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Preface

In the quarter of a century following the invention of the microprocessor, comput-
ers had become a thousand times more powerful and had more than a thousand
times more memory, yet they still struggled to perform certain classes of task that
humans – even very young humans – find straightforward, such as recognising a
mother’s face or identifying a three-dimensional object at any range or orientation.
How is it that biological brains, built from pretty slow basic technology, can still
outperform machines, at least on certain tasks, that are built using technologies a
million times faster?

Although we know aspects of the answer to the question about the brain’s capa-
bilities, such as its exploitation of massive parallelism, we are still a long way from
understanding the full answer. The principles of operation of the brain as an infor-
mation processor remain as one of the great frontiers of science. Neuroscientists,
working from the bottom up, know a great deal about the components – neurons –
from which the brain is constructed and can observe activities of increasing num-
bers of them. Psychologists and brain imagers work from the top down and can
see activity moving across the coarse structures of the brain. But understanding
information processing in the brain, in the same way that we understand infor-
mation processing in a computer, requires that we look at intermediate levels that
are not observable with either bottom-up or top-down approaches, and the only
‘instrument’ we have to test hypotheses about how information is coded in spatio-
temporal patterns of neural ‘spikes’, how these are stored and then recovered, and
how information is passed from one region of the brain to another, is the computer
model. From this line of thinking, the SpiNNaker project emerged. SpiNNaker
is a contraction of Spiking Neural Network Architecture, an approach to building a
machine that is based to some degree on what is understood about the principles of
operation of the brain. These principles include the use of spikes – electro-chemical
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impulses that are pure asynchronous events – as the primary mode of real-time com-
munication, and the very high degree of connectivity found in the biological brain
where each neuron typically connects to many thousands of other neurons.

The research was ultimately configured to address two high-level questions:

• Can the enormous computational power available today be used to accelerate
our understanding of the principles of operation of information processing
in the brain?

• Can we use our growing understanding of the brain to build better, more
efficient, fault-tolerant computers?

This book is the story of the first 20 years of this research programme, an
outcome of which is the world’s largest neuromorphic computing platform ulti-
mately incorporating a million processor cores, capable of modelling spiking neu-
ral networks of the scale of a mouse brain in biological real time. The mouse
brain is around a thousand times smaller than, but in some senses otherwise very
similar to, the human brain. So there is still a long way to go to deliver a real-
time model of a full human brain, but SpiNNaker can support sophisticated and
biologically-realistic models of substantial brain subsystems, albeit with the empha-
sis on the details of the network topology rather than the internal complexities of
the individual neurons.

Steve Furber, 12 July 2019
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AHB - AMBA High-Performance Bus - a multi-master bus protocol introduced in
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AI - Artificial Intelligence - a term applied broadly to machine learning systems that
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or to recognise cats in an image. 128, 155, 156, 160, 161, 163, 179, 203,
263

AN - Auditory Nerve - a bundle of axons representing the output of the cochlea.
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trained using error back-propagation. 161, 178–181, 188, 190, 191,
193–196, 199–201, 203, 204, 246, 255, 257, 260–262, 264

API - Application Programming Interface - a software interface that abstracts hard-
ware details into useful software functions. 104, 106, 118, 122

ARM - Acorn RISC Machine - although this expansion is now deprecated, the term
is used to describe the company ARM Ltd or the range of microprocessor
architectures that they design and that are widely used in mobile phones and
many other computer systems, including SpiNNaker. 4, 5, 7, 9, 10, 14, 16,
18, 19, 25, 27, 28, 30, 34, 39, 41, 43, 44, 48, 49, 51, 54, 55, 57, 67, 68, 73,
76, 80, 120, 127, 172, 176, 207, 216, 217, 263, 266, 270, 272, 275–277
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purpose. 18–21, 25, 27, 43–45, 264

AXI - Advanced eXtensible Interface - a third-generation AMBA interface, targeted
at high-performance systems, that allows the issuing of multiple outstanding
commands with out-of-order responses. 28, 39

B

BG - Basal Ganglia - a brain region responsible for action selection, among others.
128, 132, 143–146

blinkenlight - a neologism for diagnostic lights on the front panel of electronic
equipment. 43, 80

BMP - Board Management Processor - an ARM-based microcontroller used to con-
trol the operation of SpiNNaker boards; the BMP is in charge of powering
up and down the SpiNNaker chips, configuring board FPGAs, controlling
cooling fan speed, keeping track of board operating temperatures and taking
appropriate action in case of overheating. 57, 59–61, 66–68, 74

C

CAM - Content-Addressable Memory - a form of computer memory that allows
look-up by data content rather than by address. 22, 24

CAN - Controller Area Network - a computer network standard with well-defined
real-time capabilities, used in automotive and other real-time applications.
68
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CMOS - Complementary Metal Oxide Semiconductor - the semiconductor technol-
ogy used to build most current mainstream microchips such as microproces-
sors and memory, comprising both n-type and p-type field-effect transistors
(FETs). 16, 45, 51, 277

ConvNet - Convolutional Neural Network - a form of ANN used for image classi-
fication. 161–166, 169, 196, 197, 201, 264

CPU - Central Processing Unit - a hardware component responsible for basic arith-
metic, logic, control and I/O. 88, 127, 141, 142, 217

CRC - Cyclic Redundancy Check - an algorithm for detecting errors in stored or
communicated data. 30, 46, 64–66

CSP - Constraint Satisfaction Problem - a class of mathematical problems that need
to satisfy a number of limitations. 148–154, 156, 158

D

DBN - Deep Belief Network - a form of DNN comprising a stack of restricted
Boltzmann machines. 160, 169–178

DC - Direct Current - electric current flowing in one direction only. 56

DDR - Double Data Rate - a form of computer memory where data is delivered
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DfT - Design for Test - a systematic approach to microchip design that takes the
testability of the logic into account throughout the design process. 267
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DMA - Direct Memory Access - a hardware mechanism for copying blocks of mem-
ory. 10, 25, 27–30, 39, 42, 46, 48, 51, 81, 107, 108, 112, 114, 116–118,
123, 213, 215, 267, 272

DNN - Deep Neural Network - an ANN with many layers of neurons. 161, 200,
263, 275, 276
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DSI - Direction Selectivity Index - a metric describing the selectivity of a neuron’s
response to motion in particular direction. 251–254
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166, 214, 217
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efficiency of a circuit by adjusting its supply voltage and operating frequency
to match the current workload. 279
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as asynchronous spike events. 55, 57, 164, 166, 170, 171

E

EA - Evolutionary Algorithm - a computer algorithm that optimises parameters
using an approach more-or-less similar to biological evolution. 255–257,
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transmitted packet. 35–38

EPSRC - The UK Engineering and Physical Sciences Research Council - the UK’s
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F

FIFO - First In First Out - a form of queue where outputs emerge in the order that
they were input. 65, 267

FIQ - Fast Interrupt Request - a name used by ARM for an input signal to a micro-
processor that interrupts the processor, at a higher priority than IRQ. 30, 81,
108, 112, 118

Flash - Flash Memory - solid-state, non-volatile data storage that can be electrically
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mised is expressed in the form of a genetic code. 256, 258–260

GALS - Globally Asynchronous Locally Synchronous - a systematic approach to
microchip design where modules are internally driven by the same clock but
different modules have different clock frequencies and/or phases. 267

GAN - Generative Adversarial Network - a machine learning algorithm where two
neural networks compete with each other, generating new data with statistics
similar to the training data. 162

GNU - GNU’s Not Unix - an extensive collection of free computer software. 80

GPU - Graphics Processing Unit - a hardware accelerator originally for graphics
operations, but increasingly also used to accelerate other numerical algo-
rithms including those required for ANNs. 263

GUI - Graphical User Interface - a mechanism to enable users to interact with a
computer through a structured array of information on a screen, usually in
the form of multiple windows where each window displays the state of one
application. 72

H

HBP - Human Brain Project - the European Commission’s 10-year Flagship project
to advance the use of computer technology in brain research, in which
SpiNNaker plays a role. 76, 103, 207, 219

HPC - High-Performance Computer - a massively-parallel computer with fast inter-
processor communication delivering the maximum computational through-
put possible on a multi-million dollar budget. 9, 207

HSSL - High-Speed Serial Link - a technique for moving data at high-speed
between microchips or computer subsystems. 63–65

I

IHC - Inner Hair Cell - motion sensitive cell located in the cochlea. 138–141

IP - Internet Protocol - standards used to regularise communications on the
internet. 54, 55, 68, 80, 81, 88

ISI - Inter-spike interval - the time between two consecutive spikes in an SNN. 216
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memory holding executable code. 27, 29, 80–82, 106
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JTAG - Joint Test Action Group - a standard for testing microchip I/O and internal
functions. 43, 59

L

L2L - Learning-to-Learn - a learning framework involving evolving networks capa-
ble of performing well for a family of tasks. 261

LCD - Liquid-Crystal Display - a form of flat-panel display that exploits the ability
of liquid crystal to modulate light passing through them. 68

LED - Light-Emitting Diode - a semiconductor device that emits light when a cur-
rent flows through it. 55, 59, 72

LIF - Leaky Integrate and Fire - a point-neuron model that accumulates inputs
until a threshold is reached, whereupon it emits a spike and resets itself; the
accumulation is ‘leaky’, so it decays over time in the absence of further input.
106, 118, 120, 121, 149, 170, 171, 178, 180–185, 187–193, 195–199, 201,
203, 204, 214, 223, 225, 226, 235, 249

LPDDR4 - Low-Power Double Data Rate version 4 - a particular SDRAM standard.
266, 267

LSTM - Long Short-Term Memory - a particular mechanism for introducing state
into an ANN. 162

LTD - Long-Term Depression - a synaptic plasticity mechanism that decreases
synaptic strength over a long time period. 235

LTP - Long-Term Potentiation - a synaptic plasticity mechanism that increases
synaptic strength over a long time period. 228, 235

LUT - Look-up table - a table containing pre-computed values that would otherwise
be expensive to compute at the time of use. 274

M

MAC - Media Access Control - the low-level mechanism used to allow computers
to connect to the internet (see also: MAc - Multiply-Accumulate). 43, 54, 55,
68



xviii Glossary

MAc - Multiply-Accumulate - an arithmetic unit used to compute an inner product
(see also: MAC - Media Access Control). 275, 276

MC - Multicast - a communication protocol used by SpiNNaker to send a single
spike packet to many, though not all possible, destinations. 31–33, 141, 172,
270

MII - Media-Independent Interface - standard interface that connects any type of
PHY to any MAC independently of the network signal transmission media.
43

ML - Machine Learning - a field of study concerned with developing methods
and algorithms such that computers perform specific tasks without explicit
instructions. 162, 272, 275, 276

MNIST - Modified NIST - data set of images containing handwritten digits. 134,
170–172, 174, 176, 177, 197, 198, 238, 247, 258, 259, 261

N

NEAT - NeuroEvolution of Augmenting Topologies - an algorithm for evolving neural
network topologies. 257

Nengo - Neural ENGineering Objects - a framework for SNNs grounded in control
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a class of synapse. 228–230
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NoC - Network-on-Chip - a regular mechanism for interconnecting diverse func-
tional units on a microchip. 14, 15, 38, 39, 41, 44, 48, 51, 54, 266–268,
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ity of an algorithm. 148, 152–155, 158
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activity of simple spiking neurons. 178, 180, 181, 189–197, 199–201, 203
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packet to a specific destination. 31, 40, 49, 83
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of ANNs. 178, 191, 194–197, 201, 203
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ANNs. 181, 189, 195–201, 203, 276

RISC - Reduced Instruction Set Computer - an architectural innovation emerging
from work at UC Berkeley around 1980 that emphasizes simplicity and reg-
ularity in ISA design for microprocessors; contrast with CISC. 4

RMSE - Root Mean Squared Error - a widely used measure for the accuracy of the
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Chapter 1

Origins

By Steve Furber

I have my hopes, and very distinct ones too, of one day getting cerebral phenomena such that
I can put them into mathematical equations – in short, a law or laws for the mutual actions of
the molecules of brain … I hope to bequeath to the generations a calculus of the nervous system.

— Ada Lovelace

The Spiking Neural Network Architecture (SpiNNaker) project has as its aim the
design and construction of a massively parallel computer to support the modelling
of large-scale systems of spiking neural networks in biological real time. The objec-
tives of this research are two fold: firstly, to build a machine that can contribute
to progress towards the scientific Grand Challenge of understanding the principles
underpinning information processing in the brain; and secondly, to use what we
do understand about the brain to help build better computers.

1.1 From Ada to Alan − Early Thoughts on Brains
and Computers

The brain remains as one of the great frontiers of science – how does this organ upon
which we all so critically depend do its job? We know a great deal about the low-level
details of neurons and synapses, glial cells and mitochondria, and we can use brain

1

http://dx.doi.org/10.1561/9781680836530.ch1


2 Origins

imaging machines to see how activity moves around in the brain in response to
external stimuli. But all of the interesting information processing takes place at
intermediate scales reachable neither by bottom-up neuroscience nor by top-down
brain imaging. The only tools available at these intermediate levels are those based
on computer modelling, where we can test hypotheses about fundamental questions
such as how does the brain learn and store new information, and how is what
we see with our eyes represented in spatio-temporal patterns of spikes within our
brains.

Interest in the brain is not new, of course. It took some time to determine that
our central control system was based in our head, not in our heart, and even more
time to understand the neuronal basis of this control [204]. But even before we
achieved this basic level of understanding, there was speculation about what might
be happening, and here we look at just two characters in this long story of working
towards an understanding of how we operate as an allegedly intelligent species.

1.1.1 Ada Lovelace

Ada Lovelace (1815–1852) is known in computing circles primarily for her work
as an assistant to Charles Babbage, who designed and tried to build mechanical
computing engines in early Victorian times. She was the only legitimate child of
Lord Byron and proposed an algorithm for Babbage’s Analytical Engine (which
was never built) that is viewed by many as the first computer program. She wrote
copious notes about her work with Babbage and her thoughts generally, among
which is the quote at the head of this chapter on her thoughts about creating a
mathematical theory of the brain’s operation.

Figure 1.1. Ada Lovelace.
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Sadly, Ada never got to deliver on this ambition. She lived before Ramón y
Cajal’s revelations of the details of the neuron, but even today, with all the detailed
knowledge gleaned in the interim years, her agenda would be considered highly
ambitious!

1.1.2 Alan Turing

Alan Turing (1912–1954) is, perhaps, the highest profile figure in the history of
computer science. In his seminal 1936 paper ‘On Computable Numbers, with an
Application to the Entschedungsproblem’ [257], he proposed a ‘universal com-
puting machine’ that could compute anything that is in principle computable.
This universality is the basis for the modern programmable computer and is the
basis of the ability of such machines to turn their hands to extremely diverse
uses. Of course, no finite machine is truly universal, but that is not our concern
here.

In September 1948, Turing moved to the University of Manchester, where the
first machine to implement stored-program operation had run its first program on
21 June that year. Note that Turing did not contribute directly to the design or
construction of the Manchester ‘Baby’ machine; Freddie Williams and Tom Kil-
burn had led that activity and achieved successful operation before Turing arrived
in Manchester.

Turing performed various duties while in Manchester, and in 1950, he wrote his
seminal paper ‘On Computing Machinery and Intelligence’ [256]. In this paper, he
begins with the words ‘I propose to consider the question “can machines think?” ’.
He then goes on to turn this around into what he calls ‘The imitation game’, but

Figure 1.2. Alan Turing (aged 16).
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which subsequent generations know simply as the Turing test for human-like arti-
ficial intelligence.

Turing reckoned that all that a computer would need to pass his test, compared
with the Manchester Baby machine, was more memory, about a gigabyte (a billion
bytes) should be enough. (Baby had 128 bytes of memory and could execute some
700 instructions per second.) He thought that by the turn of the 21st century
computers might have that much memory.

Indeed, by the turn of the 21st century a typical desktop computer would
have about a gigabyte of memory, and it would be a million times more power-
ful than the Baby, but it would not pass Turing’s test. This would have surprised
Turing.

Why has human-like artificial intelligence proved so much harder than Turing,
and many others since him, predicted? Perhaps it is because we still do not under-
stand natural intelligence, so we do not know exactly what it is we are trying to
reproduce in our machines. Natural intelligence is the product of the brain.

1.2 Reinventing Neural Networks − Early Thoughts
on the Machine

1.2.1 Mighty ARMs from Little Acorns Grow

The origins of the SpiNNaker project can be traced back to 1998, although the
motivation goes back even further. I (Steve Furber) spent the 1980s working for
Acorn Computers Limited, a start-up based in Cambridge, UK, that rose to promi-
nence as a result of securing the contract to develop the BBC Microcomputer,
which was launched in January 1982. The BBC Micro, or simply ‘Beeb’, rode the
wave of interest in personal computing that swept the world in the late 1970s and
early 1980s. Acorn wished to build on this success and, through a strange sequence
of events, ended up designing its own microprocessor based on principles emerg-
ing from US academia that went under the heading of the Reduced Instruction Set
Computer (RISC). That microprocessor was the Acorn RISC Machine (ARM),
over 120 billion descendants of which now power much of the world’s mobile and
embedded computing infrastructure.

The first ARM processor ran its first program on 26 April 1985; 13 years
later, in 1998, processors were perhaps a hundred times faster, yet they still
struggled to do some of the things that humans – even very young humans –
find easy, such as recognising a human face or picking up a toy. I began to
think about what it was that is different between how computers work and how
brains work.



Reinventing Neural Networks − Early Thoughts on the Machine 5

1.2.2 Realising Our Potential

The first concrete step towards addressing this question came when we had the
opportunity to bid for a modest grant from EPSRC. EPSRC is the UK’s Engineer-
ing and Physical Sciences Research Council, which funds UK academic research
in the areas suggested in its name, including computing. By virtue of past support
from ARM Ltd (the processor was now in the hands of a company that had inher-
ited its name!), I was eligible to apply for a grant under a scheme called ROPA –
Realising Our Potential Award. One of the requirements of this scheme was that
the proposed research should be in a different direction from previous work, which
in my case had focused on the Amulet series of asynchronous (clockless) implemen-
tations of the ARM processor. In an attempt to begin to think about how electronic
systems might work a little more like the brain, I came up with a proposal entitled
‘Efficient Very Large Scale Integration (VLSI) Architectures for Inexact Associative
Memories’. The summary on the grant application read: ‘Sequential processors are
remarkably good at some tasks and remarkably poor at others. Many tasks in the
second category can be described under the general heading of association – recog-
nising similarities. Although alternative architectures such as neural networks have
been proposed as efficient ways to implement inexact association, they have fre-
quently not led to designs that match current VLSI technology well. The proposed
research will investigate alternative ways to implement inexact association with the
objective of making the best use of current technology’.

For some time, I had found VLSI associative memories intriguing and had
deployed them in various cache memories and the like. But standard associa-
tive memories are ‘brittle’; given exactly the right input, they produce exactly the
expected output, but any error in the input results in no sensible output whatsoever.
I figured that the brain is rather more flexible than this and can produce sensible
outputs even when the input is a bit noisy, so the research question was to ask:
could we reproduce this flexibility in an electronic system?

1.2.3 Reinventing Neural Networks

As we looked into the design of associative memories that were tolerant of input
noise, every way we looked at this just seemed to be reinventing neural networks.
I guess this isn’t too surprising since a neuron can be viewed as an approximate
pattern-matching device, at least in some modes of operation. After a year or two
resisting this conclusion, we threw in the towel! If all roads to soft association lead
to neurons and the brain, maybe we should turn to the brain for inspiration to
guide our quest?
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This line of thinking drew us inexorably towards neural networks as the direction
we should explore to seek answers to our questions about how the brain does some
things so much better than our machines, however fast they might be.

We (the Advanced Processor Technologies group) were a bunch of computer
architects and engineers with a solid research background in unconventional (espe-
cially asynchronous) computing, taking novel designs all the way down to very
demanding silicon implementations. What could we bring to the neural network
party?

1.3 The Architecture Comes Together

So, hard logic had drawn us into the neural network game. This is not, of course,
virgin research territory; many had looked into VLSI implementations of circuits
based upon our (limited) knowledge of how the brain works. The first steps were to
look into what had gone before, what was known about the functions of neurons
and synapses, and what were the main problems that had arisen in previous work.
Then, the goal was to synthesise something from our basic research strengths that
stood a reasonable chance of yielding a substantive contribution to the field, with
sufficient differentiation from others’ work.

1.3.1 The State of the Neuromorphic Art

A lot of previous work in what was known as neuromorphic computing was based
upon the use of analogue electronic circuits to map neural and synapse equa-
tions directly into the circuit function. This was then combined with a digital
communications approach to convey neural ‘spikes’ (action potentials) between
neurons. Biological neurons communicate principally (though not exclusively)
through the transmission of action potentials which, because of the way they are
electrochemically regenerated as they propagate along the neuron’s axon (the bio-
logical wire that conveys the output of one neuron to the inputs of the next neuron),
carry no information in the size or shape of the spike. Thus, the spike can be viewed
as a pure asynchronous event, ideal for digital propagation – digital circuits have a
similar ability to regenerate pure signals as they propagate.

The communication of spikes in electronic systems can be problematic, even
when they are represented as digital signals, if the electronic system follows the
example of the biological system in allocating an individual wire to each spike
source. This had been resolved using Address Event Representation (AER) [152],
where each spike source (neuron) is given a unique code or ‘Address’, and this
address is then sent down a shared bus. Such an approach exploits the fact that,
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although electronic wires (which are restricted by manufacturing processes to two
dimensions) are smaller in number than biological wires (which have the luxury of
three dimensions to route through), they are also much faster. The only compro-
mise inherent in this multiplexed approach to spike communication is that spikes
that happen at exactly the same time in biology must be serialised in electronics,
but the timing errors introduced by this compromise are too tiny to matter on
biological timescales.

AER is a fine solution to spike communication up to the point where the shared
bus begins to saturate, but it isn’t scalable beyond that point. Biological systems
can have immense numbers of neurons – the human brain has approaching one
hundred billion – so something more than AER is required if we are to approach
such scales of networks.

1.3.2 What Could We Bring to Neuromorphics?

The Advanced Processor Technologies group in the Department of Computer
Science at the University of Manchester, had, as its core skill set, proven abilities
in taking novel digital architectures and processing systems (generally based upon
the ARM instruction set architecture) down to silicon implementation. We had
limited experience in analogue circuit design, but we had done a lot of work on
asynchronous digital circuits, where time is analogue (rather than discretised by
an external clock signal) and signal levels are discrete (binary 0 or 1). As the brain
operates without a central regulatory clock, would our experience in asynchronous
design give us new insights into potential brain mechanisms?

Our digital design background naturally led us to think about digital implemen-
tations of the neuron and synapse equations. The major data structures required to
model a neural network are those required to store synaptic weights that capture
the strengths of connections between neurons. The obvious technology to store
synaptic weights is some form of digital memory – if there’s one thing that the
semiconductor industry knows how to make it is memory! But memory is inef-
ficient in tiny units, which led us to think about populations of neurons rather
than individual neurons. If you think about the connections from one population
of, say 256 (computer scientists do so like powers of 2!) neurons to another pop-
ulation of the same size, then those connections can conveniently be seen as a
256 × 256 matrix of, say, 8-bit weights, which can be implemented efficiently
in 256× 2 k digital memory array. A population of neurons with inputs from mul-
tiple other populations could use one such matrix memory for each population
input.

So far so good. But how could we make the interconnect on a chip contain-
ing many such units flexible so that it could model an arbitrary range of network



8 Origins

topologies? AER suggested a starting point but, as noted above, bus-based AER has
limited scalability.

1.3.3 Multicast Packet-switched AER

The first key insight into the fundamental innovation in SpiNNaker was to trans-
form AER from a broadcast bus-based communication system into a packet-
switched fabric. In a packet-switched system, the AER information can be sent only
where it is needed. As the system scales up, there is more communication resource
available to handle the increased communication utilisation of the larger system.
The scaling isn’t linear, but on the assumption that the scaling laws for biological
brains are similar to those for logic circuits as defined by Rent’s rule [135], and
subsequent evidence has emerged to support this supposition [10], then the traffic
per unit of communication resource will grow much more slowly than the linear
growth in a broadcast system.

That’s all very well, but how are AER packets to be routed in such a system?
The assumption at the time (again, subsequently supported by evidence [258]) was
that a form of multicast routeing would be required to model the very high degree
of connectivity found in biological brains, where neurons can have tens (in some
cases hundreds) of thousands of inputs, and their outputs must therefore connect
to similar numbers of other neurons. So the AER packet could not possibly carry
information about all of its destinations. Each packet router in the system would
have to know where to send each AER packet.

In principle, this sort of routeing could be achieved using table look-up, but the
table would have to be infeasibly large. For example, a system designed to support
up to 4 billion neurons would require a 32-bit AER field, and the table would have
to have 4 billion entries. Even in today’s remarkable silicon technology, this is far
too large!

The solution is associative memory (naturally!). If each chip in a large system
has its own router, that router will only see a small subset of all of the AER codes in
the system, so an associative look-up table can be configured only with those codes
that will pass its way. Linked to the associative table, a similar sized Random-Access
Memory (RAM) can hold a vector of destinations for each entry in the associative
table.

1.3.4 Optimise, Optimise…

If the associative table must have an entry for each neural AER code that comes
its way, it might still need to be infeasibly large. But if we consider a population,
not a neuron, as the basic unit, then all the neurons in a population will be routed
to the same target populations, so cannot they be routed together using just one
table entry? Indeed they can, if the associative table is implemented using Ternary
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Content-Addressable Memory (TCAM), where each bit can match on 0, or on 1,
or be ‘don’t care’.

What happens to AER packets that don’t match any TCAM entry? They can
simply pass through a chip as if it weren’t there, so long straight paths through the
fabric will not eat up precious table entries.

Now (in 2002) we had all the essential properties of SpiNNaker’s unique com-
munications infrastructure: an AER-based multicast packet-switching system based
upon a router on each chip that uses TCAM lookup for efficient population-based
routeing and default routeing for long, straight connections.

1.3.5 Flexibility to Cope with Uncertainty

So far, we were still thinking in terms of implementing the neuron and synapse
equations in digital hardware. But what is the right neuron model – there were
several competing models at the time. And what is the right synapse model? Where
does learning come in? Is there a consensus on learning rules? (No!).

I served as the Head of the Department of Computer Science, University of
Manchester, from 2001 to 2004, and in academic year 2004/2005, I took a post-
headship rehabilitation sabbatical. As part of the sabbatical year, I spent a couple
of months at Sun Labs in Menlo Park, California, principally to work with their
asynchronous design group led by Ivan Sutherland. But while there I was also asked
to look at an emerging design for a High-Performance Computer (HPC), and in
my own time, I also continued to think about SpiNNaker. These intermingled
thought patterns led me to the firm conclusion that the way to accommodate the
uncertainty in neuron and synapse models was to relegate these to the most flexible
technology known to humankind – software. It was at that point that the digital
hardware implementation gave way to programmable cores – ARM of course. These
could be very small and efficient, as the neural modelling problem is embarrassingly
parallel, so we could use lots of them.

The other thing I learnt at Sun is that HPC designers are paranoid about the
possibility of deadlock caused by cyclic dependencies in the HPC communications
fabric, so they avoid them like the plague. The techniques they use to avoid cycles
incur considerable complexity and cost. The proposed SpiNNaker fabric was rife
with potential cycles, but we couldn’t afford the HPC solutions in terms either
of manpower or of silicon area! Neither could we afford deadlock. But each packet
conveys only one spike, so do we really have to guarantee its delivery? The solution,
which is simple and cheap, is in extremis to drop packets that cannot progress,
thereby averting deadlock.1

1. We subsequently added a mechanism to re-insert the dropped packets, re-establishing reliable delivery under
most circumstances.
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1.3.6 Big Memories

At this stage, we have a workable communications strategy and flexibility in neural
and synaptic algorithms (through the use of software), but the memory require-
ments for the ARM cores were looking much too high. Ideally, each ARM should
have its own memory for synaptic weights, but if it is to model a population of
1,000 neurons with 1,000 inputs, it will need a megabyte or so of memory. In
Static Random-Access Memory (SRAM), this would be most of a chip. There
was an alternative technology – Synchronous Dynamic Random-Access Memory
(SDRAM) – that is much denser than SRAM, but integrating it onto the same chip
as the ARM processors was problematic as DRAM uses a different process technol-
ogy from logic/processors. A compromise – embedded DRAM – was on the scene,
but the compromise included much reduced bit density.

The pragmatic solution was to use a separate industry standard SDRAM part
which, although very cost-effective, also involved compromise. First, all of the ARM
cores on the chip would have to share this memory, in terms both of space and
bandwidth. Second, the data width available from a separate memory chip is much
narrower than that which could be implemented on the same chip. All of this would
lead to significantly higher power to work the memory interface at high speed,
instead of having a very wide, slow and efficient on-chip interface. But engineering
is the art of the possible, and the numbers worked, so the standard Synchronous
Dynamic Random-Access Memory (SDRAM) became the memory of choice.

1.3.7 Ready to Go

This, then, was the thinking that went into defining the architecture of the
SpiNNaker system – a processing chip with as many small ARM cores as would
fit, each with local code and data memory, and a shared SDRAM chip to hold the
large synaptic data structures. Each processor subsystem would have a spike packet
transmitter and receiver and a Direct Memory Access (DMA) engine to transfer
synaptic data between the SDRAM and the local data RAM, thereby hiding the
variable SDRAM latency. Each chip would have a multicast AER packet router
using TCAM associative lookup and links to convey packets to and from neigh-
bouring chips.

All that was left to do was find funding to get the chip designed and built, then
build a machine and, of course, write some software!

The following section reproduces the content of a note written in May 2005
that outlines the key architectural concepts that were the starting point for the
SpiNNaker development. Some details changed in the course of that development,
so this should be read as a historical note, not as an authoritative definition of the
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final architecture! Although some of the details would change during the imple-
mentation phase that followed, the key concepts are already in place in this note.

1.4 A Scalable Hardware Architecture for Neural
Simulation

Steve Furber – 8 May 2005

1.4.1 Introduction

Over the last couple of years, I have been struggling with several aspects of
the proposed neural hardware system. Issues that have come to the fore are
the importance of modelling axonal delays, the importance of the sparse con-
nectivity of biological neurons, the cost issues relating to the use of very large
on-chip memories, and the need to keep as many decisions open for as long as
possible. I have now found a way to resolve all of these issues at once through
a radical change in the architecture proposal: push the memory off chip into
a standard SDRAM and implement the on-chip neural functions through
parallel programmable processors of a fairly conventional nature.

This approach yields a highly programmable system of much greater power
than that previously proposed and a safer (more familiar) development path.
It also points directly towards a development route that can be used to prove
the proposed plan using technology already to hand.

1.4.2 Intellectual Property

The aspect of the overall design that seems to survive all of my attempts to
find problems is the neural event routeing mechanism. This system is very
simple, yet different from earlier inter-processor networks in that it supports
one-to-many communication, whereas most inter-processor networks sup-
port one-to-one and/or broadcast communication. We could consider filing
a patent on this.2

1.4.3 Market Opportunity

The more folk I talk to in the neuroinformatics area, the more I get the
impression that this is a technology whose time may be about to come.

2. We did!
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In the first instance, I see this as a system that is well suited to support-
ing research into complex neuro-dynamics, and I think this will be the pri-
mary market until/unless there is a breakthrough in our understanding. This
system is well positioned both to expedite that breakthrough and to exploit
the consequences of it.

It is also possible that there might be a market for this system as a general-
purpose low-cost high-performance computer system. It has very high integer
performance and could be well suited to code-cracking, database search and
similar applications that do not need floating-point hardware. However, this
will require further investigation.

Potential products include neural simulation software, chips, boards and
full-blown systems. We could also sell time on systems.

1.4.4 System Organisation

As before, the system comprises a regular tessellation covering a square 2D
area with neural processing nodes (see Figure 1.3), each of which now com-
prises a special-purpose System-on-Chip (SoC) and a single SDRAM chip.
Each node has eight bidirectional communication channels that will proba-
bly be used to connect to the eight neighbouring nodes, including diagonal
connections.

Other configurations, such as a 4D hypercube, are possible, but the 2D
arrangement with diagonals is very easy to put onto a Printed Circuit Board
(PCB) and works pretty well.

The billion neuron system will require of the order of 10,000 nodes and
will therefore be built in a rack system on a large number of PCBs (e.g. 40
PCBs each containing a 16 × 16 array of nodes).

Figure 1.3 System-level organisation of nodes.
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1.4.5 Node Organisation

The internal organisation of a node is illustrated in Figure 1.4.
This figure is, in fact, unchanged from the previous version. What it

hides, however, is the fact that the implementation of the fascicle3 proces-
sor is now completely different. This difference is highlighted in Figures
1.5 and 1.6.

Instead of each fascicle processor incorporating its own on-chip memory
and hardware to implement the neural processing function, we now have off-
chip memory in the form of a standard SDRAM that is shared between the
fascicle processors.

This will allow the memory at each node to be increased by an order of
magnitude (at lower cost), but presents an obvious bottleneck in the interface
between the chips. Modern SDRAMs have very high bandwidth interfaces,
but relatively long latencies. For this to work we will have to use the SDRAM
very carefully, being sure to arrange data structures that are accessed together
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Figure 1.4 Node organisation.

3. At this time, I had seen ‘fascicle’ used to describe a bundle of neuron fibres and thought it was widely
used this way. I was wrong! We now use ‘population’ to describe a bunch of neurons with common
inputs and outputs.
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Figure 1.5 Detail of fascicle processor memory interface.

Figure 1.6 Detail of fascicle processor organisation.

in contiguous memory locations to make best use of streaming data perfor-
mance, and so on. I believe that this can be made to work, but it is a crit-
ical design issue. In particular, it will be important to ensure that all of the
instruction fetch activity of the processor is satisfied locally from the instruc-
tion RAM. I think this will be easy as the codes will be very small, but this
can be checked by developing them in ARM assembly code. A few kBytes
should be enough.

The fascicle processors share access to the SDRAM via a Network-on-Chip
(NoC) along the lines of CHAIN, a very flexible interconnect technology
proven on the smartcard chip (and currently being exploited by Silistix).

The internals of the fascicle processor node are illustrated in Figure 1.6.
Here we see the biggest change. In place of hardware neural processing

logic, we have a conventional processor, for example, Amulet3 [267]. It is
configured as a conventional system on chip with its separate instruction
and data buses connected to a minimal set of local memories and commu-
nications devices. Each FP could have its own boot Read-Only Memory
(ROM) (as illustrated), or there could be a single boot ROM shared via the
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NoC – this needs to be investigated. The instruction SRAM is dual-ported
solely to enable its contents to be modified by the processor itself.

1.4.6 System Architecture Issues

OK, so why does all (any?) of this make sense?
We have turned the neural model into software, making it fully reconfig-

urable, and providing scope for much more flexible axonal delay modelling,
data structures that efficiently store sparse connectivity information, sophis-
ticated Hebbian synaptic update rules and so on.

The design of the SoC is now a much more familiar job. We need to design
the pretty simple inter-chip communication interfaces and router, an indi-
vidual fascicle processor (which is then replicated many times on the chip),
the NoC, and the SDRAM interface (which we may be able to buy-in – it’s
a conventional horribly synchronous block). This is still a big job, but it’s a
whole lot easier than what was proposed before.

The advantage of the SoC structure is that it is comprised principally of
several copies of the fascicle processor. Even the monitor processor shown in
Figure 2 can simply be another copy of this subsystem. This gives us a signifi-
cant manufacturing cost advantage – if a fault causes one of these subsystems
to fail, this does not greatly impair the usefulness of the chip; the rest of the
system is likely to work fine. We just lose a bit of throughput.

The full billion neuron system is an interesting beast. It will require 10,000
SoC chips and the same number of SDRAMs. It will incorporate in the order
of 200,000 processors between them delivering 64 Tera Instructions Per Sec-
ond (TIPS). It will consume tens of kW. It will probably cost in the region
of £0.5 million.

A single-board system comprising 256 nodes would simulate 25 million
neurons and cost around £12,000.

Each node has about the performance of a Personal Computer (PC) in this
application and is less than 10% of the price. In addition, PCs do not have
the appropriate communication structures to enable a computing cluster to
scale as well as the proposed design, so the price advantage at the high end is
significantly greater.

1.4.7 Development Plan

This set of ideas is rather new so it will take some time to check that it is really
feasible. In the meantime, there are several things we can do to check it out.
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It is feasible to use the Excalibur parts we obtained from Altera to prove the
ideas. These chips include a 200 MHz ARM9 with caches and an SDRAM
interface, and an area of programmable logic. We can prototype the neural
algorithms on the ARM9 and prototype the router and inter-chip commu-
nications in the programmable logic. We have 2 development systems to get
started and 10 chips that could be used to build a 100,000 neuron engine.
Such a system would be an asset if we wished to attract venture capital fund-
ing to support the SoC development and/or production.

Alternatively, I could put in a large EPSRC proposal to support the SoC
design.

Timescales (rough estimates):

• 2 persons for 1 year to develop algorithms and Excalibur prototype
(∼£150 k).

• 4 persons/3 years to develop SoC design (∼£900 k).
• Some significant amount of time for configuration software develop-

ment.

This will yield prototype silicon. Moving this into production will incur a
large mask charge ($1.5 million) and, at this stage, this will require a part-
nership and/or investment.

1.5 Summary

The above May 2005 note, reproduced in Section 1.4, outlines all of the key con-
cepts at the start of the development of the detailed design of the SpiNNaker
chip. Funding was successfully sought from EPSRC, and the design work started
in earnest in October 2006. Many of the estimates in the note turned out to be
horribly optimistic – for example, the chip design took more like 5 years and 40
person-years rather than the 3 years and 4 person-years (4 years and 6 person-
years including the prototype, that was never built) in the note, but the choice
of a 130-nm Complementary Metal Oxide Semiconductor (CMOS) technology
kept the mask cost to $250 k rather than $1.5 M, so swings and roundabouts!
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Chapter 2

The SpiNNaker Chip

By Jim Garside and Luis A. Plana

Architecture should speak of its time and place, but yearn for timelessness.

— Frank Gehry

The central component in the SpiNNaker system is the SpiNNaker chip [186],
and the central focus of the SpiNNaker chip is scalability. The key concepts were
described in the previous chapter, but now these concepts must be realised in prac-
tice. This realisation, which took 40 person-years of design effort and 5 years of
elapsed time, is the subject of this chapter.

2.1 Introduction

Biological neurons are fairly slow at processing. The processes they perform are
quite complex and the appropriate abstraction – to separate the computing from
the process of simply living – is unclear, although the models are becoming more
sophisticated annually. There are also a lot of neurons in a mammalian brain and,
despite dense connectivity, most are independent from each other.

Electronic computing devices are very much faster than biology at computing
simple functions. This means that one electronic device can, in principle, model
numerous biological neurons and still provide real-time performance. There are
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many possible levels at which a model can be built, ranging from direct electronic
models of the neurons (which can process many times faster than biology) [114]
to massive computers that trawl through enormous data sets at great speed [199];
each approach has its merits and demerits.

SpiNNaker [65] was designed to function somewhere in the middle of this spec-
trum. To provide the flexibility to experiment with neuron models, it was deter-
mined that these should be implemented in software. Running software carries a
significant overhead in both performance and power consumption: the former can
be addressed by using a large array of processors, since the problem is amenable to a
massively parallel-processing solution; the latter concern was tackled by employing
power-efficient rather than fast microprocessors.

2.2 Architecture

2.2.1 An Overview

Imagine a large array of microprocessors where each processor simulates the bio-
logical computing of a number of neurons. In imagination, the array is almost
infinitely scalable, since the neurons themselves are largely independent. There is
then a choice as to how many neurons are mapped onto each processor, which is
governed by speed – both of the processors themselves and the desired speed of
simulation – and the memory capacity of each processor.

Outside the world of imagination, there are other pragmatic limits. Building
a customised microprocessor, specialised for neuron modelling, is impractically
expensive, not (just) from the hardware development view but from the software
support: an established architecture is much to be preferred. Then, there is the con-
sideration of powering and cooling a machine of any size. Finally, if a custom logic
is to be made, the design and verification effort must not be impractically high.

To provide significant (and convenient) computing power without excessive elec-
trical power dissipation suggests a 32-bit architecture. A 32-bit integer can provide
232 or about four billion unique codes, which is (very) approximately a match for
the number of neurons in a mammalian brain. (A human has about 86 billion
neurons; a domestic cat has around three-quarters of a billion [19, 90].) As a back
of the envelope initial figure, ‘one billion neurons’ seemed a credible target. This
could be spread over a million processors – each simulating 1,000 neurons – with
the processors grouped into chips, each chip being a multicore Application-Specific
Integrated Circuit (ASIC).

The chosen processor was an ARM968 [6]. This ARM9 device was already
mature at the time of selection but still gave good power/performance efficiency
and, crucially, was kindly licensed, on a non-commercial basis, by ARM Ltd. For
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manufacture, a 130 nm process was selected: again not state-of-the-art even at the
time of design but cost-effective and without too many new process issues for the
(necessarily) limited design team. With this process and this processor, a target
operating clock frequency of 200 MHz seemed reasonable and static RAM macros
that supported this target were available. Calculation suggested that this could sup-
port the target number of neurons in real time, with some flexibility to cope with a
varying load. Energy efficiency is important not so much on an individual processor
basis but when multiplied by a million processors in the system or, indeed, twenty
or so in the same package; the ARM968 is a power-efficient microprocessor when
executing and is able to ‘sleep’ – consuming almost no dynamic power – when there
is nothing to do, which may be expected frequently in a real-time system.

The amount of RAM needed to balance this model was also reckoned. In prac-
tice, for the intended application, the RAM was infeasibly large; however, much
of this is relatively infrequently used, so the model was subdivided in a memory
hierarchy, with a fast SRAM and a much larger but slower SDRAM component. A
local data space of 64 KByte plus 32 KByte of code space (small, since the processors
are running dedicated, embedded application code) was allocated. This needs to be
backed up by tables up to a few megabytes in size. Available (low power) technology
meant a single cost-effective die supplied 128 MByte but the relatively low demands
expected meant that one die could reasonably be shared amongst several processors.

With area estimates for the processor subsystems – including their SRAM –
and a feasible ASIC die size – it appeared that about 20 processors on each ASIC,
together with a single, shared SDRAM, would provide an appropriately balanced
system. This implied that 50,000 ASICs would be needed for a 1,000,000 processor
machine – a number which would (attractively) fit in a 16-bit binary index.

Neurons alone do not compute; there needs to be interconnection and, indeed,
there is overwhelming evidence that it is the patterns and strengths of connec-
tions which programme biological computers [115]. The problem for the system
architect is that, in biology, the output from any one neuron may be routed to a
unique set of hundreds, thousands and even tens of thousands of destination neu-
rons (Figure 2.1). This far exceeds typical computer communications uses, other
than with a broadcast mechanism; here, with a million possible sources, broadcast
is not practical, either from the communications bandwidth needed or the power
requirement for inter-chip communications.

It is therefore the specialist communications network, designed to support the
specific spiking neural network applications, that differentiates SpiNNaker from
most other multiprocessor systems.

SpiNNaker communicates with short packets. In neural operation, each packet
represents a particular neuron firing. A packet is identified using AER [152]; it is
tagged only with its originator’s identifier. (With 1 billion neurons, this requires at
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Figure 2.1. Neurons interconnecting.

least 30 bits; a 32-bit field is allocated for convenience.) Packets are then multicast
to their destinations with most of the routeing and duplication being done in (and
by) the network itself.

The first important point in the design is that the aggregate bandwidth of the run-
ning system – where packets are duplicated in flight but only as needed to reach all
their destinations – is not infeasibly high. Just like the processor – neuron relation-
ship, a single network link can carry many, multiplexed spike links as the electronic
connections are much faster than the biological axons. Indeed, practically, the time
to deliver a spike is typically negligible compared to biological transmission. Thus,
the actual network topology is not particularly important although, since neural
systems themselves (and their traffic) are fairly homogeneous, some form of mesh
is suitable – and amenable to the construction of scalable systems.

The chosen topology for the SpiNNaker network is a two-dimensional mesh.
The mesh is triangular (Figure 2.2) rather than Cartesian, with each ASIC con-
nected to six neighbours; this provides more potential bandwidth over the given
links and was also intended as a provision for automatically routeing around faulty
connections. (In practice, it has been observed that this latter feature was over-
cautious and is little used.) The edges of the mesh can be closed to form a torus
that reduces the longest paths; the maximum expected system – 216 chips or a
256 × 256 grid – would therefore have a longest path of 128 hops although most
would be much shorter.

Although there are other packet delivery mechanisms, the novelty and speciali-
sation in SpiNNaker is in handling multicast packets. These are optimised to model
biological neuron interconnection, where each neuron has a single output that
feeds its own set of targets. Biological destinations are not entirely random; there is
some structure and neurons tend to be clustered within populations with an output
feeding some subset of the neurons in several populations. This structure can be
abstracted as a tree (Figure 2.3).
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For simulation, it is logical to map neurons within a population to the same pro-
cessor(s). This means that a single packet delivered to a processor can be multicast
to the neurons – the last branching of the tree – by software. The populations them-
selves need to be distributed across the mesh network. In this manner, it is likely
that multicast packets can share part of their journey, effectively extending the tree
structure to multiple (series) branches (Figure 2.4). This also reduces the network
traffic as a packet is often not cloned until some way towards its destination.

The routeing from chip to chip is managed by a custom router on each
ASIC. Logically speaking, each router checks the (neuron) source ID – the only
information in the packet – and looks up a set of outputs, potentially including
both chip-to-chip links and processor systems on that chip itself. The packet is
then duplicated to all the specified outputs.
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With a 32-bit neuron AER, each router is potentially holding 4 billion words
of routeing look-up table: this is impractical. However, the logical table can be
compressed considerably in practice:

• Not all IDs are expected at a given node.
• A high proportion of connections – particularly over long distances – are

simply routed straight through.
• Many entries will be the same, as a result of the population-to-population

connectivity, rather than a random structure.

These properties are exploited to shrink the routeing tables to a manageable size.
This makes the table sparse, so rather than a simple array it is stored as an associative
structure using Content-Addressable Memory (CAM) to identify IDs of interest. If
an ID is not recognised, a topological assumption is made about the interconnection
mesh and the packet is simply forwarded to the opposite link from which it arrived:
this is referred to as default routeing (Figure 2.5). Default routeing reduces the
number of table entries to those corresponding to packets which are both expected
and need some action: changing direction in the mesh, being duplicated or arriving
at their destination – or any combination of these.

Lastly, providing the neurons in a given population are identified sensibly – i.e.,
with similar IDs – they can usually be routed with a single table entry. This is
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because the CAM contains a binary mask that specifies which bits in each key
are significant to that router. For example, if a population contains around 2,000
neurons, it can have a 21-bit ID with the remaining 11 bits determining the par-
ticular neuron. One routeing table entry can provide for all 2,000 neurons. For
implementation, the number of table entries is arbitrary: 1,024 was chosen for
SpiNNaker.

The final stage of neuron packet routeing takes place after delivery to a proces-
sor subsystem. Here a spike is multicast to a subset of the local neurons; however
there is now more information needed. Each connection has some associated
information:

• the strength or weight of the connection
• the unique delay of that connection, simulating the biological connection

delays.

The details of these variables are not important here. What does matter is that
there is one entry per synapse. Even with a very rough calculation – say 1,000 neu-
rons each with 1,000 synapses – it becomes clear that several megabytes of storage
are required for each processor subsystem. This is the data that reside in the (shared)
SDRAM and is fetched on demand.

Each processor has its fast, private memory and shared access to the SDRAM
(Figure 2.6). Although it can be used for communications, the main intended pur-
pose of the SDRAM is to act as a backing store for the large, relatively infrequently
accessed data tables. For this purpose, the SDRAM space is partitioned in software
with each processor allocated space according to its needs. For many applications,
data are simply copied in as needed although synaptic weights could be modified
and written back if the network is adaptive.
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The act of moving data around the memory map is simple but tedious and
inefficient for software. Each processor subsystem therefore contains a memory-
to-memory DMA Controller (DMAC) that can download these structures in the
background. The unit is also capable of uploading data if the synaptic weights
change, which will occur if the neural network is learning. The impact of trans-
fers on the processor is minimal since the local SRAM is bank-interleaved, always
assuming the processor has other work to do.

The impact of DMA transfers on the processing should also be small as the fetch-
ing of data is a background task. To decouple the process further, the DMAC
has a command buffer, allowing a request to be queued while its predecessor is
in progress; DMA transfers can therefore run continuously (if necessary) with con-
siderable leeway in servicing the completion interrupts.

Other than the ARM968, its RAM and the DMAC, there is very little else
within a subsystem. The only peripherals are timers, a communications interface,
which allows the processor to send and receive packets and an interrupt controller
(Figure 2.7).

The ASIC was planned to contain about 20 such processor systems. All the
processor subsystems used identical layout for development convenience, meaning
the timing closure was only necessary once; on the chosen manufacturing pro-
cess, it is permissible to rotate, as well as reflect, the hardened layout macrocells.
When possible floor plans were examined and the feasible chip area was taken
into consideration, it became apparent that 18 processor – memory combinations,
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Figure 2.8. The SpiNNaker chip floor plan.

together with the router, fitted better. As the specific number was not critical, this
was adopted (Figure 2.8). This can be post-rationalised into 16 neuron processors,
a monitor processor to manage the chip as a computer component plus a spare, but
the constraint was primarily physical. The processor count does have some impact
on the router since, when multicasting packets, it is necessary to specify whether
each of the 24 destinations – 6 chip-to-chip connections plus 18 local processors –
is used; 24 bits is a reasonably convenient size to pack into the RAM tables, so this
is a bonus.

There are also a few shared resources on each chip, to facilitate operation
as a computer component. These provide features such as the clock generators;
interrupt and watchdog reset control and communications; multiprocessor inter-
lock support; a small, shared SRAM for inter-processor messaging; an Ethernet
interface (as a host link) and, inevitably, some general purpose I/O bits for opera-
tions such as run-time configuration and status indication. A boot ROM containing
some preliminary self-test and configuration software completes the set of shared
resources. The details of some of these components are discussed in the following
sections.
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2.2.2 Processor Subsystem

The ARM968 is, by current or even design-contemporary comparison, a fairly low-
performance 32-bit processor. However, it is also power-efficient, which was a pri-
mary design criterion. The intention was to keep the ASIC power below or around
1 W or about 50 mW per processor subsystem – individually quite small but still
resulting in a 50 kW dissipation in the full-scale machine. The target speed was
200 MHz operation although, as SpiNNaker is intended as a real-time system, the
processors can be halted much of the time. Leakage power is effectively negligi-
ble in this 130 nm process, so halting a processor drops its power dissipation to
near zero.

The ARM968 is an integer-only processor. For neural calculations, the expecta-
tion was that some noise was expected – biological components are not 100% reli-
able, after all – so the overhead of a floating-point accelerator was regarded as deca-
dent. It has no cache either, but does support Tightly-Coupled Memory (TCM)
on both its instruction and data buses. The TCM is a static RAM with single-cycle
access; the processor can perform parallel instruction and data accesses. It acts like
a cache memory except it is under software control. Although the processor can
address shared memories directly – a boot ROM, an on-chip (32 KByte) SRAM
and the SDRAM – these are very slow in comparison so all applications code is
kept in the 32 KByte Instruction Tightly-Coupled Memory (ITCM) and the data
working set and stack in the Data Tightly-Coupled Memory (DTCM).

The TCM is logically dual-ported, so it can be written and read by the
DMAC too. The ITCM comprises a single 8 Kword SRAM block, so DMA
updates will interfere with instruction fetches, slowing down access somewhat;
however, code updates while running applications are not usually anticipated.
The DTCM comprises two word-interleaved SRAM blocks, so DMA updates –
which are expected in the background – are minimally intrusive. The result is a
close-to-zero-wait-state access for the TCM, despite it being composed from stan-
dard single-port SRAM macrocells (Figure 2.9).

In addition to its TCM buses, the ARM968 has a separate AMBA High-
Performance Bus (AHB) that handles the remaining addresses. As a microcontroller
processor – and in its era – it is clear that this processor was never intended to have
a completely filled address space. This is evident in the way the address space is
decoded as it is divided into 256 MByte regions which are alternately write-buffered
and unbuffered. In some places, this is exploited in the SpiNNaker memory map
(Table 2.1), so that (for example) the 128 MByte SDRAM is aliased into two places.
In most cases, the write-buffer can be exploited to give better memory throughput;
however, for barrier operations, where it is important to know that writes have
completed, and most I/O operations, the unbuffered space should be used.
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The DMA Controller (DMAC) is programmable via the ARM968’s AHB, in
addition to being a bus master to the TCMs (Figure 2.7). The DMAC is capa-
ble of memory-to-memory transfers between the TCMs and the chip wide bus
network – primarily the shared SDRAM. Transfers are in 32-bit words and can
be of any length; they are subdivided into bursts that form small block transfers
using an Advanced eXtensible Interface (AXI) protocol. Contiguous data bursts
make more efficient use of both the AXI interconnection and the SDRAM itself
than a set of individual transfers. The bursts are buffered by the DMAC, so
both buses can be active simultaneously: for example, an SDRAM read can be
incoming to a buffer, while its predecessor is being written to TCM. Transfer
requests are buffered so that a new transfer may begin as soon as its predecessor
completes.
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Table 2.1. Memory map.

Start End Actual size Access Function

0000_0000 003F_FFFF 32 KByte Local ITCM (instruction memory)

0040_0000 007F_FFFF 64 KByte Local DTCM (data memory)

0080_0000 0FFF_FFFF 16 MByte Local ITCM/DTCM (alias)

1000_0000 10FF_FFFF 32 Byte Local Communications

1100_0000 1EFF_FFFF 4 KByte Local Counter/timer

1F00_0000 1FFF_FFFF 4 KByte Local Interrupt controller (alias)

2000_0000 20FF_FFFF 32 Byte Local Communications (alias)

2100_0000 2EFF_FFFF 4 KByte Local Counter/timer (alias)

2F00_0000 2FFF_FFFF 4 KByte Local Interrupt controller (alias)

3000_0000 3FFF_FFFF 512 Byte Local DMA controller

4000_0000 4FFF_FFFF 512 Byte Local DMA controller (alias)

5000_0000 0000_7FFF – None Bus error

6000_0000 67FF_FFFF 128 MByte Global SDRAM (buffered)

6800_0000 6FFF_FFFF 128 MByte Global SDRAM (alias)

7000_0000 77FF_FFFF 128 MByte Global SDRAM (unbuffered)

7800_0000 7FFF_FFFF 128 MByte Global SDRAM (alias)

8000_0000 DFFF_FFFF – None Bus error

E000_0000 E0FF_FFFF 4 KByte Global SDRAM controller (alias)

E100_0000 E1FF_FFFF 96 KByte Global Router (alias)

E200_0000 E2FF_FFFF 516 Byte Global System peripherals (alias)

E300_0000 E3FF_FFFF 4 KByte Global Watchdog (alias)

E400_0000 E4FF_FFFF 48 KByte Global Ethernet (alias)

E500_0000 E5FF_FFFF 32 KByte Global Shared SRAM (buffered)

E600_0000 E6FF_FFFF 32 KByte Global Shared ROM (alias)

E700_0000 EFFF_FFFF – None Bus error

F000_0000 F0FF_FFFF 4 KByte Global SDRAM controller

(Continued )
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Table 2.1. Memory map (continued).

Start End Actual size Access Function

F100_0000 F1FF_FFFF 96 KByte Global Router

F200_0000 F2FF_FFFF 516 Byte Global System peripherals

F300_0000 F3FF_FFFF 4 KByte Global Watchdog

F400_0000 F4FF_FFFF 48 KByte Global Ethernet

F500_0000 F5FF_FFFF 32 KByte Global Shared SRAM (unbuffered)

F600_0000 F6FF_FFFF 32 KByte Global Shared ROM

F700_0000 FEFF_FFFF – None Bus error

FF00_0000 FFFF_FFFF 16 MByte Global Boot area

FFFF_0000 FFFF_0FFF 32 Byte Global Boot vectors

FFFF_F000 FFFF_FFFF 4 KByte Local Interrupt controller

It was also anticipated that in an expanded system, the soft error rate in the
aggregate SDRAM would be non-negligible. The DMAC therefore includes
a programmable Cyclic Redundancy Check (CRC) generator/checker that can
append a CRC word when a transfer is written to SDRAM or verify a CRC when
it is read.

