trust value for the device that triggered the
alert.

The Alert GUI is the dashboard capable of displaying alerts and events identified.
Figure 8.1 depicts the internal architecture of the IDS.

8.2.3 Implementation

Based on the WP1 output, architecture and requirements, and State of The Art,
the main functionalities implemented to define the ERATOSTHENES IDS are
the following:
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Figure 8.1. IDS internal architecture.

• Signature-based detection and anomaly-based detection
• Device Trust Monitoring
• CTI Sharing and Policy enforcement

Each functionality is implemented by a building block and the technologies used
have been picked up following specific criteria: the open-source licence, community
support, multi-threading/capabilities, adaptability, security, etc.

Each building block is implemented a Docker container to ensure portability,
efficiency, easier management, flexibility and faster start-up. In particular the con-
tainers are managed by docker-compose.

8.2.3.1 Engine + Anomaly Detection Inspector

The Engine + ADI block ensures signature-based detection is enhanced with
anomaly-based detection.

The prototype designed and implemented in the context of ERATOSTHENES,
uses SNORT version 3.1 as the engine that apply signature to identify known
threats. The selection has been influenced by the following features:

• Real-time traffic monitoring
• Can be installed in any network environment
• Open Source
• Rules are easy to implement
• Prevention can be enabled
• Great community support

1. https://www.snort.org/snort3.

https://www.snort.org/snort3
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• Plug-in framework, make key components pluggable (and 200+ plugins)
• Multi-threading for packet processing

The prototype inherits the macro classifications, available in Table 8.1, each of
them is identified with a set of rules and the priority level, that represent a level of
danger/risk.

• 1 – High,
• 2 – Medium,
• 3 – Low,
• 4 – Very low

Configuration of the engine is file-based: output, rules files, plugins and other
option are enabled or disables, set and or modified through the snort.lua file (usual
path /usr/local/etc/snort/snort.lua).

Specific and additional customization are possible to enhance the detection,
including the introduction of new detection rules and inspectors. ERATOS-
THENS as initial prototype has defines custom rules per pilot and an external
Inspector with the intention to be portable or can be used with other signature-
based engines, such as Suricata.2 The Inspector implements the anomaly detection
proposed as the enhancement to signature-based detection.

It is developed using Python scripts: the selection was influenced by the adoption
of Scikit-learn [6] library, well established for Machine Learning and Deep Learning
algorithms.

Based on the SOTA described previously, applying anomaly detection to iden-
tify unknown threats or misbehaviours can be achieved by combining unsuper-
vised and supervised learning, enhancing the detection rate during operational
state. Therefore, ERATOSTHENES project introduces the following approach
depicted in Figure 8.2: the upper part depict the training process, where the detec-
tion model (ADI model) is generated, is it the application prediction/operational
time on new records/packets to determine their classification (anomal, normal),
each have been implemented as Python scripts, details are in Tables 8.2 and 8.3.

The whole process can be divided into four phases:

• Clustering phase: uses an unsupervised algorithm, K clusters are created
from an unlabelled dataset that collects the normal network behaviour.

• Outlier detection phase: all the outliers, from the K clusters, are (1) removed
from the dataset because they are considered noise and will be compromising
the performance of algorithms, (2) or defined as anormal. The resulting

2. https://suricata.io/

https://suricata.io/
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Table 8.1. Threat classifications.

Short name Short description Priority

attempted-user Attempted User Privilege Gain 1

unsuccessful-user Unsuccessful User Privilege Gain 1

successful-user Successful User Privilege Gain 1

attempted-admin Attempted Administrator Privilege Gain 1

successful-admin Successful Administrator Privilege Gain 1

shellcode-detect Executable Code was Detected 1

trojan-activity A Network Trojan was Detected 1

web-application-attack Web Application Attack 1

inappropriate-content Inappropriate Content was Detected 1

policy-violation Potential Corporate Privacy Violation 1

file-format Known malicious file or file-based exploit 1

malware-cnc Known malware command and control
traffic

1

client-side-exploit Known client-side exploit attempt 1

bad-unknown Potentially Bad Traffic 2

attempted-recon Attempted Information Leak 2

successful-recon-limited Information Leak 2

successful-recon-largescale Large Scale Information Leak 2

attempted-dos Attempted Denial of Service 2

successful-dos Denial of Service 2

rpc-portmap-decode Decode of an RPC Query 2

suspicious-filename-detect A Suspicious Filename was Detected 2

suspicious-login An Attempted Login Using a Suspicious
Username was Detected

2

system-call-detect A System Call was Detected 2

unusual-client-port-connection A Client was Using an Unusual Port 2

denial-of-service Detection of a Denial of Service Attack 2

non-standard-protocol Detection of a Non-Standard Protocol or
Event

2

web-application-activity Access to a Potentially Vulnerable Web
Application

2

misc-attack Misc Attack 2

default-login-attempt Attempt to Login By a Default Username
and Password

2

(Continued )
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Table 8.1. Continued

Short name Short description Priority

sdf Sensitive Data was Transmitted Across the
Network

2

not-suspicious Not Suspicious Traffic 3

unknown Unknown Traffic 3

string-detect A Suspicious String was Detected 3

network-scan Detection of a Network Scan 3

protocol-command-decode Generic Protocol Command Decode 3

misc-activity Misc activity 3

icmp-event Generic ICMP event 3

tcp-connection A TCP Connection was Detected 4

Figure 8.2. IDS anomaly detection inspector or ADI.

dataset is combined with another known dataset (for example IoT233 dataset
or others to enhance the classification with known threats/anomalies).

• Classification phase: the classification algorithm is trained using the com-
bined dataset from the previous phase. The output of this phase is the ADI
model, a trained machine-learning model which will be used in the last phase.

• Predict phase: in this phase, the new incoming traffic will be analysed and
classified as normal or anormal using the ADI model.

3. https://www.stratosphereips.org/datasets-iot23.

https://www.stratosphereips.org/datasets-iot23
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Table 8.2. IDS ADI training script details.

Script Training

Purpose Train the anomaly detection model with Density-Based Spatial
Clustering of Applications with Noise (DBSCAN ) for clustering and
outlier detection and Random Forest for classification using the input
dataset, or the NF-TON-IoT4 dataset

Functionalities • Load and preprocess the input dataset, or the NFTON-IoT dataset
• Train and generate the model
• Save the trained model to disk for later use

Notes The default dataset NF-TON-IoT could be replaced with other more
recent known dataset

Table 8.3. IDS ADI prediction/monitoring script details.

Script Prediction/monitoring

Purpose Monitor network packets from a file, in semi real-time, classify packets
as anomalous or normal, and log the results.

Functionalities Continuously read a network traffic packets from a file
Extract and preprocess features from each packet
Apply trained model generated by the training script to classify packets
Log anomalies for further analysis

The output of this block is stored into a log file and displayed through the Alert
GUI dashboard. An example of output is available hereafter. Alert’s format, or fields
list is configurable in the Engine configuration file.

{ "timestamp" : "10/02−13:31:09.494433", "pkt_num" : 160946, "proto" : "UDP", "pkt_gen" : "raw",
"pkt_len" : 60, "dir" : "C2S", "src_addr" : "192.168.8.114", "src_port" : 5353, "dst_addr" :
"224.0.0.251", "dst_port" : 5353, "service" : "unknown", "rule" : "122:23:1", "priority" : 3,
"class" : "none", "action" : "allow", "msg" : "(port_scan) UDP filtered portsweep" }
{ "timestamp" : "10/02−13:31:09.787387", "pkt_num" : 160967, "proto" : "IP", "pkt_gen" : "raw",
"pkt_len" : 40, "dir" : "C2S", "src_addr" : "192.168.8.114", "dst_addr" : "224.0.0.22", "service" :
"unknown", "rule" : "116:444:1", "priority" : 3, "class" : "none", "action" : "allow", "msg" :
"(ipv4) IPv4 option set" }
{ "timestamp" : "10/02−13:31:09.787454", "pkt_num" : 160968, "proto" : "ICMP", "pkt_gen" : "raw",
"pkt_len" : 76, "dir" : "C2S", "src_addr" : "fe80::f38:a9a0:99ec:7e11", "dst_addr" : "ff02::16",
"service" : "unknown", "rule" : "1:10000002:0", "priority" : 0, "class" : "none", "action" :
"allow", "msg" : "ICMP Traffic Detected" }
{ "timestamp" : "10/02−13:31:33.978841", "pkt_num" : 162678, "proto" : "TCP", "pkt_gen" : "raw",
"pkt_len" : 150, "dir" : "C2S", "src_addr" : "192.168.8.114", "src_port" : 53648, "dst_addr" :
"192.168.8.240", "dst_port" : 8500, "service" : "unknown", "rule" : "1:10000004:1", "priority" : 1,
"class" : "none", "action" : "allow", "msg" : "Possible SSL Flood Detected" }
{ "timestamp" : "10/02−13:31:33.987360", "pkt_num" : 162686, "proto" : "TCP", "pkt_gen" : "raw",
"pkt_len" : 52, "dir" : "C2S", "src_addr" : "192.168.8.114", "src_port" : 53648, "dst_addr" :
"192.168.8.240", "dst_port" : 8500, "service" : "unknown", "rule" : "1:10000004:1", "priority" : 1,
"class" : "none", "action" : "allow", "msg" : "Possible SSL Flood Detected" }

4. https://research.unsw.edu.au/projects/toniot-datasets.

https://research.unsw.edu.au/projects/toniot-datasets
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Table 8.4. Few IDS alert fields’ descriptions.

Variable Description

timestamp Timestamp of the alarm

pkt_num Packet number

pkt_len Length of the packet

dir Direction of the traffic (e.g., "S2C" for server-to-client, "C2S" for
client-to-server)

proto Transport layer protocol of the risky packet.

src_addr source IP address

src_port source port number

dst_addr destination IP address

dst_port destination port number

rule Additional information to include in the alarm.

priority priority associated with the detection rule

class the classification type of the event

action the action taken (e.g., allowed, blocked, etc.)

8.2.3.2 Score Calculator

This block handles Device Trust Monitoring by assigning a device Monitoring Score
(MS) that reflects the device’s performance in terms of high-priority alerts gener-
ated. Higher priority events, which pose greater risks or signify critical actions, have
a more significant impact on the device trustability score. The goal is to adjust the
Trust Score of an enrolled or bootstrapped device based on detected threats or anor-
mal behaviour, considering the ERATOSTHENES Trust framework for potential
corrective measures.

Figure 8.3 illustrates the process of creating the Monitoring Score. The priority
of an alert, denoted by “p”, ranges from 1 to 4, with 1 being the highest priority, see
definition in Section 8.2.3.1. Alerts with p ≤ 2 are considered the most critical and
are prioritized. The TrustScore is measured on a scale from 0 to 1 and is retrieved
from the TMB through an API.

After retrieving the DID of the device (through a REST API provided by the
TMB), the process can be reduced into three cases:

1. CASE 1 – Priority ≤ 2 and Trust Score = 0
This means that the device has the lowest value of TS and has generated

high or medium-high-priority alerts.

• The IP address is added to the IDS blacklist and traffic to and from it is
blocked
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Figure 8.3. IDS monitoring score management.

• Request for decommissioning of the device through the MQTT Broker

2. CASE 2 – Priority ≤ 2 and TS ̸= 0
This means that the device is somehow trusted, and the generated alert

could be a warning.

• The IP address is added to the IDS graylist, the device is in under obser-
vation state, or quarantine period (Timestamp, IP address and MS are
stored)

• Send a message with the information related to the packet (MS and IP
address) to the TMB, which will recalculate the TS based on the MS
received and the weight of the MS value

• After a tr (quarantine or under observation time) if no other alerts are
generated MS is updated to 3 and sent to the Broker

• Figure 8.4 depicts how to manage the device under quarantine period

3. CASE 3 – Priority ≤ 2 and device not bootstrapped yet
This means that the device must be notified to the Network Administra-

tion team and the TMB

• The packet is displayed in a panel of the IDS Alert GUI
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Figure 8.4. IDS under observation device management.

• Notify TMB that the new not bootstrapped device has generated high
priority alert (possible control: don’t accept/finish enrolment)

Table 8.5 in an example of TrustScore updates based on MonitoringScore value
received: e.g. if priority of the alert p = 1, hence MonitoringScore MS = 1 and
the current TrustScore TS = 0 then the reaction could be to request the decom-
missioning because the alert generated has the highest level of danger/risk and the
device has the lowest level of trust.

The Score Calculator, as for the other blocks, is docker container that runs
an MQTT client for Node.js (MQTT.js5) and sends messages to the following
channels (see Table 8.6).

8.2.3.3 Threat and Rule Manager

This block handles and implements the CTI sharing and policy enforcement func-
tionality, mainly:

• Forwarding alerts on detected threat to the CTI Agent
• Applying policy enforcement when received by the MUD Manager Module

5. https://github.com/mqttjs/MQTT.js.

https://github.com/mqttjs/MQTT.js
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Table 8.5. Example of IDS Monitoring Score values and Trust Score

update/reaction.

MonitoringScore Current TrustScore Updated TrustScore/reaction

1 0 Request decommissioning

1 0.5 (middle) 0

1 1 0

2 0 Request Decommissioning

2 0.5 (middle) 0

2 1 0.5

3 0 0.5

3 0.5 1

3 1 Same value – no update

Table 8.6. IDS Score Calculator communication channels.

Topic /device/<DID>/ids

Message payload Monitoring score, IP and/or DID, Json formatted data

Description The IDS shares Monitoring Score for a specific IP/DID, requesting
recalculation of its Trust Score

Topic /device/<DID>/ids/decommission

Message payload IP and/or DID, Json formatted data

Description The IDS shares Monitoring Score for a specific IP/DID requesting
decommissioning

As for the Score calculator this block is a Docker container that runs an MQTT
client for Node.js, MQTT.js [1].

The block handles alerts, generated by the Engine+ADI, with high or medium
high priority level (p <= 2), generate a Json string, following specific format, and
forward them to the ThreathInfoSharing channel, as depicted in Figure 8.6 in the
detection block.

When a new MUD file is generated or an update is shared among the CTI
stakeholders, if it contains relevant information regarding enforcement policy at
network traffic level, this block will receive a policy, through the broker channel
threat/ID/threatMudMSPL or device/ID/mudMSPL. The policy will be parsed, and
action will be taken such as adding a detection rule for the Engine. Policies are
written in MSPL, so the Threat and Rule Manager block implement a library that
translate MSPL data into SNORT rules.
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Table 8.7. IDS Threat and Rule manager communication channels.

Topic threat/ID/threatMudMSPL

Message payload The translated Threat MUD file associated to the threat

Description The IDS subscribes to this channel to receive the result of the
retrieval and translation of a Threat MUD file

Topic device/ID/mudMSPL

Message payload The translated MUD file associated to the device

Description The IDS subscribes to this channel to receive the retrieval and
translation of a MUD file

8.2.3.4 Alert GUI

Additional block is the Alert Graphical Interface (GUI), introduced to display in
real-time the alert generated through a smart and user-friendly dashboard, for net-
work administrators’ further analysis.

This block is implemented with several docker containers that together is called
Elastic stack, aka ELK (Elasticsearch, Logstash and Kibana) with three open-source
projects6:

• Elasticsearch is a search and analytics engine
• Logstash is a server-side data processing pipeline that ingests data from multiple

sources simultaneously, transforms it, and then sends it to a “stash” like Elastic-
search

• Kibana lets users visualize data with charts and graphs in Elasticsearch. [7]

Important are the Logstash configuration file logstash.conf and the Kibana dash-
board designed specifically for ERATOSTHENES IDS functionalities.

The logstash.conf mention the input file, where the alerts are stored, the filtering
and/or translation of the data and lastly the output, which is Elasticsearch.

The Dashboard includes mainly the following panels:

• A panel that lists all the alerts generated by the Engine+ADI
• A panel for statistical data over the type of the protocols involved.
• A panel for statistical data over the type of threat class detected (see Table 8.1)
• A panel with the list of IPs that are considered Untrusted (devices that generate

high priority alerts while being not enrolled into ERATOSTHENES)
• All the panel can be queried or filtered for further analysis.

6. Basic License
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Figure 8.5. IDS alert GUI dashboard.

8.2.4 Interaction with Other ERATOSTHENES Tools

As stated previously, the IDS is part of the Monitoring,IDS: the interconnection
with the FedLPy is also described in Section 3.4. Briefly, the two solutions share the
Alert GUI block to display alerts: specific configuration on the Logstash container
are in place to achieve this integration.

Also, as part of TMB, it interacts with other submodules, in particular with the
Trust Manager and Broker, CTI Agent and MUD Management Module:

• Whit the first one, it communicates for Device Monitoring functionality –
when the IDS define a device behavioural score, the MonitoringScore (MS), it
is sent to the TMB, which could influence the device trustability, details are
available in Section 8.2.3.2.

• With the second one, it communicates for the CTI sharing functionality –
CTI Agent is notified of all the high priority event detected, see 8.2.3.3.

• With the latter, for Policy enforcement - the MUD Management Module
generates new policy to be parsed and applied by the IDS, such as detection
rules or blocking rules, see 8.2.3.3.

The three types of interaction are depicted in Figure 8.6: all the communica-
tion are done via MQTT broker, and the specific channels description are available
within each block subsection.

8.2.5 Preliminary Results

The preliminary tests and validations conducted have provided us with a solid
foundation to proceed confidently with the development and refinement process.
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Figure 8.6. IDS interaction with other ERATOSTHENES modules.

These initial assessments have yielded encouraging results, even if slightly signifi-
cant, demonstrating the viability of the core concepts of the Anomaly Detection
Inspector, and highlighting areas where further improvements that leads to the
reported solution. The accuracy observed across various testing scenarios not only
validate the direction we’ve taken but also reinforce our confidence in achieving the
desired outcomes.

8.2.5.1 ADI Tests

In a preliminary version of the prototype the ADI was implemented as a stand-alone
solution (a separate container) used to assess the benefit of the proposed approach
for the anomaly detection:

• For the clustering phase the Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) has been selected also because it simplifies the trans-
formation of the dataset into a binary one during the Outlier detection phase.

• Several classifications algorithms have been used for comparison, Random
Forest, Decision Tree, Support Vector Machine and Logistic Regression

Two test sessions have been performed using same dataset (part of NF-TON-
IoT), the first only using the classification algorithms the second using the proposed
approach:

• DBSCAN parameters n – the minimum number of points (a threshold) clus-
tered together for a region to be considered dense and ε – a distance measure
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Table 8.8. Comparison of the ADI with NF-TOM-IoT without/with clustering.

NF-ToN-IoT

Clustering + Classification
Classification without outliers

Decision Tree Confusion matrix:
TN=5995, FP=6, FN=3,
TP=18870
Accuracy: 0.9996381764

Confusion matrix: TN=5774,
FP=3, FN=5, TP=18843
Accuracy:
0.9996751269

Random Forest Confusion matrix:
TN=5999, FP=2, FN=2,
TP=18871
Accuracy:
0.9998391895

Confusion matrix: TN=5774,
FP=2, FN=2, TP=18846
Accuracy:
0.9997969543

Support Vector Machine Confusion matrix:
TN=5993, FP=8, FN=11,
TP=18862
Accuracy: 0.9992361502

Confusion matrix: TN=5774,
FP=3, FN=6, TP=18842
Accuracy:
0.9996345178

Logistic Regression Confusion matrix:
TN=5784, FP=217,
FN=132, TP=18741
Accuracy:
0.9859692851

Confusion matrix: TN=5583,
FP=194, FN=10, TP=18838
Accuracy:
0.991715736

that will be used to locate the points in the neighbourhood of any point:
n = 2 ∗ D where D is the number of features used, and ε = 0.5.

• The NF-TON-IoT dataset is split into 70% for training and 30% for testing,
in the second test the division is made after the outlier detection phase, where
the outliers are removed leaving a test dataset with 24625 record to classify.

The tests have provided a slight benefit on the accuracy, see Table 8.8. From
these results, consortium worked on the implementation of an inspector that could
be integrated with a signature-based engine and that can provide prediction on
whether they could potentially be a threat or not, on new traffic, details are in
Section 8.2.3.1.

Hereafter a recap on the measures used to compare the results: the confusion
matrix and the accuracy that report a quick overview of the distribution of False
Negative (FN), False Positive (FP), True Negative (TN) and True Positive (TP).

TP = true positive − Classified as anomal correctly
TN = true negative − Classified as normal correctly
FP = false positive − Wrongly classified as anomal
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FN = false negative − wrongly classified as normal

The accuracy score is defined as the total number of correctly predicted records over
the total number of records:

A =
TP + TN

Tot

8.3 FedLPy

The Internet of Things (IoT) can be defined as a network of interconnected objects
and devices, which can send and receive data collected by sensors. In this context,
the concept of distributed processing emerges when the devices responsible for sens-
ing, sending and receiving these data are also endowed with the capacity to process
the data they collect. The concept of distributed learning arises when these devices
are also invested with the capacity to learn from the data, which they have collected
through the utilization of Machine Learning (ML) techniques. Furthermore, when
this learning, acquired through Artificial Intelligence (AI) based models, is dissem-
inated across all devices in the IoT network, such that all devices adhere to the
same model based on collaborative learning, this is designated as Federated Learn-
ing (FL).

This section will provide a comprehensive account of the implementation of an
FL subsystem (henceforth designated as FedLPy) within the ERATOSTHENES
system, along with an exposition of the model generated thereby and its deployment
in a distributed anomaly detection analysis of network traffic.

8.3.1 State of the Art and Beyond SOTA

One of the primary challenges associated with IoT networks is their susceptibility to
security threats. Any malicious entity can potentially gain access to the IoT network
and infect one or more devices with the objective of compromising communication
between devices, limiting the functionality of the distributed system, or extracting
data or information from other devices within the network. Thus, monitoring the
network traffic flows of these devices should be done to assess possible malicious
events.

As detailed in [8] the core motivations for the implementation of a continuous
risk assessment system within a network can be attributed to the following factors:

• Maintaining situational awareness of all devices in the network.
• Maintaining an understanding of threats to act accordingly.
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This monitoring provides continuous assessment of the network, enabling
organisations to stay ahead of cyber threats through real-time visibility of devices
operating on the network. There are several approaches to address continuous risk
assessment [9, 10], with AI-based systems being one of the most widely used today
[9–18]. The two principal approaches followed in the literature are: (i) the detec-
tion of anomalies within the network flow received by a device and (ii) the detection
of potentially malicious packets and their categorisation according to known attack
categories.

The technique presented in [19] represents a novel approach to the collaborative
training of ML models for the detection of network threats. It does so by exploiting
the distinctive topologies of IoT networks based on client-server schemes. This
collaborative learning approach, also known as federated learning [20–23], is an AI
algorithm training technique in which each participant trains an AI model with a
topology shared among the different participants using data from their own device.
The trained models are then sent to a central server, which aggregates all models
into a global one. Finally, the global model is shared with each participant.

The FL approach offers several advantages over classical training, in which data
from all clients are sent to a central server for model training.

• The bandwidth consumed in data transfer is lower, as only model weights are
sent over the network, and even only increments or compressed versions of
the models can be sent.

• The time required for model training is reduced, as there is no longer a need
to iterate over all available data in a sequential manner.

• The data used to train the models never leaves the device, thereby maintain-
ing the privacy of the data. Furthermore, the global model can be protected
against inference attacks using differential privacy techniques.

8.3.2 Architecture

The FedLPy package implements an FL framework for the continuous detection
of malware packages in IoT networks, to be used within the ERATOSTHENES
system.

As illustrated in Figure 8.7 the component is mainly comprised of two modules:
(i) a Federated Learning module (FL Server and FL Client) that implements a sys-
tem for the decentralised training of AI models using raw network traffic data, and
(ii) a Continuous Assessment module (CA Server and CA client) that exploits this
AI model for the online detection of potential attacks.

1. The Federated Learning module represents the core component of FedLPy,
providing the functionality for orchestration and communication between
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Figure 8.7. FedLPy within ERATOSTHENES architecture.

federated clients and a server. Particular emphasis is placed on the establish-
ment of secure connections and the utilisation of privacy-preserving tech-
niques.

2. The Continuous Assessment module provides the infrastructure for model
inference on an ongoing basis, monitoring network traffic, forwarding pack-
ets through the AI model, and classifying them as either benign or malicious.
It also considers the temporal aspect of Distributed Denial-of-Service attacks
(DDoS) and generates a risk score for each individual sample. Additionally,
it generates metadata about potential threats and notifies a server, which is
integrated with the Alert GUI component of ERATHOSTENES.

The modules are independent of one another, although they share the same
source code and present a very similar structure. This approach ensures that the
entire component remains operational even in the event of a single module mal-
function, while simultaneously facilitating the integration of the modules into a
unified system.

8.3.3 Implementation

The FedLPy system is implemented as a Python module. As previously stated, this
component is composed of two sub-modules: (i) The Federated Learning sub-
module is responsible for deploying and preparing the required resources for the
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process, as well as orchestrating, communicating, and executing the various steps
involved in the process across the different agents participating in it. (ii) The Con-
tinuous Assessment sub-module employs the previously trained model with the
objective of monitoring the incoming network traffic to the devices, thereby alert-
ing to any incoming threats to them.

To exploit the distributed typology of IoT networks, both sub-modules have
been implemented following the client-server paradigm. The implementation car-
ried out for each of the parts within each sub-module is detailed below.

8.3.3.1 Federated Learning

The Federated Learning sub-module within the FedLPy component is based on
the well-known Flower7 framework. This framework allows the implementation of
powerful model aggregation algorithms on the server side, provides the freedom
to implement one’s own training algorithms on the client side, and also manages
the process of message exchanges between both agents for the transfer of weights
between them.

Furthermore, additional functionalities have been incorporated into the compo-
nent to facilitate process orchestration techniques and the registration and monitor-
ing of the global model throughout the training process. The first of the additional
features is the orchestration process, which is carried out by deploying an MQTT
server. This server defines several topics that trigger different events during the pro-
cess, such as the beginning of a training round. The second feature is achieved by
deploying an MLFlow lite server to track models on the client side. This server has
the minimum functionality necessary to track the models received by the clients
and decide which model is used in the Continuous Assessment sub-module.

As illustrated in Figure 8.8, the process comprises three principal stages, which
are conducted in a repetitive sequence. These stages are subdivided into the follow-
ing actions:

1. Model Broadcasting:

a. The FL Server publishes an initialization message to the MQTT broker
under the topic “Start Training”.

b. The FL Server broadcasts the initial model weights to all participating
devices.

2. Model Training on Edge device:

a. Each FL Client fits the model locally using its own private data for a
certain number of epochs.

7. https://flower.ai/.

https://flower.ai/
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Figure 8.8. FedLPy training loop.

Table 8.9. Federated learning related used MQTT Broker topics.

Topic device/DID/Learning/Start

Message payload None

Description Represents the start of the Federated Learning process of the
Machine Learning algorithms for Threat detection.

b. All FL Clients then send the result back to the FL Server.

3. Model Aggregation:

a. The FL Server aggregates all received model weights and evaluates the
performance of the model on a public dataset.

b. The FL Server sends the final version of the model back to all devices.
c. Each FL client evaluates the performance of the model on its own private

datasets and logs the model in its MLFlow server.
d. This process is executed in a loop until several fixed rounds is completed.

Since FedLPy is designed to run on IoT devices, the AI model is lightweight,
ensuring that it is expressive enough to fit the data while keeping the number of
parameters to the minimum. This reduces the computational cost on the devices –
which usually do not have a lot of computational power – and avoids communica-
tion bottlenecks when transmitting the updates.

Training is carried out with labelled traffic data from IoT networks. The samples
are raw packets without any preprocessing. Since, by definition, Federated Learn-
ing is decentralized, datasets remain always at the edge devices, preventing sharing
sensitive information and minimizing the risk of data leakage.
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Table 8.10. FL system configuration.

Variable Description

Num rounds Number of federated rounds.

Num epochs Number of local epochs in each round.

Min available Minimum number of clients necessary to trigger the process.

Min fit Minimum number of clients required in a training round.

Fraction fit Percentage of clients that participate in a training round.

Broker name Address of the MQTT broker.

Topic MQTT topic to trigger the process.

The FL system can be deployed with different setups by modifying the values
of the configuration file that contains the common variables for all participating
devices. These variables are related to the training itself and to the orchestration. In
Table 10 some of the most important variables are described.

8.3.3.2 FL Client

FL Client agents are responsible for training the model provided to them by the FL
Server with their local and proprietary data. Subsequent to the training process, the
fitted weights are transmitted back to the server. Ultimately, once the aggregation
process is completed on the server side, the new weights are evaluated and registered
on the MLFlow Lite server deployed on the device.

The entire process is comprised of distinct blocks that are interconnected, as
depicted in Figure 8.9. Each block is responsible for a specific function, as outlined
below:

• The Deserialize Model block is responsible for receiving the serialized model
weights for transmission over the gRPC network, deserializing them and
loading the received weights into the defined model structure.

• The Model Training block implements the algorithms necessary for training
the model. These algorithms comprise functions for processing the data used
for training and for optimizing the model.

• The Serialize Model block is responsible for the inverse process of the “Dese-
rialize Model” block. It extracts the weights from the model and serializes
them for transmission through the gRPC channel.

• The Model Evaluation block assesses the efficacy of the global model that
is received following the aggregation process conducted by the FL Server.
This model is then registered in the deployed MLFlow server and placed into
production if, following the evaluation process, it is determined to be the
optimal model to date.
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Figure 8.9. FL Client functional block.

8.3.3.3 FL Server

The FL Server agent oversees the global management of the federated learning pro-
cess, orchestrating the distinct phases that comprise it and aggregating the weights
of the models received from clients through the utilization of diverse techniques.

The component is subdivided into four distinct blocks (see Figure 8.10), each
of which is responsible for a specific function.

• The Global Model Evaluation block is responsible for assessing the perfor-
mance of the global model generated following the aggregation process. This
enables the progress of FL to be monitored. It is noteworthy that, at the initial
stage of the process, the evaluated model (either a random weight model or a
pre-trained model) is the initial model. Subsequently, the order is transmit-
ted via the MQTT broker to the FL Clients, who then initiate the federated
learning process on their respective systems.

• The Serialize Model block performs the inverse operation of the Deserialize
Model block. It extracts the weights from the model and serializes them for
transmission through the gRPC channel.

• The Deserialize Model block is responsible for receiving the serialized model
weights for transmission over the gRPC network. It then deserializes them
and loads the received weights into the defined model structure.

• The Models’ Aggregation block is responsible for the consolidation of all
received model weights, thereby ensuring the preservation of the knowledge
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Figure 8.10. FL Server functional block.

acquired by each FL client. The most utilized algorithms are FedAvg [20] and
FedAdam [23].

8.3.3.4 Continuous Assessment

The Continuous Assessment (CA) Module of FedLPy is responsible for analysing
online traffic in the network and detecting possible DDoS attacks on edge using the
federated trained global ML model. It works in parallel to the Federated Learning
module, following an analogous design where instead of for training, the models
are used for inference.

The Continuous Assessment (CA) Module of FedLPy is designed to monitor
network traffic and identify potential DDoS attacks at the edge using a globally
trained FL model. It operates alongside the Federated Learning module, utilizing
the models for inference rather than training. The CA component consists of two
main submodules: a detection system (CA Client agent) that sends alarm messages
with threat metadata when a client is targeted, and an alarm collection system (CA
Server agent) that compiles all risk notifications into a single log report. The CA
Client is typically paired with an FL Client to maximize FedLPy’s capabilities, and
similarly, the CA Server is paired with an FL Server. However, clients that did not
participate in the training can still benefit from the CA system if they receive an
updated model at any time during the assessment part.

Analogously to the Federated Learning system, the Continuous Assessment
module loads a configuration file that specifies the setup. In Table 8.11, some of
the variables that are contained in this file are described.
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Table 8.11. CA system configuration.

Variable Description

Threshold Minimum probability of malicious packet to trigger an alert.

Topic MQTT root topic to publish alarm messages.

Model path Path to the MLFlow repository where the latest model from the FL
module is stored.

Log path Path to the log file where the CA Server merges all messages from clients.

Broker name Address of the MQTT broker. Not necessarily the same as in the FL
system.

8.3.3.5 CA Client

The Continuous Assessment subsystem for clients performs the traffic analysis and
threat detection on device by running a loop with the following operations:

1. Loading the latest available model: The CA client uses the best per-
forming model from the Federated Learning component of FedLPy. This
requires checking periodically the most recent model stored in the client’s
local MLFlow repository and loading it when an update is required.

2. Data preprocessing block: This block preprocesses raw data to the input
format of the neural network.

3. Model inference: This block feeds forward the input traffic through the
loaded model, which outputs the probability of a packet being malicious,
in range [0,1].

4. Risk evaluation: This block takes the outputs of the inference to further
discern, considering the frequency of malicious packets, if the client is being
targeted or not. The instantaneous risk, r(t), is calculated as the Exponential
Weighted Mean Average (EWMA) filtering [24] of the probabilities of being
a threat from the current and past received network packets, according to the
following formula:

r(t) = (1 − ε) ∗ r(t − 1) + ε ∗ (1 − p)

With ε being the weighting factor, in range [0,1], and p the probability of
benign packet from the model, in range [0,1]. By default, ε is set to 0.02,
which implies a higher focus on the history of inferences rather than the risk
probability of single samples.

The risk r(t) value is then compared against a threshold that can be con-
figured to control the tolerance of the module to positive threats – a low
threshold will imply many detections.
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Table 8.12. Alarm message taxonomy.

Variable Description

Date Timestamp of the alarm.

Risk Risk value of the packet.

Client ID Identifier of the attacked device.

Client IP IP address of the attacked device.

Protocol Transport layer protocol of the risky packet.

Service Service of the risky packet.

Length Length of the risky packet.

Source port Source port of the risky packet.

Destin port Destination port of the risky packet.

Info message Additional information to include in the alarm.

Figure 8.11. CA Client functional block.

5. Alarm message generation: If a packet is deemed risky, an alarm message
is generated with information about the attacked client and the packet that
triggered it. This message presents the taxonomy defined in Table 8.12.

6. Alarm publishes: Finally, this alarm message is published to the MQTT
broker under the specified topic for the server to gather.

The aforementioned elements are represented in Figure 8.11, which depicts the
interactions and dependencies between the different operations.

8.3.3.6 CA Server

The Continuous Assessment subsystem for the server oversees collecting all alarms
published by the clients to the MQTT topic and communicating with the Alert
GUI component of ERATHOSTENES.

1. Alarm collection: This phase entails the aggregation of all notifications
transmitted to the Threat Detection topic and their subsequent storage in
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Table 8.13. Continuous assessment related MQTT Broker topics.

Topic device/DID/Threat/Detection/client-id

Message payload Alarm message generated by the Continuous Assessment client.

Description Root topic where alarm messages from the Continuous Assessment
module are sent.

Figure 8.12. CA Server functional block.

a centralized .log file. The log file is updated on a continuous basis with the
addition of new messages as they are received. Given the nature of DDoS
attacks, which consist of a rapid series of small packets, clients often generate
a considerable number of alarm messages in rapid succession. The MQTT
broker, which facilitates communication between clients and the server, has
been configured with a Quality-of-Service level of 1. This setting introduces
some communication overhead for acknowledgements but ensures that no
alarms are overlooked. The MQTT topic for the Continuous Assessment
module employs a hierarchical structure, enabling clients to publish messages
to a common topic with a unique suffix identifying themselves. This config-
uration allows the server to collect all messages by subscribing to the root
topic, while also facilitating the creation of individual logs for specific clients
by subscribing to client-level topics. For instance, clients publish messages to
“Threat/Detection/<client-id>”, and the server subscribes to “Threat/De-
tection”.

2. Alert GUI integration: By sharing a common directory, the log file is inte-
grated within the Alert GUI component.

Figure 8.12 illustrates the way these two operations interact with one another
in order to update the .log file, which is subsequently utilized by the Alert GUI
component.

8.3.4 Interaction with Other ERATOSTHENES Tools

As evidenced in Figure 8.7, the FedLPy Server component is integrated within
the Intrusion Detection System (IDS), whereas the FedLPy Client component is
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integrated on the edge device’s premises and uses the Trust Manager Broker (TMB)
component to communicate with the Server. Consequently, the two principal tools
with which FedLPy interacts are the MQTT Broker and the Alert GUI submodules.
FedLPy’s integration with these other ERATHOSTENES tools is seamless, and
from its usage point of view, clients can treat it as a black box functionality within
the IDS, without the need of interacting with it besides specifying its configuration.

FedLPy – MQTT Broker interaction: The ERATOSTHENES MQTT Broker,
which forms part of the TMB component, is employed for the orchestration of
the Federated Learning and Continuous Assessment processes. In the former case,
the FL agents subscribe to the topic that triggers the initialization of the training
process, for example, “Start Training.” In the latter case, CA clients subscribe to the
topic to publish the alarms sent when threats are detected. The CA server subscribes
to the same topic, gathers all the alarms in a single file, and forwards them to the
IDS.

FedLPy – Alert GUI integration: To provide ERATOSTHENES users with infor-
mation regarding potential threats to edge devices, the CA Server generates a log file
containing a record of all identified threats, annotated by the edge devices them-
selves. This log file can then be accessed by the Alert GUI, which presents users
with a graphical representation of the historical status of each enrolled device.

8.3.5 Preliminary Results

This section presents the findings of the evaluation of the FedLPy component, with
a particular focus on the two assigned tasks: (i) the Federated Learning task and (ii)
the Continuous Assessment task. Figure 8.13 presents the topology implemented
for the assessment of the component’s performance. Three clients are deployed,
comprising a train set (utilised for the evaluation of the Federated Learning task)
and a test set (deployed for both tasks), situated alongside a server (also employed
for both tasks).

To conduct this evaluation, the Aposemat IoT 23 dataset [25] was employed.
This dataset comprises a set of network traffic from various IoT devices extracted
by the Stratosphere lab, with each packet categorised according to a list of malicious
attacks.

Furthermore, a dense neural network has been implemented with the objective
of identifying whether a packet is associated with a DDoS attack.

8.3.5.1 Aposemat IoT 23 Dataset

To evaluate the proposed Proof of Concept (PoC), the raw traffic data from the IP
layer, which is available in the Aposemat IoT 23 dataset, is utilised. This data is
directly fed into the proposed neural network, rather than being processed through
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Figure 8.13. FedLPy component scheme for the evaluation of federated learning and

continuous.

Table 8.14. Train-test data split per PoC participant.

Train Set Test Set

Total Benign DDoS Total Benign DDoS

Server — — — 21615 8121 13494

Device 1 17290 6496 10794 4327 1627 2700

Device 2 17290 6496 10794 4326 1626 2700

Device 3 17292 6497 10795 4327 1627 2700

the extraction of metadata from each packet. This approach facilitates the subse-
quent deployment of the model in a continuous assessment scenario, as there is no
requirement for the raw inputs to be pre-processed.

Regarding the construction of the train and test sets, only the Benign and DDoS
attack packets are considered, with the objective of better aligning the specifica-
tions of the PoC. Given the extensive data set available, only the captures “CTU-
IoT-Malware-Capture-7-1”, “CTU-IoT-Malware-Capture-34-1” and “CTU-IoT-
Malware-Capture-35-1” are considered. These captures were selected based on the
quantity and quality of the flows corresponding to the defined list of attacks.

Once the aforementioned traffic flows have been processed, the train-test split
obtained is as presented in Table 8.14. It can be observed that the FL server has
only test samples, whereas the FL clients have both, training and test samples, that
are equally balanced.

It is crucial to highlight that the FL Server does not possess a training set, as the
model employed in this procedure is only trained on the device premises locally.
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The FL Server’s sole function is to aggregate the different versions of the received
model. The test set is utilised to assess the performance of the aggregated model.

8.3.5.2 Proposed AI Model

The deep learning-based model implemented to address the task of detecting poten-
tially malicious events within the provided traffic flows is composed of an input
layer designed to be fed with data of size 1505, which consists of the concatena-
tion of simple packet metadata (protocol, service, packet length, source port and
destination port) next to the raw IP packet. The model comprises a set of five fully
connected layers, with sizes of 512, 256, 128, 64 and 16, respectively. The final
layer is of size 1 and provides the probability of the packet being malicious.

8.3.5.3 Federated Learning Results

The assessment of the Federated Learning task utilising the FedLPy component is
conducted in two distinct phases.

• A traditional learning training process is conducted on each device, utilizing
the training data stored on that device. Subsequently, the resulting models
are evaluated on the distinct test sets of each participant (server and clients).

• A federated learning training is conducted on the three devices, with the
resulting data aggregated in the FL server. Subsequently, the global model
is evaluated on each of the test sets.

Traditional learning

The traditional training approach for each of the devices involves 100 epochs of
training with a batch size of 100 samples. The Binary Cross Entropy function is
employed as the function loss, while the Binary Accuracy serves as the model metric
function. The model optimization is regularized with a learning rate of 1e-3.

Table 8.15 presents the results of the experiment, highlighting that, on average,
approximately 98.9% binary accuracy is achieved for all test sets evaluated with
each model trained on each device.

The results of this experiment demonstrate that, despite the favourable outcomes
achieved by each trained model when tested on the same set of data, the accuracy
levels vary between models. This indicates that the models exhibit effective gener-
alization capabilities for this problem, however, they are not suitable for use as a
general model due to their lack of homogeneous behaviour.

Federated learning

The training phase for the federated learning experiment comprises 10 rounds of
server model aggregation, with each round involving 10 epochs of training across
all devices and a batch size of 100 samples. The Binary Cross Entropy function is
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Table 8.15. Traditional learning results.

Tested with

Server Device 1 Device 2 Device 3

Model from Server — — — —

Device 1 98.94% 98.88% 98.82% 98.88%

Device 2 98.98% 98.98% 98.95% 98.98%

Device 3 98.98% 98.98% 98.98% 98.98%

Table 8.16. Federated learning results.

Tested with

Server Device 1 Device 2 Device 3

Model from Server 99.98% 99.95% 99.97% 99.99%

Device 1 99.98% 99.95% 99.97% 99.99%

Device 2 99.98% 99.95% 99.97% 99.99%

Device 3 99.98% 99.95% 99.97% 99.99%

employed as the function loss, while the Binary Accuracy function is utilised as the
model metric function. The model is regularised using a learning rate of 1e-3.

Table 8.16 demonstrates that, in this instance, the aggregated model shared
by each FL client (device) ensures uniform behaviour for each test set. About
Binary Accuracy, an average accuracy of 99.97% is achieved, which represents a
1% improvement over the traditional learning approach.

8.3.5.4 Continuous Assessment Results

Once the federated global model has been trained, the alert system implemented
in the Continuous Assessment block is evaluated. As previously stated, this block
is responsible for generating a log file in which the alerts generated by the different
devices included in the ERATOSTHENES system are collected. The file is pre-
sented below as an example, showing the different fields that compose the message.
Among these fields, it should be noted the date on which the packet was received,
the risk of that packet being a DDoS attack, the client that received that packet and
metadata related to the packet received.

2024−07−12 07:18:28,645 − {"date": "12/07−07:18:28.331364", "risk": 0.8421232539984038, "client_id":
2, "client_ip": "172.19.0.4", "proto": "tcp", "service": "unknown", "pkt_len": 60, "src_port":
57568, "dst_port": 23, "msg": "Possible DDoS attack detected."}
2024−07−12 07:18:28,991 − {"date": "12/07−07:18:28.679537", "risk": 0.7952990876725874, "client_id":
1, "client_ip": "172.19.0.2", "proto": "udp", "service": "dns/domain", "pkt_len": 67, "src_port":
45981, "dst_port": 53, "msg": "Possible DDoS attack detected."}
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2024−07−12 07:18:29,012 − {"date": "12/07−07:18:28.708525", "risk": 0.8316813925007899, "client_id":
3, "client_ip": "172.19.0.5", "proto": "tcp", "service": "unknown", "pkt_len": 60, "src_port":
43332, "dst_port": 23, "msg": "Possible DDoS attack detected."}
2024−07−12 07:18:29,045 − {"date": "12/07−07:18:28.741926", "risk": 0.8452807889173497, "client_id":
2, "client_ip": "172.19.0.4", "proto": "tcp", "service": "unknown", "pkt_len": 60, "src_port":
60764, "dst_port": 23, "msg": "Possible DDoS attack detected."}
2024−07−12 07:18:29,397 − {"date": "12/07−07:18:29.086249", "risk": 0.7993931059191356, "client_id":
1, "client_ip": "172.19.0.2", "proto": "udp", "service": "dns/domain", "pkt_len": 67, "src_port":
59488, "dst_port": 53, "msg": "Possible DDoS attack detected."}
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Chapter 9

Digital Twins for Secure Software Updates
to Maintain IoT Device Trustworthiness

By Rustem Dautov, Hui Song and Shukun Tokas

Software updates are critical in maintaining the security and reliability of IoT
devices, acting as a key response strategy to address identified vulnerabilities and
enhance trust scores. In dynamic IoT environments, devices can become suscep-
tible to new threats, and without timely updates, their trustworthiness dimin-
ishes. Ensuring regular and secure software updates is thus essential to protect these
devices from exploitation, maintain their functionality, and safeguard the broader
network they are part of.

The Trusted Computing Group (TCG) has developed the Guidance on Secure
Software Updates in Embedded Systems [1], a reference architecture that outlines
the key steps required to manage software updates securely. This includes secure
development, signing, distribution, installation, and post-installation verification.
While the TCG Guidance provides a solid foundation for ensuring the security of
updates, it remains a general framework that does not specify how to implement
a fully integrated solution. In practice, the individual steps of the update lifecycle
are often addressed separately, resulting in disjointed approaches and gaps in the
security and functionality of updates.

Our approach introduces Digital Twins as a powerful solution to enhance the
software update lifecycle. Digital Twins provide real-time, virtual representations
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of IoT devices, allowing for continuous monitoring of device status and contextual
properties. This integration allows the Digital Twin to act as a central point for man-
aging software updates, ensuring timely delivery, guaranteed installation through
the Desired-Reported Property pattern, and granular control over which devices
receive the updates. Digital Twins also support scalability, enabling efficient man-
agement of software updates across large fleets of IoT devices. Additionally, Digital
Twins ensure state persistence, allowing devices to return to their desired state fol-
lowing updates, recoveries, or rollbacks.

The expected benefits of this approach are manifold. By leveraging Digital Twins,
IoT device updates can be more timely, reliable, and precise, with reduced service
disruption and enhanced security. The ability to integrate updates with real-time
contextual information ensures that updates are tailored to each device’s needs,
increasing operational efficiency. This approach represents an adaptable and scal-
able solution to the challenges of secure software updates in modern IoT ecosys-
tems.

9.1 Introduction

In the rapidly advancing domain of connected IoT devices, the significance of
secure software updates (SSUs) cannot be overestimated. These devices, ranging
from low-level resource-constrained IoT sensors to more capable edge gateways,
are integral to many modern industries, including the ones represented by the
ERATOSTHENES use cases: Smart Healthcare, Connected Vehicles and Industry
4.0. In all these domains, ensuring the security and reliability of the software that
governs these devices is paramount for system functionality. To this end, this chap-
ter outlines the design and implementation of the SSU mechanism in ERATOS-
THENES, highlighting its critical role in maintaining the integrity and efficacy of
IoT devices, drawing upon the principles established in the ‘Guidance for Secure
Update of Software and Firmware on Embedded Systems’ by the Trusted Comput-
ing Group (TCG).

9.1.1 Reference Architecture: Secure Software Update Lifecycle

The SSU lifecycle consists of five essential steps designed to ensure that software
updates are applied safely, maintaining the security and functionality of the system.
These steps are typically referenced from the TCG Guidance, which provides a
reference architecture rather than prescriptive instructions on how to implement
specific solutions. This flexibility allows developers to adapt the principles to their
needs, but it often results in disjointed implementations of the lifecycle steps, rather
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than a unified, holistic approach. Schematically depicted in Figure 9.1, the SSU
lifecycle includes the following steps:

1. Secure Development: This step focuses on the secure creation of the software
update itself. It involves following security best practices during the design
and development stages to ensure that the software is free of vulnerabilities
and prepared for safe distribution.

2. Secure Signing: Once developed, the software update is cryptographically
signed to guarantee its authenticity and integrity. This step ensures that the
update comes from a trusted source and has not been altered or tampered
with before distribution.

3. Robust Distribution: The signed update is securely distributed to devices.
This involves ensuring that the update is delivered to the correct devices in a
reliable manner, preventing unauthorised interception or modification dur-
ing transmission.

4. Secure Installation: After distribution, the update is securely installed on the
device. This step ensures that the update is applied without errors or security
risks, maintaining system stability and trust.

5. Post-installation Verification: Following installation, this step ensures that
the update was successfully applied and that the system is functioning cor-
rectly. It verifies the integrity of the new software and checks that the device’s
trust and security parameters remain intact.

While the TCG Guidance outlines these steps as key elements of a secure
update lifecycle, it does not dictate how to build or implement these processes.
As a result, in practice, organisations often implement individual steps in isola-
tion, without integrating them into a cohesive, end-to-end architecture. This frag-
mented approach can weaken the overall security posture, as the lack of coordina-
tion between steps may introduce vulnerabilities or gaps in the update process.

9.1.2 Proposed Approach at a Glance: Why Digital Twins?

Digital Twins (DTs) can significantly enhance the SSU lifecycle by acting as a cen-
tralised, real-time reference for the status of installed software across IoT devices.
By mirroring the physical device in a virtual environment, DTs provide a compre-
hensive view of each device’s software, making the update process more efficient
and reliable. When combined with other tools, DTs enable a streamlined approach
to managing updates, improving the delivery, control, and verification of software
changes. These practical benefits are summarised as follows:

• Timeliness is a key benefit of using DTs. By continuously collecting real-
time contextual information from IoT devices, DTs ensure that software
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Figure 9.1. Secure software lifecycle supported by the digital twins.

updates are delivered promptly. This real-time insight allows the system to
push updates with minimal service disruption and downtime, as updates are
deployed when conditions are optimal for each device, such as when it is idle
or less critical to operations.

• Guaranteed delivery is facilitated by the use of the Desired-Reported Prop-
erty pattern. In this approach, the desired state (new software version) is sent
to the DT, while the device reports back its current state. Even if a device is
temporarily offline, the DT keeps track of the desired state. As soon as the
device comes back online, the system ensures the update is installed, guaran-
teeing no missed updates regardless of device availability.

• Granular control over the update process is another advantage. DTs allow
for precise management of updates, whether targeting a single device, specific
groups, or an entire fleet. The cyber-physical-social context of each device can
be taken into account, ensuring that updates are deployed only when suitable.
For example, more critical devices can receive updates first, or updates can be
staggered based on geographical location, device type, or operational role.

• Scalability is greatly enhanced by DTs. They enable the management of
large fleets of devices, potentially consisting of hundreds or even thousands
of devices. By providing a digital representation of each device, updates can
be deployed and monitored across vast networks, ensuring all devices receive
the correct updates while keeping track of their individual statuses.

• A sandbox environment is another significant benefit. DTs provide the capa-
bility to test updates in a virtual space before pushing them to the physical
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devices. This allows organisations to validate updates in a safe, isolated envi-
ronment, identifying potential issues before they affect the real-world devices.
This mitigates risks and ensures that updates are fully functional before
deployment.

• State persistence for upgrades and recovery is another critical feature of
DTs. By keeping the history of the twin updates, the system can restore
a device to its desired state following an upgrade or recovery process. This
ensures that if an update fails or a device requires a recovery, it can seamlessly
return to its correct configuration, maintaining the continuity of operations.

These benefits will be further revisited in this section with a more detailed expla-
nation of how the proposed DT-based approach can implement them. Noteworthy,
this approach is by no means a complete, standalone solution for the SSU lifecycle.
Rather, it serves as an end-to-end point of integration, where various existing tools
and approaches that address individual steps of the SSU lifecycle can converge.
DTs act as a centralised framework that ties together different components, such as
secure signing tools, robust distribution systems, and post-installation verification
mechanisms. While it provides a unified view and control of the update process, this
approach can and should be further extended and complemented with additional
tools. For example, enhanced security mechanisms, automated verification systems,
and advanced simulation tools can be incorporated to strengthen specific stages of
the lifecycle, ensuring a more robust and holistic update management system.

9.1.3 Positioning within ERATOSTHENES

ERATOSTHENES’s vision is to build a robust and secure ecosystem for devices,
ensuring that each device operates reliably and securely throughout its lifecycle.
This ecosystem aims to safeguard application data, ensure the uninterrupted pro-
visioning of business services, and maintain compliance with applicable regula-
tory requirements. SSUs are essential for implementing of this vision, enabling the
seamless and safe evolution of device capabilities while protecting against emerg-
ing cyber-threats. In this context, SSUs ensure that vulnerabilities are patched
promptly, reducing the risk of malicious interference or malfunction, thus align-
ing with the TCG’s emphasis on maintaining device integrity through timely and
trustworthy updates.

In the context of ERATOSTHENES, a core pillar is the use of SSUs as a reaction
strategy to an event that reduces the trust level of an IoT device. Thus, the SSU
mechanism is one of the possible instruments that ERATOSTHENES users can
leverage in order to bring the IoT devices back into a trustworthy state.

Therefore, the scope of this research effort encompasses the development and
implementation of a comprehensive SSU framework across all IoT devices within
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the ERATOSTHENES network. This includes conducting thorough security
assessments of existing devices, integrating secure update mechanisms, and estab-
lishing an automated and secure software delivery system. More specifically, the
SSU process can be triggered after a failed trust assessment, i.e., when the actual
calculated trust score of an IoT device is lower than the expected score. This essen-
tially signifies the need to identify potential vulnerabilities and apply mitigation
measures.

9.2 Conceptual Architecture of the Secure Software
Update Mechanism

We now proceed with the design of the SSU functionality, as depicted in Figure 9.2.
In this architecture, we distinguish between stakeholders and functional elements
(i.e., software components).

9.2.1 Main Stakeholders

The main stakeholders of this architecture are the following:

• Device Manufacturer plays a crucial role in the overall ERATOSTHENES
ecosystem, not only by producing the IoT hardware but also by develop-
ing the associated software. The expected version of the software stack to be
deployed for each device model is specified as part of the MUD profile [9].
The device manufacturer may either develop the software themselves or sub-
contract trusted third parties (Software Developer) to ensure specialised
expertise and security. Regardless of the chosen development approach, the
integrity and security of the software updates remain paramount. The manu-
facturer (or a trusted third party acting on its behalf ) sign the software updates
with a private key, ensuring that each update can further be authenticated
and verified. The corresponding public key is embedded in the manufac-
tured IoT devices, enabling the high-end devices to verify the authenticity of
updates upon receipt.1 This cryptographic method ensures that only verified,
untampered updates are installed, maintaining the security and reliability of
the device.

• System administrator in the context of ERATOSTHENES possesses in-
depth knowledge of the application domain and its specific security-
related requirements and is thus responsible for providing information on

1. Please note that this approach primarily applies to relatively capable IoT devices that have the sufficient
computing capabilities for asymmetric cryptography.
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Figure 9.2. Conceptual architecture of the secure software update mechanism.

domain-specific threats and vulnerabilities for risk assessment. In addition to
these responsibilities, the system administrator also oversees the SSU process
and ensures that software patches are applied correctly and securely across
all devices. Using the DT Platform, the system administrator can manually
trigger updates if needed, to provide timely response to emerging threats or
vulnerabilities.

9.2.2 Main Functional Elements

The main functional elements of the architecture are the following:

• ERATOSTHENES ecosystem collectively represents the rest of the
ERATOSTHENES components which may trigger the SSU process. More
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specifically, the main reason for automatic software updates envisioned by
ERATOSTHENES is a reduced trust score of an IoT device caused by iden-
tified vulnerability in the existing software. The calculated trust score being
lower than expected signifies the need to identify potential vulnerabilities
and apply necessary mitigation measures. Noteworthy, while the triggering
of updates can be fully automatic, in ERATOSTHENES we assume that the
SSU process may also rely on the involvement of the system administrator
who oversees this whole process.

• Digital Twin Platform maintains a live view of the managed device fleet,
i.e., a collection of continuously updated DTs for each managed IoT device.
The DT Platform is the central element of the whole SSU functionality, as
it maintains an up-to-date representation of managed devices. This enables
secure and timely software updates by providing a comprehensive view of
each device’s configuration and operational state. For the automatic trigger-
ing of software updates, the DT Platform is equipped with APIs (e.g., HTTP
entry-points and MQTT listeners), so that the rest of the ERATOSTHENES
components can interact with it. As already outlined, the use of DTs intro-
duces the following benefits: timeliness, guaranteed delivery, granular control,
scalability, a sandbox environment, and state persistence.

• Distribution Engine takes as input the current contextual information about
managed IoT devices – on the one hand, and software assignment constraints
– on the other. Based on its internal knowledge and rules, it then assigns a spe-
cific software version to a specific target device, i.e., generates device-software
assignment pairs as an output. Targeted, context-aware assignment of soft-
ware updates in the IoT using DTs is essential for ensuring that each device
receives updates tailored to its specific configuration and operational environ-
ment. This approach minimises the risk of incompatibility and maximises the
effectiveness of updates.

• Subfleet Controller is deployed and runs within the ERATOSTHENES
trusted domain (i.e., close to devices in the secure network domain) and is
responsible for interaction with the DT Platform on behalf of a subfleet of
devices (e.g., a subfleet of connected healthcare gateways in remote patient
monitoring). It receives software update commands from the central DT Plat-
form through its northbound interface and propagates them to the down-
stream IoT devices via its southbound interface using device- or platform-
specific Adapters. This setup ensures efficient and secure dissemination of
updates, tailored to the specific needs of local devices, while maintaining syn-
chronisation with the central management system.

• Software Repository serves as a central distribution point of SSUs for
devices. This repository can be a private server managed by the manufacturer
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or a public cloud-based service, such as Docker Hub,2 which is widely used for
distributing containerised applications. Acting as a central hub, the repository
ensures that updates are securely stored and can be accessed programmatically
by the adapters and/or devices. Secure protocols like HTTPS are employed to
protect the integrity of the data in transit, and access control mechanisms are
in place to restrict update uploads and modifications to authorised personnel
only.

• Adapters are device- or platform-specific software components responsible
for interacting with devices and enacting the actual software updates on
devices. They are instantiated and run along-side the subfleet controller in
the trusted domain and depending on the type of devices in its sub-fleet, the
subfleet controller will instantiate a corresponding adapter. These adapters
are tailored to the unique characteristics and protocols of each device type or
platform within the IoT fleet. By interfacing directly with the devices through
standardised or proprietary APIs, they ensure that updates are deployed effi-
ciently and securely.

• Devices are diverse IoT assets that ERATOSTHENES already deals with
(e.g., healthcare gateways, smart vehicle onboard units, and smart industrial
appliances), as well as a wider range of network-connected IoT devices with
similar characterises. In ERATOSTHENES, we primarily focus on relatively
capable devices equipped with sufficient hardware capabilities (e.g., network
bandwidth, CPU, storage). Devices expose some APIs specific to their hard-
ware platform, network interfaces, OS, software stack, etc., which are used
by the Adapters to enact the software update process.

• Monitoring Agents run on the devices and serve to collect real-time con-
textual information. These agents gather data on device status, operational
parameters, environmental conditions, and other relevant metrics. This infor-
mation is then transmitted back to the central DT Platform where it is repre-
sented as reported properties in DTs. By continuously updating these prop-
erties, the platform maintains an accurate and dynamic DT model of each
device, facilitating informed decision-making for the following SSU activi-
ties, as well as for stateful recovery.

9.2.3 Triggering Software Updates with the Desired-Reported
Property Pattern

The Desired-Reported Property pattern in DTs is a key mechanism for manag-
ing and synchronising the state of physical assets and their virtual counterparts, as

2. https://hub.docker.com/

https://hub.docker.com/
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Figure 9.3. Desired-reported property pattern in digital twins.

depicted in Figure 9.3. This pattern involves two primary elements:

• Desired Properties: These are the target states or configurations that the
System Administrator wants the physical asset to achieve. They are set within
the DT and serve as directives for how the asset should be configured or
operated. For instance, in the context of SSUs, the desired property might be
the target software version to be deployed.

• Reported Properties: These reflect the current state or configuration of the
physical asset as detected and communicated by sensors or monitoring sys-
tems. The reported properties are continuously updated to provide a run-
time status of the asset’s condition. Continuing with the SSU example, the
reported property would be the current software version that the device is run-
ning. Reported properties, and especially evidence on the correct device con-
figuration (which entailed evidence on the device’s correct software version
running), is achieved through the trusted computing enablers of ERATOS-
THENES.

The interplay between these two properties allows for effective monitoring and
control. When a discrepancy is detected between the desired properties and the
reported properties, the DT Platform can trigger actions to align the physical asset
with the desired state. This might involve sending commands to the asset to adjust
its configuration (e.g., upgrade the software version), or it might involve alerting
operators to take corrective actions. This pattern is particularly valuable in the
ERATOSTHENES use case scenarios requiring precise control and automation,
such as telemedicine using remote patient monitoring, smart manufacturing, and
intelligent vehicle services. It ensures that the DT remains an accurate and action-
able representation of the physical asset, enabling proactive maintenance, optimi-
sation, and fault detection.

9.2.4 Context-Aware Software Assignment

Software assignment using DTs in devices leverages detailed digital representa-
tions of physical devices, incorporating multi-dimensional contextual properties, to
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assign software updates efficiently. More specifically, the cyber-physical-social con-
text of monitored devices encompasses several dimensions [2]. The cyber aspects
include the traditional hardware and software properties of the devices. Physical
aspects refer to environmental conditions such as the device’s location, surround-
ing temperature, and time of day, which can also affect device performance and
availability. Social aspects involve the actual human user, considering factors like
specific medical conditions, usage patterns, and service subscription types, all of
which influence how the device is used and monitored.

Target conditions for software updates can be defined in two primary ways, each
offering different levels of control and flexibility. One option is for the Device
Manufacturer (Software Developer) to specify the conditions, such as identifying
the security vulnerability the update addresses and listing the specific device mod-
els that are affected and require the patch. This ensures that the update is applied
where it is most needed, addressing known issues in the devices it was designed to
protect. Another, more flexible approach is for the System Administrator to manu-
ally define the target conditions. By leveraging their knowledge and experience, the
Administrator can take a more fine-grained approach, tailoring the update deploy-
ment based on the contextual properties of each device. These properties, collected
and maintained by the DT Platform, allow the Administrator to consider factors
such as device location, usage patterns, and current operational state. This method
enables highly targeted updates, ensuring that the right devices are updated at the
right time, maximising both security and operational efficiency.

In both cases, the distribution engine uses these context-aware DT representa-
tions to match target software requirements with the appropriate devices. This can
be implemented in three possible scenarios:

• One-to-One Scenario: the distribution engine assigns a specific software
update to a single device based on its unique contextual properties. For exam-
ple, if a DT of a particular device indicates that it requires a firmware update
to fix a known vulnerability, the Distribution Engine will push the update
directly to that specific device using its unique ID as the target condition.
The Desired-Reported Property pattern is used to confirm the device reaches
the desired state after the update, ensuring the device operates securely and
effectively after the installation.

• One-to-Many Scenario: the Distribution Engine assigns software updates
to a group of devices sharing certain contextual properties. For instance,
a hospital might have several patient monitoring systems that require an
update to enhance data encryption protocols. The DTs of these monitors,
which may include similar models or devices within the same department,
will indicate they all need the update. The Distribution Engine identifies
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these commonalities and assigns the update to all relevant devices, ensuring
consistency and efficiency. So if a vulnerability is identified in more than one
device, a patch can be applied to all of them at once. This approach facili-
tates the update process across multiple devices, leveraging batch processing
capabilities to maintain high standards of data security.

• One-to-All Scenario: the Distribution Engine broadcasts a software update
to all devices within the network. This is typically done for critical updates,
such as a security patch addressing a widespread vulnerability. For example,
if a new regulation requires enhanced cyber-security measures across all IoT
devices, the DTs provide the necessary contextual properties to ensure each
device is eligible and capable of receiving the update. For example, if a vul-
nerability is identified for a single device of a specific model, a patch can
be applied to all other devices of this type in a scalable and timely manner.
The Distribution Engine then ensures that this update is deployed across the
entire fleet of devices, leveraging the DTs to monitor and validate the update
process.

In each of these scenarios, the Desired-Reported Property pattern is used to con-
firm the devices reach the desired state after the update, to make sure they operate
securely and effectively after the installation.

9.3 Implementing the Software Management Lifecycle

The described conceptual architecture for SSUs in ERATOSTHENES is aligned
with the already mentioned TCG Guidance. The software update lifecycle is part
of the runtime phase of the ERATOSTHENES architecture. It is expected that the
secure device domain is already established, with the IoT devices enrolled and the
domain manager up and running.

The SSU lifecycle begins with the development step, which employs secure cod-
ing practices. Updates are cryptographically signed to verify their authenticity and
integrity, ensuring that only verified updates can be installed on the device. The dis-
tribution step ensures updates are assigned and delivered securely, using encrypted
communication channels and secure servers to prevent interception or tampering.
In the deployment phase, devices must authenticate the updates before installation.
This involves verifying the cryptographic signatures to confirm the update is from
a trusted source and has not been altered. Post-deployment, the verification and
attestation step involves validating the update’s integrity and functionality, mon-
itoring for any issues or anomalies that might arise. All these lifecycle steps are
also included in Figure 9.2 as grey boxes in the background. In the following sub-
sections, we will look into each of these steps in more detail, describing how the
proposed ERATOSTHENES SSU functionality implements them.
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9.3.1 Step 1: Secure Development of Software Updates

In ERATOSTHENES, developing software patches can take place in response to
reduced trustworthiness levels of devices. Thus, it is seen as part of the response
mechanism to identified vulnerabilities. Implementing secure development for
devices goes beyond the official scope of ERATOSTHENES, thus, we assume that
developers and service providers follow best practices for secure software develop-
ment. Essential practices include: incorporating secure coding practices throughout
the software development lifecycle to avoid vulnerabilities like buffer overflows and
SQL injection; regular code reviews and the use of static analysis tools are essential
for early detection of vulnerabilities; conducting extensive security testing, includ-
ing penetration testing, to identify and mitigate potential issues before deployment;
employing robust cryptographic measures to protect data, and ensure that software
updates are signed and verified to maintain integrity [9, 11].

9.3.2 Step 2: Secure Signing of Software Updates

In the first place, implementing secure update signing for IoT devices (depicted
in Figure 9.4 as a simplified sequence diagram) requires robust key management
and thorough signing of software updates. In ERATOSTHENES, we assume that
Device Manufacturers generate and manage a pair of cryptographic keys: a private
key for signing updates and a corresponding public key for verifying them. The pri-
vate key is stored securely, while the public key is embedded within the IoT devices
during the manufacturing process, enabling these devices to verify the authenticity
of received updates. For the devices capable of symmetric cryptography, it can be
the case that a symmetric SSU key is established in each device during the manu-
facturing process.

Figure 9.4. Steps 1–2: Secure development and signing of software updates.
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When a software update, such as a Docker container or a binary executable file, is
prepared for deployment following the secure development phase, the manufacturer
uses their private key to create a digital signature. This process involves generating
a hash of the update file and encrypting this hash with the private key. The result-
ing digital signature is then attached to the software update package. For updates
involving Docker containers, the process is similar. The entire container image is
signed by hashing its content and creating a digital signature. Devices that run
Docker can verify the container signature before deploying it, ensuring that the
container has not been altered. After generating a digital signature using the private
key, the signed software updates are securely uploaded to the designated software
repository, which can be a private server managed by the Device Manufacturer or a
public cloud-based service. At this point, the signed software update, coupled with
its signature, is ready for secure distribution to the devices.

9.3.3 Step 3: Robust Distribution

To implement robust distribution of software updates for IoT devices (Figure 9.5),
leveraging DTs and the Desired-Reported Property pattern is essential. As previ-
ously explained, DTs provide real-time virtual representations of each IoT device,
capturing their current status, including operating system, software version, exe-
cution traces, and other critical data. The Distribution Engine uses the detailed
information from DTs to determine which devices need updates [3]. By compar-
ing the desired state (i.e., the latest software version) with the reported state (i.e.,
the current software version on the device), the engine can identify discrepancies
and target the necessary updates.

Figure 9.5. Step 3: Robust distribution of software updates.
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For a single device (i.e., one-to-one scenario), the Distribution Engine checks
the DT’s reported properties and pushes the update if the device is not up to
date. For a subset of devices (i.e., one-to-many scenario), the engine filters devices
based on specific criteria, such as those running an outdated version or those with
a particular operating system. It then pushes the update to this group, ensuring
all selected devices meet the desired state. For fleet-wide updates (i.e., one-to-all
scenario), the engine initiates a fan-out distribution to all devices. This ensures
uniformity across the entire network, with each device’s DT confirming receipt
and installation of the update, maintaining consistent software versions across the
fleet.

The distribution itself takes place over secure channels, ensuring data integrity
and preventing unauthorised access. The process includes continuous monitoring
of the update status, using the DTs to track progress and verify successful installa-
tions.

9.3.4 Step 4: Secure Update Installation

Secure installation of software updates on IoT devices (Figure 9.6) requires
addressing the diversity in hardware architectures, operating systems, execution
environments, network interfaces, and APIs. This implementation relies on specific
software Adapters developed for each device type, ensuring a seamless installation
process tailored to the unique requirements of each device [3, 4].

In addition to the Adapters, the Subfleet Manager is another important software
component installed within the same secure domain as the devices. It coordinates
and manages the update process across a diverse range of IoT devices, ensuring that
each device receives the appropriate updates securely and efficiently. The Subfleet
Manager acts as intermediary between the central SSU server (i.e., DT Platform)

Figure 9.6. Step 4: Secure installation of software updates.
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and the IoT devices; its main task is to receive software update commands from the
DT Platform on the northbound interface and to route them to the assigned device
on its southbound interface [5]. Upon receiving a command, the Subfleet Manager
identifies the specific Adapter required for the target device type and instantiates
it accordingly. It then forwards the software update command to the designated
Adapter, which then enacts the correct and secure execution of the update process.

The installation process varies depending on the device type but generally
involves securely transferring the update package to the device and initiating the
installation process via the corresponding API. The Adapter handles specific com-
mands and procedures required for installation on different operating systems and
execution environments. It monitors the installation process in real-time to ensure
it completes successfully without interruptions or errors.

Before installation, the Adapter may perform signature verification by fetching
the update package from the secure repository and using the device’s embedded
public key to verify the attached digital signature. This ensures that the update
is from a trusted source and has not been tampered with. If verification fails, the
installation is aborted, and the issue is logged.

9.3.5 Step 5: Post-Update Verification and Attestation

This is the last step in the SSU cycle (Figure 9.7). Local attestation involves verifying
the integrity of software updates directly on the device. Each device is equipped
with a public key from the manufacturer. These keys are essential for verifying
the authenticity and integrity of installed software updates, which are signed with
the manufacturer’s private key. Before a software update is installed, the device uses
this public key to verify the digital signature of the update. This verification ensures
that the update has not been tampered with and is indeed from a trusted source.

Figure 9.7. Step 5: Post-update verification and attestation.
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This process can be automated and performed periodically, ensuring the software’s
continuous integrity.

To further enhance security, continuous monitoring is implemented using
device-side Monitoring Agents. These agents run on each device, collecting run-
time information such as current software versions, execution traces, and other
relevant metrics. This data is sent to the DT Platform at regular intervals. The
platform uses this information to maintain an up-to-date virtual representation
of each device, enabling real-time monitoring and detection of anomalies or
discrepancies.

The continuous monitoring system allows for proactive security measures, as any
deviations from expected behaviour can be quickly identified and addressed. By
leveraging local attestation supported by continuous monitoring, a robust frame-
work is established to ensure the security and integrity of software updates in
devices, thereby safeguarding user data and device functionality.

9.4 Proof of Concept

Following the described architecture, the proof-of-concept implementation focuses
on adoptability and integrability. Therefore, we have taken an architectural design
approach to improve aspects of coupling to application-specific details and separa-
tion of concerns. Given the cyber-physical nature of managed IoT devices within
the distributed fleet, three main design decisions underpin the design and imple-
mentation of the SSU mechanism:

• Decoupled architecture: Managed IoT devices may unexpectedly crash,
unpredictably lose network connection, and then reappear online. To accom-
modate such ad-hoc behaviour and prevent bottlenecks, communication
between software components is implemented using pub-sub messaging
based on MQTT.

• Asynchronous communication: For the same reason, it is important that
any software updates initiated are guaranteed to be delivered to target devices
regardless of how long they stay offline. This also means that the status
of each device is continuously monitored and stored to apply the required
changes when it gets back online. This can be implemented using the
described Desired-Reported Property pattern, which enables real-time mon-
itoring of devices and comparison of reported properties against desired
ones.

• Hierarchical architecture and extensibility: To prevent single points of fail-
ure and distribute the workload within the managed fleet of heterogeneous
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devices, devices with similar interfaces are grouped together [3]. This intro-
duces an extra layer of filtering and load-balancing functionality between
the centralised SSU engine and numerous devices within the managed fleet.
Thanks to this hierarchical architecture, where generic functionality is sepa-
rated from device-specific implementations, the SSU engine will be able to
accommodate new types of devices in the future.

In addition to these main requirements, the design and implementation of the
SSU mechanism were driven by several non-functional requirements, such as the
availability of a graphical user interface (GUI), user friendliness, and the intention
to re-use existing software libraries.

To implement the conceptual architecture of the SSU functionality depicted
in Figure 9.2, several software components were developed. These elements corre-
spond to the main functional elements of the conceptual architecture, which we
describe in more detail in the following subsections.

9.4.1 Digital Twin Platform: Eclipse Ditto

As the technological baseline on top of which we developed the SSU functionality,
we used Eclipse Ditto3 – an open-source framework for building DTs of Internet-
connected devices with extensible modelling and built-in querying languages.

As already explained, by using a device management platform, edge applica-
tion [12] providers can remotely provision, monitor, and maintain their devices, as
well as push software updates either manually or in an automated manner when-
ever a new version is released. In recent years, all these tasks have been underpinned
by the prominent concept of DTs. Simply put, DTs are virtual models designed
to accurately reflect physical objects equipped with various sensors related to cer-
tain aspects of their functionality. They enable the creation of rich digital models
of anything physical or logical, from simple assets or products to complex cyber-
physical environments. The collected sensor data is relayed to a processing system
and applied to the DT.

Furthermore, Ditto acts as middleware, providing an abstraction layer for IoT
solutions interacting with physical devices via the DT pattern. It can be seen as a
toolkit, providing core functionality (e.g., meta-model, database, different messag-
ing protocols and connectors, REST APIs, etc.), while some other features must
be developed by users on top of it (e.g., domain-specific DT models, graphical
user interfaces, device-side monitoring agents, etc.). Being part of a larger open-
source ecosystem, it can be relatively easily integrated with other technologies from

3. https://eclipse.dev/ditto/

https://eclipse.dev/ditto/
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Figure 9.8. Front-end interface of the DT Platform for secure software updates.

the Eclipse stack, including various communication protocols, pub-sub messaging,
and load balancing. Some of these extensibility capabilities are demonstrated in
Figure 9.8, which includes the GUI of the extended DT Platform in the context
of ERATOSTHENES. More specifically, the screenshot includes the basic SSU
functionality accessible to the System Administrator via a DT representation in the
context of the Smart Healthcare use case on connected healthcare gateways.

9.4.2 Software Assignment Engine: Ditto Meta-Model +
Resource Query Language

Ditto offers developers an extensible meta-model [2] (depicted in Figure 9.9)
that, in its simplest form, enables modelling physical entities, referring to them
as Things, using a JSON schema with the following key concepts:

• Thing is the top-level modelling concept for describing physical assets.
• Definition is included in every Thing (and optionally in Features) and essen-

tially represents a URI linking to an external Web of Things (WoT) model.4

4. https://www.w3.org/TR/wot-thing-description/

https://www.w3.org/TR/wot-thing-description/
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Figure 9.9. Digital twin meta-model capturing the multi-dimensional device context (an

extension to Eclipse Ditto) [2].

It describes how a Thing is structured and what behaviour/capabilities can
be expected in an interoperable and standard manner.

• Policy enables fine-grained access control configuration. A specific policy
defines who and how can access a specific resource.

• Metadata is Ditto’s internal field to store technical information, e.g., version
or creation/modification timestamps.

• Attributes are used to model rather static properties of a Thing, i.e., values
that do not change as frequently as Features. They can be of any type and
can be used to search for Things.

• Features are the central modelling concept to capture all run-time data and
functionality of a Thing in a given application system. Users are allowed
to define their own Features or extend existing WoT definitions. This is a
key enabler for modelling the multi-dimensional context through more fine-
grained Properties.

• Properties are used within Features to model individual run-time indica-
tors of a Thing, e.g., to manage the status, the configuration, or any fault
information. Each Property can be either a simple scalar value or a complex
JSON object. By using Properties, it is possible to implement the prominent
Desired-Reported Pattern widely adopted in DTs, wherein sensor measure-
ments are reported upstream while desired configuration updates are pushed
downstream until eventually Properties and DesiredProperties are in sync.
As explained, this is the main mechanism for monitoring the state of the
deployed software and managing the deployment.
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A simplified example of a DT definition (i.e., a connected medical gateway)
used by the SSU mechanism is depicted in Listing 9.1. The DT includes all
main elements, including the multi-dimensional features. Note the properties and
desired_properties fields, which are used for twin synchronisation and trigger the
update procedure of the outdated software_component_01.

"thingId": " no.sintef.sct.giot:tellu−rpm−gateway−001",
"policyId": " no.sintef.sct.giot:policy",
"attributes": {

"type": "physical_device"
"manufacturer": "RPM Inc.",
"cpu_model": "Broadcom BCM2711"
"platform": " linux/arm/v8",
"ip_address": "192.168.32.5",
"os": {

"name": "Debian",
"description": " Debian GNU/Linux 11 (bullseye)",
"version": "11"

}
},
"features": {

"cyber": {
"properties": {

"trustAgent": {
"container_image": "trust−agent"
"container_status": "running",
"container_version": "0.1"

},
"docker": {

"server_version": "27.2.1"
}

},
"desired_properties": {

" trustAgent": {
"container_image": "trust−agent"
"container_status": "running",
"container_version": "0.2"

}
}

},
"physical": {...},
"social": {...}
}

}

Listing 9.1. A simplified example of a personal healthcare gateway DT.

Eclipse Ditto also offers its users the Resource Query Language (RQL) to search
for and manage these DTs efficiently. Using RQL’s logical operators, we can per-
form precise assignments of software updates to IoT/Edge devices based on their
DT data. One-to-one assignment involves updating a specific device by querying
its unique ID. For instance, if a critical update is needed for a particular device
identified by its ID, RQL allows us to target and update just that device:
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eq(thingId,"no.sintef.sct.giot:tellu−rpm−gateway−001")

Listing 9.2. One-to-one assignment.

One-to-many assignment leverages RQL to identify and update multiple devices
that meet certain contextual requirements. This might include updating devices
running an outdated software version, devices running on a specific OS, devices
deployed in a particular location, or devices used by patients with a premium sub-
scription:

and(eq(features/cyber/properties/trustAgent/container_image,"trust−agent"),
in(features/cyber/properties/trustAgent/container_version,"0.1","0.2"))

eq(attributes/os/version,"11")
eq(features/physical/properties/location,"hospital")
eq(features/social/properties/subscription,"premium"))

Listing 9.3. One-to-many assignment.

One-to-all assignment involves updating an entire class of devices. By querying
devices in the fleet, we can efficiently distribute the update to ensure all relevant
devices are up to date:

eq(attributes/type,"physical_device")

Listing 9.4. One-to-all assignment.

This way, Eclipse Ditto’s meta-model and RQL enable accurate and efficient
assignment of software updates, enhancing the reliability and security of devices.

9.4.2.1 Subfleet Controller and Adapters

We now discuss the actual installation of software updates onto the managed
devices. The design emphasises generality and extensibility, ensuring compatibil-
ity with diverse device types and allowing effortless introduction of new device
categories. Currently, the system supports three different types of high-end devices
(all based on Smart Healthcare use case on remote patient monitoring):

• Docker: This type involves any device equipped with a Docker Engine, host-
ing a software component as a Docker container.

• Linux SSH: This category encompasses devices operating on a Linux operat-
ing system with open SSH access, wherein the software components operate
as basic shell scripts.

• Device-specific HTTP API (Axis Camera): Specifically for Axis cameras,5

the software components run as apps within the camera, utilising the camera’s
REST API for deployment and lifecycle management.

5. https://www.axis.com/products/network-cameras.

https://www.axis.com/products/network-cameras
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For each of these three, there is an Adapter, which oversees the device, handling
connection, status checking, basic device info collection related to SSUs, and the
actual installation of the updates. Once active, all the Adapters will subscribe to
any possible downstream commands from the DT Platform. Whenever there is a
software update that requires actions on one of the devices, the Adapter will launch
the action on the corresponding device through the device-specific APIs.

We use the Docker Adapter as an example [8]. For devices that support a Docker
environment, a software component operates as a Docker container. The essential
requirement is for the device to enable the Docker Engine, which provides a REST
API for communication. This Adapter operates on the Domain Manager in the
same local network with the target device. It utilises the REST API to remotely com-
municate with the Docker Engine on the device. The device DT holds key infor-
mation such as the device’s IP and the Docker Engine API port. This information
allows the Adapter to call the info method of the Docker Engine to retrieve addi-
tional metadata about the device, including CPU architecture, OS distribution, and
Docker version. This method also serves as a ping operation, ensuring the device is
connected.

For installing a software update, the Adapter performs several sequential steps.
It begins by downloading the Docker image using the URL provided in the device
twin. Following this, it invokes the loadImage method of the Docker Engine to
upload the image package into the device. To start the software, the Adapter calls
runContainer, launching a Docker container from the loaded image. Given that
loading an image and initialising a container may be time-consuming, the Adapter
maintains continuous communication with the Docker Engine.

9.4.2.2 Device-side Monitoring Agents

As previously explained, Monitoring Agents are deployed on devices to collect
contextual information, which is then sent to the DT Platform. This informa-
tion includes hardware and software status, environmental conditions, and user
interactions, creating a comprehensive overview of each device’s state and per-
formance. By providing real-time data, Monitoring Agents close the monitor-
ing loop, enabling continuous oversight and proactive management of the device
fleet.

One of the key functionalities of the Monitoring Agents is to track the successful
installation and execution of software updates. They verify that updates have been
applied correctly and that the updated software operates as intended. This may
involve checking for any installation errors, verifying the integrity of the installed
software, and monitoring the device’s performance post-update. By doing so, they
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will ensure that updates do not disrupt device functionality or compromise user
safety.

Currently, these Monitoring Agents are implemented using Influx Telegraf6 and
are installed as Docker containers. Influx Telegraf is a highly versatile data collection
agent that can gather a wide range of metrics and events from the host devices.
Running these agents as Docker containers provides a consistent and isolated envi-
ronment, simplifying deployment and management across diverse hardware and
software configurations. Looking ahead, the goal is to develop more lightweight
Monitoring Agents that can perform the same functions with reduced resource
consumption.

9.5 Summary

The proposed approach leverages Digital Twins to enhance the SSU lifecycle, offer-
ing a robust, scalable framework for managing software updates across large fleets
of IoT devices. Digital Twins provide a real-time, up-to-date view of each device’s
status, acting as a central integration point for various tools and processes involved
in secure updates. This approach ensures timeliness by using real-time contextual
information to deliver updates with minimal disruption and downtime. The use of
the Desired-Reported Property pattern guarantees that updates are installed even
if devices are temporarily offline, as they are applied once the devices come back
online.