Also contained within the DMAC, although not a DMA function, is a bus bridge
that allows the ARM direct access to the SDRAM, although this form of access is
not particularly efficient. A write buffering option is available to reduce the latency
if desired.

The only peripheral of particular note is the communications controller. This
provides bidirectional on-chip communication with the router. The input inter-
connection is blocking, so it is important to read arriving packets with low latency;
the ARM’s Fast Interrupt Request (FIQ) is typically used for this. Failure to read
packets will cause the appropriate network buffers to fill and, ultimately, stall the
on-chip router. Similarly, the outgoing link is blocking but the back-pressure may
partially rely on software checking availability.

2.2.3 Router

The router is the key specialised unit in SpiNNaker. Each router has 24 network
input and output pairs, one to each of the 18 processor subsystems and 6 to connect
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to neighbouring chips. Largely the links are identical, the only difference being that
off-chip links (only) are notionally paired, so that there is a default output associated
with each input which is used in some cases if no other routeing information is
found.

All router packets are short. They comprise an 8-bit header field, a 32-bit data
field and an optional 32-bit payload. Much of the network is (partially) serialised,
so omitting the payload when not required reduces the demand on bandwidth and
saves some energy.

There are four types of packet:

• Multicast (MC) packets are intended to support neural spike communica-
tions.

• Point-to-Point (P2P) packets are for chip-to-chip messages and are intended
for machine management.

• Nearest Neighbour (NN) packets primarily support the machine boot and
debugging functions.

• Fixed Route packets contain no key information and are always routed the
same way: they can provide facilities such as carrying extra status data to a
host.

Each of the packet types is separated and routed according to its particular rules.
The simplest are P2P packets that provide chip interconnection. A fully expanded
SpiNNaker system is designed to have 216 chips, so a 16-bit field in a P2P packet
determines the destination chip. This is used as an index into a RAM table that
specifies which output link to use for that packet. Each entry in the table is 3 bits
long, which permits the selection of any of the six chip-to-chip links plus an internal
option, used for when the packet has reached its destination chip; the routeing of
all possible packets is therefore fully specified in this table.

When the P2P packet reaches its destination chip, it has to be directed to a
particular processor. All internal P2P packets are sent to a preselected processor
subsystem, programmed into that router. The design intention is that this monitor
subsystem will, at least primarily, manage the computer itself rather than run
applications. It can forward messages to other systems if required in software, using
the shared RAM on the chip.

MC packet routeing is rather more complicated. As previously mentioned, it is
not feasible to store a complete routeing table for a billion neurons, so the neurons
are grouped and only a subset of the groups need be recognised by any particular
router. The first job is to recognise a packet (or not). This function is performed
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by a TCAM in which the packet key is compared with all the entries. Each table
entry consists of a key and a mask. Within each entry, each bit is compared with the
corresponding stored state, which can be:

Mask bit Key bit Function

0 0 Always match

0 1 Never match

1 0 Match if 0

1 1 Match if 1

Subsequently, all the bit matches are ANDed, and if the result is true, the entry
is a ‘hit’. These combinations allow each entry to match with particular patterns
of ‘0’s and ‘1’s in the key, disregarding some other bits. For example, an entry with
key = 0x5a5a5a00 and mask = 0xffffff00 will match the 256 packet keys in the
range [0x5a5a5a00, 0x5a5a5aff] as it ignores the 8 least-significant bits. Including
a never match bit anywhere in the entry indicates that the entry is unused, as it will
never produce a match.

The inclusion of don’t care fields means that it is possible to match multiple
different TCAM entries quite legitimately. This is an exploitable feature since the
matches are prioritised and the highest priority match is isolated for the subse-
quent stage. Placing more specific entries in higher priority positions can simulate
having more entries than are physically present. For example, an entry with key =
0x5a5a5a5a and mask = 0xffffffff will match the single packet key 0x5a5a5a5a,
which is part of the range matched by the entry listed in the previous paragraph.
If the new entry is included in the table at a higher priority than the previous
entry, it will make that entry only ever match the other 255 keys in the range.
Matching a set of 255 packet keys would require a larger set of non-prioritised
entries.

If a match has been made, the next step is to look up the output vector. This
comprises a 24-bit word where each ‘1’ bit indicates that the packet should be
copied onto that link. This facilitates the multicast operation.

Fixed route packets are very simple to direct. Each router has a single, pro-
grammable register that says which output link(s) to use. They are really a special
case of MC packets with a single, always matched key field and they require almost
no additional hardware. They can be used for specific purposes, such as building
network trees to funnel monitoring data back to host interfaces but can only pro-
vide one such structure in any single configuration.
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Unlike the other communication packets, NN packets can be routed before the
network tables are initialised; their routeing is determined by the chip hardware
and the network topology. They are provided:

• for boot purposes
• for local systems communication
• as a debugging aid.

For the first two purposes, packets are routed:

Source Destination

Any processor on this chip One or all inter-chip links
inter-chip link monitor processor on this chip

By convention, only the local monitor processor should originate such packets;
just like the other packets, they carry a 32-bit data field with an optional 32-bit
extra payload.

For debug purposes, a different type of NN packet is used. These are trapped by
the router on the destination device, which becomes a master of the shared address
space on that chip. This means that one chip can read and write some of the state of
any neighbouring device. The convention adopted here was that only 32-bit words
can be moved and the presence of a payload: in a request indicates a write request;
in a response indicates a returned read value.

All the routeing units deliver packets to an output stage together with a bit vector
indicating their output direction(s). All being well, copies are dispatched simultane-
ously on each of the indicated links. However there can be congestion which causes
back-pressure on an output; in this circumstance the router output stalls and waits
for the link(s) to clear. MC packets stall if any output is blocked rather than trans-
mitting on the unblocked links first; this facilitates some error recovery, if necessary,
later.

The network is not guaranteed deadlock free! In particular, the cloning of MC
packets can generate a lot more traffic than is initially injected. It is also infeasible to
implement an end-to-end flow control protocol on such packets. There is therefore
a risk – indeed a significant probability! – that the network could deadlock, at
least unless some other protection exists. This contingency is handled by using a
time-out on blocked packets. If a packet has been stuck for a pre-programmed time,
it is dropped and the next is output instead. Dropped packets are caught in software
and can be re-injected later. Ensuring that (multicast) transmission is all-or-nothing
means that only the packet needs to be saved, the packet routeing being re-derived
on re-injection.
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The time-out period is software programmable using a short (8-bit) floating-
point value, allowing times from 0 (i.e. discard immediately if an output is blocked)
to almost a million clock cycles; the ultimate value is wait forever for experimental
purposes: packets are not lost but, under many circumstances, system deadlock
means that functionality is!

The time-out introduces elastic buffering at a router and can alleviate any con-
ceived deadlock problem. In a case of severe congestion, it does impose a potential
performance penalty in that the time-out has to be slow enough to allow a proces-
sor to respond to an interrupt and read the packet before the next one is dropped,
limiting the minimum time-out interval. In the original conception, it was believed
that for neural spike packets, the vast majority of traffic in the intended applica-
tions could be dropped without re-injection because it is likely that biological sys-
tems would tolerate such noise. In hindsight, this was a questionable decision since
computational neuroscientists can be more protective about their simulations!

Another level of defence against faults was provided by emergency routeing. This
is a mechanism primarily to protect against a physical link failure. At time-out,
instead of immediately dropping a packet, the router can attempt to route around
the blockage. This assumes that the inter-chip mesh is wired in a particular (i.e., the
originally intended, triangular) way and uses an alternate, two-hop path to the des-
tination (Figure 2.10). Information is included in the header of any packets treated
this way, so that the subsequent routers can allow for the diversion, including know-
ing the appropriate default routeing direction. The emergency routed packet is, in
some sense, superimposed on the network, so that the case where it exploits a link
which was already committed to a valid route is also correctly handled. Packets can
also stall waiting for emergency routeing to be available; a second (independently
programmable) time-out mechanism is applied which, if set to zero, can effectively
disable emergency routeing.

In addition to its routeing links, the router has an AHB slave interface for pro-
gramming and monitoring. This allows the tables to be set up. Although this is
normally the responsibility of the local monitor ARM, it is also possible using NN
packets and the router as its own bus master. It is possible, with care, to read and
write the look-up tables while the system is operating since requests are arbitrated
into the packet stream to reach the TCAM, RAMs, etc. and removed before the
output stage when a response can be generated. This also facilitates testing of the
RAMs. Testing the TCAM is somewhat more complicated since it is not directly
readable.

Neither full custom design nor TCAM macros were feasible or available for the
design. While the RAMs could use conventionally produced (and efficient) macro-
cells, the TCAM is composed of standard cells. This means that it significantly
dominates the silicon area occupied by the router. This cost was alleviated using
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Figure 2.10. Emergency routeing.

latch, rather than D-type flip-flop, cells for storage, which roughly halves the area.
To meet timing constraints, writing to these latches requires two clock cycles with
a resulting hiccup in the pipeline flow; however, writing is rare, so this is not a
serious issue. To further reduce cost, the multiplexer trees that would be needed to
read back the contents were omitted. Some means of production test is still required
though, and a scan chain through the latches is a difficult (and costly) alternative.

Instead, the TCAM is tested by association. A key pattern can be written to a
test register location and the presence or absence of a match can be determined,
together with the internal address of the first match. The test is conducted by one
of the on-chip processors during the boot process.

In a fault-free environment, all packets arriving at a router will be intact, correct
and intentionally present. However, the router does some straightforward checks
to increase the robustness of the system. Firstly, an arriving packet has to have a
legal size, as counted by the number of symbols (‘flits’) arriving, delimited by End-
of-Packet (EoP) markers. It was conceived that noise on the asynchronous links
could easily introduce spurious symbols and corrupt packets. (In practice, such
problems have not been observed in existing machines given that the long, cabled
links which had been envisaged on the original design were avoided in the end.)
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Packet corruption could still occur though, if a chip is reset (due to local problems)
while sending to its neighbours. There is also a parity bit in packets where space
allows, as a crude intactness check.

Finally, there is a timestamp on potentially long-lived packets, intended to guard
against misprogrammed routeing allowing packets to circulate in the system-wide
network indefinitely. This is a simple, slowly changing phase number known by all
routers and appended to packets as they are transmitted. To use this mechanism,
all the routers in the system need to be synchronised, to some resolution. Synchro-
nisation will not be perfect and, in any case, the time phase may change while a
packet is in flight. A 2-bit Gray code is therefore used for the time phase, where a
router will detect a mismatch on both bits and will remove the packet before try-
ing to route it; this is separate from the dropping due to congestion. A packet will
then time out if undelivered somewhere between one and two time phases after
transmission. The time phases are set in software but envisaged to be of the order
of a few milliseconds; legitimate deliveries should be completed in much less time
than this.

2.2.4 Interconnection Networks

The SpiNNaker network connecting processors to routers and interconnecting
routers is asynchronous. Much of the inspiration for this is to remove chip-wide
timing closure issues since the subsystems can then be assembled without a need
to consider the timing paths in great detail. The 40- or 72-bit packets are serialised
into 4-bit elements, and these are transmitted serially between subsystems.

On chip, the coding scheme is a 3-of-6 Return-To-Zero (RTZ) code. Each 4-bit
element is indicated by activating exactly three of the six data wires to indicate each
symbol or ‘flow control unit (flit)’. When the receiver sees the complete code, it
acknowledges this by activating a returned signal. When the transmitter sees this,
it can deactivate the symbol. Since there are 20 possible codes (Table 2.2), each flit
carries a 4-bit binary value; some codes are omitted, which makes decoding slightly
simpler. A separate signal instead of a data flit indicates EoP that allows framing
detection.

A similar mechanism is used to convey flits between chips. Here, however,
the wiring is on PCB tracks and any switching is quite expensive in power con-
sumption. This is therefore minimised by using a more complex 2-of-7 Non-
Return-to-Zero (NRZ) scheme (Table 2.2). This requires an extra wire per link
per direction but only two wires switch for each flit and information is carried
by the transition rather than the level, so there are two data and one acknowledge
transitions per flit rather than the six data and two acknowledge transitions in the
internal code (Figure 2.11). The encoding and, especially, the decoding are more
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Table 2.2. Inter-chip flit encoding.

Hexadecimal 3-of-6 code 2-of-7 code

0 11_0001 001_0001

1 10_0011 001_0010

2 10_0101 001_0100

3 10_1001 001_1000

4 01_0011 010_0001

5 11_0010 010_0010

6 10_0110 010_0100

7 10_1010 010_1000

8 01_0101 100_0001

9 01_0110 100_0010

A 11_0100 100_0100

B 10_1100 100_1000

C 01_1001 000_0011

D 01_1010 000_0110

E 01_1100 000_1100

F 11_1000 000_1001

EoP – 110_0000

– 00_0111 000_0101

– 00_1011 000_1010

– 00_1101 011_0000

– 00_1110 101_0000

complicated however! In this case, to reduce the wiring (and pin) overhead, EoP is
coded as another flit. A 2-of-7 code has 21 separate symbols, so the required 17 fit
comfortably [225].

The asynchronous handshake protocol relies on transmitter and receiver alter-
nating in action. This functions well in the absence of faults but there can be a
problem if one end of the communications loses state. This can happen, for exam-
ple, if a chip crashes badly and takes a complete watchdog reset. Was the chip in
an active or passive phase on each of its links? The solution employed is to assume
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Figure 2.11. Inter-chip flit encoding: 2-of-7 asynchronous NRZ handshaking.

that the chip is active, so it can send data (as soon as it has some to send) but it also
acknowledges data which it may or may not have been sent. The transition detectors
will ignore a second transition if they are already active, so if the acknowledgement
is spurious it is ignored and lost; however, if the corresponding device had just sent
a flit, it is now acknowledged even though its content has been lost. Flit-level com-
munication is resumed; the flits, including EoP markers, are forwarded to the next
router which will detect an incomplete packet, discard it, raise an interrupt and
resynchronise.

The network described above, the comms NoC, supports the SpiNNaker (short)
packet communications across the entire machine. There is a second, independent
network on each chip, the system NoC, which acts as the local shared bus. This
employs the same asynchronous interconnection technology to simplify timing clo-
sure but the interface and traffic patterns are different and the topology reflects this
to some extent.

The local shared resources comprise the SDRAM and all the rest, the latter cat-
egory being peripheral interfaces et alia. The heaviest data traffic was anticipated
to be to the SDRAM. The system NoC is therefore decoded near each source and
crossbar-switched into these two branches, where various requests are then arbi-
trated and serialised. There are 19 masters on this network: the 18 processor sub-
systems and the router, which can read and write to shared resources, prompted by
NN packets from a neighbouring device. This latter facility provides a debugging
aid and allows code – and even router network tables – to be promulgated during
boot.
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The heaviest traffic on the system NoC is DMA from – and, to a lesser extent,
to – the SDRAMs. This comprises bursts of contiguous data that are well suited
to SDRAM efficiency. On the one hand, the interface to this part of the network
uses an AXI interface, which is optimised for such trains of data and, in this case,
is 64 bits wide. On the other hand, the remaining shared devices are slaved on an
AHB. The system NoC bridges these different protocols.

In a similar fashion to the inter-chip links, this asynchronous interconnec-
tion can be disrupted by unusual events. The only anticipated problem stems
from the loss of coherency due to a processor being reset during an outstand-
ing transaction. The ARM itself provides no alternative but a straightforward
restart; under any conditions but a full power-up, the bus bridge retains some
state and is able to complete (and discard) any outstanding transactions before
reconnecting the processor. This avoids a crash-reset jamming the whole network
and allows the affected processor to recover. The mechanism extends to freeing
up any bus locking in the unlikely event of resetting during a read-modify-write
operation.

2.2.5 The Rest of the Chip

Although each subsystem is built as a conventional, synchronous unit, there is no
particular frequency or phase relationship between the units. Because there is a
limited number of clock sources, typically all of the processors are run at the same
frequency but they will be at different phases; the router is controlled separately,
according to the expected traffic and usually does not need to be run at its full design
speed, while the SDRAM can be run as fast as possible. A fringe benefit of assem-
bling the chip from many desynchronised components is that the demands on the
power supplies are not correlated, reducing the high-frequency variation of supply
current and making power supply decoupling simpler; the radiated electromagnetic
noise is also reduced. A little effort was put in to ensure that the processors are likely
to all be out of phase with each other.

There are numerous shared resources on the SpiNNaker chip, many of which are
fairly conventional in nature. Examples are a ROM that contains initial boot code,
a small SRAM used for interprocessor communication and hardware-supported
semaphores for synchronisation and mutual exclusion. Additionally, shared periph-
eral interrupts are broadcast to all processors.

Although accessible by any processor, the intended convention is that most
shared peripheral devices are only used by the selected monitor. For example, there
are clock generators that are made as a global resource to reduce the power and
area overheads. Two independent Phase-Locked Loops (PLLs) multiply an input
(10 MHz) reference frequency and their outputs can be divided and switched to
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feed different subsystems. Processor clocks are limited to two groups (9 processors
in each) but typically use the same source; 200 MHz is the design maximum fre-
quency. The router is typically run slower because it can (but need not) be in spiking
applications, and 133 MHz is convenient. The SDRAM controller is optimised sep-
arately to get better performance from the SDRAM device, and a 130 MHz clock
is usually used. At these speeds, under reasonable load, the power consumption of
the chip is around 1 W.

One slightly unusual shared subsystem is the mechanism for picking one pro-
cessor to be chip monitor. One processor is normally dedicated to functions such
as setting up and maintaining routeing tables and host communication, and this
is set into the architecture as the receiver of P2P packets. Rather than dedicat-
ing a particular subsystem to this task, the selection is left to run-time. The rea-
soning for this is partly in consideration of increasing useful chip manufacturing
yield.

Due to defects, not all manufactured integrated circuits work. Defects tend to
be randomly situated, so in a chip like SpiNNaker any particular defect is likely to
be in one of the processor subsystems – and, in particular, probably in its SRAM.
On boot up, each processor system runs some simple tests and, if it completes these
successfully, assumes that it is okay and attempts to claim the title of monitor. This
is done by reading a particular peripheral device (in the System Controller)1 which
has been cleared by power-up reset. The first device to do this is granted permission
to go ahead and its identity is recorded; subsequent devices are rejected and their
software moves to a subservient role. If everything is still functional, the victorious
monitor then brings up the whole chip.

However, the tests in the boot ROM are reasonably primitive as it was perceived
as risky to commit to having too much unfixable code on the chip mask and it was
envisaged that the subsequent discovery of a fault could then be fatal to the whole
device. To protect against this, a second reset – such as a watchdog – will repeat
the process, the difference being that the previous monitor will be refused even if,
as is likely, it is still the first to ask. To have two subtly broken claimants to the
‘monitorship’ would be particularly unlikely.

As a final line of defence against faults, each chip has a hardware watchdog unit.
This is intended to provide protection for the chip monitor which can then provide
more sophisticated monitoring of the applications processors in software. It acts to
reset the monitor processor after a preprogrammed interval unless itself periodically
reset by the software. The unit also has a second time-out interval and a further
output which will only trip if the monitor has not recovered after the first watchdog;

1. The System Controller also includes functions such as individual core resets and interrupts, and sempahore
registers.



Multiprocessor Support 41

this is set up to reset (and thus reboot) the whole chip, although it is anticipated
that simply recovering the monitor will normally be sufficient to initiate recovery.
The monitor (or, indeed, any processor) can reset any processor(s) using the System
Controller, which can provide a reset pulse such that a processor can safely reset
itself, if desired.

As part of the support for larger systems, there was an (inexpert) attempt to build
a thermometer on each chip. This is possible because the properties of the electronic
components – particularly speed – change with the temperature. Unfortunately, the
properties also change with variations in (local) operating supply voltage and indi-
vidual manufacturing conditions. To overcome this, three different temperature-
sensitive circuits were implemented. One is a simple inverter ring oscillator, which
can be timed against a known, crystal-regulated delay; the second is a mixed-signal
ring oscillator whose stage delay reduces rather than increases with rising temper-
ature; the third was a timer of the delay of the leakage discharge of a capacitor.
By taking three measurements with three unknowns, it is, in principle, possible to
extract values for all three, independently.

2.3 Multiprocessor Support

With any multiprocessor system, there can be a fundamental problem of synchroni-
sation and mutual exclusion. This is not a major issue for the intended SpiNNaker
applications, since these are planned to use independent processor systems inter-
acting via (spike) message passing where the exact ordering is not important. Nev-
ertheless, not including some means of synchronisation was liable to be a cause for
future regret as it is difficult to retrofit.

Two mechanisms were provided for processor synchronisation: the first is simply
the support for the ARM9’s SWP (‘swap’) instruction – a single instruction which
attempts a locked read-write operation on a selected byte or word in the address
space. In SpiNNaker, the only meaningful addresses are in the shared memory,
which is attached via an asynchronous NoC; the NoC therefore supports temporary
locking of its arbiters to make the read-write operations indivisible. (Additional
logic in the NoC interfaces guards against problems if the operation is aborted,
such as via an embarrassingly-timed watchdog reset.)

A second mechanism, somewhat faster and more convenient, is built into the
shared hardware in the System Controller: here a set of word addresses are mapped
onto registers that are read-sensitive; two addresses are associated with each register,
where reading one of the pair will set an associated Boolean flag and the other will
clear it. The flag value before the operation is returned, thus providing indivisible
test-and-set and test-and-clear operations. Thirty-two such flags are provided; if this
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proves inadequate, they can be used to lock larger structures or the SWP approach
can be used.

2.4 Event-Driven Operation

SpiNNaker is intended to operate in an entirely event-driven fashion to optimise
performance and energy consumption. There is no conventional operating system
running on the cores, simply a low-level interrupt service provider kernel. A core is
normally in low-power sleep mode. When an interrupt arrives, the core wakes up to
process any required data, possibly requesting DMA transfers or emitting packets.
On completion of the interrupt service, the core returns to sleep.

Table 2.3 lists the different sources that can interrupt the cores. The large number
of interrupt sources supports efficient interrupt-driven operation as it relieves the
core from wasting clock cycles having to identify the source after being interrupted.

Table 2.3. SpiNNaker chip interrupt sources.

Processor subsystem local

Communication controller packet reception (5 ×)

Communication controller flow control (3 ×)

Communication controller errors (3 ×)

DMA transfer completion

DMA transfer error (2 ×)

Local timer/counter (2 ×)

Software interrupt

Global

Router diagnostics event

Router packet error

Router un-routable packet

Watchdog timer

Slow system clock

Ethernet controller (3 ×)

On-chip inter-processor interrupt

Off-chip interrupts (4 ×)
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2.5 Chip I/O

Nearly all the pins on SpiNNaker fall into one of two categories: the inter-chip
links – where each of the six links comprises a complementary pair of asynchronous
links with seven data and one acknowledge wire each – and the SDRAM interface.
Provision was made for two 1 Gb low-power Double Data Rate (DDR) SDRAM
chips (the contemporary technology) in the architecture; one such die is physically
stacked onto the ASIC die and wire bonded before packaging – this makes the over-
all system PCB footprint significantly smaller – but the interface is also pinned out
for expansion; in practice, extending the SDRAM has not proved necessary. These
interfaces leave little room for conventional interfacing, but some of the remain-
ing pins provide for this. Chiefly, the ASIC includes an Ethernet interface pro-
viding a Media-Independent Interface (MII) which provides for a host link to a
standard network. This requires an external Physical Layer Device (PHY) – a phys-
ical medium adaptor – but it was never planned to provide Ethernet connectivity
to all the devices, just specific selected ones to provide gateways to the SpiNNaker
network.

The other general purpose I/O is a standard, parallel I/O port. In some cases, the
bits here may be used to support (for example) the Ethernet control. One bit is read
at boot time to select one of two boot options in the internal ROM: the conven-
tional start-up and a (tested, but not generally needed or used) option to use other
pins as a serial bus (Serial Peripheral Interface [SPI]) to download a different boot
sequence from an external source. This second option was to guard against a seri-
ous mistake in the main boot ROM code; it has not been needed. However, some
devices still use an external ROM, a good example being an Ethernet-expanded
chip which needs individual data such as a Media Access Control (MAC) address.
There are still several always-uncommitted bits that are useful primarily for debug-
ging purposes and the all-important blinkenlight.

Finally, an IEEE 1149.1-compliant Joint Test Action Group (JTAG) port is also
available for debugging purposes. Internally, the device chain comprises only the
18 ARM processors, as JTAG support was not deemed cost-effective for other sys-
tem components.

2.6 Monitoring

To facilitate tuning of the system and to give feedback on the design – this is,
after all, a research project – some hardware monitors were built in as counters.
Fundamentally, these are used to help observe the behaviour of the communication
networks.



44 The SpiNNaker Chip

The router has sixteen 32-bit counters which count packets in particular classes.
Each counter has an input filter which can be set to include or exclude packets
of a given type (such as multicast only), whether they have a payload, if they have
been actively (as opposed to default) routed, where they have been routed to and
so on. These are encoded as Boolean switches so a user can enable various com-
binations, including all. (Because there are so many possible internal destinations,
internally the last mentioned category is divided only into each chip-to-chip link,
monitor processor, any application processor and dumped.) Emergency routeing
states are included so any re-routeing, which would otherwise be invisible, can be
detected. These allow traffic patterns to be observed over time and any hot spots
detected.

As a bonus, the filters can be used to activate interrupts, so the passing of a par-
ticular sort of packet can attract immediate attention from the monitor (or other)
processor.

A second counter set monitors the behaviour of the system NoC; in this case,
rather than count transactions (which are already known), it times the latency of a
request to reveal how well the SDRAM is serving. Here counters are incremented
according to the number of clock cycles between the memory request and response,
which encompasses the travel time across the asynchronous network, any delays
due to arbitration and the latency of the SDRAM itself. The counters are in bins
of adjacent values and results are presented in the form of a hardware histogram,
accumulated over a set period.

2.7 Chip Details

The completed ASIC (Figure 2.12) measures about 10 mm2 and contains about
100 million transistors, mostly as static RAM. Its feature size is 130 nm. The pro-
cessors and router can run (within specification) at 200 MHz; the processor sub-
systems are typically run at this frequency although it is normal to run the router at
133 MHz since it still meets its usual demands at this speed. The SDRAM interface
is usually set to 130 MHz.

The power consumption depends on the active loading; the processor can halt
when there is no work to do, which reduces the power consumption significantly.
However with all 18 processors running at 200 MHz, the power dissipation is still
around the 1 W mark.

The implementation of the SpiNNaker chip was a big challenge given the size
and complexity of the system. SpiNNaker integrates several external IP devices,
such as the ARM processors and SDRAM controller, with components developed
in-house by the SpiNNaker team.
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Figure 2.12. The SpiNNaker ASIC, bonded to its ‘piggy-back’ SDRAM. Photo courtesy of

Unisem Europe, Ltd.

SystemC was used to validate the architecture and design of the SpiNNaker chip.
The synchronous models were cycle accurate, while asynchronous network models
were based on early delay estimates. External synchronous IP was delivered in RTL
Verilog, which was also used to develop most of the in-house designs, whereas asyn-
chronous IP was delivered in technology-mapped, gate-level Verilog. Equivalence
checking was used to verify RTL synthesis and optimisation. Gate-level models
with extracted parasitics and annotated delays were used for simulations.

The Synopsys Galaxy Design Platform was used for the design and implemen-
tation tasks. The implementation employs architecture and logic-level clock gat-
ing. The design methodology was fine-tuned with special emphasis on the power
efficiency of the clock networks. Power-aware synthesis was used throughout the
flow. A hierarchical methodology was employed [195] for the implementation of
the fully asynchronous networks, encapsulating small sections of the logic in cus-
tomised macros and using these as blocks for the larger sections.

The SpiNNaker chip is packaged in a 300LBGA package with 1 mm ball pitch.
All IO is assumed to operate at 1.8 V with CMOS logic levels. The package exports
an SDRAM interface that operates at 1.8 V LVCMOS that is usually left uncon-
nected, as the package incorporates an internal SDRAM die.

2.8 Design Critique

There are a few, minor niggles but the ASIC is basically fully functional. At the
time of writing, the SpiNNaker chips have been in use for some years. Largely they
have proved to fulfil their intended function although some shortfalls have become
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evident. In addition, as might be expected in a research machine, the requirements
have evolved and the chip cannot satisfy all of these efficiently.

Taking each subsystem in turn, the processor units are basically okay. The origi-
nal target of 1000 neurons per core has proved optimistic, partly because the desired
neuron models have become more complex,2 as have the synapse models, and the
number of synapses per neuron can also be higher than the original target. Depend-
ing on the models used, up to 256 neurons per subsystem is proving tractable, and
currently, this is the maximum number of neurons per core supported by the soft-
ware. Memory can also be a limiting factor. As something close to two-thirds of the
processor subsystem’s area is RAM as it is, a better way of thinking about the device
is as a set of RAMs with attached processors, rather than the other way around. In
this view, the RAM limits the number of neurons and synapses in each subsystem:
the alternative would be to have larger RAMs by reducing the number of processors.

The original intention was to have more processing capacity than was needed,
so processors could ‘sleep’ for a significant proportion of the time. In practice –
again, partly due to increasing ambition – the processors are active for most of the
time if natural, biological speeds are modelled at a 1:1 ratio. The major inadequacy
in the processor now turns out to be the lack of floating-point support: some algo-
rithms apparently need floating-point calculations and performing these in software
is expensive.

Because the number of neurons is usually lower than the original design, the
DMA units need to move less data than was expected. They have not provided
any bottleneck in use, although the rate of transfer from the SDRAM is throttled
when more than three or four transfers (from three or four subsystems) are active
simultaneously. Use of DMA keeps this in the background and it seems to function
well.

In a large machine, there were concerns for the reliability. The designers
attempted to protect against radiation-induced soft memory errors by the inclusion
of block CRCs as error detection on DMA transfers. This should at least detect
lost bits in the SDRAMs. In practice, despite extensive memory tests on a large
machine, no such error has yet been provably observed. On the other hand, several
soft errors have been observed in the SRAMs over the same tests.3 The SRAMs have
no hardware protection mechanisms, so recovery relies on either software checking
(data) or defensive software and watchdogs (code), both of which are costly. The

2. A trend which may continue – currently, we focus on point neuron models, but interest is growing in two-
compartment and dendritic computation abstractions.

3. We are grateful to Prof. Tobias Noll for drawing our attention to this matter and to public data from Micron,
with which our measured error rates are broadly consistent, at: https://www.hotchips.org/wp-content/uploads/
hc_archives/hc16/1_Sun/10_HC16_pmTut_1_bw.pdf

https://www.hotchips.org/wp-content/uploads/hc_archives/hc16/1_Sun/10_HC16_pmTut_1_bw.pdf
https://www.hotchips.org/wp-content/uploads/hc_archives/hc16/1_Sun/10_HC16_pmTut_1_bw.pdf
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error rates are small – negligible in a small system (say, a few thousand processors)
or short time-scales but are a concern for a million processor machine running over
several days.

The router copes well with the design loads and is typically run satisfactorily at
half its maximum speed. With spiking neural models, the spike packets are approx-
imately evenly distributed in time (as a result of careful software design to ensure
that this is the case), so network congestion is fairly unusual. However, other users
have implemented other applications – neural and otherwise – on the machine,
some of which are synchronous, resulting in network idle periods interspersed with
floods of packets. In these conditions, points in the network congest and, once
a router is blocked, the back-pressure causes the congestion to spread. The time-
out/packet drop will free this in time but it is not helped by the relatively slow
(software mediated) packet dropping rates. More elasticity or faster dropping would
alleviate many of the problems posed by these applications. However, permanently
dropping packets – even neural spikes which might be expected to be fairly unim-
portant in a fault tolerant system – turns out to be unacceptable to many users,
so the hardware dropping rates are typically limited to the speed that software can
salvage all dropped packets.

The size of the multicast routeing tables was set by (somewhat inspired) guess-
work. The number of entries here is arbitrary but sets the size of the TCAM which,
in turn, dominates the router area; 1024 entries were implemented; this allows
functional placement and routeing of most neural networks so far tried, although,
even with some clever exploitation of the bit-fields and prioritisation of entries, it is
uncomfortably small in some circumstances. Furthermore, tightly optimising the
initial setting of the TCAM, such as the sharing of entries, makes subsequent, run-
time modification more difficult. Neural interconnection updates primarily involve
changing synaptic weights, but if new neural projections appear – and, in biology,
they do – then changes to the TCAM may be needed to model this. A larger table
would ease this process considerably. However, the existing table is not vastly too
small: something like a doubling in size should easily accommodate anything so far
envisioned.

The most serious architectural drawback in SpiNNaker is probably not con-
nected with simulating spiking neurons as with being a computer. The short com-
munication packets provide well as models of neural spikes but provide poorly for
copying bytes between computer memories. There are two readily identifiable areas
where this is needed:

Loading data: Code is necessarily short and is typically the same in most proces-
sors; the data tables that define the neural net are all different and are large.
These tables are not hand-generated at the neuron level; they are specified
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statistically in populations. However, for convenience in the early systems,
the expansion to neurons has been performed on the host server, requir-
ing the subsequent uploading of vast data tables on relatively low-bandwidth
connections.

This problem can, of course, be alleviated by loading generator functions
instead and performing the data expansion within the machine.

Unloading results: Having run a simulation, the user needs to see what happened.
This is the reverse problem from the data loading. Again it could be alle-
viated by performing some of the statistical compression in parallel in the
SpiNNaker machine; currently, it involves dumping large quantities of data
through the network and processing this on the host computer.

While both these problems can largely be mitigated by more sophisticated soft-
ware, better (faster) up- and down-loading of the SpiNNaker’s SDRAM contents
would give a more generally usable machine.

The NN packets provide a means of remote access to the shared resources of a
chip without the need for software cooperation from the target chip. This proves to
be a valuable debug and, especially, diagnostic tool. It would be even more valuable
if it could also reach into the individual TCMs of crashed processors. This was not
done as it would have been a significant additional feature to make the system NoC
bidirectional and provide a second master to the DMAC bus; however, in hindsight,
it may have paid off to do this.

The purely on-chip (system) network, which is used primarily to DMA SDRAM
contents to (and from) the individual processors’ SRAMs, meets its requirements
well. It does not provide enough bandwidth for a single processor to use the full
SDRAM bandwidth, but this was never the intention as the SDRAM is a shared
resource. In practice, three or four processors can share the SDRAM relatively
unimpeded; with more active processors, the share is limited and each participant
is allocated a roughly equal share. Since the applications do not require continuous
SDRAM access and requests are not correlated, this network and the RAM are not
a bottleneck.

One omission which was not obvious in the original design is the lack of hard-
ware memory protection. Various hardware systems that need security are protected
from user-mode accesses but there is no protection of the RAM itself. The reason-
ing was that the applications are embedded, the users are trusted, and therefore,
the hardware overhead is unnecessary. While this reasoning still holds, the software
development process has shown that the addition of some protection of the RAM
would facilitate easier code debugging by helping to localise programming faults.
There is an ARM standard Memory Protection Unit (MPU), which offers access
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control of programmed regions of the address space with little hardware overhead.
With hindsight, this would probably have been a worthwhile inclusion.

The triangular connectivity of the network was partially determined by the desire
to provide emergency routeing around broken or blocked inter-chip links; packets
can be routed around a breakage via the other two sides of the triangle. In practice,
this has never really been an issue; blockages are most likely due to congestion at
the destination router, so finding an alternative path is not useful. This feature is
therefore somewhat redundant.

Emergency routeing is unlikely to be used and, since this is the only constraint
requiring the 2D triangular mesh, there are possibilities to use the chip in other
network topologies. The most obvious such is a 3D cubic mesh, which can still
exploit the default routeing feature to save on TCAM entries. A machine configured
as a 3D torus has an advantage in shortening the average path length. This has not
been put into practice though, since the network capacity of the machine is more
than adequate for neural simulation using the original layout and the inter-chip
and inter-PCB connections are already well understood – and, probably, somewhat
more tractable.

Each ARM9 processor is supported by a Vectored Interrupt Controller (VIC)
with 32 interrupt inputs; the particular VIC allows interrupt prioritisation, which
supports nesting of interrupt service routines and half of the inputs to be vectored
directly using their specific service routines; the other 16 processors need some form
of software dispatcher. The choice of interrupt signals seemed fairly clear at design
time as there were about 32 hardware status signals that could sensibly be used; it
was largely a matter of filling up the available interrupt inputs with status signals.
Only one bit was allocated as a software-triggered input, allowing software on one
processor to request attention from any other.

This is typically restricted to communications to and from the monitor processor.
The inefficiency is that a single interrupt has to serve all the potential communica-
tion needs, which implies software checking of status previously implanted in the
(slow) shared memory. This is a particular burden for the monitor processor which
needs to determine which other processor(s) are requesting attention and the rea-
son(s) in each case by working through a collection of flags planted in shared RAM.
In retrospect, combining some of the less important hardware signals could have
made room for more software signalling which could relieve some of this burden.
Ideally, extending the interrupt structure to cascade more discrete software signals
would have been even more useful. This could facilitate simpler and faster message
communication, particularly as all host to application processor links use P2P pack-
ets and, necessarily, are mediated by the monitor processor. Peer-to-peer signalling
in the applications processors could also be useful in extending the flexibility of the
chip running not-spiking-neuron tasks.
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The temperature sensors were tested and functioned basically as predicted. Some
curves have been plotted where properties could be controlled. Unfortunately (to
date), the calibration and extraction of the true temperature has defeated everyone
who has tried.

The asynchronous inter-chip links have proved reliable, delivering 250 Mb/s
consistently; a modest speed by current standards but, as prioritised, extremely
energy efficient. The links scale more than adequately to massive sizes: the full-size
SpiNNaker system, described in Chapter 3, contains over 57,000 SpiNNaker chips
with a bisection bandwidth of 480 Gb/s and a worst-case latency in the 34–46 µs
range.

2.9 Summary

The SpiNNaker chip was designed by a small team of academic researchers and
postgraduate students with the associated restrictions and constraints regarding
fabrication cost and access to process technologies, standard cell libraries and intel-
lectual property. Overall, a 40 person-years effort was devoted to its design, imple-
mentation and verification. A test chip with two processors was taped out in August
2009 followed by the production chip in December 2010. Key SpiNNaker figures
are listed in Table 2.4.

Although SpiNNaker is a high-performance architecture highly optimised for
running neuroscience applications, it can also be used for other distributed com-
puting, such as ray tracing and protein folding. The chip provides a cost-effective
means of achieving over 1014 operations per second, provided that floating-point
arithmetic is not required.

As a message-passing system, the greatest performance bottleneck is the com-
munications between processors and, therefore, SpiNNaker was optimised for
the short, multicast messages (spikes) associated with neural network simulation.
This optimisation has resulted in some additional overhead for other applications,
including loading and control of neural networks, which is done by sharing the run-
time network. In hindsight, provision for larger payloads with guaranteed delivery
would relieve the software burden in sharing these disparate tasks. However, the
decision to share a single network still appears sensible, and this relieves some of
the system-level problems.

Experimental results show that, for massively parallel neural network simula-
tions, the customised multi-core architecture is energy efficient while keeping the
flexibility of software-implemented neuronal and synaptic models, absent in cur-
rent neuromorphic hardware.
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Table 2.4. SpiNNaker chip key figures.

Process

Process technology UMC 130 nm 1P8M CMOS

Die area 101.64 mm2

Power supply 1.2 V (Core), 1.8 V (I/O)

Processing

Processor cores 18 ARM968s (1 monitor, 17 application)

Processor frequency 200 MHz

Processor node area 3.75 mm2

Memory

Local memory per core 32 KByte (instruction), 64 KByte (data)

On-die shared RAM 32 KByte

Off-die shared RAM 128 MByte DDR2 SDRAM

Communications

On-chip interconnect Asynchronous NoCs

Off-chip link b/w 250 Mb/s

On-chip comms Link b/w 5.0 Gb/s

Off-die SDRAM b/w (DMA) 7.2 Gb/s

On-die shared RAM b/w (DMA) 3.2 Gb/s

On-die shared RAM b/w (bridge) 200 Mb/s

Router input b/w 5.3 Gb/s

Full-size system bisection b/w 480 Gb/s

Power Consumption

Peak (chip) 1 W

Idle (chip) 360 mW

Idle (core) 20 mW

Off-chip link (full speed) 6.3 mW (25 pJ/bit)

SDRAM 170 mW

Implementation

Transistor count ∼100 million

Design effort 40 person-years
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Chapter 3

Building SpiNNaker Machines

By Luis A. Plana, Steve Temple, Jonathan Heathcote, Dave Clark,
Jeffrey Pepper, Jim Garside and Steve Furber

Strive for perfection in everything you do. Take the best that exists and make it better.
When it does not exist, design it.

— Sir Henry Royce

The 40 person-year effort required to develop the SpiNNaker chip constituted only
the first step in the path to build a platform to help understand how the human
brain works. The next step was to make SpiNNaker chips work together in a mas-
sive scale to simulate very large spiking neural networks. The initial target was to
simulate a billion neurons, around 1% of the human brain, in real time. Our esti-
mates suggested that it would require one million processing cores, that is, over
57,000 SpiNNaker chips.

Figure 3.1 illustrates the road to a billion neurons. The monumental task of
assembling the million-core, massively parallel SpiNNaker1M computer would
involve configuring, testing and deploying 1,200 SpiNNaker boards, 150 power
supplies, 60 network switches, 50 fan trays and 1.5 km of high-speed interconnect
cables, all housed in 10 standard 19" cabinets.
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Figure 3.1. SpiNNaker machine to simulate a billion neurons in real time.

3.1 Putting Chips Together

At the time that this book was written, there were around 300 SpiNNaker boards
in use in many places around the world, as shown in Figure 3.2. Additionally,
1,200 SpiNNaker boards were used to deploy SpiNNaker1M, located at the Uni-
versity of Manchester. On the way to the commissioning of this machine, five

Figure 3.2. SpiNNaker boards around the world.
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Table 3.1. SpiNNaker boards.

Board Function Devices Notes

SpiNN-1 Technology de-risking 4× test chip + SDRAM Internal use

SpiNN-2 Chip test 4× SpiNNaker + SDRAM Internal use

SpiNN-3 Development platform 4× SpiNNaker 150 produced

SpiNN-4 Production prototype 48× SpiNNaker V supply issues

SpiNN-5 Machine production 48× SpiNNaker 1,400 produced

different SpiNNaker board designs were produced, each with its own objectives
and characteristics.

Table 3.1 summarises the function and main features of each of the boards. The
first two boards were used mainly to verify and evaluate some of the novel aspects
of the SpiNNaker chip, such as the asynchronous NoC interconnect [196]; the
SDRAM interface, which contains an asynchronous, programmable digital Delay-
Locked Loop (DLL) [72]; and the asynchronous, delay-insensitive chip-to-chip
interconnect [224]. These boards were fitted with Zero-Insertion-Force (ZIF) sock-
ets to facilitate the testing of packaged chips. They also had external SDRAM chips
in case the on-package, wire-bonded SDRAM failed. The latter boards do not have
external SDRAM as the internal setup proved reliable.

It is worth noting that, as indicated in Table 3.1, the SpiNN-4 prototype board
had power supply issues. In hindsight, it should have been obvious that 864 ARM
cores waking up concurrently can be extremely taxing on the power supply and this
requires adequate capacitance and remote voltage sensing. The SpiNN-5 produc-
tion board has a completely redesigned power supply and distribution network to
avoid these issues.

The SpiNN-3 development platform and SpiNN-5 production board are exten-
sively used and are described in the following sections.

3.1.1 SpiNN-3: Development Platform

Figure 3.3(a) shows a SpiNN-3 photograph and 3.3(b) shows its system diagram.
The board is a software/hardware development platform for SpiNNaker-based neu-
romorphic systems. There are around 100 SpiNN-3 boards deployed around the
world. The board houses 4 SpiNNaker chips that contain 72 ARM cores in total. A
small serial ROM stores non-volatile information such as the Internet Protocol (IP)
and MAC addresses, and the core and channel blacklists discussed in Section 3.1.3
below.
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Figure 3.3. SpiNN-3: SpiNNaker development board.

Table 3.2 summarises the SpiNN-3 board main features. Each SpiNNaker chip
has a red and a green Light-Emitting Diode (LED) for general purpose use. Its
main I/O interface is a 100 Mb/s Ethernet connection, that is usually connected to
a host machine, as described in Chapter 4. Additionally, two inter-chip SpiNNaker
channels have been exported to connectors and can be used to connect to other
SpiNNaker boards or to external neuromorphic devices, such as a Dynamic Vision
Sensor (DVS) [141, 143, 219], also known as a silicon retina or an event camera.

SpiNN-3 boards have been used during the design, verification and testing
of the different software components described in Chapter 4 as well as in the
training of SpiNNaker users. Additionally, the SpiNN-3 platform has been used
to build exemplar neuromorphic systems. Figure 3.4 shows a real-time, event-
driven neuromorphic system for goal-directed attentional selection developed
by Galluppi et al. [67]. The system uses a Field-Programmable Gate Array (FPGA)
interface board to connect an AER [136] DVS to the SpiNNaker board. The inter-
face, built using components from the SpiNNaker I/O library (spI/O) [197], is
described in SpiNNaker Application Note 8 [198].

3.1.2 SpiNN-5: Production Board

Figure 3.5 shows (a) a SpiNN-5 photograph and (b) a board diagram. SpiNN-5 is
a production board used to build multi-board machines, which can be as small as
1 board and as large as 1,200 boards. The board houses 48 SpiNNaker chips that
contain 864 ARM cores. A Flash Memory (Flash) stores non-volatile information
such as the IP and MAC addresses, and the core and channel blacklists discussed
in Section 3.1.3 below.

Table 3.3 summarises the SpiNN-5 board main features. Each SpiNNaker chip
has a green LED for general purpose use. Its main I/O interface is a 100 Mb/s
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Table 3.2. SpiNN-3 main features.

Feature Value

Dimensions 90 mm × 100 mm × 1.6 mm

SpiNNaker devices 4

PCB layers 6

PCB track/gap 0.15 mm (all signal layers)

Via hole size 0.25 mm

PCB stackup TOP signal

2 GND

3 1.2 V

4 1.8 V

5 signal

BOTTOM signal

External power 5 V DC

On-board power 1× 1.2 V (PTH05050W)

1× 1.8 V (TPS77818d)

1× 3.3 V (TPS77833d)

Interfaces 2× SpiNNaker channel

1× 100 Mb/s Ethernet (SMSC8710A)

Figure 3.4. SpiNN-3: Event-driven neuromorphic system.
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Figure 3.5. SpiNN-5: SpiNNaker production board.

Ethernet connection, that is usually connected to a host machine, as described in
Chapter 4. Additionally, a single inter-chip SpiNNaker channel is exported to a
connector and can be used to interface to external neuromorphic devices.

In Figure 3.5, the SpiNNaker chips appear to form a square but they are actu-
ally organised as a hexagon, as shown in Figure 3.6(a). This shape allows efficient
board tiling to create multi-board machines [94]. Figure 3.6(b) shows how 12
SpiNN-5 boards can be tiled together to form a 24 × 24 chip two-dimensional
(2D) hexagonal mesh. The (red, green and blue) coloured lines represent board-to-
board connections. The 2D hexagonal mesh is converted into a hexagonal torus, the
SpiNNaker machine topology, by wrapping around the edge connections, as shown
in Figure 3.6(c). Some of these connections wrap around from the north edge to
the south edge and from the west edge to the east edge. It is interesting to note that,
in some cases, the wrap around connections are on-board SpiNNaker channels and
not board-to-board connections, for example, the top half of the board labelled B5
is located on the south edge while the bottom half of that board is located on the
north edge.

Figure 3.5 shows that the SpiNN-5 board also houses three FPGAs and nine
Serial AT Attachment (SATA) connectors. The six connectors on the front edge are
used to connect boards to each other and the remaining three can be used to connect
peripherals such as the DVS described in Section 3.1.1 above. Details of board-to-
board interconnect are given in Section 3.2 below. Finally, the board houses an
additional ARM processor, the Board Management Processor (BMP). This core is
not used to run SpiNNaker applications. Instead, as its name implies, it is used to
control the operation of the SpiNN-5 board. The BMP is in charge of powering up
and down the SpiNNaker chips, configuring the board FPGAs, controlling cooling
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Table 3.3. SpiNN-5 main features.

Feature Value

Dimensions 220 mm × 234 mm × 2 mm (double-height Eurocard)

SpiNNaker devices 48

FPGA devices 3× Xilinx Spartan-6 XC6SLX45T

PCB layers 12

(Cu thickness, core and pre-preg adjusted to manufacturer

recommendations to provide correct impedance on TOP and

BOTTOM layers and mechanical rigidity during assembly)

PCB track/gap 0.125 mm/0.125 mm internal signal

0.125 mm/0.200 mm SATA controlled impedance tracks

0.127 mm/0.127 mm TOP and BOTTOM signal

Via hole size 0.25 mm − 25,000 vias (!)

PCB stack up TOP signal (100 � controlled differential impedance)

L2 GND

L3 1.2 V a,b,c

L4 signal

L5 3.3 V, 2.5 V − voltage management internal planes for FPGA

L6 signal

L7 signal

L8 GND, 12 V internal plane to voltage regulators

L9 signal

L10 1.8 V

L11 GND

BOTTOM signal (100 � controlled differential impedance)

External power 12 V DC

On-board power 3× 1.2 V (PTH08T221W)

1× 1.8 V (PTH08t221)

1× 3.3 V (PTH08t230W)

(Continued)
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Table 3.3. SpiNN-5 main features (continued).

Feature Value

Interfaces 1× SpiNNaker channel

2× 100 Mb/s Ethernet (LAN8710A)

9× 3.3 Gb/s SATA links − 6 on front edge, 3 on back edge

1× BMP JTAG

1× FPGA JTAG

1× DIN41612 32-way backplane connector

8× Status LEDs
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Figure 3.6. SpiNN-5: Board structure and multi-board tiling. Figure (c) reproduced with

permission from Heathcote [94].

fan speed, keeping track of board operating temperatures (using temperature sen-
sors located at the north and south edges of the board) and taking appropriate
action in case of overheating. The BMP has its own Ethernet connection, that can
be used by the host to send commands to, and receive information from, the BMP.

The design of the SpiNNaker chip targeted energy efficiency as a top priority and
the board design also reflects this goal. Table 3.4 shows the power consumption of
the SpiNN-5 board under different loads. Unfortunately, due to area and design
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Table 3.4. SpiNN-5 power consumption.

SpiNN-5 state Power

SpiNNaker (idle – not booted) 28 W

SpiNNaker (idle – booted) 32 W

SpiNNaker (maximum load – SDRAM test) 70 W

FPGAs (configured – included above) 5 W

constraints, the board is not adequately instrumented to measure the power con-
sumption of individual components, such as the SpiNNaker chips, the Ethernet and
SATA interfaces or the BMP subsystem, only the power consumption of the FPGAs
can be determined independently. However, board-wide measurements suggest that
each SpiNNaker chip consumes around 1 W when fully loaded.

3.1.3 Nobody is Perfect: Testing and Blacklisting

Around 75,000 SpiNNaker die were fabricated and tested. Each good die was pack-
aged together with an 128 MByte SDRAM die to produce a SpiNNaker chip. The
chips were tested after packaging and those that reported at least 17 working cores
were accepted for use in the production of SpiNNaker boards. Accepting one non-
functional core per chip made it possible to build SpiNNaker1M within a reasonable
research budget, given the actual manufacturing yield. As a result, every SpiNN-5
board was populated with forty 18-core and eight 17-core SpiNNaker chips.

During the chip boot process, every core runs a Power-On Self-Test (POST).
A core that fails its own test indicates its unavailability through the System Controller
(see Chapter 2). A monitor core is selected amongst those that pass the POST. This
monitor core is responsible for testing the shared resources on the chip, such as the
SDRAM and the router, and takes part in the system boot process, while the rest
of the cores are in power-down mode.

Every SpiNNaker board is tested using a test suite that includes the tests listed in
Table 3.5. As indicated in the table, a BMP failure is considered fatal and results in
the rejection of the SpiNN-5 board. Other failures constrain the resources available
but do not necessarily result in the rejection of a board. In those cases, it is vital to
identify the misbehaving devices or communications channels.

During the initial board tests, it became clear that the POST coverage was insuf-
ficient. Unfortunately, the POST procedure was committed to the on-chip ROM
and could not be extended or modified in any way. An alternative approach was
implemented, inspired by the mechanism used on hard disks to manage bad sectors.
Instead of relying on the POST, the boards are thoroughly tested offline and a list
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Table 3.5. SpiNN-5 test suite.

Test Result

BMP test Accept/reject board

Core functionality Identify misbehaving cores

SDRAM functionality Identify misbehaving chips

Channel test Identify misbehaving chip-to-chip channels

Power-cycling/reboot Identify intermittent devices and channels

Table 3.6. SpiNN-5 blacklisting results.

Element Blacklisted Percentage

Total boards tested 1,333 96.95

Blacklisted chips 907 1.42

Blacklisted cores 12,148 1.07

Blacklisted channels 343 0.18

of unreliable devices and channels is kept in the non-volatile memory of the board.
The blacklist is applied during the boot process, guaranteeing a consistent, reliable
system. As explained in Chapter 4, the host reads the SpiNNaker machine infor-
mation to map the application only to correctly operating devices and channels.

Table 3.6 shows the results of the blacklisting process. Entire chips were black-
listed for a number of reasons, usually involving a shared resource, such as the
SDRAM or the SpiNNaker router. The number of blacklisted cores does not
include the cores in the blacklisted chips but includes the cores that were already
identified as not fully functional in accepted 17-core chips. Although the percent-
ages of blacklisted chips and cores are small, they are not negligible.

3.2 Putting Boards Together

As in all supercomputers, the SpiNNaker network interconnects its processors
in a topology that defines how different processors may communicate with each
other. Unlike the tree and N-dimensional torus topologies found in contempo-
rary supercomputers, SpiNNaker employs a hexagonal torus topology, as shown in
Figure 3.6(a). In this topology, every node is connected to six neighbouring nodes,
fitting together in a honeycomb-like pattern. Figure 3.6(b) shows that, due to the
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hexagonal arrangement of the SpiNNaker chips on the SpiNN-5 board, the hexag-
onal torus topology also applies when a board is considered a network node.

3.2.1 SpiNNaker Topology

The hexagonal torus topology was chosen over more conventional network topolo-
gies – such as 2D or 3D tori (sometimes known as a 2-ary N-cube or 3-ary
N-cube, respectively) – due to its balance of theoretical performance and practi-
cality. The bisection bandwidth of a topology indicates the theoretical worst-case
total throughput the network is able to sustain. In networks with homogeneous
link throughput, bisection bandwidth is determined by the number of links cut by
a balanced bisection of the network. In an N × N 2D torus topology, the bisec-
tion bandwidth is 2N links and each node requires four links. The hexagonal torus
topology requires six links per node but provides double bisection bandwidth (4N
links). The 3D torus topology also requires six links per node but by connecting
the nodes differently achieves a bisection bandwidth of 8N links. The 3D torus
topology, however, comes at a price – when immersed into the (approximately) 2D
space provided by a large machine room or row of server cabinets, some connec-
tions require long cables. By contrast, the 2D and hexagonal torus topologies are
both inherently two dimensional and consequently do not suffer from this effect.
The hexagonal torus topology, therefore, shares the practicality of construction of
a 2D torus while still gaining some of the performance of a 3D torus topology. In
addition, because nodes in a hexagonal torus topology have a greater number of
links, greater redundancy is available in the network to tolerate faults.