The system also offers granular control over the update process, allowing for
targeted updates based on the cyber-physical-social context of each device. This
ensures updates are distributed to specific devices or groups as needed, offering
flexibility and precision. Furthermore, the approach supports scalability, enabling
the management of updates across fleets of hundreds or thousands of devices effi-
ciently. The integration of a sandbox environment allows for updates to be tested
in a virtual space before deployment, reducing risks.

In addition to facilitating updates, the Digital Twin Platform ensures state per-
sistence, allowing devices to be restored to their desired state following updates,
recoveries, or rollbacks. However, it is important to note that this approach is not
a complete solution but rather an integration point for other existing tools and
methodologies. While it enhances the SSU lifecycle, it can be further extended and
complemented by additional tools to provide a more comprehensive solution to

6. https://www.influxdata.com/time-series-platform/telegraf/.

https://www.influxdata.com/time-series-platform/telegraf/
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SSUs. This flexibility makes it an adaptable and valuable approach in the dynamic
landscape of secure IoT device management.
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Chapter 10

Tracing Techniques for Connected
Medical Devices

By Vaios Bolgouras, Georgios Petychakis, Aristeidis Farao,
Apostolis Zarras and Christos Xenakis

Integrating Connected Medical Devices (CMDs) into modern healthcare systems
has enhanced clinical workflows and improved patient care through real-time data
sharing. However, this digital evolution introduces significant security and privacy
risks. Ensuring the integrity and trustworthiness of these devices is critical, as vul-
nerabilities may compromise patient safety and the healthcare infrastructure. This
chapter investigates the role of tracing technologies in safeguarding CMDs, specif-
ically in monitoring security and performance across both high-end and low-end
devices. Advanced tracing tools like the extended Berkeley Packet Filter (eBPF)
enable continuous monitoring and anomaly detection in high-end CMDs. In con-
trast, resource-constrained low-end CMDs necessitate a balance between security
and performance through tailored tracing solutions. We explore static and dynamic
properties vital for maintaining device integrity, such as secure boot processes and
real-time operational data, and discuss the unique challenges of securing low-end
devices with limited resources. Beyond device-level monitoring, tracing technolo-
gies contribute to the broader security lifecycle, enabling early detection of vulnera-
bilities, regulatory compliance, and forensic analysis in case of a breach. The chapter
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concludes with insights into future trends in CMD tracing technologies, address-
ing emerging threats while maintaining a balance between security, performance,
and resource efficiency.

10.1 Introduction

Integrating CMDs into modern healthcare systems has fundamentally changed
the patient care, diagnosis, and treatment landscape. These devices, from wear-
able health monitors to complex implantable technologies, enable real-time mon-
itoring, data collection, and communication with healthcare providers, support-
ing more accurate clinical decisions and personalized care. As the healthcare
industry embraces the digital revolution, CMDs play a pivotal role in bridg-
ing the gap between patient needs and medical expertise, often functioning
autonomously or as part of larger medical systems [1]. However, the growing
reliance on these devices is not without challenges, particularly in security and
privacy.

The increased connectivity and functionality of CMDs introduce new vulner-
abilities, making them an attractive target for cyberattacks. These devices often
handle sensitive patient data, including personal health information, which must
be protected to ensure patient privacy [2]. Furthermore, the integrity and avail-
ability of CMDs are critical; any compromise in their functionality can have dire
consequences, especially when a device is responsible for life-sustaining tasks such
as monitoring vital signs or delivering medication. Thus, ensuring the trustworthi-
ness of CMDs is paramount, and the ability to detect, respond to, and mitigate
potential threats is a central concern for healthcare providers, regulatory bodies,
and device manufacturers alike.

The challenge of securing CMDs is compounded by the diversity of devices in
use today. High-end devices, such as those used in hospitals for intensive moni-
toring, have significant computational resources and advanced capabilities, mak-
ing them well-suited to sophisticated security solutions. These devices can sup-
port robust security protocols and complex tracing mechanisms, enabling con-
tinuous system behavior monitoring [3]. In contrast, low-end devices, such as
wearable monitors or home-use medical equipment, are often constrained by
limited processing power, memory, and battery life. These resource limitations
make it difficult to implement traditional security solutions, necessitating the
development of tailored approaches that balance security needs with operational
efficiency [4].

Tracing technologies have emerged as a critical solution in this context, continu-
ously monitoring CMDs’ behavior. Tracing refers to observing a device’s operations
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in real time, recording static properties (e.g., secure boot processes) and dynamic
behaviors (e.g., system calls, network activity, and performance metrics). By track-
ing this data, tracing technologies enable early detection of anomalies or deviations
from expected behavior, providing valuable insights into the device’s operational
integrity and security posture. These insights are essential for maintaining the trust-
worthiness of CMDs, allowing for proactive responses to potential threats before
they can impact patient care.

For high-end CMDs, tracing is often implemented using sophisticated technolo-
gies like the extended eBPF, which allows for deep system monitoring at the kernel
level. eBPF provides a flexible and efficient means of tracking a wide range of sys-
tem activities, including network traffic, filesystem changes, and process executions,
without introducing significant performance overhead [5]. This capability makes it
particularly well-suited for high-end medical devices requiring robust security and
high performance.

On the other hand, low-end devices present unique challenges regarding trac-
ing. These devices often operate on RTOS, designed to manage time-sensitive tasks
with minimal delay [6]. Tracing on low-end devices must account for the limited
computational resources available, ensuring that monitoring activities do not inter-
fere with the device’s primary functions. Static tracing methods, which monitor
predefined behaviors such as boot integrity, and dynamic tracing methods, which
observe real-time performance, must be carefully balanced to maintain security and
operational efficiency.

This chapter delves into the critical role of tracing technologies in ensuring the
security and integrity of CMDs across both high-end and low-end devices. Towards
this direction, the ENTRUST framework is proposed, specifically designed to
establish trust in CMDs through a robust architecture that integrates real-time
monitoring, attestation, and verification mechanisms. It provides a comprehensive
approach to managing the security of CMDs by leveraging tracing technologies to
assess the behavior and operational integrity of these devices continuously. A key
focus of ENTRUST is to address the specific challenges and solutions associated
with tracing in different device categories, providing a comprehensive overview of
the techniques and technologies that support secure device operation. By explor-
ing the technological underpinnings of ENTRUST’s tracing approach, the chap-
ter sheds light on the importance of continuous monitoring for maintaining the
trustworthiness of CMDs in an increasingly connected healthcare ecosystem. Addi-
tionally, this chapter addresses how tracing fits into the broader context of CMD
security, operational assurance, and compliance with regulatory standards, ensuring
that healthcare systems can continue to rely on these devices without compromising
patient safety.
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10.2 Tracing

Tracing is indispensable in the ENTRUST framework, serving as a core compo-
nent for monitoring and ensuring the security, privacy, and integrity of CMDs. As
CMDs become more critical to healthcare delivery and patient management, their
secure operation must be continuously assessed to detect potential threats, identify
vulnerabilities, and ensure compliance with strict regulatory standards. The com-
plexity of this task is heightened by the diversity of CMDs, which range from pow-
erful hospital-grade devices to more resource-constrained wearable or home-use
devices. ENTRUST addresses this challenge by leveraging tailored tracing tech-
nologies that meet the specific needs of both high-end and low-end devices.

In ENTRUST, tracing is defined as continuously observing and recording a
device’s behavior, including its static properties (e.g., secure boot sequences) and
dynamic operations (e.g., runtime performance and network activity). The goal is
to establish a comprehensive, real-time understanding of the device’s operational
state, which can then be used to verify the integrity of the device, ensure com-
pliance with security policies, and detect any abnormal or unauthorized behaviors
that could indicate a security breach. Tracing is a defensive measure and a proac-
tive tool, enabling early detection of vulnerabilities and potential exploits before
they can compromise the device or the broader healthcare network. For CMDs,
tracing typically involves monitoring a wide range of system components, includ-
ing hardware, software, network interfaces, and application layers. By tracing these
components, ENTRUST can gather critical data as the foundation for trust assess-
ments. These assessments evaluate the device’s overall security posture, determin-
ing whether it meets the required trust level for operation within a healthcare net-
work. If a device’s behavior deviates from expected norms or an anomaly is detected,
ENTRUST’s tracing mechanisms provide the necessary evidence to trigger correc-
tive actions, such as isolating the device, applying software patches, or updating
security configurations.

One of the most significant advantages of tracing technologies within
ENTRUST is their ability to adapt to different CMDs, offering tailored solutions
for high-end and low-end devices. High-end CMDs, such as hospital monitor-
ing systems and complex diagnostic equipment, benefit from sophisticated tracing
technologies like the eBPF. These technologies enable deep inspection of system
operations, allowing for comprehensive monitoring of kernel-level activities, net-
work communications, filesystem access, and process execution. High-end devices
often have the computational resources to support these advanced tracing capabil-
ities, making it possible to maintain continuous and detailed monitoring without
degrading the device’s performance. Conversely, low-end devices, typically used
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in less resource-intensive settings, require more efficient and lightweight tracing
solutions. These devices, such as wearable heart monitors or glucose sensors, often
operate with limited processing power, memory, and energy resources, necessitat-
ing a careful balance between security monitoring and performance efficiency. In
such cases, tracing focuses on monitoring key system activities without overload-
ing the device’s limited resources. Techniques such as static tracing, where prede-
fined behaviors are monitored, or dynamic tracing, where real-time performance is
observed, are carefully applied to ensure that security is maintained without impact-
ing the device’s primary functions.

ENTRUST’s tracing solutions are not limited to monitoring the internal oper-
ations of CMDs but also extend to interactions with external systems. CMDs fre-
quently communicate with other devices, cloud platforms, and healthcare networks
to share data, receive updates, or relay real-time information to clinicians. These
interactions can introduce additional security risks, especially if the communica-
tion channels are not adequately protected. To address this, ENTRUST’s tracing
technologies monitor network traffic and data exchanges, ensuring that all com-
munications are secure, encrypted, and in line with the device’s trust policies. This
holistic approach to tracing not only safeguards the device itself but also the broader
network in which it operates. Additionally, the integration of tracing technologies
within the ENTRUST framework supports forensic analysis in the event of a secu-
rity incident. By maintaining detailed logs of system operations and interactions,
ENTRUST enables investigators to trace back through the device’s activities, iden-
tifying the root cause of an attack or failure. This forensic capability is essential for
understanding how and why a device was compromised, allowing for more targeted
remediation efforts and improving the overall security of the CMD ecosystem.

10.2.1 Tracing in High-End Devices

High-end CMDs are typically found in hospitals and include complex diagnos-
tic tools, advanced imaging systems, and real-time monitoring equipment. These
devices are integral to critical care and rely on robust computational resources to
perform complex functions such as processing large amounts of data, maintain-
ing real-time patient monitoring, and integrating with broader healthcare infor-
mation systems. Given their critical nature and data sensitivity, high-end CMDs
demand highly effective and continuous monitoring mechanisms to ensure they
remain secure and trustworthy throughout their operational lifecycle.

eBPF is a powerful technology adopted in the ENTRUST framework to pro-
vide sophisticated tracing capabilities for high-end devices. Originally designed
for packet filtering in network operations, eBPF has evolved into a versatile tool
that allows for deep inspection of a system’s behavior by monitoring events at the
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kernel level. eBPF operates within the operating system kernel, making it possible
to observe a wide range of system activities without requiring modification of the
core application code or causing significant performance overhead. One of the key
advantages of eBPF in high-end devices is its ability to execute user-defined pro-
grams in a secure, isolated environment within the kernel. This means that devel-
opers and system administrators can create custom monitoring functions tailored
to the specific needs of a device. These programs can track events such as system
calls, process execution, network activity, and filesystem interactions in real time.
By tracing these events, eBPF helps ensure that the device operates as intended and
that no unauthorized or anomalous behavior occurs.

In ENTRUST, eBPF supports real-time security monitoring and trust assess-
ments for high-end CMDs. Its ability to dynamically track system behavior at the
kernel level provides deep visibility into the device’s operational state, allowing for
the detection of potential security breaches or system malfunctions before they esca-
late into critical failures. The versatility of eBPF makes it especially well-suited for
devices that require continuous monitoring and rapid response to emerging threats,
as is often the case with life-critical medical equipment. Below we present some of
the key benefits of eBPF for high-end devices:

Deep System Visibility. eBPF allows for detailed monitoring of kernel-level events,
offering visibility into the operating system’s inner workings. This is particularly
useful for identifying low-level security issues, such as privilege escalation attacks,
unauthorized system calls, or attempts to modify critical system files. eBPF can also
be used to monitor performance metrics, such as CPU and memory usage, which
ensure that high-end devices operate efficiently without being affected by potential
malware or performance degradation.

Low Overhead Monitoring. Unlike traditional monitoring tools, eBPF operates
with minimal overhead, ensuring that the performance of high-end devices is not
significantly impacted by the tracing processes. This is crucial in the medical con-
text, where high-end CMDs must perform complex tasks in real time, such as
monitoring patients’ vital signs or processing medical images, without experiencing
slowdowns or interruptions due to security monitoring processes. The efficiency of
eBPF results from its ability to run directly within the kernel, avoiding the need
for frequent context switches between the kernel and user space. This reduces the
resource consumption associated with tracing activities, making monitoring a wide
range of system events possible without overwhelming the device’s computational
resources.

Programmability and Flexibility. One of eBPF’s most significant advantages is
its programmability. System administrators and developers can write custom eBPF
programs to track specific events or behaviors relevant to a particular device or use
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case. This flexibility allows eBPF to be adapted to the unique requirements of high-
end CMDs, whether they are monitoring patient data in real time or processing
sensitive medical information. The flexibility of eBPF programs allows for creating
highly targeted tracing mechanisms that focus on critical areas of the system, such as
monitoring the integrity of executable code, network packet flows, or interactions
between different software components.

Security and Isolation. eBPF runs in a highly secure and isolated environment
within the kernel, ensuring that the tracing programs cannot interfere with the
device’s normal operation. This isolation is critical in medical devices, where any
disruption in the system’s functionality could have serious consequences for patient
care. Additionally, eBPF’s execution model ensures that user-defined programs are
strictly controlled regarding what they can access and modify within the system,
reducing the risk of introducing new vulnerabilities through tracing activities.

Real-Time Threat Detection. eBPF provides real-time insights into system behav-
ior, enabling immediate detection of security anomalies such as unexpected process
creation, unauthorized access attempts, or suspicious network activity. This real-
time detection is essential for high-end CMDs, which must respond rapidly to any
potential threats to maintain their operational integrity and ensure the safety of
their patients. By continuously monitoring the device’s activity, eBPF can trigger
alerts or automated responses, such as isolating the device from the network, rolling
back to a safe configuration, or initiating a security audit to identify and mitigate
the threat.

Integration with Broader Security Tools. eBPF is often integrated with other secu-
rity tools and frameworks to provide a comprehensive security posture for high-end
CMDs. For example, data collected through eBPF tracing can be fed into machine
learning algorithms or Artificial Intelligence (AI)-based anomaly detection systems,
which analyze the data for patterns of malicious activity or performance issues. This
integration allows for more proactive threat detection and response.

Figure 10.1 represents the architecture for integrating tracing in high-end within
the ENTRUST framework. The architecture is structured into various layers cor-
responding to specific components and functionalities of the high-end device. It is
organized based on trust boundaries, defined as Hardware, Trusted, and Untrusted
regions. This delineation ensures secure operations and protection against poten-
tial threats. At the base of the architecture lies the hardware layer, which consists
of the high-end device’s physical components and includes a Physical Unclonable
Function (PUF). The PUF is a unique hardware identifier, providing a strong foun-
dation for device attestation and preventing hardware-level tampering. The secure
bootloader is positioned above the hardware layer, which verifies the integrity and
authenticity of the device’s software components before allowing the system to
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Figure 10.1. Architectural overview of the ENTRUST tracing mechanism for high-end

devices.

boot. This ensures that only trusted software components are loaded during startup,
establishing a secure foundation for subsequent operations. The operating system
(OS) layer forms the core of the software environment and is depicted with the
eBPF technology integrated within it. eBPF is a flexible and low-overhead tracing
mechanism that monitors kernel-level and application-level activities. This capabil-
ity is critical for maintaining system integrity and detecting anomalous behaviors
that could indicate security breaches or misconfigurations. Above the OS layer is
the untrusted application layer, which includes two key components: the Applica-
tion (APP) and the Trust Agent. The Trust Agent acts as an intermediary, commu-
nicating directly with the eBPF-based Tracer to send and receive security-related
information, ensuring that the application behaves as expected. This layer is con-
sidered untrusted until the Tracer verifies the application’s behavior as part of the
system’s continuous monitoring and trust evaluation process.

The right section of Figure 10.1 showcases the Trusted Computing Base (TCB)
within the ENTRUST framework. The TCB encompasses trusted software compo-
nents running within a secure environment. These include the Attestation Agent,
responsible for validating the security posture and integrity of the device, and the
eBPF-based Tracer, which continuously monitors the CMD’s behavior. The Tracer
interacts with the Trust Agent in the untrusted layer, gathering data on system
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operations to provide a comprehensive view of the device’s state. Additionally, the
Blockchain Wallet component securely manages cryptographic credentials and sup-
ports secure transactions, while the Verifiable Credentials module stores crypto-
graphically signed credentials that verify the CMD’s identity and trustworthiness.
Together, these components ensure that all activities within the TCB are securely
managed and isolated from potentially compromised elements in the untrusted sec-
tions of the device. The Trusted OS, forming the base of the TCB, provides a secure
execution environment for the attestation and verification processes. It ensures that
sensitive operations are isolated from potentially untrusted or compromised com-
ponents in the application layer and the standard OS environment, preserving the
integrity of the device’s security functions.

10.2.2 Tracing in Low-end Devices

While high-end CMDs benefit from robust computational resources supporting
advanced tracing technologies like eBPF, low-end CMDs present different chal-
lenges. Often used in wearables, home monitoring systems, and other resource-
constrained environments, these devices are essential for personalized care and
remote health monitoring. However, they operate under stringent processing
power, memory, and energy consumption limitations. This necessitates a more effi-
cient and lightweight approach to tracing that ensures security without compro-
mising the device’s primary functionality. Low-end CMDs often run on Real-Time
Operating Systems (RTOS) designed to manage time-critical tasks with minimal
delays. RTOS is ideal for CMDs prioritizing responsiveness, such as monitoring
vital signs or controlling drug delivery systems. However, the limited resources of
these devices make it impractical to implement resource-intensive tracing technolo-
gies like those used in high-end devices. Therefore, tailored solutions are required
to balance security and performance while addressing the unique needs of low-end
CMDs.

In low-end CMDs, RTOS plays a central role in managing device operations,
ensuring that tasks are executed with precise timing to meet the stringent require-
ments of healthcare applications. For instance, a wearable heart monitor that tracks
a patient’s vital signs in real time must respond immediately to changes in heart
rate or oxygen levels without delay. In such cases, any additional processes, such
as tracing or security monitoring, must not interfere with the device’s real-time
performance. RTOS is designed to prioritize tasks, ensuring that critical func-
tions, like monitoring and reporting vital signs, are given higher priority over less
time-sensitive operations. This prioritization is crucial when incorporating tracing
technologies, as security monitoring must coexist with the device’s core function-
ality without causing performance bottlenecks.
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The primary challenge of tracing in low-end CMDs is maintaining an optimal
balance between security and resource efficiency. Given that these devices have lim-
ited processing power and memory, the overhead introduced by tracing activities
must be minimal to avoid slowing down or disrupting the device’s core functions.
Furthermore, many low-end CMDs are battery-powered, meaning that energy con-
sumption is a critical consideration. Any additional computational tasks, such as
continuous tracing, could drain the device’s battery faster, reducing its operational
lifespan and requiring more frequent recharging or maintenance.

Another significant challenge is the reduced flexibility in implementing com-
plex tracing mechanisms due to the hardware constraints of low-end devices. These
devices often lack the advanced processing capabilities required for deep inspection
of system behaviors, making it necessary to adopt more lightweight tracing solu-
tions that focus on essential aspects of the system’s operation.

Static and dynamic tracing techniques are commonly used to address the limita-
tions of low-end CMDs, each offering distinct advantages depending on the specific
use case.

Static Tracing. Static tracing involves monitoring predefined, unchanging aspects
of the system, such as the integrity of the boot process, configuration settings, and
firmware updates. These are typically fixed properties that do not change frequently
and can be monitored efficiently without constant real-time inspection. For exam-
ple, static tracing can ensure that the device’s boot sequence follows a secure process,
verifying the integrity of the firmware before allowing the device to operate. One
of the key benefits of static tracing is its low overhead. Since it only tracks prede-
fined, infrequent events or system states, static tracing consumes fewer resources
than dynamic tracing, making it well-suited for low-end CMDs with limited pro-
cessing power and memory. However, static tracing is less effective for detecting
real-time security issues, such as runtime anomalies or unauthorized network com-
munications, which may occur during the device’s operation.

Dynamic Tracing. In contrast to static tracing, dynamic tracing focuses on moni-
toring the real-time behavior of a device during its operation. This type of tracing is
particularly useful for detecting anomalies, such as unexpected system calls, abnor-
mal network activity, or deviations from expected performance patterns. Dynamic
tracing provides a more comprehensive view of the system’s operational state, allow-
ing for the detection of potential security threats as they occur. However, dynamic
tracing introduces higher overhead than static tracing, as it requires continuous
real-time monitoring of the system’s behavior. For low-end CMDs, this presents a
challenge, as their limited resources may not be able to support such intensive mon-
itoring without impacting the device’s performance. To mitigate this, dynamic trac-
ing in low-end devices is often applied selectively, focusing on key system activities
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Figure 10.2. Architectural overview of the ENTRUST tracing mechanism for low-end

devices.

most critical to the device’s security, such as monitoring network traffic or task
execution.

One of the most critical aspects of implementing tracing in low-end CMDs
is finding the right balance between performance and security. In resource-
constrained environments, monitoring every aspect of the system in real time is not
feasible, as this would quickly overwhelm the device’s processing capabilities and
reduce its operational efficiency. Instead, a hybrid approach is often employed, com-
bining static and dynamic tracing elements. For example, a low-end CMD may use
static tracing to secure its boot process and firmware. In contrast, dynamic tracing
is applied intermittently to monitor network activity or detect unusual behaviors
during the device’s operation. This approach allows continuous security monitoring
without excessive demands on the device’s limited resources. Additionally, event-
driven tracing can further reduce the overhead associated with dynamic tracing.
This approach triggers dynamic tracing only when specific events or conditions are
met, such as when the device detects a sudden spike in network traffic or an unex-
pected system call. This ensures that tracing activities are focused on periods of high
risk, minimizing the impact on the device’s performance during normal operation.

To meet the unique needs of low-end CMDs, the ENTRUST framework incor-
porates lightweight tracing solutions designed specifically for resource-constrained
environments. One such solution is the Segger SystemView, a real-time trac-
ing tool commonly used in RTOS embedded systems and devices. SystemView
allows for the efficient monitoring of real-time processes, task execution, and
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interrupt handling without introducing significant overhead. By leveraging tools
like SystemView, ENTRUST can provide real-time visibility into the operation of
low-end CMDs, ensuring that critical security events are detected and addressed
promptly. These lightweight tracing solutions are designed to operate within the
limitations of low-end devices, offering a practical balance between security and
performance.

Figure 10.2 depicts the ENTRUST architecture designed for low-end devices
structured to function in resource-constrained environments. The device hardware
is represented by a Nordic nrf52840 Development Kit (DK) and a PUF, provid-
ing a unique hardware identifier to support secure device attestation and identity
verification. The secure boot process is managed by the MCUBoot Secure Boot-
loader, which validates the integrity and authenticity of the firmware before allow-
ing the device to initialize. Above the secure bootloader, the architecture includes
the Zephyr RTOS, a lightweight OS commonly used in low-power embedded sys-
tems. The Zephyr RTOS manages the device’s core operations, providing a foun-
dation for real-time task scheduling, efficient resource management, and secure
communication protocols. Zephyr allows the device to perform critical monitor-
ing and control functions with minimal overhead, which is essential given the lim-
ited computational resources in low-end CMDs. The central component of this
architecture is the ENTRUST Tracer, which is housed within a pseudo-Trusted
Computing Base (pseudo-TCB). The Tracer monitors two categories of proper-
ties: (i) Static Properties and (ii) Runtime Properties. Static Properties include ele-
ments that do not change during operation, such as the secure boot sequence,
ensuring that the device’s initial state is verified and trusted. Runtime Properties
cover dynamic aspects like CPU usage, memory consumption, and other real-time
metrics that reflect the device’s current state and performance. This dual monitor-
ing approach allows the Tracer to detect anomalies at startup and during operation,
providing comprehensive security coverage. To the left, Figure 10.2 shows the Trust
Agent and the APP components. The Trust Agent interacts directly with the Tracer
to communicate relevant security information, facilitating continuous monitoring
and evaluation of the application’s behavior. This ensures the device adheres to its
security policies throughout its operational lifecycle. The architecture also includes
the Attestation Agent within the pseudo-TCB, which validates the integrity and
security posture of the device based on the evidence collected by the Tracer. The
Attestation Agent’s role is to generate verifiable claims regarding the device’s trust-
worthiness, which can then be used to communicate its security status to external
entities.

In healthcare, low-end CMDs are commonly used in applications such as remote
patient monitoring, wearable health devices, and home-use diagnostic tools. These
devices play a critical role in providing continuous care for patients outside of
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traditional clinical settings, often collecting vital health data that is transmitted
to healthcare providers for analysis.

Wearable Heart Monitors. These devices continuously track a patient’s heart rate
and can alert healthcare providers if an irregular heartbeat is detected. Static tracing
ensures the device’s firmware is secure, while dynamic tracing monitors real-time
data transmission to ensure that sensitive health information is not intercepted or
altered.

Glucose Monitors. For patients with diabetes, wearable glucose monitors provide
real-time feedback on blood sugar levels. Tracing in these devices focuses on main-
taining the integrity of data transmissions, ensuring that readings are accurate and
securely communicated to the patient’s healthcare provider.

Home-Use Diagnostic Tools. Low-end CMDs used in home diagnostics, such as
blood pressure monitors or pulse oximeters, require efficient tracing to ensure that
their measurements are reliable and that abnormal readings are transmitted securely.

Tracing low-end CMDs presents unique challenges due to their limited resources
and real-time operational requirements. By employing a combination of static
and dynamic tracing, along with lightweight tools such as Segger SystemView,
ENTRUST ensures that these devices can be monitored effectively without com-
promising performance. This approach allows low-end CMDs to remain secure
and trustworthy, even in resource-constrained environments.

10.3 Impact

The use of tracing technologies in CMDs within the ENTRUST framework pro-
foundly impacts the security, functionality, and trustworthiness of these devices.
Tracing plays an essential role in safeguarding patient safety, ensuring regulatory
compliance, and maintaining the overall integrity of the healthcare system. As
CMDs become more deeply integrated into healthcare delivery, the need for robust
monitoring solutions like tracing has grown, making these technologies crucial for
operational assurance and long-term trust.

One of the most immediate impacts of tracing technologies is enhancing security
across CMDs, particularly in protecting patient data and maintaining device func-
tionality. Tracing provides a powerful tool for real-time threat detection, allowing
healthcare organizations and device manufacturers to continuously monitor CMDs
for signs of security breaches, unauthorized access, or other abnormal behavior. In
high-end devices, tools like the eBPF allow for deep system monitoring at the ker-
nel level, providing immediate insight into system events such as unauthorized sys-
tem calls, unexpected process execution, or malicious network traffic. The real-time
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nature of eBPF’s monitoring capabilities ensures that potential security threats can
be identified and addressed before they escalate into serious incidents, helping to
prevent data breaches or system failures that could have catastrophic consequences
for patient care.

For low-end devices with more limited resources, tracing solutions like static and
dynamic tracing offer a more focused approach to security monitoring. By concen-
trating on key events such as secure boot verification or abnormal task execution,
tracing ensures that these devices remain secure even in resource-constrained envi-
ronments. The ability to detect anomalies early in low-end CMDs is particularly
critical, as these devices often serve in less supervised environments, such as patient
homes or remote monitoring setups, where direct oversight by healthcare profes-
sionals is limited.

The operational assurance of CMDs is another key area where tracing technolo-
gies have a significant impact. These devices often operate in real-time, managing
or monitoring critical patient functions where reliability and uptime are essential.
Tracing helps ensure that CMDs function properly by continuously monitoring
system performance, detecting performance degradation, and verifying the integrity
of key system components. In high-end CMDs, such as imaging equipment, sur-
gical robots, or intensive care unit monitoring systems, performance monitoring
through tracing can prevent system bottlenecks or failures that could interrupt crit-
ical medical services. Tracing enables healthcare providers to proactively maintain
these systems, ensuring that performance remains within acceptable thresholds and
that any emerging issues are addressed before they affect patient care. Low-end
CMDs, such as wearable monitors or at-home diagnostic tools, also benefit from
tracing by ensuring they function as intended over extended periods. For instance,
dynamic tracing allows these devices to detect unusual system behavior or com-
munication errors that might indicate a fault. This ensures that patients relying on
these devices for continuous monitoring receive accurate and reliable readings, pre-
venting delays in care or misdiagnoses due to faulty data collection or transmission.

In the healthcare sector, ensuring compliance with regulatory standards is critical
for device manufacturers and healthcare providers. CMDs are subject to strict reg-
ulations regarding patient data handling, device operations’ integrity, and network
communications security. Tracing technologies are pivotal in helping organizations
meet these regulatory requirements by providing continuous monitoring, generat-
ing audit logs, and offering real-time evidence of compliance. For example, tracing
can ensure that CMDs comply with data protection regulations such as the General
Data Protection Regulation (GDPR) by monitoring and securing the transmission
of sensitive patient data. By continuously observing how a device handles data, trac-
ing can provide assurance that privacy policies are being followed and that data is
encrypted, anonymized, or securely transmitted as required by law. Furthermore,
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post-market surveillance regulations often require manufacturers to demonstrate
that their devices operate securely and reliably after deployment. Tracing provides
the necessary data for manufacturers to perform regular security assessments and
issue software updates or patches to address new vulnerabilities. This ensures that
CMDs comply with evolving regulatory requirements throughout their operational
lifecycle.

In the event of a security breach or device malfunction, the ability to perform
forensic analysis is critical for identifying the root cause of the problem and deter-
mining how to prevent future incidents. Tracing technologies enable comprehen-
sive forensic analysis by capturing detailed logs of system activities, network com-
munications, and interactions between CMDs and external systems. These logs
serve as a vital resource for investigating security incidents or device failures, allow-
ing for reconstructing events that led to the issue. For high-end devices, eBPF’s
kernel-level tracing capabilities provide detailed insights into system behavior, mak-
ing it easier to pinpoint the exact moment and cause of a security breach or system
failure. This level of visibility is invaluable for incident response teams, as it allows
them to trace the problem back to its origin, whether it was a malicious attack, a
software bug, or a hardware failure. By providing a clear timeline of events, trac-
ing helps to reduce the time required to diagnose and resolve issues, minimizing
the impact on patient care. In low-end devices, where resources are more limited,
event-driven tracing can still provide critical forensic data in the event of an inci-
dent. By recording key events such as boot sequences, task execution, or network
communications, tracing ensures that investigators have access to the information
they need to perform a thorough post-incident analysis. This capability is particu-
larly important for CMDs that operate in remote or unsupervised environments, as
it allows security teams to analyze incidents after the fact and implement preventive
measures to protect against future occurrences.

Ultimately, the impact of tracing technologies on healthcare delivery and patient
safety cannot be overstated. By ensuring that CMDs remain secure, reliable, and
compliant with regulatory standards, tracing directly contributes to improved
patient outcomes and more efficient healthcare services. The ability to detect and
respond to security threats in real time enhances the trust that healthcare providers,
patients, and regulators place in CMDs, leading to broader adoption and integra-
tion of these devices in clinical care. This means safer, more reliable care for patients,
particularly those who rely on CMDs for critical monitoring or treatment. Whether
a hospital-based device that tracks vital signs in an intensive care unit or a wearable
sensor that monitors glucose levels in a diabetic patient, the security and func-
tionality provided by tracing technologies ensure that these devices can be trusted
to perform their roles effectively. From a healthcare delivery perspective, tracing
technologies support the scalability and efficiency of digital health solutions. As
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healthcare systems continue to evolve and integrate more connected devices, trac-
ing will play an essential role in managing the security and operational reliability of
CMDs at scale. Tracing helps healthcare providers manage complex systems while
reducing the risks associated with device malfunctions, data breaches, or regulatory
non-compliance by providing the tools to monitor large numbers of devices in real
time.

10.4 Future Developments or Challenges

As the healthcare industry continues to adopt and integrate CMDs into patient
care, the role of tracing technologies will become even more crucial. However, with
the evolving landscape of medical technology and cybersecurity threats, several key
developments and challenges will shape the future of tracing solutions for CMDs.
These factors will influence how devices are monitored and the broader implica-
tions for patient safety, regulatory compliance, and the operational efficiency of
healthcare systems.

One of the most significant challenges facing the future of CMD security and
tracing is the increasing complexity of devices and their growing interconnec-
tivity within healthcare networks. As CMDs become more advanced, with new
features and capabilities added, they are expected to handle more sensitive data
and perform more complex tasks. Devices will no longer operate in isolation
but will instead be part of an interconnected network that includes hospital sys-
tems, cloud platforms, wearable technologies, and even smart home devices. This
interconnectivity raises new concerns for tracing technologies. Tracing solutions
must evolve to monitor the internal operations of individual devices and their
interactions with external systems. The potential for cross-device vulnerabilities
increases as CMDs communicate with a broader range of devices and networks.
A breach in one device could serve as an entry point for attacks on the entire
network, making it critical that tracing technologies provide visibility into the
device’s external communications and interactions with other systems. Addition-
ally, as CMDs become more complex, the volume of data generated by tracing
technologies will increase significantly. This data must be managed effectively to
avoid overwhelming healthcare providers and security teams. Future developments
in tracing will need to focus on intelligent data management, including advanced
filtering and prioritization techniques, to ensure that only the most critical events
are highlighted for further investigation. Moreover, tracing tools must integrate
more deeply with security information and event management (SIEM) systems
to provide healthcare organizations with a comprehensive view of their device
ecosystems.
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10.4.1 Resource Constraints in Low-End Devices

While high-end CMDs will benefit from increasing computational power and more
advanced tracing capabilities, low-end devices will continue to face resource con-
straints that limit the types of tracing technologies that can be deployed. Wearables
and other small, low-power devices are becoming more prevalent in healthcare, pro-
viding continuous monitoring of patients in remote settings. These devices typically
operate on limited processing power, memory, and battery life, making it difficult
to implement continuous or resource-intensive tracing. The challenge for future
developments in low-end CMD tracing will be to create ultra-lightweight trac-
ing solutions that can provide effective monitoring without consuming significant
device resources. This may involve the development of more efficient algorithms
for event-driven tracing, where monitoring is only triggered by specific events or
conditions rather than running continuously. Additionally, advancements in edge
computing may allow some of the computational burden associated with tracing to
be offloaded from the device to nearby processing nodes, such as smartphones or
home hubs, thereby extending the device’s operational life without compromising
security. Another promising avenue for development is adaptive tracing, where the
tracing level can be dynamically adjusted based on the device’s current workload,
energy levels, or operational status. For example, a low-end, fully charged CMD
that does not actively monitor the patient could run more intensive tracing activ-
ities. In contrast, during periods of high demand or low battery, the tracing could
be scaled back to essential activities only.

10.4.2 Integration of AI and Machine Learning in Tracing

One of the most exciting developments in the future of CMD tracing is integrating
AI and machine learning (ML) into tracing solutions. AI and ML algorithms can
analyze vast amounts of data generated by tracing activities and identifying pat-
terns, anomalies, and potential security threats that may be too subtle or complex
for traditional detection methods. These technologies will play a critical role in pre-
dictive analysis, enabling healthcare providers and device manufacturers to identify
potential vulnerabilities before they are exploited or device malfunctions before they
impact patient care. AI-driven tracing solutions will allow real-time anomaly detec-
tion, providing more proactive security and operational monitoring. For example,
AI algorithms could learn the normal operational patterns of a CMD and then flag
any deviations from these patterns that may indicate a security breach or malfunc-
tion. These algorithms could also prioritize the most critical events, reducing the
workload on security teams and ensuring that threats are addressed promptly.

Using AI and ML in tracing will also facilitate automated incident response.
In the event of a detected anomaly or breach, AI-driven tracing solutions could
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automatically take predefined actions, such as isolating the affected device from
the network, rolling back software to a secure version, or alerting the security team
for further investigation. This level of automation will be crucial as the number of
CMDs deployed in healthcare continues to grow, making manual monitoring and
response increasingly impractical.

10.4.3 Regulatory and Ethical Challenges

As tracing technologies become more sophisticated and integrated into CMDs,
they will also face increasing scrutiny from regulatory bodies and ethical considera-
tions. Tracing technologies must operate within a framework that balances security
and privacy. While the continuous monitoring of CMDs is essential for detecting
security threats, it also raises concerns about the privacy of the device user (often
the patient) and the healthcare providers interacting with these devices. Regulatory
bodies such as the U.S. Food and Drug Administration (FDA) and the European
Union Agency for Cybersecurity (ENISA) are likely to impose stricter guidelines on
how tracing data is collected, stored, and used. These guidelines must address the
need for transparency in tracing activities, ensuring that device manufacturers and
healthcare providers know what data is being collected and how it is being used.
This is particularly important in light of regulations like the General Data Protec-
tion Regulation (GDPR), which imposes strict requirements on the handling of
personal data. Furthermore, the ethical implications of tracing must be considered,
particularly in scenarios where CMDs are used in vulnerable populations, such
as elderly patients or individuals with chronic conditions. Future developments
in tracing will need to ensure that patient autonomy and informed consent are
maintained, allowing patients to control how their data is monitored and shared.
The design of tracing systems must consider the ethical responsibility to protect
patient privacy while providing the security necessary to ensure device safety and
functionality.

10.4.4 Scalability and the Future of Connected Healthcare

As CMDs proliferate across healthcare systems worldwide, scalability will become
a significant challenge for tracing technologies. Healthcare providers are already
deploying increasing numbers of CMDs in hospitals, clinics, and patient homes,
and this trend is only expected to accelerate with the rise of personalized medicine
and remote care. Tracing technologies will need to scale to monitor vast networks
of devices without overwhelming security teams or healthcare infrastructure. The
future of connected healthcare, often called Healthcare 4.0, envisions a world where
CMDs are integrated into large-scale, interconnected systems that communicate
seamlessly across hospital networks, cloud platforms, and even smart city infras-
tructures. In this environment, tracing solutions will need to evolve to provide
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end-to-end visibility into the behavior of CMDs within these complex ecosystems.
This will require advancements in distributed tracing, where data from multiple
CMDs across different locations and platforms are collected, correlated, and ana-
lyzed to provide a comprehensive picture of the healthcare system’s overall security
and performance. Additionally, future developments in blockchain or distributed
ledger technologies (DLT) could enhance tracing by providing immutable, ver-
ifiable records of device activity, further ensuring the integrity of CMDs within
interconnected healthcare systems.

10.5 Conclusion

As CMDs become integral to modern healthcare, the need for robust security mea-
sures, such as tracing technologies, has never been more critical. This chapter has
highlighted the indispensable role of tracing in ensuring the security, privacy, and
operational integrity of CMDs, particularly as these devices evolve in complex-
ity and capability. Tracing provides early detection of anomalies by continuously
monitoring device behavior, safeguarding patient safety and the broader health-
care ecosystem from potential cyber threats. For high-end CMDs, advanced tracing
mechanisms like eBPF offer deep system insights and comprehensive security mon-
itoring without compromising device performance. Conversely, low-end CMDs
face unique challenges due to resource constraints, requiring lightweight, efficient
tracing solutions that balance security with operational efficiency. Both categories
benefit from tailored tracing strategies that enable proactive security management
and regulatory compliance. Looking ahead, integrating AI and machine learning
into tracing technologies will enable more intelligent and predictive security mea-
sures, enhancing real-time threat detection and automated response. As the health-
care landscape continues to evolve, CMDs will play an increasingly central role in
personalized care, making it essential that tracing technologies adapt to new threats
and emerging healthcare needs. In conclusion, tracing technologies will continue
to be pivotal in maintaining the trustworthiness of CMDs in an ever-connected
healthcare environment. Tracing supports the future of digital healthcare by ensur-
ing that these devices remain secure, reliable, and compliant, promoting safer and
more efficient patient care across diverse healthcare settings.
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Chapter 11

Securing the Software Supply Chain:
Innovations and Approaches

By Apostolis Zarras, Evangelos Haleplidis, Christos Xenakis
and Apostolos Fournaris

In modern software development, applications are built using diverse components
sourced externally, such as open-source libraries, cloud services, and hardware,
which introduce significant security risks into the software supply chain. High-
profile incidents like the Log4j and SolarWinds attacks have demonstrated the
severe impact of vulnerabilities in this interconnected ecosystem. Traditional secu-
rity measures focus heavily on open-source components, often overlooking hard-
ware and firmware, which are equally susceptible to threats. This chapter intro-
duces RESCALE, a comprehensive framework designed to address these challenges
through a security-by-design approach. RESCALE integrates advanced static and
dynamic security testing tools with blockchain technology, creating a Trusted Bill
of Materials that provides both hardware and software components transparency,
traceability, and immutability. By incorporating cutting-edge security assessments
and leveraging blockchain for the secure recording of results, RESCALE ensures
a holistic and resilient supply chain, safeguarding against known and emerging
threats in today’s complex cybersecurity landscape.
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11.1 Introduction

In modern software development, applications are no longer built entirely from
scratch; they consist of various components from multiple sources integrated into
the Software Development Lifecycle (SDLC). Many of these components are not
developed in-house. Still, they are used as-is, which, while accelerating time to
market by leveraging pre-existing functionality, introduces significant security risks.
This software supply chain, comprised of external hardware, infrastructure, oper-
ating systems, drivers, open-source scripts, CI/CD tools, and even cloud services,
is inherently complex and often untrustworthy. The traditional security assessment
methods applied to in-house development must address the intricate vulnerabilities
posed by this external integration.

High-profile incidents, such as the Log4j vulnerability [1] and the SolarWinds
supply chain attack [2], have starkly illustrated the potential devastation of supply
chain breaches. Attacking a single component in the supply chain can compro-
mise many downstream software products, exponentially magnifying the impact.
As cybersecurity experts increasingly anticipate future large-scale attacks to target
the software supply chain, there is an urgent need for a holistic approach that
addresses both hardware and software security [3].

Much of the attention on securing the software supply chain focuses on open-
source solutions, perceived as a primary vulnerability. However, this perspective
overlooks the broader scope of the problem. A comprehensive view must account
for all aspects of the SDLC, including hardware and firmware, which also follow dis-
tinct supply chains. Hardware vulnerabilities, such as side-channel attacks [4] and
transient execution attacks [5], as well as hardware Trojans [6], can compromise not
only individual systems but also the software built upon them. The interconnect-
edness of hardware and software supply chains demands that security-by-design
principles be applied across the entire ecosystem to mitigate risks.

One emerging solution is the Software Bill of Materials (SBOM) [7]. This for-
mal document tracks the components of a software product and their supply chain
relationships. SBOMs provide visibility into third-party components, particularly
open-source libraries, and help organizations manage compliance and dependency
tracking. Although some of the existing SBOM standards can disclose vulnerabili-
ties, the majority fail to provide comprehensive security information for the listed
components and fail to address the hardware supply chain. Furthermore, robust
mechanisms are lacking to protect SBOMs from Confidentiality, Integrity, and Avail-
ability (CIA) attacks.

This chapter proposes RESCALE, an innovative approach to securing software
supply chains through a holistic, security-by-design methodology. By integrating
cutting-edge security assessment tools with blockchain technology, RESCALE aims
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to create a resilient and trustworthy supply chain framework that can withstand the
evolving threat landscape.

11.2 Background

The ever-evolving software and hardware development landscape presents new
challenges in maintaining a secure supply chain. The potential for vulnerabilities
grows as the software industry increasingly relies on third-party components, hard-
ware integrations, and open-source solutions. These weaknesses, if exploited, can
disrupt entire ecosystems, as evidenced by high-profile incidents like the Log4j and
SolarWinds attacks. Ensuring the security of both hardware and software compo-
nents across the SDLC is crucial. This section will explore various approaches and
methodologies for testing vulnerabilities, ensuring firmware security, applying for-
mal verification techniques, and addressing hardware vulnerabilities at the processor
level for a comprehensive supply chain security framework.

11.2.1 Security Testing and Vulnerability Assessment

Security testing is essential for uncovering vulnerabilities and weaknesses within
software, networks, and systems. By employing various techniques, security experts
can identify potential threats, estimate the likelihood of exploitation, and evaluate
the overall risk landscape of an application. For example, vulnerability scanning
detects known vulnerabilities and loopholes, helping establish a security baseline.
Popular tools include OpenVAS, Nessus, Burp Suite, Tripwire, Qualys, and Metas-
ploit.

Security scanning, another critical approach, is designed to uncover misconfigu-
rations and vulnerabilities within applications, networks, and systems. Both manual
and automated tools, such as Nmap, Wireshark, and Zenmap, are commonly uti-
lized for this type of testing. In contrast, penetration testing simulates real-world
cyberattacks against an application, system, or network in a controlled environ-
ment. Conducted by certified security experts, this test is critical for identifying
previously unknown vulnerabilities, including zero-day threats and business logic
flaws. Tools frequently used for penetration testing include W3af, Aircrack-ng, John
the Ripper, OWASP ZAP, and the comprehensive Kali Linux suite.

Once vulnerabilities are identified, security risks are classified (i.e., Critical,
High, Medium, and Low) through a risk assessment, usually using the Common
Vulnerability Scoring System (CVSS). Tools such as SpiraPlan, A1 Tracker, RM Stu-
dio, Isometrix, and CheckIt assist in this process. Based on these assessments, mit-
igation strategies and security controls are prioritized and recommended.
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11.2.2 Firmware Security

Firmware serves as the crucial interface between a computer’s hardware and soft-
ware, abstracting many low-level, hardware-specific details to enable the seamless
development and execution of software across multiple systems. However, position-
ing firmware below the software layer poses significant security challenges, often
requiring dedicated solutions. Several tools and frameworks have been developed
to detect vulnerabilities at the firmware level, thereby reducing the potential attack
surface for hackers.

One such solution is Avatar [8], an event-based arbitration framework that facil-
itates communication between an emulator and a physical target device. Avatar
enables complex dynamic analysis of embedded firmware, supporting various secu-
rity tasks such as reverse engineering, malware analysis, vulnerability discovery, vul-
nerability assessment, backtrace acquisition, and root-cause analysis of known vul-
nerabilities.

Another solution, Charm [9], enhances the dynamic analysis of device drivers in
mobile systems. Charm’s key innovation is remote device driver execution, allow-
ing device drivers to run in a virtual machine. In contrast, the mobile device is
used solely for servicing low-level and infrequent I/O operations through a low-
latency, customized USB channel. This approach isolates the analysis from the
mobile device, enabling more efficient and thorough testing.

Similarly, PROSPECT [10] supports dynamic code analysis of embedded binary
code within arbitrary analysis environments. By transparently forwarding periph-
eral hardware access requests from the original host system to a virtual machine,
security analysts can run and analyze the embedded software without requiring
intimate knowledge of the embedded peripheral hardware components.

While these tools have collectively advanced the state of dynamic firmware anal-
ysis, they still face significant challenges. Dynamic testing or fuzzing of embedded
firmware is often constrained by hardware dependencies and limited scalability,
contributing to the ongoing vulnerability of IoT devices. Additionally, these solu-
tions demand substantial expert knowledge and manual effort to set up and operate,
further hindering their scalability and practical application in real-world scenarios.

11.2.3 Formal Verification

Formal verification plays a pivotal role in the development of complex informa-
tion systems. It is a systematic process that uses mathematical reasoning to ensure
that a system’s design specification remains consistent throughout the implemen-
tation process. One of the most widely adopted techniques for formal verification
is the Symbolic Model Verifier (SMV). Despite its success in commercial designs,
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SMV has limitations, particularly in handling the size and complexity of verifiable
designs [11].

Formal verification requires engineers to adopt a different mindset from tra-
ditional testing methods. While simulation relies on empirical testing—using
trial and error to explore combinations of inputs and uncover potential errors—
this approach can be time-consuming and incomplete. Engineers typically create
numerous input scenarios in simulation, focusing on trying to break the design
rather than ensuring it behaves as intended in all situations. In contrast, formal
verification is both mathematical and exhaustive, allowing engineers to verify the
correct behavior of the design comprehensively.

Several tools are commonly used in formal verification. Coq1 is a formal proof
management system that provides a formal language for writing mathematical def-
initions, executable algorithms, and theorems and an environment for developing
machine-checked proofs semi-interactively. Similarly, the HOL interactive theo-
rem prover 2 is a proof assistant for higher-order logic, offering a programming
environment where theorems can be proved and proof tools developed. ACL23 is
another software system comprising a programming language, an extensible theory
in first-order logic, and an automated theorem prover. Isabelle4 is a generic proof
assistant that enables the expression of mathematical formulas in a formal language,
providing tools to prove these formulas in a logical calculus. Initially developed at
the University of Cambridge and the Technical University of Munich, Isabelle has
since benefited from global contributions from various institutions and individuals.
Despite the maturity of formal verification tools, some technologies need to catch
up in this area.

11.2.4 Identify Vulnerabilities at the Processor Level

For many years, secure system design has been built on a foundational assumption:
hardware is inherently trustworthy. However, recent research has revealed that this
assumption is flawed and that hardware often represents the weakest link in the
security of commodity supply chains. Worse still, the hardware/software interface
is inadequately specified, with a notable absence of microarchitectural contracts.
This gap frequently leads to new security vulnerabilities as software unintentionally
violates assumptions silently made by hardware.

1. https://coq.inria.fr/

2. https://hol-theorem-prover.org/

3. https://www.cs.utexas.edu/users/moore/acl2/

4. https://isabelle.in.tum.de/

https://coq.inria.fr/
https://hol-theorem-prover.org/
https://www.cs.utexas.edu/users/moore/acl2/
https://isabelle.in.tum.de/
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From Rowhammer [12] to cache side-channel attacks [13] and from Spec-
tre [14] and Meltdown [15] to RIDL/MDS [16], it has become clear that mod-
ern hardware presents a vast attack surface. Attackers can exploit this surface
to mount attacks compromising real-world systems’ integrity and confidentiality.
Sadly, our understanding of these hardware-level vulnerabilities remains limited.
Researchers continuously discover new vulnerabilities, and vendors respond with
long embargo periods to develop solutions that minimize disruption. These solu-
tions often include patches for CPU microcode, hypervisors, operating system ker-
nels, compilers, and browsers.

This cycle of vulnerability disclosure and patch deployment is ongoing, with
newly discovered issues sometimes refining or complementing existing vulnerabili-
ties. As a result, new “spot” mitigations are frequently applied to real-world systems.
However, the fragmented landscape of mitigations, especially in the last five years
since the disclosure of Spectre and Meltdown, has led to a chaotic state of secu-
rity for systems. Practitioners aiming to protect their systems against known (N-
day) vulnerabilities face many mitigation techniques, complex dependencies, and
unclear applicability and security guarantees.

More concerning is that even when deploying all vendor-recommended mitiga-
tions for a specific hardware/software stack, experts find it difficult, if not impossi-
ble, to quantify the residual attack surface. This challenge exists even when ignoring
the complex interactions between N-day vulnerabilities or any yet-to-be-disclosed
zero-day vulnerabilities. The current state of the art reflects this fragmented status
quo [17]. While individual efforts often focus on specific attack variants [18], there
remains a critical lack of comprehensive techniques to systematically assess the secu-
rity of a hardware/software stack. Furthermore, developing strategies that can offer
robust security guarantees against zero-day vulnerabilities is still an unmet need.

11.3 Methodology

RESCALE considers supply chain security a holistic issue that must be addressed
by integrating hardware and software components within the software application
supply chain. This approach establishes a chain of trust among the various elements
within the supply chain. Unlike recent efforts focusing solely on the software aspects
of supply chain security, RESCALE incorporates hardware and firmware compo-
nents, which serve as the backbone of software application DevSecOps and the
overall SDLC. Recognizing this, RESCALE adopts the Bill of Materials (BOM)
as a conceptual vehicle for conveying supply chain information, leveraging estab-
lished BOM standards (e.g., SPDX, CycloneDX, and SWID) while enhancing this
construct with supply chain trust for each link within the chain.
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On top of that, RESCALE introduces the Trusted Bill of Materials (TBOM),
which lists the components of an application and their dependencies and includes
information about the security tests performed, their outcomes, and the guidelines
followed in conducting these tests. To ensure trust, the TBOM is linked to a public
Blockchain 2.0 (e.g., Ethereum, Cardano), where the results of the security tests are
recorded and secured, with the TBOM itself integrated as a digital asset. The secu-
rity of each TBOM component is guaranteed through cryptographic measures. In
contrast, the non-repudiation of the security tester/evaluator and the test results are
ensured by storing a smart contract on the blockchain. Acting as proof of respon-
sibility, this contract uses the TBOM hash as its asset. As a result, the RESCALE
trusted and secure TBOM-based supply chain ensures high levels of traceability,
immutability, and authenticity, all inherited from its blockchain association, while
supporting trusted updates.

The abovementioned concept is built around an advanced static and dynamic
security testing mechanism, activated whenever a software or hardware asset is gen-
erated and utilized. This testing mechanism is part of a broader security assessment
and assurance process, resulting in a TBOM. The process consists of two modules:
the static code analysis module and the dynamic testing module. The RESCALE
static code analysis module, after evaluating a given software component (referred
to as an asset) within the supply chain (e.g., third-party proprietary code or open-
source software library), produces a trusted report, known as the Static Supply Chain
Component Guarantee (SSCG). The SSCG includes details such as (a) the tests per-
formed, (b) the test results (whether vulnerabilities were discovered or not), (c) the
tester’s/evaluator’s ID, and (d) the asset’s version. The SSCG is linked to the com-
ponent’s entry within the TBOM of the final software application (the endpoint of
the supply chain).

Similarly, after evaluating a given hardware or software component within the
supply chain, the RESCALE dynamic testing module produces a trusted report
known as the Dynamic Supply Chain Component Guarantee (DSCG). This report
is linked to the component’s TBOM entry within the final software application or
hardware implementation.

The RESCALE security testing modules establish a trusted, secure supply chain
via the TBOM. Following the latest NIST guidelines, RESCALE introduces two
key entities in the supply chain and BOM establishment: the software/hardware
component producer and the software/hardware component consumer. The pro-
ducer integrates existing components with newly developed code to create a new
product, whether a final application or a component (e.g., a library) for other prod-
ucts. In addition to existing components, the producer controls their code and exe-
cutable code (e.g., binaries or hardware netlists) from prior components. To con-
tribute to the RESCALE trusted secure supply chain, the producer uses the static
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code analysis module, generates the SSCG for the new component, and securely
includes it in the TBOM. However, other applications cannot use the component
directly in the RESCALE model. It must first be further assessed and marked as a
candidate for the supply chain.

To make a candidate component a full TBOM entry in the RESCALE sup-
ply chain, it must be adopted or used by a consumer (another component of the
supply chain or the final application). The consumer characterizes the candidate
component as a third-party asset (proprietary or open-source) and performs a secu-
rity audit. Initially, the SSCG guidelines are validated for compliance with exist-
ing standards and the consumer’s security policy. After passing this initial check,
the component undergoes dynamic testing within the RESCALE sandbox envi-
ronment, tailored to the component type (e.g., hardware, processor, firmware, OS,
driver, etc.). If the component passes all security tests, its DSCG outcome is linked
to its SSCG, and the component becomes part of the consumer’s TBOM. The
dynamic testing process only occurs when a consumer first uses the component
as the evaluator. The evaluator records the DSCGs on a public blockchain and
secures them with a smart contract, with the software/hardware TBOM as its asset.
This blockchain transaction, concatenated with the SSCG, legitimizes the com-
ponent for integration into other applications, and future consumers can use the
component without re-evaluating it unless the evaluation period has expired or the
component has been updated.

We acknowledge that many open-source and proprietary components may lack
the producer’s security guarantees or static code analysis. In the absence of an SSCG,
and if the consumer’s security policy permits, the consumer can perform static code
analysis using the RESCALE module to generate an SSCG for inclusion in the
supply chain. In this case, the component will still undergo dynamic testing to
receive the DSCG, and both the SSCG and DSCG will be stored on the blockchain.
Figure 11.1 depicts RESCALE’s security assessment process.

11.3.1 Security and Trust in the TBOM-based Supply Chain

The RESCALE trusted supply chain is structured around secure TBOM constructs,
combining the Hardware Bill of Materials (HBOM) and SBOM. Each recorded
component (as a BOM entry) is associated with the related SSCG and DSCG,
along with proper authenticity information about every component created or used
in the supply chain.

To achieve a high level of trust, the information in the TBOM must maintain
integrity and be genuine, unforgeable, and authentic. Existing BOM standards, par-
ticularly for SBOM components, often rely on unverified attestations with security
assumptions related to the Uniform Resource Identifier (URI), the primary identifier
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Figure 11.1. RESCALE security assessment process.

for a software component within an SBOM. Within the BOM, these URIs are pre-
sumed to act as contact points or identifiers for the manufacturer. The assumption is
that the manufacturer’s attestation and trust are established through conventional
security protocols like TLS/SSL, with associated public key certificates validated
when the URI is accessed.

However, this reliance on domain names poses challenges, as domain names can
be hacked or mismanaged, especially by entities outside the control of the BOM
producer or consumer. This weakness implies that the current BOM authentication
process lacks the robustness required for a truly trusted system. This is even more
critical in RESCALE, as the TBOMs carry vital information regarding the security
testing performed on each component, including the SSCG, DSCG, guidelines,
and associated vulnerabilities.

RESCALE aims to provide a trust framework capable of acting as a trust attes-
tation for the hardware and software component stack in any supply chain or end
software/hardware application through the TBOM. To succeed, the BOM infor-
mation must be authentic, accountable, attributable to the component’s producer
and evaluator, and non-repudiable. In RESCALE, we extend the functionality of
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BOM validation tools, such as the OWASP Dependency Graph, by adding trust
capabilities, including formal verification processes, reputation systems, and secure
building blocks like centralized or decentralized registries/ledgers. A key activity
for ensuring authenticity in BOM entries is linking them to public blockchains
(Blockchain 2.0 and beyond) to complement URIs. When a TBOM is cre-
ated, the software or hardware solution producer associates the TBOM with a
smart contract on the blockchain. This contract uses the TBOM as a blockchain
asset; it binds the TBOM with the producer, product version, TBOM valid-
ity period, component assessment periods, TBOM hash, TBOM ownership, and
component IDs.

Each producer in RESCALE acts as a consumer for third-party components used
in their products. If any component lacks a DSCG (or SSCG), meaning it has not
been evaluated yet, the producer, acting as a consumer, takes on the role of evalua-
tor. For these components, the producer retrieves the SSCG from the component’s
TBOM blockchain entry, generates the DSCG, and stores it in their own TBOM.
The evaluated component’s SSCG, DSCG, and guidelines are then added to the
product’s TBOM. Additionally, the producer/evaluator creates a smart contract on
the blockchain that includes the TBOM as an asset and records the components
they have evaluated. This blockchain contract ID is forwarded to the evaluated
component’s creator. Thus, whenever this component is used in the future, it will
provide the SSCG along with the blockchain smart contract ID of the evaluator.
The consumer can review all the security testing details by accessing this smart con-
tract. The security testing can be trusted since blockchain entries are unforgeable
and immutable. RESCALE will also implement a reputation-based trust system for
evaluators to enhance trust further.

A crucial aspect of the overall trusted supply chain is the unique, unforgeable
identification of a software or hardware component and its associated TBOM. In
RESCALE, the software TBOM includes a digital signature of the software (using
its hash value) and a digital certificate of the software author. This process comple-
ments the RESCALE blockchain mechanism and is tied to the blockchain’s unique
ID, as described earlier.

For hardware TBOMs, a fundamental challenge is establishing an indisputable
physical-to-digital association between a piece of hardware and its related certifica-
tions. This issue is addressed in various ways, depending on the hardware charac-
teristics and the desired security level. Solutions may range from traditional Public
Key Infrastructure (PKI) approaches, which resemble the software TBOM pro-
cess, to QR-code stamping on the device. In RESCALE, we will explore exist-
ing techniques to establish a low-requirement hardware “identity” through hard-
ware fingerprinting (e.g., via Physically Unclonable Functions, etc.), identifying
appropriate fingerprinting methods for certain hardware classes, and formalizing
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processes and formats to create this association. Ultimately, a unique hardware ID
will be generated and added to the RESCALE blockchain, digitally signed, and
incorporated into the TBOM.

11.3.2 Management of Trustworthy Updates

Building on the trust mechanism, blockchain technology ensures the traceability of
hardware and software components used in the supply chain of a given application.
TBOM smart contracts contain information about the assessed components, their
version, and the validity period of the assessment. In RESCALE, we provide a trust
validator mechanism that evaluates a software or hardware application’s overall cor-
rectness, security, trustworthiness, and TBOM. A crucial aspect of this process is
determining, via blockchain entries in the TBOM, whether a component has been
updated. If an update is identified, the TBOM entry for that component must be
updated with a new blockchain entry ID (linked to the new smart contract). Once
the updated component has successfully passed the static and dynamic security tests
and has new SSCG and DSCG reports, the associated product will be updated with
the new component version.

When a software or hardware solution—whether the end product of the supply
chain or an individual component—undergoes an update, it must be statically and
dynamically retested following the RESCALE testing approach. Until the updated
solution passes these tests, it cannot be considered a fully trusted component of the
RESCALE trusted supply chain. Instead, it reverts to a candidate component status
after the static code analysis. The existing blockchain smart contract for the product
has been updated to indicate that an update exists, and the TBOM has been revised
to a new version. A new blockchain smart contract is linked to the updated solution
version. Since the component is now in candidate status, consumers of the solution
will act as evaluators, and they will link the new blockchain smart contract ID (of
the updated solution) within their own TBOM.

11.4 Security Testing

The complexity of modern software and hardware supply chains demands rigorous
security testing to ensure the integrity and resilience of systems. As software and
hardware components are sourced from multiple vendors and integrated into the
SDLC, vulnerabilities at any stage of the supply chain can compromise the entire
system. Security testing is critical in identifying these vulnerabilities, mitigating
risks, and strengthening the overall security posture of an application.
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11.4.1 Static Code Security Testing

The RESCALE static code security testing provides a comprehensive static code
analysis module, incorporating innovative static code analyzers for both source code
and binary files. This module combines traditional code analysis engines with Deep
Learning (DL)-based techniques to offer accurate vulnerability assessments for the
most popular programming languages (e.g., C, C++, Java, Python). Traditional
analysis engine results enhance the DL analyzer’s training process, improving its
ability to detect code vulnerabilities.

Static code analyzers generate alarm reports based on rule-based techniques and
graph-based control flow analysis. While effective, these approaches often produce
a high volume of false alarms, undermining user trust in the analyzer and its results.
This issue is addressed in RESCALE by integrating Machine Learning (ML) and DL
techniques into the static code analysis flow, following the latest research trends.
Additionally, reinforcement learning algorithms are deployed to improve the accu-
racy of the ML/DL models. If component distribution during assessment is neces-
sary, RESCALE adopts federated learning techniques to ensure privacy for both the
components and transmitted data. These models are then applied to post-classify
generated alerts, identifying false positives and allowing the static analyzers to filter
out or assign low risk to these alerts, thus enhancing the accuracy of the analysis
through a multiparametric fusion approach.

Beyond improving static code analysis, RESCALE utilizes DL-based classifica-
tion to identify whether data processed in transit or storage is sensitive or non-
sensitive. Based on this classification, appropriate security and cryptography oper-
ations are recommended to protect the data. The RESCALE static code analyzers
are linked to developed security and cryptography primitive blocks (software or
hardware libraries), which, based on the data classification, guide the developer in
achieving high data security during design time. Sensitive data insecurity is another
type of vulnerability that must be addressed.

RESCALE also introduces an intelligent vulnerability exposure engine based on
symbolic execution. Although various static analysis tools, such as Coverity, Para-
soft, and Klocwork, exist, most suffer from high false positive rates due to their
reliance on simpler syntactical and semantic analysis rather than symbolic execu-
tion. While symbolic execution tools like JPF (for Java) and Otter (for C) are avail-
able, they struggle to scale to real-world applications. RESCALE overcomes these
limitations by offering a formal verification solution for software.

Given a software component, RESCALE’s intelligent vulnerabilities exposure
engine verifies whether the program satisfies specific properties (i.e., assertions
embedded in the code). A property is satisfied if no feasible execution path leads to
violating the corresponding assertion. RESCALE either proves the property holds
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or provides a counterexample demonstrating a violation. This verification process
involves symbolic interpretation, which combines the explicit exploration of all
feasible execution paths with a symbolic representation of input variables. Through
this approach, RESCALE delivers an intelligent code quality assessment framework
that remains active throughout the entire software development and maintenance
lifecycle.

11.4.2 Dynamic Testing

Apart from the above static code analysis, the RESCALE security testing tool-
box includes the RESCALE Dynamic Testing Module, which features specialized
ML/DL-based fuzzers capable of performing black-box or gray-box dynamic test-
ing. These fuzzers use ML/DL techniques to generate and update the appropriate
test vector inputs through a reinforcement learning process, which acts as the cor-
pus for the fuzzer’s mutation or evolution mechanism. These ML/DL techniques
are complemented by symbolic execution analyzers to generate proper constraints
on the input corpus data as aligned by the ML/DL analyzers. In the second stage
of the RESCALE dynamic testing approach, we provide tools and mechanisms to
discover security vulnerabilities in the supply chain’s hardware (or firmware) and
software components. Different dynamic testing approaches address these issues
per component type within the RESCALE supply chain.

11.4.2.1 Hardware and Software Side Channel Security Testing

For side-channel vulnerabilities, RESCALE offers dedicated platforms capable of
performing hardware power and electromagnetic emission side-channel trace col-
lection. These traces are assessed using in-house RESCALE assessment libraries
focusing on (a) generic non-specific leakage assessment through high-order t-tests
and (b) dedicated profile-based side-channel attack assessment, similar to hardware
penetration testing. A dedicated side-channel trace collection and analysis platform
for hardware IP cores, combined with COTS side-channel trace collection tools, is
enhanced with specialized DL trace analysis software. In addition to power con-
sumption and electromagnetic emission side-channel leakage analysis, RESCALE
explores timing leakages, particularly in software components handling sensitive
information (e.g., cryptographic keys). Finally, the platform also identifies poten-
tial hardware Trojans by detecting abnormalities during computation.

11.4.2.2 Chip-Level Security/Vulnerability Testing

Given the diverse and often untrusted hardware supply chain, the risk of hard-
ware Trojan injection at various stages (designers, testing facilities, foundries, etc.)
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is a significant threat. RESCALE addresses this using ML/DL test vector gener-
ation techniques, such as Automatic Test Pattern Generation (ATPG) and ML/DL
side-channel analysis from the Hardware Side Channel Assessment toolbox. This
multiparametric approach increases the likelihood of triggering hardware Trojans
and detecting timing or power consumption anomalies that reflect such triggers.
Additionally, RESCALE assesses vulnerabilities in hardware chips that could be
exploited post-design, such as those stemming from the on-chip Design-for-Test
infrastructure, which may expose sensitive information through scan-chain-based
attacks.

11.4.2.3 Firmware Dynamic Testing

To address growing concerns around the security of embedded systems, RESCALE
provides an accurate analysis of firmware binaries, even when source code or hard-
ware documentation is unavailable. A dynamic analysis framework is developed
that orchestrates the execution of an emulator together with real hardware. A spe-
cial software proxy allows firmware instructions to be executed in the emulator
while I/O operations are channeled to the physical hardware. This approach facil-
itates large-scale firmware analysis and uncovers new security insights into embed-
ded devices and their firmware.

11.4.2.4 Operating System and Processor Security Testing

To identify vulnerabilities at the processor level (e.g., transient execution errors)
and operating system vulnerabilities specific to certain processors, RESCALE offers
dedicated lightweight Virtual Machine-like environments based on QEMU/Gem5
hypervisors/emulators equipped with appropriate sensors/detectors. These environ-
ments capture vulnerabilities in a sandbox, focusing on microarchitectural attacks,
such as cache attacks, processor architecture-based side-channel attacks, and fault
injection attacks like Rowhammer. Furthermore, security sensors will be integrated
into the QEMU-based processor kernel emulation to identify embedded OS ker-
nel vulnerabilities, which could impact the end software solution using these kernel
modules in its supply chain.

11.4.2.5 Cloud/Container/Microservice Security Testing

RESCALE also considers container-based security aspects. From a RESCALE per-
spective, microservices introduced in a container are treated as supply chain com-
ponents and handled accordingly, following the RESCALE trusted supply chain
establishment process. A cloud service, which relies on multiple microservices, is
treated like software and hardware component-based supply chains and is associated
with a TBOM. Dynamic testing within a container (i.e., a provided microservice) is
conducted by placing the container in a sandbox environment (e.g., mine sandbox
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environments) and monitoring system call behavior through system call interpola-
tion analysis. This technique is enhanced with anomalous behavior analyzers using
Deep Learning models to detect unknown, anomalous interactions between the
tested container and its external environment. Fuzzing techniques developed for
software executables will be adapted for container security testing when applicable.

11.4.3 Supply Chain Trust Orchestrator and Continuous
Security Assurance

The RESCALE Trust Orchestrator (TrustOR) acts as the primary handler of the
TBOM for a given hardware or software solution. TrustOR has a dual role in
the RESCALE project. First, it generates the RESCALE TBOM by utilizing the
security assessment results from static and dynamic testing (producing the rele-
vant SSCG, DSCG, and guidelines as previously described). Second, it validates
existing TBOMs. TrustOR automatically processes software and hardware, orches-
trating the necessary RESCALE components to generate the appropriate TBOM.
This includes utilizing RESCALE’s asset modeling features and sharing mecha-
nisms with relevant initiatives such as the DBoM consortium,5 which focuses on
developing an infrastructure for supply chain attestation and TBOM sharing. As
a TBOM generator, TrustOR orchestrates the security testing of software or hard-
ware solutions. As a consumer of software or hardware components, TrustOR iden-
tifies whether a component is a candidate or a fully integrated RESCALE supply
chain entry. If it is still a candidate, TrustOR manages all necessary evaluator oper-
ations, including dynamic testing, recording information on the RESCALE public
blockchain, and ultimately incorporating the component into the end solution’s
TBOM.

Beyond the above capabilities, TrustOR addresses the need for continuous secu-
rity assessment at runtime, going beyond the static TBOM information of a given
software or hardware component. Since the vulnerability landscape evolves rapidly
and zero-day vulnerabilities are constantly discovered, relying solely on the TBOM
for security may be insufficient. From the time of security testing to when a TBOM
may need to be updated or replaced, new vulnerabilities could emerge that are not
reflected in the existing TBOM. To mitigate this, RESCALE integrates TrustOR
with a continuous security assurance platform, which monitors the security status of
software in real time. If new vulnerabilities are detected, the platform triggers a
TBOM update process.

The RESCALE TrustOR, in conjunction with the continuous, evidence-based
security assurance platform, provides comprehensive safety, security, and privacy

5. https://dbom.io/

https://dbom.io/
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assessments for all software or hardware solutions’ assets (i.e., components) (e.g.,
network, compute, data, processes). The RESCALE model-based assessments go
beyond the security testing platform and incorporate continuous, evidence-based
evaluations of safety, security (confidentiality, integrity, availability), and privacy for
software and hardware components. This process supports the following modal-
ities: (a) dynamic testing based on the RESCALE security testing platform, (b)
penetration testing, (c) runtime monitoring, (d) certificate-based assessments that
evaluate the relevance and impact of existing certifications (and the evidence under-
pinning them) on the overall risk posture of the software or hardware solution, and
(e) hybrid analysis that combines assessments from different modalities.

Finally, the proposed solution programmatically integrates with various architec-
tural components of a system via appropriate probes (e.g., event captors, test tools),
enabling RESCALE’s risk identification capabilities and orchestrating its continu-
ous risk assessment capabilities.

11.5 Field of Applications

The strategies and innovations presented in RESCALE provide a comprehensive
solution to securing the software supply chain across various industries. RESCALE
offers significant advancements for protecting complex supply chains in critical
infrastructure, aerospace, automotive, healthcare, financial services, and cloud com-
puting by addressing hardware and software vulnerabilities.

Critical infrastructure sectors, such as energy, telecommunications, transporta-
tion, and water management, rely heavily on intricate software and hardware sys-
tems to manage essential services. These systems are increasingly integrated with
third-party software components, open-source libraries, and connected devices, all
contributing to a significantly expanded attack surface. The RESCALE frame-
work addresses these vulnerabilities by providing enhanced traceability through
the TBOM, which allows granular tracking of hardware and software compo-
nents, ensuring that all third-party components are rigorously tested and verified.
In addition, by utilizing blockchain for immutable security records, RESCALE
ensures that once a component has been certified, its security assessment remains
tamper-proof. This feature is particularly valuable in protecting critical infrastruc-
ture systems, where any compromise could have severe consequences. Furthermore,
RESCALE incorporates dynamic risk mitigation tools, which continuously mon-
itor critical system components in real-time, allowing for proactive identification
and resolution of emerging vulnerabilities. In this way, critical infrastructure sys-
tems benefit from increased resilience against known and zero-day supply chain
attacks.
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The aerospace and defense industries, characterized by highly sensitive and
complex systems, demand the most rigorous security measures. The reliance on
diverse hardware and software components integrated across various platforms
introduces significant risks to the supply chain, where compromised compo-
nents could lead to catastrophic failures. RESCALE offers a holistic security
approach by encompassing both hardware and software supply chains, ensur-
ing that each component—from processors to software drivers—undergoes com-
prehensive security assessment. Using blockchain-backed TBOMs, enables the
aerospace and defense sectors to maintain an auditable and trustworthy record of
each component’s security status. This capability mitigates the risk of introduc-
ing malicious or compromised components into mission-critical systems, provid-
ing assurance and traceability. The security-by-design methodology embedded in
RESCALE allows these industries to meet stringent regulatory requirements and
standards while ensuring their systems remain resilient in increasingly sophisticated
cyberattacks.

The transition toward autonomous and connected vehicles has increased the
complexity of software and hardware integrations in the automotive indus-
try. Relying on multiple suppliers for components such as sensors, communica-
tion modules, and onboard control systems introduces new cybersecurity chal-
lenges. RESCALE provides a robust solution by offering supply chain transparency
through its TBOM mechanism, enabling automakers to track each component
used within vehicle systems. This traceability ensures that all hardware and soft-
ware components are rigorously assessed for security vulnerabilities, safeguard-
ing against potential cyberattacks, such as remote vehicle hijacking or disabling
critical safety features. Furthermore, RESCALE’s dynamic testing tools, tailored
for automotive systems, ensure the integrity of firmware, a crucial aspect of con-
nected vehicle security. By enabling automakers to meet functional safety and
cybersecurity standards, RESCALE helps reduce non-compliance risk, protect-
ing manufacturers from costly regulatory penalties while enhancing overall vehicle
security.

Industrial Control Systems (ICS), which play a crucial role in automating man-
ufacturing, energy production, and logistics processes, face unique cybersecurity
challenges due to their reliance on interconnected devices, including Programmable
Logic Controllers (PLCs) and SCADA systems. While highly efficient, these sys-
tems are highly vulnerable to cyberattacks, especially when embedded firmware and
hardware components are sourced from various suppliers. RESCALE enhances the
security of ICS environments by providing comprehensive firmware and hardware
testing, which helps to identify and mitigate vulnerabilities that could disrupt oper-
ations. The framework’s continuous security compliance monitoring tools enhance
system security by providing real-time assessments, ensuring that ICS operators
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can promptly detect and address new vulnerabilities before they can be exploited.
Additionally, RESCALE supports IoT device security within industrial settings by
securing the integration of connected devices into the ICS supply chain, thereby
preventing common attack vectors, such as botnet infections and data breaches,
from compromising critical industrial processes.

The rapid adoption of connected medical devices, electronic health records
(EHRs), and telemedicine platforms has introduced new cybersecurity risks in the
healthcare industry. The sensitive nature of healthcare data and the potential con-
sequences of compromised medical devices make supply chain security a prior-
ity for healthcare providers. RESCALE addresses these concerns by offering com-
prehensive security assessments for medical devices and healthcare systems. The
framework’s static and dynamic testing modules ensure that each medical device,
whether implantable or used within a hospital setting, undergoes rigorous secu-
rity assessments to prevent unauthorized access and potential tampering. Addition-
ally, RESCALE ensures the confidentiality and integrity of healthcare data through
cryptographic measures, providing compliance with regulatory standards such as
GDPR and HIPAA. By continuously monitoring system components for com-
pliance and updating the TBOM with new vulnerability assessments, RESCALE
ensures that hospitals and healthcare providers maintain high levels of security and
trust in their systems, safeguarding patient data and medical treatments’ safety.

Financial institutions face some of the highest cybersecurity risks, given the
sensitive nature of the data they handle and the value of the transactions they pro-
cess. The financial sector’s reliance on third-party software, cloud services, and hard-
ware for tasks such as transaction processing, fraud detection, and data analytics
introduces significant risks to the security of these systems. RESCALE strength-
ens cybersecurity for financial services by providing a comprehensive supply chain
risk management solution. Through the TBOM, financial institutions can track
every component in their software stack, ensuring that third-party software, open-
source tools, and hardware are thoroughly assessed before being integrated into
critical systems. RESCALE’s dynamic testing and AI-based predictive security ser-
vices enable financial institutions to detect abnormal patterns and potential fraud
indicators in real time, enhancing the security of banking operations. Additionally,
the framework’s automation of compliance audits ensures that financial systems
meet the strict requirements of regulations such as PCI-DSS and PSD2, while the
immutable blockchain-backed records provide a trusted foundation for regulatory
assurance.

Finally, cloud providers and data centers form the backbone of modern IT
infrastructure, handling vast amounts of sensitive data and facilitating critical
operations for organizations across the globe. However, the complexity of cloud
environments, which often involve virtual machines, containers, and microservices,
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creates significant security challenges. RESCALE addresses these challenges by pro-
viding comprehensive security testing and continuous assessment tools for cloud
and data center environments. The framework’s container security testing ensures
that microservices and containers, frequently used in cloud operations, are thor-
oughly vetted for vulnerabilities, reducing the risk of attacks such as container
escapes or privilege escalation. RESCALE’s side-channel attack detection tools add
another layer of security by identifying vulnerabilities in software and hardware
components, such as timing attacks or cache-based side-channel leaks, which are
becoming increasingly prevalent in cloud environments. By automating the secu-
rity testing of these components and continuously updating the TBOM with new
vulnerability information, RESCALE ensures that cloud and data center services
remain secure, even in the face of emerging threats.

11.6 Conclusion

RESCALE offers a comprehensive solution to the growing security challenges in
software and hardware supply chains. By integrating static and dynamic secu-
rity testing with blockchain technology, RESCALE ensures that every compo-
nent, whether software, hardware, or firmware, undergoes rigorous assessment,
resulting in a resilient and trustworthy supply chain. The innovative use of a
Trusted Bill of Materials tracks each component’s security status and secures the
integrity of this information through blockchain, providing an immutable record
that enhances transparency and accountability across the supply chain. RESCALE’s
holistic approach addresses vulnerabilities that traditional methods often overlook,
such as hardware flaws and supply chain complexity. Its capability to continuously
monitor and update components in real time positions RESCALE as a forward-
thinking framework capable of mitigating existing and emerging threats. By adopt-
ing RESCALE, organizations can ensure their systems’ integrity, security, and com-
pliance, significantly reducing the risk of supply chain attacks and enhancing the
overall cybersecurity posture.
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Chapter 12

Cybersecurity Challenges and Pitfalls
in 6G Networks

By Aristeidis Farao, Vaios Bolgouras, Apostolis Zarras
and Christos Xenakis

The transition from 5G to 6G networks aims to improve connection speeds and
intelligence levels. 6G is expected to support machine-type communications and
ultra-reliable low-latency communications while enhancing mobile broadband ser-
vices by integrating cutting-edge technologies. These advancements can potentially
transform sectors, including healthcare and autonomous transportation systems;
however, they bring security challenges. The open, distributed, and user-centric
nature of 6G—marked by numerous connected devices, decentralized networks,
and complex interactions between systems—makes traditional centralized security
models inadequate. This shift introduces a broader attack surface with increased
vulnerability to threats like API exploitation, data privacy violations, intercep-
tion risks, and insider attacks. Applying blockchain and Self-Sovereign Identity
(SSI) technologies is a promising approach to addressing the security concerns
associated with 6G. These technologies provide decentralized and cryptograph-
ically secure systems that match the changing requirements of 6G. Blockchain
technology ensures immutability, transparency, and tamper-proof record-keeping

262

http://dx.doi.org/10.1561/9781638285076.ch12


Introduction 263

across the network. Through smart contracts, it enforces security measures and
validates API communications while safeguarding data integrity among the dis-
tributed nodes of 6G. In parallel, SSI supports managing identities where users pos-
sess authority over their verified identities, ensuring privacy protection and secure
access control, diminishing the likelihood of identity theft or unauthorized access.
The combination of blockchain and SSI addresses security issues in 6G. Incor-
porating blockchain and smart contracts can minimize the risks associated with
API vulnerabilities. This integration allows only authorized users and devices to
interact with APIs, while SSI provides verifiable credentials that confirm users’
identities and prevent unauthorized access to APIs. Although the 6G distributed
architecture expands the attack surface, it can be protected using the blockchain’s
decentralized security enforcement mechanisms, where nodes can effectively verify
each other’s settings and activities. Moreover, the immutability feature provided by
blockchain and the selective disclosure capabilities offered by self-sovereign identity
help protect the privacy and integrity of data, ensuring that confidential informa-
tion remains secure even when there are risks of interception. This chapter explores
how blockchain and self-sovereign identity can tackle the security issues in 6G,
analyzing how these technologies can shape a secure 6G infrastructure.

12.1 Introduction

The advent of the 6G marks a significant leap forward in telecommunications,
promising to reshape how industries, devices, and individuals connect and com-
municate. Building on top of 5G, 6G aspires to offer ultra-high speeds, ultra-
low latency, and ubiquitous connectivity, driving the development of futuristic
applications (e.g., autonomous vehicles). At this transformation’s backbone lies a
sophisticated and user-friendly Service-Based Architecture (SBA), which is open,
distributed, and user-centric, enabling seamless integration of devices and services
into a unified network. The open and distributed nature of the 6G network repre-
sents a paradigm shift from the relatively centralized architecture of previous gen-
erations. While this shift benefits flexibility, scalability, and support for a vast array
of use cases, it also exposes the network to new cybersecurity threats. By increasing
interconnectivity among network functions, services, and third-party applications,
the 6G SBA amplifies the risk of vulnerabilities across various network layers. Par-
ticularly, 6G networks will rely on Application Programming Interfaces (APIs) to
enable communication between disparate services and functions, opening up more
potential attack vectors. Thus, misconfigured or insecure APIs may be gateways
for attackers, allowing unauthorized access to sensitive data and critical network
infrastructure. Works on 5G SBA have already demonstrated the vulnerability of
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APIs [1–3], a risk that is expected to grow as 6G becomes more complex and inter-
connected significantly [4].