The hexagonal organisation of the chips is also efficient in the number of
SpiNNaker channels on the board boundary. This is extremely important, given
that, as shown in Figure 3.6(a), 48 channels are located at the board periphery
and need to be connected to neighbouring boards. The three FPGAs shown in Fig-
ure 3.5, labelled F0, F1 and F2, are used to implement board-to-board connections.
Each FPGA handles the interconnection of 16 SpiNNaker chip-to-chip channels,
that is, two sides of the hexagon. Figure 3.7 shows how the channels connect to
the FPGAs. Each of these channels has a bandwidth of 250 Mb/s and is used to
transport short packets that usually represent neural spikes.

3.2.2 spiNNlink: High-speed Serial Board-to-Board
Interconnect

As explained in Chapter 2, SpiNNaker channel data are transmitted using a
delay-insensitive, 2-of-7 code. Each channel direction uses 7 wires to represent
data and one additional wire as an acknowledge to complete data handshakes.
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Figure 3.7. SpiNN-5: Periphery chip-to-chip channels exported through FPGAs.

Figure 3.8. spiNNlink FPGA-based inter-board interconnect.

This energy-efficient code is ideal for inter-chip interconnect, given that it works
correctly in the presence of unbounded delays. Unfortunately, the number of wires
required for the 2-of-7 encoding would be extremely expensive for the direct board-
to-board connection. The use of that code would amount to a total of 768 wires on
the board periphery. To reduce the number of wires, the SpiNNaker channels are
multiplexed over SpiNNaker board-to-board links (spiNNlinks), that is, High-Speed
Serial Links (HSSLs) implemented using on-board FPGAs. Each FPGA manages
the 16 SpiNNaker channels on two adjacent sides of the hexagon and has spare
capacity to manage peripheral connections. Additionally, the FPGAs themselves
are connected in a high-speed ring, as shown in Figure 3.7.

spiNNlink incorporates several novel ideas including a bespoke, credit-based,
reliable frame transport protocol that allows the multiplexing of asynchronous
channels over a high-speed serial link and an efficient FPGA to asynchronous
channel interface that provides twice the throughput of traditional synchronisation
schemes.

Figure 3.8 shows two connected SpiNN-5 boards, each with its transmitter (Tx)
and a receiver (Rx). Two independent data + control streams are multiplexed onto
the same HSSL. The figure highlights one of the streams, with left-to-right flow of
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Figure 3.9. spiNNlink frame formats.

data and the corresponding right-to-left control flow. In the symmetric stream (not
shown in the figure), data and control flow in the opposite directions.

Transmission over HSSLs is structured in frames. The different frame formats
are shown in Figure 3.9. There are five frame types associated with data and control
transmission: data (data), out-of-credit (ooc), acknowledge (ack), reject or negative
acknowledge (nack), and channel flow control (cfc). Each frame is identified by a
different start-of-frame special character, highlighted in red in Figure 3.9, carries
a frame colour (fc) and is protected by a CRC checksum (CRC ). Data, out-of-
credit (ooc), ack and nack frames also carry a sequence number (sequence). Two
additional frame types, clock correction (clkc) and idle (idle), are used to keep the
HSSL synchronised.

Frames are a single 32-bit word long except for data frames, which have a vari-
able length. As indicated earlier, eight SpiNNaker channels are multiplexed into a
single HSSL and, as a result, a single data frame can carry up to eight SpiNNaker
packets, one from each channel. A SpiNNaker packet consists of an 8-bit header,
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a 32-bit routeing key and an optional 32-bit payload. The 8-bit presence field is a
bitmap used to indicate if the frame carries a packet from the respective channel.
Similarly, the 8-bit length field is a bitmap that indicates if the packet is long (con-
tains a payload) or short (no payload). These two bitmaps, part of the first word of
every data frame, establish the actual structure and length of the frame. Depending
on the number of SpiNNaker packets carried, data frames can be 4 to 20 32-bit
words long.

Transmission over the HSSL operates as follows: data from Tx are sent once,
identified by a frame sequence number and protected by a CRC for error detec-
tion. Multiple frames can be sent successively, subject to credit limits. Data frames
need not contain any actual data. If the credit becomes exhausted, Tx simply sends
unsequenced Out-of-Credit (ooc) frames instead.

Received data frames are either correct or not. A correct data frame will pass error
checks and have the expected sequence number. Erroneous frames are rejected and
retransmission is requested using the sequence number. To guarantee frames are
received in order, erroneous frames also change the receiver colour so that sub-
sequent, correct or incorrect, frames can be flushed until the erroneous frame is
retransmitted correctly in the new colour.

Rx provides updates on its status to Tx at expedient intervals. These are not
necessarily triggered by data arrival and continue in the absence of new data. Infor-
mation is conveyed on the credit available, the colour and Rx status. Flow con-
trol information (Xon/Xoff ) for individual SpiNNaker channels is also transmitted.
Error tolerance is provided by the repetition of these ‘frames’.

Tx re-credits its data frame allowance in response to the receiver status. Old
data, retained for possible retransmission, can be discarded up to the acknowledged
(ack) sequence number. When an error indication (nack) is received, the transmitter
changes colour, ignoring further prompts until the data stream is re-established,
resets its inputs to the error point and retransmits frames from the failed frame
sequence point. There is no requirement that the data contained is the same as the
original frames; frames may be reformed with additional data if desired.

The fully-asynchronous, handshake-based SpiNNaker channels described in
Chapter 2 pose a throughput challenge for spiNNlink. In a traditional interface,
the communications throughput is limited by the latency introduced by the syn-
chronisation flip-flops required for the handshake signals.

We investigated a fully asynchronous, that is, clockless, version of spiNNlink
[145] that used an asynchronous First In First Out (FIFO) buffer to avoid the
latency penalty imposed by the synchronisers. The new design increased sig-
nificantly the communication throughput but, as commercial CAD tools target
synchronous design flows, also increased the design, synthesis, placement and ver-
ification effort and was not a good match for the target FPGA devices.
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To avoid these issues, a novel strategy was developed for spiNNlink using
well-understood synchronous timing assumptions to predict the arrival of the
next SpiNNaker channel handshake, without actually waiting for it to com-
plete. Additionally, the novel interface is aware of asynchronous back-pressure,
that is, situations in which the asynchronous channel stalls for an unbounded
time due to traffic congestion. In order to operate correctly in these situations,
spiNNlink uses Synchronous Timing Asynchronous Control (STAC). It predicts hand-
shake timing except at the point where the channel may apply back-pressure,
where it completes a fully asynchronous handshake, responding correctly to
back-pressure and providing twice the communications bandwidth of the tradi-
tional implementation.

spiNNlink was implemented on the SpiNN-5 board FPGAs using Xilinx IP and
the components available in the SpiNNaker I/O library (spI/O) [197]. Table 3.7
summarises the high-speed serial interconnect main features.

Table 3.7. spiNNlink main features.

Feature Value

High-speed link bit rate 3.0 Gb/s

Board-to-board latency 665 ns

Data encoding 8 b/10 b + disparity

Tunable link parameters Tx driver swing

Tx pre-emphasis

Rx equalisation

Error detection/correction 16-bit CRC + retransmission on error

Clock correction (CLKC) CLKC code removal/duplication

SATA cable presence automatic detection

SpiNNaker interface Synchronous Timing Asynchronous Control (STAC)

SpiNNaker link bandwidth 5.5 Mpackets/s

Register bank SPI interface to BMP

Tx/Rx FRAME counters

CREDIT status/OUT-OF-CREDIT counter

CRC/FRAME/DISCONNECT error counters

tunable parameter control
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3.3 Putting Everything Together

As indicated earlier, SpiNN-5 production boards can be connected together to build
SpiNNaker machines. Figure 3.10 shows two examples of small-scale machines.

A single-board machine, containing one SpiNN-5 board, is shown in Fig-
ure 3.10(a). This machine is adequate for software development and small-scale
neural network simulations. Figure 3.10(b) shows a 24-board machine that con-
sists of a fully-populated 19′′ cabinet. The black SATA cables used for board-to-
board interconnect are clearly visible on the front of the machine. Also visible are
the white Ethernet cables for access to the SpiNNaker chips and the BMP. This
machine offers over 20,000 ARM processing cores with around 1.5 KW power
consumption when fully loaded.

3.3.1 SpiNNaker1M Assembly

Large-scale SpiNNaker machines are modular systems. The basic building block is
a standard 19′′ card frame that holds 24 SpiNN-5 boards and the required ancil-
lary equipment. Figure 3.11(a) shows the front of the card frame with 24 boards
installed, and Figure 3.11(b) shows the back of the card frame with three 650 W
power supplies and the card frame backplane. Each module also includes a fan
tray, located below the card frame, that pulls air from the front of the card frame,
between the boards, and blows it to the back. Finally, the module contains a 26-port
Ethernet switch that connects the SpiNN-5 boards.

The card frame backplane houses a serial ROM that contains information about
the frame location in the machine. These data are used during the boot process to

Figure 3.10. Small-scale SpiNNaker machines. (a) A cased 48-node 864-core board.

(b) A 24-board 20,736-core machine.
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Figure 3.11. A card frame holds 24 SpiNN-5 boards, power supplies and a backplane.

6m

Figure 3.12. SpiNNaker1M: 10 cabinets and 3,600 SATA cables interconnecting them.

Figure reproduced with permission from Heathcote [94].

configure the IP and MAC addresses of each SpiNN-5 board. It also contains power
supply data as well as information about fan speed control and temperature limits.
Additionally, the backplane provides access to temperature sensors and to a Liquid-
Crystal Display (LCD) located on the front of the card frame. The display is used to
provide information, such as operating temperature and power supply levels, to the
machine operator. Finally, the backplane carries a Controller Area Network (CAN)
bus, used by the BMP to communicate with each other. The SpiNN-5 boards are
connected to the backplane through an edge connector, located at the bottom right
corner in Figure 3.5(a).

To build larger machines, card frames are assembled together in 19′′ cabinets.
Each cabinet holds five card frames, for a total of 120 SpiNN-5 boards, containing
5,760 SpiNNaker chips/103,680 ARM cores. Figure 3.12 shows the 10 cabinets
and 3,600 SATA cables required to build SpiNNaker1M that contains 1,036,800
cores.
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Heat management is a significant design concern in massively parallel sys-
tems. Supercomputers usually consume large amounts of power, in the order of
Megawatts, that are ultimately converted into heat. Most supercomputers require
bespoke liquid or mixed air-liquid cooling systems. The focus on energy-efficient
design and construction means that SpiNNaker1M consumes well under 100 KW
when all cores are operating at full load, simplifying heat management. A couple of
chillers blow cool air into the machine room. Air enters the machine through the
cabinet front doors, and the card-frame fans move it through the SpiNN-5 boards
towards chimneys located at the top of each cabinet where it is steered back to the
chillers through a plenum. One of the chillers, with the associated chimneys and
plenum, can be seen in Figure 3.17. The chillers transfer heat to a water system
through coils. The chillers are controlled by thermostats measuring the tempera-
ture in the chimneys. Each chiller has a nominal capacity of 70 KW and a nominal
air flow capacity of 3.7 m3/s.

3.3.2 SpiNNaker1M Interconnect

As with any supercomputer, physically assembling a large SpiNNaker machine
poses many practical challenges in terms of arranging, installing and maintaining
the thousands of metres of network cables required. Cabling techniques for con-
ventional architectures and network topologies are well understood and embodied
by industry standards such as TIA-942 [250]. Unfortunately, the use of a hexagonal
torus topology for SpiNNaker renders existing approaches inadequate.

Naïve arrangements of torus topologies, hexagonal or otherwise, feature physi-
cally long wrap-around cables that connect units at the peripheries of the system.
Long connections can be problematic for several reasons:

Performance: Signal quality diminishes as cables get longer, requiring the use of
slower signalling speeds, increased error correction overhead or more complex
hardware.

Energy: Some energy is lost in cables; longer cables lose more signal energy requir-
ing higher drive strengths and/or buffering to maintain signal integrity.

Cost: Shorter cables are cheaper than long ones. Longer cables imply more cabling
in a given space making the task of cable installation and system maintenance
more difficult, increasing labour costs by as much as 5× [40].

In some cases, long connections in supercomputers may be eliminated by creative
physical organisation of the system. For example, the distinctive ‘C’-shaped design
of early Cray supercomputers was chosen to reduce the lengths of physical connec-
tions and thus improve system performance [255]. Unfortunately, this approach
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Figure 3.13. Folding and interleaving a ring network to reduce maximum cable length.

Figures reproduced with permission from Heathcote [94].

Figure 3.14. Network folding to shorten interconnect. Figures reproduced with permis-

sion from Heathcote [94].

does not scale up in the general case and requires potentially expensive bespoke
physical infrastructure. Alternatively, the need for long cables is often eliminated
by folding and interleaving units of the network [42]. This process is illustrated
for a 1D torus topology (a ring network) in Figure 3.13. A naïve arrangement of
units in this topology results in a long cable connecting the units at the ends of
the ring (Figure 3.13(a)). To eliminate these long connections, half of the units are
‘folded’ on top of the others (Figure 3.13(b)) and then this arrangement of units
is interleaved (Figure 3.13(c)). This ordering of units requires no long cables while
still observing the physical constraint that units must be laid out in a line.

The folding and interleaving process may be extended to N-dimensional torus
topologies by folding each axis in turn, as illustrated in Figure 3.14. Folding once
along each axis eliminates long connections crossing from left to right, top to bot-
tom and from the bottom-left corner to the top-right corner. Since all axes are
orthogonal in non-hexagonal topologies, the folding process only moves units along
the axis being folded. Unfortunately, this type of folding does not work for hexag-
onal torus topologies due to the non-orthogonality of the three axes. To exploit the
folding technique used by non-hexagonal topologies, the units in a hexagonal torus
topology must be mapped into a space with orthogonal coordinates. The choice of
transformation to an orthogonal coordinate system can have an impact on how
physically far apart logically neighbouring units are in the final arrangement.

Figure 3.15 illustrates the two transformations proposed by Heathcote [94]
to map hexagonal arrangements of units into a 2D orthogonal coordinate space.
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(a) (b) (c)

Figure 3.15. Transformations to map hexagonal arrangements of units into a 2D orthog-

onal coordinate space. Figures reproduced with permission from Heathcote [94].

The first transformation, shearing (Figure 3.15(b)), is general purpose but intro-
duces some distortion. The second transformation, slicing (Figure 3.15(c)), is less
general but can introduce less distortion than shearing and therefore may lead to
shorter cable lengths.

Once a regular 2D grid of units has been formed, this may be folded in the con-
ventional way as illustrated in Figure 3.14. Any shear-transformed network may
be folded this way since its wrap-around connections always follow this pattern.
Slice-transformed networks may only be folded like this when their aspect ratio is
1:2 when the pattern of wrap-around links is the same as a shear-transformed net-
work. When ‘square’ networks, that is, those with a 1:1 aspect ratio, are sliced, the
network must be folded twice along the Y axis to eliminate the criss-crossing wrap-
around links. It is not possible to eliminate wrap-around links from sliced networks
with other aspect ratios by folding. After folding, the units are interleaved, yielding
a 2D arrangement of units in which no connection spans the width or height of
the system. The maximum connection distance is constant for any network thus
allowing the topology to scale up.

As indicated earlier, the hexagonal torus topology also applies to SpiNNaker
when the boards are considered as nodes. The folded and interleaved arrangement
of units produced by these techniques may be translated into physical arrangements
of SpiNNaker boards in a machine room. Figure 3.16 illustrates how the SpiNN-5
boards that make up SpiNNaker1M can be folded and interleaved to keep cable
length short.1

3.3.3 SpiNNaker1M Cabling

Due to the high density of units in a SpiNNaker system, the detailed cabling
patterns used can be complex, despite their overall regularity. Figure 3.17 shows
SpiNNaker team researchers and PhD students cabling SpiNNaker1M , a process
that took several days even with the valuable cooperation of the machine itself.

1. See also: https://youtu.be/z1_gE_ugEgE

https://youtu.be/z1_gE_ugEgE
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Figure 3.16. SpiNNaker1M: Long interconnect wires are avoided by folding and interleav-

ing the board array in both dimensions.

Figure 3.17. SpiNNaker1M cooperates in its cabling (l. to r. Christian Brenninkmeijer,

Robert James, Garibaldi Pineda García, Alan B. Stokes, Luca Peres and Andrew Gait).

Luca earned the right to connect the last cable by providing the closest estimate to the

total length of cable used (see Table 3.8).

To cope with this complexity, we developed SpiNNer [96], a collection of soft-
ware tools for generating cabling plans and guiding cable installation and main-
tenance of SpiNNaker machines. SpiNNer employs diagnostic hardware built
into SpiNNaker to guide the cable installation process. Figure 3.18(a) shows how
SpiNNer uses diagnostic LEDs on the SpiNNaker boards to indicate where to
connect a cable. The software also provides step-by-step cabling instructions via
a Graphical User Interface (GUI), shown in Figure 3.18(b), and audible instruc-
tions delivered via headphones. These instructions explicitly specify the length of
cable to use for each connection, thus avoiding the common problem of techni-
cians over-estimating the cable length required [156]. Diagnostic registers in the
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Figure 3.18. SpiNNer guides cable installation. Figures reproduced with permission

from Heathcote [94].

Table 3.8. SATA cable usage in SpiNNaker1M.

Cable length (m) Quantity Total length (m)

0.15 304 45.60

0.30 1,504 451.20

0.50 1,014 507.00

0.70 742 519.40

0.90 36 32.40

total 3,600 1,555.60

spiNNlink interconnect are then used to verify the correct installation of each cable
in real time, ensuring that mistakes are highlighted and fixed immediately.

The ‘rule of (three-)thumbs’ proposed by Mazaris [156] was used in
SpiNNaker1M . This rule suggests that a minimum of 5 cm of cable slack should
be provided. As SpiNNaker uses off-the-shelf SATA cables, only standard lengths
were available. For any given span, the shortest length of cable providing at least
5 cm of slack was used. Table 3.8 lists the cable lengths used and the total number
of cables of each length. The table shows a total cable length of over 1.5 km.

3.4 Using the Million-Core Machine: Tear it to Pieces

SpiNNaker1M is a massively parallel computer system that contains over one
million energy-efficient ARM cores aimed at simulating one billion spiking neural
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Figure 3.19. SpiNNaker1M partitioned into smaller virtual machines.

networks in biological real time. Most likely, though, not every simulation run
on SpiNNaker1M will consist of a billion spiking neurons. To improve system
throughput and energy efficiency, we developed a centralised software system
which partitions large SpiNNaker machines into smaller ones on demand. This
system is used to run many simulations in parallel on the same machine. The
SpiNNaker machine partitioning and allocation server (Spalloc) [95] enables users
to request virtual SpiNNaker machines of various shapes and sizes. These requests
are queued and allocated in turn, partitioning SpiNNaker1M into the requested
shape. Figure 3.19 shows a SpiNNaker1M diagram with various jobs allocated
through Spalloc. Jobs can be as small as 1 SpiNN-5 board and as large as the whole
machine, that is, 1,200 boards.

When faced with the numerous research problems of optimal packing and
scheduling of allocations, this implementation uses the ‘simplest mechanism that
could possibly work’. This means that a job may end up with a larger machine than
requested, to accommodate a selection of shape and size. Spalloc communicates
with the BMPs of the allocated boards to disable the FPGAs in order to isolate the
virtual machine from neighbouring boards that are not part of the machine. When
a machine is allocated to a job it is powered on but not booted, that is up to the
requester. This allows users complete control of the machine. The requester must
keep the job alive by contacting the Spalloc server periodically and must release the
allocated machine when finished.

3.5 SpiNNaker1M in Action

Figure 3.20 shows technician Dave Clark checking SpiNNaker1M, the ‘million-core
SpiNNaker machine’. The machine, located at the University of Manchester, was
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Figure 3.20. SpiNNaker1M: SpiNNaker million-core machine.

Figure 3.21. SpiNNaker1M inaugural boot.
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commissioned on 2 November 2018 and serves researchers in the EU Human Brain
Project (HBP). The cabinet at the right end of the photograph houses several host
machines, including a server that provides remote access to SpiNNaker1M through
the HBP portal and a second one that supports a Jenkins continuous integration
testing platform for the SpiNNaker software tools described in Chapter 4.

Figure 3.21 shows a photograph of the celebration of the inaugural
SpiNNaker1M boot on 2 November 2018, led by Prof. Steve Furber and
Dr. Andrew Rowley. The machine reported 1,010,089 operational ARM cores, as
shown in the photograph.
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Stacks of Software Stacks
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All hope abandon, ye who enter here.

— Dante Alighieri, Inferno

Alongside the job of designing and producing the hardware, there is the equally
challenging task of constructing software that allows users to exploit the capabilities
of the machine. Using a large parallel computing system such as SpiNNaker often
requires expert knowledge to be able to create and debug code that is designed to be
executed in a distributed and parallel fashion. More recently, software stacks have
been created which try to abstract this process away from the end user by the use of
explicit interfaces or by defining the problem in a form which is easier to map into a
distributed system. In this chapter, we describe the SpiNNaker software stacks upon
which most of the applications described in subsequent chapters are supported. It
is built by merging slightly modified versions of the work presented by Rowley et al.
[213], covering the software tools that allow the running of generic applications –
the SpiNNaker Tools (SpiNNTools); and Rhodes et al. [207], covering the tools
that specifically support the simulation of Spiking Neural Networks (SNNs) – the
SpiNNaker backend for PyNN (sPyNNaker).
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Figure 4.1. Applications using SpiNNTools to control SpiNNaker.

4.1 Introduction

A growing number of users are now using SpiNNaker for a wide range of tasks,
including Computational Neuroscience [3] and Neurorobotics [1, 48, 209] for
which the platform was originally designed, but also machine learning [240], and
general parallel computation tasks, such as Markov Chain Monte Carlo inference
computations [161]. The provision of a software stack for this platform aims to
provide a base for the various applications, making it easier for them to exploit the
full potential of the platform. Additionally, users will gain the advantage of any
improvement in the underlying tools without requiring changes to their software
(or at most only minor interface changes should they be required). A basic overview
of this approach is seen in Figure 4.1.

The software stack allows the user to describe their computational requirements
in the form of a graph, where the vertices represent the units of computation,
and the edges represent the communication of data between the computational
units. This graph is described in a high-level language and the software then maps
this directly onto an available SpiNNaker machine. The SpiNNaker platform as
a whole is intended to improve the overall execution time of the computational
problems mapped onto it, and so the time taken to execute this mapping is critical;
if it takes too long, it will dwarf the computational execution time of the problem
itself.

The problem of writing code to run on the cores of the SpiNNaker machine
is discussed in more detail by Brown et al. [25], along with the types of applica-
tions which might be suitable to execute on the platform. The software assumes
that the application has already been designed to run in parallel on the platform;
the SpiNNTools software then works to map that parallel application onto the
machine, execute it and extract any results, along with any relevant data about
the machine.
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4.2 Making Use of the SpiNNaker Architecture

The nature of the SpiNNaker chip has important implications for the software
running on the system. This section is a short recap of Chapters 2 and 3. Firstly, it
must be possible to break up the computation of the application into units small
enough that the code for each part fits on a single core. The SDRAM is shared
between the cores on a single chip, and this property can be used by the application
to allow cores to operate on the same data within the same chip. A small amount of
data can be shared with cores operating on other chips as well through communica-
tion via the SpiNNaker router. The SpiNNaker boards can be connected together
to form an even larger grid of chips, so appropriately parallelisable software could
potentially be scaled to run on up to 1 million cores.

The SpiNNaker router is initially set up to handle the routeing of system-level
data. The data to be sent by applications make use of the multicast packet type,
meaning that a packet sent from a single source can be routed to multiple destina-
tions simultaneously. To make multicast routeing work, the routeing tables of the
router must be set up; this process is described in Section 4.7.

Each chip has an Ethernet controller, although in practice only one chip is
connected to the Ethernet connector on each board. The chip with the Ethernet
connected to it is then called the Ethernet chip, and this is used to communicate
with the outside world, allowing, for example, the loading of data and applica-
tions. Communications with other chips on a board from outside of the machine
must therefore go via the Ethernet chip; system-level packets are used to effect
this communication between chips. In practice, the Ethernet connector of every
board in a SpiNNaker machine is connected and configured, although this is not
a requirement.

SpiNNaker machines are designed to be fault tolerant, so it is possible to have a
functional machine with some missing parts. For example, it is normal that some
of the SpiNNaker chips have 17 instead of 18 working cores, and sometimes even
fewer than this as operational cores are tested more thoroughly than the testing
done at manufacture. Additionally, machines can have whole chips that have been
found to have faults, as well as some links broken between the chips and boards.
The machine includes memory onto which faults can be stored statically in a black-
list, so that during the boot process these parts of the machine can be hidden to
avoid using them.

SpiNNaker machines can be connected to external devices through either
a SpiNNaker link connector, of which there is one on every 48-node board, or a
spiNNlink SATA connector, of which there are 9 on each board; of those, 6 are used
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to connect to other boards. This, along with the low power requirements, makes
the machine particularly useful for robotics applications, since the board can be
connected directly to the robot without any need of other equipment. The only
requirement is that the external devices must be configured to talk to the machine
using SpiNNaker packets. The links can be configured to connect directly to a sub-
set of the SpiNNaker chips on the board, and entries in the routeing tables of those
chips can be used to send packets to any connected device and to route packets
received from the devices across the SpiNNaker network.

4.3 SpiNNaker Core Software

The ARM968 cores can execute instructions from the ITCM using the ARM or
Thumb instruction sets; generally, this code is generated from compiled C code
using either the GNU’s Not Unix (GNU) gcc compiler1 or the ARM armcc com-
piler.2 To this end, a library known as the SpiNNaker Application Runtime Kernel
(SARK) has been written which allows access to the features of the SpiNNaker core
and chip [25]. Additionally, software called the SpiNNaker Control And Monitor
Program (SCAMP) has also been written which allows one of the cores to operate
as a monitor processor through which the chip can be controlled [25], allowing,
for example, the loading of compiled applications onto the other cores of the chip,
the reading and writing of the SDRAM, the loading of the SpiNNaker routeing
tables and, of course, controlling the operation of the chip’s blinkenlight. SCAMP
software can also map out parts of the machine known to be faulty when it is first
loaded. Thus, when a description of the machine is obtained via SCAMP, only
working parts should be present. The list of faults is stored on the boards them-
selves and can be updated dynamically if other parts are subsequently found to be
faulty.

The SCAMP code can be loaded onto one core on every chip of the machine,
and these cores then coordinate with each other allowing communication to any
chip via any Ethernet connector on the machine (see below). This communication
makes use of the SpiNNaker Datagram Protocol (SDP) [64], which is encapsulated
into User Datagram Protocol (UDP) packets when going off machine to external
devices. Communication out of the machine from any core is achieved by using
Internet Protocol (IP) Tags. The SCAMP monitor processor on each Ethernet chip
maintains a list of up to 8 IP Tags, which maps between values in the tag field of the

1. https://developer.arm.com/open-source/gnu-toolchain/gnu-rm/downloads

2. https://developer.arm.com/products/sof tware-development-tools/compilers/legacy-compiler-releases

https://developer.arm.com/open-source/gnu-toolchain/gnu-rm/downloads
https://developer.arm.com/products/software-development-tools/compilers/legacy-compiler-releases
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SDP packets and an external IP address and port. When a packet is received that is
destined to go out via the Ethernet (identified in the SDP packet header), this table
is consulted and an UDP packet is formed containing the packet and this is sent
to the IP address and port given in the table. The table can also contain Reverse IP
Tags, where an UDP packet received from an external source is mapped from the
UDP port in the packet to a specific chip and core on the machine, where the data
of the packet are extracted and put into an SDP packet before being forwarded to
the given core.

SARK provides a hardware abstraction layer, simplifying interaction with
the DMA, network interface and communications controllers. SpiNNaker1 API
(SpiN1API) provides an event-based operating system, as shown in Figure 4.16,
with three processing threads per core: one for task queuing, one for task dis-
patch and one to service Fast Interrupt Request (FIQ). SpiN1API also pro-
vides the mechanism to link software callbacks to hardware events and enables
triggering of actions such as sending a packet to another core and initiating a
DMA. Callbacks are registered with different priority levels ranging from −1 to
2 depending on their desired function, with lower numbers scheduled prefer-
entially. Callback tasks of priority 1 and 2 can be queued (in queues of maxi-
mum length 15), with new events added to the back of the queue. Callbacks of
priority −1 and 0 are not queued, but instead pre-empt tasks assigned higher
priority level numbers. Operation of this system follows the flow detailed in
Figure 4.16(a).

The scheduler thread places callbacks in queues for priority levels 1 and above,
and the dispatcher picks these callbacks and executes them based on priority. When
the dispatcher is executing a callback of priority 1 or higher, and a callback of pri-
ority 0 is scheduled, this task pre-empts that currently being executed causing it to
be suspended until the higher priority callback has completed. Callbacks of priority
−1 use the FIQ thread to interact with the scheduler and dispatcher, enabling fast
response and pre-emption of priority 0 and above tasks. Pointers are stored allowing
fast access to the callback code, and the processor switches to FIQ banked registers
to avoid the need for stacking [230], optimising the response time of priority −1
callbacks. However, this optimised performance limits the application to registering
only a single −1 priority event and callback.

4.4 Booting a Million Core Machine

The process of booting the machine is shown in Figure 4.2. When the machine
is first powered up, the cores on every chip start executing the boot ROM image.
This is stored within the chip and cannot be altered. After testing the ITCM and
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Figure 4.2. The stages of the SpiNNaker boot process.

Figure 4.3. Booting SCAMP on the machine. (a) The SCAMP image is encoded in

SpiNNaker boot messages and sent to the machine, where it is loaded on to the selected

monitor processor of the Ethernet chip. (b) The SCAMP image is sent to neighbouring

chips, which might include chips on adjacent boards, using NN packets.

DTCM of the core, the image then proceeds to determine if the core executing it
is to be the monitor, through reading a mutex in the chip’s System Controller; the
first core to read this locks the mutex and so becomes the monitor. The processor
selected as monitor now performs further tests on the shared parts of the chip.

Once the tests are complete, the Ethernet chips are set up to listen for boot
messages being transmitted using UDP on port 54321. As shown in Figure 4.3(a),
the host now sends the SCAMP image to one of these Ethernet chips; it is not
critical which of these is selected, as the SCAMP software is set up to work out
the dimensions of the machine and the coordinates once it has been loaded. The
boot messages consist of a start command, followed by a series of 256-byte data
blocks (with an appropriate header to indicate the order), followed by a comple-
tion command. If all the blocks are successfully received and assembled, the code
stored in the data blocks is copied to the ITCM of the monitor processor and
executed.

The current version of the SCAMP application starts with an initialisation phase
where various parts of the hardware on the chip are set up for operation. The
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code is then transferred to all neighbouring chips using NN packets, as shown
in Figure 4.3(b). Note that at this point, SCAMP does not know how many
chips are there in the whole machine, and P2P routeing tables have not been
initialised, so the only protocol available for communication between the chips
is nearest neighbour. To this end, SCAMP establishes a protocol to determine
whether to forward NN packets received to other neighbouring chips, and down
which links.

Once the image has been transferred, the core now enters the ‘netinit’ stage,
whereby communications with all other chips on the board is established, and the
point-to-point routeing tables are built. This stage proceeds as follows:

1. Address Phase. During this phase, each SCAMP computes and sends out its
computed coordinates based on the coordinates it receives from its neigh-
bours; for example, if it receives [0, 0] from the ‘west’ link, it will assume
that its coordinates are [0, 1], and if it receives [0, 0] from the ‘north’ link, it
will assume its coordinates are [−1, 0] (coordinates are allowed to be nega-
tive at this stage). This phase continues until no new coordinates are received
within a given time period.

2. Dimensions Phase. Each SCAMP sends its perceived dimensions of the
machine based on the dimensions received from its neighbours. This again
continues until no change of dimensions has occurred within a given time
period.

3. Blacklisting Phase. The blacklist is sent from the Ethernet chip of each board
to the other chips on the same board. This may result in the current monitor
core discovering it is blacklisted. This is noted and delegation is then set up.

4. Point-to-Point Table Phase. Each SCAMP sends its coordinates once again,
and these are forwarded on along with a hop count, so that every chip receives
them eventually. These are used to update the point-to-point tables based on
the direction in which the coordinates are received, along with the hop count
to allow the use of the shortest route.

5. Monitor Delegation Phase. If the current SCAMP core has been blacklisted,
it now delegates to another core that has not. This is done at this late stage
to avoid interfering with the rest of the setup process.

Note that delegation of a blacklisted monitor core will not happen until after the
‘netinit’ phase has completed. The monitor core tends to be selected from a subset
of the cores on the chip due to manufacturing properties; this means that boards
where a core which is in this subset is so broken that it cannot perform the steps
up to this point will not work with this system. A possible future change would
therefore be to perform the blacklisting phase earlier in the process.
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4.5 Previous Software Versions

Using SpiNNaker machines in the past required end users to load compiled applica-
tions and routeing tables manually onto the SpiNNaker machine through the use of
the low level ybug software included with the aforementioned libraries.3 Other soft-
ware was then designed to ease the development of application code for end users.
These consisted of: the aforementioned low-level libraries SARK and SpiN1API,
and the monitor core software SCAMP, a collection of C code which represented
models known in the neuroscience community and defined by the PyNN 0.6
language [44] and a collection of Python code which translates PyNN models onto
a SpiNNaker machine. These pieces of software were amalgamated into a software
package known as PACMAN 48 [68] and supported the main end-user commu-
nity of computational neuroscientists for a number of years. These tools had the
following limitations:

• They only supported SpiNNaker machines consisting of a single SpiNN-3
or SpiNN-5 board.

• They were designed to support only the computational neuroscience
community, and thus, non-neural applications were not supported.

• End users were still expected to have expertise in using the SpiNNaker hard-
ware. This was required as they were expected to run separate scripts manu-
ally, which together and in this order:

1. Boot the SpiNNaker machine,
2. Load executables onto the SpiNNaker machine,
3. Load data objects onto SpiNNaker,
4. Check when the executing code finished,
5. Extract data from the SpiNNaker machine.

It was decided that a new software stack should be built to address these issues.
The intention of this is to support a range of suitable applications executing on
the SpiNNaker hardware by providing a flexible abstraction layer where the end
user represents their problem as a graph, which is then executed on the SpiNNaker
machine without requiring such a low-level knowledge of how the machine works,
thus overcoming the issues mentioned above. This concept is briefly mentioned as
‘The Uploader’ by Brown et al. [25], although the framework is more complete in
that it also:

• allows the user to express the generation of the data structures to be loaded
(and possibly reloaded when changes have been made);

3. Available from https://github.com/SpiNNakerManchester/spinnaker_tools/releases

https://github.com/SpiNNakerManchester/spinnaker_tools/releases
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• controls the execution flow of the application where required;
• aids in the storage and retrieval of data recorded during the execution;
• and extracts and presents provenance data which can be used to determine

the correctness of the results.

4.6 Data Structures

4.6.1 SpiNNaker Machines

A SpiNNaker machine is represented as a set of Python classes as shown in
Figure 4.4, with a main Machine class which then contains instances of classes
for each of the parts of the machine represented. This data structure includes the
important details of the machine for mapping purposes, including the chips, cores
and links available, as well as the speed of each core, and the SDRAM available and
the number of routeing entries available on each chip (in case some of this resource
is used by the system software, as it is in the case of SCAMP). As well as inter-
nally representing a physical, real-world machine with all its faults mapped out,
this representation also allows the instantiation of a virtual machine for testing in
the absence of connected hardware. The virtual machine can be further modified
to simulate hardware faults and analyse software behaviour.

The connection of external devices, such as a silicon retina or a motor to the
machine, is represented using ‘virtual chips’. A virtual chip will be given coordi-
nates of a chip that does not exist in the physical machine and is therefore marked
as virtual. The coordinates do not have to align with the rest of the machine, as
the location where the chip is connected to the other real chips in the machine is
also identified. This allows any algorithm to detect that virtual chips are present if

Figure 4.4. The Python class hierarchy for SpiNNaker Machine representation. The

machine contains a list of chips, and each chip contains a router, an SDRAM and a list

of processor objects, each with their respective properties. A VirtualMachine can also be

made, which contains the same objects but can be identified as being virtual by the rest

of the tools.



86 Stacks of Software Stacks

necessary and also to know where the connected real chip is to make use of that if
needed.

4.6.2 Graphs

A graph in SpiNNTools consists of vertices and directed edges between the vertices.
The vertex is considered to be a place where computation takes place, and as such,
each vertex has a SpiNNaker executable binary associated with it. An edge repre-
sents some communication that will take place from a source, or pre-vertex to a
target, or post-vertex. An additional concept is that of the outgoing edge partition;
this is a group, or partition, of edges that all start at the same pre-vertex, as shown
in Figure 4.5(b). This is useful to represent a multicast communication. Note that
not all edges that have the same pre-vertex have to be in the same outgoing edge
partition; there can be more than one outgoing edge partition for each source vertex.
This represents different message types, which might be multicast to different sets
of target vertices. Thus, each outgoing edge partition has an identifier, which can
be used to identify the type of message to be multicast using that partition.

Figure 4.5. Graphs in SpiNNTools. (a) A Machine Graph made up of two Machine Vertices

connected by a Machine Edge, indicating a flow of data from the first to the second.

(b) A Machine Vertex sends two different types of data to two subsets of destination

vertices using two different Outgoing Edge Partitions, identified by solid and dashed

lines respectively. (c) An Application Graph made up of two Application Vertices, each

of which contain two and four atoms, respectively, connected by an Application Edge,

indicating a flow of data from the first to the second. (d) A Machine Graph created from

the Application Graph in (c) by splitting the first Application Vertex into two Machine

Vertices which contain two atoms each. The second Application Vertex has not been

split. Machine Edges have been added so that the flow of data between the vertices in

still correct.
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Figure 4.6. The relationship between the graph objects. An ApplicationGraph contains

ApplicationVertex objects and OutgoingEdgePartition objects, which contain Applica-

tionEdge objects in turn. A MachineGraph similarly contains MachineVertex objects and

OutgoingEdgePartition objects, which contain MachineEdge objects in turn. Applica-

tionEdge objects have pre- and post-vertex properties which are ApplicationVertex

objects, and similarly MachineEdge objects and pre- and post-vertex properties which

are MachineVertex objects. An ApplicationVertex can create a number of MachineVertex

objects for a subset of the atoms contained therein and an ApplicationEdge can create

a number of MachineEdge for a subset of atoms in the pre- and post-vertices.

There are two types of graph represented as Python classes in the tools (a dia-
gram can be seen in Figure 4.6). A Machine Graph, an example of which is shown
in Figure 4.5(a), is one in which each vertex (known as a Machine Vertex) is guaran-
teed to be able to execute on a single SpiNNaker processor. A Machine Edge there-
fore represents communication between cores. In contrast, an Application Graph,
an example of which is shown in Figure 4.5(c), is one where each vertex (known
as an Application Vertex) contains atoms, where each atom represents an atomic
unit of computation into which the application can be split; it may be possible
to run multiple atoms of an Application Vertex on each core. Each edge (known
as an Application Edge) represents communication of data between the groups of
computational units; if one or more of the atoms in an Application Vertex com-
municates with one or more atoms in another Application Vertex, there must be
an Application Edge between those Application Vertices. It is not guaranteed that
all the atoms on an Application Vertex fit on a single core, so the instruction code
for Application Vertices should know how to process a subset of the atoms, and
how to handle a received message and direct it to the appropriate atom or atoms.
The graph classes support adding and discovering vertices, edges and outgoing edge
partitions.
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As the vertices represent the application code that will run on a core, they have
methods to communicate their resource requirements, in terms of the amount of
DTCM and SDRAM required by the application, the number of Central Process-
ing Unit (CPU) cycles used by the instructions of the application code to maintain
any time constraints, and any IP Tags or Reverse IP Tags required by the applica-
tion. The Application Vertex provides a method that returns the resources required
by a continuous range or slice of the atoms in the vertex; this is specific to the exact
range of atoms, allowing different atoms of the vertex to require different resources.
The Application Vertex additionally defines the maximum number of atoms that
the application code can execute at a maximum on each core of the machine (which
might be unlimited) and also the total number of atoms that the vertex represents.
These allow the Application Vertex to be broken down into one or more Machine
Vertices as seen in Figure 4.5(d); to this end, the Application Vertex class has a
method for creating Machine Vertex objects for a continuous range of atoms. A
Machine Vertex can return the resources it requires in their entirety.

The graphs additionally support the concept of a Virtual Vertex. This is a vertex
that represents a device connected to a SpiNNaker machine. The Virtual Vertex
indicates which chip the device is physically connected to, allowing the tool chain to
work with this to include the device in the network. As with the other vertices, there
is a version of the Virtual Vertex for each of the machine and application graphs.

4.7 The SpiNNTools Tool Chain

The aim of the SpiNNTools tool chain is to control the execution of a program
described as a graph on the SpiNNaker machine. The software is executed in several
steps as shown in Figure 4.7 and detailed below.

Figure 4.7. The execution work flow of SpiNNTools in use within an application. Once

control has returned to the application, the flow can be resumed at different stages

depending on what has changed since the last execution.
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4.7.1 Setup

The first step in using SpiNNTools is to initialise them. At this point, the user can
specify appropriate configuration parameters, such as the time step of the simula-
tion, and the location where binary files can be located on the host machine. The
tool chain then sets up the initially empty graphs and reads in configuration files for
further options, such as the SpiNNaker machine to be used. Options are separated
out in this way to allow script-level parameters which might apply no matter where
the script is run (like the timestep of the simulation), from user-level parameters,
which will be different per-user, but likely to be common across multiple scripts
for that user (like the SpiNNaker machine to be used).

4.7.2 Graph Creation

Once the tool chain has been initialised, the user can add vertices and edges to
either an application or machine graph. It is an error to add vertices or edges to
both of these structures. The tool chain keeps track of the graph as it is built up.
Users can extend the vertex and edge classes to add additional information relevant
to their own application.

4.7.3 Graph Execution

Once the user has built their graph, they then call one of the methods provided
to start execution of the graph. Methods are provided to run for a specified period
of time, to run until a completion state is detected (such as all cores being in an exit
state having completed some unit of work), or to run ‘forever’ meaning that execu-
tion can be stopped through a separate call to SpiNNTools at some indeterminate
time in the future, or the execution can be left on the machine to be stopped out-
side of the tool chain by resetting the machine. The graph execution itself consists
of several phases shown in the lower half of Figure 4.7 and detailed below.

Machine Discovery

The first phase of execution is the discovery of the machine to be executed on.
If the user has configured the tool chain to run on a single physical machine, this
machine is contacted, and if necessary booted. Communications with the machine
then take place to discover the chips, cores and links available. This builds up a
Python machine representation to be used in the rest of the tool chain.

If a machine is to be allocated, SpiNNTools must first work out how big a
machine to request, by working out how many chips the user-specified graph
requires. If a machine graph has been provided, this can be used directly, since
the number of cores is exactly the number of vertices in the graph. The resources
must still be queried, as the SDRAM requirements of the vertices might mean that
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not all of the cores on each chip can be used. For example, a graph consisting of
10 machine vertices, each requiring 20 MByte of SDRAM and thus 200 MByte of
SDRAM overall, will not fit on a single chip in spite of there being enough cores.

If an application graph is provided, this must first be converted into a machine
graph to determine the size of the machine. This is done by executing some of the
algorithms in the mapping phase (see below).

Mapping

The mapping phase takes the graph and maps it onto the discovered machine. This
means that the vertices of the graph are assigned to cores on the machine, and
edges of the graph are converted into communication paths through the machine.
Additionally, other resources required by the vertices are mapped onto machine
resources to be used within the simulation.

If the graph is an application graph, it must first be converted to a machine
graph. This may have been done during the machine discovery phase as described
previously. To allow this, the algorithm(s) used in this ‘graph partitioning’ process
are kept separate from the rest of the mapping algorithms.

Once a machine graph is available, this is mapped to the machine through a
series of phases. This must generate several data structures to be used later in the
process. These include:

• a set of placements detailing which vertex is to be run on which core of the
machine;

• a set of routeing tables detailing how communications over edges are to pass
between the chips of the machine;

• a set of routeing keys detailing the range of keys that must be sent by each ver-
tex to communicate over each outgoing edge partition starting at that vertex;

• a set of IP tags and reverse IP tags identifies which external communications
are to take place through which Ethernet-connected chip.

Note that once machine has been discovered, mapping can be performed entirely
separately from the machine using the Python machine data structures created.
However, mapping could also make use of the machine itself by executing specially
designed parallel mapping executables on the machine to speed up the execution.
The design of these executables is left as future work.

Mapping information can be stored in a database by the system. This allows for
external applications which interact with the running simulation to decode any live
data received. As shown in Figure 4.7, the applications can register to be notified
when the database is ready for reading and can then notify SpiNNTools when they
have completed any setup and are ready for the simulation to start, and when the
simulation has finished.
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Data Generation

The data generation phase creates a block of data to be loaded into the SDRAM
for each vertex. This can be used to pass parameters from the Python-described
vertices to the application code to be executed on the machine. This can make use
of the mapping information above as appropriate; for example, the routeing keys and
IP tags allocated to the vertex can be passed to ensure that the correct keys and tags
are used in transmission. The graph itself could also be used to determine which
routeing keys are to be received by the vertex, and so set up appropriate actions to
take upon receipt of these keys.

Some support for data generation and reading is provided by the tool chain both
at the Python level, where data can be generated in ‘regions’, and at the C code level,
where library functions are provided to access these regions. Other more basic data
generation is also supported which simply writes to the SDRAM directly.

Data generation can also create a statistical description of the data to be loaded
and then expand these data through the execution of a binary on the machine.
This allows less data to be created at this point potentially speeding up the data
generation and loading processes, and also allows the expansion itself to occur in
parallel on the machine.

Loading

The loading phase takes all the mapping information and data generated, along
with the application binaries associated with each machine vertex, and prepares the
physical machine for execution. This includes loading the routeing tables generated
on to each chip of the machine, loading the application data into the SDRAM of
the machine, loading the IP tags and reverse IP tags into the Ethernet chips, and
loading the application code to be executed.

Running

The running phase starts off the actual execution of the simulation and, if necessary,
monitors the execution until complete. Before execution, the tool chain wait for the
completion of the setup of any external applications that have registered to read the
mapping database. These tools are then notified that the application is about to
start, and when it is finished.

Once a run is complete, application recorded data and provenance data are
extracted from the machine. The provenance data include:

• router statistics, including dropped multicast packets;
• core-level execution statistics, including information on whether the core has

kept up with timing requirements;
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• custom core-level statistics, these depend on the application, but might
include such things as the number of spikes sent in a neural simulation or
the number of times a certain condition has occurred.

The log files from each core can also optionally be extracted. During provenance
extraction, each vertex can analyse the data and report any anomalies. If the log files
have been extracted, these can also be analysed and any ‘error’ or ‘warning’ lines can
then be printed.

If a run is detected to have failed in some way, the tool chain will attempt to
extract information about this failure. A failure includes one of the cores going
into an error state, or if the tool chain have been run for a specific duration, if
the cores are not in a completion state after this time has passed. Log files will be
automatically extracted here and analysed as previously discussed. Any cores that
are still alive will also be asked to stop and extract any provenance data so that this
can also be analysed in an attempt to diagnose the cause of the error.

The run may be split into several sub-runs to allow for the limited SDRAM
on the machine, as shown in Figure 4.8. After each run cycle, any recorded data
are extracted from the SDRAM and stored on the host machine, after which the
recording space is flushed, and the run cycle restarted. This requires additional
support within the binary of the vertex, to allow a message to be sent to the core to
increase the run duration, and to reset the recording state. This support is provided
in the form of C code library functions, with callbacks to allow the user to perform

Figure 4.8. Running vertices with recorded data. The SDRAM remaining on each chip

after it has been allocated for other things is divided up between the vertices on that

chip. Each vertex is then checked for the number of time steps it can be run for before

filling up the SDRAM. The minimum number of time steps is taken over all chips and the

total run time is split into smaller chunks, between which the recorded data are extracted

and the buffer is cleared.



The SpiNNTools Tool Chain 93

additional tasks before resuming execution at each phase. Additionally, the tool
chain can be set up to extract and clear the core logs after each run cycle to ensure
that the logs do not overflow.

The length of each run cycle can be determined automatically by SpiNNTools.
This is done by working out the SDRAM available on each chip after data genera-
tion has taken place. This free space is then divided between the vertices on the chip
depending on how much space they require to record per time step of simulation.
To ensure that there is some space for recording, the user can specify the minimum
number of time steps to be recorded and space for this is allocated statically during
the mapping phase (noting that if this space cannot be allocated, this phase will fail
with an error).

At the end of each run phase, external applications are notified that the simu-
lation has been paused and are then notified again when the simulation resumes.
This allows them to keep in synchronisation with the rest of the application.

4.7.4 Return of Control/Extraction of Results

Once the run cycles have completed, the tool chain returns control to the executing
script. At this point, the user can interact with the graph again. This includes the
ability to extract any recorded data (see later) or make changes to the graph and/or
the parameters before resuming the simulation. The effect of any changes is detailed
below.

4.7.5 Resuming/Running Again

The user can choose to resume the execution of the simulation or to reset the sim-
ulation and start it again. At this point, the tool chain must decide which of the
aforementioned steps need to be run again. If no changes have been made to the
graph or the parameters, this can simply be considered an extension of the afore-
mentioned ability of the SpiNNTools to run the code in phases. The minimum
time calculated previously is respected again here and the tool chain will then run
in cycles of this unit of time. Note that this means that if the first run-time is shorter
than that required to fill the remaining SDRAM space (and thus only one run cycle
was required previously), this time is taken as the minimum. This is because the
buffers will have already been initialised to record for this amount of time. An
extension to this work then is to allow the buffers to be sized to use up all of the
remaining SDRAM regardless of the run time and then allow runs in units of less
than or equal to the time that uses all of this space.

If the parameters of any of the vertices or edges have been changed, the vertex
can be set up to allow the reloading of these changes. It is expected that this can
be supported where the change will not increase the size of the data, and so can
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overwrite the existing data, such as a change in neuron state update parameters in
a neural network. Any increase in the size of the data, such as an increase in the
number of synapses in a neural network, would likely require a remapping of the
graph on to the machine as the SDRAM is likely to be packed in such a way as to
not allow the expansion of the data for a single core; it is left to the vertex to make
this decision however.

Any change to the graph, such as the addition of a vertex or edge, is likely to
require that the mapping phase take place again. This may even result in a new
machine being required should the size of the graph increase to this degree. This
will mean that all the other phases will also have to be executed again.

4.7.6 Closing

Once the user has finished simulating and extracted any data, they can tell the tool
chain that they are finished with the machine by closing it. At this point, the tool
chain resets and releases any machines that have been reserved, and so recorded
data will no longer be available. If the tool chain was told to run the network for
an indeterminate length, this would also result in the extraction and evaluation of
any provenance data at this stage.

4.7.7 Algorithms and Execution

To run each of the above phases, SpiNNTools executes a series of algorithms. The
algorithms consume various inputs that are made available by the tool chain and by
other algorithms, and produce various outputs. These inputs and outputs are not
constrained in any other way; thus, algorithms are not constrained to produce only
one output. This could be useful in, for example, mapping, where an algorithm
could be made to produce both placements and routeing tables which have been
optimised together. This is in contrast to restricting the algorithms to specific tasks,
where the output might then be less optimal, such as having a specific algorithm
for generating placement and another for generating routeing tables.

To support this form of execution, SpiNNTools implements a workflow execu-
tion system, shown in Figure 4.9. This examines the algorithms to be run in terms of
the inputs required and outputs generated to compute an execution order for the
algorithms. Input and output ‘tokens’ are also supported; these indicate implicit
inputs and outputs; for example, a token might be used to represent that data have
been loaded on to the machine, and thus, an algorithm can generate this as an
output, and another can require that this has been completed before execution.

The algorithms themselves are not discussed here in detail other than those men-
tioned above. A more detailed discussion of the mapping algorithms is discussed
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Figure 4.9. Algorithms being run by the algorithm execution engine. The executor is

provided with a list of algorithms to run, a set of input items and a set of output items

to produce. It then produces a workflow for the algorithms accounting for their inputs

required and outputs produced.

by Heathcote [94]. The tool chain also includes algorithms for routeing table
compression, which are discussed by Mundy et al. [174]. Many of the other algo-
rithms are currently simplistic in nature; these can be replaced in the future should
other algorithms be found to perform more efficiently and/or effectively.

4.7.8 Data Recording and Extraction

As mentioned previously, the tool chain supports the recording of data in such a
way as to cope with the limited nature of the SDRAM on the machine. A ‘buffer
manager’ is provided, which is used to keep track of and store the buffers of data as
they are extracted from the machine. This can additionally support the live extrac-
tion of buffers whilst the simulation is running, as shown in Figure 4.10 (Top);
cores configured with the provided library can contact the host machine when the
recording space is getting full and the tool chain can then attempt to extract the
data. In general, the bandwidth of the Ethernet of the machine is not fast enough
for this to be effective, and data tend to be lost.

The SCAMP software supports the reading of SDRAM through SDP messages.
This works through a request and response system, where each SDP message can
request the reading of up to 256 bytes of data. Additionally, to transmit the SDP
message to chips which are not connected to the Ethernet, this message must be
broken down into SpiNNaker network messages and then reconstructed on receipt;
an overview of how this process works is shown in Figure 4.10 (Middle). This
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Figure 4.10. Data buffering and extraction. Top: The buffer manager is used to read back

recorded data during execution; when the buffer contains some data, the buffer manager

is notified and attempts to read the data, notifying the data source once this has been

done to allow the space to be reused. Middle: Data reading done using SCAMP; each

read of up to 256 bytes is further broken down into a number of request and read cycles

on the machine itself, where the packets used contain only 24 bits of data each. Bottom:

Data reading done using multicast messages; the initial request is all that is required,

after which the data are streamed using packets containing 64 bits of data. The machine

is set up so that these packets are guaranteed to arrive, so no confirmation is required.

results in speeds of around 8 Mb/s when reading from the Ethernet chip and around
2 Mb/s when reading from other chips.

To speed up the extraction of data, the tool chain includes the ability to cir-
cumvent this process, an overview of which is shown in Figure 4.10 (Bottom). To
facilitate this, firstly the machine is configured so that packets can be sent with a
guarantee that none of them are ever dropped; this can be done in this scenario
because exactly one path through the machine will be used by each read, so dead-
locks cannot occur. Next, one of the cores on each chip is loaded with an application
that can read from SDRAM and stream multicast messages to another application
loaded onto a core on the Ethernet chip, which then forms these into SDP mes-
sages to be streamed to the host along with a sequence number in each SDP packet.
The host then gathers the SDP packets and notes which sequences are missing.
The missing sequences are then requested again from the machine; this is repeated
until all sequences have been received. This has numerous advantages over the SDP
request-and-response mechanism: the SDP is only formed at the Ethernet chip, and
thus, the headers do not get transmitted across the SpiNNaker fabric; and the host
only sends in a single request for data and then a single request for each group
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of missing sequences and thus does not have to wait for each chunk of 256 bytes
between sending requests. This results in speeds of up to 40 Mb/s when reading
from any chip on the machine; there is no penalty for reading from a non-Ethernet
chip.

Once this protocol was implemented, we discovered that the Python code had
trouble keeping up with the speed at which the data were received from the
machine. We therefore implemented a version of the data reception in C++ and
Java that could interface with the Python code; the Java version is the version used
in production following comparative testing and assessment of the integration qual-
ity. This then allows the use of the Ethernet connection on multiple boards simul-
taneously, allowing the data extraction speed to scale with the number of boards
required for the simulation, up to the bandwidth of the network connected to the
host machine.

4.7.9 Live Interaction

We have previously mentioned that external applications can interact with a live
simulation, making use of the mapping database. Additional support for this inter-
action is provided by the tool chain. This support is split into live data output and
live data input.

Live data output support is performed by a vertex called the ‘Live Packet Gath-
erer’, which will package up any multicast packets it receives and send them as
UDP packets using the EIEIO protocol [205]. It is configured by adding edges
to the graph from vertices that wish to output their data in this way. This has the
advantage of being able to tap into the existing multicast streams that are already
being used to communicate within the machine; this same data can be sent out of
the machine by the simple addition of an edge to the graph, as shown in Figure 4.11.