Beyond the inherent API vulnerabilities, the openness of 6G also raises concerns
about data privacy and interception [5, 6]. In this new architecture, data flows
more freely between network nodes, users, and third-party service providers. With-
out robust encryption protocols and strict access controls, sensitive information
could be susceptible to interception by malicious actors through man-in-the-middle
(MitM) attacks or unauthorized access points [7]. As more entities access different
components of the 6G network, the potential for data breaches and privacy vio-
lations rises. Another critical challenge that 6G’s distributed nature introduces is
expanding the network’s attack surface. Unlike 4G and 5G, which rely on cen-
tralized core networks, 6G distributes core network functions across multiple edge
nodes, cloud environments, and virtualized infrastructure. This decentralization is
crucial for delivering low-latency services and optimizing network efficiency, but
it also creates numerous potential points of vulnerability [8, 9]. Each edge node,
cloud server, or virtualized function becomes a cyberattack target. One of the most
pressing threats in this environment is the risk of Distributed Denial of Service
(DDoS) attacks. In such attacks, malicious actors flood specific nodes or network
functions with excessive traffic, causing widespread disruptions or even complete
network outages.

Moreover, the distributed nature of the 6G SBA complicates the enforcement of
consistent security policies across the network. In centralized architectures, security
protocols could be more easily implemented and managed from a single location.
However, each node or service may require individual security configurations in a
distributed environment. The shift toward a user-centric model in 6G also intro-
duces novel security concerns. With 6G, users will gain unprecedented control
over network resources and services, customizing configurations and privacy set-
tings to suit their needs. While this empowers users and enhances the overall user
experience, it also increases the likelihood of misconfigurations. Improperly con-
figured network slices, insufficient security settings, or weak authentication prac-
tices can create significant vulnerabilities [10]. In addition, 6G will significantly
increase the amount of sensitive personal data being transmitted and processed
across the network, raising critical privacy concerns. As more industries adopt 6G
technology—particularly sectors like healthcare, finance, and transportation—user
data will include highly sensitive information, such as health records and financial
transactions. This data must be adequately protected from unauthorized access or
misuse, requiring the implementation of cutting-edge privacy-preserving technolo-
gies such as blockchain and Self-Sovereign-Identity (SSI). Balancing robust privacy
protections with the seamless user experience that 6G promises will significantly
challenge network designers and regulators.
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12.2 Security Constraints and Vulnerabilities in 6G SBA
Core Network

The security constraints and vulnerabilities of the 6G SBA core network are vast
and multifaceted. This stems from the shift toward a more open, distributed,
and user-centric architecture, which introduces numerous complexities and risks.
As 6G becomes more advanced and interconnected, the potential attack surface
expands significantly, creating opportunities for cyber threats to exploit weaknesses
in the system. In analyzing these challenges, examining how API vulnerabilities,
distributed architecture, data privacy, and user misconfigurations contribute to the
overall security risks facing 6G networks is crucial.

12.2.1 API Vulnerabilities

The development of 6G introduces significant advances in network architecture,
but with it comes an increased reliance on APIs [11], which presents opportu-
nities and security challenges. APIs are critical for enabling the open and dis-
tributed nature of 6G, allowing different services, applications, and network func-
tions to communicate seamlessly [12]. However, this openness also makes APIs
prime cyberattack targets [13].

API vulnerabilities can arise from weak authentication mechanisms, inadequate
encryption, or insecure communication channels. The consequences of API attacks
include but are not limited to data exposure, compromised authentication mecha-
nisms, and service interruptions [14]. In the context of 5G and beyond, works have
already revealed that insecure APIs have been a point of exploitation [1, 4, 15], and
with 6G, these vulnerabilities are expected to be even more pronounced [16, 17]. In
particular, as APIs will serve as interfaces within the network and with third-party
services, the security challenges multiply, necessitating stringent security protocols
at every layer. API attacks can take various forms, such as MitM attacks, where
an attacker intercepts data during transmission between services, or API injection
attacks, where malicious code is inserted into the API request to manipulate data or
compromise the system. These threats underscore the importance of implement-
ing robust encryption, authentication, and access control measures. End-to-end
encryption is essential to ensure that data transmitted through APIs is protected
from eavesdropping or tampering, while strong authentication mechanisms, such
as OAuth or mutual TLS, can help prevent unauthorized access. Moreover, API
vulnerabilities can become even more concerning in distributed network environ-
ments like those seen in 6G, where services are spread across multiple edge nodes
and cloud infrastructures. Each API call made between services represents a poten-
tial point of failure.
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Figure 12.1. Cybersecurity attack in API.

The following are the most common cybersecurity attacks that can exploit APIs
(see Figure 12.1) in 5G and beyond networks [4, 19]:

• MitM Attacks: the attacker intercepts the data transmitted between differ-
ent network components, such as between the core network and third-party
applications. This can lead to data breaches, manipulation of messages, or ses-
sion hijacking. In 5G and beyond networks, as APIs are more widely used for
communication between network slices, edge computing, and other services,
MitM attacks can be more prevalent without proper encryption.

• API Injection Attacks: an attacker inserts malicious data or code into API
requests, leading to unintended behavior or compromising network services.
With the growing complexity of APIs in 6G, particularly those managing real-
time data flows and edge computing services, injection attacks could lead to
critical infrastructure disruptions.

• DoS and DDoS Attacks: an API is overwhelmed with a large volume of
requests, causing it to slow down or crash, making the service unavailable
to legitimate users. In a DDoS attack, multiple compromised devices (e.g., a
botnet) are used to flood the API. Given that networks support many devices,
including IoT and edge devices, APIs are particularly vulnerable to DDoS
attacks that target the availability of network functions. Unprotected APIs can
serve as easy entry points for such attacks, leading to disruptions in service.

• Broken Authentication and Session Management: APIs often manage authen-
tication and session tokens to verify users and services. If attackers gain access
to session tokens due to insecure APIs, they can hijack user sessions, imper-
sonate legitimate users, and gain unauthorized access to sensitive network
services. Broken authentication can occur if APIs fail to manage user cre-
dentials and tokens securely or if session expiration is not handled properly.
Where there are diverse and distributed access points across devices, the risk
of broken authentication increases.

• Cross-Site Scripting (XSS): attackers inject malicious scripts into an API
response, which can then be executed in the user’s browser. In scenarios
where APIs serve web applications or user interfaces, an attacker can exploit
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vulnerabilities in API responses to inject malicious code. This can lead to ses-
sion hijacking, redirection to malicious websites, or stealing sensitive data.
XSS is especially dangerous when APIs are exposed to third-party services, a
common feature in 6G networks.

• Replay Attacks: an attacker intercepts valid API requests and resends them to
the server, attempting to replicate valid actions or requests. Without mecha-
nisms like timestamps or nonce (a random number used only once), replay
attacks can exploit API sessions, such as resubmitting a payment request or
gaining repeated access to services. Replay attacks can be especially danger-
ous in 6G environments where real-time data transfers, such as autonomous
vehicle communication, rely on API exchanges.

12.2.2 Distributed Architecture and Increased Attack Surface

The distributed architecture of 5G and 6G networks significantly widens the attack
surface, presenting new cybersecurity challenges [5]. 5G and 6G adopt a decentral-
ized approach where core network functions are distributed across various edge
nodes. This transformation introduces operational advantages like lower latency,
enhanced scalability, and more flexible service deployment. However, it also opens
up many potential entry points for cyberattacks. As each node, server, and API
becomes a critical network component, attackers have more opportunities to exploit
vulnerabilities, disrupt services, or steal data [20].

In 6G, where services are widely distributed across edge nodes and cloud envi-
ronments, a DDoS attack targeting a key node could cause significant disruptions
to critical network services. As 5G and 6G networks rely heavily on edge comput-
ing to deliver low-latency services, particularly for various applications [21] (e.g.,
autonomous driving), the impact of a DDoS attack could be devastating. By tar-
geting the edge, attackers can disrupt data flow between devices and the cloud,
degrade service performance, or cause complete service outages [22]. Moreover,
6G will further increase reliance on edge infrastructure, meaning that the attack
surface for DDoS attacks will continue to expand. It has already been emphasized
that 5G/6G networks need robust DDoS protection mechanisms, including AI-
driven traffic filtering, anomaly detection, and adaptive firewalls [23, 24]. These
technologies can help detect malicious traffic patterns early and mitigate the effects
of DDoS attacks. AI and machine learning can analyze network traffic in real time,
identifying anomalies that may indicate an ongoing attack [25, 26].

Moreover, the distributed edge computing environment, which brings network
services closer to the user, also increases the number of potential targets for attack-
ers. The more edge nodes that exist, the more points of vulnerability an attacker can
target [27]. Unlike a centralized system where security can be more easily managed,
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distributed architectures create a challenge in implementing and enforcing consis-
tent security policies across every node. Edge nodes may not have the same level
of security or processing power as centralized cloud systems, making them more
vulnerable to attacks. If an edge node is compromised, an attacker could access sen-
sitive data, disrupt services, or even infiltrate the broader network. Securing edge
nodes requires ensuring each node is properly configured, regularly updated, and
equipped with strong access control measures [28].

Implementing consistent security policies across a distributed architecture is a
significant challenge. In a 5G/6G network, different nodes and servers may be
owned or operated by different entities, each with its own security protocols. Ensur-
ing that security policies are enforced uniformly across these disparate infrastruc-
tures is crucial to maintaining the integrity of the overall network. This challenge is
compounded by the fact that 6G networks will support various services with vary-
ing security requirements [29]. Some services, like those handling sensitive data,
will require stringent security measures, including strong encryption, while others
may prioritize low-latency or high-throughput performance over security. There-
fore, orchestration tools are essential in ensuring that the right security policies
are applied to each part of the network, depending on the service it delivers [30].
Automated orchestration and management tools powered by AI can help address
this challenge by dynamically configuring and enforcing security policies across the
network. These tools can ensure that security measures such as encryption, authen-
tication, and access control are consistently applied across different network slices,
cloud environments, and edge nodes.

Finally, in 6G networks, many core network functions will be virtualized and
deployed as Virtualized Network Functions (also known as VNFs). On the one
hand, this approach offers greater flexibility and scalability; on the other hand,
it introduces new cybersecurity risks. Virtualization layers can become targets for
attackers who may attempt to compromise the hypervisor or exploit vulnerabilities
in VNFs to gain access to underlying network resources. This risk is particularly
pronounced in 6G, where VNFs are expected to handle increasingly complex tasks
(e.g., managing AI-driven services). Ensuring the security of VNFs requires robust
isolation mechanisms to prevent attackers from moving laterally within the network
and continuous monitoring for vulnerabilities at the virtualization layer [31].

12.2.3 Data Privacy and Interception Risks

In 5G and 6G networks, data privacy and interception risks are key concerns due
to the scale and complexity of the infrastructure. As mobile networks evolve to
accommodate a massive number of connected devices and the diverse services that
characterize 6G, ensuring the protection of user data becomes more challenging.
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The transition to SBA introduces new vulnerabilities and opens up various points
where sensitive data can be intercepted or exposed. These risks require comprehen-
sive security measures, as increased network nodes and distributed services magnify
the potential attack surface.

One of the primary privacy concerns in 6G networks is the sheer volume of
personal data transmitted and processed across the network [32]. As 6G enables
more advanced applications (e.g., autonomous vehicles), the data generated from
these services grows exponentially. Much of this data is personal or sensitive [33].
If improperly secured, malicious actors can intercept this data during transmis-
sion or be compromised at storage points across the network. In 6G, a distributed
architecture shifts much of the data processing to the network’s edge—closer to the
end-user devices [34]. While this reduces latency and enhances performance, it also
introduces more points of vulnerability. Each edge node becomes a potential target
for attackers looking to intercept data as it moves between devices and the core net-
work. In addition to edge nodes, network slices pose privacy risks if not properly
secured [35]. Network slicing allows operators to allocate virtualized resources to
different services or customers based on their needs, enabling faster, more tailored
service delivery. However, with multiple network slices running simultaneously,
each tailored for a specific use case, a security flaw in one slice could expose data
traversing the entire network. Attackers could potentially exploit vulnerabilities in
a low-security slice to gain access to more sensitive slices, compromising user data
or even intercepting critical information such as authentication credentials.

Beyond malicious attacks, data interception can also occur due to poorly imple-
mented security protocols or weak encryption standards. As more data flows across
diverse and distributed infrastructure, it is crucial that strong encryption protocols
are applied consistently [36]. Another layer of risk comes from quantum comput-
ing, which, although not yet widely available, could eventually break many of the
encryption algorithms currently in use. As 6G networks are expected to be opera-
tional well into the future, the post-quantum security of encryption methods must
be considered. Quantum computers could theoretically decrypt intercepted previ-
ously thought secure data, posing a significant future risk. The evolving nature of
6G networks also means that traditional identity and access management strategies
may not be sufficient to protect against data interception. As the number of devices
and users connecting to the network increases, ensuring that only authorized enti-
ties access data and services becomes more complex.

12.2.4 User Misconfiguration and Insider Threats

The introduction of 6G networks, with their advanced capabilities such as ultra-low
latency, high-speed data transfer, and massive connectivity, presents transformative
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potential for various industries. However, the complexity of these networks also cre-
ates numerous security vulnerabilities that must be addressed. While much atten-
tion is paid to external threats (see above), user misconfigurations and insider threats
remain significant and often underestimated risks. The aftermath of such a threat
includes but is not limited to unintentional data breaches. In the context of 6G,
the challenges posed by user misconfigurations and insider threats will likely grow.

The most common vulnerability in modern networks is human error, often mis-
configurations [37]. This risk is heightened in complex, decentralized networks like
6G because the architecture requires multi-layered configurations, each with its own
set of protocols and security mechanisms. Misconfigurations can occur when set-
tings related to network access, data encryption, or firewall rules are incorrectly
applied, inadvertently creating backdoors for cyberattacks [38–42]. In addition,
The SBA and network slicing inherent to 6G present additional risks. In SBA,
individual services are separated into microservices, each requiring its own config-
uration and security settings [43]. The entire network’s security posture may be
compromised if any of these services are misconfigured. Additionally, network slic-
ing, which allows for creating multiple virtual networks on top of a single physical
infrastructure, requires precise configuration to ensure each slice is properly isolated
and secure. A single misstep in the configuration process [43] can expose sensitive
data across different network slices or grant access to unauthorized entities, causing
potentially widespread damage. Cloud misconfigurations [44] account for 15% of
initial attack vectors in security breaches—the third most common initial attack
vector in breaches. On average, these types of data breaches take 186 days to iden-
tify and yet another 65 to deal with. Misconfigurations like this cost companies
around 3.86 million dollars in total costs [45]. Besides the unintentional miscon-
figurations, insider threats pose a serious risk to 6G networks. These occur when
individuals with authorized access to the network misuse their privileges, either
intentionally to cause harm or unintentionally through negligence [46]. The poten-
tial for insider threats is substantial in 6G, where millions of devices and users will
be connected. Insider threats are particularly dangerous because they often come
from trusted individuals with legitimate access to sensitive areas of the network,
making detection more difficult.

12.3 Candidate Technologies

At this point, we present the technological pillars that jointly can provide a robust
solution for the 6G network ecosystem. The proposed solutions have been designed
on the grounds of well-established technologies (i.e., Blockchain, Smart Contracts,
and SSI) with proven security properties.
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12.3.1 Blockchain

Blockchain [47] is a decentralized, distributed ledger technology that enables
secure, transparent, and immutable record-keeping of transactions across multiple
participants without the need for a central authority or intermediary. Blockchain
networks can be public, private, consortium, or hybrid. Public blockchains are
decentralized and open to anyone, with no central authority, where anyone can
participate in the consensus process. On the other hand, private blockchains are
restricted and governed by a single organization, making them more centralized
and suitable for enterprise use where control over participants is needed. Consor-
tium blockchains are semi-decentralized, where a group of organizations collec-
tively manage the blockchain, offering a balance between openness and control,
often used in industries like finance or supply chains. Finally, hybrid blockchains
combine elements of both public and private models, allowing certain data to be
publicly accessible while keeping sensitive information private, enabling flexibility
and control in specific use cases like healthcare or government services.

Blockchain’s security is underpinned by cryptographic techniques such as hash-
ing and digital signatures. Every participant on the blockchain network has a pair
of public and private keys used to sign and verify transactions. These digital signa-
tures ensure that only the rightful owner of a private key can authorize a transaction,
providing a robust form of authentication. In addition, blockchain networks rely
on consensus mechanisms [48] to validate transactions. These mechanisms ensure
that only legitimate transactions are added to the blockchain and that the network is
resilient to attacks. For 6G networks, which are expected to handle vast amounts of
data and devices, blockchain’s security features can help authenticate devices, secure
data exchanges, and ensure that communication between network nodes remains
tamper-proof. The consensus mechanism is the process by which blockchain net-
works agree on the ledger’s state. These mechanisms are critical to ensuring that the
blockchain remains decentralized and secure. Consensus mechanisms ensure that
all nodes in the network agree on the transactions being added to the blockchain,
thus maintaining the system’s integrity.

Blockchain [49] works by creating a chain of blocks, each containing a list of
transactions. Every block is cryptographically linked to the previous block, form-
ing an unalterable chain of records. This cryptographic linkage, combined with
the distributed nature of blockchain, provides enhanced security, transparency, and
trust. The most defining feature of blockchain is its decentralized nature. Unlike
traditional centralized databases that rely on a single entity to manage and vali-
date transactions, blockchain networks operate on a peer-to-peer basis. Each node
in the network maintains a copy of the entire blockchain, ensuring that the sys-
tem remains operational even if some nodes go offline or attempt to manipulate
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data. Decentralization removes the need for intermediaries, reducing costs and the
potential for manipulation or fraud. Another critical feature is the use of smart con-
tracts [47, 49]. These are self-executing contracts with the terms of the agreement
directly written into code. They automatically execute and enforce the contract’s
terms when predefined conditions are met. Smart contracts enable automation of
transactions and processes, reducing the need for intermediaries and enhancing
efficiency. In 6G networks, smart contracts could manage resource allocation, auto-
mate service provisioning, or enforce network security policies, providing real-time,
trustworthy execution without human intervention.

Another critical feature is immutability, which refers to the fact that once data is
recorded on the blockchain, it cannot be altered or deleted. This is achieved through
the use of cryptographic hashing. Each block in the chain contains a unique crypto-
graphic hash of the previous block, linking them together to ensure any attempt to
alter the data in a block would require changing all subsequent blocks. Such a task
would require controlling more than 50% of the network’s computing power [50]
This feature is critical for applications that require reliable and tamper-proof records
(e.g., supply chain management, where tracking the origin and authenticity of
products is mandatory). In 6G networks, immutability could be used to maintain
accurate logs of data exchanges, device authentication, or even service provisioning.
In addition, Blockchain promotes transparency by making all transaction data visi-
ble to every participant in the network. Each node maintains a complete copy of the
ledger, and the transactions are verified by the consensus of the network participants
before being added to the blockchain. While public blockchains are fully trans-
parent, where all transaction details are viewable, permissioned blockchains used
in enterprises can restrict access to certain information, allowing for a more con-
trolled form of transparency. This transparency builds trust between participants,
even when they do not know or fully trust one another. In telecommunications and
6G, blockchain can create a transparent environment for managing decentralized
resources, such as network slices, or for enabling seamless, trust-based interactions
between devices in IoT ecosystems.

12.3.2 Self-Sovereign-Identity

Self-Sovereign Identity [47], also known as SSI, is an example of a decentralized
identity management system. Thanks to this, individuals or organizations can take
ownership of and control their digital identities. As an additional benefit, SSI makes
it easier to engage in selective attribute disclosure, a method for minimizing the
disclosure of personal information. Additionally, it provides features that protect
users’ privacy, such as anonymity and the inability to be linked to an individual.
With SSI, no central authority keeps ownership of users’ data, which eliminates the
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Figure 12.2. SSI functionalities.

requirement to provide it to other people when they request it. The user is the one
that carries their data, and because of the encryption and distributed ledger technol-
ogy that underpins it, the user can make assertions about its identity, which other
entities can verify with cryptographic certainty. With the help of SSI, stakeholders
in the 6G networks can exchange verified data in a way that is both automated and
respectful of their privacy. This technique eliminates the need for manual data ver-
ification processes, which not only helps to prevent the disclosure of confidential
information but also saves time. SSI is built on the foundation of Verifiable Creden-
tials, also known as VCs. VCs were defined by the World Wide Web Consortium
(W3C) as tamper-evident credentials with authorship that can be cryptographically
confirmed [51]. This proposal was published as a formal recommendation. VCs
can enhance interoperability and selective disclosure of information pertaining to
its holders.

An issuer, a user, and a verifier are the three types of participants actively involved
in the SSI framework (see Figure 12.2). Two fundamental features constitute the
SSI: (i) the issuance of VC and (ii) the verification of VC. VC Issuance is the initial
functionality that allows the user to obtain a VC from the issuer while acting in the
holder’s role. VC consists of tamper-evident claims and information that provide
cryptographic proof of the authenticity of its issuer. Claims are statements a holder
makes, such as the holder’s birth year. Every VC is issued on the Decentralized Iden-
tifiers (DIDs) of its holder and issuer, serving as a public key within the blockchain
ecosystem. A DID is a globally unique identifier. It is made up of a string of let-
ters and numbers and is directly associated with a pair of public and secret keys
simultaneously. Using the private key, the holder can access and manage their data.
The holder is the only entity who should be aware of the private key, and its infor-
mation should never be disclosed to any other individual. Concerning DIDs, the
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private key enables holders to demonstrate ownership and authorize authorization
to share particular data. Blockchain, on the other hand, is a distributed ledger that
maintains the public key that is connected with the DID of the VC’s issuer public
key. This public key can be safely shared with anybody to send and receive data.
VCs that have been issued are stored in a secure manner in a digital identity wal-
let. This wallet is the location (for example, a mobile app) where holders maintain
their VCs [52]. It is not possible to host these just within cell phones; rather, certain
implementations permit their hosting within trusted computers.

The second functionality is VC Verification, in which the holder (acting as the
prover) must demonstrate to the verifier that he holds accurate attributes without
necessarily exposing the values included within those attributes. Establishing that
the corresponding user is, in fact, in control of the provided identity is how this
objective is accomplished through the utilization of zero-knowledge proofs. The
verifier must check the Blockchain to view the VC’s issuer (i.e., the DID of the
VC’s issuer) to validate the legitimacy of the venture capital. This can be done
without the need to contact the issuer. When presenting a VC, the prover has the
ability to choose which claims to reveal and which to keep hidden. An additional
benefit of SSI is that it can accomplish unlinkability because the user uses a unique
DID for each presentation.

12.4 Facing the Challenges

Blockchain and SSI technologies hold tremendous potential in addressing the
cybersecurity challenges faced by 6G networks. These next-generation networks
bring unprecedented speed, connectivity, and automation but also present new
vulnerabilities, including identity management, data privacy, and system integrity.
Security becomes an essential concern as 6G networks aim to create an open,
distributed, and user-centric environment. In this section, we will explore how
blockchain and SSI can be used to tackle the key cybersecurity challenges inher-
ent in the evolving landscape of 6G networks.

12.4.1 Addressing the API Vulnerabilities

API vulnerabilities have been a persistent security issue in modern networks and
are expected to pose even greater risks in 6G. APIs are essential communication
bridges between applications, devices, and services in highly interconnected and
distributed environments. As 6G networks introduce more open and decentralized
interfaces, poorly secured APIs could become prime targets for attackers, enabling
them to intercept sensitive data, manipulate services, or execute malicious code.



Facing the Challenges 275

On the one hand, Blockchain’s inherent decentralization and transparency can
significantly enhance the security of API interactions in 6G networks. By using a
distributed ledger, Blockchain can verify and record every API transaction, ensur-
ing that each interaction between devices or services is cryptographically signed and
time-stamped. This means that unauthorized modifications to API requests and
responses can be easily detected, as all interactions are recorded in an immutable
ledger accessible to network participants. Blockchain also offers the potential for
smart contract-based APIs. Smart contracts can enforce predefined rules and secu-
rity policies on API transactions. These contracts can automatically ensure that only
authorized devices, applications, and users can access certain APIs. This would elim-
inate many common API vulnerabilities, such as unauthorized access, excessive data
exposure, and parameter tampering, often exploited in traditional networks.

On the other hand, SSI is crucial in securing API access by providing a decentral-
ized approach to identity management. In an SSI model, users and devices control
their own cryptographically verified identities without needing a central authority.
In the context of APIs, SSI can ensure that only authenticated and authorized enti-
ties gain access to the network’s APIs. By integrating SSI, 6G networks can ensure
that each API request is associated with a verifiable, cryptographically secure iden-
tity. This eliminates the risk of unauthorized devices or users accessing sensitive
APIs, as each API request must be accompanied by verifiable credentials stored in
decentralized identity wallets. Furthermore, since users have complete control over
their identity data, the risk of identity theft or impersonation through compromised
API endpoints is minimized.

12.4.2 Securing Distributed Architecture and Mitigating
Increased Attack Surface

One of the defining characteristics of 6G networks is their distributed architecture,
which significantly expands the network’s attack surface. With numerous devices,
edge nodes, and services distributed across the network, traditional security models
that rely on centralized control are ineffective.

In a blockchain-based system, there is no single point of failure; instead, security
is enforced collectively by all participants in the network. This decentralized secu-
rity model is particularly effective in environments like 6G, where data and devices
are spread across multiple nodes. Each 6G device or edge node could participate in
the blockchain network, where security policies, configurations, and access controls
are transparently managed and enforced through consensus. Using Blockchain’s
peer-to-peer validation, network participants can collectively verify the authenticity
of each device, transaction, and service in real time, ensuring that no compromised
device can subvert the network’s integrity.
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In traditional networks, a central authority manages identity verification, which
becomes a bottleneck in decentralized environments. However, SSI can eliminate
this bottleneck by giving each user and device control over their own VCs, which
can be securely stored and shared without relying on a centralized authority. In 6G
networks, SSI enables decentralized authentication across all devices and nodes,
ensuring that only verified participants can access network resources and perform
transactions. As SSI credentials are cryptographically secure, they can be validated
by any party in the network, preventing unauthorized access. SSI also allows for
granular access control, where devices and users can selectively share specific cre-
dentials to gain access to particular services. This reduces the attack surface, as
entities only expose the minimal necessary information to perform a transaction,
making it harder for attackers to exploit the system.

12.4.3 Addressing Data Privacy and Interception Risks

Data privacy and interception risks are heightened in 6G networks due to the
sheer volume of sensitive data being transmitted across the network. In addition
to the potential for data breaches, there is the risk of eavesdropping, where attack-
ers intercept data as it moves between devices, edge nodes, or applications. Given
the reliance on edge computing and multi-access edge networks, data no longer
resides in centralized data centers but is processed closer to the user, increasing its
vulnerability to interception.

Blockchain’s immutability and encryption mechanisms offer strong guarantees
for ensuring the integrity and confidentiality of data in 6G networks. By recording
each data transaction in an immutable ledger, Blockchain ensures that any attempt
to modify or tamper with data is immediately detectable. This is particularly valu-
able in 6G environments where data might traverse multiple edge nodes before
reaching its final destination. Furthermore, Blockchain can facilitate data encryp-
tion, ensuring that only authorized entities can access the transmitted information.
Even if an attacker intercepts the data in transit, they cannot decrypt it without the
proper cryptographic keys, which are securely managed through blockchain-based
key distribution systems.

Next, one of the key features of SSI is its focus on data minimization and user
control over personal information. In an SSI framework, users can selectively share
only the necessary attributes required to perform a transaction, minimizing the risk
of data exposure. This feature is invaluable in the context of 6G networks, where
personal data is constantly being transmitted between devices, applications, and ser-
vices. SSI allows users to control what information is shared and with whom, using
cryptographically verifiable claims. This ensures that even if an attacker gains access
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to the transmitted data, they cannot infer sensitive information, as only minimal
and necessary data points would be revealed.

As 6G networks introduce unprecedented connectivity, speed, and decentral-
ization, they also bring cybersecurity challenges. Blockchain and SSI technologies
offer powerful solutions to address these issues by providing decentralized, crypto-
graphically secure frameworks for managing identities, securing data, and enforcing
security policies. Blockchain’s immutability, transparency, and distributed consen-
sus mechanisms make it an ideal solution for securing API interactions, enforc-
ing decentralized security policies, and maintaining data integrity in 6G networks.
Meanwhile, SSI empowers users and devices with control over their identities,
reducing the risk of unauthorized access and protecting personal data through selec-
tive disclosure and cryptographic proofs. Together, these technologies offer a robust,
decentralized security architecture that aligns with the distributed, open nature of
6G networks. By integrating Blockchain and SSI, 6G networks can become more
resilient, secure, and privacy-preserving, laying the foundation for a safer and more
trustworthy digital future.
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The rapid expansion of the Internet of Things (IoT) has led to a critical increase in
the volume of connected devices, introducing significant security and privacy chal-
lenges across industries. As devices become embedded in essential systems and daily
life, their inherent vulnerabilities can have far-reaching impacts. Addressing these
risks, the European Union’s Cyber Resilience Act (CRA) proposes rigorous require-
ments for establishing a baseline for the cybersecurity of IoT products through
their entire lifecycle. The CERTIFY project offers a comprehensive framework that
aligns with CRA’s objectives, enabling IoT stakeholders to manage cybersecurity
from initial design to decommissioning. The CERTIFY’s lifecycle methodology
encompasses phases such as secure design, bootstrapping, continuous monitoring,
update management, and eventual decommissioning or repurposing. A key ele-
ment of the CERTIFY’s approach is the use of standardized security practices and
tools, including the extended Manufacturer Usage Description (MUD) framework
and advanced cryptographic solutions. These elements ensure that device behavior
adheres to security policies and that updates are both transparent and traceable,
facilitated by blockchain and other distributed ledger technologies. The CERTIFY
architecture also enables real-time risk assessment, with dynamic threat detection
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and rapid response to vulnerabilities, helping maintain a secure operational state.
Through the deployment of active monitoring and security intelligence sharing,
CERTIFY improves resilience against emerging cyber threats and promotes com-
pliance with evolving regulations like the CRA. This chapter examines the CER-
TIFY’s methodology and highlights its application through use cases, such as a
connected cabin system, to illustrate the framework’s effectiveness in addressing
CRA regulatory and operational challenges. The CERTIFY project represents a
proactive, holistic approach to IoT security, empowering stakeholders to respond
to the demands of an interconnected world and establish lasting, lifecycle-oriented
security for IoT ecosystems.

13.1 Introduction

Envisioned decades ago, ubiquitous computing [1] is now a consolidated reality,
as digital products are no longer confined to business settings but are seamlessly
integrated into consumer and critical application environments. Smart and Inter-
net of Things (IoT) devices are not only embedded in homes and workplaces, but
they also underpin essential functions across sectors like healthcare, transportation,
and energy. Given the widespread role of these devices and the rapid development
cycles focused on cost reduction, they have become prime targets for cyber threats.
High-profile attacks—such as those affecting the Colonial Pipeline oil system [2],
Marriott hotels [3], and major hospital systems in the United States [4]—are stark
examples of the vulnerabilities that connected devices introduce when security prac-
tices are inadequate. These incidents underscore the need for robust regulatory
frameworks and security protocols that protect devices and systems throughout
their lifecycle.

In fact, cyber incidents were historically not disclosed unless they were causing
major impacts to the public until the entry into force of recent regulations [5, 6]
and [7]. From that point on an already galloping trend manifested more openly,
also allowing the appearance of public reporting services (e.g., [8] and [9]). Cyber-
crime continues to grow, with global annual costs projected to exceed 15.63 trillion
euros by 2029 [10]. In response to this alarming trend, the European Commission
proposed the Cyber Resilience Act (CRA) [11] in September 2022, with the goal
of strengthening cybersecurity and resilience across all products with digital com-
ponents. By placing responsibility on manufacturers to secure devices throughout
their entire lifecycle, the CRA seeks to ensure that devices are secure by design, fit
for purpose, and protected against emerging threats.

In this context, the Horizon Europe CERTIFY project [12]—active security for
connected device lifecycles—presents a cohesive approach to managing IoT device
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security. The CERTIFY’s mission is to provide a methodological, technological,
and organizational framework that ensures security throughout the lifecycle of con-
nected devices. The project’s efforts align closely with current EU regulations, par-
ticularly the CRA, by developing and testing practical use cases that support regu-
latory objectives. This regulatory alignment is crucial, as it positions CERTIFY to
not only demonstrate compliance but also to address real-world security challenges
by fostering coherence with the evolving EU policy landscape.

The CERTIFY’s methodology encompasses the entire lifecycle of a connected
device, from its initial design and risk assessment to secure decommissioning or
repurposing. The project’s approach is based on the security by design principle,
which incorporates security protocols and cryptographic controls at the outset.
By embedding these measures during the design and development stages, CER-
TIFY ensures that devices are prepared to handle threats before deployment. Once
a device is deployed, CERTIFY facilitates secure bootstrapping, continuous moni-
toring, and adaptive reconfiguration to maintain device integrity and security, even
as new vulnerabilities emerge. This approach mitigates risks in real-time and min-
imizes the need for costly and complex retroactive measures.

A defining aspect of the CERTIFY’s framework is its collaborative approach,
allowing multiple stakeholders—such as auditors, manufacturers, and end-users—
to contribute to a shared security ecosystem. The framework supports ongoing
communication and feedback loops that improve risk assessment and response
times. Through advanced technologies such as the extended Manufacturer Usage
Description (MUD) [13] files and Zero Trust Architecture principles, CERTIFY
provides stakeholders with a secure, and standardized method for managing device
interactions and enforcing access controls. This integrated approach allows stake-
holders to monitor, update, and reconfigure devices as needed, creating a flexible
security model that adapts itself to changes in the threat landscape. Furthermore,
the CERTIFY’s architecture enables Distributed Ledger Technology (DLT), such
as blockchain, which records every event, update, or configuration change related
to the device, providing an immutable and transparent record that reinforces trust
among users and regulatory bodies.

The project’s engagement with policy and standardization activities throughout
the EU demonstrates its commitment to regulatory alignment. The CERTIFY’s
consortium actively participates in discussions on cybersecurity regulations, ensur-
ing that the project’s solutions and use cases reflect current legal requirements and
contribute valuable feedback to the regulatory process. This approach not only
strengthens the project’s alignment with EU policies but also enables sharing chal-
lenges linked to their practical roll out, for instance the broader industry’s need
for guidance on implementing the CRA’s requirements in practical settings. The
CERTIFY’s use cases demonstrate a variety of scenarios, from connected cabins in
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aviation to smart manufacturing systems and tracking of artworks, where high levels
of connectivity and data sensitivity demand rigorous security practices. Each sce-
nario illustrates how the CERTIFY’s lifecycle management can support compliance
and protect devices from real-world threats.

In this chapter, we delve into the CERTIFY project’s lifecycle methodology and
its alignment with the objectives of the CRA. Section 13.2 outlines the CER-
TIFY framework, detailing its structured approach to IoT lifecycle management.
In Section 13.3, we present a comprehensive use case—the connected cabin sys-
tem in aviation—as a demonstration of the CERTIFY methodology in a high-
connectivity, high-security environment. Section 13.4 discusses initial observations
on the feasibility of deploying CERTIFY as a pilot framework aligned with CRA
requirements, exploring how its approach addresses regulatory and operational
challenges. Finally, Section 13.5 concludes with insights into the broader implica-
tions of CERTIFY for IoT security, regulatory compliance, and the advancement
of secure, resilient IoT ecosystems.

13.2 The CERTIFY Project

The CERTIFY’s goal is to provide to IoT stakeholders (e.g., auditors, manufac-
turers, users, Information Sharing and Analysis Centers - ISACs), with tools and
strategies they need to ensure a high level of security. The project takes a collabora-
tive and decentralized approach, helping stakeholders identify, assess, and respond
to security threats throughout the lifecycle of connected devices. A key point of the
CERTIFY approach is the sharing of security information and evidence among rel-
evant parties, allowing for continuous risk assessments and faster responses to new
vulnerabilities.

The project is based on international standards and frameworks such as MUD
files and Zero Trust architecture [14]. These foundations enable CERTIFY to sup-
port ongoing security evaluations, enabling stakeholders to detect threats in real-
time, securely update devices, and reconfigure them as necessary. The CERTIFY’s
focus is on providing security by design and ensuring that it can be monitored
and updated securely as new risks emerge. This holistic approach also facilitates
future recertification processes by streamlining the collection of security evidence
throughout the operational life of a device.

13.2.1 Certify Framework

An abstract representation of the CERTIFY framework is depicted in Figure 13.1,
where, for the sake of clarity, only the main interactions are reported.
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Figure 13.1. CERTIFY architecture.

The CERTIFY architecture is organized into six “domains” or “planes” based on
the functionality.

The Embedded device plane provides the CERTIFY security services built on
top of hardware functionalities to instantiate and maintain a secure environment.
It characterizes the IoT platform by means of the API (Application Programming
Interface) and services of CERTIFY. The CERTIFY security services include ele-
ments needed to support operations such as configuration, bootstrapping, upgrad-
ing, and monitoring. Instead, the low-level components part of the embedded secu-
rity API, i.e., the Secure Element (SE) [15] and the Trusted Execution Environment
(TEE) [16], provide the necessary enablers to guarantee the security of the processes
inside the IoT Device.

The Domain enforcement plane includes services for the secure deployment of the
device within the domain and the application of updates on the device. One core
component of this plane is the Secure Enrollment module, responsible for the regis-
tration of the devices in the domain and the issuance of the required cryptographic
material to enable the creation of Direct Anonymous Attestation (DAA) [17] sig-
natures. Instead, the Secure update and upgrade agent provides a graphical user
interface where security administrators can visualize registered software and devices,
upload the software to the repository, and trigger the software update process. It
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also provides features to check for available updates. This component has a close
relationship with the Inventory and Registry, as it is used to record every event,
firmware, and device metadata. This integration ensures security, transparency, and
an unbroken chain of trust in the over-the-air (OTA) process, incorporating secure
cryptographic algorithms for firmware integrity and signing.

The Domain orchestration plane provides coordination functionalities within
the domain, and its main component is the Device and Domain Manager. It
focuses on the high-level management of groups or domains of IoT devices. These
groups could be based on various criteria, such as location, functionality, or other
attributes. In particular, the Device and Domain Manager coordinates enforcement
and reconfiguration of IoT devices based on the information received from other
components such as the MUD manager or the SIEM-SOAR (Security Informa-
tion and Event Management - Security Orchestration, Automation and Response).
All the configurations (e.g., policies applied, version of updates) are stored in the
second component part of this plane, i.e., the Inventorying and Registry, which is
managed by the device and domain manager.

The Domain runtime sensors and monitoring plane offers software-based solu-
tions for monitoring, detection, and decision functionalities based on the informa-
tion received from the device and other domain components. The Network Boot-
strapping Monitor and the Intrusion Detection System (IDS) receive data from the
CERTIFY API in the IoT device regarding the network activity in different phase
of the lifecycle. They generate an alert if the network bootstrapping behavior dif-
fers from the expected one or if a threat has been detected at runtime, respectively.
Alerts are sent to the SIEM-SOAR component for aggregation and correlation anal-
ysis with other raw data and alerts. Also, this plane interacts with the Cyber Threat
Intelligence plane, since discovered threats can be shared with the MISP (Malware
Information Sharing Platform), and possible mitigations can be received in the form
of threat MUD files.

The Cyber Threat Intelligence (CTI) plane provides services for ensuring privacy-
preserving security information sharing like vulnerabilities, mitigations or recom-
mended configurations. A central pillar of this plane is constituted by the Privacy-
Preserving CTI (PP-CTI) system, which is responsible for anonymizing sensitive
data and attributes in cyber threat reports. For responding to identified threats,
the PP-CTI combines the MUD [7] with the Threat MUD server [10] as threat
signaling mechanism. The MUD is a standardized software description defined
by the Internet Engineering Task Force (IETF) Request for Comment (RFC)
8520, that allows IoT manufacturers to advertise device specifications and sup-
ported communication patterns. In particular, CERTIFY extends the MUD model
to accommodate finer-grained security aspects and diverse security policies. These
encompass extended network access control, channel protection, data protection,
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Figure 13.2. CERTIFY lifecycle methodology.

and authorization policies [8]. In this regard, while a standard MUD server offers
guidelines for allowed or restricted network activities for each device, a Threat
MUD server would allow to incorporate real-time or near real-time threat infor-
mation as provided by the PP-CTI.

Finally, the external plane integrates all the manufacturer services that, even if not
strictly part of the framework, are exploited by CERTIFY. In particular, it includes
services for security assessment and certification, CTI sharing, device authentica-
tion, and MUD generation and storage.

13.2.2 Certify Lifecycle Methodology

The CERTIFY lifecycle (pictorially represented in Figure 13.2) starts with the
design and deployment of the device. At that time requirements are considered,
the risk assessment is performed considering the target application domain, and
a certification may be requested. Moreover, keys, certificates and behavioral pro-
files used during the enrollment are built and securely stored by the manufacturer
(some information is stored on the device while others remotely). Once deployed,
the device bootstrapping takes care of the secure boot, enrollment, and config-
uration in the domain. During operations, device attestation and monitoring are
performed to identify the presence of any suspicious event. New threats, vulnerabil-
ity and patches may be identified by exploiting internal and external information.
These may summon update, upgrade and reconfiguration. Changes performed on
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the device and an evolved threat landscape are also considered while collecting the
evidence needed for a continuous risk assessment and the potential need to trig-
ger a device re-certification. A complete lifecycle includes also the case of device
repurposing (i.e., when it no longer fulfills a given purpose) and decommissioning
(requiring the proper application of data cleaning policies and default reconfigura-
tion).

13.2.2.1 Manufacturing: Design and Development

In this phase, the device is designed, created, programmed, and tested, so the ini-
tial level of security is established. In this stage, all the actors in the supply chain
(i.e., component designer, integrator, software and library developer) are part of the
process, while the manufacturer is responsible for carrying out the initial security
evaluation of the device. Adoption of the best security practices for design, produc-
tion and testing can ensure adequate implementation.