Live data input support is provided via a vertex called the ‘Reverse IP Tag Multi-
cast Source’, which will unpack and send multicast packets using the same EIEIO
protocol. As with the Live Packet Gatherer, this vertex can then be configured by
simply adding edges from it to the vertices which are to receive the messages.

External applications that would like to make use of this support can read the
mapping database to determine the multicast keys to be received in the case of live
output or to be sent in the case of live input. Support for this interaction is provided
in SpiNNTools in both Python code and host-based C++ code.

4.7.10 Dropped Packet Re-Injection

As mentioned in Section 4.2, when a packet is dropped, an interrupt is raised
allowing a core to detect and capture the dropped packet. The tool chain includes
software that runs on the SpiNNaker machine to detect this interrupt and then
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Figure 4.11. Live interaction with vertices. Top: To indicate that live output is required,

an edge is added from the vertex which is the source of the data to the Live Packet

Gatherer vertex in the graph. To indicate that the live input is required, an edge is added

from the Reverse IP Tag Multicast Source vertex to the target of the data in the graph.

Bottom: The effect of adding the edges to the graph is that multicast messages will be

sent from the core (or cores) of the source vertex to the core running the Live Packet

Gatherer, which will then wrap the messages in EIEIO packets and forward them to a

listening external application; and EIEIO packets received from an external application

will be decoded by the Reverse IP Tag Multicast Source core and dispatched as multicast

messages to the target core (or cores).

capture the packets that have been dropped. These are stored until a time at which
the router is no longer blocked and so can safely send the packet onwards. This
helps in those applications where the reliable transmission of packets is critical to
their operation.

There is only one register within the SpiNNaker hardware to hold a dropped
packet. If a second packet is dropped, this packet will be completely unrecoverable;
an additional flag is set in this scenario so the re-injection core can detect this and
count such occurrences. This count is reported to the user at the end of the exe-
cution so that they know that something may not be correct in their simulation
results.

4.7.11 Network Traffic Visualisation

A real-time traffic visualiser for a single 48-node SpiNN-5 board was developed to
explore the control and monitoring of the SpiNNaker system in real time [144].
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The visualiser shows the system traffic status by gathering and displaying data
from the monitoring and profiling counters on the SpiNNaker chips in the system.
The visualiser can also send commands to the monitor processor via the Ethernet
connection to control and interact with the system.

4.7.12 Performance and Power Measurements

The tool chain includes support for profiling any executed code and for making an
estimate of the power usage of a simulation. Profiling support is provided through
both C and Python libraries, where the former is used to instrument code with
‘entry’ and ‘exit’ markers for code to be timed, and the latter is used to extract the
recorded timing data and calculate various statistics on the run.

To provide a reasonably accurate power estimation, the tool chain includes sup-
port for sampling the System Controller to determine whether each core is busy
or idle (waiting for an event to occur), and we include a uniformly-distributed
random delay to the sampling to avoid the worst effects of sample aliasing. As
this is run on the machine, it can achieve a higher sampling rate than a commer-
cial power-measurement tools. We then use the proportion of time spent idling,
together with the number of SpiNNaker messages sent, to compute the estimate
for how much power was actually used, scaling by the previously measured long-
term average power consumption per core and per message. This has been tested
against a commercial power measurement device on a 24-board system and appears
to provide results close to the real numbers.

4.8 Non-Neural Use Case: Conway’s Game of Life

Conway’s Game of Life [71] consists of a collection of cells which are either alive
or dead based on the state of their neighbouring cells. A diagram of an exam-
ple Machine Graph of this problem is shown in Figure 4.12. The vertices of the
graph of this application are each a cell in the game; given the state of the sur-
rounding cells, this cell can compute whether it is dead or alive in each step and
then send that to its neighbours. It similarly receives the state of the neighbours as
they are transmitted and again uses this to update its own state. The edges of the
graph are thus between adjacent cells in a grid, where each vertex is connected
bidirectionally to its eight surrounding neighbours. The game proceeds in syn-
chronous phases, where the state of cells in a given phase are all considered at the
same time.

Graphs of this form are highly scalable on the SpiNNaker system, since the com-
putation to be performed at each node is fixed, and the communication forms a
regular pattern which does not increase as the size of the board grows. Thus once
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Figure 4.12. Conway’s Game of Life on a 5×5 grid as a Machine Graph. Every Machine

Vertex is connected to each of it’s 8 neighbours bi-directionally; this requires two Machine

Edges for each bi-directional connection. The initial state of each Vertex is either alive

(black) or dead (white).

working, it is likely that any size of game can be built, up to the size of the available
machine. This type of graph would also likely be suited to finite element analysis
[17] problems, provided that the data to be transmitted can be broken down into
SpiNNaker packets. This problem thus works well as an archetype.

It will be assumed that we have built the application code which will update
the cell based on the state of the surrounding cells. This will update the state once
per time step of the simulation based on the received state from the surrounding
cells and then send its own new state out using the given key. It can also record
its state at each time step in the simulation. The set-up of this application is as
follows:

• A Conway vertex is created which extends the machine vertex class.
• A number of Conway vertices are added to the graph to make up the board.

These are stored in such a way that finding an adjacent vertex in the grid is
easy.

• A machine edge is added between each pair of adjacent vertices, in each
direction.

• Each machine vertex generates data for the vertex, which includes the key to
be sent by that vertex and the number of time steps to run for.

• Each machine vertex can tell the tool chain how many time steps it can run
for given an amount of SDRAM available for recording.

• Each machine vertex contains code to read the state that is recorded at each
time step using the Buffer Manager.

Once the graph is built, the script starts the execution of the graph. During this
execution, the tool chain will obtain a machine description and use this with the



sPyNNaker − Software for Modelling Spiking Neural Networks 101

machine graph to work out a placement of each of the vertices and a routeing of the
edges between these placements, along with an allocated key for each of the vertices.
The software tools will then ask each vertex how many time steps it can record for
based on the available SDRAM after placement is complete, and the resources used
on each chip can therefore be determined. Each vertex will then be asked to generate
its data based on the mapping and timing information. SpiNNTools will then load
the generated data onto the machine along with the routeing tables and application
code and start the execution of the cores. It will wait an appropriate amount of time
for the cores to stop and then check their status. Assuming this is successful, control
will return to the script. This can then request the recorded states from each of the
vertices and display these data in an appropriate way.

A future version could have a Conway vertex that can have multiple cells within
each machine vertex, which would then allow for an application vertex of cells. This
would have a single large Application Vertex which would represent the whole game
board and an Application Edge for each of the 8 directions of connectivity, each
in its own Outgoing Edge Partition to indicate that different keys are required for
each of the directions. This would require that the vertex would have to cope with
the reception of multiple neighbour states, which would make the application code
itself more complex; for example, it would have to cope with multiple incoming
keys from each direction, each of which would target a different cell within the
grid.

Another possible extension to this application is to extract the state during exe-
cution and display this as the application progresses. This would require the addi-
tion of the Live Packet Gatherer vertex (described above) to the graph and an edge
from each of the Conway vertices to this vertex. The script would then indicate,
before executing the graph, that there is an external application that would like to
receive the data. This application will receive a message when the mapping database
has been written, at which point, it can set up a mapping between multicast keys
received and positions in the game board, responding when it has completed its
own setup. The tool chain will then notify this application that the simulation is
starting, and the application will then receive the same state messages as the vertices
receive, which it can use to update the display of the game board.

4.9 sPyNNaker − Software for Modelling Spiking
Neural Networks

The SpiNNaker machine is primarily designed to simulate spiking neural networks
[65]. As an example, we consider the simulation of a cortical column found within
mammalian brains, that is, a model of the neurons within a structure underneath
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Figure 4.13. A neural network topology of a 1 mm2 area of cortical microcircuit found

within the mammalian brain. Each population of neurons is shown as a circle containing

a number, where the number indicates the number of neurons in that population.

a 1 mm2 area of the surface of the generic early sensory cortex [201]. Figure 4.13
shows the groups of neurons (Populations) in this network and the connectivity
between them (Projections). In a spiking neural network, the vertices are groups
of point neurons (as a single core can simulate more than one neuron); the com-
putation required is the update of the neuron state in response to spikes received
from connected neurons. The edges are then groups of synapses between the neu-
rons, over which spikes are transmitted. These are potentially unidirectional and
are likely to be more heterogeneous in nature than the regular grid pattern seen in
Conway’s Game of Life.

The problem of SNNs is clearly well suited to the architecture, as this is what it
was designed for, but the heterogeneity of the network, and the fact that multiple
neurons are computed on each core means that some networks will be more suited
to the platform than others; in particular, neural networks often form ‘small world’
networking topologies, where most of the connections are relatively local, but there
are a few long-distance connections. The computation required to simulate each
neuron at each time step in the simulation is generally fixed. The remaining time
is then dedicated to processing the spikes received, the number of which depends
on the how many neurons are sending spikes to the core and the activity of those
connected neurons. This is not known in advance in general, so some flexibility
in the system with respect to the amount of computation available at each node
is necessary to allow the application to work in different circumstances. Once this
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is known for a given network, the system could potentially be reconfigured with
additional cores, allowing that network to be simulated in less time overall.

4.9.1 PyNN

PyNN is a Python interface to define SNN simulations for a range of simulator
back-ends [44]. It allows users to specify an SNN simulation via a Python script
once and have it executed on any or all of the supported back-ends including
NEST [76], NEURON [33] and Brian [82]. This encourages standardisation of
simulators and reproducibility of results, and increases productivity of neural net-
work modellers through code sharing and reuse, by providing a foundation for
simulator-agnostic post-processing, visualisation and data-management tools.

PyNN has continued development as part of the European Flagship Human
Brain Project (HBP) [4], and has hence been adopted as a modelling language
by a number of partners including SpiNNaker. It provides a structured interface
for the definition of neurons, synapses and input sources, giving users the flexi-
bility to build a range of network topologies. Models typically consist of single-
compartment point neurons, grouped together in populations. These populations
are then linked with projections, representing the synaptic connections between the
axons of neurons in a source population, and the dendrites of neurons in a tar-
get population. Once defined, a number of simulation controls are used to exe-
cute the model for a given time period, with the option to update parameters
and initialise state variables between runs. On simulation completion, data can be
extracted for post-processing and future reference. Neuron variables such as spike
trains, total synaptic conductances and neuron membrane potential are accessi-
ble from population objects, while synaptic weights and delays are extracted from
projections. These data can be subsequently saved or visualised using the built-in
plotting functionality.

Example PyNN commands for the generation of populations and projections are
detailed in Listing 4.1. Here the sPyNNaker version of the simulator is imported
as sim and subsequently used to construct and execute a simulation. A population
of 250 Poisson source neurons is created with label ‘poisson_source’ and provides
50 Hz input to the network for 5 s. A second population of 500 integrate and fire
neurons is then created and labelled as ‘excitatory_pop’. Excitatory connections
are made between ‘poisson_source’ and ‘excitatory_pop’ with a 20% probability of
connection, each with a weight of 0.06 nA and delays specified via a probability
distribution. Data recording is then enabled for ‘excitatory_pop’, and the simula-
tion is executed for 5 s. Finally, the ‘excitatory_pop’ spike history data are extracted
from the simulator.
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1 i m p o r t pyNN . sp iNNaker a s s im
2 # S p i k e i n p u t
3 p o i s s o n _ s p i k e _ s o u r c e = s im . P o p u l a t i o n ( 2 5 0 , s im . S p i k e S o u r c e P o i s s o n (
4 r a t e =50 , d u r a t i o n =5000) , l a b e l = ’ p o i s s o n _ s o u r c e ’ )
5 # Neurona l p o p u l a t i o n s
6 pop_exc = s im . P o p u l a t i o n ( 5 0 0 , s im . I F _ c u r r _ e x p (∗∗ c e l l _ p a r a m s _ e x c ) ,
7 l a b e l = ’ e x c i t a t o r y _ p o p ’ )
8 # P o i s s o n s o u r c e p r o j e c t i o n s
9 p o i s s o n _ p r o j e c t i o n _ e x c = s im . P r o j e c t i o n ( p o i s s o n _ s p i k e _ s o u r c e , pop_exc ,

10 s im . F i x e d P r o b a b i l i t y C o n n e c t o r ( p _ c o n n e c t = 0 . 2 ) ,
11 s y n a p s e _ t y p e = s im . S t a t i c S y n a p s e ( w e i g h t = 0 . 0 6 , d e l a y = d e l a y _ d i s t r i b u t i o n ) ,
12 r e c e p t o r _ t y p e = ’ e x c i t a t o r y ’ )
13 # S p e c i f y o u t p u t r e c o r d i n g
14 pop_exc . r e c o r d ( ’ a l l ’ )
15 # Run s i m u l a t i o n
16 s im . run ( s i m t i m e =5000)
17 # E x t r a c t r e s u l t s d a t a
18 e x c _ d a t a = pop_exc . g e t _ d a t a ( ’ s p i k e s ’ )

Listing 4.1. Example PyNN commands (a complete script is detailed in Listing 4.2).

The job of a PyNN simulator is therefore to provide a back-end-specific imple-
mentation of the PyNN language, enabling execution of simulations defined in
model scripts such as Listing 4.2.

4.9.2 sPyNNaker Implementation

The sPyNNaker Application Programming Interface (API) is comprised of two
software stacks as shown in Figure 4.14: one running on host predominantly written
in Python, the other running on the SpiNNaker machine written in C.

4.9.3 Preprocessing

At the top of the left-hand side stack in Figure 4.14, users create a PyNN script
defining an SNN. The SpiNNaker back-end is specified, which translates the SNN
into a form suitable for execution on a SpiNNaker machine. This process includes
mapping of the SNN into an application graph, partitioning into a machine graph,
generation of the required routeing information and loading of data and applica-
tions to a SpiNNaker machine. Once loading is complete, all core applications are
instructed to begin execution and run for a predefined period. On simulation com-
pletion, requested output data are extracted from the machine and made accessible
through the PyNN API.

A sample SNN is developed as a vehicle by which to describe the stages of
preprocessing. A random balanced network is defined according to the PyNN
script detailed in Listing 4.2, with the resulting network topology shown in
Figure 4.15(a). The network consists of 500 excitatory and 125 inhibitory neu-
rons, which make excitatory and inhibitory projections to one another, respectively.
Each population additionally makes recurrent connections to itself with the same
effect. Excitatory Poisson-distributed input is included to represent background
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Figure 4.14. SpiNNaker software stacks. From top left anti-clockwise to top right: users

create SNN models on host via the PyNN interface; the sPyNNaker Python software stack

then translates the SNN model into a form suitable for a SpiNNaker machine and loads

the appropriate data to SpiNNaker memory via Ethernet; sPyNNaker applications, built

on the SARK system management and SpiN1API event-driven processing libraries, use

the loaded data to perform real-time simulation of neurons and synapses.

Figure 4.15. Network partitioning to fit machine resources. (a) Application graph gener-

ated from interpretation of PyNN script: circles represent PyNN populations, and arrows

represent PyNN projections. (b) Machine graph partitioned into vertices and edges to

suit machine resources: squares represent populations (or partitioned sub-populations)

of neurons which fit on a single SpiNNaker core − hence, the model described by the

machine graph in (b) requires 5 SpiNNaker cores for execution.
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activity, while predefined spike patterns are injected via a spike source array. The
neuronal populations consist of current-based Leaky Integrate and Fire (LIF) neu-
rons, with the membrane potential of each neuron in the excitatory population
initialised via a uniform distribution bounded by the threshold and resting poten-
tials. The sPyNNaker API first interprets the PyNN defined network to construct
an application graph: a vertices and edges view of the neural network, where each
edge corresponds to a projection carrying synapses, and each vertex corresponds to
a population of neurons. This application graph is then partitioned into a machine
graph, by subdividing application vertices and edges based on available hardware
resources and requirement constraints, ultimately ensuring each resulting machine
vertex can be executed on a single SpiNNaker core. From hereon, the term vertex
will refer to a machine vertex and is synonymous with the term sub-population,
representing a group of neurons which can be simulated on a single core. An exam-
ple of this partitioning is shown in Figure 4.15, where due to its size ‘excitatory
population’ is split into two sub-partitions (A and B). Figure 4.15 also shows how
additional machine edges are created to preserve network topology between par-
titions A, B, and the other populations, and how different PyNN connectors are
treated differently during this process. For example, a PyNN OneToOneConnec-
tor connects each neuron in a population to itself. This results in both partitions
A and B having a machine edge representing their own connections, but with no
edge required to map the connector from one sub-population to the other. Con-
versely, the PyNN FixedProbabilityConnector links neurons in the source and target
populations based on connection probability and hence requires machine edges to
carry all possible synaptic connections (e.g. both between vertices A and B, and to
themselves).

Once partitioned, the machine graph is placed onto a virtual representation of
a SpiNNaker machine to facilitate allocation of chip-based resources such as cores
and memory. Known failed cores, chips and board links which compromise the
performance of a SpiNNaker machine are removed from this virtual representation,
and the machine graph is placed accordingly. Chip-specific routeing tables are then
generated facilitating transmission of spikes according to the machine edges repre-
senting the PyNN-defined projections. These tables are subsequently compressed
and loaded into router memory (as described in the previous chapter). The Python
software stack from Figure 4.14 then generates the core-specific neuron and synapse
data structures and loads them onto the SpiNNaker machine using the SpiNNTools
software. Core-specific neuron data are loaded to the appropriate DTCM, while the
associated synapse data are loaded into core-specific regions of SDRAM on the same
chip, ready for use according to Section 4.9.4. Finally, programs for execution on
application cores are loaded to ITCM, with each core executing an initialisation
function to load appropriate data structures (from SDRAM) and prepare the core
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before switching to a ready state. Once all simulation cores are ready, the signal to
begin simulation is given to all cores from host, and the SNN will execute according
to the processes defined in Section 4.9.4.

4.9.4 SpiNNaker Runtime Execution

sPyNNaker applications execute SNNs via a hybrid simulation approach, using
time-driven neuron updates and event-driven synapse updates, similar to that dis-
cussed by Morrison et al. [172]. This neuron update scheme provides a flexible
framework in which to embed a range of neuron models and is of comparable
efficiency to event-based approaches when considering biologically representative
spike rates. Synapse events are handled efficiently, with no intermediate informa-
tion required to update synaptic state between pre-synaptic neuron spikes, which
are relatively infrequent on the order of 1 Hz in biological networks. Cores execut-
ing sPyNNaker applications hold neuron state variables in local DTCM, allowing
efficient access to the required data structures for the periodic time-driven neuron
update. Spike transmission between cores is via the AER model [158], with neu-
ronal action potentials communicated as multicast packets, with their key contain-
ing only the source neuron ID (in the remainder of this work, the terms: action
potential, spike and packet are synonymous). Each packet can be delivered to
multiple locations simultaneously via the SpiNNaker routeing fabric, replicating
the one-to-many connectivity of an axon. Processing of the packet is performed
by the core simulating the post-synaptic neuron, which contains functions to eval-
uate the spike-based synaptic contribution using only the packet key. Due to the
potentially large fan-in to a neuron, memory constraints prevent storage of synaptic
data in DTCM. Therefore, the source neuron ID is used to locate the associated
synaptic data stored in the relatively large but slower SDRAM memory and copy
it locally on spike arrival to facilitate evaluation of the contribution to the synaptic
state.

This section focuses on the deployment of this simulation approach within
a single core modelling a sub-population of neurons, such as ‘Excitatory A’ in
Figure 4.15(b).

Using the Low-Level Libraries

sPyNNaker applications are compiled against the aforementioned SpiNNaker
Application Runtime Kernel (SARK) [251] and the event-driven library SpiN1API
[223, 234], as shown in Figure 4.16(a).

In sPyNNaker applications modelling systems of neurons and synapses, callbacks
are registered against hardware events: timer, packet received and DMA complete;
and a software-triggered user event, as shown in Table 4.1. The associated callbacks
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Figure 4.16. SpiNNaker realtime OS: (a) SpiN1API multi-threaded event-based operating

system: scheduler thread to queue callbacks; dispatcher thread to execute callbacks; and

FIQ thread to service interrupts from high-priority (−1) events. (b) Events and associated

callbacks for updating neuron state variables and processing incoming packets repre-

senting spikes into synaptic input. Figures reproduced with permission from [222, 223].

Table 4.1. Hardware (and single software) events, along with their registered callback and

associated priority level.

Event Callback Priority Pre-empts priority

Packet received _multicast_packet_received_callback −1 0, 1, 2

DMA complete _dma_complete_callback 0 1, 2

Timer timer_callback 2 –

User (Software) user_callback 0 1, 2

facilitate the periodic updating of neuron state and the event-based processing of
synapses when packets representing spikes arrive at a core. These events (squares)
and their callbacks (circles) are shown schematically in Figure 4.16(b). The function
timer_callback evolves the state of neurons in time and is called periodically against
timer events throughout a simulation. A packet received event triggers a _mul-

ticast_packet_received_callback, which reads the packet to extract and trans-
fer the source neuron ID to a spike queue. If no spike processing is currently
being performed, the software-triggered user event is issued and, in turn, executes
a user_callback that reads the next ID from the spike queue, locates the associ-
ated synaptic information stored in SDRAM and initiates a DMA to copy it into
DTCM for subsequent processing. Finally, the _dma_complete_callback is exe-
cuted on a DMA complete event and initiates processing of the synaptic contribu-
tion(s) to the post-synaptic neuron(s). If on completion of this processing there
are items remaining in the input spike queue, this callback initiates processing of
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the next spike: meaning this collection of callbacks can be thought of as a spike
processing pipeline.

Time-Driven Neuron Update

A sPyNNaker simulation typically contains multiple cores, each simulating a dif-
ferent population of neurons (see Figure 4.15(b)). Each core updates the states of its
neurons in time via an explicit update scheme with fixed simulation timestep (1t).
When a neuron is deemed to have fired, packets are delivered to all cores that neu-
ron projects to and processed in real time by the post-synaptic core to evaluate the
resulting synaptic contribution. Therefore, while all cores operate asynchronously,
it is desirable to advance neurons on all cores approximately in parallel to march for-
ward a simulation coherently. All cores in a simulation therefore start synchronised
and register timer events with common frequency, with the period between events
defined by a fixed number of clock cycles, as shown in Figure 4.17. All cores will
therefore initiate a timer event and execute a timer_callback to advance the state
of their neurons approximately in parallel, although the system is asynchronous as
there is no hardware or software mechanism to synchronise cores. Individual update
times may vary due to any additional spike processing (see Section 4.9.4); however,
cores that have additional spikes to process between one pair of timer events can
catch up during subsequent periods of lower activity. Relative drift between boards

Figure 4.17. Time-driven updates by neuron cores simulating the network in

Figure 4.15(b): periodic timer events trigger callbacks advancing neuron states by 1t .

Cores can be out of phase due to communication of the start signal, and relative drift can

occur due to manufacturing variability between boards. Note that state update times vary

with the level of additional spike processing within a simulation timestep, however cores

which experience high levels of spike activity delaying the subsequent time_callback

can catch up during subsequent periods of lower spike activity (as shown by Core 2).
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is possible due to slight variations in clock speed (from clock crystal manufacturing
variability); however, this effect is small relative to simulation times [235]. Small
variations placing core updates slightly out of phase can also occur due to the way
the ‘start’ signal is communicated, particularly on larger machines; however, again
this effect is negligible. A consequence of this update scheme is that generated spikes
are constrained to the time grid (multiples of the simulation timestep 1t). It also
enforces a finite minimum simulation spike transit time between neurons of1t , as
input cannot be guaranteed to arrive in the current timestep before a neuron has
been updated. From the hardware perspective, the maximum packet transit time
for the million core machine is ≤25µs (assuming 200 ns per router [235], and a
maximum path length of 128).

A design goal of the SpiNNaker platform is to achieve real-time simulation of
SNNs, where ‘real time’ is defined as when the time taken to simulate a network
matches the amount of time the network has modelled. Therefore, an SNN with a
simulation timestep of 1t = 1 ms requires the period of timer events to be set at
200,000 clock cycles (where at 200 MHz each clock cycle has a period of 5 ns – see
Section 2.2). This causes 1 ms of simulation to be executed in 1 ms, meaning the
solution will keep up with wall-clock time, enabling advantageous performance,
and interaction with systems operating on the same clock (such as robots, humans
and animals). In practice, real-time execution is not always possible, and therefore,
users are free to reduce the value of 1t in special cases and also adjust the num-
ber of clock cycles between timer events. For example, if a neuron model requires
1t = 0.1 ms for accuracy, it is a common practice to let the period between timer
events remain at 200,000 clock cycles, to ensure there is sufficient processing time
to update the neurons and process incoming spikes [217]. This enforces a slowdown
factor of 10 relative to real time.

From the perspective of an individual core, each neuron is initialised with user-
defined parameters at time t0 (supplied via a PyNN script). All state variables are
then updated one timestep at a time up to the simulation end time tend . The num-
ber of required updates and hence timer events is calculated based on tend and the
user-defined simulation timestep1t (which is fixed for the duration of simulation).
Each call to timer_callback advances all the neurons on a core by 1t according
to Algorithm S1 in [208], which is shown schematically on the left-hand side of
Figure 4.18. First the synapse state for all neurons on the core is updated accord-
ing to the model shaping rule, and any new input this timestep is added from the
synaptic input buffers (discussed below). Interrupts are disabled during this update
to prevent concurrent access to the buffers from spike processing operations. The
states of all neurons on the core are then updated sequentially. An individual neuron
state at the current time Ni,t is accessed in memory, and if the neuron is not refrac-
tory, its state is updated according to the model characterising its sub-threshold
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Figure 4.18. Left: update flow advancing state of neuron Ni by 1t . Centre: circular synap-

tic input buffers accumulate scaled input at different locations based on synaptic delay

(buffers are rotated one slot at the end of every timestep). Right top: synaptic input

buffer values are converted to fixed-point format and scaled before adding to Ni . Right

bottom: decoding of synaptic word into circular synaptic buffer input.

dynamics (see examples in Section 4.9.5). If it is judged to have emitted a spike,
the refractory dynamics are initiated and the router is instructed to send a multi-
cast packet to the network. Finally, all requested neuron variables are recorded as
belonging to this new timestep (t+1t) and stored in core memory for subsequent
extraction by the SpiNNTools software – interrupts are disabled during this process
to prevent concurrent access to recording datastructures.

Synaptic input buffers (Figure 4.18 centre) are used to accumulate all synap-
tic input on a given receptor type, removing the computational cost of managing
state variables for individual synapses (as developed by Morrison et al. [172]). Each
buffer is constructed from a number of ‘slots’, where each slot represents input at
a future simulation timestep. All input designated to arrive at a particular time is
accumulated in the appropriate slot, constraining synapse models to those whose
contributions can be summed linearly. A pointer is maintained to the input asso-
ciated with the proceeding timestep (t + 1t). Each neuron update consumes the
input addressed by this pointer and then advances it forward one slot (effectively
rotating the buffer). When the pointer reaches the last slot, it cycles back to the first,
meaning these slots continuously represent input over the next d timesteps, where
d is the number of slots. By default the value of d is set via a 4-bit unsigned inte-
ger, enabling representation of delays up to 16 timesteps (however, Section 4.9.6
contains information on extending this delay). In the default sPyNNaker imple-
mentation, a synaptic input buffer is created per neuron, per receptor type, and is
a collection of 16 slots each constructed from unsigned 16-bit integers. The use of
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an integer representation reduces buffer size in DTCM and also the size of synaptic
weights in SDRAM, relative to using standard 32-bit fixed-point accum type. How-
ever, it requires conversion to accum type for use in the neuron model calculations –
as shown in Figure 4.18. This conversion is performed via a union and left-shift, the
size of which represents a trade-off between headroom and precision. An example
shift of 6 is shown, causing the smallest bit of the synaptic input buffer to represent
2−9
= 1.953125 × 10−3, and the largest 27

= 128, in the accum type of the
synapse state. Under extreme conditions, a buffer slot will saturate from concur-
rent spike activity, meaning the shift size should be increased. However, the shift is
also intrinsic to the weight representation and affects precision, as all weights must
be scaled by 2(15−shi f t) before being written as integers to the synaptic matrices
discussed in Section 4.9.4. For example, in Figure 4.18, a weight of 1.15 nA was
converted to 589 on host during generation of synaptic data, but is returned as
1.150390625 nA when used during simulation (with a shift of 6). The shift value
is currently calculated by the sPyNNaker toolchain to provide a balance between
handling large weights, high fan-in and/or pre-synaptic firing rates, and maintain-
ing precision – see the work by Albada et al. [3] where the theory leading to a usable
closed-form probabilistic headroom mechanism is described in Equation 1.

Receiving a Spike

A _multicast_packet_received_callback is triggered by a packet received event,
raised when a multicast packet arrives at the core. This callback is assigned highest
priority (−1) and hence makes use of the FIQ thread and pre-empts all other core
processing (see Figure 4.16(a)). This callback cannot be queued, and therefore,
to prevent traffic backing up on the network, this callback is designed to execute
quickly, and it simply extracts the source neuron ID (from the 32-bit key) and stores
it in an input spike buffer for subsequent processing. Note that by default this buffer
is 256 entries long, enabling queuing of 256 spikes simultaneously. The callback
then checks for activity in the spike processing pipeline and registers a user event if
inactive. Pseudo code for this callback is made available by Rhodes et al. [208].

Activation of the Spike Processing Pipeline

A user_callback callback is triggered by the user event registered in a Section 4.9.4
and kick-starts the spike processing pipeline. The callback locates in SDRAM the
synaptic data associated with the spike ID and initiates its DMA transfer to DTCM
for subsequent processing. Three core-specific data structures are used in this pro-
cess: the master population table, address list and synaptic matrix. Use of these data
structures is shown schematically in Figure 4.19, from the perspective of the core
simulating the Excitatory A population in Figure 4.15(b), when receiving a spike
from the Excitatory A population. The master population table is a lightweight list
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Figure 4.19. Data structures for processing incoming spikes: Master population table,

address list, and synaptic matrix, are shown from the perspective of the core simulat-

ing the Excitatory A population in Figure 4.15(b). The path in bold represents that taken

when a packet is received by Excitatory A, originating from itself, and hence two projec-

tions must be processed.

taking a masked source neuron ID as the key by which a source vertex can be
identified. Each row pertains to a single source vertex and consists of: 32-bit key;
32-bit mask; 16-bit start location of the first row in the address list pertaining to this
source vertex; and a 16-bit value defining the number of rows, where each row in the
address list represents a PyNN projection. When searching this table, the key from
the incoming packet is masked using each entry-specific mask before comparing
to the entry key. This masks off the individual neuron ID bits and enables source
vertices to simulate different numbers of neurons. The entry keys are masked on
host before loading for efficiency and are structured to prevent overlap after mask-
ing and facilitate binary searching. The structure of an address list row consists of:
a single header bit detailing whether the synaptic matrix associated with this pro-
jection is located in DTCM or SDRAM; 32-bit memory address indicating the
first row of the synaptic matrix; and an 8-bit value detailing the synaptic matrix
row length (i.e. the maximum number of post-synaptic neurons connected to by
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a pre-synaptic neuron in a particular projection). Note that synaptic matrix rows
are indexed by source neuron ID and that all rows are padded to the maximum
row length to facilitate retrieval, including empty rows for pre-synaptic neurons
not connected to neurons on this core. The row data structure is covered in detail
in Section 4.9.4.

This callback therefore takes from the input spike buffer the next spike ID to
process and uses it in a binary search of the master population table to locate the
address list regions capturing the projections carrying the spike to this vertex. The
SDRAM location and size specified by each row are then used in sequential pro-
cessing of the projections. For the case shown in Figure 4.19, searching the master
population table yields two rows in the address list, which in turn define the loca-
tion of the corresponding synaptic matrices in SDRAM. Each synaptic matrix is
indexed according to pre-synaptic neuron ID, enabling location of the appropriate
row to copy to core DTCM for processing of each spike. Details of this row are
then passed to the DMA controller to begin the data transfer, marking the end of
the callback. This allows the core to return to processing other callbacks, hiding the
DMA transfer as shown for ‘Spike 1’ in Figure 4.21.

Synapse processing

On completion of the DMA in Section 4.9.4, a DMA complete event triggers a
_dma_complete_callback, initiating processing of the synaptic row. As described
previously, each row pertains to synapses made, within a single PyNN projection,
between a single pre-synaptic neuron and multiple post-synaptic neurons. At the
highest level, a synaptic row is an array of synaptic words, where each word is
defined as a 32-bit unsigned integer. The row is split into three designated regions to
enable identification of static and plastic synapses (connections capable of changing
their weight at runtime). The row regions contain dynamic plastic data, constant
fixed plastic data and static data. Three header fields are also included, detailing
the size of each region and enabling easy navigation of the row. A schematic break-
down of the synaptic row structure is detailed in Figure 4.20. Note that because
a PyNN projection cannot be both static and plastic simultaneously, a single row
contains only either static or plastic data. Plastic data are intentionally segregated
into dynamic and fixed regions to facilitate processing. While all plastic data must
be copied locally to evaluate synaptic contributions to a neuron, only the dynamic
region – that is, that changing at runtime – requires updating for use when process-
ing subsequent spikes. Keeping this dynamic data in a separate block facilitates writ-
ing back to the synaptic matrix with a single DMA, and writing back less data helps
compensate for reduced DMA write bandwidth (relative to read – see Section 2.2).

The static region occupies the lower portion of the synaptic row and is itself
an array of synaptic words, where each word corresponds to a synaptic connection



sPyNNaker − Software for Modelling Spiking Neural Networks 115

Padding
(3-bit)

Delay
(4-bit)

Type 
(1-bit)

Size of 
Plastic 
Region

Size of 
Static 

Region

Plastic Region
(array of 32-bit integers)

Fixed Plastic Region
(array of 32-bit integers)

Static Region
(array of 32-bit integers)

Synapse 
Struct 1 
(16-bit)

Synapse 
Struct 2 
(16-bit)

Synapse 
Struct 3 
(16-bit)

Prev. Spike Time 
(32-bit)

Prev. 
Trace 

(16-bit)

Plastic 
Fixed 1 
(16-bit)

Plastic 
Fixed 2 
(16-bit)

Plastic 
Fixed 3 
(16-bit)

Neuron ID 
(8-bit)

Weight
(16-bit)

Padding
(3-bit)

Delay
(4-bit)

Type 
(1-bit)

Neuron ID 
(8-bit)

Static Synapse 1 
(32-bit)

Fixed 
Plastic 
Size

Synaptic Row (array of 32-bit integers)

Fixed Plastic Half-Word

Static Synaptic Word

Presynaptic Event History 
(64-bit)

Synapse Structures
(Typically 32-bit array of 

double-packed 16-bit weights)

Static Synapse 2 
(32-bit)

Static Synapse 3 
(32-bit)

Static Synapse 4 
(32-bit)

Empty 
(16-bit)

Empty 
(16-bit)

Empty 
(16-bit)

Figure 4.20. Synaptic row structure with breakdown of substructures for both static and

plastic synapses.

timer_callback
_multicast_packet_
received_callback

_dma_complete
_callback Timer Event t + Δt

Spike 4 DMA Complete

DMA Request 
Latency

DMA Controller

user_callback

Core Activity

Neuron Update

Spike 1 Spike 2

Sleep

Spike 3

Hardware Event & Context Switching

Spike 4

Packet Received

Timer Event !

Figure 4.21. Interaction of callbacks shown over the time period between two timer

events. Four spike events are processed representing the scenarios: receiving a packet

while processing a timer event; receiving a packet while the core is idling; and receiving

a packet while the spike processing pipeline is active. Note that a lighter colour shade

indicates a suspension of a callback, which is resumed on completion of higher priority

tasks.



116 Stacks of Software Stacks

between the row’s pre-synaptic neuron and a single post-synaptic neuron. As shown
in Figure 4.20, each 32-bit data structure is split such that the top 16 bits repre-
sent the weight, while the lower 16 bits typically split: bottom 8 bits to specify
the post-synaptic neuron ID; 1 bit to specify the synapse type (excitatory 0, or
inhibitory 1); 4 bits to specify synaptic delay; leaving 3 bits for padding (useful
for model customisation, e.g., adding additional receptors types). Data defining
plastic synapses are divided across the dynamic and fixed regions. Fixed plastic
data are defined by a 16-bit unsigned integer and match the structure of the
lower half of a static synapse (see lower half of Figure 4.20). These 16-bit synap-
tic half-words enable double-packing inside the 32-bit array of the synaptic row,
meaning an empty half-slot will be apparent if the row targets an odd number of
synapses. The dynamic plastic region contains a header defining the pre-synaptic
event history, followed by a series of synapse structures capturing the weight of each
synapse. Note that for typical plasticity models, this defaults to the same 16-
bit weight describing static synapses; however, synapse structure can be extended
to include additional parameters (in multiples of 16 bits) if required by a given
plasticity rule.

A task of the _dma_complete_callback is therefore to convert the synaptic
row into individual post-synaptic neuron input. The callback processes the row
headers to ascertain whether it contains static or plastic data, adjusts synapses
according to a given plasticity rule, and then loops over each synaptic word and
extracts its neuronal contribution – pseudo code for this callback is detailed in
Algorithm S4 of [208]. An example of this process for a single static synaptic
word is shown in the lower right of Figure 4.18, where a synaptic word of
[0000001001001101 0001010100001100] leads to a contribution of 589 to slot
10 of the inhibitory synaptic input buffer for neuron N12.

Callback Interaction

The callbacks described above define how a sPyNNaker application responds to
hardware events and updates an SNN simulation. The interaction of these events is
a complex process, with the potential to impact the ability of a SpiNNaker machine
to perform real-time execution. Figure 4.21 covers the time between two timer
events and shows interaction of spike processing and neuron update callbacks for
four scenarios detailed by the arrival of spikes 1–4. The first timer event initiates
processing of the neuron update; however, after completion of approximately one-
third of the update, the core receives Spike 1, interrupting the timer_callback

and triggering execution of a _multicast_packet_received_callback, which in
turn raises a user event, initiating DMA transfer of the appropriate synaptic infor-
mation. On completion of the callback, the core returns to the timer_callback,
with the DMA transfer occurring in parallel. On completion of the DMA, a
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_dma_complete_callback is initiated, which processes the transferred synaptic
information into neuronal input. The core then returns to the timer_callback,
which continues to completion. The core is idle when it receives Spike 2; therefore,
processing of the spike begins immediately, and the subsequent user event and hence
DMA request is initiated. While waiting for the data to transfer, Spike 3 is received,
and the associated _multicast_packet_received_callback is processed. This time,
due to the active spike processing pipeline, no user event is raised, and instead, the
DMA for Spike 3 is initiated at the beginning of the _dma_complete_callback

triggered by Spike 2. Whilst processing this callback, Spike 4 is received, and
the associated _multicast_packet_received_callback interrupts the core to place
the packet key in the input spike queue. This queue entry is eventually pro-
cessed at the beginning of the _dma_complete_callback for Spike 3, demon-
strating the spike processing pipeline in action. This also shows the benefit of
having two hardware ‘threads’ working in parallel, as the core is utilised com-
pletely, and the DMA transfer is hidden behind the _dma_complete_callback,
when the pipeline is active. Finally, after an idle period (where the proces-
sor is put to sleep in a low energy state), the next timer event is issued at
time t +1t .

From Figure 4.21, it is seen that core processing is dependent on SNN activ-
ity. When targeting real-time execution (Section 4.9.4), it is important to con-
sider extreme circumstances and how they will affect both the core and global
simulation. For example, it is clear from Figure 4.21 that when a core receives
spikes, it can delay completion of the timer_callback due to the assigned call-
back priorities (as shown in Figure 4.17). This is a design choice, as it helps
maximise core utilisation by hiding DMA transfers behind the timer_callback

when the spike processing pipeline is inactive. However, in the extreme case, spike
processing will delay the completion of the callback beyond the issuing of the
next timer event. While the core can potentially catch up this lost time, this sce-
nario has the potential to delay the neuron update beyond a single timer event
and ultimately cause any spike packets emitted from this core to be received
and processed at the wrong time by the rest of the network. To guard against
this, sPyNNaker applications report any occurrences of an overrun, where a
timer_callback is not complete before the next timer event is raised and also the
maximum number of timer events that a single timer_callback overruns. Simi-
lar metrics are also reported when the input spike queue overflows (exceeds 256
entries) and when the synaptic input buffers saturate. Together these metrics pro-
vide a window into the ability of a core to handle the required processing within a
simulation.

Another important performance consideration when responding to spike pack-
ets using prioritised events is the time taken to switch between the associated
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callbacks. Events are displayed in Figure 4.21 by solid black lines, the width of
which represents the time taken to switch context and begin execution of the call-
back. The timer_callback takes longest to respond due to queuing of events with
priority > 0, while the _multicast_packet_received_callback is quickest due to
its priority of−1 and use of the FIQ thread. Other chip-level factors can also influ-
ence execution, such as SDRAM contention with applications running on adjacent
cores. As DMAs are processed in serial bursts, if multiple simultaneous requests are
received by the SDRAM controller, there may be latency in beginning the DMA
for some cores and a reduced rate of transfer (see Section S1.2 of [208] for further
information).

4.9.5 Neural Modelling

At the heart of a sPyNNaker application is the solution of a series of mathemat-
ical models governing neural dynamics. It is these models which determine how
incoming spikes affect a neuron and when a neuron itself reaches threshold. While
the preceding section described the underlying event-based operating system facil-
itating simulation and interaction of neurons, this section focuses on the solution
of equations governing neural state and how they are structured in software.

Software Structure

PyNN defines a number of standard cell models, such as the LIF neuron and
the Izhikevich neuron. Implementations of these standard models are included in
sPyNNaker; however, the API is also designed to support users wishing to extend
this core functionality and implement neuron models of their own. To facilitate this
extension, the model framework is defined in an object-oriented fashion, through
the use of C code on the SpiNNaker machine. This modular approach provides
structure and aids code reuse between different models (e.g. sharing of a synaptic
plasticity rule between different neuron models). A neuron model is built from the
following components:

– synapse_type, defining how synapse state evolves between pre-synaptic spikes
and how contributions from new spikes are added to the model. A fundamen-
tal requirement is that multiple synaptic inputs can be summed and shaped
linearly, such as the α-kernel [49].

– neuron_model, implementing the sub-threshold update scheme and refractory
dynamics.

– input_type, governing the process of converting synaptic input into neu-
ron input current. Examples include current-based and conductance-based
formulations [45].
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– threshold_type, defining a system against which a neuron membrane potential
is compared to adjudge whether a neuron has emitted a spike.

– additional_input_type, offering a flexible framework to model intrinsic cur-
rents dependent on the instantaneous membrane potential and potentially
responding discontinuously on neuron firing (such as the Ca2+-activated
K+ current described by Liu and Wang [149]).

The individual model components each produces a subset of the neuron and
synapse dynamics and is therefore the entry point for a user looking to deploy
a custom neuron model.4 In keeping with the aforementioned software stacks in
Figure 4.14, interfaces to each component are written in both Python and C. A sin-
gle instance of each component is collected via a C header file and compiled against
the underlying operating system described in Section 4.9.4 to generate a runtime
application. Python classes for each component facilitate user interaction with each
part of the model, enabling setting of parameter values and initial conditions from
a PyNN SNN script.

The runtime execution framework calls each component as part of the
timer_callback, as detailed in Algorithm S1 in [208] and shown schematically in
Figure 4.18. First the synaptic state is advanced forward in time by a single simu-
lation timestep, using the functions defined by the synapse_type component. Core
interrupts are disabled during this process to prevent concurrent access of the synap-
tic input buffers from a _dma_complete_callback. Interrupts are re-enabled when
all the state related to the synapses for all receptor types for all neurons on a core
have been updated. Each neuron then has its state advanced by1t . The input_type
component is called first, converting the updated synaptic state into neuron input
current. This includes separate excitatory and inhibitory components, with core
implementations capable of handling both current- and conductance-based formu-
lations. The additional_input component is then evaluated to calculate the level of
any intrinsic currents. The synaptic and intrinsic currents, together with any back-
ground current, are then supplied to the neuron_model component which subse-
quently marches forward the neuron state by1t . The neuron membrane potential
is now passed to the threshold_type component which tests whether the neuron
has fired. If the neuron is above threshold, a number of actions are performed:
a refractory counter begins to instigate any refractory period; the additional_input
is notified of the spike to allow updating of appropriate state variables; and finally,
the core is instructed to send a multicast packet to the router with the neuron ID
as key.

4. A detailed guide to this process can be found at: http://spinnakermanchester.github.io/workshops/seventh.
html

http://spinnakermanchester.github.io/workshops/seventh.html
http://spinnakermanchester.github.io/workshops/seventh.html
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Leaky Integrate and Fire Neuron

The sPyNNaker implementation of a current-based LIF neuron is described by the
hybrid system in Equations 4.1 and 4.2. The sub-threshold dynamics are governed
according to Equation 4.1, where V is the membrane potential, I is the input
current (combining synaptic, intrinsic and background input), Rm is the membrane
resistance, τm is the membrane leak time constant and El is the membrane leak
(resting) potential.

dV
dt
= −

V − (El + Rm I (t))
τm

if V > Vθ , V = Vreset (4.1)

d Isyn

dt
= −

Isyn

τsyn
+ δ(t − t j ) (4.2)

If V exceeds the threshold level Vθ , the neuron is reported to have spiked and V
is set to the reset potential Vreset for the refractory period duration tr . Synaptic
currents Isyn are modelled according to Equation 4.2, where τsyn is the synaptic
time constant (independent value for each receptor type), and the delta function
represents addition of a step change in input from the weight of an incoming spike.

The sPyNNaker implementation embeds Equation 4.2 in a synapse type com-
ponent, providing mechanisms to update the input current both between spikes
(i.e. when the synaptic input buffer contribution is zero) and on spike arrival.
Exact integration is used to update the synapse state during the periodic neuron
update, with step changes made from synaptic input buffer contributions accord-
ing to Equation 4.3.

It+1 = It e−
1t/τsyn +6 jwi jδ(t − t j ) (4.3)

The constant factor e−1t/τsyn is pre-calculated before loading to the SpiNNaker
machine to avoid evaluation at runtime, as both the divide and exponential opera-
tions are relatively expensive on the ARM968 (≈100 clock cycles each). A neuron
model component captures the neuron state update mechanism, which solves Equa-
tion 4.1 via exponential integration [212] and assuming the change in current over
the timestep is small [45], yielding the update function in Equation 4.4.

Vt+1 = El + Rm It+1t − e−
1t
τm (El + Rm It+1t − Vt ) (4.4)

To compensate for this assumption, wi j is decayed before adding to the synapse
to ensure the total charge input to a neuron matches the exact solution [3]. Static
thresholding defined via the threshold type compares the instantaneous membrane
potential to the threshold level Vθ .
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Izhikevich Neuron

The Izhikevich neuron model [116] allows reproduction of biologically observed
neuronal characteristics such as spiking and bursting. Its dynamics follow a type of
‘quadratic integrate and fire’ model, as detailed in Equation 4.5

dv
dt
= 0.04v2

+ 5v + 140− u + I (t) (4.5)

du
dt
= a(bv − u)

if v ≥ Vθ , then

{
v← c

u ← u + d
(4.6)

where v and u are dimensionless variables representing the membrane potential
and a recovery variable, respectively. Dimensionless parameters a, b, c and d are
used to tune the model dynamics, and I represents combined background, intrinsic
and synaptic currents. If v exceeds a threshold Vθ , v and u are reset according to
Equation 4.6.

The sPyNNaker implementation of this model uses the same synapse type,
current-based input type and static threshold type components as the aforementioned
LIF implementation. However, updating the neuron state and hence solving the
system defined by Equation 4.5 requires numerical integration. A range of solvers
were explored with fixed-point data type by Hopkins and Furber [101], with the
RK-2 midpoint preferred as a trade-off between speed and accuracy. The resulting
explicit update scheme is detailed in Equation 4.7.

θ = 140+ It+1t − ut α = θ + (5+ 0.04vt )vt

η =
αh
2
+ vt β =

ah
2
(bvt − ut )

vt+1t = vt + h(θ − β + (0.04η + 5)η)

ut+1t = ut + ah(bη − β − ut ) (4.7)

While it is hard to recognise the original equations in this form, refactoring of
the update scheme and algebraic manipulation leads to several improvements in
the implementation. The use of intermediate variables not only enables compiler
optimisations improving speed and code size but also helps prevent over/underflow
of the accum data type during intermediate calculations [101].
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4.9.6 Auxiliary Application Code

While neuron-simulating applications capture the core operations of an SNN,
several additional sPyNNaker applications are required to generate network input
and facilitate network operation. These single-core applications are built follow-
ing similar principles to those defined in Section 4.9.4, responding via the same
event-based operating system to send and receive packets and interact with neuron
cores. They are embedded in the machine graph during network preprocessing and
loaded onto a SpiNNaker machine together with configuration data.

Spike Input Generation

Generating spikes is an integral part of SNN simulations. It enables modelling of
network response to specific patterns of spikes and input representing adjacent brain
regions or background noise. The sPyNNaker API includes two applications for
spike generation: spike source array and Poisson spike source. These applications are
built from compiled C and require a single SpiNNaker core per instance. They
follow timer events in parallel (but asynchronously) with neuron-simulating cores
and send multicast packets representing spikes as discussed previously. These appli-
cations do not receive spikes and hence have their functionality encoded entirely
in callbacks registered against timer events. As with all sPyNNaker applications, a
corresponding Python class enables construction of a spike generator in a PyNN
script and allows configuration data to be specified and subsequently loaded to a
SpiNNaker machine.

The spike source array application contains a population of neuron-like units
which emit spikes at specific times (see Listing 4.2). The times and keys to emit are
stored in SDRAM and only copied into local DTCM when required during execu-
tion. The buffer of times/keys is pre-loaded up to memory limits and can be replen-
ished during execution by sending requests to the host, although this is limited by
the bandwidth of the on-board Ethernet. Callbacks issued on timer events (corre-
sponding to timestep updates on neuron cores) then send packets to the router at
the prescribed times. If multiple ‘neurons’ are registered to emit spike packets over
the same timestep, a small random delay is added between sending of the packets
to reduce pressure on the router.

The Poisson spike source application emits packets according to a Poisson distri-
bution about a given frequency. A population of neuron-like units is specified, each
of which can be assigned an individual mean firing rate (see Listing 4.2). At run-
time, periodic timer events trigger a callback at every simulation timestep1t , which
assesses whether the core should send a packet to the router representing a spike.
A distinction is made between slow and fast Poisson spike sources based on whether
they emit fewer>1 spike for any1t . For fast spike sources, the number of spikes to
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send between timer events is calculated [130], and the corresponding packets sent
are interspersed with random delays. This random spacing reduces the chance of
synchronised spike arrival at post-synaptic cores, easing pressure on both the source
and target routers. For slow sources, after each spike, an inter-spike interval is evalu-
ated in multiples of1t , which is then counted down between sending packets. For
fast spike sources, the post-synaptic core is likely to retrieve from SDRAM the same
pieces of synaptic matrix many times during a simulation. Therefore, to remove the
overhead of the DMA, a mechanism is included to store the synaptic matrices from
fast spike sources in DTCM.

Simulating Extended Synaptic Delays

While there is a mechanism in the synaptic row to account for delays of up to
161t , it can be necessary to prescribe longer delays (particularly when1 is small).
To account for this case, an application called a delay extension is created [3], run-
ning on an adjacent core. Packets representing spikes exhibiting a delay≥161t are
routed to the core running this application, which subsequently sends new spikes
targeting the post-synaptic core after a sufficient portion of the delay has elapsed
such that any remaining delay can be handled within the synaptic row.

Two data structures are used to manage delay handling: a ‘delay stage configura-
tion’ is generated during preprocessing and captures the size of delay associated with
each pre-synaptic neuron; and a ‘spike counter’ registers the time and pre-synaptic
neuron of incoming spikes. Two callbacks are used in the delay extension, registered
against packet received and timer hardware events. On packet arrival, the first call-
back extracts the pre-synaptic neuron ID to an input spike buffer, similar to the
process described in Section 4.9.4. The second callback is executed on timer events
occurring in parallel (but asynchronously) with those on neuron processing cores.
The callback processes any spikes received since the previous timer event, taking
entries from the input spike buffer and using them to update the spike counting
data structure to register the incoming spikes against multiples of the number of
synaptic input buffer slots on the corresponding post-synaptic core. There are typ-
ically 16 such slots, where in this context a collection of 16 slots is referred to as
a ‘delay stage’. A second data structure captures how many delay stages each spike
should be held for before being released to the post-synaptic core. Therefore, using
these two data structures, it is possible to assess the incoming spikes to calculate
the corresponding outgoing spike times and hence schedule the necessary spikes
for distribution to the network.

While this application solves the problem of simulating extended delays, it can-
not do so indefinitely and an effective new upper limit of 1441t is enforced due to
DTCM constraints. It should also be noted that this mechanism introduces addi-
tional overhead to the system: an extra core is required to run the application, and
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two packets are now required to transmit a spike. The post-synaptic core also per-
forms additional processing during look-up of the source vertex in the master popu-
lation table. An additional row must be included to identify spikes travelling direct
from the pre-synaptic core and also those sent from each individual delay stage of
the delay extension. This increased master population table size can be costly to search
and detrimental for real-time performance [207].

4.10 Software Engineering for Future Systems

As this text is being written, the SpiNNaker2 system, described in Chapter 8, is
being developed. This architecture has clear implications on the software. To this
end, it makes sense to develop the software to require as few changes as possible
to make it compatible with this new system. The hierarchical modular structure
of the software supports this well; for example, the mapping algorithms operate
on a machine object, which can be simply updated when the structure of the new
system is known (or a second version can be created and algorithms can operate
on whichever system is in use). Similarly, the communications layer will require
updating to match the communications used by the new system. However, the
concepts will be similar to the higher levels, and so they will be able to stay the
same, for example, the communications layer will have to support ‘executing of
a binary’ and ‘loading of data’ but the signature of these functions can be made
the same for both the old and the new system, avoiding the need to change the
high-level libraries.

The other part of the system that would require changes is within the C code,
where the features of the new system will need to be made accessible through the
low-level libraries. Again, concepts that exist in both systems, such as the ability to
run in an event-based manner, will map directly to the hardware, and so high-level
code will not have to change (other than requiring recompilation of course).