In this area, there is vast research and documentation effort to summarize all
existing attacks. Nonetheless, many more are found continuously. Furthermore,
there is difficulty in defining a common standard methodology to describe how
security evaluation and certification must be done. The wide variety and hetero-
geneity of methodologies, mechanisms, standards, and products generates a com-
plex landscape of solutions. Therefore, it is quite unclear which security aspects
should be considered to guarantee an adequate security level. In this context,
performing a comprehensive comparison is unfeasible, as different schemes use
their own metrics, especially when products are evaluated under different national
schemes or approaches, or when they include some subjective or difficulty calcu-
lating metrics (e.g., Common Weakness Scoring System, CWSS, uses likelihood).
The Cybersecurity Act (CSA) and the CRA present a pioneer initiative to foster a
European Cybersecurity assessment of product and services. These regulations, in
addition to the directive on security of network and information systems (NIS) [18]
and the General Data Protection Regulation (GDPR) represent the four main pil-
lars for cybersecurity in Europe.

However, as new vulnerability and threats are continuously discovered, defin-
ing a comprehensive and common standard methodology for cybersecurity test-
ing, evaluation and certification becomes cumbersome. On the one hand, the wide
variety of standards, certification schemes, and requirements hardens the goal of
an objective comparison on the security achieved by products and a comparison
between certified products. On the other hand, the intended use and context (reg-
ulation, domain, etc.) determine the security level required for a particular product
and requirements to be considered. This problem is exacerbated by the out-of-date
certificates offering a false sense of security due to zero-day vulnerabilities and evolv-
ing threats. The dynamism inherent to security makes necessary agile and dynamic
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approaches to manage the security of a product throughout its lifecycle. Conse-
quently, it is also necessary to consider continuous assessment and adopt dynamic
labels capable of showing in real time the actual security level. Current certification
schemas and approaches are not neglecting this dynamism, however Common Cri-
teria (CC), Commercial Product Assurance (CPA) or Certification de Sécurité de
Premier Niveau (CSPN), to name a few, require a complete recertification in case
of a security change, involving high money losses and time [19].

Toward this end, CERTIFY considers a security evaluation and certification
approach based on modelling, allowing to test the design of the device from the
very beginning and automating the security evaluation process as indicated in pre-
vious section, combining security testing and risk assessment towards an objec-
tive and automated assessment. In CERTIFY, the secure evaluation methodology
is supported by the Cyberpass tool,1 a cloud-based platform taking as input security
requirements and suggesting an evaluation methodology that starts with the self-
declaration/self-assessment, allowing the manufacturer to answer the questionnaire
based on these security requirements.

Although in general the results of the security assessment are used only to cer-
tify the security of the device, CERTIFY explores approaches to benefit from this
information during the deployment and operation of the device. In this sense, the
evaluation results can be embedded in a behavioral profile associated to different
levels of security with some recommendations (polices) to consider during the oper-
ation phase of the product. This profile reduces the attack surface to the allowed
behaviors, and it can be also used to monitor suspicious behaviors during the oper-
ation phase. This activity interoperates and makes use of the results of the previous
evaluation. Indeed, the behavioral profile designed in CERTIFY, which is based on
extending the MUD standard [20, 21] is generated from the security results con-
taining both security recommendations from the manufacturer and from the secu-
rity certification to perform a secure deployment. In particular, the use of MUD is
being extended to create augmented security profiles, to govern the intended com-
munications of IoT devices throughout their lifecycle.

Once the certification process is finished, the MUD is signed by the Certification
Authority (CA), and the manufacturer can publish it on its MUD server to be
accessible to any buyer of the product. The MUD URL together with the device
identity is then stored inside the device for its secure deployment.

To provide support for the following phases of the lifecycle, CERTIFY adopts
formally proven authentication and cryptographic protocols and robust isola-
tion mechanisms enabled by open hardware architectures and trusted computing

1. https://www.cyber-pass.eu/

https://www.cyber-pass.eu/
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standards. The architecture of the IoT device includes three strategic enablers: the
SE, the TEE, and the Embedded Security API acting as an interface for these low-
level components. The SE is a dedicated secure and physical tamper-resistant micro-
controller allowing protection against high-level software and hardware attacks.
Such an element, when present, will constitute the hardware engine, assuring sup-
port for the securitization at a high level of the IoT device. While the SE provides
PKCS11 functions [22] to be used by the agents to interface and invoke crypto
functionalities, the TEE provides a trusted world for those applications that need
it, supporting cryptographic functions and secure operations. This is necessary to
execute and protect CERTIFY processes such as IoT authentication, derivation of
keys or data integrity protection. The embedded security API aims to abstract access
to the low level IoT security components such as the SE and the TEE. Thanks to
these enablers, high-level components described in the following subsections can
securely enforce certain configurations inside the IoT device, not only policies, but
also software images (enforcement and reconfiguration agent), perform the secure
bootstrapping and authentication of the device (bootstrapping and authentication
agent), and monitoring of the IoT device behavior and configuration (attestation
agent).

13.2.2.2 Bootstrapping/Deployment

The bootstrapping phase starts when the device is installed and configured in a cer-
tain context. This process usually consists of a set of procedures in which a device
joins a network in a certain domain (health, house, industry…). During the boot-
strapping, the cryptographic material statically configured during manufacturing
of the device is used to derive dynamic credentials and keys to be used during its
operation. In recent years, different botnets (e.g., Mirai [23]) have shown that the
deployment of IoT devices can compromise critical infrastructures with huge eco-
nomic losses. This is especially critical in certain scenarios (e.g., involving eHealth
devices), which can affect users’ safety. To address such security concerns, there is
a need to define approaches to reduce the attack surface of the devices from the
very beginning. Beyond the use of traditional cryptographic (and more recently
towards post-quantum cryptographic algorithms) and access control techniques,
the security aspects of IoT devices should be properly managed through a gover-
nance approach to ensure devices behave as expected. However, the specification
and enforcement of such aspects can be challenging in environments where a huge
number of IoT devices can communicate with each other and, sometimes, without
the explicit consent from their owners.

Extended MUD files were integrated into the CERTIFY’s enhanced bootstrap-
ping to enable the safe deployment of configurations prior to the device join-
ing the domain. Therefore, the device will not be allowed to interact with other
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components or to access network resources until it is not properly identified, con-
figured, and authenticated, ensuring that the network will not be compromised
once the device will access to it.

Following this strategy, CERTIFY divides the bootstrapping into three sub-
phases, each of them involving a subset of the components reported in Figure 13.1:

1. The factory bootstrapping. In this phase, the cryptographic material
(device keys) and the MUD URL are statically configured and securely stored
in the IoT during manufacturing (if available, in the SE).

2. The domain bootstrapping. In this phase, the device requests to start the
bootstrapping in the domain (bootstrapping agent). CERTIFY leverages the
Constrained Application Protocol (CoAP) - Extensible Authentication Pro-
tocol (EAP) [24, 25] to authenticate the device and generate the keys. In par-
ticular, the bootstrapping agent acts as the EAP peer, the secure enrollment
module acts as EAP authenticator, the Device and Domain Manager acts as
an Authentication, Authorization and Accounting (AAA) domain server [26]
and the AAA manufacturer server acts as EAP server. Moreover, CERTIFY
relies on the extended MUD to securely configure the device. For this, CER-
TIFY adapts the IETF architecture to the MUD extension and the interac-
tions with other components. In this sense, the Extended MUD Manager is
the main entity of the CERTIFY MUD architecture. It aggregates the func-
tionality of the MUD manager and threat MUD manager, in charge of the
processes required for obtaining and parsing the MUD and threat MUD file.
This component has been extended from the IETF standard and the NIST
proposal. In this way, the MUD, which is stored by the manufacturer in
the Extended MUD Server, is obtained and translated to MSPL policies by
the Extended MUD Manager using the URL provided by the device. While
the Device and Domain manager orchestrates at domain level the enforce-
ment of the MSPL policies, the Enforcement and Reconfiguration Agent is
the component responsible for the internal IoT orchestration of the activi-
ties that need to be performed. Additionally, CERTIFY also checks that the
device type is authorized based on its fingerprint. While attempting to join
an IoT network, each device type exhibits a characteristic fingerprint. Such a
fingerprint changes by device type (hardware) and firmware version. The net-
work bootstrapping monitor exploits such a behavioral feature of the device
to build a monitor that can pose constraints on the devices that can join the
network as well as request the enforcement of specific rules. As fingerprints
are characterized by device type (and firmware version), we envision that the
manufacturer builds such a behavioral fingerprint and includes it as part of
the extended MUD file designed in CERTIFY.
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3. The domain enrollment. In this phase, high-end devices need to verify their
correct state based on the policies defined in the MUD. CERTIFY leverages
the DAA protocol to authenticate the high-end device and generate appropri-
ate policies for attestation. In the CERTIFY architecture, the Authentication
agent is responsible for the creation and management of the DAA key, and
the Secure Enrollment module is the DAA issuer, responsible for the issuance
of the cryptographic material required to enable the creation of DAA signa-
tures. While the extended MUD file is retrieved from the server and enforced,
enhancing device security in alignment with the manufacturer’s certification,
the DAA allows verifying the correct state of the device based on this verifi-
able evidence and helps to decide whether the network should allow or not
the device to join. All in all, these processes allow CERTIFY to leverage the
extended MUD file information during device bootstrapping to enable the
configuration of security policies before granting network access, enhancing
the security posture.

Once deployed, the device can generate dynamic credentials (authentication agent)
based on its identity for securely communicating with the entities inside the
domain.

All the information about authorized network devices, configurations, identity
certificates and upgrades are stored in the Device Inventory and Registry. In essence,
this repository serves as a pivotal tool in safeguarding the security, functionality, and
integrity of network devices while maintaining a comprehensive inventory of their
attributes by enabling monitoring and securing device-related information.

13.2.2.3 Operations

During the operational phase, continuous monitoring of the device is essential due
to evolving security threats and vulnerabilities that were not anticipated at design
time. The device’s security level changes over time, requiring re-assessment and
potentially re-certification.

In the CERTIFY framework, monitors are in place to send information about
the IoT device (Sniffer and Tracer). Therefore, whenever a vulnerability is detected,
CERTIFY can select and apply a mitigation. This information is processed by run-
time attestation (Attestation agent) and by the Integrity monitor to check the ful-
fillment of the security properties certified (i.e., the ones contained in the MUD)
during the operational phase. Network traces are also processed by the IDS that
analyses the traffic in real-time and alerts about potential threats. Detection rules
are periodically updated with new known signatures and new rules can be added
to customize the solution to customers’ and users’ needs. The detection is enriched
with an anomaly detection procedure that analyses offline datasets of network traffic
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to identify potential misbehavior and anomalies in the usage of the network. These
events can be further processed with more advanced, and computationally expen-
sive, solutions by the SIEM-SOAR that could also correlate multiple events iden-
tified in the network and on the device under analysis.

The SIEM-SOAR tool combines the typical functionalities of Security Informa-
tion and Event Management (SIEM) and Security Orchestration, Automation and
Response (SOAR) systems. While the SIEM allows for the collection and analy-
sis of security events and contextual data, the SOAR enables the centralized han-
dling of threat intelligence and automates responses to security incidents, signifi-
cantly reducing reaction times and limiting potential damage. Given alerts details,
the SIEM-SOAR identifies and applies the most appropriate reaction (e.g., pub-
lish information, request an update, apply a mitigation by reconfiguring system,
network or device, or even check for threat MUD file from the Extended MUD
Server). Then the Device and Domain Manager coordinates the mechanisms to
enforce mitigations and updates on the IoT Device. If an update is required,
the secure update and upgrade agent orchestrates the software update based on
the information contained in the local software repository, Manufacturer software
repository, and Inventorying and Registry. In any case, the Enforcement and Recon-
figuration agent is in charge of enforcing the configuration on the IoT device.

By linking runtime detection with mitigation actions suggested by manufac-
turers, threat databases, or certification authorities, CERTIFY ensures timely pro-
tection against identified vulnerabilities. This is facilitated by an extended threat
MUD. CERTIFY combines manufacturing-phase security evaluation with run-
time metrics to continuously assess security. The system can deny network access
if critical risks are detected, and adjust device configurations as needed to maintain
security.

CERTIFY also promotes continuous communication among stakeholders by
integrating external security information about new vulnerabilities, updates,
patches, and potential zero-day attacks with domain-specific data. The framework
integrates mechanisms to share security information with manufacturers and other
interested parties in a privacy-preserving (PP) way through the PP-CTI compo-
nent [27]. In particular, the PP-CTI includes data mining techniques such as
suppression, generalization, K-Anonymity, T-Closeness, L-Diversity and Differ-
ential Privacy [28–30]. PP-CTI interfaces with the Malware Information Shar-
ing Platform (MISP)2 where vital threat information is shared, and other valuable
cybersecurity insights. Furthermore, PP-CTI & MISP integrates an access control
layer, featuring identity management software such as Fiware Keyrock [31]. This

2. https://www.misp-project.org/

https://www.misp-project.org/
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allows CERTIFY to decide which entities can send or receive specific data, further
enhancing data security and privacy. The information could then be accessed by
other CTI providers and the manufacturer (MISP manufacturer). In the same way,
new threats and alerts can be received and exchanged among these sources.

13.2.2.4 Updating

Traditionally, IoT security has been hindered by a "set and forget" approach,
where manufacturers and service providers configure devices but rarely update their
firmware. This practice represents a significant obstacle to long-term IoT security.
To overcome this, OTA [32] software updates are essential for maintaining the secu-
rity of IoT devices over time. This necessity is reinforced by various standards and
recommendations, including those from the European Union Agency for Cyberse-
curity (ENISA), which has emphasized the importance of regular software updates
in enhancing the security and reliability of connected devices [33, 34].

However, the process of updating software on IoT devices introduces its own set
of cybersecurity challenges [35–37], particularly for devices with limited resources.
In response to this, the IETF published RFC 9019 [38], which defines a stan-
dardized architecture for firmware updates in IoT environments. CERTIFY builds
on these guidelines, incorporating OTA components that adhere to RFC 9019’s
framework. To further enhance security, CERTIFY integrates advanced blockchain
technology, which records every event related to firmware updates and device meta-
data. This ensures transparency, immutability, and a continuous chain of trust
throughout the OTA process. Secure cryptographic algorithms are employed to
verify firmware integrity and to sign firmware updates, ensuring that the software
is authentic and untampered.

The updating phase in CERTIFY encompasses the procedures for deploying
software updates or patches provided by manufacturers, as well as configuration
tasks required to address newly identified threats. These procedures involve mul-
tiple components, including the enforcement and reconfiguration agent, secure
update and upgrade agent, device and domain manager, inventory and registry,
and software repository. The secure update-and-upgrade agent provides a graphical
user interface (GUI) where security administrators can manage registered devices
and software. This interface allows administrators to upload new software to the
software repository, register it with the Device and Domain Manager, and trigger
updates. It also includes features to check for available updates and initiate the
upgrade process, making the management of software versions straightforward and
efficient. The software repository serves as a storage hub where software packages
are stored, organized, and managed. This repository allows users to access, down-
load, and update applications and libraries, facilitating the distribution of software
across devices. By centralizing the management of software packages, the repository
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ensures that updates are delivered efficiently and securely to all connected devices
within the network.

Finally, to enhance the transparency and traceability of the update process, CER-
TIFY framework employs DLTs such as blockchain. This provides a transparent
ledger that tracks software versions and any known vulnerabilities, allowing manu-
facturers to be represented as individual blockchain nodes. Through this approach,
information about software components can be securely shared between stakehold-
ers. Although interoperability issues with various DLT implementations persist,
CERTIFY is exploring the use of interledger technology to link different DLT sys-
tems into a cohesive, secure framework for managing updates.

13.2.2.5 Decommissioning & Repurposing

The decommissioning phase in the CERTIFY lifecycle methodology represents the
final stage in the life of a connected device, where it is either retired or repurposed.
This phase is critical to ensuring that once a device has reached the end of its
operational life or it is no longer able to meet security requirements, all security-
sensitive data and configurations are effectively and securely handled. The focus
during decommissioning is on safeguarding the network and preventing any resid-
ual vulnerabilities that might remain if the device were simply discarded without
proper protocols.

A device may be decommissioned for several reasons: it may no longer meet the
security standards required for its operational environment, it may be incompatible
with essential software updates due to hardware limitations, or a vulnerability may
have been discovered that cannot be mitigated through available patches. In all these
cases, the decommissioning process begins by performing a comprehensive analysis
to determine whether the device can be repurposed for a different or less security-
critical role, or if it must be fully decommissioned and removed from service.

When a device is slated for decommissioning, CERTIFY emphasizes the impor-
tance of secure data erasure. This involves permanently wiping all sensitive data
stored on the device, including cryptographic keys, certificates, and any stored
configurations or logs. Simply restoring the device to factory settings is not suf-
ficient in most cases, as residual data might remain accessible. CERTIFY ensures
that the decommissioning process includes a thorough, verifiable data destruction
procedure, employing cryptographic techniques or secure overwriting methods to
guarantee that no information can be recovered.

For devices that are repurposed rather than fully decommissioned, CERTIFY
provides a framework for reconfiguring the device for a different role within the
network. This may involve reassigning the device to a domain with lower secu-
rity requirements or reconfiguring its functionality to handle fewer sensitive tasks.
Repurposing a device can often extend its operational life and reduce costs, but it
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must be done in a way that ensures the device is still capable of meeting the security
standards necessary for its new role.

If a device is determined to be unsuitable for repurposing, the final step in the
decommissioning phase is its secure removal from the network. DLT technology
used in the CERTIFY’s framework provides a transparent and immutable record
that verifies the device’s decommissioning and ensures compliance with all relevant
security policies. This record could not only include confirmation that all sensitive
data was securely erased, but also the steps taken to prevent the device from re-
entering the network or being reused in an unauthorized manner.

13.3 Connected Cabin System – CERTIFY Use Case

Next generation aircrafts foresee the presence of a multitude of IoT-based connected
devices supporting new and enhanced services in the cabin, e.g., smart screen, galley,
lavatory, seat, and light. This evolution will usher in the era of intelligent aircraft
cabin. The expected benefits from such a scenario encompass: (i) a personalized
experience for passengers, e.g., customized In-Flight-Entertainment (IFE) and seat-
ing configurations; (ii) opportunities for airlines in delivering targeted retail offers;
and (iii) optimized operations and Prognostics and Health Management (PHM)
applications, thanks to a detailed overview on the aircraft status and passenger pref-
erences built through distributed and connected sensors.

This environment is characterized by a high volume of data per second – GBs up
to TBs (considering all the sensors in the aircraft) – and by a heterogeneous set of
devices. Communications is performed by means of wired (e.g., the Ethernet-based
AFDX – ARINC 664, CAN bus, ARINC429) or wireless connectivity (e.g., IEEE
802.11, ECMA-368, IEEE 802.15.3). The device heterogeneity is also reflected in
the different capabilities to host services. It is worth noting that the devices consid-
ered in this scenario are part of the cabin system and therefore do not require any
specific safety assessment. However, they must still meet the related certifications,
guidance, and regulations for airworthiness (e.g., from RTCA, EUROCAE [39],
FAA [40] and EASA [41]) such as the AC 20-168 and the RTCA DO-313 “Certi-
fication Guidance for Installation of Non-Essential, Non-Required Aircraft Cabin
Systems & Equipment (CS&E)”. Therein it is required to verify the security of
the wired and wireless systems, by adopting a design approach that will prevent
any unintended change to the systems during operations. The emphasis is given
to hardware, software, network, and data in consideration of the potential chal-
lenges related to the inclusion of Commercial Off the Shelf (COTS) components
where alternative methods and processes are needed to perform the required tests
and evaluations. All in all, there is a clear need to protect these devices throughout
their lifecycle and generate appropriate evidence.
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Figure 13.3. High-level block diagram of the CERTIFY use case for the connected cabin

system.

The CERTIFY use case considers an environment constituted by two differ-
ent classes of devices deployed in the cabin, plus a set of infrastructural remote
services hosted by the component and system manufacturer, and airline. The on-
board devices are: i) IoT node devices having a small footprint in terms of “Size,
Weight, Power and Cost” (low-SWaP-C ) and ii) high-end embedded central con-
troller devices able to host more complex software services and manage entire func-
tionalities in the cabin. These two classes of embedded devices have respectively
been exemplified in the project by a custom RISC-V based node and an off-the-
shelf high-end embedded board based on the ARM instruction set. Moreover, an
aircraft gateway oversees the communications to/from the aircraft. This heteroge-
neous architecture requires a trade-off analysis on the cybersecurity services and
functionalities of the CERTIFY framework that can be deployed. Figure 13.3 pic-
torially represents the use case.

For demonstrating the CERTIFY functionalities, three different scenarios cover-
ing multiple stages of the product lifecycle have been introduced. Namely, installa-
tion of a new component, operations and monitoring, and replacement and repur-
posing. In the following, we briefly recall the scenarios later referenced in Sec-
tion 13.4 where the approach taken by CERTIFY for these scenarios matches the
EU CRA.

Scenario 1 – Installation of a new component. A new component needs to be
installed in the cabin. This could exemplify the adoption of a new smart component
(e.g., a smart coffee machine) in the cabin. To not compromise the cybersecurity
posture of the system the performed process must include bootstrapping, initial
update, and customization for the specific deployment environment by considering
the secure configuration defined by the product owner/manufacturer during the
product evaluation for the original certificate. Moreover, if the new component is
a replacement for a previously installed one, secure decommissioning, including
reset and wipe out of any sensitive data, must be performed by the maintenance
operator.
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Scenario 2 – Operations and monitoring. Data is periodically collected in the
cabin with a frequency that is dependent on application and services, e.g., for mon-
itoring, optimization, and preventive maintenance. Moreover, it is worth consider-
ing that connecting passengers’ devices, as well as the presence of a wireless network,
generate a wider attack surface. Similarly, external infrastructures can upload data
for onboard connectivity experience and In-Flight Entertainment (IFE) services.
Moreover, maintainer and product owner may also need the availability of a remote
connectivity to perform device reconfigurations. All these operations demands for
vulnerability management and anomaly detection throughout the entire operations
of product and system.

Scenario 3 – Replacement and repurposing. In case a cabin system component
has a failure, to minimize the downtime, a compatible replacement Line-replaceable
unit (LRU) could be retrieved from the same manufacturer and repurposed for
the specific target system. Airline, maintainer, product owner, and maintenance
operator are all involved to manage different steps of the process. It is important
to check that the device has all the characteristics needed to be repurposed before
using it. Indeed, the new deployment may request a different amount of resources
to host services and security features. Therefore, the new usage must be among the
ones foreseen and certified by the manufacturer so that proper reconfiguration can
be implemented.

13.4 Towards a CERTIFY Pilot for the European Cyber
Resilience Act

Looking at the current cybersecurity policy landscape it was quite straightforward
to make a connection between CERTIFY and the CRA due to the scope of its
application and its strong impact on IoT products. CRA also revolutionizes the
cybersecurity ecosystem by imposing requirements, both at the product and process
level, with significant implications over the entire product lifecycle.

The CRA could officially enter into force by the end of 2024, after being pro-
posed by the European Commission at the end of 2022, and after being adopted by
the European Parliament in March 2024. The objective of the CRA is to establish a
minimum level of cybersecurity for all digital devices (both software and hardware)
sold in the EU internal market. In order to achieve that, the CRA sets to:

• facilitate the secure development of products with digital elements and their
components;

• define cybersecurity rules for placing products on the market;
• define requirements for the design, development, and production of prod-

ucts;
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• define requirements for the vulnerability handling process;
• establish rules on market surveillance and enforcement;
• establish more or less stringent proof of conformity depending on the cate-

gory the products fall in (i.e., self-declaration, third-party assessment, etc.).

To understand the implications of the CRA developments, the Connected Cabin
Systems use case of CERTIFY is chosen as a reference with the intent to consider
the large scope of its three scenarios, as well as the security challenges, and the com-
plexity of the set of actors involved. It is quite clear that the CRA is a very horizon-
tal piece of legislation with common cybersecurity requirements for all products,
regardless of sector or field of application. Most of the devices involved in the Con-
nected Cabin se case would most likely fall under the CRA scope (e.g., IoT nodes,
central controllers, aircraft gateway). Indeed, Article 2 of the CRA text says that the
regulation applies to products with digital elements made available on the market,
which includes a direct or indirect logical or physical data connection to a device
or network.

The remaining of the section develops further the ambitious and challenging
task of trying to pave the way for a pilot on the CRA offered by the CERTIFY
project. The challenge is mainly due to the fact that the CRA is not yet adopted,
even though the text is stable, many aspects still need to be defined, and quite
several key aspects will be postponed to delegated and implementing acts. Thus,
the analysis herein presented might need to be revised when the details and the
actual application of the CRA will occur after a transition period.

In addition, CERTIFY remains a research project, so both from a product and
regulation perspective, we still need to go through complex revision cycles. More-
over, we do not claim to perform any conformance test, nor do we plan to undergo
a certification process within the context of this exercise, nor the CERTIFY frame-
work pretends to be an answer to the complex issue of conformity assessment.

In conclusion, we believe we discuss the CERTIFY use case in the context of the
CRA to bring a better understanding of the project impact being developed in close
alignment with the reality of the industry, the law, and its evolution. In other words,
each technical advancement of the project should be performed keeping in mind
what regulatory context it will face, facilitating rather than making more difficult
the adherence to such regulatory context. The CERTIFY framework can be a step
toward alignment with the CRA and its implementation.

13.4.1 Use Case Analysis for the CRA

This section discusses the CRA in the context of the three scenarios discussed in
Section 13.3.
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Scenario 1: The CRA ambitiously aims to make cybersecurity a primary perspec-
tive in the design, development, and production of products with digital elements.
In essence, as has been stated in several policy fora, the successful implementa-
tion of the CRA would assure a security by design approach for each manufacturer
that makes products available in the EU market. This could be achieved by making
sure that several basic cybersecurity requirements are respected and that, ultimately,
products made available do not have any known vulnerability. In CERTIFY, this
step is carried out through the automation tool CyberPass which streamlines the
conformity assessment process based on the ETSI EN 303 645 standard [34]. It
is important to note that this latter standard was highlighted by the CRA Require-
ments Standards Mapping study [42] conducted by ENISA and the European Com-
mission’s Joint Research Centre since it maps to most of the CRA essential require-
ments. Strictly speaking, the scenario in question focuses on secure bootstrapping
and customization of a cabin component into the network. Similarly to the essen-
tial requirements of the CRA, an initial set of basic requirements is pushed on the
component to be part of the network. In addition, CERTIFY provides a certificate
of the secure state of the newly added component, which should ideally facilitate
further demonstration of regulatory compliance.

Scenario 2: The scenario on operations and monitoring is probably the most inter-
esting for a CRA pilot. It touches upon several pillars and angles of the CRA, but
more precisely on the provisions related to lifecycle and vulnerability management.
If, for instance, a rogue device injects false data and or takes harmful actions within
the cabin, the CERTIFY framework will be able to monitor and spot that. It goes
without saying that, in case a vulnerability is detected, one or more digital prod-
ucts within the systems might no longer be compliant with the CRA, or at least be
impacted by a “known exploited vulnerability”. Clearly, the CRA requires market
operators to take action, stressing their need to assure support all along the life-
cycle of a product (being for product and service support, updates, or mitigation
responses).

Moreover, this scenario taps into part of the CRA essential requirements that
insist on processes and not only on products: such requirements call for the vulner-
ability handling processes put in place by manufacturers to ensure the cybersecurity
of products with digital elements during the time the product is expected to be in
use. In particular, there should be clear processes and formal policies showing that
the manufacturer can immediately take corrective measures. Indeed, once a vulner-
ability is discovered, the manufacturer must promptly perform the necessary actions
to bring a product with digital elements or the manufacturer’s processes into con-
formity, or alternatively withdraw or recall the product, as appropriate. The CER-
TIFY methodology includes collection, identification, and decision, and coupled
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Figure 13.4. The CERTIFY cybersecurity lifecycle methodology and framework aligned

with recent EU regulation: the CRA example.

with its real-time monitoring capabilities (e.g., SIEM-SOAR, IDS, runtime attesta-
tion, MUD), allows for the identification and handling of any anomalous behavior
while placing its user in a better spot to comply with cybersecurity regulations.

Scenario 3: The last scenario is the Line-replaceable Unit (LRU) one. Here again,
the CRA is quite explicit in the obligation to support and update digital products.
However, one of the peculiar aspects of this scenario is the eventuality of repurpos-
ing a device within a network for a different use or functionality. The CRA text
calls for an assessment of the intended use of a product with digital elements. In
other words, the new potential purpose of a network component should already be
foreseen by the market operators as the CRA calls on them to be familiar with the
intended use of a product, as well as with its “foreseeable use and misuse”. Repurpos-
ing a component within a system is therefore a perfect test-based scenario to assess
the emergence of new intended uses. Finally, the operator should always adopt a
risk-based approach to continuously assess this eventuality and make sure that new
device usage does not lead to harmful and previously unforeseen consequences

Figure 13.4 pictorially represents the link between the use case, the CRA and
the CERTFIY project.

13.4.2 The Role of the Extended MUD File

During the design of the CERTIFY methodology, the usage of the extended MUD
file emerged as the cohesive element for the three scenarios. Each actor can collab-
oratively contribute, update and provide a state of the security of the system. The
usage of the MUD file (and particularly its extension considered in CERTIFY)
meets the spirit of many of the regulatory provisions contained in the CRA text.
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Such a tool would help with the dispatching of newly discovered vulnerabilities as
well as their mitigation. The enforcement of the latest MUD file policies would
support the creation of evidence of a secure state of the system, providing a basis to
build on for notification and reporting purposes.

The legislator has underlined several times how market operators should sys-
tematically document relevant cybersecurity aspects concerning products with dig-
ital elements, including vulnerabilities of which it becomes aware and any rele-
vant information provided by third parties, and shall, where applicable, update
the cybersecurity risk assessment of the products. In addition, the CRA introduces
complex notification and reporting rules concerning exploited vulnerabilities and
severe incidents (with some novelty elements such as a Single Reporting Platform or
a Single Point of Contact for manufacturers).

Moreover, the extended MUD file would enhance the possibility of collabora-
tion with all the stakeholders, encouraging cooperation and cohesion toward IoT
security. All these ingredients combine well with the need for cooperation with the
stakeholders involved in the notification and vulnerability handling procedures,
e.g., CSIRTs (Computer Security Incident Response Teams), ENISA, Single Point
of Contacts. Ideally, the extended MUD file could also be a good starting point to
build the conformance documentation (being itself or third-party-assessed).

13.5 Conclusions

While European regulations advance cybersecurity by imposing measures to man-
age it throughout the lifecycle of a device, it is still not clear how to implement
such cybersecurity lifecycle management in an efficient and coordinated manner.
In response to this problem, this chapter provides an introduction and comprehen-
sive overview of the general architecture of CERTIFY.

CERTIFY gets inspiration from recent EU initiatives such as the Cybersecu-
rity Act and the Cyber Resilience Act the core role covered by certification, lifecycle
management and information sharing. Indeed, in its framework CERTIFY consid-
ers: (i) current certification status and reports, as baseline for describing the security
profile of a device including security controls, policies, recommended configura-
tion (by means of the extended MUD) and assurance level according to domain of
deployment; (ii) behavioural profile, as a way of describing the expected function-
ing of the device; (iii) threat modelling and risk assessment, that from a baseline
built at design time is continuously updated thanks to the information sharing and
the usage of the threat MUD; (iv) change impact analysis, to dynamically under-
stand, from internal and external information, how changes in the threat landscape,
and applied security controls and policies may impact the security posture of the
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system; v) recertification from testing results, by leveraging a complete assessment
of the reached security level and exploiting the artifacts collected throughout the
device lifecycle to request and support an agile recertification process in case the
device should not meet anymore the requested Security Assurance Level (SAL).

This chapter discusses the CERTIFY project in the context of the CRA. In par-
ticular, the Connected Cabin Systems use case is analyzed with the intent to shed
some light about the challenges and impact of the implementation of the CRA in
a real industrial case.

The holistic methodology adopted by CERTIFY ensures that the CERTIFY
architecture is suited to address the complexities of managing the security lifecycle
of IoT devices, offering robust security, privacy, and adaptability in an ever-evolving
digital landscape.
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Chapter 14

Developing a Near-real Time AI-based
Network Intrusion Detection System

By Dimitrios Sygletos, Dimitra Papatsaroucha
and Evangelos K. Markakis

The rapid growth of the Internet in recent years has allowed technological advance-
ments, including communication fields by enabling global connectivity in real
time, which has broken down geographical barriers and allows communication
with anyone, anywhere, at any time. The size of the network data and the cor-
responding information that gets transmitted though communication channels
have significantly increased as a result of these improvements, while technolog-
ical advancement creates concerns regarding the security of data during trans-
actions, since even simple transactions contain sensitive information. The secu-
rity of the data is constantly under threat, while cyber-crimes are evolving to be
more effective and complicated to detect. However, cyber security techniques are
under constant enhancement as well. Researchers are investigating and employ-
ing a variety of approaches to secure computers and networks in order to protect
systems and data. Among the suggested approaches resides the development of sys-
tems that analyze the network, monitor for signs of malicious activity, and trigger
an alert when they detect potential threats, namely Network Intrusion Detection
Systems (NIDSs). Machine Learning (ML) and Deep Learning (DL) techniques
were introduced into NIDSs to enhance detection efficacy and potentially identify
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unknown attacks, namely zero-day attacks. ML and DL models are trained with
network traffic data in order to learn to identify patterns of malicious and benign
activity. A challenge of this approach is that ML and DL models should always
be trained and tested with modern network traffic in order to achieve improved
detection results, while models should also be evaluated in realistic network envi-
ronments. Although there are numerous studies across the literature that propose
and develop NIDS solutions, the majority of them don’t deploy the model after
training into a realistic network for validation or they use outdated datasets for
the training of the model. This chapter proposes a NIDS that incorporates a DL
model and an in-house dataset developed, which portrays modern network traffic.
The dataset was typically divided into training and testing sets and ML metrics
such as Accuracy, Recall, Precision and F1-score were used to evaluate the mod-
els’ performance during the training and testing phase, while the NIDS was also
deployed in a realistic network and was evaluated in near-real time conditions.
The proposed solution showcased promising results by achieving over 97% rate
on the accuracy evaluation metric during the training phase and over 90% when
deployed in a realistic network environment and evaluated during a near-real time
scenario.

14.1 Introduction

Cybercrime is defined as any illegal activity performed through the internet utilizing
networks or electronic devices with the intention of inflicting damages to the sys-
tem’s infrastructure, tampering with the data and intercepting information among
others. Such crimes include data breaches, fraud, identity theft, computer viruses,
and more. As reported in the annual report by the European Union Agency for
Cybersecurity (ENISA) [1] for 2023, an increase has been observed in the quantity
as well as consequences of cyberattacks. In accordance with ENISA, throughout the
halfway of year 2022, there were less than a thousand cyberattacks reported global
and in the European region; however, during the first half of 2023, this number rose
to more than 2500 reported cyberattack incidents. Moreover, according to [2], the
inflicted damage worth will be 9.5 trillion USD globally in 2024 and the cost will
grow by 15 percentage for the year of 2025, reaching 10.5 trillion USD.

Researchers are working to develop solutions to this global pandemic of cyber-
crime. Among the main goals is to develop systems that monitor for potential
malicious activities that target networks or connected devices. Intrusion Detec-
tion Systems (IDS) [3] have been the main topic of several studies, since this
approach shows great potential to protect against and/or mitigate a number of
cybercrime-related issues. These systems monitor the network for indications of
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malicious activity and trigger an alert when they identify potential risks. They
are divided into two categories: Network intrusion detection systems (NIDS), and
Host Intrusion Detection Systems (HIDS). NIDSs [4] monitor for malicious activ-
ity and unauthorized access on networks, while HIDSs [4] monitor on devices that
produce logs or metrics, seeking indicators of suspicious behavior to identify abnor-
mal activities.

NIDS have two methods to detect intrusions: Signature-Based [3] and Anomaly-
Based [3]. Systems that maintain intrusion signatures in their database and compare
incoming traffic are referred to as signature-based detection systems. However,
this type of system has a disadvantage as it cannot identify unknown intrusion
traffic that may constitute a cyber-attack. Conversely, anomaly-based detection
methods are able to detect and notify regarding unknown intrusion traffic because
they can use various Machine Learning (ML) and Deep Learning (DL) algorithms
that are trained with a network dataset to identify patterns of malicious traffic.
ML as a subset of Artificial Intelligence (AI) utilizes mathematical algorithms in
many research domains [5]. This method can acquire knowledge from the data
and generalize to unfamiliar data, thus perform tasks without having previously
been directly programmed. However, this method has also some drawbacks, such
as the false positive alarm. This alert occurs when the system detects suspicious
behavior and responds accordingly, however the identification of this behavior as
malicious is a false alarm. In order to address this issue, the Deep Learning (DL)
technique has been developed as a subset of ML that is manufactured with Neural
Networks (NNs).

NNs are artificial neurons that aim to imitate the complicated procedure of
decision-making by taking inspiration from the architecture and functions of the
human brain. DL models are capable of simulating a decision similar to the human
brain, adapting to novel patterns and continuously learn from their failures [5]. One
of the most recent and effective methods to detect intrusions and novel attacks in
NIDS is the utilization of DL methods. The term "novel attacks" refers to unknown
or new threats that have the ability to exploit vulnerabilities in the network or in
the machines. In addition, attackers often attempt to “hide” their traces, but by
employing DL techniques in NIDS patterns and behaviors that are being sugges-
tive of cyberattacks can be identified.

ML and DL enable NIDSs to identify patterns that serve as normal and mali-
cious behavior traffic baseline of the system and, therefore, detect anomalies. How-
ever, the drawback of this method is that traffic may be misclassified as benign or
malicious, respectively. In addition, most of the case studies that utilize ML and
DL, adopt an outdated network traffic dataset for the training of the models while
they lack deploying the NIDSs in realistic environments for evaluating Near-Real
Time network intrusion detection, such as in [6] and [7].
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Considering all the previously mentioned statistics and reported issues from [2]
and [1] as well as current studies and solutions identified in the literature, this chap-
ter introduces an Anomaly-based NIDS, since this detection method can identify
intrusions and novel attacks. The proposed solution utilizes the DL capabilities of
Convolutional Neural Networks (CNN), such as the generalization to new unseen
data, the scalability to process very large datasets and the decision-making complex-
ity in real time, to make predictions about the network traffic in near-real time. A
recent in-house developed dataset was utilized for the training of the CNN model.
This dataset reflects modern network activity and contains recent traffic patterns,
behaviors, and threats with the aim to accomplish developing a more robust and
accurate model that can address some of the modern difficulties that cybersecurity
in general and network intrusion detection in particular encounter.

The remainder of this chapter is structured as follows: the State of the Art is pre-
sented in sub-chapter 14.2, the implementation of the proposed NIDS is described
in sub-chapter ??, the Model Evaluation Process is covered in sub-chapter ??, and
the Conclusion and Future Work Plans are presented in sub-chapter ??.

14.2 State of the Art

Malicious network attacks become complicated to detect due to the continuous
progress of cyberthreats. A wide range of software and platforms begin to utilize the
ML capabilities, as they enhance their ability to detect cyberthreats. The dataset
that trains an ML has a major impact on how efficiently the model detects the
intrusions. Identifying those intrusions in the network at the time that they occur
is one of the most essential parts to be provided by the ML models. In this section,
a review of the literature is presented regarding various ML and DL models trained
with a variety of datasets to compensate for the aforementioned issues.

To address some the abovementioned issues Yalei ding et al. [8] presented a CNN
model that was trained with the KDD’99 dataset. The findings of the proposed
paper were compared with other studies that used KDDTrain+ as the training set,
and KDDTest-21 and KDDTest+ as the testing sets. For the evaluation metrics
such as accuracy, detection rate, and false positive rate were measured. ML algo-
rithms such as Random Forest (RF), and Support Vector Machine (SVM), as well
as DL algorithms such as Long Short-Term Memory (LSTM) and Deep Belief
Network (DBN) were utilized. The results showcased that RF obtained the highest
accuracy among the ML algorithms, scoring 74.18% at KDDTest+ and 51.01%
at KDDTest-21. The second highest score among the DL algorithms was achieved
by LSTM with 73.18% and 49.37%, respectively. The demonstrated results show-
cased that the authors’ proposed CNN model scored higher than all other ML and
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DL algorithms that were tested across all evaluation metrics, with KDDTest+ scor-
ing 80.13% and KDDTest-21 scoring 62.32% in terms of accuracy.

More researchers every year are progressively beginning to utilize the ML and DL
since they are constantly evolving and have great potential to detect cyberthreats on
the network. Thus, Pramita Sree Muhuri et al. [9] presented a novel method to clas-
sify the NSL-KDD dataset with LSTM and Recurrent Neural Networks and com-
pared their results with various traditional ML algorithms such as RF and SVM.
Their approach intergrades a Genetic Algorithm (GA) for feature selection, which
offers several benefits when the consideration of many features is required to predict
a class. With 122 features that were selected from the multiclass NSL-KDD dataset
the results showed that traditional ML algorithms such as SVM and RF achieved
a 67.20% and 80.70% score in accuracy, respectively, while the proposed model
achieved 82.68%. Moreover, the addition of 99 optimal features improved the
aforementioned models, with SVM reaching 68.10% and RF achieving 84.90%,
while the proposed model improved significantly reaching a 93.88% in accuracy.
The results demonstrated that DL algorithms outperformed ML algorithms regard-
ing the evaluation metrics.

With the steady evolution of ML and D to detect intrusions, the authors [10]
developed a DL-based NIDS, which focuses primarily on Denial-of-Service attacks
(DOS). During the training phase of the DL NIDS two different datasets were
used, namely: KDD’99 and CSE-CIC-IDS 2018. Moreover, two (2) additional
models were developed, one with CNN and one with RNN to cope with time series
data or data that includes sequences. Results demonstrated that CNN achieved a
99% accuracy with KDD’99 multiclass dataset and 91.5% accuracy with CSE-
CIC-IDS 2018 multiclass dataset. On the contrary, RNN model reached a score of
93% and 65% in accuracy, when using KDD’99 and CSE-CIC-IDS 2018, respec-
tively.