All this means that minimal code changes will be required to make the code
compatible with both old and new (and possibly even newer) systems. This makes
the code somewhat future proof in so much as any software can be and require
minimal maintenance as the hardware systems are developed.
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4.11 Full Example Code Listing

1 i m p o r t pyNN . sp iNNaker a s s im
2

3 # I n i t i a l i s e s i m u l a t o r
4 s im . s e t u p ( t i m e s t e p =1)
5

6 # S p i k e i n p u t
7 p o i s s o n _ s p i k e _ s o u r c e = s im . P o p u l a t i o n ( 2 5 0 , s im . S p i k e S o u r c e P o i s s o n (
8 r a t e =50 , d u r a t i o n =5000) , l a b e l = ’ p o i s s o n _ s o u r c e ’ )
9

10 s p i k e _ s o u r c e _ a r r a y = s im . P o p u l a t i o n ( 2 5 0 , s im . S p i k e S o u r c e A r r a y ,
11 { ’ s p i k e _ t i m e s ’ : [ 1 0 0 0 ] } ,
12 l a b e l = ’ s p i k e _ s o u r c e ’ )
13

14

15 # Neuron P a r a m e t e r s
16 c e l l _ p a r a m s _ e x c = {
17 ’ tau_m ’ : 2 0 . 0 , ’ cm ’ : 1 . 0 , ’ v _ r e s t ’ : −65.0 , ’ v _ r e s e t ’ : −65.0 ,
18 ’ v _ t h r e s h ’ : −50.0 , ’ t a u _ s y n _ E ’ : 5 . 0 , ’ t a u _ s y n _ I ’ : 1 5 . 0 ,
19 ’ t a u _ r e f r a c ’ : 0 . 3 , ’ i _ o f f s e t ’ : 0 }
20

21 c e l l _ p a r a m s _ i n h = {
22 ’ tau_m ’ : 2 0 . 0 , ’ cm ’ : 1 . 0 , ’ v _ r e s t ’ : −65.0 , ’ v _ r e s e t ’ : −65.0 ,
23 ’ v _ t h r e s h ’ : −50.0 , ’ t a u _ s y n _ E ’ : 5 . 0 , ’ t a u _ s y n _ I ’ : 5 . 0 ,
24 ’ t a u _ r e f r a c ’ : 0 . 3 , ’ i _ o f f s e t ’ : 0 }
25

26 # Neurona l p o p u l a t i o n s
27 pop_exc = s im . P o p u l a t i o n ( 5 0 0 , s im . I F _ c u r r _ e x p (∗∗ c e l l _ p a r a m s _ e x c ) ,
28 l a b e l = ’ e x c i t a t o r y _ p o p ’ )
29

30 pop_inh = s im . P o p u l a t i o n ( 1 2 5 , s im . I F _ c u r r _ e x p (∗∗ c e l l _ p a r a m s _ i n h ) ,
31 l a b e l = ’ i n h i b i t o r y _ p o p ’ )
32

33

34 # G e n e r a t e random d i s t r i b u t i o n s from which t o i n i t i a l i s e p a r a m e t e r s
35 rng = s im . NumpyRNG( s e e d =98766987 , p a r a l l e l _ s a f e = True )
36

37 # I n i t i a l i s e membrane p o t e n t i a l s u n i f o r m l y b e t w e e n t h r e s h o l d and r e s t i n g
38 pop_exc . s e t ( v = s im . R a n d o m D i s t r i b u t i o n ( ’ u n i f o r m ’ ,
39 [ c e l l _ p a r a m s _ e x c [ ’ v _ r e s e t ’ ] ,
40 c e l l _ p a r a m s _ e x c [ ’ v _ t h r e s h ’ ] ] ,
41 rng = rng ) )
42

43 # D i s t r i b u t i o n from which t o a l l o c a t e d e l a y s
44 d e l a y _ d i s t r i b u t i o n = s im . R a n d o m D i s t r i b u t i o n ( ’ u n i f o r m ’ , [ 1 , 1 0 ] , rng = rng )
45

46 # S p i k e i n p u t p r o j e c t i o n s
47 s p i k e _ s o u r c e _ p r o j e c t i o n = s im . P r o j e c t i o n ( s p i k e _ s o u r c e _ a r r a y , pop_exc ,
48 s im . F i x e d P r o b a b i l i t y C o n n e c t o r ( p _ c o n n e c t = 0 . 0 5 ) ,
49 s y n a p s e _ t y p e = s im . S t a t i c S y n a p s e ( w e i g h t = 0 . 1 , d e l a y = d e l a y _ d i s t r i b u t i o n ) ,
50 r e c e p t o r _ t y p e = ’ e x c i t a t o r y ’ )
51

52 # P o i s s o n s o u r c e p r o j e c t i o n s
53 p o i s s o n _ p r o j e c t i o n _ e x c = s im . P r o j e c t i o n ( p o i s s o n _ s p i k e _ s o u r c e , pop_exc ,
54 s im . F i x e d P r o b a b i l i t y C o n n e c t o r ( p _ c o n n e c t = 0 . 2 ) ,
55 s y n a p s e _ t y p e = s im . S t a t i c S y n a p s e ( w e i g h t = 0 . 0 6 , d e l a y = d e l a y _ d i s t r i b u t i o n ) ,
56 r e c e p t o r _ t y p e = ’ e x c i t a t o r y ’ )
57 p o i s s o n _ p r o j e c t i o n _ i n h = s im . P r o j e c t i o n ( p o i s s o n _ s p i k e _ s o u r c e , pop_inh ,
58 s im . F i x e d P r o b a b i l i t y C o n n e c t o r ( p _ c o n n e c t = 0 . 2 ) ,
59 s y n a p s e _ t y p e = s im . S t a t i c S y n a p s e ( w e i g h t = 0 . 0 3 , d e l a y = d e l a y _ d i s t r i b u t i o n ) ,
60 r e c e p t o r _ t y p e = ’ e x c i t a t o r y ’ )
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61 # R e c u r r e n t p r o j e c t i o n s
62 e x c _ e x c _ r e c = s im . P r o j e c t i o n ( pop_exc , pop_exc ,
63 s im . F i x e d P r o b a b i l i t y C o n n e c t o r ( p _ c o n n e c t = 0 . 1 ) ,
64 s y n a p s e _ t y p e = s im . S t a t i c S y n a p s e ( w e i g h t = 0 . 0 3 , d e l a y = d e l a y _ d i s t r i b u t i o n ) ,
65 r e c e p t o r _ t y p e = ’ e x c i t a t o r y ’ )
66 e x c _ e x c _ o n e _ t o _ o n e _ r e c = s im . P r o j e c t i o n ( pop_exc , pop_exc ,
67 s im . OneToOneConnector ( ) ,
68 s y n a p s e _ t y p e = s im . S t a t i c S y n a p s e ( w e i g h t = 0 . 0 3 , d e l a y = d e l a y _ d i s t r i b u t i o n ) ,
69 r e c e p t o r _ t y p e = ’ e x c i t a t o r y ’ )
70 i n h _ i n h _ r e c = s im . P r o j e c t i o n ( pop_inh , pop_inh ,
71 s im . F i x e d P r o b a b i l i t y C o n n e c t o r ( p _ c o n n e c t = 0 . 1 ) ,
72 s y n a p s e _ t y p e = s im . S t a t i c S y n a p s e ( w e i g h t = 0 . 0 3 , d e l a y = d e l a y _ d i s t r i b u t i o n ) ,
73 r e c e p t o r _ t y p e = ’ i n h i b i t o r y ’ )
74

75 # P r o j e c t i o n s b e t w e e n n e u r o n a l p o p u l a t i o n s
76 e x c _ t o _ i n h = s im . P r o j e c t i o n ( pop_exc , pop_inh ,
77 s im . F i x e d P r o b a b i l i t y C o n n e c t o r ( p _ c o n n e c t = 0 . 2 ) ,
78 s y n a p s e _ t y p e = s im . S t a t i c S y n a p s e ( w e i g h t = 0 . 0 6 , d e l a y = d e l a y _ d i s t r i b u t i o n ) ,
79 r e c e p t o r _ t y p e = ’ e x c i t a t o r y ’ )
80 i n h _ t o _ e x c = s im . P r o j e c t i o n ( pop_inh , pop_exc ,
81 s im . F i x e d P r o b a b i l i t y C o n n e c t o r ( p _ c o n n e c t = 0 . 2 ) ,
82 s y n a p s e _ t y p e = s im . S t a t i c S y n a p s e ( w e i g h t = 0 . 0 6 , d e l a y = d e l a y _ d i s t r i b u t i o n ) ,
83 r e c e p t o r _ t y p e = ’ i n h i b i t o r y ’ )
84

85

86 # S p e c i f y o u t p u t r e c o r d i n g
87 pop_exc . r e c o r d ( ’ a l l ’ )
88 pop_inh . r e c o r d ( ’ s p i k e s ’ )
89

90

91 # Run s i m u l a t i o n
92 s im . run ( s i m t i m e =5000)
93

94

95 # E x t r a c t r e s u l t s d a t a
96 e x c _ d a t a = pop_exc . g e t _ d a t a ( ’ s p i k e s ’ )
97 i n h _ d a t a = pop_inh . g e t _ d a t a ( ’ s p i k e s ’ )
98

99

100 # E x i t s i m u l a t i o n
101 s im . end ( )

Listing 4.2. An example for PyNN commands.
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Chapter 5

Applications − Doing Stuff on the Machine

By Petrut, Bogdan, Robert James, Gabriel Fonseca Guerra,
Garibaldi Pineda García and Basabdatta Sen-Bhattacharya

The Terminator’s an infiltration unit. Part man, part machine.
Underneath, it’s a hyperalloy combat chassis,

microprocessor-controlled, fully armored.
Very tough … But outside, it’s living human tissue.

— The Terminator

The SpiNNaker machine is flexible in terms of the applications that it supports. In
part, this flexibility is given by the comparative ease of use of the substrate, namely
the ARM processors. A varied range of applications is also encouraged by the soft-
ware stack maturity discussed in Chapter 4. Using these high-level collections of
software, a variety of plasticity mechanisms have been implemented to support var-
ious learning applications.

The following sections will cover a wide range of topics. We begin by first
presenting an art exhibit and SpiNNaker’s place in it – we start light. Then, we
present a suite of approaches to engineer SNNs for a variety of computer vision
tasks. Progressing through this chapter we present a large-scale model of a cochlea
(SpiNNak-Ear [120]). This application is only possible on SpiNNaker because
of general-purpose nature of the CPUs and the software written to support such
generic, graph-based applications. From sensing to decision making, we present a
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model of a Basal Ganglia (BG), of course, simulated on SpiNNaker. Finally, we use
SNNs as the method of solving constraint satisfaction problems.

5.1 Robot Art Project

We are a lab full of engineers. Art was as far away from our collective future pro-
jections for the platform as possible. So, once we were approached by Tove Kjell-
mark, a Swedish artist, with the idea for an exhibit involving humanoid robots and
SpiNNaker, we immediately considered the issues and hurdles of such an attempt,
not the least that of time and expectation management. The exhibition at the
Manchester Art Gallery, named ‘The Imitation Game’ in honour of Alan Turing
and his eponymous test, was to include several robotic pieces with the common
theme of seeming intelligent in particular ways. The robotic entities present in the
gallery would surely not pass Turing’s test in any meaningful way, but that was
not the plan anyway. To school children, laypeople and scientists alike, this was
an artist’s view at imitating life at the behavioural, albeit limited, level. At a basic
level, these pieces would hint at the existence of something more than just Artifi-
cial Intelligence (AI). Tove Kjellmark would call it ‘another nature’, that is to say an
elimination of the artificial boundaries between the technological, the mechanical
and the natural. We would rather call it a conceptual step in a more important area
of research, that of Artificial General Intelligence (AGI), as opposed to the narrow
AI, nowadays present everywhere, the ‘autistic savants’ that tell you what objects
you are looking at, what movies to watch next and what music to listen based on
your listening habits.

Our involvement focused on the piece ‘Talk’ (pictured in Figure 5.1) that fea-
tured two robotic torsos sat cross-legged on comfortable chairs discussing a dream.
They look at each other, gesture while talking, speak fluently and with appropriate
cadence, sighs and pauses. If a human dares approach, they stop their conversation,
turn their head to face the intruder to chastise them and wave them away.1 Thus,
SpiNNaker’s task was to control the arms of the robots to perform realistic-looking
arm movements in three regimes: idling, gesturing and silencing.

The focus of this undergraduate project was successful in revealing that
SpiNNaker is capable of real-life, albeit impractical, applications. The individually
packaged SpiNNaker boards would not be turned off for weeks at a time and would
operate without flaw for over 7 hours a day for approximately 4 months in conjunc-
tion with the physical robots. As expected, maintenance visits to the Gallery would
generally revolve around the robots or indeed the host computers, rather than any

1. Robotic art gallery video presentation https://youtu.be/GaqgkyAIRBg

https://youtu.be/GaqgkyAIRBg
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Figure 5.1. Display in ‘The Imitation Game’ exhibition at the Manchester Art Gallery,

2016, celebrating Manchester becoming European City of Science. Artist: Tove Kjellmark;

School of Computer Science, Manchester: Petrut, Bogdan, Prof. Steve Furber, Dr. Dave

Lester, Michael Hopkins; Manchester Art Gallery Exhibitions Intern: Mathew Bancroft;

Mechatronics Division, KTH, Stockholm: Joel Schröder, Jacob Johansson, Daniel Ohlsson,

Elif Toy, Erik Bergdahl, Freddi Haataja, Anders Åström, Victor Karlsson, Sandra Aidanpää;

Furhat Robotics: Gabriel Skantze, Jonas Beskow, Dr Per Johansson.

SpiNNaker intervention. It would seem that SpiNNaker would indeed be suited to
neurorobotics applications [209], as discussed previously.

5.1.1 Building Brains with Nengo and Some Bits and Pieces

Two small PCs were used to control the two robots: the primary PC completely con-
trols one of the robots and the arms of the other, while the secondary PC operates
only the head of the other robot. The two distributed instances of the Furhat con-
troller communicate through the network at key moments advancing the scripted
dialogue. The primary PC is also responsible for communicating with the glo-
rified distance sensor embodied in a Microsoft Kinect sensor, as well as the two
stand-alone SpiNNaker boards. Both PCs control the actuators in the robotic arms
using classical control theory; some translation is required between SpiNNaker’s
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Figure 5.2. Hardware organisation diagram.

communication and these closed-loop control systems. Figure 5.2 reveals the flow
of information involved in this project.

The previous chapter explained how SpiNNaker is usually controlled, using
PyNN as a high-level network description language, viewing individual neurons
as the main units of computation. Instead, here the Neural ENGineering Objects
(Nengo) simulator bunches neurons together in ensembles (populations) and relies
on their concerted activity to perform computation [53].

The way Nengo is built supports the implementation of a proportional-integral-
derivative (PID) controller using a spiking neural substrate. A PID controller is a
control loop feedback mechanism that continuously computes the error between
the desired trajectory and the current position. The controller attempts to min-
imise the error as described by a weighted sum of a proportional, an integral and a
derivative term. The proportional term accounts for moving towards the target at
a rate dictated by the distance from it (cross track error). The derivative term con-
siders the angle of the current trajectory compared to that of the desired trajectory
(also called the cross track error rate), while the integral term is used to correct for
accumulated errors that lead to a steady state error caused by, for example, external
factors.

Consider the example of a driverless car positioned in a controlled environment
with a trajectory precomputed for it to follow down the track in order to avoid some
static obstacles. The goal is to try to follow the trajectory as closely as possible, so
effects such as oscillations are not desired. In addition, the researchers at the facility
have decided to see what would happen if at some point on the path they place
a rock or pothole. They hope that the system would realise that it is drifting off
course and apply a correcting turn. Figure 5.3 shows what this would look like in
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Figure 5.3. An example of trajectory following. In a real example, the trajectory would

potentially not change so abruptly.

Figure 5.4. (a) A 15-second window of the operation of the control system running at the

Manchester Art Gallery. This time period sees the robots going through all of the defined

actions: gesture (the robot is talking), silence (the robot stopped talking to make a silenc-

ing gesture directed at an approaching visitor) and idle (the robot is not talking but lis-

tening to the other robot talk). (b) Robot poses corresponding to the Nengo simulation.

The poses correspond to times 2, 4, 8 and 14.

Nengo. This is very similar to what can be done when controlling robot arm motors
and servos.

Figure 5.4 shows the operation of one of the arms on a robot over a timespan
of 15 seconds. During this time, the robot is issued three different commands in
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Figure 5.5. Gesturing movement of the robots computed as a function of time f (t) =
1
2 ∗ (sin( 1

1.6∗t )− cos(2 ∗ t)).

succession: gesture, silence and idle. While gesturing, the target position of each
joint is given by a predetermined ‘zero’ or base position (hand-picked values that
look natural in the physical exhibit) subtracted from a sinusoidal signal, namely the
one in Figure 5.5. The incoming signal is transformed using a linear transformation
for each joint individually to create a human like gesturing motion. Since the robots
each has two arms, there is a dot product-based network inhibiting the arm that is
not intended for use. Such arm selection is possible by creating a couple of prede-
fined orthonormal vectors that represent the left and right directions. Based on the
input direction vector for the system, a dot product is computed between it and
the two previously mentioned bases so as to determine which direction is closest
based on the angle. In the particular case where the vector is not significantly closer
to any of the targets, the system accomplishes the desired action using both arms.
The result of adding this level of control and inhibition is that the robot can now
move one arm, or the other, or even both, thus allowing for more human mimetic
behaviour.

When issued the action ‘silence’, the performing robot raises both lower arms
into the air, in a defensive manner, signalled by external feedback from the head
assembly, which turns to face the visitor and asks them to be silent. The action is
achieved by inhibiting the neurons’ spiking activity in the ensemble representing
the ‘zero’ position and the ‘sound’ signal using the inhibiting output from an incor-
porated Basal Ganglia (BG) model. Analogously, idling is achieved by inhibiting the
sound and silencing signals.

Because the exhibition took place in Manchester, no one else was around to
maintain these robots, and we still had to experiment with realistic movement, we
interacted with them for most of their stay at the Manchester Art Gallery. Most of
these interactions took place during typical work hours, meaning that the gallery
was usually populated by school children. It was surreal seeing the children interact
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with the robots. They weren’t allowed to touch them of course, although that did
not prevent them from trying. All of this assumes that they managed to enter the
room: the usual first reaction to seeing them was fear. Once I had talked to the chil-
dren’s teachers and assured them that it was safe in the room, they would flock inside
to witness the two humanoids in discussion. There was always someone watching
from the doorway, too apprehensive to approach these mechanical beings, which
were, essentially, only superficially intelligent. Nobody knew what they were talking
about, but they were all fascinated with their ‘silencing’ phases as these provided the
most audience interaction. These groups rarely stopped to read the plaque describ-
ing the exhibit, but surely this was a success in and of itself: SpiNNaker managed
to work flawlessly for the entire duration of the exhibit; the same could not be said
about the actuators and 3D-printed parts which had a much harder time.

5.2 Computer Vision with Spiking Neurons

Computational emulation of biological vision has been of interest for decades
[249]. State-of-the-art computer vision systems use traditional image sensors for
their inputs that differ greatly from those present in biology. In particular, ganglion
cells in the mammalian retina emit signals when sufficient change in light intensity
is sensed. Biology has successfully made use of event-based computation in vision
(and other senses), and we should aim for the same in machine vision.

5.2.1 Feature Extraction

An important step in computer vision is to extract features from the input image. In
traditional computer vision, this usually involves applying operations (e.g. convo-
lutions and integrals) to the whole image, regardless of activity in the world, leading
to high computational and bandwidth demands. Event-based computation dimin-
ishes these demands by processing only regions of the image that have changed.

Gabor-like Detection

To extract features, we can take inspiration from biological vision; Gabor-like fil-
ters are an example of a common abstraction which have an origin in biology and
have been used in traditional computer vision [97]. These can be implemented
using spiking neurons whose (immediate) receptive field is distance dependent
and synapse weights are proportional to the ones computed by the Gabor func-
tion. Methods for transforming weight values have been proposed in the litera-
ture [185, 190] and in Chapter 7, we discuss a different approach.
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Figure 5.6 (b–g) shows the result of filtering a Modified NIST (MNIST) digit
(Figure 5.6(a)). The Gabor filters were generated using the following equations:

O(x, y; λ, θ, ψ, σ, γ ) = exp

(
−

x ′2 + γ 2 y′2

2σ 2

)
cos

(
2π

x ′

λ
+ ψ

)
,

(5.1)

x ′ = x cos θ + y sin θ , (5.2)

y′ = −x sin θ + y cos θ , (5.3)

where λ and ψ are the wavelength and phase of the sinusoidal component, respec-
tively; θ is the orientation of the resulting stripes, σ is the standard deviation of the
Gaussian component; and γ is the spatial aspect ratio. Parameters for the generation
of Gabor kernels are presented in Table 5.1.

Figure 5.6. Results of Gabor-like feature extraction. (a) shows the input image converted

to a spike train and later filtered using six Gabor kernels. (b–g) show the responses of

each filtering population projected to the input space.

Table 5.1. Gabor filter parameters.

Width Sampling σ λ γ ψ θ

5 1 2 6 0.5 1.1 [0, 30, 60, 120, 150]
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Figure 5.7. Connectivity motif for the blob-detecting network.

Blob Detector

Retinal connectivity has also been used as inspiration for key-point extrac-
tion [151]. A retina-inspired network can be used to convert visual input into a
multi-scale representation from which blob-like features can be extracted [103]. In
this three-layered network (Figure 5.7), the middle layer samples the input layer
with receptive fields whose weights are computed using a Gaussian function. Dif-
ferent middle layer ‘classes’ sample the input with different parameters for their
input kernels (i.e. width, σ ). Each neuron in the middle layer drives a neuron in the
output and, additionally, an inhibitory ‘interneuron’. The purpose of the inhibitory
neurons is to induce competition between the output layer neurons, reducing activ-
ity and pushing the output representation towards orthogonality. All neurons in the
output layer compete to represent the input, and the extent to which the inhibitory
neurons influence their neighbours is proportional to the cross-correlation of their
input image kernels. This competition results in centre-surround receptive fields,
as observed in biology.

As an example we took the same input image as in the Gabor filtering (Fig-
ure 5.6(a)), and its spike representation was processed by this blob-detection net-
work using three different Gaussian kernel sizes. Figure 5.8 shows the output of the
network; we can observe that the greatest activity is present in the mid-resolution
class (Figure 5.8(b)) as it is a better fit to the input activity. The high-resolution
class (Figure 5.8(a)) shows a behaviour similar to edge detection, typical of centre-
surround filtering. Finally, as the receptive field for the low-resolution class is not a
good fit for the input, there is little activity observed.
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(a) (b) (c)

Figure 5.8. Results of blob-detection network. (a) High-, (b) middle- and (c) low-

resolution neuron classes.
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Figure 5.9. Motion sensing circuit. (a) Connectivity of the motion detection circuit using

two different neurotransmitters (green-solid and blue-dashed). (b) Delayed lines allow

spikes to reach the neuron body at the same time.

Motion Detection

Objects in the world are often moving, and since time is embedded in SNN simu-
lations, we believe it is important to detect motion. A spiking version of a motion
detector [103] was developed based on the connectivity of Starburst Amacrine Cells
(SAC) [24, 58] and the Reichardt detector [24]. The motion detector network is
illustrated in Figure 5.9(a); the principle of operation is composed of two factors:
(i) delayed connections and (ii) the combination of two neurotransmitters. Delays
are proportional to distance allowing incoming spikes triggered at different times
and distances to arrive at (about) the same time (Figure 5.9(b)).

The two neurotransmitters allow activity from different regions of the input to
be present at the correct time at the detector neuron (Figure 5.10(a) and 5.10(b));
one of the neurotransmitters decays at a slow rate, opening a window for the other
transmitter (whose decay rate is high) to reach the detector.

We tested the circuit using a bouncing ball simulation; the ball moves in a 64×64
pixel window and when it bounces, it does so with a randomly selected speed in
a range of 1 to 2 pixels. Figure 5.11 shows the outputs of easterly and westerly
motion detection as red-dashed and green-solid lines, respectively. Ball motion
is indicated by blue dots in the plot: the ball moved towards the north-east for
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(a) (b)

Figure 5.10. Interaction of transmitters in the motion sensing circuit. (a) When neuro-

transmitters (blue and green lines) do not reach the neuron within a temporal window,

they will not induce sufficient current for the neuron to spike. (b) In contrast, when they

reach the neuron in the right sequence, they will produce an activation.

Figure 5.11. Output of the motion sensing circuit.

about 500 ms, then it bounced off a corner and moved in a south-westerly direc-
tion until∼1250 ms; finally, it took off to the north-east again. In the first part (0 to
∼1250 ms) of the experiment, detection is near perfect although there are moments
when the detectors fail to sense motion. In the last section (after ∼1250 ms), there
are multiple false-positive detections which can be diminished by lateral competi-
tion of different directions. This circuit can detect apparent motion with an accu-
racy of 70%. A similar detector, though with learned connectivity, is described in
Section 7.5.5.

5.3 SpiNNak-Ear − On-line Sound Processing

The SpiNNak-Ear system is a fully scaled biological model of the early mammalian
auditory pathway: converting a sound stimulus into a spiking representation spread
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across a number of parallel auditory nerve fibres [119]. This system takes advantage
of the generic digital processing elements on a SpiNNaker machine, enabling a
Digital Signal Processing (DSP) application to be distributed across its massively
parallel architecture. With the degree of parallel processing available for a SpiNNak-
Ear implementation, one is able to generate a simulation of an ear to a biologically
realistic scale (30,000 human cochlea auditory nerve fibres) in real time.

5.3.1 Motivation for a Neuromorphic Implementation

A conventional computer simulation can be carried out for large-scale auditory
models – albeit with an inherent compromise in processing time due to serialised
computation. However, an additional motivation for implementing a parallel simu-
lation of the ear on SpiNNaker is the capability of handling a highly parallel inter-
face between a model of the ear and the rest of the brain running on the same
machine. SNNs that model later stages of the auditory pathway and cortical regions
of the brain can be specified using the pre-existing SpiNNaker PyNN interface.
Using a SpiNNak-Ear model that is already distributed across the same SpiNNaker
network allows interfacing the auditory periphery with subsequent SNNs without
incurring a data-flow bottleneck penalty.

5.3.2 The Early Auditory Pathway

The early auditory pathway, illustrated in Figure 5.12, begins with a sound pressure
wave travelling into the outer ear and eventually displacing the Tympanic Mem-
brane (TM) that separates the outer and middle ear. Inside the middle ear, the TM

Figure 5.12. An uncoiled cochlea (right) with parallel auditory nerve fibres innervating

single IHCs along the cochlea. The spiking activity due to two stimulus frequency com-

ponents − High Frequency (HF) and Low Frequency (LF) − can be seen in the corre-

sponding auditory nerve fibres.
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connects to the cochlea via three ossicle bones to continue (and amplify) this dis-
placement into the inner ear cochlea. The cochlea is a coiled, liquid-filled organ
that converts the TM displacement into a series of travelling waves along its dis-
tance, from base to apex. The frequency components of the sound stimulus dictate
the location along the cochlea that will experience the most displacement along its
Basilar Membrane (BM). High frequencies are absorbed at the basal regions and
progressively lower frequencies reach the apical regions of the cochlea. The cochlea
is lined with many motion sensitive cells, known as Inner Hair Cells (IHCs), that
detect the localised displacements of the BM. The IHCs act as the ‘biological trans-
ducers’ in the ear, converting physical sound-produced displacements into a corre-
sponding spike code signal on the auditory nerve.

The modelling of every section of the cochlea’s BM and the nearby IHCs can be
described as being ‘embarrassingly parallel’, where the processing of each individual
node (a Dual Resonance Non-Linear [DRNL]+ IHC models) does not depend on
any other neighbouring nodes. Therefore, we can model the processing of specific
regions of the cochlea in a concurrent fashion.

5.3.3 Model Algorithm and Distribution

The algorithm used in SpiNNak-Ear is based on the MATLAB Auditory Periphery
(MAP) model [159]. It separates the digital modelling of the ear into three sepa-
rate modules representing ascending biological regions. The first module models
the outer and middle ear (OME) using infinite impulse response filters. The sec-
ond module mimics the sound stimulus frequency separation that occurs along the
length of the cochlea using a filter bank of DRNL filters [150]. The final module
represents the processing of the IHC and Auditory Nerve (AN) (IHC/AN) and is
based on the algorithm described by Sumner et al. [245].

The complete SpiNNak-Ear module distribution is outlined in Figure 5.13; it
consists of a single OME model instance and many DRNL and IHC/ANs instances
depending on the number of cochlea frequency channels specified by the user.
The data transfer between the OME model and connected DRNL models is per-
formed using the SpiNNaker multicast-with-payload messaging method. This effi-
cient routeing mechanism allows for the output of the OME model to be sent, a
32-bit sample at a time, as a multicast packet payload to all DRNL models located
anywhere on the SpiNNaker machine. These incoming samples are stored in a local-
to-core memory buffer and are batch processed when the designated processing seg-
ment size (96 samples) has been received. Following DRNL processing, the output
96 × 64-bit word segments are stored in a shared on-chip SDRAM memory cir-
cular buffer. This allows an efficient block data transfer between a ‘parent’ DRNL
model and its ‘child’ IHC/AN models (always located on the same chip) necessary
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Figure 5.13. A schematic for the human full-scale early auditory path model distribution

on SpiNNaker. The total number of cores for this simulation is 18,001 spanning across

1,500 SpiNNaker chips.

for real-time performance. The shared memory communication link that triggers a
‘read from shared buffer’ event in a child IHC/AN model is achieved using a mul-
ticast packet transmission from the parent DRNL model once it has processed a
segment. Figure 5.14(a) illustrates these two data communication methods used in
the full model system.

In the full system, the OME model application is triggered by the real-time input
stimulus, after which the subsequent DRNL and IHC/AN models in the software
pipeline are free to run asynchronously (event-driven) until the AN output stage.
In a given simulation, to confirm that all model instances have initialised or have
finished processing, we use ‘core-ready’ or ‘simulation-complete’ acknowledgement
signals fed back through the network of all connected model instances to the parent
OME model instance to ensure all cores are ready to process and data have been
successfully recorded within the given time limits.

5.3.4 Results

The output from SpiNNak-Ear simulation is compared with conventional
computer-based simulation results from the MAP model to ensure no significant
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(a)

(b)

Figure 5.14. (a) The data passing method from input sound wave to the output of a single

IHC/AN instance using MC and MC with payload message routeing schemes. (b) The

pipeline processing structure used to achieve real-time performance.

numerical errors have occurred from computing the model algorithm on different
simulation hardware. The outputs from both implementations are then compared
with physiological experimental results to confirm the model’s similarities to the
biological processes it emulates.

In experimental neuroscience, the response from a stochastic auditory nerve fibre
to an audio stimulus is measured over many repeated experiments and the subse-
quent recordings are often displayed in a Peri Stimulus Time Histogram (PSTH).
The results, shown in Figure 5.15, show the time varying AN spike rates across 1 ms
windows to a 6.9 kHz sinusoidal 68 dBSPL stimulus, first in Figure 5.15(a) from
physiological data gathered by Westerman and Smith [265] and then from both
model implementations in Figure 5.15(b). These results show both implementa-
tions produce a biologically similar response consisting of pre-stimulus firings of
approximately 50 spikes/s, followed by a peak response at stimulus onset at around
800 spikes/s, decaying to an adapted rate in the region of 170 spikes/s. Finally at
stimulus removal, rates significantly drop during an offset period before returning
to spontaneous firing of approximately 50 spikes/s.

Figure 5.16 illustrates the energy consumed by MAP and SpiNNak-Ear imple-
mentations across the full range of model channels tested. Energy consumption has
been calculated by multiplying the complete processing time by the total power rat-
ing of the hardware used (CPU at 84 W, single SpiNNaker chip at 1 W). Here we
show that both implementations incur an increase in total energy consumed – but
for different reasons. The MAP implementation running on a single, fixed power
CPU uses more energy when the number of channels is increased due to the increase
in serialised processing time. The neuromorphic hardware experiences an increase
in energy consumed due to the increasing size of the machine used (number of
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(a)

(b)

Figure 5.15. PSTH responses to 352 repetitions of a 400 ms 6.9 kHz 68 dBSPL stim-

ulus from experimental data obtained by Westerman and Smith [265] of an HSR

AN fibre in a gerbil (a) and the same experiment repeated for MAP and SpiNNaker

implementations (b).

chips) with an increase in channels. The rate of increase in energy consumed due
to number of channels on neuromorphic hardware is lower than the conventional
serial CPU approach. This effect illustrates the basic philosophy that underlies the
functionality of SpiNNaker (and biological) processing systems: complex compu-
tation on a modest energy budget, performed by dividing overall task workload
across a parallel network of simple and power-efficient processing nodes.

5.3.5 Future Developments

A goal for the future of SpiNNak-Ear is to enable simulations with a live stream
audio signal input. This has the potential to provide the user with an interac-
tive visual representation of various regions of the brain to their current sound
environment. Such a facility of ‘in-the-loop’ experimentation may assist in gaining
further understanding of the important features of biological neural networks.
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Figure 5.16. Average energy consumption from processing a 0.5 s sound sample from

2 to 3,000 channels on both MAP and SpiNNaker implementations. The MAP model is

executed on a desktop computer (Intel Core™ i5-4590 CPU @ 3.3 GHz 22 nm technology)

and SpiNNaker on a range of different sized SpiNNaker machines ranging from 1 to 1,500

chips (130 nm technology) scaled by the number of channels in a simulation.

The SpiNNak-Ear implementation on the SpiNNaker platform can be used in
future investigation into the importance of the descending projections that feature
between stages of the auditory pathway. It has been shown that descending projec-
tions may be providing useful feedback modulation to the incoming sound repre-
sentation, ‘tuning’ the representations of learnt salient stimuli [252] and producing
stimulus-specific adaptation in sensory neurons [153]. Therefore, if a research goal
is to gain a full understanding of the auditory system, one must model it com-
pletely with multiple feedback projections. Implementing such connectivity across
a large complex system in a computer simulation becomes an increasing burden
on system communication resources. On the SpiNNaker hardware architecture,
using the novel one-to-many multicast message routeing mechanism, additional
descending projections can be integrated into simulations without incurring large
overheads and with the ability to simulate real-time feedback to the user.

5.4 Basal Ganglia Circuit Abstraction

Here we present a biologically plausible and scalable model of the Basal Ganglia
(BG) circuit, designed to run on the SpiNNaker machine [217]. It is based on
the Gurney–Prescott–Redgrave model of the BG [84, 85]. The BG is a set of
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subcortical nuclei that are evolutionarily very old and appear in all vertebrates,
enabling them to make decisions and take subsequent actions; obviously, there-
fore, computational modelling of the BG has been pursued by researchers with
an interest in robotics [202]. The information on which the decision needs to be
made, that is, the environmental circumstance, constitutes the input to the BG
and is available via the thalamus and cortex. Output from the BG is the specific
action that is decided upon, referred to as ‘action-selection’, and is relayed to the
motor pathway for execution via the thalamus, cortex and other subcortical struc-
tures. The objective of our work on SpiNNaker is to build a ‘basic building block’
towards development of automated decision-making tools in real time.

A single neuro-computational unit in our BG model is simulated with a
conductance-based Izhikevich neuron model. A columnar structure of the BG cir-
cuitry is shown in Figure 5.17; this forms the basic building block for our scalable
framework and is thought to be a single ‘channel’ of action selection. The striatum
forms the main input structure of the BG and receives excitatory glutamatergic
synapses from both the cortex and the thalamus. The substantia nigra pars reticu-
lata (SNr) forms the output structure of the BG and projects inhibitory efferents
to the ventral thalamus and brainstem reticular formation.

The single-channel BG model is first parameterised on SpiNNaker to set the base
firing rates for all model cell populations, informed by prior work by Humphries
et al. [110]. Next, to simulate action selection by competing inputs, the model is

Figure 5.17. Single-channel action selection architecture.
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Figure 5.18. Demonstration of action selection in a 3-channel BG model on (a) SpiNNaker

and (b) SpineML. All three channels have a 3 Hz Poisson input. At 3 seconds, a 15 Hz

Poisson input is provided to channel 1 (blue), when the firing rate of the node drops,

demonstrating disinhibition and therefore action selection by the node. At 6 seconds,

channel 2 is provided with a 25 Hz input, and therefore, channel 2 now gets to select an

action, as it is the overall winner with the lowest firing rate.

scaled up to three channels and tested with two competing inputs in the presence of
a noisy background stimulus. Results are summarised in Figure 5.18(a). An input
stimulus that is larger than the others is always the ‘winner’, indicated by a relative
drop in the firing rate of the SNr population (representing the BG model output)
in the competing channel. The reduced firing rate of the inhibitory SNr population
implies a reduced inhibition of the thalamic/brainstem cells, which are the recip-
ients of the BG output as mentioned above. This in turn means that the ‘action’
that is solicited by a relatively larger (‘competing’) input is now ‘decided’ by the
BG circuit to be ‘selected and acted upon’, indicated by disinhibition of the target
outputs. The model is tested with a competing input of 15 Hz in the presence of a
noisy background input of 3 Hz. This is further confirmed by ‘selection’ of a larger
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input of 25 Hz provided in the presence of both 15 Hz and 3 Hz inputs. On both
occasions, the largest input wins.

It is worth mentioning here that dopamine neurotransmitter-receptor levels are
fundamental to facilitating decision-making and action selection by the BG. Here,
the base parameters are tuned to simulate neutral dopamine levels; studying model
dynamics with varying levels of dopamine will be carried out in future work.

To verify the model results simulated on SpiNNaker, the model is mapped to
SpineML, an XML-based platform representing model attributes as ‘components’
and executing the models with SpineML_2_BRAHMS, a bespoke simulator that
converts the SpineML model into machine code and runs it on a conventional com-
puter. We aimed for the BG model implementation on SpineML to have the exact
same network topology and neuron attributes as the SpiNNaker version and there-
fore retained all model connectivities and parameter values used in the latter. Model
results on SpineML show qualitative similarity with those on SpiNNaker in terms of
base firing rates of the single-channel BG model cell populations. Implementation
of the three-channel model on SpineML, following the exact same implementation
procedures as on SpiNNaker, demonstrates action selection by a larger input and is
shown in Figure 5.18(b). Comparing Figures 5.18(a) and 5.18(b) shows an agree-
ment between the functional and qualitative behaviour of the models simulated
on SpiNNaker and SpineML. We believe that our comparative study will provide
a basic framework for mapping SpiNNaker-based models to SpineML, as well as
for performance benchmarking of SpiNNaker with conventional computers during
neuronal simulation.

The single-channel BG model consists of 2.68×103 neurons and≈0.68×106

synapses (estimated from projection probabilities). While each processor within a
SpiNNaker chip is capable of simulating an upper limit of 256 neurons [217],
memory requirements of the neuron model and synaptic connectivity for certain
applications may cause this number to be reduced. In the current work, sPyNNaker
maps the single-channel BG model onto 32 cores distributed across 2 SpiNNaker
chips, residing on a single 48-chip SpiNNaker Board. Power consumption of the
single-channel BG model executing on a 48-node board is measured using in-house
Raspberry-Pi-based power measurement equipment [244]. Figure 5.19(a) shows
that the single-channel model execution uses ≈800 mW. We have also observed
that the model execution time is not affected by scaling up to three channels and is
consistent at 100 s real time corresponding to a simulation time of 10 s. As power
consumed during pre- and post-processing are negligible compared to that during
model execution, we kept the post-processing time to a minimum; pre-processing
times are handled by sPyNNaker and are not accessible to the user. Figure 5.19(b)
shows a performance comparison between SpiNNaker and SpineML. The main
constraints on SpiNNaker currently are the pre- and post-processing times that are
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Figure 5.19. (a) The power consumption of the single-channel model using an in-house

Raspberry-Pi-based measurement system connected to the SpiNNaker board [244]. The

duration of recording power can be broken down into four regions: (i) booting the

machine; (ii) pre-processing of data; (iii) model execution; (iv) post-processing (i.e. data

extraction); the delay of around 4 s after booting the machine is inserted for clarity. The

peak-to-peak power in region (iii) is 800 mW. (b) Performance analysis of single-channel

and three-channel models running on both SpiNNaker and SpineML. Execution time on

SpiNNaker, and pre- and post-processing times on SpineML are unaffected by scaling-up

of model.

negligible on SpineML running on a 4-core 8 GB RAM desktop host machine, even
for the scaled-up model. In contrast, execution time on SpiNNaker is not affected
by model scaling; execution time for the SpineMLmodel is affected by scale. We
believe that our comparative study will provide a basic framework for mapping
SpiNNaker-based models to SpineML, as well as for performance benchmarking
of SpiNNaker with conventional computers during neuronal simulation.

5.5 Constraint Satisfaction

When developing a biologically inspired hardware architecture, apart from look-
ing for an improvement of our understanding of living matter, it is also desirable
to explore the capabilities of the machine on the realm of more general problems
in Mathematics and Computer Science. If the machine succeeds in representing
or solving any of the well-defined abstract problems, or classes of problems, this
means that it will be applicable to the specific cases that can be formulated under
such formalisms, making the machine attractive for Physics and Engineering. The
more general the class of problem, the broader the range of applications that will
be covered and the better we will understand the capabilities of the design and,
more importantly, we will understand its limitations. Understanding the limits of
applicability of a computational approach is perhaps more important than evolving
its capabilities. The reason being that some problems are indeed intractable in the
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sense that it does not matter how much we improve the speed, power consump-
tion or size of our computers, there are families of problems which, despite being
solvable in principle with infinite resources, will remain intractable at least until
some exotic machine demonstrates an exponential speedup. Quantum and genetic
computers, at least in theory, promise advances in this direction, but the practi-
calities currently seem to be out of scope. Worse than that are the undecidable or
unsolvable problems. Hence, knowing the performance and complexity of a new
computer architecture in the hierarchy of computable and incomputable problems
will shed light on realistic directions for optimisation and improvement, avoiding
the use of valuable time on aspects that will not add significant scientific or tech-
nological value.

Constraint Satisfaction Problems (CSPs) are a special family of problems that
serve such a purpose. They are beautifully simple to formulate, yet they belong to
the class of intractable problems (the NP-complete family). These are problems
whose solutions are verifiable in Polynomial time (P), yet finding their solution
requires supra-polynomial time as a function of the size of the problem. Actu-
ally, evidence suggests that the time complexity may be exponential, that is, a lin-
ear increase of the problem size results in an exponential increase of the required
resources: time or space, memory or energy.

Formally, a CSP is defined by a set of variables X = {x1, . . . , xN } that take
values over a set of discrete or continuous domains D = {D1, . . . , DN }, such
that a set of constraints C = {C1, . . . ,Cm} are satisfied. Each such constraint is
defined as a tuple Ci = 〈Si , Ri 〉, where R = {R1, . . . , Rk} are k relations over m
subsets S = {S1, . . . , Sm : Si ⊆ X}. In short, C S P = 〈X, D,C〉. Hence, the
problem is defined over a combinatorial space whose size is on the order of D

N
,

growing exponentially with N . Every solution to a CSP will have zero violations
and include all variables in X . Hence, it will be represented by a global minimum
of the cost hypersurface. If the problem has several solutions, the global minimum
will be degenerate, one minimum existing for each solution. It is easy to see then
that the difficulty of finding a solution for a CSP depends not only on the high
dimensionality of its combinatorial space but also critically on the curvature of that
space. Here, the curvature refers to how folded the space of possible evaluations of
X is when measured against a scalar (energy or cost) function related to the number
of unsatisfied constraints. If the cost function is strictly convex, there will be a single
minimum and methods such as gradient descent will easily find it. Unfortunately,
this is rarely the case.

With a geometrical representation of CSPs, it is easy to imagine solving the prob-
lem by travelling across the cost hypersurface, defined on some high-dimensional
space, looking for a global minimum. Think of it as being like an adventurous
explorer in the middle of the Amazon rain forest, perhaps searching for some
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previously uncontacted peoples. Having a helicopter would certainly be an advan-
tage. Access to a satellite with high-resolution cameras and powerful zooming abili-
ties will save you a lot of time. However, without any of them, you only have access
to local information. Being inside the rain forest, any fancy equipment could only
help you if it has access to some global parameter. That is the problem faced when
solving CSPs. In general, you can provide the solver with local information, but
any global information will only have low resolution, usually obtained from a dis-
crete sampling over the state space, whose useful information content will decrease
drastically with the curvature of the cost function.

Our aim in this section is to explore the representation and solution of CSPs on
SpiNNaker. We stick to the use of spiking neurons, embracing the main purpose
of the machine. However, bear in mind that SpiNNaker is a digital system, built
from general-purpose processors, and has features that allow non-neural implemen-
tations. We will not consider those here. The following is extracted with minor
modifications from Fonseca Guerra and Furber [61].

5.5.1 Defining the Problem

Consider a set N of neurons obeying a dynamic model defining the time evolution
of a state variable, usually the membrane potential ui and a threshold function θi
that defines the generation of a spike event whenever the state variable reaches θi
from below. After a spike ui is forced below the threshold; it can, for example, be
reset to a resting urest or reset ureset membrane potential. The SNN is defined
by the set N together with a set of synapses S ⊆ N X N that define connections
between pairs of neurons Ni and N j . Each synapse Si, j ∈ S has an associated
weight parameter wi, j and a response function Ri, j : R+→ R.

Let us also define the instantaneous state of the SNN asψt = {n1, n2, . . . , nN },
that is, the ordered set of firing states ni ∈ {0, 1} for every neuron in Ni at time t .
In SpiNNaker, ψt is well defined because time is discretised, generally in steps of
1 ms, and at each step, the firing state of a neuron is measurable. This definition
avoids the need to track the membrane potential ui ∈ R of each neuron at each
particular time. Strictly speaking, ui is represented by a 32-bit binary number in
SpiNNaker so its resolution is finite.

In our implementation, each neuron Ni corresponds to a LIF neuron [238]. In
this model, the dynamics of the membrane potential u are given by:

τm
du
dt
= −u(t)+ RI (t). (5.4)

Here, τm is the membrane time constant, R is the membrane resistance
and I is the external input current. Each time u reaches a threshold value
θ a spike is elicited; such events are fully characterised by the firing times
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{t f
| u(t f ) = θ and du

dt limt=t f > 0}. Immediately after a spike, the potential is
reset to a value ur , such that limt→t f + u(t) = ur . In our network, synapses are
uniquely characterised by ωi j and the inter-neural separation is introduced by
means of a delay 1i j . In biological neurons, each spike event generates an electro-
chemical response on the post-synaptic neurons characterised by Ri, j . We use the
same function for every pair (i, j), and this is defined by the post-synaptic current:

j (t) =
q
τ

e−
t−t0
τ 2(t − t0), (5.5)

where q is the total electric charge transferred through the synapse, τ is the char-
acteristic decaying time of the exponential function, t0 = t f

+ 1i j is the arrival
time of the spike and2 represents the Heaviside step function. The choice of Ri, j
potentially affects the network dynamics, and although there are more biologically
realistic functions for the post-synaptic response, the use of the exponential func-
tion in Equation 5.5 constitutes one of our improvements over the previous studies
on CSP through SNNs which used a simple square function.

In an SNN, each neuron is part of a large population. Thus, besides the back-
ground current I (t), it receives input from the other neurons, as well as a stochastic
stimulation from noisy neurons implementing a Poisson process. In this case, the
temporal evolution of the membrane potential (Equation 5.4) generalises to:

τm
d
dt

u = −u(t)+ R

I (t)+
∑

j

ω j
∑

f

j (t − t f
j )+

∑
k

�k j (t − Tk)


(5.6)

where the index f accounts for the spike times of principal neuron j in the
SNN, �k is the strength of the kth random spike, occurring at time Tk , and
j (.) is the response function of Equation 5.5. An SNN has the advantage that
its microstate ψt = {n1, n2, . . . , nN } at any time t can be defined by the binary
firing state ni ∈ {0, 1} of each neuron Ni , instead of the continuous membrane
potentials ui ∈ R. Then, the set of firing times {t f

i } for every neuron Ni , or
equivalently the set of states {ψt }, corresponds to the trajectory (dynamics) of the
network in the state space. The simulations in this work happen in discrete time
(time step = 1 ms) so, in practice, ψt defines a discrete stochastic process (e.g. a
random walk). If the next network state ψti+1 depends on ψti but is conditionally
independent of anyψt j with j < i , the set {ψt } also corresponds to a Markov chain.
Habenschuss et al. [89] demonstrated that this is the case when using rectangular
Post-Synaptic Potentials (PSPs) and a generalised definition of the network state,
the validity of the Markov property for general SNNs could still depend on the
dynamical regime and be affected by the presence of a non-zero probability current
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for the stationary distribution [39]. Each possible configuration of the system, a
microstate ψi , happens with certain probability pi and, in general, it is possible
to characterise the macroscopic state of the network with the Shannon entropy (in
units of bits) [221]:

S = −
∑

i

pi log2 pi (5.7)

and the network activity:

A(t) =
1
N

N∑
j

∑
f

δ(t − t f
j ) (5.8)

To compute pi and hence Equation 5.7, we binned the spikes from each
simulation with time windows of 200 ms. In this type of high-dimensional
dynamical system, sometimes the particular behaviour of a single unit is not as
relevant as the collective behaviour of the network, described, for example, by
Equations 5.7 and 5.8.

A constraint satisfaction problem 〈X, D,C〉 can now be expressed as an SNN as
shown in the pseudo-code of Listing 5.1. We can do it in three basic steps: (a) create
SNNs for each domain di of each variable, every neuron is then excited by its asso-
ciated noise source, providing the necessary energy to begin exploration of the
states {ψ}; (b) create lateral-inhibition circuits between all domains that belong to
the same variable; (c) create lateral-inhibition circuits between equivalent domains
of all variables appearing in a negative constraint and lateral-excitation circuits for
domains in a positive constraint. With these steps, the resulting network will be
a dynamical system representation of the original CSP. Different strategies can
now be implemented to enforce the random process over states ψt to find the
configuration ψ0 that satisfies all the constraints. The easiest and proposed way of
implementing such strategies is through the functional dependence of the noise
intensity on time. The size of each domain population should be large enough to
average out the stochastic spike activity. Otherwise, the system will not be stable
and will not represent quasi-equilibrium states. As will be shown, it is the size of
the domain populations what allows the system to converge into a stable solution.

The ensemble of populations assigned to every CSP variable xi works as a
Winner-Takes-All (WTA) circuit through inhibitory synapses between domain
populations, which tends to allow a single population to be active. However, the
last restriction should not be over-imposed, because it could generate saturation
and our network will be trapped in a local minimum. Instead, the network should
constantly explore configurations in an unstable fashion, converging to equilib-
rium only when satisfiability is found. The random connections between popula-
tions, together with the noisy excitatory populations and the network topology,
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provide the necessary stochasticity that allows the system to search for satisfiable
states. However, this same behaviour traps some of the energy inside the network.
For some problems, a dissipation population could be created to balance the input
and output of energy or to control the entropy level during the stochastic search.
In general, there may be situations in which the input noise acquired through stim-
ulation can stay permanently in the SNN. Thus, the inclusion of more excitatory
stimuli will saturate the dynamics at very high firing rates, which potentially could
reach the limits of the SpiNNaker communication fabric. In these cases, inhibitory
noise is essential too and allows us to include arbitrarily many stimulation pulses.

We demonstrate in the next section that the simple approach of controlling the
dynamics with the stimulation intensities and times of the Poisson sources provides
an efficient strategy for a stochastic search for solutions to the studied CSPs.

1 # d e f i n e t h e CSP = <X ,D, C> t h r o u g h a s e t o f l i s t s .
2 X= l i s t ( v a r i a b l e s )
3 D= l i s t ( domains )
4 S= l i s t ( s u b s e t s _ o f (X) )
5 R= l i s t ( r e l a t i o n s _ o v e r ( s _ i i n S ) )
6 C= l i s t ( c o n s t r a i n t s = t u p l e ( s _ i , r _ i ) )
7 # a ) c r e a t e an SNN f o r e a c h v a r i a b l e w i t h sub−p o p u l a t i o n s f o r e a c h domain .
8 n = s i z e _ o f _ e n s e m b l e
9 f o r v a r i a b l e x _ i i n X :

10 f o r domain d _ i i n D:
11 p o p u l a t i o n [ x _ i ] [ d _ i ] = c r e a t e an SNN w i t h n n e u r o n s
12 n o i s e _ e x c [ x _ i ] [ d _ i ] = c r e a t e a s e t o f n o i s e
13 s t i m u l a t i o n p o p u l a t i o n s .
14 a p p l y _ s t i m u l i ( n o i s e [ x _ i ] [ d _ i ] , p o p u l a t i o n [ x _ i ] [ d _ i ] )
15 n o i s e _ i n h [ x _ i ] [ d _ i ] = c r e a t e a s e t o f n o i s e
16 d i s s i p a t i o n p o p u l a t i o n s .
17 a p p l y _ d i s s i p a t i o n ( n o i s e _ i n h [ x _ i ] [ d _ i ] , p o p u l a t i o n [ x _ i ] [ d _ i ] )
18 #b ) u s e i n h i b i t o r y s y n a p s e s t o a c t i v a t e , on a v e r a g e , a s i n g l e domain p e r

v a r i a b l e
19 f o r domain d _ i i n D:
20 f o r domain d _ j i n D
21 i n h i b i t i o n ( p o p u l a t i o n [ x _ i ] [ d _ i ] , p o p u l a t i o n [ x _ i ] [ d _ j ] )
22 # c ) map e a c h c o n s t r a i n t t o an i n h i b i t o r y o r e x c i t a t o r y s y n a p s e .
23 f o r c o n s t r a i n t c _ i i n C :
24 r e a d s u b s e t s _ i and r e l a t i o n r _ i f rom c _ i
25 f o r v a r i a b l e s x _ i and x _ j i n s _ i :
26 f o r domain d _ i i n D:
27 i f c o n s t r a i n t r e l a t i o n r _ i <0 :
28 i n h i b i t i o n ( p o p u l a t i o n [ x _ i ] [ d _ i ] , p o p u l a t i o n [ x _ j ] [ d _ i ] )
29 e l i f c o n s t r a i n t r e l a t i o n r _ i >0 :
30 e x c i t a t i o n ( p o p u l a t i o n [ x _ i ] [ d _ i ] , p o p u l a t i o n [ x _ j ] [ d _ i ] )

Listing 5.1. Translation of a CSP into an SNN.

5.5.2 Results

In order to demonstrate the implementation of the SNN solver, we present solu-
tions to some instances of Non-deterministic Polynomial time (NP) problems.
Among the NP-complete problems, we have chosen to showcase instances of graph
colouring, Latin squares and Ising spin glasses. Our aim is to offer a tool for the
development of stochastic search algorithms in large SNNs. We are interested in
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CSPs to gain understanding of the dynamics of SNNs under constraints, how
they choose a particular state and their computational abilities. Ultimately, SNNs
embedded in neuromorphic hardware are intended for the development of new
technologies such as robotics and neuroprosthetics, constantly interacting with
both external devices and the environment. In such applications, the network needs
to adapt itself to time-varying constraints taking one or multiple decisions accord-
ingly, making advances in stochastic search with SNNs a fundamental requirement
for neuromorphics.

5.5.3 Graph Colouring

Consider a graph G defined by the ordered pair {V, E}, with V a set of vertices
and E the set of edges connecting them. The graph colouring problem consists
of finding an assignments of k colours to the elements of the graph (either V , E
or both) such that certain conditions are satisfied [41]. In vertex colouring, for
example, the colours are assigned to the elements of V in such a way that no two
adjacent nodes (those connected by an edge) have the same colour. A particularly
useful applications of this problem is the process of register allocation in compiler
optimisation which is isomorphic to graph colouring [35]. Regarding time com-
plexity, general graph colouring is NP-complete for k > 2. In the case of planar
graphs, 3-colouring is NP-complete and, thanks to the four-colour theorem proved
by Appel and Haken [5], 4-colouring is in P.