In similar vein, the authors in [11] presented a hybrid DL model for network
intrusion detection with Bidirectional LSTM and CNN that were trained on the
NSL-KDD and UNSW-NB15 datasets. The proposed model reached a score of
98.88% on the scale of detection rate (DR), 0.43% in FPR, and 99.22% in accu-
racy when trained with the NSL-KDD multiclass dataset, while with the UNSW-
NB15 multiclass dataset it reached 92.5% in DR, 6.0% at FPR, and 82.08% in
accuracy. These results were compared with another research model, the HAST-
IDS that was trained and evaluated with the same datasets. HAST-IDS reached
95.85% in DR and 93.27% in accuracy when trained with the NSL-KDD dataset.
On the contrary, when trained with UNSW-NB15 the model achieved 93.65% in
DR, 9.6% in FPR and 80% in accuracy, indicating that the proposed model when
trained with NSL-KDD outperformed the rest of the implementations that were
used for the comparison.
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Following the approach in [11], Pengfei Sun K et al. in [12] developed a DL
hybrid NIDS incorporating a CNN and an LSTM model. The proposed solution
was trained with the CICIDS2017 dataset, and the authors applied one hot encod-
ing to the data in order to be used for multi-class classification. For the evaluation
of the proposed model, two additional models were developed with the same input
data. The first model was based on CNN, while the second was based on LSTM.
The results showed that the CNN model reached 98.44% in accuracy and 93.11%
in F1-score while LSTM reached 96.83% and 90.97%. On the contrary, the pro-
posed solution, which combines CNN and LSTM, achieved 98.67% and 93.32%
accuracy in F1-score in the evaluation metrics and outperformed the models that
were developed based solely on either CNN or LSTM.

CIC2017 was also used by the authors in [13], who provided a highly scalable
and hybrid Deep Neural Network (DNN) framework trained with a variety of
datasets, which was applied in real scenarios to efficiently monitor network traffic
and host level events in order to avoid possible intrusions. The topology architecture
of this method had 5 layers of DNN, and the authors utilized 5 different datasets
to train this hybrid DNN model, namely KDD’99, NSL-KDD, UNSW-NB15,
WSN-DS, and CICIDS 2017. The proposed architecture consisted of a different
input and output layer of neurons, since each dataset is multiclass and features dif-
ferent quantities of classes. The evaluation of the proposed framework after training
showed that WSN-DS, CICIDS2017, KDD’99, NSL-KDD and UNSW-NB15
datasets achieved accuracy results of 96.4%, 95.6%, 92.5%, 78.5%, and 65.1%,
respectively. According to their findings, their DNN framework outperformed var-
ious ML algorithms such as RF, SVM etc., utilizing the same multiclass datasets, in
accuracy, precision, recall, and f1-score. In order to achieve real time detection of
the intrusions and attacks, the authors deployed the proposed DL model into the
realistic network and results showed that this hybrid and highly scalable proposed
framework has the ability to constantly monitor network traffic and supply alerts
whenever malicious traffic is detected in real time; however, the authors did not
reveal the exact prediction rate of that traffic.

In similar vein, the authors in [14] presented a scalable and hybrid IDS. The pro-
posed solution was developed with the Spark-ML and Convolutional-LSTM and
trained with the ISCX-IDS 2012 dataset. The evaluation of the presented approach
was compared with similar studies, using the same dataset. The authors’ scalable
and hybrid systems showed an accuracy rate of 97.29% and a false alarm rate of
0.71%. Although, additional studies had satisfactory rate of 95.31% in accuracy
and 0.80% in false alarm rate, authors with their approach provided better results
with this particular dataset.

The performance of bidirectional and conventional LSTM models was investi-
gated by Yakubu Imrana et al. [15], who presented a Bidirectional LSTM model
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consisting of two separate LSTM modules, trained on the original and reversed
input datasets correspondingly. In order to validate the effectiveness of the bidirec-
tional LSTM model, the results were compared with a conventional LSTM model
while NSL-KDD dataset was used for the training of the model. The proposed
model was validated with stratified K-fold to verify the training accuracy percent-
age for each class. After the evaluation, results revealed that bidirectional LSTM
model outperformed the conventional LSTM in evaluation metrics such accuracy,
precision, recall, FAR, and f1-score. The results of the conventional LSTM were
87.26% in accuracy, 90.34% in precision, 87.26% in recall, 4.03% in FAR, and an
f1-score at 88.03%, while the author’s proposed model achieved 91.36%, 92,81%
91,36%, 0.88%, and 91,67%, respectively.

Moreover, the authors in [16], developed a NIDS with CNN that utilized the
NSL-KDD dataset. The proposed model accomplished an accuracy of 85.83% and
a loss of 1.5553% without authors providing any further information regarding
the training metrics of the model, such as Recall, Precision, and F1-Score metrics.
To evaluate the performance of the model after the training the authors extracted
network traffic with the Python Scrapy library, but they had significant deficiency
of the statistical data essential to fit characteristics of the NSL-KDD dataset. To
compensate for the problem of essential characteristics they used a network analyser
namely Tshark, which is the command line version of Wireshark. According to their
findings, their proposed NIDS performed real time detection of the intrusions by
monitoring the traffic of specific port; however, they did not supply further details
regarding the model’s capabilities at real time detection.

Moving one step furher, Peilun Wu et al. [17] presented a hierarchical CNN
combined with a RNN model trained with two common datasets, the NSL-KDD
and the UNSW-NB15. The structure of the model was divided in three blocks;
each block contained the proposed model, which was the combination of RNN and
CNN with different filters. Furthermore, during data pre-processing, features were
converted into groups, conducting standardization of the data and stratified k-fold
cross validation. The training’s phase results showcased that when trained with the
NSL-KDD dataset the model achieved 99.02% in detection rate (DR), 99.14% in
accuracy and 0.61% in false positive rate (FPR), while when trained with UNSW-
NB15 it reached 97.43%, 85.35%, and 2.89%, respectively. The proposed com-
bined model of CNN and RNN hierarchy outperformed various ML algorithms
such as RF, AdaBoost, and SVM with Gaussian Kernel (RBF) to all metrics.

In an effort to detect network intrusions, the authors of the above presented
studies utilized various datasets, algorithms and combinations between of them
with intend to enhance their proposed modules. However, in those case of stud-
ies, they did not specify whether their proposed models were evaluated with real
network traffic captured in near real-time or real time scenarios to detect intrusion
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on the network. Only the proposed solution in [13] was deployed in a realistic sce-
nario aiming for near-real time evaluation, nonetheless, the authors did not provide
detailed results in their study.

According to the literature review, very few papers realistically evaluated their
proposed NIDS solutions. Furthermore, although the aforementioned research
studies achieved high scores between 90% and 99%, one of their shortcomings is
that they used outdated multi-class datasets that do not accurately represent mod-
ern network traffic. The few of those publications that used more recent datasets
for the training of their models, they used datasets that represent only a small por-
tion of modern network traffic, while, even though they accomplished their goals
with high scores between 86% and 99% in evaluation metrics such as accuracy,
recall, precision, and f1-score, they did not evaluate their solutions over a realistic
network in real world conditions and did not assess the capabilities of their models
to identify intrusion in near real-time. Therefore, most of the reviewed studies only
approximated the model’s behavior after learning from the input datasets, while for
the models to be fully evaluated as intrusion detection solutions they should be
applied to real network scenarios.

Based on the gaps of the literature review, in this chapter an AI-based NIDS is
designed and implemented that:

• is trained with an already in-house developed, recent, enhanced and modern
NIDS dataset, containing not only network traffic but also logs and vulner-
ability assessment information about the system

• is evaluated following a realistic, near-real time evaluation process. During the
evaluation phase, the NIDS is deployed in a realistic network topology and
various cyber-attacks are performed, assessing near-real time performance.

14.3 Implementation

This sub-chapter discusses the structure of the proposed NIDS, the DL model
utilized, and the pre-processing methodology that was followed for developing the
in-house dataset that was fed to the DL model.

14.3.1 Dataset Description

Among the most common datasets utilized in recent studies for ML and DL
models to detect intrusions are KDD’99 [18] and NSL-KDD [18] that are con-
sidered benchmark datasets for training ML-based NIDSs; however, the traffic
included in these datasets is outdated. In addition, KDD’99 contains several dupli-
cate records, which is among its limitations, while NSL-KDD has the disadvantage
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of class imbalance. Furthermore, more recent datasets have been released, such as
the UNSW-NB15 [19] dataset that has been developed by the University of New
South Wales (UNSW). This dataset includes network traffic that illustrate vari-
ous scenarios and up to date attacks, resulting in a major upgrade compared to
KDD’99 and NSL-KDD datasets. Nonetheless, the major limitation of this dataset
is that the traffic was produced using a network traffic testbed and, even though the
testbed was designed to mimic real-world network traffic, this simulation process
led to producing a "Synthetic" network traffic dataset. Moreover, the University of
New Brunswick (UNB) developed the CIC-IDS2017 [20] dataset, which is more
recent than UNSW-NB15. This dataset was created in a controlled environment
that mimics network traffic from the real world, both benign and malicious. In
addition, the developers included interactions between different types of real users
in the dataset, which was collected over the course of five days in order to improve its
robustness and the accuracy of anomaly detection for the ML models. The dataset’s
major drawbacks are the fact that it is also a "Synthetic" network traffic dataset
since it was developed in a controlled environment while it includes a significant
data class imbalance between attack and normal traffic. Furthermore, the dataset’s
lack of heterogeneity is an additional disadvantage.

In this proposed solution, a modern, up to date, enhanced, heterogeneous, in-
house developed dataset was selected for the training of the DL model of the pro-
posed NIDS. The dataset was captured in 2022 and comprises 68 characteristics
in total, 63 of which are network features and 5 are extra characteristics, such as
vulnerability assessment information and logs that have been inserted to enhance
the dataset. Additionally, an 80/20 split was used to divide the initial dataset, which
contained approximately 16000 rows, into two different sets. 20% of the data con-
stitutes the testing set and 80% the training set.

The network traffic flow of the dataset was captured by employing Wireshark
and Tcpdump while the benign system was operated by real users who generated
realistic network traffic consisting of internet browsing and interactions among vari-
ous benign services. Moreover, malicious Python scripts and information stemming
from the Common Vulnerability Enumeration (CVE) were utilized to generate the
malicious network traffic that was captured as part of the dataset. The captured
traffic data were converted into NetFlow v5 network flows by using CICFlowMe-
ter. Eventually, the dataset contains six classes: one class represents benign traffic,
and the other five classes represent malicious traffic and include cyber-attacks such
as DDos Slowloris, SSH Brute Force, ICMP Ping Flood, TCP Fingerprinting, and
Remote File Inclusion. The definition of the cyber-attacks that are contained in the
dataset as well as the dataset labels are provided in Table 14.1 below.

The additional features that were inserted to the dataset, complementing its 63
network features, represent vulnerabilities of the physical machines. Each one of
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Table 14.1. Definition of each malicious cyber-attack included in the in-house dataset.

Attack Attack description

Remote File Unauthorized file uploading to obtain system administrative rights

Inclusion SSH Brute Force is a technique used to gain access to a remote
server or a machine via SSH by guessing the right credentials

SSH Brute Force Ping flood is a DDOS attacks that sends numerous ICMP requests
resulting to reduced system performance.

ICMP Ping Flood A high volume of HTTP requests that negatively impact a system’s
performance and availability.

DDos Slowloris Network activity that examines a system to identify its operating
system and/or active services of the targeted machine

those vulnerability features have a 1 or 0 value assigned to them regarding the pres-
ence of the respective vulnerability on the system. Table 14.2 below showcases the
network features contained in the dataset and the importance factor rate.

14.3.2 Architecture of the Proposed DL Model

The training set of the dataset was inserted as input to the proposed CNN model,
which was designed to be employed for multi-class classification. The model was
trained over an epoch of 80, and the Adam optimizer, which has a low learning rate,
was used to stabilize the model throughout training. The model utilizes a variety
of regulations to prevent overfitting such as dropout layers, and early stopping. It
additionally makes use of a model checkpoint to save the best-performing model
during the training of the model. For the NIDS to be operational after training, it
needs to be deployed in the network interface. To distinguish the incoming traffic
between benign and malicious traffic, the traffic needs to be passed through the
NIDS to predict whether it is malicious or benign.

The model input shape layer depends on the number of features included in the
in-house developed dataset, which in the proposed solution were 68. The model
is composed of two convolutional blocks namely two conv2D with the Rectified
Linear Unit (Relu) activation function in each block, which is one of the most
frequently utilized activation functions for DL Neural Networks since it doesn’t
activate the neurons simultaneously. Furthermore, each block has Batch Normal-
ization, MaxPooling2D and Dropout layer. Batch Normalization is a method that
helps the model to train faster and provides more stability to the model. The Max-
Pooling2D technique was employed for feature extraction and down sampling to
ensure robustness of the model. Furthermore, the Dropout layer is a regulation form
that was utilized to drop random neurons during training. The fully connected
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Table 14.2. Importance Fac-

tor/Rates of dataset’s fea-

tures.

Features Rates

Dst Port 1.9105

Src Port 1.6968

Bwd Header Len 1.5457

Fwd Pkts/s 1.4968

Bwd IAT Tot 1.4911

Bwd IAT Max 1.4875

Init Bwd Win Byts 1.4708

Flow IAT Max 1.45

Bwd IAT Mean 1.4422

Flow Duration 1.4343

Bwd Pkts/s 1.4049

Flow Pkts/s 1.3609

Pkt Len Max 1.334

Pkt Len Std 1.3326

Pkt Len Var 1.3326

Pkt Len Mean 1.3276

Pkt Size Avg 1.315

Flow IAT Mean 1.3086

Fwd Pkt Len Max 1.2647

Fwd Header Len 1.2646

TotLen Fwd Pkts 1.2643

Subflow Fwd Byts 1.2643

Fwd Seg Size Avg 1.262

Fwd Pkt Len Mean 1.262

Flow IAT Std 1.2432

Flow Byts/s 1.1413

Fwd Pkt Len Std 1.1071

Fwd IAT Tot 1.0659

Fwd IAT Max 1.0618

Fwd IAT Mean 0.9383

Subflow Bwd Byts 0.9105

(Continued )
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Table 14.2. Continued

Features Rates

TotLen Bwd Pkts 0.9105

Bwd Pkt Len Max 0.9105

Bwd Pkt Len Std 0.9074

Bwd Seg Size Avg 0.9036

Bwd Pkt Len Mean 0.9036

Tot Fwd Pkts 0.8955

Subflow Fwd Pkts 0.8955

Tot Bwd Pkts 0.8882

Subflow Bwd Pkts 0.8882

Bwd IAT Std 0.8605

Bwd IAT Min 0.7654

Fwd IAT Std 0.7106

Fwd Act Data Pkts 0.6886

Idle Max 0.6349

Idle Min 0.6312

Idle Mean 0.6284

VULN_4 0.6233

Fwd IAT Min 0.5794

Flow IAT Min 0.5499

VULN_5 0.5374

Active Mean 0.4929

Active Max 0.486

Active Min 0.458

Down/Up Ratio 0.3961

Idle Std 0.2128

Active Std 0.2124

SYN Flag Cnt 0.2114

VULN_3 0.1892

ACK Flag Cnt 0.1506

VULN_1 0.1412

VULN_2 0.1412

Fwd Pkt Len Min 0.137

RST Flag Cnt 0.0828

(Continued )
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Table 14.2. Continued

Features Rates

PSH Flag Cnt 0.0763

Bwd PSH Flags 0.0763

FIN Flag Cnt 0.0201

Label Class/Category

Figure 14.1. Architecture of the proposed DL model.

layer consists of a flatten layer that converts 3D tensors stemming from the second
convolutional block into 1D vector. Furthermore, the fully connected Dense layer
has 64 neurons, which is typically the most suitable choice of neurons for having
the necessary capacity to learn from the data. Less neurons would not comprehend
the complexity of the data, while more would lead to overfitting while featuring
the Relu activation function and the Dropout Layer regulation form. Considering
that the dataset is multi-class, the output layer has a Dense layer with a number
of neurons equal to the number of classes of the dataset, i.e., six. SoftMax was the
activation function used for the output layer since it categorizes the output pre-
diction distribution over the classes and is suitable for multi-class classification. In
Figure 14.1 below the model architecture is showcased.

Furthermore, Figure 14.2 below delves deep into the inner architecture of the
proposed DL model and provides a visualization of the neural network which con-
sists of an input layer, two convolutional blocks, a fully connected layer, and an
output layer. The input layer contains 68 neurons, following the number of fea-
tures included in the datasets. Following, each convolutional block has 2 conv2D
layers with 16 neurons. In addition, the convolutional blocks include 3 more layers
named Batch Normalization, MaxPooling2D, and Dropout. The fully connected
layer consists of a flattened layer that converts the 3D vectors into 1D vectors, a
dense layer that includes 64 neurons, and a dropout layer. Furthermore, the output
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Figure 14.2. Visualization of the inner process of the proposed DL model.

layer length, i.e., the number of neurons that comprise it, depends on the classes
that a dataset includes; in this case, the in-house dataset has six (6) classes.

The model operates in the following order: The input layer neurons provide
inputs to the first convolutional block, which are the features derived from the
dataset. The first convolutional block transforms the input data into a feature map
set. This feature set is the reduced patterns, such as edges, textures, and shapes, of
the input data after the implementation of the convolutional filter (kernels), while
preserving the essential components of the input data. The feature map set pro-
duced by the first convolutional block is inserted into the second convolutional
block, which performs the same processes as the first one and develops the final
feature map set to be inserted into the fully connected layer. Following, the flat-
tening layer of the fully connected layer converts the final feature map into one-
dimensional vectors. Moreover, the fully connected layer operates as a classifier since
it connects every neuron after the conversion of the flattening layer with the neu-
rons of the output layer to produce the predictions.

14.3.3 Network Topology for Deploying the Proposed NIDS
Solution

The configuration of links and nodes in a network, either physical or virtual, are
referred to as the network’s topology. Typically, artificial nodes consist of devices
such as switches, routers, and SDN (software with network configuration func-
tions). In an attempt to avoid interfering with the real network adapter, a virtual
adapter created though VirtualBox (VM) was utilized in the proposed implemen-
tation to construct an isolated environment into which the NIDS solution was
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Figure 14.3. Network Topology and communication between virtual machines with host

only adapter.

Figure 14.4. Function operation of the NIDS.

deployed. The network topology was based on a two-fold approach, i.e., a benign
system that utilizes resources of network without interfering with the network,
which would result in network failures or insufficient performance of the network,
and a malicious system that causes network interference. The NIDS is an extra
security layer on the network, which is usually placed between benign systems and
switches because it is a pivotal spot to ensure the optimal ability to detect intru-
sions and respond to those threats, since at this position the NIDS can monitor the
communication between the external incoming traffic and the internal hosts of the
network. Figure 14.3 below illustrates the communication between the malicious
and benign systems as well as where the proposed NIDS is placed in this topology.

Furthermore, Figure 14.4 below shows the functionality of the proposed NIDS.
The first step of the process was to train the proposed DL model with the dataset
and extract the model with h5 and Json format. Through the first process, the
proposed NIDS establishes a baseline for both benign and malicious network
behaviour. The second process is the deployment of the NIDS at the already config-
ured isolated environment to make predictions regarding incoming network traffic.
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Since the dataset includes a classification of multiple classes, the third step includes
the NIDS generating predictions about the network traffic that passes through and
sorting the traffic using a format of tabulate.

14.4 Evaluation

14.4.1 Aim of the Experiment

In this section, the performance of the proposed NIDS using the CNN algorithm
is analyzed. The goal is to evaluate the proposed NIDS as an intrusion detection
solution when deployed on a realistic network interface and assess its capacity to
detect intrusions in near-real time as well as compare the performance results when
the proposed solution is trained with the in-house developed dataset and a com-
monly used dataset stemming from the literature. The approach and results of the
evaluation procedure are presented and discussed below.

14.4.2 Method

Two datasets were used for the evaluation procedure, namely the already in-house
developed dataset described in the Implementation sub-chapter and the CIC-
IDS2017 dataset, which is one of the most popular datasets for intrusion detec-
tion research, including up-to-date benign and malicious attacks representing real
network traffic data. The CIC-IDS2017 dataset contains 8 attack types including
Brute Force Attacks, Denial of Service (DoS) Attacks, Heartbleed Attack, Botnet
Attack, Web Attacks, Infiltration, Port Scan, and Distributed Denial of Service
(DDoS). The common denominator between the implemented datasets is in total
3 types of attacks, including a variate of DOS attack named SlowLoris, SSH Brute
Force attack, and ICMP PingFlood. The proposed NIDS, i.e., the CNN model
included, was trained using each dataset for multi-class classification, at the begin-
ning of the evaluation.

The evaluation of the proposed solution included two experiments. The first
experiment referring to the evaluation of the training and validation phases of the
CNN model, which included the training and validation of the proposed NIDS
including the collection of the results after the training and test phase and the eval-
uation of them using ML metrics that are described as dependent variables. Two
versions of the proposed NIDS resulted from this first experiment, namely version
A, trained with the already in-house developed dataset, and version B, trained with
the CIC-IDS2017 dataset. The second experiment was the testing of version A and
version B of the NIDS in near real-time. After the two versions of the proposed
NIDS were trained, the CNN model of both versions was exported in h5 and Json
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format. In order to evaluate near real-time intrusion detection of the proposed solu-
tion, real network traffic was captured via CICFlowMeter and was modified to CSV
so that it could be inserted in near-real time into the two versions of the trained
NIDS and determine if the captured traffic was benign or malicious.

14.4.3 Variables

14.4.3.1 Fixed Variables

These values remain constant during an experiment. The fixed variables in these
experiments were the DL methods, network topology, malicious and benign sys-
tems, system vulnerabilities and cyber-attacks.

14.4.3.2 Independent Variables

These variables depend on the model itself or the defined problem (in this chapter
referring to network intrusion detection). In the proposed approach the indepen-
dent variables are the dataset’s features and values, as well as the model’s architecture
and parameters. Altering the independent variables forces different outcomes on the
dependent variables.

14.4.3.3 Dependent Variables

Dependent variables are those that change based on the independent ones. The
dependent variables of this experiment include the ML metrics that were used for
the evaluation of the model, namely accuracy and loss of both training and valida-
tion phases as well as accuracy, precision, recall, and f1-score assessing the perfor-
mance of the trained model.

14.4.4 Experiment Set-up

The two versions of the proposed NIDS were tested on an Oracle VM VirtualBox
that was developed specifically for the experiments in order to evaluate the CNN
model during training and validation phase and achieve near-real time intrusion
detection. To prevent interference with the physical network adapter, a Host-only
bridge adapter was utilized at VirtualBox. This virtual adapter-maintained com-
munication between the malicious and benign systems. The first experiment set up
for both systems had a 30-gigabyte disk space and 4 processors with a 100% perfor-
mance limit, with the exception that the benign system had 16 GB ram with 2400
MHz and the malicious system had 4 GB ram. The operating system used for both
the attacker and the victim was Kali Linux, version 2022,3. The benign system had
the following characteristics: pre-installed, enabled firewall, Apache server deployed
on TCP port 80, and SSH server established via port 22. The second experiment



Evaluation 325

was the deployment of the two NIDS versions to achieve near-real time intrusion
detection. For both NIDS versions, CICFlowMeter was utilized for capturing live
network traffic. The captured traffic was then fed into the NIDS in order to achieve
predictions in near real time. The malicious system used the Metasploit framework
to generate malicious attacks as those that are in common between the in-house
developed dataset and the CIC2017 dataset, enabling the NIDS to predict the
traffic captured via CICFlowMeter in near real time.

14.4.5 Prediction

The training and validation performance results of the two versions of the pro-
posed NIDS, i.e., version A trained with the already in-house developed multi-
class dataset and version B trained with the multi-class CIC-IDS2017 dataset, are
anticipated to be strongly promising since both of these datasets represent modern
network traffic. Moreover, experiment results are foreseen to be over 95% at the
evaluation of the training and validation phase of the proposed CNN DL model
for both NIDS versions. In the second experiment, the proposed NIDS is evaluated
in near real-time and positive results are expected, similar to the first experiment. It
is also anticipated that version A NIDS will outperform version B NIDS due to the
enhanced and heterogeneous data included in in the already in-house developed
dataset.

14.4.6 Results

14.4.6.1 1st Experiment: Training and Validation of the proposed NIDS

In this section the results of the first experiment of the proposed NIDS, both version
A and version B, are presented. The epochs for the proposed NIDS for version
A and version B were appointed to be 80. Moreover, the CICIDS2017 dataset
includes nine (9) attack types, which means that it has nine classes, while the in-
house developed dataset has six (6). The two datasets contain 3 common malicious
attack types, namely SSH brute force attack, Dos slowloris, and ICMP ping flood
indicating that the two versions of the proposed NIDS have 3 common output
layers.

The training loss for version B NIDS was 0.0863% and the validation loss was
0.0740%, while version A NIDS showcased a training loss of 0.056% and a vali-
dation loss of 0.064%. In addition, version B NIDS achieved training accuracy of
97.45% and validation accuracy of 97.85%, while version A NIDS accomplished
97.80% and 97.95%, respectively. The proposed NIDS showcased great efficiency
in predicting the network traffic with each aforementioned dataset as it can be
noted by the high accuracy results while both training and validation loss values
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Table 14.3. Training and validation accuracy and loss of the proposed

NIDS.

Training Training Validation Validation
Model loss accuracy loss accuracy

Version A NIDS 0.0863% 97.80% 0.064% 97.95%

Version B NIDS 0.056% 97.45% 0.0740% 97.85%

Figure 14.5. Training and validation loss of the proposed NIDS.

were minimal. Table 14.3 below illustrates the validation and training results of
both versions of the proposed NIDS.

In Figure 14.5 below the training and validation loss of the proposed model
are plotted; The left figure represents the training of version A NIDS and the right
figure the training of version B NIDS. As explained above, the default epoch for the
training of the models was 80, however, the model utilized a regulation form named
Early Stopping to prevent overfitting. The CNN model on the left figure performed
53 epochs while the CNN model on the right performed 55. In Figure 14.1, the
red line represents the validation loss and the green line the training loss. Moreover,
the validation loss line is parallel to the training loss line for both version A and B
of the NIDS, implying that there is neither under-fitting nor overfitting during the
training of the proposed model.

Moreover, in Figure 14.6 below the left and right diagrams showcase a compari-
son between the training and validation accuracy for version A and version B NIDS,
respectively, during the training of the models. The red line represents the valida-
tion accuracy and the green line the training accuracy, which are parallel during the
training phase for both version A and B.

Moreover, during the training phase of both versions of the proposed NIDS,
additional metrics such as accuracy, precision, recall and f1-score were collected.
Version B NIDS showcased an f1-score of 97.61%, precision of 97.81%, recall of
97.83%, and accuracy of 97.41%, while version A NIDS reached 97.68%, 97.90%,
97.62%, and 97.72%, respectively. This indicates the proposed models function
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Figure 14.6. Training and validation accuracy of the proposed NIDS.

Table 14.4. Average score of DL performance metrics for multiclass classification of the

proposed NIDS.

Average Average Average Average Average Average
training training prediction prediction prediction prediction

Model accuracy loss precision recall accuracy F1-score

Version
A NIDS

97.80% 0.056% 97.90% 97.62% 97.72% 97.68%

Version
B NIDS

97.45% 0.0863% 97.81% 97.83% 97.41% 97.61%

well since the training accuracy is high. Since the training accuracy is high, the
model trains efficiently on the input datasets, while the validation accuracy repre-
sents the objective assessment of the model’s capacity to generalize the inconspic-
uous data. In addition, the model’s prediction accuracy indicates the capacity of
the model to predict with effectiveness. The results of the proposed NIDS during
the first experiment were obtained from the Scikit-learn1 ML Python library. The
average score results after training of versions A and B of the proposed NIDS are
presented and illustrated in Table 14.4 and Figure 14.7 below.

14.4.6.2 2nd Experiment: Near-real time testing of the proposed

NIDS

Network data were captured in near real time from the virtual network interface
using CICFlowMeter when the malicious activities were conducted and then they
were fed into the two versions of the trained proposed model. This technique led
the proposed model to generate predictions in near-real time. The results show-
cased that version B NIDS had less than 40% of prediction accuracy in near-real

1. https://scikit-learn.org/stable/.

https://scikit-learn.org/stable/
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Figure 14.7. Training results of multiclass classification with CNN for the proposed NIDS.

Table 14.5. Near-real time prediction accuracy of the pro-

posed NIDS.

Model Prediction accuracy in near real time

Version A NIDS 90%

Version B NIDS 40%

40%

90%

0% 20% 40% 60% 80% 100% 120%

Accuracy

Version A NIDS Version B NIDS

Figure 14.8. Near-real time prediction accuracy of the proposed NIDS.

time traffic when the proposed model was trained with the CIC2017 dataset and
was deployed in the virtual network, despite the fact that the model’s dependent
variables showed great performance during the training phase. On the contrary,
version A NIDS predicted accurately over 90% of the in near real time traffic, out-
performing version B NIDS. The training and detection in near real time results
for both NIDS versions are presented in Table 14.5 and Figure 14.8 below.
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14.4.7 Discussion

After using the CNN algorithm to train the proposed DL model, the datasets
results demonstrated that version A NIDS, using the in-house developed dataset,
performed better than when the CIC2017 dataset was used to train the model in
version B NIDS, with regard to the ML metrics presented in the dependent vari-
ables. Version A NIDS achieved more than 97% accuracy in the training phase
and while those results were only slightly better than the results of version B NIDS,
there were significant differences between the two versions of the NIDS when they
were both deployed on the network to evaluate them for the intrusion detection in
near-real time. The results indicate that when the network data were captured live
from the network and fed into the trained models, version A NIDS outperformed
version B NIDS in near-real time intrusion detection. This resulted because the ver-
sion A NIDS utilizes an in-house dataset for the training of the CNN model, which
is enhanced, heterogeneous and contains up to date modern network activity.

14.5 Conclusion

Most studies in recent literature use KDD’99 and NSL-KDD as input to train
and test their ML or DL model that is part of their NIDS solution. However, these
datasets are outdated, they do not represent realistic network traffic, nor they deploy
their models on a realistic network to evaluate them. In order to compensate for the
aforementioned issues, the NIDS solution proposed in this chapter was developed
to detect intrusion in near-real-time and utilized an in-house developed, multi-
class, enhanced dataset that includes modern benign and malicious network traffic.
Moreover, the proposed NIDS was evaluated in a realistic scenario, during which
it was assessed when trained with the in-house developed dataset and when it was
trained with the CIC-IDS2017 dataset, which is a benchmark modern network
traffic dataset. The proposed NIDS achieved the detection of the intrusion in near
real-time, and as results demonstrate, the proposed model accomplished above 90%
prediction accuracy in near real-time traffic when the model was deployed in a real-
istic network environment and trained with the in-housed dataset. Conversely, the
CIC-IDS2017 showed remarkable performance during the training phase. How-
ever, during the deployment of the model in the network, the prediction rate was
less than 40% when evaluating realistic network traffic in near real time. The NIDS
proposed in this chapter performed more effectively in near-real-time traffic detec-
tion when trained with the in-house developed dataset compared to when trained
with the CIC-IDS2017 dataset.
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14.5.1 Limitations

The evaluation experiment performed in this chapter raised several concerns about
DL methods, the development of model’s necessities, and the initial processing
of input data that DL needs to obtain the most efficient outcomes. Although the
proposed model achieved the objective to detect intrusions in near-real time more
accurately with the in-house dataset, it is possible further enhancement can be made
by introducing more network traffic to the dataset.

14.5.2 Future Work

Therefore, in order to obtain more efficient results in near real-time detection,
future research could utilize a variety of preprocessing techniques to enhance the
input dataset. In addition, further hyper-tuning of the parameters of the model
could be investigated in order to decrease the training time. Furthermore, evalu-
ating the system by using a wide range of AI algorithms could provide additional
insight into the capabilities of the proposed solution, since the proposed imple-
mentation solely explored the capabilities of the CNN algorithm.
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Chapter 15

Connected Medical Devices: The
Cybersecurity Nexus of the AI Act

and MDR

By Maja Nisevic, Dusko Milojevic, João Rodrigues
and Goncalo Cadete

The increasing use of artificial intelligence (AI) in medical devices (CMDs) and
their integration in the IoMT environment offers great potential for improving
healthcare delivery, but it also brings complex challenges, cybersecurity being one
of the most pressing ones. This book chapter delves into how the European Union’s
AI Act and the Medical Device Regulation (MDR) intersect in addressing the cyber-
security aspects of AI-driven medical devices. While the MDR focuses on ensur-
ing the safety and performance of medical devices, including cybersecurity require-
ments across the product lifecycle, the Artificial Intelligence Act (AI Act) introduces
rigorous measures for regulating high-risk AI systems, particularly in healthcare.
Accordingly, the chapter examines the alignment of these frameworks and identifies
potential regulatory gaps, particularly in cybersecurity standards, risk assessment,
and conformity requirements for AI-enabled CMDs. By analyzing these aspects, the
chapter aims to provide insights into how the evolving EU regulatory landscape can
effectively ensure the security and safety of CMDs while promoting innovation in
AI-driven healthcare technologies. It also offers recommendations for harmonizing
regulatory approaches to better address the unique cybersecurity risks associated
with AI in medical devices.
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15.1 Introduction

In an era of rapid technological advancement, the incorporation of artificial intelli-
gence (AI) into medical devices presents exceptional opportunities alongside com-
plex regulatory challenges. The convergence of AI with medical technology has the
potential to revolutionize healthcare delivery through enhanced diagnostics, per-
sonalized treatments, and improved patient outcomes. However, this integration
also raises significant concerns, cybersecurity being one of the most pressing once,
emphasizing the need for a robust regulatory and risk-assessment framework to
ensure patient safety and safeguard data protection.

The World Economic Forum’s Global Risks Report underlines cyberattacks
as a critical global risk, highlighting the increasing severity and impact of these
threats [1]. The growing reliance on technology across various sectors has propelled
cybersecurity to the forefront of political agendas worldwide [2, 3].

Due to abundance of valuable data and lack of maturity level regarding the cyber-
security, the healthcare sector has emerged as a primary target for cyberattacks.
According to the European Union Agency for Cybersecurity (ENISA) Report on
the Health Threat Landscape, the health sector ranks third in terms of the number
of cybersecurity incidents, with patient data—such as electronic health records—
being the most targeted asset between January 2021 and March 2023 [4]. In addi-
tion, the FBI Internet Crime Report stresses the vulnerability of the healthcare
sector, identifying it as one of the most attacked critical infrastructure sectors in
the US in 2023 [5]. Successful attacks on healthcare systems have the potential to
disrupt hospital operations, compromise patient safety, and, in severe cases, lead to
loss of life.

From the perspective of the European Union, the AI Act (AIA) and the Medical
Device Regulation (MDR) are two pivotal legislative instruments addressing dis-
tinct aspects of the regulatory landscape. The AIA focuses on establishing a compre-
hensive framework for the development, deployment, and oversight of AI systems,
with an emphasis on risk management and transparency. Contrarily, the MDR gov-
erns the safety and performance of medical devices, including those incorporating
AI, placing significant emphasis on clinical efficacy and patient safety. The inter-
section of these regulations presents a unique challenge: aligning the provisions of
the AI Act with the requirements of the MDR to create a cohesive cybersecurity strategy.

As AI-enabled medical devices become increasingly prevalent, ensuring their
security against cyber threats is paramount to maintaining public trust and
safeguarding sensitive health information. Case studies highlight the critical inter-
section of the AI Act and MDR, particularly in instances where AI in medical
devices has given rise to compliance issues. For example, AI-driven diagnostic tools
such as imaging systems must meet the MDR’s General Safety and Performance
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Requirements and underwent third-party conformity assessments. However, the AI
Act’s requirements for transparency and explainability introduce additional com-
plexity, leading to delays in device approval as developers ensure that AI decision-
making processes are interpretable by healthcare professionals [6]. Ensuring these
systems are resistant to manipulation while satisfying both regulatory frameworks
has proven difficult, resulting in delays and compliance issues in the early develop-
ment stages [7].

This book chapter delves into the broader issue of cybersecurity in connected
medical devices (CMDs) amidst the surge of cyberattacks on healthcare sector.
Under the MDR, manufacturers must implement cybersecurity measures as part
of the General Safety and Performance Requirements, while the AI Act introduces
specific provisions on the accuracy, robustness, and cybersecurity of AI systems.
Therefore, the objective of this book chapter is to explore the synergies and potential
conflicts between the AI Act and the MDR in the context of CMDs cybersecurity.
By analyzing the regulatory frameworks of both, it aims to identify how they can be
harmonized to address the specific cybersecurity challenges posed by AI-integrated
medical devices. Besides, it will delve into importance of risk management strate-
gies and standards in this domain. Through this examination, it seeks to provide
actionable insights for policymakers, industry stakeholders, and researchers navi-
gating this complex regulatory terrain, ultimately enhancing the safety and effec-
tiveness of AI-driven medical technologies.

15.2 The Brief Overview of the Advancements in AI and
Medical Devices

Many global health systems face a widening gap between demand and capacity.
This surge in demand, driven by an aging population, rising chronic conditions,
and higher expectations for quality care, is exacerbated by a growing shortage of
healthcare professionals. The integration of AI presents a transformative potential
to address these challenges. Recent advancements in AI medical devices have greatly
impacted healthcare, bringing new possibilities for improved diagnostics, person-
alized treatments, and enhanced patient care. In 2021, the global AI in healthcare
market was valued at over 11 billion U.S. dollars, with projections indicating a sig-
nificant surge in growth, anticipating the market to expand to approximately 188
billion U.S. dollars by 2030 [8]. However, these advancements also come with new
challenges and considerations, particularly in cybersecurity domain.

Further research and innovation hold significant potential in this realm. One
crucial focus area is the development of AI-specific cybersecurity tools and risk
assessment methodologies. It is essential to investigate potential vulnerabilities of
AI models, such as adversarial attacks, and develop strategies to mitigate these
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threats in healthcare settings to enhance device security. In addition, there is a
growing need for research into explainability in AI systems as regulatory bodies
increasingly seek transparent and understandable AI decision-making processes in
healthcare contexts. Innovation is key to establishing dynamic regulatory frame-
works that can adapt to technological advancements. This includes creating sand-
box environments where new AI-enabled medical devices can be rigorously tested in
real-world settings under regulatory supervision. These environments would sup-
port more effective collaboration between regulators and developers, ensuring that
cybersecurity and regulatory compliance progress harmoniously with technological
innovation. This section briefly stresses an overview of the recent developments in
AI and medical devices.

15.2.1 AI in Medical Diagnostics and Treatment

AI has made substantial steps in medical diagnostics and treatment. Machine learn-
ing algorithms, particularly deep learning models, have demonstrated remarkable
accuracy in analyzing medical images. For example, AI medical devices can now
detect conditions such as diabetic retinopathy, lung cancer, and breast cancer with
accuracy comparable to or exceeding that of human radiologists [9, 10]. These AI-
driven tools can quickly analyze vast amounts of imaging data, providing valuable
support in clinical decision-making.

Another significant advancement is the integration of AI in genomics and per-
sonalized medicine. AI algorithms can analyze genetic data to identify genetic mark-
ers associated with diseases and predict individual responses to specific treatments.
This capability allows for more personalized and effective treatment plans, tailored
to the unique genetic profile of each patient [11]. AI-driven platforms like IBM
Watson for Oncology have been developed to assist oncologists in selecting appro-
priate therapies based on the latest research and patient data [12]. Likewise, a recent
study highlights the significant strides made in oncology through the use of AI for
cancer detection and treatment planning. The researchers developed an AI-based
system that integrates genomic data and imaging to improve the accuracy of can-
cer diagnosis and predict patient responses to various therapies. This system has
demonstrated a substantial increase in the precision of tumor classification and the
identification of personalized treatment options, leading to more effective and tar-
geted interventions [13].

15.2.2 Innovations in Connected Medical Devices

The Internet of Medical Things (IoMT) has expanded the capabilities of connected
medical devices, enhancing their functionality and integration into healthcare
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systems. Recent innovations include wearable devices, implantable sensors, and
remote monitoring systems. Wearable devices, such as smartwatches and fitness
trackers, now offer advanced health monitoring features, including heart rate vari-
ability, sleep analysis, and blood oxygen levels [14]. These devices provide real-time
data to both patients and healthcare providers, enabling proactive management of
chronic conditions and improved patient engagement.

Implantable devices, such as pacemakers and insulin pumps, have also seen
significant advancements. Modern pacemakers are now equipped with wireless
communication capabilities, allowing for remote monitoring and adjustments by
healthcare providers [15]. Similarly, next-generation insulin pumps feature inte-
grated continuous glucose monitoring systems, enabling more precise insulin deliv-
ery and better diabetes management [16].

15.2.3 AI-Driven Enhancements in Device Functionality

AI is increasingly being integrated into medical devices to enhance their function-
ality. For example, AI algorithms are used in automated insulin delivery systems
to adjust insulin dosing based on real-time glucose readings, reducing the risk
of hypoglycemia and hyperglycemia [17]. AI-powered diagnostic devices, such as
handheld ultrasound machines, use machine learning to provide automated image
interpretation, making advanced imaging more accessible in remote or underserved
areas [18].A recent study explored the use of deep learning algorithms in medi-
cal imaging for enhancing the detection and classification of various diseases. The
researchers developed an AI model that analyzes chest X-rays with high accuracy,
identifying subtle abnormalities indicative of conditions such as pneumonia and
tuberculosis [19].

15.2.4 Challenges and Considerations

While these advancements offer substantial benefits, they also present complex chal-
lenges. The integration of AI into medical devices raises concerns about data pri-
vacy, security, and regulatory compliance. Ensuring that AI algorithms are trans-
parent and interpretable is crucial for maintaining trust in these technologies [20].
Additionally, the interoperability of connected devices and the protection of sensi-
tive health data remain significant concerns as the use of IoMT expands [21].

In conclusion, recent advancements in AI and medical devices are reshaping
healthcare by enhancing diagnostic accuracy, personalizing treatments, and improv-
ing patient monitoring. However, harnessing these innovations also necessitate
careful consideration of privacy, security, and regulatory challenges to fully realize
their potential benefits.
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15.3 Understanding Cybersecurity and the Cyber Threat
Landscape in Healthcare

Before adopting the European Union Cybersecurity Act in 2019, the term “cyber-
security” was often used vaguely, with varying interpretations depending on the
context. In both academic literature and policy discussions, cybersecurity lacked
a unified definition, making it challenging to develop consistent strategies for
addressing cyber threats. As noted by some scholars, cybersecurity was frequently
conceptualized differently by governments, organizations, and experts, leading to
fragmented approaches across sectors [22]. This ambiguity posed significant chal-
lenges to establishing cohesive cybersecurity policies, particularly in critical sectors
like healthcare, where the stakes are high.

The European Union Cybersecurity Act marked a turning point by introduc-
ing the first definition of cybersecurity within the EU legislative framework. The
Act defines cybersecurity as the set of activities aimed at protecting network and
information systems, their users, and those affected by cyber threats. This formal-
ization has brought much-needed clarity, enabling a more consistent and structured
approach to cyber defence across member states [23]. To understand the healthcare
cybersecurity landscape, it is important to explore the motivations behind malicious
attacks, the associated risks, and the sector’s inherent vulnerabilities.

15.3.1 Motivations and Risks

Cyberattacks on healthcare systems can be driven by a range of motivations, includ-
ing financial gain, political agendas, and intellectual property theft, to mention just
a few [24]. Financial incentives are particularly significant in healthcare due to the
value of sensitive data. Electronic Health Records (EHRs), which include com-
prehensive personal and medical information, are highly sought after on the black
market, with stolen records fetching between $10 and $1,000 each, depending on
their detail [25, 26]. This data’s value extends beyond financial theft, as it can be
used for fraudulent activities such as false insurance claims [27]. In addition, ideo-
logical motives and espionage also contribute to cybercriminal activities.

15.3.2 Consequences of Cyberattacks

Successful cyberattacks can have severe implications for both healthcare institutions
and patients. Financially, the costs of security breaches are substantial. According
to the ENISA NIS Investments Report the median cost of significant incidents is
300,000 euros [28]. IBM’s Cost of a Data Breach Report highlights that health-
care breaches have been the costliest among industries for over a decade, with costs
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increasing by 53.3% since 2020 [29]. Hospitals may face substantial financial bur-
dens from patient compensation claims and regulatory fines [30]. A notable exam-
ple is the Finnish psychotherapy center Vastaamo, which incurred a penalty of EUR
608,000 due to violations of the GDPR concerning the protection of personal data
and the reporting of a data breach [31].

In addition to financial damage, cyberattacks can disrupt healthcare services,
leading to potentially life-threatening consequences. The ransomware attack on
Brno University Hospital in 2020, which led to postponed surgeries, and the attack
on a German hospital that disrupted emergency services and contributed to a
patient’s death, underscore the critical impact of such breaches [32, 33]. Further-
more, disclosing sensitive health information can have profound and detrimental
effects on patients’ well-being, including adverse social perceptions, embarrassment,
stigmatization, and potential harm to career prospects [34].

It is important to note that information regarding cyberattacks on hospital
infrastructure is still scarce and obscured. While there are already examples of
the severity of malicious attacks, such as the WannaCry ransomware attack in
2017 [35] and the Conti ransomware attack on Ireland’s Health Service Executive
in 2021 [36], the more comprehensive picture and information is still unknown
and shrouded in mystery. This can be attributed to the reluctance of the provi-
sion of such information due to fear of reputational damage, patient compensation
claims, and regulatory fines [37].

15.3.3 Physical Harm and Vulnerabilities

Cyberattacks can also result in physical harm. For example, wireless medical devices
such as insulin pumps and pacemakers can be hacked to alter settings or dosage,
potentially causing fatal outcomes [38]. A study by Allen et al. specifically highlights
how vulnerabilities in insulin pumps could be exploited to change dosage levels,
leading to severe health complications [39]. The Medtronic recall of insulin pumps
due to cybersecurity vulnerabilities exemplifies the risk posed by such devices [40].
Similarly, vulnerabilities in cardiac pacemakers pose significant risks. Scholars such
as He and Wu have demonstrated how cyberattacks could alter device settings,
resulting in life-threatening arrhythmias or inappropriate shocks [41].

15.3.4 Cyberattack Techniques and Trends

Cybercriminals employ various techniques, including ransomware, distributed
denial of service (DDoS) attacks, hijacking, remote code execution, and social engi-
neering. Ransomware remains a prevalent threat in the healthcare sector, as high-
lighted by ENISA, with an upward trend in attacks [42]. In the Threat Landscape
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for Ransomware Attacks Report, ENISA defines ransomware as a type of attack in
which threat actors seize control of a target’s assets and demand a ransom to restore
access to those assets [43]. Furthermore, ENISA has reported a significant increase
in Denial of Service (DoS) attacks targeting the availability of systems in 2023,
identifying them as one of the most prominent and rapidly growing threats [44].

15.3.5 Healthcare Cybersecurity Challenges

The healthcare sector faces unique cybersecurity challenges. Traditionally focused
on patient care, healthcare institutions often lack robust cybersecurity measures.
Human error is a significant factor, with many security incidents resulting from
inadequate training and awareness among healthcare professionals [45]. The global
shortage of cybersecurity professionals has long been recognized as a critical issue
(ENISA 2020; NIST 2020), and it now looms as one of the most formidable chal-
lenges for the future [46, 47]. This crisis is starkly reflected in the ISC2 Cyber-
security Workforce Study, which reveals a staggering 26.2% increase in the global
cybersecurity workforce gap since 2021, amounting to a shortfall of 3.4 million
professionals required to adequately safeguard critical assets [48]. This challenge is
particularly pronounced in the healthcare sector, where the stakes are immeasurably
high [49]. The complexity of securing medical devices magnifies the issue, as cyber-
security specialists in this field need a distinct skill set and expertise in comparison
to traditional IT security engineers or architects [50].

Legacy medical devices, which were designed before current cybersecurity threats
emerged, present another major challenge. Many of these devices use outdated soft-
ware and hardware, making them vulnerable to attacks. For example, some devices
still operate on unsupported operating systems like Windows XP and even Win-
dows 98 [51]. Financial constraints often prevent the updating or replacement of
these devices, leaving them exposed to cyber threats.

15.4 Understanding the Nature of Connected Medical
Devices (CMDs)

Modern medical devices, now capable of generating, collecting, analyzing, and
transmitting health data, are increasingly connected to the Internet, forming the
Internet of Medical Things (IoMT). While IoMT offers benefits such as real-time
monitoring and improved patient care, it also expands potential attack surfaces.
Each connected device represents a potential entry point for cyber threats, and
attacks on one device can compromise the entire system [52]. With the rapid evo-
lution of sophisticated AI-driven cyberattack techniques, the potential for malicious
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applications is constrained only by the ingenuity and imagination of the attacker.
As these technologies advance, the scope of possible threats will continue to expand,
posing unprecedented risks to IoMT environment and hospital infrastructure.

15.5 The Regulatory Framework in Focus: AIA and MDR

The AIA and the MDR pertain to regulating AI-driven medical technologies.
Accordingly, the following section enters into the analysis of AIA and MDR by
providing a comprehensive overview of the AIA, outlining its objectives, scope,
and classification of AI systems based on risk. This will be followed by an analysis
of the MDR, focusing on its requirements for the safety, performance, and com-
pliance of medical devices incorporating AI components. In addition, analyzing
the interaction between the AIA and MDR is crucial for several reasons. First, the
intersection of these two frameworks is essential to ensure that AI systems used in
medical devices are both innovative and safe. The AIA introduces a comprehensive
framework for the classification and regulation of AI systems based on their risk to
fundamental rights and safety. At the same time, the MDR focuses on the safety
and performance of medical devices, including those that incorporate AI technolo-
gies. Second, AI-driven medical devices have the potential to significantly enhance
patient care but also pose unique risks due to their complexity and the potential for
unpredictable behaviour. Ensuring that these devices meet stringent safety and per-
formance standards is crucial for patient safety and public trust in healthcare tech-
nologies. Therefore, the final subsection will explore the interaction between these
two regulatory frameworks, highlighting areas of alignment and potential conflicts,
particularly in the context of ensuring the cybersecurity and reliability of connected
medical devices.

15.5.1 The AI Act

The AI Act, published in the European Journal on July 12, 2024, represents land-
mark legislation aimed at regulating artificial intelligence technologies across var-
ious sectors. As the world’s first comprehensive legal framework dedicated to arti-
ficial intelligence, the AI Act seeks to foster the development of human-centered
and trustworthy AI technologies. At the same time, it aims to safeguard individu-
als’ health, safety, and fundamental rights from the potentially harmful impacts of
AI-powered systems (Article 1(1)). Its primary goal is to mitigate risks to health,
safety, and fundamental rights associated with AI systems. Notably, the AI Act
adopts a sector-agnostic approach, applying uniformly across various sectors such
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as finance, education, transportation, and healthcare. This broad application estab-
lishes a coherent set of regulatory principles for AI systems, regardless of the specific
field in which they are implemented. With its wide scope of application, the AI Act
will have a significant impact on industries, including the medical devices sector,
which is already navigated by the complex regulatory framework. However, it is
important to acknowledge that AI is not a new player in the healthcare domain.

AI has made notable advancements in healthcare, improving diagnostic accuracy,
personalizing treatment plans, and enhancing patient outcomes. AI technologies
have already been integrated into medical devices for advanced imaging, predictive
analytics, and even robotic surgeries. These AI-driven devices have played a crucial
role in transforming medical practices, particularly in diagnosis and treatment [53].
Despite the transformative potential of AI in medical devices, these innovations
are subject to strict regulatory oversight. For example, many AI-powered medical
devices have been CE-marked under the now-repealed Medical Device Directive
(MDD), and now must comply with the more stringent MDR, which became fully
applicable in 2021 [54]. Nevertheless, scholars have pointed out that the MDR may
not fully address the unique characteristics of AI technologies, particularly their
autonomous decision-making capabilities and learning algorithms [55, 56].

The AI Act introduces additional regulatory obligations for medical device man-
ufacturers, who will now be required to comply with both the MDR and the new AI
Act. This dual compliance will introduce another layer of complexity to the already
intricate regulatory landscape for the medical device industry. Under Article 6(1) of
the AI Act, most AI-based medical devices will fall under the category of “high-risk
AI systems” because medical device software classified as Class IIa or higher will
need to undergo third-party conformity assessments. The Act also introduces new
requirements in areas such as data governance (Article 10), record-keeping (Article
12), and human oversight (Article 14), among others, that medical device manu-
facturers must adhere to in addition to the MDR requirements.

While the AI Act touches upon cybersecurity concerns through several recitals
and articles, it does not serve as standalone cybersecurity legislation. In Recital 76,
the Act emphasizes the critical role of cybersecurity in ensuring AI systems remain
secure against malicious exploitation, alterations, or disruptions that could compro-
mise their safety, behavior, and performance. Article 15 of the Act also integrates
cybersecurity with broader considerations of accuracy and robustness, prescribing
that high-risk AI systems should be designed to achieve and maintain an appropriate
level of cybersecurity throughout their lifecycle (AI Act, Article 15(1)). Neverthe-
less, some scholars argue that these cybersecurity requirements are vaguely defined
and lack specific guidelines for practical implementation [57].

Moreover, the AI Act does not directly reference the cybersecurity definition pro-
vided in the Cybersecurity Act (Regulation (EU) 2019/881), a significant omission
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noted by experts. By not incorporating the Cybersecurity Act’s definition, the AI
Act may fall short of fully aligning with established cybersecurity principles, which
could have strengthened the link between AI-specific and broader cybersecurity
protections [58]. This omission creates further ambiguity regarding the implemen-
tation of cybersecurity requirements for high-risk AI systems and leaves open ques-
tions about how AI developers and manufacturers should integrate cybersecurity
considerations into their development processes.

In conclusion, while the AI Act represents a significant step toward regulating
artificial intelligence technologies, its interplay with the MDR, particularly in the
context of AI-powered medical devices, raises several practical challenges. Legal
uncertainty, overlapping obligations, and cybersecurity ambiguities underscore the
need for detailed guidance and clear standards to help manufacturers navigate this
complex regulatory landscape. Ongoing standardization efforts, alongside indus-
trial guidelines, will be critical in supporting the practical implementation of these
requirements to ensure both regulatory compliance and the safe deployment of AI
systems in healthcare.

15.5.2 The Medical Device Regulation (MDR)

The Medical Devices Regulation (MDR) is one of the most critical pieces of legis-
lation in the European Union (EU) governing the cybersecurity of medical devices.
Introduced to replace the “outdated” Medical Device Directive (MDD), the MDR
addresses the increasing risks posed by rapid technological advancements in health-
care, particularly in the domain of connected and software-driven medical devices.
As medical devices become more integrated with digital technologies, they also
become more vulnerable to cyberattacks, necessitating stronger regulatory mea-
sures. The MDR thus imposes more stringent requirements for ensuring the safety,
performance, and cybersecurity of medical devices before they can be placed on the
EU market or used within the EU [59].

One of the core elements of the MDR is compliance with cybersecurity rules
outlined in its General Safety and Performance Requirements (Annex I). Article
5(2) of the MDR specifically mandates that manufacturers of medical devices, par-
ticularly those incorporating electronic programmable systems or software, demon-
strate compliance with essential cybersecurity standards. This regulation is designed
to mitigate the risks posed by cyber threats that can compromise device safety, per-
formance, and patient data [60]. This is particularly important in light of recent
trends in the healthcare sector, where cyberattacks targeting medical devices have
increased, leading to potential risks to patient safety [61].

The definition of a medical device under Article 2(1) MDR is broad, encom-
passing a wide range of instruments, apparatuses, software, implants, and other
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materials intended for medical purposes. This includes devices for diagnosis, moni-
toring, prevention, or treatment, ranging from basic items like disposable gloves and
plasters to more complex devices such as pacemakers and radiation systems [62].
This broad definition highlights the importance of cybersecurity measures across
the entire spectrum of medical devices, as even seemingly simple devices can pose
significant cybersecurity risks if left unprotected.

To assist manufacturers in complying with the cybersecurity requirements of the
MDR, the Medical Device Coordination Group (MDCG) endorsed the Guidance
on Cybersecurity for Medical Devices (MDCG 2019-16 Rev.1). This guidance
provides a comprehensive framework for manufacturers to integrate cybersecurity
considerations into the design and development of their devices, marking a signifi-
cant step forward in implementing the MDR’s cybersecurity provisions [63]. How-
ever, the dynamic nature of medical device cybersecurity has evolved significantly
since the MDCG Guidance was first issued in 2019. Scholars such as Biasin and
Kamenjasevic have identified areas where further refinement is necessary, includ-
ing clarifying the concept of joint responsibility between different stakeholders and
improving terminological consistency across the regulatory framework [64].

The introduction of the NIS2 Directive has further complicated the landscape
for medical device manufacturers, adding an additional layer of regulatory com-
plexity. NIS2, which focuses on strengthening cybersecurity for critical infrastruc-
ture sectors, intersects with the MDR in the realm of medical device cybersecurity,
raising questions about how these regulations will work simultaneously (European
Commission, 2023). This overlap highlight the importance of aligning various
EU cybersecurity frameworks to ensure clarity and ease of compliance for med-
ical device manufacturers. Moreover, it has become evident that updates to the
MDCG Guidance will be necessary to reflect the evolving regulatory and techno-
logical landscape.

In conclusion, the MDR represents a critical regulatory advancement in ensur-
ing the cybersecurity of medical devices. However, the rapidly changing nature of
both technology and the EU’s broader cybersecurity framework, such as the intro-
duction of NIS2, presents new challenges. As scholars have noted, it is imperative
to continuously refine and update both the MDR and supporting guidance docu-
ments like the MDCG Guidance to keep pace with these developments, ensuring
that manufacturers can effectively navigate the complex regulatory environment
and protect patient safety.

15.5.3 Discussion: The Interplay Between the AIA and MDR

The AI Act and the Medical Devices Regulation (MDR) both aim to ensure the
safety, performance, and ethical use of advanced technologies in healthcare, but
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their approaches and focus areas reveal significant differences. The common goal
of these two regulatory frameworks is to protect public health and safety while
fostering innovation. Both the AI Act and the MDR address the integration of
complex software systems in medical devices, including artificial intelligence (AI),
to ensure that they meet high safety and quality standards.

The MDR, which came into force in 2021, focuses on ensuring the safety
and performance of medical devices throughout their lifecycle. It imposes rigor-
ous requirements on manufacturers regarding the design, testing, and post-market
surveillance of devices, including those driven by AI. On the other hand, the AI Act,
though addressing broader AI applications beyond healthcare, introduces specific
regulations to mitigate risks associated with AI systems, especially those classified
as "high-risk"—which includes most AI-driven medical devices.

Despite their complementary goals of user protection and trust-building, the AI
Act and MDR adopt different approaches to risk, reflecting their distinct regulatory
priorities and scopes. The MDR’s device-centric framework, which focuses on the
physical and technical risks associated with medical devices, is a crucial aspect of
ensuring the safety, efficacy, and reliability of these devices. This rigorous approach,
which includes pre-market conformity assessments, classification systems, and per-
formance standards, aims to mitigate risks such as device malfunction, improper
usage, or potential harm to patients and users. It directly addresses the medical
device design and intended purpose, providing a solid foundation for user trust.

In contrast, the AI Act shifts the focus to broader societal and human-centric
risks, aligning with a human-rights-based regulatory philosophy. It addresses risks
arising from the deployment and operation of AI systems, such as biases in decision-
making, threats to data privacy, and the erosion of transparency and accountability.
Key provisions, such as those on data governance and human oversight (Article
14), aim to safeguard fundamental rights by ensuring fairness, non-discrimination,
and user autonomy. It emphasizes requirements for ensuring AI systems’ accu-
racy, robustness, and cybersecurity (Article 15), which complements but does not
directly mirror the MDR’s device-centric regulatory framework.

This divergence in focus—device regulation under the MDR versus human
rights and societal impacts under the AI Act—creates a complex and often con-
flicting regulatory landscape. Stakeholders must navigate these frameworks, each
with its distinct priorities: the MDR’s focus on mitigating tangible risks related to
the physical safety and performance of medical devices, and the AI Act’s broader,
more abstract emphasis on protecting human rights, ensuring fairness, and man-
aging societal impacts of AI systems. While both frameworks aim to ensure safety
and trust, the stark difference in their approaches introduces tension, as the MDR’s
product-centric risk management contrasts sharply with the AI Act’s focus on
ethical and societal risks that transcend individual devices. This creates additional
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challenges for stakeholders tasked with reconciling the two regulatory approaches
in practice.

The amalgamation of regulations is expected to lead to increased compliance
expenses for manufacturers of medical devices, as they must ensure their products
meet the stringent requirements of both legal frameworks. Several scholars have
already raised concerns about potential duplication and inconsistencies in the reg-
ulatory overlap between the MDR and the AI Act, which could complicate compli-
ance efforts [65]. Moreover, the AI Act’s requirements are outlined at a high level,
lacking detailed specifications that would clarify their practical implementation.
This lack of granularity can lead to legal uncertainty for manufacturers, who may
struggle to understand how to fully comply with the overlapping regulations.

Focusing on the potential duplication of regulatory requirements, AI-driven
medical devices will likely fall under both the MDR and the AI Act. For exam-
ple, Article 6(1) of the AI Act classifies medical device software that falls into Class
IIa or higher under the MDR as a high-risk AI system, thus triggering additional
requirements under the AI Act. These include obligations related to data gover-
nance (Article 10), record-keeping (Article 12), and human oversight (Article 14),
which overlap with but are distinct from MDR requirements [66]. Navigating this
dual compliance could lead to increased complexity and costs for manufacturers,
who will need to meet both sets of requirements without clear guidelines on how
these obligations interrelate. However, there are also opportunities for harmoniza-
tion, particularly in the development of industrial standards and guidance docu-
ments that bridge the regulatory gap between the MDR and the AI Act. The Euro-
pean Commission’s standardization requests to CEN and CENELEC aim to facili-
tate this alignment, but the process is complex and time-consuming [87]. Moreover,
the Medical Device Coordination Group (MDCG) Guidance could be revised to
incorporate AI-specific risks and to provide clear direction on how manufacturers
can comply with both MDR and AI Act requirements coherently. These opportu-
nities highlight the importance of collaborative efforts between regulators, industry
stakeholders, and standards bodies to streamline compliance and reduce the regu-
latory burden on the MedTech industry.

15.6 AI Risk Management

The purpose of a risk management framework (RMF) is to assist the organization
in integrating risk management into significant activities and functions [67]. Risk
management refers to the coordinated activities to direct and control an organiza-
tion with regard to risk [68]. Risk is defined as the effect of uncertainty on objectives
and is usually expressed in terms of:
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• risk sources, i.e. elements which alone or in combination have the potential
to give rise to risk;

• potential events, i.e. occurrences or changes of a particular set of circum-
stances;

• their consequences (or impacts), i.e. the outcome of an event, affecting objec-
tives;

• and their likelihood, i.e. the chance of something happening [69].

Impact and likelihood can be quantitatively or qualitatively estimated, in order
to assist in decision making.

An AI RMF is a framework focused on AI systems that can, for a given set of
goals, generate outputs such as predictions, recommendations, or decisions influ-
encing real or virtual environments [70].

In order to understand what risks are AI technologies subject to, the character-
ization of what is desirable and what is not desirable helps guide the further defi-
nition of the risks to be mitigated. This characterization can be reflected in general
principles for AI systems. The OECD organization defined the Principle for Trust-
worthy AI [71]. As stated in this document, the objective is to “guide AI actors
in their efforts to develop trustworthy AI and provide policymakers with recom-
mendations for effective AI policies”. “Countries use the OECD AI Principles and
related tools to shape policies and create AI risk frameworks, building a foundation
for global interoperability between jurisdictions.” These principles are:

• Inclusive growth, sustainable development and well-being – “Stakehold-
ers should proactively engage in responsible stewardship of trustworthy AI
in pursuit of beneficial outcomes for people and the planet, such as aug-
menting human capabilities and enhancing creativity, advancing inclusion of
underrepresented populations, reducing economic, social, gender and other
inequalities, and protecting natural environments, thus invigorating inclusive
growth, well-being, sustainable development and environmental sustainabil-
ity [72].”

• Human rights and democratic values, including fairness and privacy –
“AI actors should respect the rule of law, human rights, democratic and
human-centred values throughout the AI system lifecycle. These include non-
discrimination and equality, freedom, dignity, autonomy of individuals, pri-
vacy and data protection, diversity, fairness, social justice, and internationally
recognised labor rights. This also includes addressing misinformation and
disinformation amplified by AI, while respecting freedom of expression and
other rights and freedoms protected by applicable international law. To this
end, AI actors should implement mechanisms and safeguards, such as capac-
ity for human agency and oversight, including to address risks arising from



348 Connected Medical Devices

uses outside of intended purpose, intentional misuse, or unintentional mis-
use in a manner appropriate to the context and consistent with the state of
the art [73].”

• Transparency and explainability – “AI Actors should commit to trans-
parency and responsible disclosure regarding AI systems. To this end, they
should provide meaningful information, appropriate to the context, and con-
sistent with the state of art:

◦ to foster a general understanding of AI systems, including their capabilities
and limitations,

◦ to make stakeholders aware of their interactions with AI systems, including
in the workplace,

◦ where feasible and useful, to provide plain and easy-to-understand infor-
mation on the sources of data/input, factors, processes and/or logic that led
to the prediction, content, recommendation or decision, to enable those
affected by an AI system to understand the output, and,

◦ to provide information that enable those adversely affected by an AI system
to challenge its output [74].”

• Robustness, security and safety – “AI systems should be robust, secure and
safe throughout their entire lifecycle so that, in conditions of normal use,
foreseeable use or misuse, or other adverse conditions, they function appro-
priately and do not pose unreasonable safety and/or security risks. Mecha-
nisms should be in place, as appropriate, to ensure that if AI systems risk
causing undue harm or exhibit undesired behaviour, they can be overridden,
repaired, and/or decommissioned safely as needed. Mechanisms should also,
where technically feasible, be in place to bolster information integrity while
ensuring respect for freedom of expression [75].”

• Accountability – AI actors should be accountable for the proper function-
ing of AI systems and for the respect of the above principles, based on their
roles, the context, and consistent with the state of the art. To this end, AI
actors should ensure traceability, including in relation to datasets, processes
and decisions made during the AI system lifecycle, to enable analysis of the
AI system’s outputs and responses to inquiry, appropriate to the context and
consistent with the state of the art. AI actors, should, based on their roles, the
context, and their ability to act, apply a systematic risk management approach
to each phase of the AI system lifecycle on an ongoing basis and adopt respon-
sible business conduct to address risks related to AI systems, including, as
appropriate, via co-operation between different AI actors, suppliers of AI
knowledge and AI resources, AI system users, and other stakeholders. Risks
include those related to harmful bias, human rights including safety, security,
and privacy, as well as labor and intellectual property rights.
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Also important for risk management of AI systems is understanding how AI sys-
tems are designed, built, deployed, updated and finally decommissioned. In another
published work from the OECD, the “OECD Framework for the Classification of
AI systems”, the AI lifecycle activities were defined [76]. In this document, the
OECD developed a user-friendly tool to evaluate AI systems in specific contexts,
from a policy perspective, to help policy makers, regulators, legislators, among oth-
ers, to characterize AI systems. The AI lifecycle activities, according to five socio-
technical dimensions, are the following:

• People and Planet: this dimension includes several considerations about the
implementers of the AI systems, the users of the AI system, the impacted
stakeholders, the type of impacts on environment, societal impacts and
human rights. For example, consumer protection and product safety con-
siderations lie within this dimension. Stakeholders include all organizations
and individuals involved in or affected by the AI systems [77].

• Economic context: the context refers to the industrial sector, business func-
tion of the organization, and the adequate AI model to be used, scale of use
and maturity of the AI system [78]. It also considers the criticality of the AI
system, depending on the industry, business function and environment of
deployment.

• AI model: an AI model “is a computational representation of all or part of
the external environment of an AI system – encompassing, for example, pro-
cesses, objects, ideas, people and/or interactions that take place in that envi-
ronment”. There exists a multitude of AI models. They could be symbolic
models (e.g., using human-generated logical representations), Statistical AI
models (e.g., identify patterns based on data) or hybrid AI models (e.g., mix-
ing symbolic and statistical AI models) [79].

• Data and Input: AI models need information in order to represent the exter-
nal environment, whether it is data gathered by humans and automated tools,
or expert knowledge. Data and Input refers to data that is used for training
the AI model, or the input data from the environment that the AI system will
process to yield outputs useful for the context of use.

• Task & Output: AI systems can perform the following tasks: recognition,
prediction, personalization and decision-making. Depending on the level of
integration with other systems, the AI system can have different levels of
autonomy to perform actions on the environment. The outputs of an AI
system could be recommendations, signal outputs for other systems, or even
outputs for other AI systems for performing other tasks and/or actions.

This five sociotechnical dimensions were mapped to the AI system’s lifecy-
cle [80]. In the NIST AI Risk Management framework, the AI system’s lifecycle
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were further adapted and reflects the need for risk management coordinated activ-
ities to be present throughout the AI systems’ lifecycle. The AI system’s lifecycle, as
per NIST AI Risk Management Framework and OECD Framework for the Clas-
sification of AI Systems includes the following phases:

• Plan and Design: this phase is dedicated to defining the AI system’s con-
cepts, objectives, underlying assumptions, context of use and technical, legal
and ethical requirements. This phase will set the path to all the subsequent
phases, as the objectives, assumptions and requirements will guide decisions
concerning the training of data and AI models to be used, adequate methods
of validating and verifying the model training process and the correct out-
puts of the AI model, and also guide the evaluation of the correct behavior
in production environment.

• Collect and Process Data: In this phase, having the objectives and require-
ments in mind, the processes and technologies for selection, gathering, vali-
dation and cleaning of data are selected and implemented. These data are of
crucial importance since it will be used by the AI model to build a represen-
tation of the context or environment defined in the previous phase.

• Build and Use Model plus Verify and Validate: With processed training
data, the AI model is trained in order to gain the computational representa-
tion of the external environment where the AI system will be deployed. This
phase will include processes for selecting the training data set and the testing
data set, accuracy tests for the trained models, and might even include train-
ing and testing several different models and selection of the best fit for the
context of use. Accuracy test, comparison of several different models, valida-
tion, interpretation of the output results is included in the Verify and Validate
phase. Since the two phases are very directly linked, we described them in the
same paragraph.

• Deploy/Task and Output: In this phase, pilot testing, compatibility check
with surrounding systems, verification of regulatory compliance, organiza-
tional change management, actual implementation of the system in produc-
tion, monitoring of user experience and impact to the systems’ environment
are performed;

• Operate and Monitor: Once deployed, the AI system will be part of the busi-
ness operations and continuous monitoring and assessment is implemented,
having in mind the objectives, legal and regulatory requirements, and ethical
considerations [81].

Note that the OECD framework places People and Planet in the center of the
framework.
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Some risk examples for the lifecycle phases can be found below:

• Plan and Design: in the planning phase, legal, regulatory and ethical require-
ments must be considered. Social and environmental impacts should also
be considered when designing an AI system. If some of these requirements
are overlooked, ignored, or even purposely discarded, then the subsequent
phases, might lead to a biased AI system.

• Collect and Process Data: training data will influence greatly the AI sys-
tem’s functioning. Ultimately, it could lead, for example, to a classification
model that might favor certain groups of people in an unfair way. This might
be caused by unbalanced data, biased sampling of data, or corrupted/pur-
posely changed data. Training data could include Personal Data that might
not have the owner’s consent to be used. Data quality plays a key role in train-
ing models. If the data has several errors, the resulting trained model might
be unreliable or unsafe for use.

• Build and Use Model: When training AI models, if the training data is
not appropriately fed to the AI model, and if there is not much testing data
for evaluating the "correctness of the model", overfitting or underfitting will
most certainly lead to wrong AI outputs. AI architecture models could be ade-
quate in certain scenarios, but inappropriate in others. The selection of the
wrong architecture model can lead to unintended bias of the system, leading
to biased outcomes.

• Operate and Monitor: Real-world scenarios always have unexpected situa-
tions. These situations could feed some input to the AI system, leading to
dangerous behaviors. An AI system must be up-to-date and continuously
trained with up-to-date data. Model drift happens when there is no mecha-
nism for monitoring the adequacy of the model with regards to the changing
AI system environment. This can lead to erroneous behavior.

• Build and Use Model plus Verify and Validate, Deploy / Task and Output
and Operate and Monitor: Without explainability, or human understand-
able reasons for the AI outputs, it would be difficult for humans to interpret
the result, and to take corrective actions. With explainability, people can assess
better the “correctness” of the AI outputs taking into account other informa-
tion not present during AI Model training.

Several standards related to AI risk management exists:

• The “ISO/IEC 23894:2023 – Information technology – Artificial intelli-
gence – Guidance on risk management”, published in 2023, provide guidance
for organizations that develop, produce, deploy or use products, systems and
services that utilize AI to manage AI related risks and to integrate risk man-
agement into the organization’s processes.
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• The “ISO/IEC 42001:2023 - Information technology—Artificial intelli-
gence—Management system”, published in 2023, provides requirements for
setting up and continuously improving the Artificial Intelligence Manage-
ment System for organizations providing or using AI-based products [82].

• The “ISO/IEC 38507:2022 - Information technology—Governance of IT—
Governance implications of the use of artificial intelligence by organizations”,
published in 2022, this document provides guidance for governing the use
of AI technology within an organization, specifically tailored for the organi-
zation’s governing body [83].

• The NIST AI Risk Management Framework, published in 2023, was
designed to enable organizations to increase the trustworthiness of AI sys-
tems, and foster responsible design, development, deployment and use of AI
systems [84].

Focusing on the Cybersecurity risks of AI systems, Microsoft has released the
AI Security Risk Assessment document, where they have suggested a rating scheme
for severity, likelihood and impact, stressing the needed alignment with the spe-
cific industry and use case. The document also defines a set of control objectives
for protecting AI systems against cyber-threats. Controls are any measure, whether
procedural, managerial or technical, to mitigate or eliminate risks. Before delving
into the controls, the organization must first inventory all the AI systems it is using
or planning to use. The organization should assess the current state of AI within
the organization, perform gap analysis, define recommendations from the results
of the gap analysis, define the roadmap to implement these recommendations and
have a progress monitoring process in place. Moreover, the AI systems should be
scored based on their criticality for the organization, in order to prioritize protective
measures implementation. Then, they must apply the adequate controls to fulfill
the following objectives:

1. Data Collection: controls and policies for ensuring the integrity of data col-
lected to be used by the AI system. These controls and policies protect the
AI system against untrusted data sources, sensitive data misuse, insecure data
storage, unauthorized data access and data integrity attacks.

2. Data Processing: controls and policies to secure the processing of data that
will be used for training the AI model. These controls and policies protect
the AI system against data processing pipeline manipulation (altering the
intended processing of data) and data subsets reconstruction (recovery of
parts of the dataset by an attacker).

3. Model Training: controls and policies for reviewing the AI model code.
These controls and policies are intended for protecting the AI system from
improper model design (which could lead to confidentiality, integrity or
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availability breaches), adversarial conditions (e.g., where the AI system is
exposed to adversarial attacks), and overfitting (which could lead to unin-
tended behaviors that could be exploited by attackers).

4. Model Deployment: controls and policies related to the deployment of
models, algorithms, and supporting infrastructure. These controls and poli-
cies are intended to protect the AI system against inadequate security testing
of the model, and to protect the system from unsecured networks.

5. System Monitoring: Controls and policies for ongoing monitoring of AI
systems and supporting infrastructure (e.g., securing log data and their infras-
tructure);

6. Incident Management: controls and policies related to securing log data and
supporting storing infrastructure. These controls and policies ensure ade-
quate definition of roles and responsibilities, AI systems incident reporting
processes/technologies, and the definition of an incident response plan that
should be tested regularly. These should guarantee a prompt response in case
of AI system’s incidents.

7. Business Continuity Planning: controls and policies to guarantee that the
AI system can recover or can be remediated after an incident. These include
the definition of Disaster Recovery Plan, Business Continuity Plan and con-
tinuous testing of those plans.

Regarding the data collection, data processing, data training and deploy-
ment environments, they could be all in-house for the organization, some parts
could reside outside the organization, or all parts could reside outside premises.
This would imply the adoption of cybersecurity standards, such as the ISO
27001/27002, CIS Cloud Security Controls, NIST Cybersecurity Framework for
IoT (NISTIR 8259), OWASP IoT Security Guidelines, OWASP application secu-
rity standard, to name a few. In the case of Medical Devices, the ISO 14971 stan-
dard must be considered if the AI system is deployed or somehow integrated in the
medical device.

The complexity of considerations, standards and regulations, with an ever-
changing landscape of the AI technology is posing enormous challenges to orga-
nizations. In the case of AI systems or Medical Device using AI systems, when reg-
ulation changes, the implications for the AI lifecycle and the whole functioning of
an organization can be far-reaching. They can affect organizations’ infrastructures
(in-premise, cloud, or hybrid), systems integrated with AI (namely applications and
sources of information), as well as providers’ contracts and services.

Mapping and alignment of laws, regulations, standards, guidelines, and practices
remains a challenge for organizations that aim at improving the implementation of
compliance requirements and adopt best practices. As the AI landscape evolves,
future AI risk management methods and frameworks should aim at being clear and
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intuitive, as well as adaptable as part of an organization’s broader risk management
strategy and processes. Also, they should be outcome-focused and non-prescriptive,
by providing requirements and recommendations on outcomes and approaches,
rather than prescribe one-size-fits-all requirements [85].

15.7 Outlook: Recommendations and Future Directions

Summarizing above, the integration of AI into medical devices presents unique
challenges for ensuring cybersecurity, particularly when considering the regulatory
landscape governed by the AI Act and the Medical Devices Regulation (MDR).
Addressing these challenges requires strategic alignment of regulations, implemen-
tation of best practices, and the adoption of new policy recommendations to safe-
guard both patients and healthcare systems.

To ensure the cybersecurity of AI-enabled medical devices, it is essential to align
the requirements of the AI Act and the MDR. One strategy to achieve this is
through the harmonization of standards across both frameworks, with an emphasis
on shared definitions of critical concepts such as cybersecurity risks, vulnerabili-
ties, and risk management. One of the solutions could be development of a unified
standard that addresses both the cybersecurity requirements in the MDR (Annex
I) and the robustness and accuracy requirements in the AI Act (Article 15).

Another critical solution is fostering collaborative guidance documents between
the Medical Device Coordination Group (MDCG) and the European AI regulators
to avoid duplication and conflicting requirements. By providing clear guidelines
that bridge both frameworks, manufacturers would have a streamlined process for
ensuring AI-enabled medical devices comply with both sets of cybersecurity pro-
visions. This would involve identifying overlapping conformity assessments and
ensuring that these assessments address both AI functionality and cybersecurity
risks.

Given the complexity of AI-driven systems, adopting best practices for cyberse-
curity in AI-enabled medical devices is essential. One of the solutions could be the
implementation of a secure development lifecycle (SDLC) for AI systems, where cyber-
security is integrated from the design phase through to post-market surveillance.
This approach ensures that manufacturers proactively address cybersecurity vul-
nerabilities throughout the product lifecycle, aligning with both MDR and AI Act
requirements.

In addition, applying standards such as ISO/IEC 27001 (Information Security
Management) and ISO/IEC 62304 (Medical Device Software – Software Life Cycle
Processes) can provide a robust framework for managing cybersecurity risks. These
standards should be adapted to address the unique challenges posed by AI, such
as ensuring the accuracy and transparency of AI algorithms (AIA Article 10)
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while maintaining the integrity and reliability of data used in the device (MDR
Annex I). Risk assessment methodologies, such as threat modelling and penetra-
tion testing, should also be embedded into the development of AI-driven medical
devices, ensuring compliance with cybersecurity mandates under both the AI Act
and MDR.

To improve regulatory coherence, several policy changes should be considered.
Firstly, the revision of the MDCG Cybersecurity Guidance (MDCG 2019-16)

should be prioritized, incorporating new risks and challenges specific to AI-driven
devices. The updated guidance could provide clear examples of cybersecurity
requirements for high-risk AI systems as defined in the AI Act, ensuring that
both AI-specific risks and traditional medical device cybersecurity are adequately
addressed [86].

A second policy recommendation is the development of a centralized regulatory
body tasked with overseeing AI-enabled medical devices. This body could facilitate
coordination between AI regulators and medical device authorities, ensuring con-
sistent enforcement of cybersecurity standards across both frameworks.

Additionally, cross-border data-sharing policies should be clarified, particularly as
AI-enabled medical devices often rely on large datasets from different jurisdictions.
Enhancing international cooperation on data governance and cybersecurity standards
would ensure that AI systems are robust and secure across the EU.

As AI continues to evolve, future directions should be tailored to address emerg-
ing trends and technologies, ensuring that innovations are effectively integrated
and regulated to meet evolving needs and challenges. Accordingly, several emerging
trends will reshape the landscape of medical devices and their associated regulatory
needs.

Edge AI—where AI computations are performed on-device rather than in cen-
tralized data centres—will become increasingly common in medical devices, par-
ticularly for real-time diagnostics and monitoring. This shift necessitates new
approaches to cybersecurity, as data will no longer be transferred to a central server,
thus reducing latency but increasing the risk of local vulnerabilities.

Another emerging trend is the growing use of federated learning in healthcare,
which allows AI models to be trained across multiple decentralized devices with-
out sharing sensitive patient data. While this addresses privacy concerns, it presents
new cybersecurity challenges related to ensuring the integrity and security of the dis-
tributed data used in training models (European Commission, 2023). Regulatory
frameworks will need to adapt to address these complexities, particularly around
data integrity and model robustness in federated learning environments.

With the advent of these new technologies, regulatory needs will inevitably
evolve. As AI systems become more autonomous and capable of decision-making
in critical healthcare settings, the demand for explainability and transparency will
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increase. The AI Act already highlights the importance of these principles (Arti-
cle 13), but future iterations of the MDR and AI Act should incorporate stricter
requirements for auditability and post-market surveillance specific to autonomous
AI systems in medical devices.

Moreover, as medical devices become more connected and integrated into
broader Internet of Medical Things (IoMT) ecosystems, interoperability standards
will become critical. Regulatory frameworks must address the cybersecurity impli-
cations of interconnected devices, ensuring that vulnerabilities in one system do not
compromise the entire network. This shift will also necessitate real-time regulatory
monitoring and adaptive compliance mechanisms, allowing for faster responses to
emerging threats.

15.8 Conclusion

This chapter has delved into the intersection of the AIA and the MDR within the
context of cybersecurity for AI-enabled medical devices. We outlined the shared
objectives and differing approaches of these regulatory frameworks, demonstrating
their mutual aim of ensuring safety and efficacy while highlighting their distinct
focus areas. The MDR emphasizes device performance and patient safety, while
the AI Act emphasizes algorithmic robustness, transparency, and fairness.

Strategies for aligning the two regulations were discussed, underscoring the need
for regulatory harmonization to streamline compliance and reduce complexity for
manufacturers. The chapter also presented best practices and standards for securing
AI-enabled medical devices, such as implementing a secure development lifecycle
(SDLC) and leveraging established cybersecurity frameworks like ISO/IEC stan-
dards. Furthermore, policy recommendations were provided, including updating
the MDCG Cybersecurity Guidance and establishing a centralized regulatory body
to oversee AI-driven medical devices.

For policymakers, the analysis suggests the importance of revising and harmo-
nizing the AI Act and MDR to address the unique cybersecurity challenges posed
by AI in medical devices. It is crucial that cybersecurity guidelines remain consis-
tent and avoid regulatory overlap to support innovation while safeguarding patient
safety. Additionally, policymakers must consider future-proofing regulations as AI
technologies and medical devices continue to evolve.
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