A division of a plane into several regions can be represented by a planar graph,
familiar versions of which are the geographic maps. In Figure 5.20(a), we show
the SNN-solver result of a satisfying 4-colouring of the map of the world where
colours are assigned to countries such that no bordering countries have the same
colour. We have used the list of countries and borders from the United Nations
available in Mathematica Wolfram [113]. The corresponding connectivity graph
of the world map in Figure 5.20(a) is shown in Figure 5.20(b). The insets in Figure
5.20(a) show the results of our solver for 3-colouring of the maps of the territories of
Australia (bottom-right) and of Canada (top-left). Figure 5.20(c) and (d) show the
time dependence of the entropy (top), firing rate (middle) and number of visited
states (bottom) for the map of the world and of Australia, respectively. The colour
code we use in these and the following figures is as follows: red means that the
state in the current time bin is different from the one just visited, green represents
the network staying in the same state and blue means that all constraints are satis-
fied. The dashed vertical lines mark the times at which noise stimulating (blue) or
depressing (red) populations began to be active. The normalised spiking activity of
the four colour populations for four randomly selected countries of the world map
is shown in Figure 5.20(e) evidencing the competing behaviour along the stochastic
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Figure 5.20. (a) Solution to the map colouring problem of the world with 4 colours and

of Australia and Canada with 3 colours (insets). Figure (b) shows the graph of bordering

countries from (a). The plots of the entropy H (top), mean firing spike rate ν (middle)

and states count � (bottom) versus simulation time are shown in (c) and (d) for the

world and Australia maps, evidencing the convergence of the network to satisfying sta-

tionary distributions. In the entropy curve, red codes for changes of state between suc-

cessive time bins, green for no change and blue for the network satisfying the CSP. In

the states count line, black dots mean exploration of new states; the dots are yellow

if the network returns to states visited before. In (e), we have plotted the population

activity for four randomly chosen CSP variables from (a), each line represents a colour

domain.

search. Interestingly, although the network has converged to satisfaction during the
last 20 s (blue region in Figure 5.20(c)), the bottom right plot in Figure 5.20(e)
reveals that due to the last stimulation the network has swapped states preserving
satisfaction, evidencing the stability of the convergence. Furthermore, it is notice-
able in Figure 5.20(d) that new states are visited after convergence to satisfiability;
this is due to the fact that, when multiple solutions exist, all satisfying configura-
tions have the same probability of happening. Although we choose planar graphs
here, the SNN can implement any general graph; hence, more complicated P and
NP examples could be explored.
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5.5.4 Latin Squares

A Latin square is defined as an array of n × n cells in which n groups of n dif-
ferent symbols are distributed in such a way that each digit appears only once in
each row or column. The NP-completeness of solving a partially filled Latin square
was demonstrated by Colbourn [38], and among the useful applications of such a
problem, one can list authentication, error detection and error correction in coding
theory. Here we choose the Sudoku puzzle as an instance of a Latin square, in this
case, n = 9 and in addition to the column and row constraints of Latin squares,
Sudoku requires the uniqueness of the digits in each 3 × 3 sub-grid. We show in
Figure 5.21 the solution to an easy puzzle [57], to a hard Sudoku [89] and to the AI

Figure 5.21. SNN solution to Sudoku puzzles. (a–c) show the temporal dependence of the

network entropy H, firing rate ν and states count � for the easy (g), hard (h) and AI escar-

got (i) puzzles. The colour code is the same as that of Figure 5.20. In (g–i), red is used

for clues and blue is used for digits found by the solver. Figures (d) and (f) illustrate the

activity for a random selected cell from (a) and from (c), respectively, evidencing com-

petition between the digits, the lines correspond to a smoothing spline fit. (e) Schematic

representation of the network architecture for the puzzle in (a).
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Escargot puzzle, which has been claimed to be the hardest Sudoku. The temporal
dependence of the network entropy H , firing rate ν and states count � is shown
in Figures 5.21(a)–(c), respectively, for the easy (5.21(g)), hard (5.21(h)) and AI
escargot (5.21(i)) puzzles. In Figure 5.21(e), we show a schematic representation of
the dimensionality of the network for the easy puzzle (g); each sphere represents a
single neuron and synaptic connections have been omitted for clarity; the layer for
digit 5 is represented also showing the inhibitory effect of a single cell in position
(1,3) over its row, column, subgrid and other digits in the cell. In this case, the total
number of neurons is ≈37 k and they form ≈86 M synapses.

One major improvement of our implementation with respect to the work of
Habenschuss et al. [89] is the convergence to a stable solution; this is arguably due
to the use of subpopulations instead of single neurons to represent the domains
of the CSP variables as these populations were required to provide stability to the
network. The use of the more realistic exponential post-synaptic potentials instead
of the rectangular ones used by Habenschuss et al. [89] helps deliver a good search
performance as shown in the bottom plots in Figure 5.21(a)–(c), where the solution
is found after visiting only 3, 12 and 26 different states and requiring 0.8 s, 2.8 s
and 6.6 s, respectively, relating well also with the puzzle hardness. It is important
to highlight that the measurement of the difficulty level of a Sudoku puzzle is still
ambiguous and our solver could need more complex strategies for different puzzles,
for example, in the transient chaos-based rating the ‘platinum blonde’ Sudoku is
rated as one of the hardest to solve, and although we have been able to find a solution
for it, it is not stable, which means one should control the noisy network dynamics
in order to survive the long escape rate of the model presented by Ercsey-Ravasz
and Toroczkai [57]. We show in Figure 5.21(d) and (f ) the competing activity of
individual digit populations of a randomly chosen cell in both the easy and the
AI escargot puzzles. The dynamic behaviour resembles that of the dynamic solver
in Figure 2 of the work by Ercsey-Ravasz and Toroczkai [57] for this same easy
puzzle and platinum blonde. Further analysis would bring insights into the chaotic
dynamics of SNNs when facing constraints.

5.5.5 Ising Spin Systems

For each atom that constitutes a solid, it is possible to define a net spin magnetic
moment Eµ resulting from the intrinsic spin of the subatomic particles and the
orbital motion of electrons around their atomic nucleus. Such magnetic moments
interact in complex ways giving rise to a range of microscopic and macroscopic
phenomena. A simple description of such interactions is given by the Ising model,
where each Eµ in a crystal is represented by a spin ES taking values from {+1,−1}
on a regular discrete grid of points {i, j, k}. Furthermore, the interaction of the
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spins {ESi } is considered only between nearest neighbours and represented by a con-
stant Ji, j which determines if the two neighbouring spins will tend to align parallel
Ji, j > 0 or anti-parallel Ji, j < 0 with each other. Given a particular configuration
of spin orientations ω, the energy of the system is then given by the Hamiltonian
operator:

Ĥ = −
∑
i, j

Ji, j ESi ES j − h
∑

i

Si (5.9)

where h is an external magnetic field that tends to align the spins in a preferential
orientation [9]. In this form, each Ji, j defines a constraint Ci, j between the values
D = {+1,−1} taken by the variables ESi and ES j . It is easy to see that the more con-
straints are satisfied, the lower the value of Ĥ becomes in Equation 5.9. This simple
model allows the study of phase transitions between disordered configurations at
high temperature and ordered ones at low temperature. For ferromagnetic Ji, j > 0
and antiferromagnetic Ji, j < 0 interactions the configurations are similar to those
in Figure 5.22(d) and (e) for 3D lattices. These correspond to the stable states of
our SNN solver when the Ising models for Ji, j > 0 and Ji, j < 0 are mapped to an
SNN using Algorithm 5.1 and a 3D grid of 1,000 spins. Figure 5.22(g) shows the
result for a 1D antiferromagnetic spin chain. It is interesting to note that the statis-
tical mechanics of spin systems has been extensively used to understand the firing
dynamics of SNNs, presenting a striking correspondence between their behaviour
even in complex regimes. Our framework allows the inverse problem of mapping
the SNN dynamics to spin interactions. This equivalence between dynamical sys-
tems and algorithms has largely been accepted and we see an advantage in com-
puting directly between equivalent dynamical systems. However, it is clear that the
network parameters should be adequately chosen in order to keep the computation
valid.

If instead of fixing Ji, j to some value U for all spin pairs {(i, j)} one allows
it to take random values from {U,−U } with probabilities pAF and pFM, it will
be found that certain interactions would be frustrated (unsatisfiable constraints).
Figure 5.22(f ) illustrates the frustration with three antiferromagnetic interacting
spins in a way that any choice of orientation for the third spin will conflict with
one or the other. This extension of the Ising model when the grid of interactions
is a random mixture of AF and FM interactions was described by Surungan et al.
[246]. The model is the representation of the spin glass systems found in nature;
these are crystals with low concentrations of magnetic impurities that, due to the
frustrated interactions, are quenched into a frozen random configuration when the
temperature is lowered (at room or high temperature the magnetic moments of a
material are constantly and randomly precessing around their average orientation).
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Figure 5.22. SNN simulation of Ising spin systems. (a) and (b) show two 2-dimensional

spin glass quenched states obtained with interaction probabilities pAF = 0.5 and pAF =

0.1. The results for the three-dimensional lattices for CSPs of 1,000 spins with ferromag-

netic and antiferromagnetic coupling constant are shown in (e) and (d), respectively. In

(c) are plotted the temporal dependence of the network entropy H, firing rate ν and

states count � during the stochastic search for the system in (d). (f) illustrates the origin

of frustrated interactions in spin glasses. (g) depicts the result for the one-dimensional

chain.

The statistical analysis of those systems was fundamental for the evolution of artifi-
cial neural networks and machine learning. Furthermore, the optimisation problem
of finding the minimum energy configuration of a spin glass has been shown to be
NP-complete [9]. The quenching of the grid happens when it gets trapped in a
local minimum of the state space of all possible configurations. In Figure 5.22(a)
and (b), we show a quenched state found by our SNN with pAF = 0.5 and
pAF = 0.1, respectively. A spin glass in nature will often be trapped in local min-
ima and will need specific temperature variations to approach a lower energy state;
our SNNs replicate this behaviour and allow for the study of thermal processes,
controlling the time variation and intensity of the excitatory and inhibitory stim-
ulations. If the underlying stochastic process of such stimulations is a good rep-
resentative of heat in solids, they will correspond to an increase and a decrease of
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temperature, respectively, allowing, for example, the implementation of simulated
annealing optimisation. Figure 5.22(c) shows the time evolution of the entropy,
firing rate and states count for the antiferromagnetic 3D lattice of Figure 5.22(d).
Similar plots, but converging to unsatisfying states, are found for the spin glasses
in Figure 5.22(a) and (b). In the case of the ferromagnetic lattice in 5.22(e) with
a very low noise, the network immediately converges to a solution. If the noise is
high, however, it is necessary to stimulate the network several times to have a per-
fect ordering. This is because more noise implies more energy to violate constraints;
even in nature, magnetic ordering is lost at high temperatures.
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Chapter 6

From Activations to Spikes

By Francesco Galluppi, Teresa Serrano Gotarredona, Qian Liu
and Evangelos Stromatias

Tackling real-world tasks requires being comfortable with chance, trading off time with
accuracy, and using approximations.

— Brian Christian in Algorithms to Live By:

The Computer Science of Human Decisions

Deep learning has become the answer to an increasing number of AI problems
since Hinton et al. [98] first proposed the training method of the Deep Belief Net-
work (DBN). Machine learning is an extremely interesting space in 2019. The past
few years have seen DeepMind create a narrow AI to master the game of Go and
defeat Lee Sedol, a professional Go player [227]. Raising the ante, OpenAI designed
a system to play a co-operative computer game and beat a professional team at it.1

The game in question was DOTA 2 (Defense of the Ancients) a multiplayer online
battle arena where each player (or AI) generally controls a single character. The same
year, DeepMind showcased their system (AlphaStar) playing an arguably even more
difficult game – Starcraft 2 – a real-time strategy game where each opponent can
control up to 200 units, while also needing to focus on more abstract goals such as
maintaining a functioning economy and production facilities [260]. These are just

1. https://openai.com/f ive/
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examples of applications of one AI technique (Reinforcement Learning) to a very
narrow field, although even these have much wider applicability.

However, deep learning is not new ‘magic’, but rather has a history over a few
decades. An overview of some popular Artificial Neural Networks (ANNs) is offered
below. The rest of the chapter reveals how one can use the application-focused
insights from Deep Neural Networks (DNNs) to engineer SNNs and an approach
to convert pre-trained networks to use spikes.

6.1 Classical Models

We call the well-known and widely used deep learning models ‘classical’ and
give a brief introduction to those models in this section. As mentioned above,
the first break-through in training deep (>2 layer) networks was the greedy
layer-wise strategy [98] proposed to train stacked Restricted Boltzmann Machines
(RBMs). Shortly after, this method was proved also to be efficient for train-
ing other kinds of deep networks including stacked autoencoders (AEs) [13].
RBMs and AEs are suitable for dimensionality reduction and feature extraction
when trained with unsupervised learning on unlabelled data. In 2012, using
such an unsupervised deep learning architecture, the Google Brain team achieved
a milestone in the deep learning era: the neural network learned to recognise
cats by ‘watching’ 10 million images generated from random frames of YouTube
videos [137].

Convolutional Neural Networks (ConvNets) are vaguely inspired from biology
and the significant discovery of Hubel and Wiesel that simple cells have a preferen-
tial response to oriented bars (convolution) and complex cells collate responses from
the simple ones (pooling); it is believed that these represent the basic functions in
the primary visual cortex in cats [109]. These simple cells fire at a high frequency to
their preferred orientation of visual stimuli within their receptive fields, small sub-
regions of the visual field. Meanwhile, a complex cell corresponds to the existence
of a pattern within a larger receptive field but loses the exact position of the pattern.
The NeoCognitron [63] was the first network to mimic the functions of V1 sim-
ple and complex neurons in an ANN, and later, this feature detection of single cells
was improved by sharing weights among receptive fields in LeNet-5 [138]; typically,
ConvNets follow the same principle to this day. The mechanism of shared weights
forms the essence of convolution in a ConvNet, which hugely reduces the number
of trainable parameters in a network. The usual procedure to train ConvNets is a
supervised one and is known as the back-propagation algorithm; it relies on the
calculus chain rule to send error signals through the layers of the network starting
from the output and ending at the input.
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The most significant examples of ConvNet have dominated the best perfor-
mances in the annual ImageNet Challenge [215]: AlexNet [132], VGG Net [228],
GoogLeNet [249], ResNet [93] and MobileNet [108].

Despite the powerful capabilities of these feed-forward deep networks, sequence
processing is a challenge for them since the size of the input and output vec-
tors are constrained to the number of neurons. Thus, Recurrent Neural Networks
(RNNs), containing feed-back connections, are ideal solutions for dealing with
sequential information since their current output is always dependent on the pre-
vious ‘memory’. As training mechanisms have become more mature, for example,
using Long Short-Term Memory (LSTM) [99], RNNs have shown great success in
many natural language processing tasks: language modelling [166], machine trans-
lation [247], speech recognition [83] and image caption generation [125].

The current trend in deep learning is to combine Machine Learning (ML) algo-
rithms towards more complex objectives such as sequential decision-making and
data generation.

Reinforcement Learning (RL) is inspired from animal behaviour when agents
learn to make sequential optimised decisions to control an environment [248]. To
address complex decision-making problems in practical life, RL requires a suffi-
ciently abstract representation of the high-dimensional environment. Fortunately,
deep learning nicely complements this requirement and performs effectively at
dimensionality reduction and feature extraction. Advances in RL techniques, such
as asynchronous advantage actor-critic (A3C) [167], are what allowed DeepMind
and OpenAI to perform the feats presented at the beginning of this chapter.

Generative Adversarial Networks (GANs) [80] are proposed for training gener-
ative models of complex data. Instead of training discrimination networks (e.g.
image classification using ConvNets) and generation networks (e.g. data sam-
pling on RBMs) separately with different objectives, GANs train two competing
networks – one the discriminator, the other the generator – simultaneously by mak-
ing them continuously play games with each other. Thus, the generator learns to
produce more realistic data to fool the discriminator, while the discriminator learns
to become better at distinguishing generated from real data. Exciting achievements
have been reported in generating complex data such as realistic image generation
based on descriptions in text [203].

6.2 Symbol Card Recognition System with Spiking
ConvNets

The ConvNet is the most commonly used machine learning architecture for image
recognition. It is a biologically inspired generic architecture for intelligent data
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Figure 6.1. Generic ConvNet architecture.

processing [139]. The generic architecture of a ConvNet for visual object recogni-
tion is depicted in Figure 6.1. The visual scene coming out of the retina is fed to a
sequence of layers that emulate the processing layers of the brain visual cortex. Each
layer consists of the parallel application of 2D-filters to extract the main image char-
acteristics. Each image representation obtained is named a feature map. The first
layer extracts oriented edges of the image according to different orientations and
different spatial scales. The subsequent layers combine the feature maps obtained
in the previous layers to detect the presence of combinations of edges, detecting
progressively more complex image characteristics, until achieving the recognition
of complex objects in the higher levels. Along the ConvNet layers, the sizes of the
feature maps are progressively reduced through applying image subsampling. This
subsampling process is intended to introduce invariance to object size and position.

In conventional AI vision systems, the ConvNet architectures are used in a
frame-based manner. A frame representing the particular scene to be analysed is fed
to the architecture. The output of the different convolutional layers is computed
in a sequential way (layer by layer) until a valid output is obtained in the upper
layer indicating the category of the recognised object. However, this is not what
happens in biological brains. In a biological system, the retina ‘pixels’ send, in an
asynchronous way, sequences of spikes representing the visual scene. Those spikes
are sent through the optic nerve to the visual cortex where they are processed as they
arrive by the subsequent neuron layers with just the delay of the spike propagation
and neuron processing.

We have used the SpiNNaker platform to implement a spiking ConvNet. Each
time a spike is generated by a neuron in a layer, the spike is propagated to the
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connected neural populations of the next layer and the weights of the correspond-
ing 2D-filter kernels are summed to the neuron states of the subsequent con-
nected layer. That way the convolution is performed on the fly in a spike-based
manner [220].

The input stimulus provided to the system is a flow of spikes representing the
symbols of a poker card deck passing in front of a DVS [141, 143, 219] at high
speed. We used an event-driven clustering algorithm [47] to track the passing sym-
bols and, at the same time, we adjusted the tracking area to a 32 × 32 resolution.
Each symbol passed in 10–20 ms producing 3 k–6 k spikes. The 40 symbols passed
in 0.95 s generating a total of 174,643 spikes.

To achieve real-time recognition with, at the same time, reproducibility of the
recordings, we loaded the spike sequence onto a data player board [218]. The data
player board stores the neuron addresses and timestamps of the recorded spikes in
a local memory and reproduces them as events through a parallel AER link in real
time. The parallel AER events are converted to the 2-of-7 SpiNNaker protocol and
fed in real time to the SpiNNaker machine.

The particular ConvNet architecture used for the card symbol recognition task
is detailed in Figure 6.2. It consists of three convolutional layers (C1, C3 and C5)
interleaved with two subsampling layers (S2 and S4) and a final fully-connected
category layer (C6). Table 6.1 details the numbers and sizes of the feature maps as
well as the sizes of the kernels in each layer.

The kernels in the first layer are a set of six Gabor filters in three different ori-
entations and for two different spatial scales and are fixed, not trained. The rest of

Figure 6.2. ConvNet architecture for card symbol recognition.
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Table 6.1. Number and size of layers in card symbol ConvNet architecture.

ConvNet structure

C1 S2 C3 S4 C5 C6

Feature maps (FM) 6 6 4 4 8 4

FM dimension 28× 28 14× 14 10× 10 5× 5 1× 1 1× 1

Kernel size 10× 10 – 5× 5 – 5× 5 1× 1

Number of kernels 6 – 24 – 32 32

Number of weights 600 – 600 – 800 32

Trainable weights 0 – 600 – 800 32

the network weights are trained using frames and a method to convert the weights
to the spiking domain [190].

6.2.1 Spiking ConvNet on SpiNNaker

One of the peculiarities of a ConvNet architecture is the weight-sharing property.
The weights of the kernels that connect two neurons in two different feature maps
do not depend on the particular neurons but just on the relative positions of the
two neurons in the origin and destination feature maps. Because of that ‘weight-
sharing’ property, the number of synaptic weights that must be stored for a neuronal
population is greatly reduced compared to populations with full connectivity and
independent non-shared weights. To optimise the processing speed, the SpiNNaker
tool flow was modified to admit a special ‘convolution connector’. The ‘convolu-
tion connector’ is shared by all the neurons belonging to the same convolutional
feature map population and contains the kernel weights which are stored in the
local DTCM of the corresponding population. This solution avoids the reading of
the kernel weights from the external SDRAM each time a spike arrives to the con-
volution module. Each time a spike arrives at a convolution module, depending on
the source population of the incoming spike; the corresponding kernel is read from
the DTCM memory and the neuron states of the neighbour pixels are updated cor-
respondingly. If any of the updated neurons passes the firing threshold, an output
spike is generated and immediately sent to the next processing layer, in the usual
way neural systems are implemented on SpiNNaker. In this way, the ConvNet is
truly spike- or event-driven.

Another characteristic of the ConvNet is that most of the neuron parameters
(such as neuron voltage thresholds, voltage reset levels, leakage rates and refractory
times) are shared by all the neurons in the same population. Only the particular
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neuron state and firing times are individual for each neuron. In the standard
SpiNNaker tool chain, all the neuron parameters are replicated and stored individ-
ually for each neuron in the DTCM. Thus, the DTCM capacity sometimes limits
the number of neurons that can be implemented per core. Here the tool chain was
also modified to distinguish between the parameters that are individual for each
neuron and the parameters shared by all the population. With this approximation,
we are able to implement 2,048 convolution neurons per core, where this number
is determined by the maximum number of addressable neurons supported by the
routeing scheme.

6.2.2 Results

To test the recognition rate, we used a test sequence of 40 32×32 tracked symbols
obtained from the events recorded with a DVS [219]. As already explained, the
recording consists of a total of 174,643 spikes encoded as AER events.

We first tested the correct functionality of the ConvNet for card-symbol classi-
fication programmed on the SpiNNaker board at low speed. For this experiment,
we multiplied by a factor 100 the timestamps of all of the events of the sequence
that was reproduced by the data player board. To maintain the same classification
capability as the ConvNet architecture optimised for card symbol recognition, we
had to multiply the time parameters (the refractory and leakage times) of the net-
work by the same factor 100. In Figure 6.3, we reproduce four snapshots of the
composition grabbed with the jAER board of the input stimulus and the output
category obtained with the SpiNNaker ConvNet classifier. As can be seen, correct
classification of the four card symbols is obtained. These snapshots are generated
by collecting and histogramming events with the jAER [178] board over 1.2 ms.
The classification of the test sequence [190] of 40 card symbols slowed down a fac-
tor 100 was repeated 30 times. During the appearance time of each input symbol,
the number of output events generated by the correct output category was counted
as well as the number of output events generated by each of the other three out-
put categories. The classification is considered successful if the number of output
events of the correct category is the maximum. The mean of the success classifi-
cation rate was 97% for the 30 repetitions of the experiment, with a maximum
of 100% and a minimum of 93% in the success classification rate, thus achiev-
ing a recognition success rate slightly higher than the one obtained in the software
real-time experiment [190].

Once we had tested that the SpiNNaker ConvNet classifier functionality was
correct, we tested its maximum operation speed. For that purpose, we repeated the
experiment for different slow-down factors of the event timings of the input stim-
ulus sequence while, at the same time, we applied the same factor to the ConvNet
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Figure 6.3. Snapshots of merging the input stimulus with the SpiNNaker classifier output.

The input stimulus was generated with a 100 slow-down factor over real recording time.

Figure 6.4. (a) Recognition rate for the sequence of 40 card symbols versus the slow-

down factor of the input stimulus. (b) Total number of output events generated by the

output recognition layer for the whole sequence of 40 card symbols versus the slow-

down factor of the input stimulus.

timing parameters. We repeated the classification of each test sequence 30 times,
measuring the classification success rate as explained above. Figure 6.4(a) shows
the mean, maximum and minimum recognition success rates obtained for slow
down factors [1, 2, 5, 15, 20, 25, 30, 50, 100, 200]. A 1× slow-down factor means
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real-time operation, that is, classification of the sequence of the high-speed browsed
cards as they each pass in a 400 microsecond interval. We can observe that for slow-
down factors higher than 25, the mean successful classification rate is higher than
90%. However, for slow-down factors lower than 25, the success recognition rate
suffers from a severe degradation. In Figure 6.4(b), we have plotted the total number
of output events generated at the output of the SpiNNaker classifier as a function
of the input stimulus slow-down factor. We can observe that for slow-down fac-
tors below 50, the number of SpiNNaker output events decreases quickly. Another
observation is that there is a local peak in the recognition rate (and the correspond-
ing number of output events) at a slow-down factor of 10. For higher slow-down
factors (slow-down factors of 15 and 20), the recognition rate and the number of
output events in the category layer are lower.

Going into the details of the problem, we observed that the main bottleneck
that limits the operation of the system is the processing time of the events in the
convolution layers. We have also observed that when events are unevenly lost in
subsequent layers, the spatio-temporal congruence of the recognised patterns is lost
and the recognition rate decreases. This phenomenon has already been reported
by Camuñas [31] who observed that queuing events in a highly saturated event
processing system gives a worse performance than simply dropping them, because
queuing introduces time delays, while dropping keeps the temporal coherence of
the processed events. In the present case, when events are lost simultaneously in the
different processing layers, the performance is better than when there is a layer that
has a dominant delay. This explains the lower recognition accuracy for intermediate
slow-down factors.

In Figure 6.2, we show in red numbers the total number of events that enter into
the corresponding layer that have to be processed by each feature map. It can be
observed that each neural population in the second convolutional layer (C3) has to
process 4.7×more events/second than the first convolution layer (C1). As we have
tried to maximise the number of neurons implemented per SpiNNaker core to the
maximum that can be allocated, this has the downside that each core in layer C3
has to process the incoming 816,163 events in 0.95 seconds for real-time operation.
As the SpiNNaker architecture is flexible, it allows us to trade-off the maximum
number of neurons per core against the maximum event processing throughput.

In a first experiment, we noticed that more than one half of the weights in the
first convolution layer (C1) were zero. Zero weights in the kernel add computation
time per event but do not affect the result of the computation. So, we eliminated all
the zero values of the kernels in the first convolution layer. In Figure 6.5, we have
plotted in blue the recognition rate of the original experiment (before eliminating
the zero elements in the C1 kernels) and in the green trace, we plot the recognition
rate after eliminating the zero values in the C1 kernels. It can be observed that
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Figure 6.5. Recognition accuracy for the whole sequence of 40 card symbols versus the

slow-down factor of the input stimulus when splitting each C3 neural population among

several cores.

both systems perform similarly for low and high slow-down factors. However, the
‘optimised’ system has worse performance for intermediate slow-down factors. The
reason is that by speeding-up the operation of the first C1 convolution layer, we
obtain more decorrelation between the first and second convolutional layer (C3), as
the second convolutional layer (C3) is the one causing the performance bottleneck
in this particular case.

In a further experiment, to speed-up the operation of the second convolu-
tional layer (C3), we mapped each neural population of layer C3 onto different
SpiNNaker cores. Figure 6.5 plots the recognition rates obtained for different dis-
tributions of the feature map populations of the second convolutional layer (C3).
In these experiments, we kept the elimination of the zero kernel elements in the
C1 layer. In Figure 6.5, the red trace corresponds to splitting each C3 feature map
operation across 2 cores. The cyan, black and magenta traces correspond to split-
ting each C3 feature map across 4, 5 and 6 cores, respectively. As can be observed,
the 4-core division gives the optimum performance as it equalises the delays of the
different layers. For further speeding up the C3 layer, the delay of the third convo-
lutional layer (C5) becomes dominant.

6.3 Handwritten Digit Recognition with Spiking DBNs

While ConvNets continuously achieve state-of-the-arts results in computer vision
tasks [93, 132, 228, 249], an alternative deep neural network architecture, known
as the DBN, used to be very popular due to the fact that it can be trained on
unlabelled data sets and act as a classifier as well as a generative model.
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Figure 6.6. An RBM with full connectivity between visible units (bottom) and hidden

units (top), but no connections within the same layer [241].

The building block of a DBN is the Restricted Boltzmann Machine (RBM). An
RBM consists of two layers of neurons forming a bipartite graph (Figure 6.6). The
first layer is called the ‘visible’ layer, and the second one is the ‘hidden’ layer. Each
neuron in an RBM is a stochastic binary unit, whose ‘active’ probability is computed
by the weighted sum of its inputs going through a Sigmoid activation function.
DBNs are formed by stacking RBMs on top of each other, and the ‘hidden’ units
become the ‘visible’ units of the next layer. Training is performed layer-by-layer, in
an unsupervised manner, using the Contrastive Divergence (CD) rule [98]. The
final layer is jointly trained with the input to provide a teacher signal that guides
the output of the network.

O’Connor et al. [183] devised a method to train a DBN using the CD rule and
then map the trained DBN to an SNN. They achieved this by using the Siegert
approximation [122], which models a rate-based approximation of an LIF neu-
ron firing rate, as an activation function for the RBMs. The reader should refer to
the work of O’Connor et al. [183] for a more detailed description of the training
procedure.

The SpiNNaker computing platform was used to investigate the robustness of
spiking DBNs to various hardware limitations that are present in digital neuro-
morphic platforms such as the memory size available to store synaptic weights, the
bit precision used to represent weights and neuron states, and input sensory noise
commonly found in DVS sensors (silicon retinas).

The MNIST handwritten digit recognition was used as a computer vision task.
The MNIST data set [138] consists of 70 k 28× 28 greyscale images representing
numbers from 0–9. The first 60 k images are used for training and the remaining
10 k for testing the trained model. Individual pixel values of the MNIST images
were converted to Poisson spike trains with a rate proportional to their intensity
values [183].

The research presented in this section was conducted in collaboration with
the Institute of Neuroinformatics (INI) in Zurich, Switzerland and the Universite
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Pierre et Marie Curie in Paris, France. A more thorough investigation of the work
presented here can be found elsewhere [239–241, 243].

Spiking DBNs on SpiNNaker

The SpiNNaker computing platform was used to investigate the robustness of spik-
ing DBNs to various hardware limitations that are present in digital neuromorphic
architectures such as the limited memory available to store synaptic weights, the bit
precision used to represent weights and neuron states, and the input sensor noise
commonly found in DVS sensors (silicon retinas).

Porting DBNs onto SpiNNaker

For the experiments in this section, the same pre-trained DBN from O’Connor
et al. [183] was used. This DBN consists of an input layer of 784 neurons (the
28×28 MNIST image is flattened to a vector), followed by two hidden layers of
500 neurons each and 10 output neurons, one neuron per digit. This model has in
total 647,000 synapses.

After the training process is over, the DBN is mapped to an SNN by replac-
ing the Siegert activation function with an LIF neuron model using the following
equations:

τm
dV
dt
= EL − V + Rm I, (6.1)

where τm is the membrane time constant, EL is the resting potential and Rm is
the membrane resistance. The input current I is computed as a Dirac delta synapse
model,

I =
n∑

i=0

wi

mi∑
j=0

δ(t − ti j ), (6.2)

where wi is the weight of synapse i, δ(t) is the Dirac delta function which is
zero except for the firing times ti j of the i th neuron, n is the number of incom-
ing synapses and m is the number of spikes that the i th neuron receives. The LIF
parameters used in the experiments are summarised in Table 6.2.

O’Connor et al. [183] used MATLAB to train and experiment with spiking
DBNs. To port their trained DBN from MATLAB to SpiNNaker, a Python pack-
age was developed that generates a PyNN [44] description of the SNN ready to
be executed on SpiNNaker and other SNN simulators such as Brian [81]. For the
input population of a spiking DBN, the spike trains generated from each MNIST
digit are described as spike arrays in PyNN using the SpikeSourceArray population.
Additional functionality was developed for SpiNNaker that converts the spikes of
a SpikeSourceArray to a binary file which gets uploaded to a SpiNNaker machine.
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Table 6.2. Default parameters of the Leaky Integrate-

and-Fire Model used in simulations [241].

Parameters Values Units

τm 5.0 s

Trefract 2.0 ms

Vreset 0.0 mV

Vthresh 1.0 mV

A SpikeSourceArray kernel on an ARM9 core in a SpiNNaker chip fetches a portion
of the shared memory at every millisecond and checks which bits are set in order
to generate a spike (MC packet) with the appropriate neuron ID.

Simulating Input Sensory Noise

As mentioned in the previous section, the MNIST images were converted to spike
trains using a Poisson distribution with a rate proportional to their pixel intensities,
while all firing rates were scaled to control the total firing rate of the input popu-
lation [183]. To investigate the robustness of the spiking DBN to input sensory
noise, artificial noise was introduced by redistributing a percentage of the spikes
randomly across the whole input population [176]. An example of various levels of
artificial noise can be seen in Figure 6.7.

Limited Weight Precision

Many digital neuromorphic platforms come with hardware constraints. Some of
these limitations include a fixed number of bits for representing the weights and
limited memory capacity for storing the weights [64, 162, 169, 176]. On the
other hand, the weights of a trained spiking DBN are computed and stored using
double floating-point precision, which according to the IEEE 754 standard has
a 64-bit word length of which 52 bits are used to store the fraction, 11 bits are
used for the exponent and 1 bit is used for the sign. Moreover, a Floating Point
Unit (FPU) is necessary for performing floating-point computations and this trans-
lates to increased silicon area, energy costs and memory requirements for weight
storage [243]. It is thus important to investigate the impact of truncating double
floating-point precision weights of a trained spiking DBN to lower fixed-point pre-
cision weights.

The following notation is used: Qm.f, where m is the number of bits in the
integer part, including the sign bit, and f is the number of bits in the fractional
part. This format is a bit-level format for storing a numeric value.
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Figure 6.7. Conversion of static images to spike trains and introduction of noise. Each

row represents different input rates ranging from 100 Hz to 1,500 Hz, while the columns

show different percentages of input noise, from 0% up to 100%. Figure taken from [243].

The double precision floating-point weights WH are converted to a lower-
precision representation WL using the conversion

WL = round(2 f
·WH ) · 2− f (6.3)

where WH represent the original double floating-point weights of the trained DBN,
and 2− f is the resolution of the lower precision representation.

6.3.1 Results

Robustness of spiking DBNs to reduced bit precision of fixed-point synapses
and input noise: This section summarises the findings of the investigation on the
effect of reduced weight precision of a trained spike-based DBN and its robustness
to input sensory noise.

Figure 6.8 demonstrates the effect of reduced bit precision on the trained weights
of the spiking DBN of O’Connor et al. [183]. More specifically, Figure 6.8(a) shows
the receptive fields of the first 6 neurons of the first hidden layer for different fixed-
point weight resolutions. As can be visually observed, a lot of the structural infor-
mation of the receptive fields is preserved, even for bit a precision of f = 4 bits.
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Figure 6.8. Impact of weight bit precision on the representations within a DBN. (a) The

receptive fields of the first 6 neurons (rows) in the first hidden layer of the DBN with the

two hidden layers. (b) Percentage of synapses from all layers that are set to zero due

to the reduction in bit precision for the fractional part. Figure by Stromatias [241] with

minor modifications.

Figure 6.8(b) presents the percentage of weights that were truncated to zero due to
the fixed-point rounding.

Figure 6.9(a) illustrates the classification accuracy (CA) of the spiking DBN on
the MNIST test set as a function of input noise and bit weight resolution for two
different input firing rates (100 and 1,500 Hz), for an input stimulus of 1 second.
Both curves show that the performance drops as the percentage of input noise
increases, but for higher firing rates (1,500 Hz) the performances remains con-
stant until the input noise reaches a 50% level. The peak performance stays at
almost identical levels to the double floating-point precision even for bit precisions
of f = 3. Figure 6.9(b) shows the area under the curve; a larger area translates to a
higher classification performance. As in (a), a similar trend can be observed; higher
input firing rates result in an increase in CA. Figure 6.9(c) demonstrates the CA
for different bit weight precisions as the input firing rates increase, from 100 Hz to
1,500 Hz, for two different input noise levels, 0% and 60%. Finally, the plots in
Figure 6.9(d) show that there is a wide range of input noise levels and bit weight
resolutions in which the performance remains remarkably high for the two input
rates, 100 Hz and 1,500 Hz. For all experiments, the performance dropped signif-
icantly when a bit weight precision of f = 1 was used. For a bit weight precision
of f = 2, the CA remained approximately at 80% for 100 Hz and above 90% for
firing rates higher than 600 Hz.

These findings illustrate that, indeed, the spike-based DBNs exhibit the desired
robustness to input noise and numerical precision. For a weight precision of
Q3.3 (6 bits per weight), the classification performance is on a par with double
floating-point precision (64 bits per weight). For this particular spiking DBN,
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(c) (d)

Figure 6.9. Effect of reduced weight bit precision and input noise on the classification

accuracy (CA) of the spiking DBN with two hidden layers. (a) CA as a function of input

noise and bit precision of synaptic weights for two specific input spike rates of 100 and

1,500 Hz. Results over four trials. (b) Normalised area under curve in (a) for different

percentages of input noise, input firing rates and weight bit precision. Higher values mean

higher accuracy and better robustness to noise. (c) CA as a function of the weight bit

resolution for different input firing rates and for two different noise levels, 0% and 60%.

(d) CA as a 2D function of the bit resolution of the weights and the percentage of input

noise for 100 Hz and 1,500 Hz input rate. The results confirm that spiking DBNs with low

precision weights down to f = 3 bits can still reach high-performance levels and tolerate

high levels of input noise. Figure by Stromatias et al. [243] with minor modifications.

which consists of 642,510 synapses, this means that for a weight precision of Q3.3,
only 0.46 MBytes are required for storing all the weights instead of 4.9 MBytes.
Moreover, one of the effects of the reduced precision is that many of the weights
become zero, as seen in Figure 6.8(b), due to rounding, and thus, they can be
pruned. The benefits of pruning the zeroed weights may include faster execution
times due to avoiding unnecessary memory look-ups, as well as being able to exe-
cute deeper neural networks on the same hardware.
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Table 6.3. Classification accuracy (CA) of the same DBN with two hidden

layers running on different platforms [241].

Simulator CA (%) Weight precision Description

MATLAB 96.06 Double Rate-based (Siegert)

Brian 95.00 Double Clock-driven

O’Connor et al. [183] 94.09 Double ?

SpiNNaker 94.94 Q3.8 Hybrid

Minitaur [176] 92.00 Q5.11 Event-driven

Table 6.3 summarises a comparison between the SpiNNaker platform and var-
ious hardware and software simulators, including the Brian SNN simulator, for
the MNIST classification problem. The SpiNNaker results are very close to the
results of the software simulation with only a 0.06% difference despite the fact that
SpiNNaker uses less precise weights than standard software implementations.2

Classification Latency and Power Requirements of Spiking DBNs: To inves-
tigate the real-time performance of the O’Connor et al. [183] spiking DBN on
SpiNNaker, two experiments were conducted. The first experiment investigated the
mean classification latency and accuracy of the spiking DBN as a function of the
number of input spikes, while the second experiment aimed at measuring the mean
classification latency of the spike-based DBN running on SpiNNaker. An addi-
tional experiment was performed to investigate the power requirements of the spik-
ing DBN running on a single SpiNNaker chip as a function of the input firing rate.

For the experiments described in this section, the following SpiNNaker configu-
ration was used: the ARM9 processor clocks were set to 200 MHz, the routers and
system busses were set to 100 MHz, while the off-chip memory clocks were set to
133 MHz.

For the first experiment, the static images of the MNIST test digits were con-
verted to spike trains with input firing rates ranging from 500 Hz up to the point
where additional input spikes per second had no effect on the mean classification
accuracy. Each experiment was executed for four trials and results were averaged
across all trials.

Results showed that for the spiking DBN, increasing the input firing rate reduces
the mean classification latency as observed in Figure 6.10(a). More specifically,
when the input firing rate is 1,500 Hz, the mean classification latency becomes

2. A video of a spiking DBN running on SpiNNaker and recognising a handwritten digit can be seen here:
https://youtu.be/f -Xi2Y4TB58

https://youtu.be/f-Xi2Y4TB58
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16.2 ms (Figure 6.10(b)), while the classification accuracy is 95.0%. For firing rates
above 1,500 Hz, there is no effect on the mean classification accuracy; however,
increasing the input firing rate to 2,000 Hz reduces the mean classification latency
to 13.2 ms. What can also be observed from Figure 6.10(a) is that increasing the
total number of input spikes reduces the standard deviation for both the mean
classification latency and the classification accuracy.

(a) (b)

Figure 6.10. (a) Mean classification latency and classification accuracy as a function of

the input spikes per second for the spiking DBN. (b) Histogram of the classification laten-

cies for the MNIST digits of the testing set when the input rates are set to 1,500 Hz. The

mean classification latency of the DBN with two hidden layers is 16 ms [240]. Figure by

Stromatias [241] with minor modifications.

Figure 6.11. Real and estimated power dissipation of the O’Connor et al. [183] spike-based

DBN running on a single SpiNNaker chip as a function of the number of input spikes

generated for the same MNIST digit. The right axis shows the number of output spikes

as a function of the number of input spikes. The left bars (0 input spikes) show power

dissipation when the network is idle. The model used to estimate the power dissipation

of SNN running on a SpiNNaker machine is based on the work of [240, 242]. Figure by

Stromatias [241].
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Finally, Figure 6.11 shows the power requirements of the O’Connor et al. [183]
spiking DBN running on a single SpiNNaker chip. Results show that when an input
firing rate of 2,000 Hz is used per digit, a single SpiNNaker chip dissipates 0.39 W.
That accounts for simulating 1,794 LIF neurons with an activity of 1,569,000
synaptic events (SE) per second. For the identical spiking DBN implemented on
Minitaur, an FPGA event-driven SNN simulator clocked at 75 MHz, a power dis-
sipation of 1.5 W was reported for 1,000 spikes per image [176].

6.4 Spiking Deep Neural Networks

An intuitive idea for bringing these deep learning techniques to SNNs is either to
transform well-tuned deep ANN models into SNNs or to translate numerical cal-
culations of weight modulations into biologically plausible synaptic learning rules.
Based on the former approach, this section proposes, based on the work of Liu
[146], a generalised method to train SNNs off-line on equivalent ANNs and trans-
fer the tuned weights back to the SNNs. There are two significant problems to be
solved when training SNNs off-line. First, an accurate activation function is needed
to model the neural dynamics of spiking neurons. In this section, we propose a novel
activation function used in ANNs, Noisy Softplus (NSP), to closely simulate the
firing activity of LIF neurons driven by noisy current influx. The second problem
is to map the abstract numerical values of the ANNs to physical variables, current
(nA) and firing rate (Hz), in the SNNs. Consequently, we introduce the Parametric
Activation Function (PAF) y = p × f (x), which successfully associates physical
units with conventional activation functions and thus unifies the representations
of neurons in ANNs and the ones in SNNs. Therefore, an SNN can be modelled
and trained on an equivalent ANN using conventional training algorithms, such as
backpropagation.

The significance lies in the simplicity and generalisation of the proposed method.
SNN training, now, can be simplified to: firstly, estimate parameters for the PAF
using NSP; secondly, use the PAF version of conventional activation functions to
train an equivalent ANN; and finally, transfer the tuned weights directly into the
SNN without any conversion. Regarding the generalisation, it works exactly the
same as training ANNs: the same feed-forward network architecture, backprop-
agation algorithm and activation functions, and uses the most common spiking
neurons, standard LIF, that run on most neuromorphic hardware platforms.

Therefore, most importantly, this research provides the neuromorphic engi-
neering community with a simple, but effective and generalised off-line SNN
training method which notably simplifies the development of AI applications
on neuromorphic hardware. In turn, it enables ANN users to implement their
models on neuromorphic hardware without the knowledge of spiking neurons or
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programming specific hardware, thereby enabling them to benefit from the advan-
tages of neuromorphic computers: such as real-time processing, low latency, biolog-
ical realism and energy efficiency. Furthermore, the success of the proposed off-line
training method paves the way to energy-efficient AI on neuromorphic machines
scaling from mobile devices to huge computer clusters.

6.4.1 Related Work

A regular artificial neuron comprises a weighted summation of input data, net j =∑
xiwi , and an activation function, f , applied to the sum, net j . However the

inputs of a spiking neuron (Figure 6.12) are spike trains, which generate current
influx through neural synapses (connections). A single spike creates a current pulse
with an amplitude of w, which is defined as the synaptic efficacy, and the current
then decays exponentially with a decay rate determined by the synaptic time con-
stant, τsyn. The current pulses consequently produce PSPs on the neuron driving its
membrane potential to change over time and trigger spikes as outcomes when the
neuron’s membrane potential reaches some threshold. The dynamics of the current
influxes, PSPs, membrane potentials and spike trains are all time dependent, while
the neurons of ANNs only cope with abstract numerical values representing spik-
ing rate, without timing information. Therefore, these fundamental differences in
input/output representation and neural computation form the main research prob-
lem of how to operate and train biologically plausible SNNs to make them as com-
petent as ANNs in cognitive tasks. In this section, we focus on the solutions of
off-line training where SNNs are trained on equivalent ANNs and then the tuned
weights are transferred to the SNNs.

Jug et al. [122] first proposed the Siegert formula [226] to model the response
function of a spiking neuron, which worked as a Sigmoid unit in training spiking
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deep belief networks. The Siegert formula maps incoming currents driven by
Poisson spike trains to the response firing rate of a LIF neuron, similar to the activa-
tion functions used in ANNs which transform the summed input to corresponding
outcomes. The variables of the response function are in physical units, and thus,
the trained weights can be transferred directly into SNNs.

However, the Siegert formula is inaccurate as it models the current noise as
white [147], τsyn → 0, which is not feasible in practice.

Moreover, the high complexity of the Siegert function and the computation of
its derivative to obtain the error gradient cause much longer training times, thus
consuming more energy, when compared to regular ANN activation functions, for
example, Sigmoid. We will illustrate these problems in detail in Section 6.4.2.

A softened version of the response function of LIF neurons has been pro-
posed [111] and is less computationally expensive than the Siegert function. How-
ever, the model ignores the dynamic noise change introduced by input spikes,
assuming a static noise level of the current influx. Therefore, the training requires
additional noise on the response firing rate and on the training data; however, the
manually added noise is far from the actual activity of the network and includes
hyper-parameters in the model.

Although the trained weights can be directly used in SNNs since both the above
LIF response functions accept and output variables in physical units, they struggle
in terms of poor modelling accuracy and high computational complexity. Moreover,
they lose the numerical abstraction of firing rates in ANNs, thus, being constrained
to SNN training. Meanwhile, other widely used activation functions in ANNs can-
not be transformed to model SNNs. Therefore, the first problem is the accurate
modelling of the neural response activity of LIF neurons using abstract activation
functions, in the hope of (1) increasing the modelling accuracy, (2) reducing the
computation complexity and (3) generalising off-line SNN training to commonly
used ANN activation functions. These activation functions used in ANNs without
physical units are called ‘abstract’ to differ from the response functions of spiking
neurons. We select them for LIF modelling because of the simplicity and generalised
use for training ANNs. Thus, we propose the activation function, NSP [147], in
Section 6.4.2 to address this problem.

Then, the second problem is to map the abstract activation functions to phys-
ical units used in SNNs: current in nA and firing rates in Hz. In doing so, the
neuronal activities of an SNN can be modelled with such scaled activation func-
tions and the trained weights can be transferred into SNNs without conversion.
Instead of directly solving this problem, an alternative way is to train an ANN
with abstract activation functions and then modulate the trained weights to fit in
SNNs. Researchers [32, 51] successfully applied this method on less biologically
realistic and simplified integrate-and-fire (IF) neurons. Nevertheless, these simple
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IF neurons are usually difficult to implement in analogue circuits, and thus they
are feasible only on digital neuromorphic hardware, for example, TrueNorth [163].
Tuning these trained ANN models to adapt to simplified IF neurons is relatively
straightforward, so this method sets the state-of-the-art performance. However, this
section (in Section 6.4.3) aims to address the second problem of mapping abstract
activation functions to the response firing activity of biologically plausible LIF neu-
rons. Thus, not only the training can be simplified by using conventional simple
activation functions, such as Rectified Linear Units (ReLUs), but also the method
can be generalised to target standard LIF neurons which are supported by most
neuromorphic hardware.

6.4.2 Siegert: Modelling the Response Function

The response function, in the context of this section, indicates the firing rate of a
spiking neuron in the presence of input current. In this section, we introduce the
first use of the Siegert formula to model the response function of a LIF neuron.
Although the Siegert formula enables off-line SNN training, it has several draw-
backs. Therefore, we propose the first abstract activation function, NSP, to model
the LIF response function.

Biological Background

A LIF neuron model is as follows:

τm
dV
dt
= Vrest − V + Rm I (t). (6.4)

The membrane potential V changes in response to the input current I , starting
at the resting membrane potential Vrest, where the membrane time constant is τm =

RmCm , Rm is the membrane resistance and Cm is the membrane capacitance. The
central idea in converting spiking neurons to activation units lies in the response
function of a neuron model. Given a constant current injection I , the response
function, that is, firing rate of the LIF neuron is:

λout =

[
τrefrac − τm log

(
1−

Vth − Vrest

IRm

)]−1

, when IRm > Vth − Vrest,

(6.5)

otherwise, the membrane potential cannot reach the threshold Vth and the output
firing rate is zero. The absolute refractory period τrefrac is included, during which
period synaptic inputs are ignored.

However, in practice, a noisy current generated by the random arrival of spikes,
rather than a constant current, flows into the neurons. The noisy current is typically
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treated as a sum of a deterministic constant term, Iconst, and a white noise term,
Inoise. Thus, the value of the current is Gaussian distributed with m I mean and sI

2

variance. The white noise is a stochastic process ξ(t) with mean 0 and variance 1,
which is delta-correlated, that is, the process is uncorrelated in time so that a value
ξ(t) at time t is totally independent on the value at any other time t ′. Therefore,
the noisy current can be seen as:

I (t) = Iconst(t)+ Inoise(t) = m I + sI ξ(t), (6.6)

and accordingly, Equation 6.4 becomes:

dV
dt
=

Vrest − V
τm

+
m I

Cm
+

sI

Cm
. (6.7)

We then multiply both sides of Equation 6.7 by a short time step dt . The
stochastic differential equation of the membrane potential becomes:

dV =
Vrest − V
τm

dt +
m I

Cm
dt +

sI

Cm
dWt

=
Vrest − V
τm

dt +
m I

Cm
dt +

sI
√

dt
Cm

r

=
Vrest − V
τm

dt + µvdt + σvr.

(6.8)

The last term dWt is a Wiener process; Wt+dt−Wt obeys a Gaussian distribution
with mean 0 and variance dt ; thus, r is a random number sampled in accordance
with a Gaussian distribution of zero mean and unit variance. The instantaneous
mean µv and variance σv2 of the change in membrane potential characterise the
statistics of V in a short time range, and they can be derived from the statistics of
the noisy current:

µv =
m I

Cm
, σv =

sI
√

dt
Cm

. (6.9)

The response function [134, 206] of the LIF neuron to a noisy current, also
known as the Siegert formula, is a function of µv and σv :

λout =

[
τrefrac + τm

∫ Vth−µvτm
σv
√
τm

Vrest−µvτm
σv
√
τm

√
π exp(V 2)(1+ erf (V ))dV

]−1

. (6.10)

Figure 6.13 shows the response curves (Equation 6.10) of a LIF neuron driven
by noisy currents where the Gaussian noise is of mean m I and standard deviation
sI . The parameters of the LIF neuron are all biologically plausible (see the listed
values in Table 6.4), and the same parameters are used throughout this chapter.
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Figure 6.13. Response function of the LIF neuron with noisy input currents with different

standard deviations.

Table 6.4. Parameter setting for the current-based LIF neurons using PyNN.

Parameters Values Description

Cm 0.25 nF Membrane capacitance

τm 20.0 ms Membrane time constant

τrefrac 1.0 ms Refractory period

Vreset −65.0 mV Resting membrane potential

Vrest −65.0 mV Resetting membrane potential

Vth −50.0 mV Membrane threshold

Ioffset 0.0 nA Offset of current influx

The bottom (zero noise) line in Figure 6.13 illustrates the response function of
such a LIF neuron injected with constant current, which inspired the proposal of
ReLUs. As noise increases, the level of firing rates also rises. Thus, the Softplus
function approximates the response activity to noisy current, but only represents a
single level of noise; for example, the top line in Figure 6.13 shows the curve when
sI = 1.

Mismatch of the Siegert Function to Practice

To verify the Siegert function in practice, simulation tests were carried out using
PyNN [44] to compare the reality with the analytical results (the Siegert func-
tion). The noisy current was produced by NoisyCurrentSource in PyNN which is
a constant current of m I added to a Gaussian white noise of zero mean and s2

I



184 From Activations to Spikes

variance. The noise was drawn from the Gaussian distribution in a time resolu-
tion of dt . We chose dt = 1 ms and dt = 10 ms for comparison. For a given
pair of m I and s2

I , a noisy current was injected into a current-based LIF neuron
for 10 s, and the output firing rate was the average over 10 trials. There were four
noise levels tested in the experiments: 0, 0.2, 0.5, 1; and the mean current increased
from −0.5 to 0.6 nA.

The dashed curves in Figures 6.14 illustrate the output firing rate of the LIF sim-
ulations, while the bold lines are the analytical reference, the Siegert function (the
same as in Figure 6.13). The differences between the practical simulations and the
Siegert function enlarge when the time resolution, dt , of the NoisyCurrentSource
increases from 1 ms (Figure 6.14(a)) to 10 ms (Figure 6.14(b)). The sampled cur-
rent signals (NoisyCurrentSource) are shown in Figure 6.15(a) and (b). The discrete
sampling of the noisy current introduces time step correlation to the white noise,
shown in Figure 6.15(e) and (f ), where the value remains the same within a time
step dt . Although both current signals follow the same Gaussian distribution, see
Figure 6.15(g) and (h), the current is approximately a white noise when dt = 1 ms,
but a coloured noise, for example, increases Power Spectral Density (PSD) at lower
frequency, when dt = 10 ms, see Figure 6.15(c) and (d). Therefore, the coloured
noise of the current influx drives the LIF neuron to fire observably more intensely.
Hence, the Siegert formula, Equation 6.10, can only approximate the LIF response
of noisy current with white noise, but it is not adapted to coloured noise. In practice,
the current is generated by random arrivals of input spikes with various synaptic
efficiencies, which also brings in coloured noise.

A more realistic simulation of a noisy current can be generated by 100 Poisson
spike trains, where the mean and variance of the current are given by La Camera
et al. [134]:

m I = τsyn

∑
i

wiλi , s2
I =

1
2
τsyn

∑
i

w2
i λi , (6.11)

where τsyn is the synaptic time constant, and each Poisson spike train connects to the
neuron with a strength of wi and a firing rate of λi . Two populations of Poisson
spike sources, for excitatory and inhibitory synapses respectively, were connected
to a single LIF neuron to mimic the noisy currents. The firing rates of the Poisson
spike generators were determined by the given m I and sI . Figure 6.16 illustrates the
recorded firing rates responding to the Poisson spike trains compared to the mean
firing rate driven by NoisyCurrentSource in Figure 6.14. Note that the estimation of
LIF response activity using the Siegert function requires noisy current with white
noise; however, in practice the release of neurotransmitter takes time (τsyn � 0) and

the synaptic current decays exponentially Isyn = I0e
−

t
τsyn . Figure 6.17(a) and (b)
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(a) Current sampled at dt=1 ms.

(b) Current sampled at dt=10 ms.

Figure 6.14. Recorded response firing rate of a LIF neuron driven by NoisyCurrentSource

in PyNN, compared to the Siegert function. The NoisyCurrentSource is sampled at every

(a) 1 ms and (b) 10 ms. Averaged firing rates of 10 simulation trails tested on four noisy

levels are shown in different colours of dashed lines, and the grey colour fills the range

between the minimum to maximum of the firing rates. The analytical LIF response func-

tion, the Siegert formula (Equation 6.10), is drawn in bold lines (shown in Figure 6.13)

to compare with the practical simulations. The selected noise levels are the same with

the LIF simulations, and the curves are plotted with the same colours as the dashed

lines.

shows two examples of synaptic current of 0 nA mean and 0.2 standard deviation
driven by 100 neurons firing at the same rate and with the same synaptic strength
(half excitatory, half inhibitory), but of different synaptic time constant. There-
fore, the current at any time t during the decay period is dependent on the value
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dt =1 ms dt =10 ms

(a) Current sampled at dt=1 ms. (b) Current sampled at dt=10 ms.

(c) Spectrum analysis of (a). (d) Spectrum analysis of (b).

(e) Autocorrelation of (a). (f) Autocorrelation of (b).

(g) Distribution of samples of (a). (h) Distribution of samples of (b).

Figure 6.15. NoisyCurrentSource samples noisy currents from a Gaussian distribution

every 1 ms (left) and 10 ms (right). The signals are shown in the time domain in (a) and (b),

and in the spectrum domain in (c) and (d). The autocorrelation of both current signals

are shown in (e) and (f). The distribution of the discrete samples are plotted in bar charts

to compare with the PDF of the original Gaussian distribution, shown in (g) and (h).

at the previous time step, which makes the synaptic current a coloured noise, see
Figure 6.17(c) and (d).

We observe in Figure 6.16(a) that the response firing rate to synaptic current is
higher than the NoisyCurrentSource for most of the current range. This is caused
by the coarse resolution (1 ms) of the spikes, and thus, the standard deviation of
the current is larger than 0.2, shown in Figure 6.17(g); and the τsyn, even when as
short as 1 ms, adds coloured noise instead of white noise to the current. However,
Figure 6.16(b) shows a similar firing rate of both the synaptic driven current and
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(a) τsyn =1 ms.

(b) τsyn =10 ms.

Figure 6.16. Recorded response firing rate of a LIF neuron driven by a noisy synaptic

current, which is generated by random arrivals of Poisson spike trains, compared to pre-

vious experiments using NoisyCurrentSource. Averaged firing rates of 10 simulation trails

tested on three noisy levels are shown in different colours of dashed lines, and the grey

colour fills the range between the minimum to maximum of the firing rates. The other

LIF simulation using NoisyCurrentSource is drawn in bold lines (same as the dashed

lines in Figure 6.14) to compare with the noisy synaptic current. The same noise level

is plotted with the same colour for both experiments. Two synaptic time constants are

tested: (a) τsyn = 1 ms, to compare with NoisyCurrentSource sampled at every 1 ms, and

(b) τsyn = 10 ms, to compare with NoisyCurrentSource sampled at every 10 ms.

the NoisyCurrentSource, since both of the current signals have similar distribution
(Figure 6.17(h)) and time correlation (Figure 6.17(f )). Nevertheless, the analytical
response function, the Siegert formula, cannot approximate either of the practical
simulations (see Figure 6.14).
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τ syn=1 ms τ syn=10 ms

(a) Current generated by spikes. (b) Current generated by spikes.

(c) Spectrum analysis of (a). (d) Spectrum analysis of (b).

(e) Autocorrelation of (a). (f) Autocorrelation of (b).

(g) Distribution of samples of (a). (h) Distribution of samples of (b).

Figure 6.17. Noisy currents generated by 100 Poisson spike trains to a LIF neuron with

synaptic time constant τsyn = 1 ms (left) and τsyn = 10 ms (right). The currents are shown in

the time domain in (a) and (b), and in the spectrum domain in (c) and (d). The autocorre-

lation of both current signals are shown in (e) and (f). The distribution of the generated

samples is plotted in bar chart form to compare to the expected Gaussian distribution,

shown in (g) and (h).

Although the use of the Siegert function opened the door for modelling the LIF
response function to work similarly to the activation functions used in ANNs [122],
there are several drawbacks of this method:

• Most importantly, the numerical analysis of an LIF response function is far
from accurate in practice. ‘Practice’ here means SNN simulations using LIF
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neurons. Thus, the inaccurate model generates errors between the estimation
and the practical response firing rate.

• The high complexity of the Siegert function causes much longer training
times and more energy, let alone the high-cost computation on its derivative.

• The Siegert function is used to replace Sigmoid functions for training spiking
RBMs [122]. Therefore, neurons have to fire at high frequency (higher than
half of the maximum firing rate) to represent the activation of a sigmoid unit;
thus, the network activity results in high power dissipation.

• Better learning performance has been reported using ReLU rather than
Sigmoid units, so modelling spiking neurons with a ReLU-like activation
function is needed.

Therefore, we propose the NSP function which provides solutions to the draw-
backs of the Siegert unit.

Noisy Softplus (NSP)

Due to the limited time resolution of common SNN simulators and the time taken
for neurotransmitter release, τsyn, mismatches exist between the analytical response
function, the Siegert formula and practical neural activities. Consequently to model
the practical LIF response function (see Figure 6.18(a)) whose output firing rates
are determined by both the mean and variance of the noisy input currents, the NSP
is proposed as follows:

y = fNSP(x, σ ) = kσ log
[
1+ exp

( x
kσ

)]
, (6.12)

where x and σ refer to the mean and standard deviation of the input current, y
indicates the intensity of the output firing rate and k, determined by the biological
configurations on the LIF neurons [147] (listed in Table 6.4), scales the impact of
the noise thereby controlling the shape of the curves. Note that the novel activation
function we proposed contains two parameters, the mean current and its noise,
which takes the values estimated by Equation 6.11: m I and s2

I . Since the NSP
takes two variables as inputs, the activation function can be plotted in 3D, see
Figure 6.19.

Figure 6.18(b) shows the activation function in curve sets corresponding to dif-
ferent discrete noise levels which mimic the responses of practical simulations of
LIF neurons, shown in Figure 6.18(a). It is noteworthy that the non-smooth curve
(blue line in Figure 6.18(a) generated by σ = 0) of the LIF response activities does
not fit the NSP function; this is a limitation of using NSPs to model spike rates
when the noise level approaches 0. However, we ignore this minor mismatch to
unify and simplify the model, since the results show an acceptable performance
drop in Section 6.4.4. In addition, scaling, shifting and parameter calibrations are
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(a) Response firing rate of an LIF neuron

(b) NSP

Figure 6.18. NSP models the LIF response function. (a) Firing rates measured by simu-

lations of a LIF neuron driven by different input currents and discrete noise levels. Bold

lines show the average and the grey colour fills the range between the minimum and the

maximum. (b) NSP activates the input x according to different noise levels where the

noise scaling factor k = 0.16.

essential to fit the NSP accurately to LIF responses. We will illustrate the procedure
in Section 6.4.3.

The derivative of the NSP is the logistic function scaled by kσ :

∂ fNSP(x, σ )
∂x

=
1

1+ exp
(
−

x
kσ

) , (6.13)

which could be applied easily to back propagation in ANN training.
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Figure 6.19. Noisy Softplus in 3D.

6.4.3 Generalised Off-line SNN Training

We have briefly discussed modelling the response of an LIF neuron with an
abstract activation function, NSP. Function transformations are essential to map
the numerical values of NSP precisely to physical variables in SNNs. Therefore,
to optimise the modelling of the LIF response function, we curve fit parameters
of the NSP (e.g. Figure 6.18(b)) to approximate the actual firing activities (e.g.
Figure 6.18(a)). This section includes the parameters in the proposed activation
function, PAF, to unify the presentation of activation functions for both ANNs
and SNNs. Thus, a generalised off-line SNN training method is completed using
PAF. Moreover, a corresponding fine tuning method is put forward to increase the
training capability.

Mapping NSP to Concrete Physical Units

The inputs of the NSP function, x and σ , are obtained from physical variables as
stated in Equation 6.11: m I and sI , and thus, they are already in physical units
(nA). Therefore, linearly scaling up the activation function by a factor S (Hz / nA)
can approximate the output firing rate λout of an LIF neuron in Hz. Moreover,
including a bias b on the input x allows the curve set to move freely on the x-axis
to fit the actual firing activities better:

λout ' fNSP(x − b, σ )× S = kσ log

[
1+ exp

(
x − b

kσ

)]
× S. (6.14)

Suitable calibrations of the noise scaling factor k, input bias b and mapping scal-
ing factor S in Equation 6.14 enable NSP to match closely the practical response
firing rates of LIF neurons given various biological parameters. The parameters
(k, b, S) are curve-fitted with the triple data points of (λout, x, σ ) and the calibra-
tion currently is conducted by linear least squares regression. The output firing rate
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(a) τsyn=1 ms

(b) τsyn=10 ms

Figure 6.20. NSP fits to the response firing rates of LIF neurons in concrete physical

units. Averaged firing rates of 10 simulation trails tested on three noisy levels are shown in

different colours of dashed lines, and the grey colour fills the range between the minimum

to maximum of the firing rates (same as the dashed lines in Figure 6.16). The bold lines

are the scaled NSP, where the same noise level is plotted with the same colour as the LIF

simulations. The parameters used in the experiments are as follows: (a) τsyn = 1 ms for LIF

simulation, and k = 0.18, S = 201.66, b = 0.07 for NSP; (b) τsyn = 10 ms for LIF simulation,

and k = 0.35, S = 178.91, b = 0.03 for NSP.

λout is measured from SNN simulations where an LIF neuron is driven by synap-
tic input currents of Poisson spike trains, and x and σ take the mean and vari-
ance of the noisy current using Equation 6.11. Figure 6.20 shows two calibration
results in which the parameters were fitted to (k, b, S) = (0.18, 0.07, 201.66)
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Figure 6.21. A general artificial neuron where an activation function transforms the

weighted sum net j to its outcome y j .

when the synaptic constant is set to τsyn = 1 ms and was fitted to (k, b, S) =
(0.35, 0.03, 178.91) when τsyn = 10 ms.

To keep the simple format of traditional activation functions, y = f (x), which
has no constant bias on the input, it is easy to pass the bias b to the LIF param-
eter, the constant current offset, Ioffset = b. Therefore, the specific parameter
Ioffset of the LIF neuron is not chosen arbitrarily, but configured by precise esti-
mation of b. More importantly, setting Ioffset properly on the LIF neuron instead
of having a constant bias on the input of an activation function keeps the hyper-
parameters unchanged in ANN training. For example, the initial weights of a
network have to be set carefully to adapt to a constant bias on the activation
function.

Parametric Activation Functions (PAFs)

Neurons in ANNs take inputs from their previous layer and feed the weighted
sum of their input, net j =

∑
i wi j xi , to the activation function. The transformed

signal then forms the output of an artificial neuron, which can be denoted as y j =

f (net j ), see Figure 6.21.
Equation 6.11 illustrates the physical interpretation of the input of an NSP func-

tion, the noisy current influx, which has the mean of m I , and the variance of S2
I .

To express the physical parameters with the same form of the weighted summation,
net, in a conventional ANN, the mean and variance of the noisy current influx can
be represented with net_x and net_σ 2:

net_x j =
∑

i

wi j (λiτsyn), net_σ 2
j =

∑
i

(
1
2
w2

i j

)
(λiτsyn). (6.15)

In accordance with net j =
∑

i wi j xi , the input xi of an artificial spiking neuron
can be seen as:

xi = λiτsyn. (6.16)
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Figure 6.22. An artificial spiking neuron modelled by NSP. A spiking neuron takes firing

rate λi as its input, which then forms the abstract numerical equivalence by multiplying

the synaptic constant: xi = λi τsyn. The NSP transforms the noisy current influx including

both the mean (net_x j , solid lines) and the variance net_σ 2
j (dashed lines) to the abstract

firing rate y j . Finally, the output of the NSP is mapped to the physical units, firing rates

(λ j ) in Hz, by multiplying S.

Figure 6.23. An artificial spiking neuron modelled by PAF-NSP, whose input and output

are numerical values, equivalent to those of ANNs. PAF includes the scaling factors S and

the synaptic time constant τsyn in the combined activation function, which links the firing

activity of a spiking neuron to the numerical value of ANNs.

Figure 6.22 illustrates the process that an NSP-modelled artificial spiking neuron
takes the input vector x which is converted from the input firing rate λ, transforms
the weighted sum net_x j and net_σ 2

j to the abstract output y j and scales up yi
with the factor S to the output firing rate λ j .

If instead of multiplying every input firing rate λi by τsyn (left of Figure 6.22),
we do it in every output firing rate after λ j (right of Figure 6.23) and we obtain the
same neuron model and structure as a typical neuron in ANNs, see Figure 6.21,
that neurons take x as input and output abstract value y.

The only difference lies in the activation function where the artificial spiking
neuron takes PAF, which is a simple linearly scaled activation function with a
parameter p. The parameter is determined by the product of the scaling factor
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S and the synaptic time constant τsyn:

y = p × f (x) = S × τsyn × f (x), (6.17)

where f (x) represents a typical conventional activation function, for example
ReLU.

The derivative function of PAF, which is used for back propagation, is:

∂y
∂x
= p × f ′(x) = S × τsyn × f ′(x). (6.18)

PAF not only allows NSP to model spiking LIF neurons on ANNs. Once the
parameter p is acquired, the PAF can be generalised to other ReLU-like activation
functions. Because Softplus and NSP will both converge to ReLU when the input
increases, they can share the scaling factor p. Note that the calculation of noise level
is not necessary for other activation functions, and thus, they only take the mean
of the current influx as the input (the solid lines in Figure 6.23). So, the noise level
can be set to a constant for Softplus or considered as 0 for ReLU.

It is also significant to transform numerical values of training and testing data
to firing rates in the first/last layer of the SNN. To keep the firing rate in a valid
range of a LIF neuron, for example, less than the maximum firing rates of λmax =

1/τrefrac, we can scale the labelling data of the last layer by multiplying λmax/S
during training. Thus, according to PAF (Equation 6.17), the maximum firing
rate of such an output neuron would be 1×λmax/S× S = λmax. We can certainly
choose a much lower rate of λmax, say 200 Hz, to keep the NSP fit to the actual
LIF response activities better, since the parameters of PAF are curve-fitted to a limit
working range of output firing rates. For the input layer, it is easiest to keep the
original abstract values as x; then, in the SNN test, we divide x by τsyn to get the
input firing rates of Poisson spike trains, see Equation 6.16. But, it is also flexible
to linearly map the numerical values to a range of firing rates by multiplying K Hz.
Then, we use x× K × τsyn as the new input of the training network; and x× K
as firing rates of spike trains in SNN testing.

Training Method

The simple idea of PAF presented in the previous section allows the use of com-
mon ANN training methods to obtain SNN-compatible weights. Consequently,
training SNNs can be done in three simple steps:

1. Calibrate the parameters (k, b, S) for NSP which models the response firing
rates of LIF neurons, thus to estimate the parameter p = S × τsyn for PAFs
and to set the LIF parameter Ioffset = b. Since (k, b, S) are solely dependent
on the biological configurations of a LIF neuron, the same p can be shared
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with different activation functions and repeatedly used for various network
architectures and applications.

2. Train any feed-forward ANN with a PAF version of a ReLU-like activation
function. Training compatibility allows us to choose computationally simple
activation functions to increase training speed. The backpropagation algo-
rithm updates weights using the stochastic gradient descent optimisation
method to minimise the error between the labels and the predictions from
the network.

3. Transfer the trained weights directly to the SNN, which should use the same
LIF characteristics as those used in Step 1.

Fine Tuning

As stated above, we can train the network with any PAF version of conventional
ReLU-like activation functions and then fine-tune it with PAF-NSP in the hope of
improving the performance of the equivalent SNN by closely modelling the spiking
neurons with NSP. Additionally, we add a small number, for example 0.01, to all the
binary values of the labels on the training data. Although binary labels enlarge the
disparities between the correct recognition label and the rest for better classification
capability, spiking neurons seldom stay silent even with negative current influx,
and thus, setting labels to 0 is not practical for training SNNs. Therefore, adding
an offset relaxes the strict objective function of predicting exact labels with binary
values.

There are two aspects to the fine tuning which make the ANN closer to SNNs:
firstly, using the NSP activation functions causes every single neuron to run at a
similar noise level as in SNNs, and thus, the weights trained by other activation
functions will be tuned to fit closer to SNNs. Secondly, the output firing rate
of any LIF neuron is greater than zero as long as noise exists in their synaptic
input. Thus, adding a small offset on the labels directs the model to approximate
practical SNNs. The result of fine tuning on a ConvNet will be demonstrated in
Section 6.4.4.

6.4.4 Results

Finally, the proposed generalised SNN training method is put into practice
[52, 147]. We train a 6-layer ConvNet with PAF-NSP and transfer the tuned
weights to an equivalent SNN. The detailed description of the experiment is illus-
trated in this section. We then observe the individual neuronal activities of the
trained SNN, compare the learning and recognition performance between acti-
vation functions, and estimate the power consumption of the SNN running on
neuromorphic hardware.
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Experiment Description

A spiking ConvNet was trained on the MNIST [140] data set, using the gener-
alised SNN training method described above. The architecture (784-6c-6p-12c-
12p-10fc) contains 28×28 input units, followed by two convolution-pooling layers
with 6 and 12 convolutional kernels each, and 10 output neurons fully connected
to the last pooling layer to represent the classified digit.

To train the ConvNet, firstly we estimated parameter p for PAFs given LIF
configurations listed in Table 6.4 and τsyn = 0.005 s, p = S × τsyn = 1.085,
where (k = 0.31, b = 0.1, S = 217) were calibrated using NSP. Sec-
ondly, the training employed PAFs with three core activation functions: ReLU,
Softplus and NSP to compare their learning and recognition performance. The
weights were updated using a decaying learning rate, 50 images per batch and
20 epochs. Finally, the trained weights were then directly transferred to the
corresponding spiking ConvNets for recognition tests on the SNN simulator,
NEST [77]. To validate the effect of fine tuning, we took another training epoch
to train these models with PAF-NSP with data labels shifted by +0.01. Then, the
weights were also tested on SNN simulations to compare with the ones before
fine-tuning.

At the testing stage, the input images were converted to Poisson spike trains [148]
and presented for 1 s each. The output neuron which fired the most indicated the
classification of an input image.

Individual Neuronal Activity

To validate how well the NSP activation fits the response firing rate of LIF neurons
in SNNs, we simulated one of the PAF-NSP trained ConvNets on NEST. Ten
testing images were presented with spike trains whose firing rates were calculated
as: λ = x/τsyn. The inputs were convolved with a trained 5 × 5 kernel, and the
output firing rates of the spiking neurons were recorded, see Figure 6.24.

The recorded firing rates are compared to the predictions of these PAFs: λ′ =
S × f (x) = y/τsyn, see Figure 6.25. The estimated spike counts using NSP fit-
ted the recorded firing rate much more accurately than with ReLU or Softplus.

The Euclidean distances,
√∑

j (λ
′

j − λ j )2, between the spike counts and the fir-

ing rates predicted by NSP, ReLU and Softplus were 180.59, 349.64 and 1293.99,
respectively. We manually selected a static noise level of 0.45 for Softplus, whose
estimated firing rates located roughly on the top slope of the real response activity.
This resulted in a longer Euclidean distance than using ReLU, since most of the
input noisy currents were of relatively low noise level in this experiment. Hence,
the firing rate driven by the lower noise level is closer to the ReLU curve than to
Softplus.
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Figure 6.24. Images presented in spike trains convolved with a weight kernel. (a) The

28 × 28 Poisson spike trains as a raster plot, representing the 10 digits in MNIST. (b) The

firing rates of all of the 784 neurons of the fourth image, digit ‘0’, plotted as a 2D image.

(c) One out of six of the trained kernels (5×5 size) in the first convolutional layer. (d) The

spike trains plotted as the firing rates of the neurons in the convolved 2D map. (e) Output

firing rates for recognising these digits.

Note that there is a visible mismatch between the actual firing rates and the
model estimation in the lower right region in Figures 6.25(a), (c), where the blue
dots (actual spike counts) fall below the bound of ReLU. This is consistent with
the statement in Section 6.4.2 that the LIF response activities does not fit into the
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(a) Recorded data vs. ReLU. (b) Recorded data vs. Softplus.

(c) Recorded data vs. NSP.

Figure 6.25. The recorded firing rate of the convolution of the same kernel with 10 images

in SNN simulation, compared to the firing rate prediction by S × f (x). NSP (c) fits to the

neural response firing rate of LIF neurons more closely than ReLU (a) and Softplus (b).

NSP function when the noise level is low (approaching 0). However, the minor
mismatch does not result in poor performance on classification accuracy.

Figure 6.24(e) demonstrates the output firing rates of the 10 recognition neu-
rons when tested with the digit sequence. The SNN successfully classified the digits
where the correct label neuron fired the most. We trained the network with binary
labels on the output layer, and thus, the expected firing rate of correct classifica-
tion was 1 × S = 217 Hz according to Equation 6.16. The firing rates of the
recognition test fell into the valid range. This shows another advantage of NSP in
that we can estimate the firing rate of an SNN by S × fNSP(x) from running its
equivalent ANN, instead of simulating the SNN. Moreover, we can constrain the
expected firing rate of the top layer, thus preventing the SNN from exceeding its
maximum firing rate, for example, 1 KHz when the time resolution of the simula-
tion is set to 1 ms.

Learning Performance

Before looking into the recognition results, it is significant to see the learning
capability of the novel activation function, NSP. We compared the training using
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Figure 6.26. Comparisons of loss during training using NSP, ReLU and Softplus activa-

tion functions. Bold lines show the average of three training trials, and the grey colour

illustrates the range between the minimum and the maximum values of the trials.

ReLU, Softplus and NSP by their loss during training averaged over three trials, see
Figure 6.26. ReLU learned fastest with the lowest loss, thanks to its steepest deriva-
tive. In comparison, Softplus accumulated spontaneous ‘firing rates’ layer by layer
and its derivative may experience gradual or even vanishing gradients during back
propagation, which results in more difficult training. The recognition performance
of NSP lay between these two. The loss stabilised to the same level as Softplus,
because of the same problem of gradual gradients.

However, the learning stabilised fastest using NSP, which may be a result of the
accurate modelling of the noise. Similar findings have shown that networks with
added noise, for example, dropout [236], also improve training time. The result
suggests that NSP may similarly shorten training time.

Recognition Performance

Classification accuracy: The classification errors for the tests were investigated
by comparing the average classification accuracy among three trials, shown in
Figure 6.27. At first, all trained models were tested on the same artificial neurons
as used for training the ANNs, and these experiments were called the ‘DNN’ test
since the network had a deep structure (6 layers). Subsequently, the trained weights
were directly applied to the SNN without any transformation, and these ‘SNN’
experiments tested their recognition performance on the NEST simulator. From
DNN to SNN, the classification accuracy declines by 0.80%, 0.79% and 3.12%
on average for NSP, ReLU and Softplus.

The accuracy loss is caused by the mismatch between the activations and the
practical response firing rates, see examples in Figure 6.25, and the strict binary
labels for NSP and Softplus activations. Fortunately, the problem is alleviated
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Figure 6.27. Classification accuracy. The trained weights were tested using the same

activation function as training (DNN_Orig), then transferred to an SNN and tested using

NEST simulation (SNN_Orig) and finally fine-tuned to be tested on an SNN (SNN_FT)

again.

by fine-tuning, which increases the classification accuracy by 0.38%, 0.19% and
2.06% and results in total losses of 0.43%, 0.61% and 1.06%, respectively. Soft-
plus benefited the most from fine tuning, since the larger mismatch (Figure 6.25(c))
of the response firing rate is significantly corrected. The improvement of NSP is
obtained from the offset on the labels which helps the network to fit practical
SNNs. As the recognition performance of ReLU is already high, there is little room
for improvement. Even though the fine-tuning procedure does its job, the gain in
accuracy is the smallest for this activation function.

The most efficient training in terms of both classification accuracy and algorithm
complexity takes PAF-ReLU for ANN training and PAF-NSP for fine-tuning.
The best classification accuracy achieved by a larger spiking ConvNet (784-
16c-16p-64c-64p-10fc) was 99.07% after fine-tuning, a 0.14% drop from the
ANN test (99.21%). The network reached the recognition rate of 98.7% even
without fine-tuning, so we suggest making fine-tuning an optional step for
training.

Comparisons in Literature: It is useful to compare with existing SNN training
methods shown in Table 6.5 where we order them on their computational com-
plexity (in descending order). The generalised training method presented here
uses simple abstract activation functions, for example, PAF-ReLU; it requires no
modulations of trained weights to adapt to SNNs, but uses a single optional addi-
tional processing of fine-tuning. The training method is well fitted to biologi-
cally plausible LIF neurons, which are supported by most neuromorphic platforms.
Regarding the classification accuracy, it achieves the state-of-the-art performance of
SNNs and compares favourably with all the other methods using LIF neurons. The
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Table 6.5. SNN training methods comparison.

Activation Biologically Additional Weight Accuracy

Method function plausible processing conversion (%)

[122] Siegert Yes No No 94.94 [240]

[111] Soft LIF Yes Noisy
inputs and
activations

No 98.37

[51] ReLU No Dropout Yes 99.1

This work PAF
(p×ReLU)

Yes No or fine
tune

No 98.72
99.07
(fine tune)

(a) Before fine tuning (b) After fine tuning

Figure 6.28. The classification accuracy of three trials (averaged in bold lines, grey shad-

ing shows the range between minimum to maximum) over short response times, with

trained weights (a) before fine-tuning and (b) after fine-tuning.

combination of these features results in a method with exceptional performance and
ease-of-use for training SNNs.

Recognition time: As this is a major concern in neuromorphic vision, the recog-
nition performance over short response times is also estimated – see Figure 6.28.
After fine-tuning, Softplus significantly reduced the mismatch since the variation
over the three trials shrinks to a range similar to other experiments. Fine-tuning
also improved its classification accuracy and the response latency. Notice that all of
the networks trained by three different activation functions showed a very similar
stabilisation curve, which means they all reached an accuracy close to their best
after only 300 ms of biological time.



Spiking Deep Neural Networks 203

Power Consumption

Noisy Softplus can easily be used for energy cost estimation for SNNs. For a single
neuron, the energy consumption of the synaptic events it triggers is:

E j = λ j N j T Esyn

=
y j N j T Esyn

τsyn
,

(6.19)

where λ j is the output firing rate, N j is the number of post-synaptic neurons it con-
nects to, T is the testing time and Esyn is the energy cost for a synaptic event of some
specific neuromorphic hardware, for example, about 8 nJ on SpiNNaker [242].
Thus, to estimate the whole network, we can sum up all the synaptic events of
all the neurons: ∑

j

E j =
T Esyn

τsyn

∑
j

y j N j . (6.20)

Thus, it may cost SpiNNaker 0.064 W, 192 J running for 3,000 s with synap-
tic events of 8 × 106/s to classify 10,000 images (300 ms each) with an accu-
racy of 98.02%. The best performance reported using the larger network may cost
SpiNNaker 0.43 W operating synaptic event rate at 5.34 × 107 Hz, consuming
4271.6 J to classify all the images for 1 s each.

6.4.5 Summary

We presented a generalised off-line SNN training method to tackle the research
problem of equipping SNNs with equivalent cognitive capability to ANNs. This
training procedure consists of three simple stages: first, estimate parameters for PAF
using NSP; second, use a PAF version of conventional activation functions for ANN
training; third, the trained weights can be directly transferred to the SNN without
any further transformation.

Regarding the generalisation, the training not only uses popular activation func-
tions in ANNs, for example, ReLU, but also targets standard LIF neurons which are
widely used on neuromorphic hardware. Therefore, the proposed method greatly
simplifies the training of AI applications for neuromorphic hardware, thereby
paving the way to energy-efficient AI on brain-like computers: from neuromorphic
robots to clusters. Moreover, it lowers the barrier for AI engineers to access neuro-
morphic hardware without the need to understand SNNs or the hardware. Further-
more, this method incurs the least computational complexity while performing the
most effectively among existing algorithms. In terms of classification/recognition
accuracy, the performance of ANN-trained SNNs is nearly equivalent to ANNs,
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and the performance loss can be partially offset by fine-tuning. The best classifi-
cation accuracy of 99.07% using LIF neurons in a PyNN simulation outperforms
state-of-the-art SNN models of LIF neurons and is equivalent to the best result
achieved using IF neurons. Another important feature of accurately modelling LIF
neurons in ANNs is the acquisition of spiking neuron firing rates. These will aid
deployment of SNNs in neuromorphic hardware by providing power and commu-
nication estimates, enabling better use or customisation of the hardware platforms.



DOI: 10.1561/9781680836530.ch7

Chapter 7

Learning in Neural Networks

By Petrut, Bogdan, Garibaldi Pineda García, Michael Hopkins,
Edward Jones, James Knight and Adam Perrett

If you don’t sleep the very first night after learning, you lose the chance to consolidate those
memories, even if you get lots of ‘catch-up’ sleep thereafter. In terms of memory, then, sleep is not

like the bank. You cannot accumulate a debt and hope to pay it off at a later point in time.
Sleep for memory consolidation is an all-or-nothing event.

— Matthew Walker

A very important set of open questions in Neuroscience are related to learning, from
how addiction rewires our brains to how you can remember where you parked your
car or left your bike this morning, but can’t remember why you entered the kitchen.
Neural memories, whether artificial or biological, seem to operate over multiple
time scales. Very short-term memories are fast, but limited so get overwritten often.
Long-term memories can stick around a lifetime, but they take a good night’s sleep
to consolidate. Whether through sleep spindles or one-shot learning, brains utilise
synaptic plasticity to store these patterns of activity that we call memories, concepts
or motor actions.

This chapter is concerned with the motivation, design and implementation
behind mimicking biological learning rules with a focus on, you guessed it,
SpiNNaker. It starts by presenting Spike-timing-dependent plasticity (STDP)
operating in an unsupervised fashion based on relative spike times of the pre- and
post-synaptic neurons or based on the sub-threshold membrane potential. This is
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followed by a model of STDP modulated by the presence of an additional signal
and operating on eligibility traces. Longer-term mechanisms in the form of struc-
tural plasticity, involving the rewiring of connections between the neurons, and
(very long-term) neuroevolution close out the chapter.

7.1 Sizing Up the (Biological) Competition

A quick detour: Let’s talk brains.
The combination of the size of the human brain, in terms of the number of

neurons (≈ 8.8 × 1010 [7]) and synapses (≈ 1.5 × 1014 [180, 187]) and the
different possible scales of exploration, from gene expression to behaviour, makes
the task of mapping the human brain intractable. As a result, our approach focuses
on the simulation of brain regions, relying on sparse, but strategic data. Previous
attempts have usually been data driven, attempting to replicate at some level the
operation of brain cells [100], regions [154] or processes [29, 118], or concept
driven, wherein the modellers are interested in harnessing the computational power
of whatever it is they are modelling [11, 54, 124]. Further, while the brain is cur-
rently the gold standard for computational power, function and flexibility, and a lot
of effort is being invested in engineering systems with similar performance, it might
be worth remembering that the brain is the result of millions of years of evolution.
In its current form, it is a tangled mess that various institutions and large-scale
projects (e.g. Amunts et al. [4]) are trying to mine for strategic data, but it is not
all gold mine.

Some ‘features’ of the brain are short-cuts, heuristics to deal with vast amounts
of sensory information, and so they are fallible [28].

Designing neural circuits that could overcome biological limitations might be
more important than being content with replicating the brain’s capabilities. Of
course, since some computations are not tractable even under the assumption of
clairvoyance (e.g. see the scheduling chapter in Christian and Griffiths [36]), heuris-
tics need to be employed and thus accuracy sacrificed.

Regardless of whether we beat brains in terms of performance (spoiler: we haven’t
yet), the rest of the chapter should be an interesting exploration of learning tech-
niques in SNNs.

7.2 Spike-Timing-Dependent Plasticity

In this section, we will consider only the changing of the strength of existing con-
nections and, in this context, Hebb’s postulate indicates that connections between
neurons which persistently fire at the same time will be strengthened. Neurons
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which persistently fire at the same time are likely to do so because they respond to
similar or related stimuli.

Bliss and Lømo [20] provided the first evidence to support this hypothesis by
measuring how – if two connected neurons are stimulated simultaneously – the
synaptic connections between them are strengthened. In networks of rate-based
neurons, this behaviour has been modelled using rules such as the Bienenstock,
Cooper, Munroe (BCM) rule [18] and Oja’s rule [184]. However, the focus of this
section is on SNNs, and in such networks, the timings of individual spikes have
been shown to encode both temporal and spatial information. Therefore, in this
section, we focus on STDP – a form of synaptic plasticity capable of learning such
timings.

In Section 7.2.1, we outline some of the experimental evidence supporting
STDP and discuss how STDP can be modelled in networks of spiking neurons.
Then, in Section 7.2.2, we discuss how STDP has previously been implemented
on SpiNNaker and other distributed systems.

We have developed a new SpiNNaker STDP implementation which has both
lower algorithmic complexity than prior approaches and employs new low-level
optimisations to exploit the ARM instruction set better. Improving the perfor-
mance of previous SpiNNaker STDP implementations is an important aspect
of this work. It is analysed and presented in detail by Knight [129]. Finally, in
Section 7.2.3, we discuss this implementation in depth. This new implementa-
tion is now a key component of the SpiNNaker software developed as part of the
HBP which aims to provide a common platform for running PyNN simulations
on SpiNNaker, BrainScaleS and HPC platforms.

7.2.1 Experimental Evidence for Spike-Timing-Dependent
Plasticity

Levy and Steward [142] showed that if the experiment performed by Bliss and
Lømo [20] was repeated with a delay between the stimulation of two neurons,
then the magnitude of the increase in weight could be reduced or even reversed.
Subsequently, Bi and Poo [16] measured the changes in synaptic efficacy induced in
the synapses of hippocampal neurons by pairs of pre- and post-synaptic spikes with
different relative timings. The relationship between the magnitude of these changes
and the relative timing of the pre- and post-synaptic spikes is known as STDP, and
the data recorded by Bi and Poo suggest that it reinforces causality between the
firing of the pre- and post-synaptic neurons. When a pre-synaptic spike arrives
before a post-synaptic spike is emitted, the synapse is potentiated (strengthened).
However, if a pre-synaptic spike arrives after a post-synaptic spike has been emitted,
the synapse is depressed (weakened). Furthermore, the data recorded by Bi and Poo
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Figure 7.1. Excitatory STDP curve. Each dot represents the relative change in synaptic

efficacy after 60 pairs of spikes. After Bi and Poo [16].

suggest that the magnitude of changes in synaptic efficacy (1wi j ) is related to the
relative spike timings with the following exponential functions (Figure 7.1):

1wi j =


F+(wi j ) exp

(
−
1t
τ+

)
if 1t > 0

F−(wi j ) exp
(
1t
τ−

)
if 1t ≤ 0

(7.1)

Where 1t = t j − ti represents the relative timing of pre- and post-synaptic
spikes, τ± defines the time constant of the exponentials and the F± functions
define how the magnitude of the change in weight depends on the current synaptic
efficacy.

Bi and Poo [16] measured how1wi j depended on the previous value of wi j . In
Figure 7.2, we redraw their data on a double-logarithmic scale and fit straight lines
to the potentiation and depression components (as suggested by Morrison et al.
[170]). The nature of the F± functions is indicated by the gradient of each line.
Since the trend line through the depression data has a gradient of −1, it would
suggest that F− is linearly proportional to the weight. However the nature of F+ is
less clear as the trend line through the potentiation data has a gradient of 0.4. Gütig
et al. [86] and Morrison et al. [170] proposed using the power law function F+ ∝
wi j

µ to represent the magnitude of the change in weight in response to potenti-
ation; µ = 0 makes the weight update independent of the previous weight; and
µ = 1 makes the update linearly proportional to the previous weight. With µ =
0.4, the linear fit to the potentiation data recorded by Bi and Poo can be obtained.

Another common means of describing STDP rules is by using ‘trace vari-
ables’ [170, 171, 210] which get updated when pre- and post-synaptic spikes
occur and represent the combined effects of the preceding pre- and post-synaptic
spikes. For example, the interactions between individual pairs of spikes described by
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Figure 7.2. Absolute change in synaptic efficacy after 60 spike pairs. Potentiation is

induced by spike pairs where the pre-synaptic spike precedes the post-synaptic spike by

2.3 ms to 8.3 ms. Depression is induced by spike pairs in which the post-synaptic spike

precedes the pre-synaptic spike by 3.4 ms to 23.6 ms. The upper blue line is a linear fit to

the potentiation data with slope: 0.4. The lower green line is a linear fit to the depression

data with slope: −1. After Morrison et al. [170].

Figure 7.3. Fitting a pair-based STDP model with τ+= 16.8 ms and τ−=33.7 ms to data

from Sjöström et al. [229] by minimising the mean squared error fails to reproduce fre-

quency effects. Blue lines and data points redrawn from Sjöström et al. and the green

lines show the best fit obtained by the pair-based STDP model. After Pfister [192].

Equation 7.1 can alternatively be modelled based on pre- (si ) and post-synaptic (s j )
trace variables:

dsi

dt
= −

si

τ+
+

∑
t f
i

δ(t − t f
i ) (7.2)

ds j

dt
= −

s j

τ−
+

∑
t f

j

δ(t − t f
j ) (7.3)
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Figure 7.4. Calculation of weight updates using pair-based STDP traces. Pre- and post-

synaptic traces reflect the activity of pre- and post-synaptic spike trains. Potentiation is

calculated at each post-synaptic spike time by sampling the pre-synaptic trace (green

circle) to obtain a measure of recent pre-synaptic activity. Depression is calculated at

each pre-synaptic spike time by sampling the post-synaptic trace (blue circle) to obtain

a measure of recent post-synaptic activity. Weight dependence is additive. After Morrison

et al. [171].

Pre- and post-synaptic spikes occurring at t f
i and t f

j , respectively, are modelled
using Dirac delta functions (δ) and, as the top 4 panels of Figure 7.4 show, the trace
variables represent a low-pass filtered version of these spikes. These dynamics can
be thought of as representing chemical processes. For example si can be viewed as a
model of glutamate neurotransmitters which, having crossed the synaptic cleft from
the pre-synaptic neuron, bind to receptors on the post-synaptic neuron and are
reabsorbed with a time constant of τ+. Building on this work, Section 7.4 presents
an implementation of neuromodulated STDP simulated on SpiNNaker.

As the dashed blue lines in Figure 7.4 illustrate, when a pre-synaptic spike occurs
at time t f

i , the s j trace can be sampled to obtain the combined depression caused
by the pairs made between this pre-synaptic spike and all preceding post-synaptic
spikes. Similarly, as the dashed green lines in Figure 7.4 illustrate, when a post-
synaptic spike occurs at time t f

j , the si trace can be sampled, leading to the follow-

ing equations for calculating depression (1w−i j ) and potentiation (1w+i j ):

1w−i j (t
f

i ) = F−(wi j )s j (t
f

i ) (7.4)

1w+i j (t
f
j ) = F+(wi j )si (t

f
j ) (7.5)



Spike-Timing-Dependent Plasticity 211

Figure 7.5. Inhibitory STDP curve. The relative change in synaptic efficacy after 60 pairs

of spikes. After Vogels et al. [261].

Bi and Poo [16] recorded the data plotted in Figures 7.1 and 7.2 from rat hip-
pocampal neurons, but subsequent studies have revealed similar relationships –
albeit with different time constants and polarities – in other brain areas [210].
Specifically, in the neocortex, excitatory synapses appear to exhibit STDP with simi-
lar asymmetrical kernels to hippocampal neurons, whereas inhibitory synapses have
a symmetrical kernel similar to that shown in Figure 7.5.

While rules that consider pairs of spikes provide a good fit for the data measured
by Bi and Poo, they cannot account for effects seen in more recent experimental
data. Sjöström et al. [229] stimulated cortical neurons with pairs of pre- and post-
synaptic spikes separated by a constant 10 ms but with between 20 ms and 10 s sep-
arating the pairs. When the time between the pairs approaches the time constants
defining the temporal range of the pair-based STDP rule, spikes from neighbour-
ing pairs begin to interact. As shown in Figure 7.3, this interaction then cancels out
the potentiation or depression that the original pair should have elicited.

Several extensions to the STDP rule have been proposed which take into account
the effect of multiple preceding spikes including the ‘triplet rule’ proposed by Pfister
[192]. In this rule, the effect of earlier spikes is modelled using a second set of
traces (s2

i and s2
j ) with longer time constants τx and τy :

ds2
i

dt
= −

s2
i
τx
+

∑
t f
i

δ(t − t f
i ) (7.6)

ds2
j

dt
= −

s2
j

τy
+

∑
t f

j

δ(t − t f
j ) (7.7)
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To incorporate the effect of these traces into the weight updates, Pfister also
extended Equations 7.4 and 7.5:

1w−i j (t
f

i ) = s j (t
f

i )(A
−

2 + A−3 s2
i (t

f
i − ε)) (7.8)

1w+i j (t
f
j ) = si (t

f
j )(A

+

2 + A+3 s2
j (t

f
j − ε)) (7.9)

Where ε is a small positive constant used to ensure that the second set of s2 traces
is sampled just before the spike occurs at t f

i or t f
j . This rule has an explicitly additive

weight dependence with the relative effect of the four traces controlled by the four
free parameters A+2 , A−2 , A+3 and A−3 . Pfister fitted these free parameters to the
data obtained by Sjöström et al. [229] and, as shown in Figure 7.6, demonstrated
that the rule can accurately reproduce the frequency effect measured by Sjöström
et al.

The trace-based models we have discussed so far assume that all preceding
spikes can affect the magnitude of STDP weight updates. However experimental
data [229] suggest that this might not be the case and that basing pair-based STDP
weight updates on only the most recent spike can improve the fit of these mod-
els to experimental data. This ‘nearest-neighbour’ spike interaction scheme can be
implemented in a trace-based model by resetting the appropriate trace to 1 when
a spike occurs rather than by incrementing it by 1. Pfister also investigated the
effect of different spike interaction schemes on their triplet rule but found it had

Figure 7.6. Fitting triplet STDP model with τ+= 16.8 ms, τ−=33.7 ms, τx = 101 ms and

τy = 125 ms to the data recorded by Sjöström et al. [229] by minimising mean squared

error effectively reproduces frequency effects. Blue lines and data points (with errors)

redrawn from Sjöström et al. and the green lines show the best fit obtained by the triplet

STDP model. After Pfister [192].
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no significant effect on its fit to the data recorded by Sjöström et al. This suggests
that alternative spike-pairing schemes may simply be another means of overcoming
some of the limitations of pair-based STDP models.

7.2.2 Related Work

Implementing the STDP rules discussed in Section 7.2.1 in a naïve manner is rel-
atively trivial. However, implementing them in a manner suitable for large scale
simulation on a distributed system such as SpiNNaker is more difficult.

The efficient access to synaptic weights required by the event-driven synap-
tic processing algorithm is facilitated by storing the synaptic matrices in a row-
major format. Consequently, when a pre-synaptic spike arrives, weight updates
(Equation 7.4) can be evaluated on a row which is contiguous in memory. However,
when a post-synaptic spike is emitted, weight updates (Equation 7.3) must be
evaluated on a non-contiguous synaptic matrix column. Accessing synaptic matrix
columns is problematic at the hardware level as the SpiNNaker DMA controller
can fetch only contiguous blocks of data. Moreover, because connectivity in the
neocortex is relatively sparse, synaptic matrices are represented using a compressed
sparse row structure which does not provide efficient access to matrix columns. To
remove the need for column accesses, all of the STDP implementations presented
in this section defer outgoing post-synaptic spikes to allow post-synaptic weight
updates to be deferred until the next pre-synaptic spike occurs.

An additional problem regards synaptic delays. Delays are simulated on
SpiNNaker by inserting synaptic weights into an input ring buffer. However the rel-
ative timing of pre- and post-synaptic spikes, and therefore the outcome of STDP,
depends on how much of this total delay occurs in the pre-synaptic axon and how
much in the post-synaptic dendritic tree. As shown in Figure 7.7, pre-synaptic
spikes travelling down the pre-synaptic axon to the synapse incur an ‘axonal delay’
and post-synaptic spikes propagating back through the post-synaptic dendritic tree
to the synapse incur a ‘dendritic delay’.

The approaches discussed in this section differ largely in the algorithms and
data structures they use to perform the deferral of post-synaptic spikes and to

Presynaptic
neuron

Postsynaptic
neuron

Axonal delay
(DA)

Dendritic delay
(DD)

Figure 7.7. The dendritic and axonal components of synaptic delay. After Morrison et al.

[171].
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incorporate synaptic delays into the STDP processing. Jin et al. [121] were the
first to implement STDP on SpiNNaker. They assumed that the whole synaptic
delay was axonal implying that, as pre-synaptic spikes reach the synapse before this
axonal delay has been applied, they too must be buffered. Jin et al. used a compact
data structure for buffering both pre-synaptic and post-synaptic spikes containing
the time at which the neuron last spiked and a bit field, the bits of which indicate
previous spikes in a fixed window of time. Consequently, only a small amount of
DTCM is required to store the deferred spikes associated with each post-synaptic
neuron. However, because this approach does not use the trace-based STDP model
(Section 7.2.1), the effect of all possible pairs of pre- and post-synaptic spikes must
be calculated separately using Equation 7.1. Additionally, the bit field based record-
ing of history – while compact – represents only a fixed window of time meaning
that only a very small number of spikes from slow firing neurons can ever be
processed.

Diehl and Cook [50] developed the first trace-based STDP implementation for
SpiNNaker. To store the pre- and post-synaptic traces, they extended each synapse
in the synaptic row to contain the values of the traces at the time of the last update.
They allowed synapses to have arbitrary axonal and dendritic delays meaning that,
like Jin et al., they stored a history of both pre- and post-synaptic spikes. However,
rather than using a bit field to store this, they used a fixed-size circular buffer to
store the spike times. This data structure is not only faster to iterate over than a bit
field but also holds a constant number of spikes, regardless of the firing rates of the
pre- and post-synaptic neurons. However, these buffers can still overflow, leading to
spikes not being processed if the pre- and post-synaptic firing rates are too different.
For example, consider a buffer with space for ten entries being used to defer the
spikes from a post-synaptic neuron firing at 10 Hz. If one of the neuron’s input
synapses only receives spikes (and is thus updated) at 0.1 Hz, there is insufficient
buffer space for all 100 = 10 Hz

0.1 Hz of the post-synaptic spikes that occur between
the updates. Using these spike histories, Diehl and Cook developed an algorithm
to perform trace-based STDP updates whenever the synaptic matrix row associated
with an incoming spike packet is retrieved from the SDRAM. The algorithm loops
through these synapses and, for each one, iterates through the buffered pre- and
post-synaptic spikes in the order that they occurred since the last update (taking
into account the dendritic and axonal delays). The effect of each buffered spike
is then applied to the synaptic weight (using Equation 7.4 for pre-synaptic spikes
and Equation 7.5 for post-synaptic spike) and the appropriate trace updated (using
Equation 7.2 for pre-synaptic spikes and Equation 7.3 for post-synaptic spike).
Diehl and Cook measured the performance of their approach using a benchmark
network of 50 LIF neurons stimulated by a large number of 250 Hz Poisson spike
sources connected with 20% sparsity. Using this network, they showed that their
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approach could process 500× 103 incoming synaptic events per second compared
to the 50× 103 achievable using the approach developed by Jin et al.

There are many similarities between simulating large spiking neural networks
on SpiNNaker and on other distributed computer systems – including the two
problems identified at the beginning of this section. In the distributed computing
space, Morrison et al. [170] addressed these in ways highly relevant to a SpiNNaker
implementation. Although the nodes of the distributed systems they targeted do
not have to access synaptic matrix rows using a DMA controller, accessing non-
contiguous memory is also costly on architectures with hardware caches. Therefore,
post-synaptic weight updates still need to be deferred until a pre-synaptic spike.
As each node has significantly more memory, Morrison et al. use a dynamic data
structure to guarantee that all deferred post-synaptic spikes get processed.

Morrison et al. simplify the model of synaptic delay by supporting only config-
urations where the axonal delay is shorter than the dendritic delay. This simplifi-
cation allows pre-synaptic spikes to be processed immediately as it guarantees that
post-synaptic spikes emitted before the axonal delay has elapsed will never ‘over-
take’, and thus need to be processed before, the pre-synaptic spike.

This simplification means that only the time of the last pre-synaptic spike and
the value of the pre-synaptic trace at that time need to be stored with each synap-
tic matrix row. Based on this simplification, the algorithm developed by Morrison
et al. loops through each synapse in the row and, for each one, loops through the
buffered post-synaptic spikes. The effect of each buffered spike is then applied to
the synaptic weight (using Equation 7.5). After all of the post-synaptic spikes have
been processed, the effect of the pre-synaptic spike that instigated the update is
applied to the synaptic weight (using Equation 7.4). Once all of the synapses in the
row have been processed, the pre-synaptic trace is updated (using Equation 7.2).

To assess the relative algorithmic complexity of the approaches presented in this
section, we can consider the situation where an STDP synapse is updated based on
N pre pre-synaptic and N post post-synaptic spikes. In the approach developed by
Jin et al. [121], each pair of spikes is processed individually and the complexity is
O(N pre N post ). However, by using a trace-based approach, Diehl and Cook [50]
reduced this complexity to O(N pre

+ N post ) and Morrison et al. [170] further
reduced this to O(N post ) by removing the need to buffer pre-synaptic spikes.

7.2.3 Implementation

The best performing SpiNNaker STDP implementation presented in the previ-
ous section was that developed by Diehl and Cook [50]. Their benchmark indi-
cated that, using their implementation, a SpiNNaker core could process up to
500× 103 incoming synaptic events per second, compared with 5× 106 events



216 Learning in Neural Networks

for non-plastic synapses. As this corresponds to a significant reduction in the size
of model a given SpiNNaker machine can simulate, improving the performance
of STDP is an important part of enabling large-scale neocortical simulation on
SpiNNaker.

We have developed a new SpiNNaker STDP implementation based on the algo-
rithm developed by Morrison et al. [170] which has lower algorithmic complexity
than previous SpiNNaker implementations and employs new low-level optimisa-
tions to exploit the ARM instruction set better. In this section, we present the details
of this new implementation and demonstrate how it addresses the previously iden-
tified problems with distributed simulation of STDP.

As discussed in Section 7.2.2, Diehl and Cook used a fixed-sized data structure
with space for 10 events to store the post-synaptic history. Using this system, if more
than 10 post-synaptic spikes backpropagate to a synapse between updates, some will
be lost. Based on the distributions of cortical neuron firing rates in rats and macaque
monkeys presented by Buzsáki and Mizuseki [30], we can derive the distribution
of firing rate ratios between pairs of neurons shown in Figure 7.8. Based on these
ratio distributions, we can determine that a buffer with 10 entries will be sufficient
to handle the activity at 90% of synapses. However to prevent post-synaptic spikes
being lost when the pre- and post-synaptic neurons have very different firing rates,
we developed an additional mechanism called ‘flushing’ to force the processing of
these spikes. This mechanism uses one bit in the 32-bit ID associated with each
neuron to signify whether the neuron is emitting a ‘flush’ or an actual spike event.
To determine when these events should be sent, each neuron tracks its Inter-spike
interval (ISI) and, if this is bufferSize times longer than the ISI corresponding to
the maximum firing rate of the network, a flush event is emitted.

Figure 7.8. Ratio distributions of cortical firing rates. Calculated from firing rate distribu-

tions presented by Buzsáki and Mizuseki [30].
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Figure 7.9. DTCM memory usage of STDP event storage schemes. The memory usage

of other components is based on the current SpiNNaker tools. All trace-based schemes

assume times are stored in a 32-bit format and traces in a 16-bit format, with two look-up

tables with 256 16-bit entries providing exponential decay. The dashed horizontal line

shows the maximum available DTCM.

Figure 7.9 shows the local memory requirements of post-synaptic history struc-
tures with capacity for 10 entries of different sizes. To implement STDP rules such
as the triplet rule discussed in Section 7.2.1, each entry needs to be large enough
to hold not only a spike time but also two trace values. Figure 7.9 suggests that, to
avoid further reductions in the number of neurons that each SpiNNaker core can
simulate, each of these traces should be represented as a 16-bit value. Using 16-bit
trace entries has an additional advantage as the ARM 968 CPU used by SpiNNaker
includes single-cycle instructions for multiply and multiply-accumulate operations
on signed 16-bit integers [62]. These instructions allow additive weight updates
such aswi j ← wi j+s j exp

(
−dt
tau

)
to be performed using a single SMLAxy instruc-

tion and, when implementing rules such as the triplet rule that require two traces,
they provide an efficient means of operating on pairs of 16-bit traces stored within
a 32-bit field.

The range of fixed-point numeric representations is static. Thus, the optimal
representation for storing traces must be chosen ahead of time based on the max-
imum expected value. We can calculate this by considering the value of a trace x
with time constant τ after n spikes emitted at f Hz:

x(n) =
n∑

i=0

e−
i
τ f (7.10)
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This can be rearranged into the form of a geometric sum:

x(n) =
n∑

i=0

(e−
1

τ fmax )i (7.11)

Which has the value:

x(n) =
1− (e−

1
τ f )n

1− e−
1
τ f

(7.12)

Since |e−
1
τ f | < 1, as n→∞ this converges to:

xmax =
1

1− e−
1
τ f

(7.13)

The sustained firing rate of most neurons is constrained by the time that ion pumps
take to return the neuron’s membrane potential to its resting potential. This gener-
ally limits a neuron’s maximum firing rate to around 100 Hz but, as Gittis et al. [79]
discuss, there are mechanisms that can overcome this limit. For example, vestibular
nucleus neurons can maintain sustained firing rates of around 300 Hz. Figure 7.10
shows that – based on this worst-case maximum firing rate – 4 integer bits are
required to store traces with time constants in the range fitted to the data recorded
by Bi and Poo [16]. Therefore, a 16-bit fixed-point numeric representation with 4
integer, 11 fractional bits and a sign bit is the optimal choice for representing the
traces required for pair-based STDP.

Figure 7.10. Number of integer bits required to represent traces of a 300 Hz spike train

with different time constants.
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In the PyNN programming interface, STDP learning rules are defined in terms
of three components:

The timing dependence: Defines how the relative timing of the pre- and post-
synaptic spikes affects the magnitude of the weight update.

The weight dependence: Defines how the current synaptic weight affects the
magnitude of the weight update (the F+ and F− functions discussed in
Section 7.2.1).

The voltage dependence: Defines how the membrane voltage of the post-synaptic
neuron affects the magnitude of the weight update.

Adding a voltage dependence to the type of event-based STDP implementation
discussed here presents several challenges beyond the scope of this section. However,
one such voltage-dependent implementation is described in Section 7.3.

In this section, we implement only the timing and weight dependencies sup-
ported by PyNN. So as to allow users of the HBP software not only to select from
the weight dependencies specified by PyNN but also to implement their own easily,
this implementation defines simple interfaces which timing and weight dependen-
cies must implement. Timing dependencies must define the correct types for the
pre- and post-synaptic states (si and s j , respectively), functions to update pre- and
post-synaptic trace entries based on the time of a new spikes (updatePreTrace and
updatePostTrace, respectively) and functions to apply the effect of deferred pre-
and post-synaptic spikes to a synaptic weight (applyPreSpike and applyPostSpike,
respectively). Algorithm 1 shows an implementation of the functions required to
implement pair-based STDP using this interface. The updatePreTrace adds the
effect of a new pre-synaptic spike at time t to the pre-synaptic trace by decaying the
value of si calculated at the time of the last spike (t lastSpike) and adding 1 to repre-
sent the effect of the new spike (the closed-form solution to Equation 7.2 between
two t f

i s). Similarly, the applyPreSpike function samples the post-synaptic trace by
decaying the value of s j calculated at the time of the last post-synaptic spike (t j )

(the s j (t
f

i ) term of Equation 7.4).
To decouple the timing and weight dependencies, the applyPreSpike and apply-

PostSpike functions in the timing dependence call the applyDepression and apply-
Potentiation functions provided by the weight dependence rather than directly
manipulating wi j themselves. Algorithm 2 shows an implementation of applyDe-
pression which performs an additive weight update.

Algorithm 3 is the result of combining the simplified delay model proposed by
Morrison et al. [170] with the flushing mechanism and the interfaces for timing
and weight dependencies discussed in this section. The algorithm begins by loop-
ing through each post-synaptic neuron ( j ) in the row and retrieving a list of the
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Algorithm 1 Pair-based STDP timing-dependence implementation. Equivalent
updatePostTrace and applyPostTrace functions are omitted for brevity.

function updatePreTrace(si , t , t lastSpike)
1t ← t − t lastSpike return si · exp

(
−
1t
tau

)
+ 1

function applyPreSpike(wi j , t , t j , s j )
1t ← t − t j
if 1t 6= 0 then return applyDepression

(
wi j , s j · exp

(
−
1t
tau

))
else return wi j

Algorithm 2 Additive weight-dependence implementation. Equivalent apply
Potentiation function is omitted for brevity.

function applyDepression(wi j , d) return wi j + A+ · d

Algorithm 3 The new SpiNNaker STDP algorithm

function processRow(t, f lush, t lastUpdate, t lastSpike, si , synapses)
for all ( j, wi j , d A, d D) in synapses do

history ← getHistoryEntries( j, t lastUpdate
+ d A

− d D, t + d A
− d D)

for all (t j , s j ) in history do
wi j ← applyPostSpike(wi j , t j + d D, t lastSpike

+ d A, si )

if not f lush then
(t j , s j )← getLastHistoryEntry(t + d A

− d D)

wi j ← applyPreSpike(wi j , t + d A, t j + d D, s j )

addWeightToRingBuffer(wi j , j)

if not f lush then
si ← updatePreTrace(si , t, t lastSpike)

t lastSpike
← t

t lastUpdate
← t

times (t j ) at which that neuron spiked between t lastUpdate and t and its state at
that time (s j ) (taking into account the dendritic (DD) and axonal (D A) delays
associated with each synapse). The algorithm continues by looping through each
post-synaptic spike and calling the applyPostSpike function to apply the effect of the
interaction between the post-synaptic spike and the pre-synaptic spike that occurred
at t lastSpike to the synapse. If the update was instigated by a pre-synaptic spike rather
than a flush, the applyPreSpike function is called to apply the effect of the interac-
tion between the pre-synaptic spike and the most recent post-synaptic spike to the
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Figure 7.11. A random balanced network consisting of recurrently and reciprocally con-

nected populations of excitatory neurons (red filled circles) and inhibitory neurons (blue

filled circles). Excitatory connections are illustrated with red arrows and inhibitory con-

nections with blue arrows.

synapse. Once all events are processed, the fully updated weight is added to the
input ring buffer. If the update was instigated by a pre-synaptic spike rather than a
flush, after all the synapses are processed, the pre-synaptic state stored in the header
of the row (si ) is updated by calling the updatePreTrace function and t lastSpike and
t lastUpdate are set to the current time. If, however, the update was instigated by a flush
event, only t lastUpdate is updated to the current time, meaning that the interactions
between future post-synaptic events and the last pre-synaptic spike will continue to
be calculated correctly.

7.2.4 Inhibitory Plasticity in Cortical Networks

One of the simplest models of a cortical network consists of a population of exci-
tatory neurons and a smaller population of inhibitory neurons, sparsely connected
with the recurrent and reciprocal synapses shown in Figure 7.11, that is, the random
balanced network introduced in Chapter 4. Brunel [27] identified that these net-
works can operate in several well-defined regimes depending on the relative weights
of the inhibitory and excitatory synapses. The asynchronous irregular regime has
proved of particular interest as it matches firing rate statistics recorded in the neo-
cortex [232] and responds rapidly to small changes in input making it an ideal
substrate for computation [262]. However, it is unclear how the carefully balanced
synaptic weights required to establish this regime are maintained in the brain.
Vogels et al. [261] demonstrated that the asynchronous irregular regime can be
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Algorithm 4 Inhibitory plasticity timing-dependence implementation. update
PreTrace and updatePostTrace functions are identical to those used by standard
STDP and are therefore omitted for brevity.

function applyPreSpike(wi j , t , t j , s j )
1t ← t − t j return applyPotentiation

(
wi j , s j · exp

(
−
1t
tau

)
− α

)
function applyPostSpike(wi j , t , ti , si )

1t ← t − ti return applyPotentiation
(
wi j , si · exp

(
−
1t
tau

))

established using an STDP rule with the type of symmetrical kernel shown in
Figure 7.5. We implemented this learning rule using the timing dependence func-
tions defined in Algorithm 4 and used it to reproduce the results presented by
Vogels et al. using a network of 2,000 excitatory and 500 inhibitory neurons with
the parameters listed in Table 7.1.

Without inhibitory plasticity, the network remained in the synchronous regime
shown in Figure 7.12(a) in which neurons spiked simultaneously at high rates.
However, with inhibitory plasticity enabled on the connection between the
inhibitory and the excitatory populations, the neural activity quickly stabilised and,
as shown in Figure 7.12(b), the network entered an asynchronous irregular regime
in which neurons spiked at a much lower rate.

7.2.5 The Effect of Weight Dependencies

In Section 7.2.1, we discussed how the choice of weight dependence affects the fit
of STDP models to biological data. Rubin et al. [214] showed that different weight
dependencies also result in different equilibrium distributions of synaptic weights
when neurons with a biologically plausible number of synapses are stimulated with
Poisson spike trains. Rubin et al. proved that a multiplicative weight dependence
results in a unimodal distribution of weights, whereas an additive dependence
results in a bimodal distribution.

To demonstrate the flexibility of the SpiNNaker STDP implementation pre-
sented here, we reproduced these results empirically using the simple PyNN model
described in Table 7.2. The resultant weight distributions are plotted in Figure 7.13.
Additive weight dependencies in PyNN specify hard upper and lower bounds and,
as Rubin et al. predicted, the experiment using the additive weight dependence
results in a weight distribution with modes centred at these bounds. Again, as Rubin
et al. predicted, the experiment using the multiplicative weight dependence results
in a unimodal weight distribution.
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Table 7.1. Model description of the inhibitory plasticity network.

After Nordlie [182]

Model summary

Populations Excitatory, inhibitory

Connectivity Probabilistic with 2% connection probability

Neuron model LIF with exponential current inputs

Plasticity Inhibitory plasticity (Vogels et al. [261])

Populations

Name Elements Size

Excitatory LIF 2,000

Inhibitory LIF 500

Connectivity

Source Target Weight

Excitatory Inhibitory 0.03 nA

Excitatory Excitatory 0.03 nA

Inhibitory Inhibitory 0.3 nA

Inhibitory Excitatory 0 nA

Neuron and synapse model

Type LIF with exponential current inputs

Parameters gL = 0.01 µS leak conductance

C = 0.2 nF membrane capacitance

Vthresh = −50 mV threshold voltage

Vreset = Vrest = −60 mV reset/resting voltage

τ exc
syn = 5 ms excitatory synaptic time constant

τ inh
syn = 10 ms inhibitory synaptic time constant

Plasticity

Type Inhibitory plasticity (Vogels et al. [261])

on inhibitory excitatory synapses

Parameters ρ = 0.12 µS post-synaptic target firing rate

τ = 20.0 ms trace time constant

η learning rate
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(a) Without inhibitory plasticity

(b) With inhibitory plasticity

Figure 7.12. The effect of inhibitory plasticity on a random balanced network with 2,000

excitatory and 500 inhibitory neurons. Without inhibitory plasticity, the network is

in a synchronous state with all neurons firing regularly at high rates. Inhibitory plas-

ticity establishes the asynchronous irregular state with all neurons firing at approxi-

mately 10 Hz.

7.3 Voltage-Dependent Weight Update

Although highly successful, the STDP algorithm has some drawbacks. For example,
if the simulator has no memory of pre- and post-synaptic spike times, the algorithm
is difficult to implement; furthermore, if the post-synaptic neuron fails to spike, it
could be that important information is lost. Bengio et al. [14] propose a plasticity
rule which is compatible with STDP dynamics and could, in principle, be a way to
link machine learning and neuroscience.
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Table 7.2. Model description of the synaptic weight distribution network.

After Nordlie [182].

Model summary

Populations Neurons, stimuli

Connectivity All-to-all

Neuron model LIF with exponential current inputs

Plasticity STDP

Populations

Name Elements Size

Neurons LIF 1

Stimuli Independent 15 Hz 1,000

Poisson spike trains

Connectivity

Source Target Weight

Stimuli Neurons Uniformly distributed

between 0 nA to 0.01 nA

Neuron and synapse model

Type LIF with exponential current inputs

Parameters gL = 0.017 µS leak conductance

C = 0.17 nF membrane capacitance

Vthresh = −54 mV threshold voltage

Vreset = −60 mV reset voltage

Vrest = −74 mV resting voltage

τsyn = 5 ms synaptic time constant

Plasticity

Type STDP with additive or multiplicative weight dependence

Parameters A+ = 0.01 potentiation rate

A− = 0.0105 depression rate

τ+ = 20.0 ms trace time constant

τ− = 20.0 ms learning rate
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(a) (b) (c)

Figure 7.13. Histograms showing: (a) initial uniform distribution of synaptic weights and

distribution of synaptic weights following; (b) STDP with additive weight dependence

and (c) STDP with multiplicative weight dependence. Simulation consists of a single

integrate-and-fire neuron with 1,000 independent 15 Hz Poisson spike sources providing

synaptic input.

Table 7.3. Izhikevich neuron model parameters.

a b c d

Value 0.02 0.2 −65 8

Units dimensionless

We implemented this rule using both LIF and Izhikevich neuron models [193];
we only show the results with the latter here. The parameters used in our exper-
iments for the Izhikevich model are shown in Table 7.3. The behaviour of the
neuron model when a continuous current is applied is illustrated in Figure 7.14(a).

The blue line depicts the neuron’s membrane voltage (v), and the green line
shows the behaviour of the auxiliary variable u. Since the membrane voltage is
usually noisy, we filter it using the exponential smoothing technique [175]

γ = e−1/τs , (7.14)

s(t) = (1− γ )v(t)+ γ s(t − 1); (7.15)

where τs is the temporal constant for the filtering mechanism. The dashed red line
is a low-passed version of the membrane voltage (s). The change in synaptic efficacy
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(a) (b) (c)

Figure 7.14. Membrane voltage change as a proxy for weight updates. (a) Behaviour of

an Izhikevich neuron to a step input; the blue line illustrates the membrane voltage, while

the red dashed line shows a low-pass-filtered version of it. (b) shows how an average of

weight changes behaves close to STDP when simulated in Python. (c) summarises the

average of weight changes simulated on SpiNNaker.

is given by

1w = α × δ(t − tpre)×
1s(t)
1t

(7.16)

where δ(·) is the Kronecker delta function and α is the scaling factor and could be
used as the learning rate. To test whether this adjustment to the original learning
rule still produces similar results (i.e. STDP-compatible behaviour), we establish an
experimental set-up similar to the one presented by Bengio et al. [14]. We simulate
5,000 neurons (using a home-brew implementation) which have a noisy current
offset; random input spikes are generated at every time step, with a 20% and 5%
probability, for excitatory and inhibitory types, respectively. All synapses are char-
acterised as a 1 ms pulse response; weights for inhibitory synapses are fixed, while
excitatory are plastic.

We then look for post-synaptic neuron spikes and collect weight change statistics
in a+−20 ms temporal window in 1 ms time steps. We compute the average change
for each time step; Figure 7.14(b) depicts the resulting averages for voltage changes.

We performed a similar experiment using the SpiNNaker implementation and
computed the average of generated data points which gives rise to an STDP-like
curve (Figure 7.14(c)). A major difference is that the curve gets shifted 1 ms to the
right; this is because weight changes are computed as soon as a spike arrives at the
post-synaptic core but applied a time step later.

7.3.1 Results

To test the viability of using this learning rule to capture the statistics coming from
visual patterns, we set experiments with networks based on a SWTA circuit.

Unsupervised: We first explore an unsupervised learning procedure. The network
for this experiment is presented in Figure 7.15 and is composed of an input layer
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A

B

1 Hz. Poisson

50ms

Figure 7.15. SWTA network with visual pattern as input. A 5 × 5 pixel/neuron array is

given an input which corresponds to the two main diagonals alternated with a 50 ms

delay between them; it is also provided with a 1 Hz noise with a Poisson distribution. This

array is connected with plastic connections to 5 target neurons, which in turn are in a

SWTA circuit.

Figure 7.16. Weight changes after alternating pattern simulation. (a) shows the input

weights for each target neuron, and these were set at random with a uniform distribution

[0.05, 0.2). (b) By the end of the simulation, some neurons have specialised for a pattern

as shown by the weights.

and an output layer. The input layer consists of 25 input neurons which serve as a
relay for noise and input patterns. The network is given alternating visual patterns
(diagonals) as an input; a 1 Hz Poisson noise source is added to the input in order
to favour diversity of learning in the output layer. The output layer consists of five
neurons which feed a single inhibitory neuron, the latter will reduce the chances of
spiking for neurons in the output layer.

The synaptic weights from the input to the output layer were plastic and ran-
domly initialised as shown in Figure 7.16(a). After multiple exposures to the input
patterns, the synapses corresponding to the inputs get potentiated (Figure 7.16(b)).
Particularly, neurons 1 and 4 become specialised on one pattern while 2 and 5 to
the other.

Supervised: To establish a supervised learning regime, we take inspiration from
biology and add a special signal which will enhance Long-Term Potentiation
(LTP) when present. Biological neurons get further depolarised when N-Methyl-
D-aspartic Acid (NMDA) is received and the membrane potential is above a certain
level [160]. Implementing a similar behaviour (slow decay and voltage dependence)
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on SpiNNaker required altering how input current is computed by default,

I =
∑

I+ −
∑

I− (7.17)

where I is the total input current given to the neuron which consists of I+, the
excitatory inputs, and I−, the inhibitory ones. With this scheme, it is not possible
to condition the acceptance of current provided by NMDA activation influx, Iφ ,
and thus, Equation 7.17 will be modified to

I =
∑

I+ −
∑

I− +
∑

Iφ (7.18)

We control the activation of NMDA receptor channels in two ways. The first
is through a special φ spike which emulates a gating mechanism of the channel
(i.e. the presence of both glutamate and glycine [66, 179]). We also use this event
to model the current (Iφ) created by additional positive ions passing through the
opened channel. Secondly, Iφ is allowed to pass into the neuron only when the
membrane voltage is above the threshold Vφ :

Iφ =

{
Iφ if Vm > Vφ or t − tφ < Tφ
0 otherwise

(7.19)

Furthermore, to mimic the time it takes to close the channels, we added an inertia-
like mechanism (t − tφ < Tφ in Equation 7.19) which keeps Iφ current flowing
for at least Tφ simulation steps. To achieve this, we subtract the time at which a φ
spike arrived (tφ) from the current simulation step and, if the temporal difference is
smaller than the inertia window Tφ , the current is allowed to keep flowing. To test
the supervision mechanism we used a similar network setup to that in the unsu-
pervised case though we need two ‘instances’ of the network (Figure 7.17); one will
‘supervise’ the other. Each instance has five output neurons which are each assigned
to an input pattern. During the experiment, neurons 1 and 2 of the bottom output
population (Figure 7.17) were assigned to learn pattern 1 (forward diagonal), and
neurons 3 and 4 were set to learn pattern 2 (back diagonal). The way we induce
neurons to learn a particular pattern is to send a φ spike 5 ms before the pattern is
shown to the corresponding neuron. Neurons in the bottom population connect
to the neurons in the top population in a one-to-one manner through the lateral
φ channel. For this experiment, we used Izhikevich neurons for the output and
inhibitory populations which were configured according to the parameters shown
in Table 7.4.

Figure 7.18 shows synaptic efficacies at the beginning and end of the training.
Each square depicts the values of incoming synapses to a post-synaptic neuron,
the top row of squares corresponds to the student population and the bottom row
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Figure 7.17. Supervision architecture.

Table 7.4. Neuron parameters for pattern learning using φ.

a b c d τu τexc τinh τφ θφ

Excitatory 0.01 0.2 −65 8 10 2 2 50 −75

Inhibitory 0.2 0.26 −65 0 – 1 1 – –

Units dimensionless ms ms ms ms mV

Figure 7.18. Weights at start and end of training using an NMDA-like signal φ. (a) Synaptic

efficacies are set to random values initially. (b) After ∼30 min of simulation, the weights

favour the assigned input patterns.

corresponds to the teacher population. At the start (Figure 7.18(a)), weights are
assigned randomly.

During training, a supervision φ spike is given to neurons 〈2, 1〉, 〈2, 2〉, 〈2, 4〉
and 〈2, 5〉 right before one of the patterns reaches them. Neurons 〈2, 1〉 and 〈2, 2〉
are assigned the forward diagonal pattern, while neurons 〈2, 4〉 and 〈2, 5〉 are
assigned the backward diagonal pattern. Neuron (2, 3) is allowed to learn its input
without any supervision. Since patterns for the student population are delayed (and
inverted), the φ spikes coming from the teacher enforce neurons in the student pop-
ulation to learn a particular input (backward diagonal for 〈1; 1〉 and 〈1, 2〉, forward
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diagonal for 〈1, 4〉 and 〈1, 5〉). Figure 7.18(b) shows synaptic efficacies at the end
of training, note that the largest weights correspond to the assigned patterns. While
the task to learn here is a simple one, the behaviour of the network could be seen
as self-supervision and could be applied to networks whose neurons learn parts of
a larger problem.

7.4 Neuromodulated STDP

Traditionally, simple models of SNNs have used two types of synapse: excitatory
(positive) and inhibitory (negative). These drive changes to the membrane voltage
and, indirectly, can produce weight changes [74].

In biological neural networks, there are, in addition, neurotransmitters and neu-
romodulators that may alter learning processes. Research on dopamine interaction
shows that it could be crucial for reinforcement learning as it has been identified as
a control signal for large regions of the brain.

Furthermore, there are additional cells involved in synapse function – astrocytes –
which are usually characterised as ‘maintainers’ in the central nervous system as
they keep ionic concentrations stable, form scar tissue on damaged regions and
aid energy transfer [231]. Scientists are putting more effort to understand the role
of astrocytes as learning modulators [78]. Research shows that these cells are also
involved in the regulation of current, frequency, short- and long-term plasticity,
and synapse formation and removal [91, 189, 253, 254].

Having a third component modifies Hebbian-based weight updates, and the rule
will now depend on the state of three factors (Figure 7.19):

1wpre,post (t) ∝ h(s(pre), s(post), s(third)) (7.20)

where s(·) indicates the activity or state. If only the spike time is considered as the
state (as is the case for STDP),

1wpre,post (t) ∝ h
(
t, tpre, tpost , tthird

)
(7.21)

where tx is the time at which a spike from neuron x was perceived by the post-
synaptic neuron.

Pre Post

Third

Figure 7.19. Cartoon of third factor interaction on plasticity.
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Ponulak and Kasinski [200] introduced an STDP-like rule with a third factor
(ReSuMe), in which the extra input is used to get the post-synaptic neuron to spike
at a particular time.

When tthird−tpre > 0, a weight increment (1+) is applied to synapses, whereas
a weight depression (1−) is applied when tpost − tpre > 0. If the post-synaptic
neuron activates at the desired time

(
tthird = tpost

)
, depression will be equal to

potentiation and the total weight change will be zero.
Gardner and Grüning [70] developed a three-factor learning rule whose purpose

is, also, to learn spike times; to do this, the third input to the synapse carries a ‘tem-
poral target’ signal and will alter the magnitude and direction of the weight change.
The main difference from the ReSuMe rule is that this requires, additionally, a low-
pass filtered version of the error. The temporal error is to modify the effect a single
pre-synaptic spike has on post-synaptic neuron activity. The filtered version of the
error can be seen as an ‘accumulation’ activity for a time window (≈ 10 ms).

While the previously mentioned rules make use of a third factor, they remain
biologically implausible as a synapse is unlikely to be able to keep track of exact
times. In this context, we can see the neurotransmitter dopamine as a global error
signal or a modulator that enables learning after the previous activity in the network
led to a reward-worthy action [248].

Other modulators (e.g. serotonin and noradrenaline) could guide plasticity
through attention-like mechanisms. These are thought to be local signals –
as opposed to dopamine – and may represent feedback and/or lateral interac-
tion [211].

Models of modulated synaptic plasticity have been developed and in general
follow

1wpre,post (t) ∝ g(t, tthird)× f (t, tpre, tpost ) (7.22)

where f is the regular plasticity function (e.g. STDP) and g is the, usually, decaying
response of the modulatory input.

7.4.1 Eligibility Traces/Synapse Tagging

For reinforcement learning, a history of the plasticity function is required, usually
called an eligibility trace. The intuition behind this mechanism is that events in the
world occur at a lower speed than spike interactions and behaviour can be rewarded
(or punished) only after it has happened. Furthermore, researchers have found some
evidence of eligibility traces in biology [59, 75].

In mathematical models, eligibility traces ‘store’ weight updates for a long period,
until a signal arrives at the synapse which triggers ‘application’ of the current state
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Figure 7.20. Eligibility trace and modulated synaptic efficacy changes.

of the trace [60, 118]. The signal could be dopamine, or another neuromodulator
with slower dynamics, decaying on the scale of hundreds of milliseconds.

In Figure 7.20(a), the trace labelled STDP shows the weight change func-
tion given the inputs shown in rows pre and post. Eligibility traces are formed by
〈pre, post〉 spike pairs which are illustrated in zones 1 and 2 in Figure 7.20(a);
these cause accumulation of weight changes driven by STDP curves. Since STDP
interactions depend on the time at which the pre- and post-synaptic neurons spiked,
if these times are sufficiently far apart in time, no weight change is added to the eli-
gibility trace (compare zone 3 with zone 2 in Figure 7.20(a)).

Eligibility traces have much slower dynamics than STDP interactions as illus-
trated in Figure 7.20(a); the curve in row trace decays much slower than any of the
curves in row STDP. The low decay rate is useful to keep track of how temporally
distant weight changes contributed to a particular behaviour.

The modulating neurotransmitter (modulator curve in Figure 7.20(b)) also has
slower dynamics than STDP, but not as slow as eligibility traces. Weight changes
are only applied when the third signal is present; this is modelled as a multiplicative
effect

1weight (t) ∝ modulator(t)× trace(t), or, (7.23)

dw(t)
dt
= m(t)× c(t). (7.24)

We implemented the dopamine-based modulated plasticity model as proposed
by Izhikevich on the SpiNNaker machine [165]. Eligibility trace dynamics are
described by the following equation:

dc(t)
dt
= −

c(t)
τc
+ ST D P(τ−/+)δ(t − tpre/post ); (7.25)

where c(t) is the state of the eligibility trace; ST D P(τ−/+) is the value from STDP
(Figure 7.20(a)) curves and δ(t − tpre/post ) is the Dirac delta function. Similarly,
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the modulator is governed by

dm(t)
dt
= −

m(t)
τm
+ M(t)δ(t − tmod) (7.26)

where m(t) is the current state of the ‘local’ modulating transmitter and M(t) is the
concentration of the ‘external’ modulatory signal. In both cases, incoming signals
create an instantaneous change (spike), thus the use of Dirac delta functions.

Since SpiNNaker is an event-driven computation platform, these equations
required modifications. Weight changes are performed when a spike arrives at a
post-synaptic core, and thus, the implemented weight update rule is:

1w(t) =
1

−
1
τc
−

1
τm

c(tlc)m(tlm)
[

e
−

(
t−tlc
τc

)
−

(
t−tlm
τm

)]t

tlw
, (7.27)

where lc, lm and lw subscripts indicate the time (event) at which the last eligibility
trace, modulator and weight updates were performed, respectively. As two different
spike ‘types’ can be received, weight updates will be performed either at tlw = tlc
or tlw = tlm . The evaluation of the squared brackets in Equation 7.27 is done as
in definite integrals.

7.4.2 Credit Assignment

We tested the learning rule replicating an experiment which was originally designed
by Izhikevich [117]. The goal is to identify a group of neurons spiking amongst
noise and reinforce the groups’ connections while keeping other neurons’ connec-
tivities in a lower weight range.

The neural network for this experiment consists of 1,000 neurons, divided into
two populations. They emit either excitatory or inhibitory signals (Exc and Inh,
respectively). Each neuron connects to others at random with a 10% probability,
regardless of the neuron population ‘type’ (red and green lines in Figure 7.21).

Within the excitatory population, we create groups of 50 neurons (5% of the
total) chosen at random; the first group (S1) is chosen as the pattern to search.
We stimulate each group at random, maintaining a maximum of 5 groups spiking
per second. Additionally, we inject ‘background’ Poisson noise at 10 Hz, and this
puts neurons in a biologically plausible setting. In terms of the credit assignment
problem, we try to identify a signal (S1 group activity) in a noisy environment,
generated by other groups and random activity incited by background noise.

To search for group S1’s particular activity, we connect a modulator input
(dopamine-like) to the excitatory-to-excitatory connections. Whenever group S1
is stimulated, we send a dopamine pulse with a random delay in the range [0, 1)
seconds; this will act as the teaching signal.



Neuromodulated STDP 235

1
group

Exc Inh

plastic
static

modulator

static static

excitatory

inhibitory

modulatorynoise

Figure 7.21. Credit assignment experiment network − yet another random balanced

network.

Table 7.5. LIF neuron model parameters for the credit assignment experiment.

Cm Ioffset τm τrefrac τsyn_E τsyn_I Vreset Vrest Vthresh

Value (Exc) 0.3 0.0 10 4 1 1 −70 −65 −55.4

Value (Inh) 0.3 0.005 10 2 1 1 −70 −65 −56.4

Units nF nA ms ms ms ms mV mV mV

Table 7.6. STDP parameters for the credit assignment experiment.

A+++ A− τ+++ τ− τc τd

Value 1 1 10 12 1,000 200

Units – – ms ms ms ms

For this experiment, we use standard LIF neurons whose parameters promote
higher activity from the elements in the inhibitory group. High excitability is
achieved by adding a small base current, reducing the distance between the resting
voltage and the threshold value, and reducing the refractory period (see Table 7.5).
We used exponentially decaying, current-based synapses whose temporal constants
(τsyn_X ) are set to 1 ms to further approximate the original experiment.

The learning algorithm was parametrised so that the area for LTP is 20% greater
than the area for Long-Term Depression (LTD) (A+, A−, τ+, τ− in Table 7.6).
Dopamine interaction was characterised in a biologically plausible manner: the
temporal constant for the eligibility trace, τc, is 1,000 ms, which implies the net-
work will learn events that occurred up to a second ago; the temporal constant for
dopamine, τd , is 200 ms according to biological evidence.

We ran the experiment for about 1.5 hours of biological real time. At approx-
imately 70 minutes, the weights from group S1 to other excitatory neurons are
sufficiently large to be visibly noticeable in a raster plot.

The evolution of the average weight in group S1 is shown in Figure 7.22(a) as a
green line, which presents an exponential growth. We can also observe the average
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(a) (b) (c)

Figure 7.22. Credit assignment experiment network behaviour. Discussed in detail by

Mikaitis et al. [165].

weight value for every connection in the network as the experiment progresses (blue
line), it grows but more slowly and it is expected to stabilize. Spiking behaviour for
all groups is similar at the start of the experiment; this can be seen as correlated
vertical dots in Figure 7.22(b).

By the end of the experiment, connections which originate from group S1 are
at such a value that most post-synaptic neurons will spike when a neuron in the
group is active. This is shown in the middle of Figure 7.22(c) as a burst of activity.
Although the network still responds to other patterns, it is now tuned to emit a
higher response to the S1 pattern. This has been observed in cortical regions; for
example, a column in V1 will show a response to many oriented bars as inputs, but
it presents the maximum spike rate for a particular orientation.

7.5 Structural Plasticity

Mammalian brains have evolved in an ever-changing environment and, as such,
are equipped with a wealth of learning mechanisms. One such mechanism that
has been implemented on SpiNNaker is usually referred to as structural plastic-
ity [21]. This mechanism relies on the structural changes in the network guided by
some measure. Since SpiNNaker focuses on simulating neurons without morpho-
logical detail, structural plasticity is equated with changes in connectivity between
neurons – synaptic rewiring.

SpiNNaker is particularly well suited for supporting structural plasticity as a
learning mechanism. This software-driven neuromorphic platform is sufficiently
flexible to support rewiring in parallel with STDP while still maintaining the real-
time wall clock [23]. Furthermore, synaptic rewiring can be used to ensure optimal
resource use in a system that is comparatively memory and compute cycle starved
[73]. Intuitively, if the rewiring process can be made to maintain a certain synaptic
capacity usage while preferentially discarding ‘useless’ synapses, then the system can
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search for the optimal synaptic configuration that fits within the constraints of the
system.

SpiNNaker’s real-time constraint also means that synaptic rewiring simulations
occurring at a slower time scale compared to other neural and synaptic processes
can be monitored over longer time scales.

The model chosen for translation onto SpiNNaker was developed by Bamford
et al. [8]. Their model had some desirable features and posed some interesting chal-
lenges. Feature wise, the rewiring rules allowed for synaptic formation and removal
driven by Euclidean distance and synaptic weight, respectively.

A certain number of rewiring attempts are performed every simulated second.
Each neuron in the network has a limited number of potential synaptic contact
points. Attempts either follow the formation or removal rules dependent on the
existence of a synapse at a considered contact point.

Formations favour neurons that are relatively close in space, which also represents
the first challenge for SpiNNaker. This was the first time that SpiNNaker neural
models required spatial information for the simulated neurons. A new, full-strength,
connection is formed with a partner neuron that has fired recently if

r < p f orme
−

δ2

2σ2
f orm (7.28)

where r is a random number sampled from a uniform distribution in the interval
[0, 1), p f orm is the peak formation probability, δ is the distance between the two
cells and σ 2

f orm is the variance of the receptive field. The result is a Gaussian dis-
tribution of formed synapses around the ideal target site, that is, around the target
neuron where δ = 0.

If the randomly selected synaptic contact is in use (a synapse already exists), the
removal rule is followed. For implementation efficiency and because of the nature
of the synaptic plasticity rule (weight-independent STDP), a weight threshold θg
is selected as half of the maximum allowed weight (θg =

1
2 gmax ). A synapse is

removed if

r < pelim where pelim =

{
pelim−dep for gsyn < θg

pelim−pot for gsyn ≥ θg
(7.29)

where r is a random number sampled from a uniform distribution in the interval
[0, 1), pelim−dep is the elimination probability used when a synapse is depressed,
pelim−pot is the elimination probability used when a synapse is potentiated and
gsyn is the weight of the synapse under consideration for removal.

The first application of this model of structural plasticity (not to be confused
with The Model for Structural Plasticity – MSP – proposed by Butz and van Ooyen
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[29]) was to replicate and expand on previous results regarding topographic map
formation (Section 7.5.1)

Section 7.5.3 shows that choosing a partner for formation from the set of recently
active cells is a powerful mechanism. In the context of MNIST handwritten digit
classification, this feature allows for decent accuracy and recall scores in the absence
of weight changes as long as the input is encoded using spiking rates. Further,
Section 7.5.4 reveals the importance of visualisation in identifying the cause of
aberrant behaviour using this particular feature as its main example.

A final application of these synaptic rewiring rules in described in Section 7.5.5
where it is shown to perform elementary motion decomposition after the applica-
tion of additional minor enhancements.

An alternative formulation based upon information theory, sparse codes and
their congruence with recent results about the behaviour of clustered synapses in
real dendritic trees is described briefly by Hopkins et al. [103].

7.5.1 Topographic Map Formation

A widely observed principle in biological brains is the use of topographic maps,
wherein two-dimensional topological (though not necessarily scale) relationships
are preserved in projections from one brain region to another.

Neural topographic maps consist of layers of neurons whose reaction to afferent
(incoming) stimuli changes with area (Figure 7.23). Such an organisation is char-
acterised by the preservation of neighbour activity from the source to the target
layer and provides several advantages in terms of wiring and information process-
ing and integration. Wiring is optimised since neurons generally have limited recep-
tive fields and tend to be interested in spatially clustered locations. As an example,
orientation-selective neurons, such as those present in primary visual cortex, are
required to have afferents from small regions of the total visual receptive field, thus
a topographic organisation ensures that neurons only connect to their immediate
neighbours and have limited interaction with those which are further away. More
importantly, when neurons form multiple aligned maps, each receiving information
from a different modality, they exhibit multisensory facilitation; their response is
supra-linear if they receive synchronous stimuli from the same area of space arriv-
ing from different modalities. This is the case in the Superior Colliculus, a brain
structure that integrates signals from multiple senses and also guides adaptive motor
responses [126].

Topographic projections are widespread in the mammalian cortex [123]. Their
development has been explored through simulation, with and without spiking
neurons, and involving both synaptic plasticity [131, 233, 264] and synaptic
rewiring [8]. The latter example has been modelled on SpiNNaker. It is with
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Figure 7.23. Topographic maps. Neuron (2) in the target layer has a receptive field formed

by connections from the source layer (feed-forward) as well as connections from within

the target layer (lateral). These connections are centred around the spatially closest neu-

ron, that is neuron (1) in the case of feed-forward connections. Connections from more

distant neurons are likely to be weaker (indicated by a darker colour).

that model we suggest an architecture capable of handwritten digit classifica-
tion through supervised learning enabled by the construction of the training
architecture.

In short, the suggested model involves the co-operation of two types of mech-
anisms: activity-independent and activity-dependent mechanisms. The former is
represented by the formation rule: it relies on the distance between potential part-
nering neurons to create a new synapse – spatially clustered neurons will tend
to form more connections than neurons that are spatially distant. The latter is
composed of two mechanisms: spike-timing-dependent plasticity (STDP) and a
removal rule for the synaptic rewiring mechanism. STDP, utilising local spiking
information, modifies the weights of synapses connecting neurons together, while
the elimination rule preferentially removes those synapses that are depressed –
synapses that carry ‘useful’ patterns or sub-sets of patterns to neurons will tend
to be re-inforced, thus are more stable in the long term. Conversely, synapses that
usually transmit what amounts to noise will be silenced and are more likely to be
pruned. All of the aforementioned mechanisms operate continuously, at a fixed rate,
on a population of neurons.
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Topographic map quality is assessed using the measures defined by Bamford
et al. [8]: the spread of the mean receptive field σa f f (grey circular area presented
in Figure 7.23) and the Absolute Deviation (AD) of the mean receptive field from
its ideal location (the centre of the circular area presented in Figure 7.23 as a star).
The former relies on the search for the location around which afferent synapses
have the lowest weighted variance (σ 2

a f f ). This is a move away from the centre of
mass measurement used by Elliott and Shadbolt [55] for identifying the preferred
location of a receptive field. As a result, the centre of the receptive field that is being
examined is the location that minimises the weighted standard deviation, computed
as follows:

σa f f =

√√√√√√
∑
i
wi | Epxi |2∑
i
wi

(7.30)

where i loops over synapses, x is a candidate preferred location, | Epxi | is the min-
imum distance from the candidate location to the afferent for synapse i and wi
is the weight of the synapse. The candidate preferred location x has been imple-
mented with an iterative search over each whole number location in each direction
followed by a further iteration, this time in increments of 0.1 units. Thus, the pre-
ferred location Ex of a receptive field is given by the function: argmin

Ex
σa f f .

Once the preferred location of each neuron is computed, taking the mean dis-
tance from the ideal location of each preferred location results in a mean AD for the
projection. We report both mean AD and mean σa f f computed with and without
taking into account connections weights. σa f f−weight and ADweight are computed
using synaptic weights gsyn , while σa f f−conn and ADconn are designed to consider
the effect of rewiring on the connectivity, and thus, synaptic weights are considered
unitary.

These metrics are considered in three types of experiments:

• Case 1: STDP and rewiring operating simultaneously in the presence of cor-
related input

• Case 2: STDP but no rewiring in the presence of correlated input
• Case 3: STDP and rewiring without correlated input

Modelling developmental formation of topographic maps using the presented
mechanisms could yield some interesting results with regard to total speed of
simulation and could be used to validate whether the network can still generate
good-quality topographic maps. Regarding the former, simulations with far more
neurons and synapses could benefit from not requiring a fixed connectivity be
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Figure 7.24. Stacked bar chart of formations and removals over time within one simu-

lation. Left: evolution of the network starting from no connections; right: evolution of

the network starting from a sensible initial connectivity. The number of formations or

removals is aggregated into 3-second chunks.

loaded onto SpiNNaker – the process of interacting with SpiNNaker for loading or
unloading data is currently the main bottleneck. The latter is meant as a validation
for the model, but also to gain additional insights into its operation, specifically
whether maps formed through a process of simulated development react differently
to maps that are considered in their ‘adult’, fully-formed state in need of refinement.

Results from this simulation are presented in tabular form (Table 7.8), with the
addition of longitudinal snapshots into the behaviour of the network and mean
receptive field spread and drift, as well as a comparison between different initial
connectivity types (topographic, random percentage-based and minimal). In the
initial stages of the simulation, the σa f f and AD are almost zero due to the lack of
connections, but they steadily increase with the massive addition of new synapses.
Figure 7.24 shows a side-by-side comparison of the number of rewires between
early development and adult refinement. The developmental model initially sees a
large number of synapses being formed until an equilibrium is reached at around
10% connectivity. A 10% connectivity is also achieved when starting the network
from an adult configuration. This does not mean that every set of parameters will
yield the same result. In this case, and all the others in this work, we locked the
maximum fan-in for target layer neurons to 32, or 12% connectivity. As a result,
the network is bound to have at most that connectivity and at least half that, or
6%, if formation and removal occur with equal probability.

Table 7.8 shows the final, single-trial, results for a network identical to previ-
ous experiments, but with a run time of 600 seconds. This ensures the networks
have a chance to converge on a value of σa f f and AD. A comparison between
Tables 7.7 and 7.8 shows similar results for case 1, but significantly better results
for Case 3. These differences are summarised in Figure 7.25. σa f f and AD were
computed at the end of three simulations differing only in the initial connectivity:
an initial rough topographic mapping as in the previous experiments, a random
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Table 7.7. Simulation results presented in a similar fashion to Bamford et al. [8]

(Table 2) for three cases, all of which incorporate synaptic plasticity. Case 1 consists of

a network in which both synaptic rewiring and input correlations are present. Case 2

does not integrate synaptic rewiring, but still has input correlations, while case 3 relies

solely on synaptic rewiring to generate sensible topographic maps.

Case 1 2 3

Target neuron mean spike rate 21.15 Hz 20.11 Hz 9.31 Hz

Final mean feedforward fan-in per
target neuron

15.91 N/A 11.87

Weight proportion of maximum 0.83 0.72 0.62

Mean σa f f−ini t 2.35 2.35 2.35

Mean σa f f− f in−conn−shu f 2.33 N/A 2.31

Mean σa f f− f in−conn 1.62 2.35 1.85

p(WSR σa f f− f in−conn vs.
σa f f− f in−conn−shu f )

2.80 ×10−43 N/A 3.65 ×10−27

Mean σa f f− f in−weight−shu f 1.61 2.32 1.78

Mean σa f f− f in−weight 1.49 1.92 1.57

p(WSR σa f f− f in−weight vs.
σa f f− f in−weight−shu f )

4.03 ×10−33 4.02 ×10−43 1.44 ×10−21

Mean ADini t 0.81 0.81 0.81

Mean AD f in−conn−shu f 0.82 N/A 1.09

Mean AD f in−conn 0.77 0.81 0.91

p(WSR AD f in−conn vs.
AD f in−conn−shu f )

0.39 N/A 0.002

Mean AD f in−weight−shu f 0.79 0.92 1.04

Mean AD f in−weight 0.85 0.79 1.07

p(WSR AD f in−weight vs.
AD f in−weight−shu f )

0.0002 0.0001 0.58

10% initial connectivity balanced between feedforward and lateral, and almost no
initial connectivity (in practice, one-to-one connectivity was used due to software
limitations). We do not simulate the case without synaptic rewiring, as the results
would be severely impacted by the lack of rough initial topographic mapping. The
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Table 7.8. Results for modelling topographic map formation from development (minimal

initial connectivity).

Case 1 3

Target neuron mean spike rate 18.49 Hz 9.80 Hz

Final mean fan in / target neuron 17.69 11.92

Weight proportion of maximum 0.83 0.63

Mean σa f f−ini t 0 0

Mean σa f f− f in−conn−shu f 2.39 2.30

Mean σa f f− f in−conn 1.56 1.67

p(WSR σa f f− f in−conn vs. σa f f− f in−conn−shu f ) 1.14× 10−43 2.27× 10−35

Mean σa f f− f in−weight−shu f 1.56 1.59

Mean σa f f− f in−weight 1.44 1.26

p(WSR σa f f− f in−weight vs. σa f f− f in−weight−shu f ) 1.25× 10−36 6.21× 10−31

Mean ADini t 0 0

Mean AD f in−conn−shu f 0.79 0.99

Mean AD f in−conn 0.64 0.85

p(WSR AD f in−conn vs. AD f in−conn−shu f ) 1.3× 10−4 0.01

Mean AD f in−weight−shu f 0.66 1.02

Mean AD f in−weight 0.65 0.96

p(WSR AD f in−weight vs. AD f in−weight−shu f ) 0.84 0.51

final mean value of AD is improved in both experiments involving initial non-
topographic connectivity and σa f f is improved when the network starts with no
initial connectivity.

7.5.2 Stable Mappings Arise from Lateral Inhibition

Following the previous results, coupled with the tendencies exhibited by the results
generated for Case 3 in Figure 7.26, further simulations have been run to con-
firm whether input correlations are necessary to generate stable topographic maps.
Our results are inconclusive as although the weighted AD of the mean recep-
tive field increased to 2.25, or 1.64 if only considering connectivity, the final
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Figure 7.25. Comparison of final values for σa f f and AD in the case where input corre-

lations are absent (Case 3). Three types of networks have each been run 10 times (to

generate the standard error of the mean), each starting with a different initial connec-

tivity: an initial rough topographic mapping as in the previous experiments, a random

10% connectivity (5% feedforward, 5% lateral) and almost no connectivity (one-to-one

connectivity used due to software limitations).

Figure 7.26. Evolution of results of interest. The top row shows the evolution of the mean

spread of receptive fields over time, considering both unitary weights (σa f f−conn) and

actual weights (σa f f−weight ) at that point in time. The bottom row shows the evolution of

the mean absolute deviation of the receptive fields considering connectivity (ADconn) and

weighted connectivity (ADweight ). Error bars represent the standard error of the mean.

mean number of feedforward synapses reduces to around 5, making these statis-
tics unusable.

We hypothesise that since the feedforward is reduced so heavily, both in terms
of connectivity (on average 5 incoming connections for each target-layer neuron)
and in terms of synaptic weights (0.3 of maximum possible for the present connec-
tivity) that the lateral connections within the target layer drive the comparatively
high activity in the target layer (Figure 7.27). This, in turn, causes the pre-synaptic
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Figure 7.27. Target layer firing rate evolution throughout the simulation. The instanta-

neous firing rate has been computed in 1.2-second chunks for simulations where lateral

connections are excitatory (lat-exh) and for simulations where lateral connections are

inhibitory (lat-inh).

partner selection mechanism to focus its attention mostly on the target layer. We
have achieved a reduction in the target layer firing rate by introducing inhibitory
lateral connections. This is sufficient to generate a stable topographic mapping that
matches quite closely the results of the original network when both input correla-
tions and synaptic rewiring are present: σa f f−conn = 1.74, σa f f−weight = 1.38,
ADconn = 0.85, ADweight = 0.98; all results are significant. The combined
choice of sampling mechanism and lateral inhibition has a homeostatic effect upon
the network.

Conversely, in the cases where input correlations are present, we see stable
topographic mapping, regardless of the presence of synaptic rewiring, as well as
significantly more feedforward synapses. Finally, no applicable network was neg-
atively impacted by initialising the connectivity either randomly or with minimal
connections.

To sum up, the model can generate transiently better topographic maps in
the absence of correlated input when starting with a negligible number of ini-
tial connections or with completely random connectivity. These results can also
be stabilised with the inclusion of lateral inhibitory connections preventing self-
sustained waves of activity within the target layer. Experiments using correlated
inputs do not require inhibitory lateral feedback either for reducing the spread
of the receptive field or for maintaining a stable mapping. Finally, the model has
proven it is sufficiently generic to accommodate changes in initial connectivity, as
well as type of lateral connectivity, that is, the change from excitatory to inhibitory
synapses.
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Figure 7.28. Network architecture used for training. A source layer displays a series of

examples of handwritten digits; each example from a particular class is projected to the

target layer corresponding to that class.

7.5.3 MNIST Classification in the Absence of Weight
Changes

With an established model for synaptic rewiring [23], it is now possible to perform
classification tasks using a simple architecture [103].

The model is equivalent to the supervised learning paradigm in ANNs. Data
are labelled using a dedicated projection from a source layer to the corresponding
target layer. A layer of neurons providing examples belonging to a class connects
exclusively to a population which learns to recognise members of that class. Figure
7.28 shows the network architecture of the training regime, where each source in
a source-target population pair displays a digit for 200 ms for a combined total
simulation time of 300 seconds; the initial connectivity between each source-target
pair is 1%.

To generate the input, each original digit is filtered via convolution using a 3×3
centre-surround kernel, mimicking the response of the highest resolution retinal
ganglion cells. The kernel is normalised to sum to zero with an auto-correlation
equal to one. Finally, a threshold is applied after the convolution operation, result-
ing in edge detection. Transmission within the network is achieved through the use
of neurons generating Poisson spike trains; each pixel within the 28× 28 image is
mapped to two Poisson neurons, one for the on channel and one for the off channel.
The top of Figure 7.29 shows examples of input digits before adding background
noise; all of the feed-forward connections are excitatory.

The bottom image in Figure 7.29 shows that it is possible to identify visually
what each target layer has learnt; time-averaged digits from each class are embedded
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Figure 7.29. Top: Input rate-based MNIST digit representation. Bottom: Reconstruction

of the learned digits when connectivity is adapted using only structural plasticity.

into the connectivity of the network. It is then possible to test the quality of classi-
fication. For this, we make use of a single source layer. The previously learnt con-
nectivity is used to connect all of the target layers to the source layer, and all plas-
ticity is disabled. The source layer now displays class-randomised examples, each
for 200 ms. The classification decision is made off-line, based on which target layer
has the highest average firing rate within the 200 ms period.

This is not a state-of-the-art MNIST classification network (it achieves a modest
accuracy of 78% and a Root Mean Squared Error (RMSE) of 2.01, Figure 7.30
reveals what mistakes the network made) as each input digit class is represented only
as an average for that class, but it serves here to demonstrate that synaptic rewiring
can enable a network to learn, unsupervised, the statistics of its inputs. Moreover,
with the current network and input configuration, the quality of the classification
is critically dependent on the sampling mechanism employed in the formation of
new synapses. Random rewiring, as opposed to preferentially forming connections
to neurons that have spiked recently, could achieve accurate classification only if
operating in conjunction with STDP.

Finally, this approach is also critically dependent on the encoding scheme used
to represent the input. A rate-based encoding as shown here is required if no STDP
is present.
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Figure 7.30. Classification confusion matrix.

7.5.4 Visualisation, Visualisation, Visualisation

While working on implementing such an alien mechanism on SpiNNaker, it was
important to ensure that everything behaved correctly. It took more than a year to
reach this goal. More than a year of simulations, trial and error, blood and sweat,
printing parameters from SpiNNaker and saving them to disk, analysing and re-
analysing. Frustratingly, we were stuck at debugging weird behaviour revealing itself
as unexpected stripes in the connectivity matrix. Jupyter notebooks played a central
role in this process, although in hindsight they should have been phased out after
the initial first complete run. This particular issue had evaded all attempts at a
systematic sweep of parameters and histogram plotting. Until one day…

Discipline is of course important in identifying bugs – this is why we can point
at the exact simulation results that flagged the issue.1 However, I believe that just
as important as discipline can be a singular plot. In our case that plot is shown in
the middle of Figure 7.31. It perfectly captures our issue: a systematic bias in the
choice of pre-synaptic partner caused by the sub-millisecond ordering of spikes as
they are generated by the input Poisson spike source.

The problem: we were selecting the last neuron to have fired as a partner for
formation, thus ordering the spikes generated within a millisecond time step. The
solution: correctly appreciate that because of the resolution of the time step, the
input spikes were simultaneous and the source of one should be selected at random
as a partner for rewiring.

To conclude, the solution only emerged after seeing a plot that would later be
included in a paper by George et al. [73]. It looked at a vector of neurons that

1. http://dx.doi.org/10.17632/xfp84r5hb7.1#folder-36833daa-91a8-499c-a898-65a96e22958b

http://dx.doi.org/10.17632/xfp84r5hb7.1#folder-36833daa-91a8-499c-a898-65a96e22958b
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Figure 7.31. Left: the input spiking activity represented by a Poisson spike generator with

rates described by the Gaussian curve in black; centre: the neuron identifiers considered

for formation throughout an entire simulation if this choice relies on selecting the last

neuron to have spiked; right: the neuron identifiers considered for formation through-

out an entire simulation if the choice relies on selecting an arbitrary partner among the

ones that have spiked since the last time step. In bright yellow, aligned across all plots:

the neuron with the highest firing rate. Additionally, the partitioning of the pre-synaptic

population is highlighted in green in the central and right-most figures.

generated input spikes with bimodal firing rates and showed how the connectivity
had adjusted. We needed only look at which sources the formation attempts were
considering to reveal the issue.

7.5.5 Rewiring for Motion Detection

We build on previous work [103] and present an end-to-end approach to perform
elementary motion decomposition using LIF neurons and structural and synaptic
plasticity [22]. Further, the computational platform which is the basis for these
simulations is event-driven [207], including the spiking visual input provided to
the network. The biologically inspired sensory processing method presented here
is an alternative to traditional frame-based computer vision.

We show that (1) the presented architecture allows for unsupervised learning;
that (2) synaptic rewiring enhanced to initialise synapses by drawing from a distri-
bution of delays produces more specialised neurons; and that (3) a pair of readout
neurons is sufficient to correctly classify the input based on the target layer’s activity
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Figure 7.32. (a) Network architecture. (b) Example input 45◦ movement represented as

its constituent frames (before processing to generate spikes). A new frame is presented

every 5 ms and, in total, the presentation of an entire pattern takes 200 ms.

using rank-order encoding (first classification neuron to spike wins), rather than
spike-rate encoding (classification neuron that fires most in a time period wins).

The SNN architecture (pictured in Figure 7.32(a)) is designed to allow unsu-
pervised learning through self-organisation using synaptic and structural plasticity
mechanisms [23]. Neurons in the two target populations are modelled as being
positioned at integer locations on a 32 × 32 grid with periodic boundary con-
ditions. The excitatory population contains neurons that receive sparse excitatory
connections from the input layers and from themselves, while projecting to the
inhibitory layer and to the readout neurons responsible for the final motion clas-
sification decision. The inhibitory population follows a similar structure, but only
projects using inhibitory synapses. Very strong inhibition is also present between
the readout neurons, implementing a WTA circuit. The networks are described
using the PyNN simulator-independent language for building neuronal network
models [44] and the SpiNNaker-specific software package for running PyNN simu-
lations (sPyNNaker [207]).2 The model is simulated in real time on the SpiNNaker
many core neuromorphic platform using previously presented neuron and synapse
dynamics [23].

2. The data and code used to generate the results presented here are available from doi: 10.17632/wpzxh93vhx.1



Structural Plasticity 251

The input stimulus consists of bars encoded using spikes representing ‘ON’ and
‘OFF’ pixels (see Figure 7.32(b) for an example before filtering using a previously
described technique [194]) as well as a background level of Poisson noise (5 Hz).
Each stimulus is presented over a 200 ms time period always moving at a constant
speed (200 frames per second). During training, the target layers are presented with
bars moving in two directions (Eastward or at 0◦ and Northward or at 90◦), but
during testing they are presented with moving bars in all directions (randomised
over time, in 5◦ increments) – weights and connectivity are fixed during this lat-
ter phase. The simulations are initialised with no connections and are trained for
around 5 hours, while testing occurs over 20 minutes. As a result of the chosen test-
ing regime, the networks sees over 80 moving bar presentations at each of the 72
angles. This allows us to perform a pair-wise independent t-test between the responses
at each of the angles in the two cases and establish whether their responses are sta-
tistically different. The readout neurons are trained and tested separately from the
rest of the network – this process takes on the order of a minute.

Using the structural plasticity mechanism implemented for SpiNNaker, new
synapses are formed in two regimes: with heterogeneous, random delays ([1, 15]
ms, uniformly drawn) and homogeneous, constant (1 ms) delays; the latter is taken
to be the control experiment. Further, according to the structural plasticity mech-
anism, depressed synapses are more likely to be removed. This optimises the use of
the limited synaptic capacity available for each post-synaptic neuron [73]; neurons
have a fixed maximum fan-in of 128 synapses with fixed delays.

The Direction Selectivity Index (DSI) will be computed for each neuron after
training: DSI = (Rpre f − Rnull)/Rpre f , where Rpre f is the response of a neu-
ron in the preferred direction and Rnull is the response in the opposite direc-
tion [157]. We compute it for each of the possible directions and establish the
preferred direction as that which maximises the DSI. Individual neurons generally
have noisy responses. As such, to avoid the noise skewing the computation, we fil-
ter the response of the neuron by applying a weighted average on individual angle
responses.

More formal analysis, although less specific to the task of motion detection, is
also performed. Entropy is computed using each neuron’s normalised spiking pro-
file. After testing, each neuron’s firing profile R(X) is computed in relation to each
one of the i = 1 → 72 input movement directions. Normalisation is performed
by dividing every response by the sum of all responses:

Pi (X) = Ri (X)
∑

j

R j (X) (7.31)

so that
∑

i Pi = 1 for each neuron X . The firing profile of the neuron can thus
be interpreted as the neuron’s confidence in the input movement direction. We can
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compute the entropy of a neuron’s response:

H(X) = −
∑

i

Pi (X) log2 Pi (X) (7.32)

The maximum entropy in the presented system is thus − log2(1/72) ≈ 6.17
bits, which is equivalent to neurons displaying equal spiking activity in all presented
angles, or no selectivity whatsoever. Neuron X is said to be very selective if simul-
taneously maximises DSI (DSI (X) → 1) and minimises entropy (H(X) → 0).
It is sufficient for a neuron to have DSI (X) ≥ 0.5 to be considered selective.

Both DSI and entropy are used to select and investigate the behaviour of indi-
vidual neurons. In the following section, we will display quadruplets of individual
neuron responses that have maximal grid-aligned responses and minimal orthog-
onal and opposite responses: argmaxX = Ri − (Ri+90◦ + Ri−90◦ + Ri+180◦).
Here i is in turn: 0◦, 90◦, 180◦ and 270◦, that is, the cardinal directions. The dis-
tributions of entropy and DSI are also included for all experiments. Comparison
of these distributions is performed by applying both Welch’s t-test and Kruskal’s
h-test.

After training the readout units, it is possible to establish class inputs. Based on
the predicted label and the known true labels, we report the accuracy, recall F-score
of the network, as well as the RMSE. We define Tp and Tn to mean the number of
true positive and true negative examples, while Fp and Fn refer to the number of
false positives and negatives, respectively. Recall or sensitivity, intuitively the ability
of the classifier to find positive samples, is reported as T p/(T p+ Fn). Precision or
the positive predictive value, intuitively the qualitative ability of the classifier not
to label as positive an example that is negative, is computed as T p/(T p + Fp).
Given these metrics, we can now compute the weighted average between precision
and recall to generate the F-score F1 = 2 (precision× recall)/(precision+ recall).
Due to the readout architecture and experimental parameters, we also investigate
the number of instances in which no readout neuron produces a spike.

The response of the excitatory population in each regime (incorporating het-
erogeneous delays or not) is plotted for each testing direction (minimum, mean
and maximum responses presented in Figure 7.33(a)). The polar plot reveals the
firing rate (Hz) of neurons during testing when the input is moving in each of the
72 directions from 0◦ to 355◦ in 5◦ increments in a random order. The network
response shows that neurons are responding preferentially to movement, rather than
simply to the shape of the input, because the response is asymmetrical – it can
differentiate between, for example, a vertical bar moving eastward and the same
vertical bar moving westward. The pair-wise independent t-test is performed to com-
pare the network response in the two regimes (Figure 7.33(c), red line signifies that
p ≥ 0.001 for that particular angle); the response is higher in one training direction
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Figure 7.33. Spiking activity comparison between networks where rewiring assigns ran-

dom and constant delays, respectively, to new synapses. Both networks were trained

using bars moving eastward (0◦) and northward (90◦). (a) the minimum, mean and max-

imum aggregate excitatory population firing response (Hz); (b) neuron angle preference

based on maximum firing rate encoded by the colour and DSI represented by the arrow

direction (it is only present if DSI ≥0.5); (c) pair-wise independent t-test comparing the

network with heterogeneous delays (on the left in a and b) to the control setup (on the

right in the same subplots) − red lines show the angle at which the comparison yielded

insignificant results; (d) selected individual neuron responses in the 4 grid-aligned direc-

tions (random delays); (e) selected individual neuron responses in the 4 grid-aligned

directions (constant delays); (f) individual overlaid selective neuron responses after fil-

tering (DSI ≥0.5); (g) histogram comparison of all DSI values in the two networks; (h) his-

togram comparison of all entropy values in the two networks.

(90◦) and less in the other (0◦) for the network with heterogeneous delays com-
pared to the control. As such, we proceed by examining individual neurons rather
than the average network behaviour. The spatial organisation of neurons and their
preferred angle is presented in Figure 7.33(b), showing that local neural neighbour-
hoods become sensitised to the same input statistics. There we also look at neurons’
maximum responses (encoded by the colour of the cell) in conjunction with the
direction that maximises DSI (arrow direction) and DSI ≥ 0.5 (arrow presence).
The DSI histogram presented in Figure 7.33(g) compares the two networks; the
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(a) (b)

(c) (d)

Figure 7.34. Network evolution over a wide range of simulation run times when trained

on two angles. (a) average network firing response during inference when trained for

ever increasing times; (b) average number of afferents (incoming connections) for each

neuron in the excitatory target layer; (c) DSI distribution displayed as a boxplot for each

simulation in (a); (d) entropy distribution displayed as a boxplot for each simulation in

(a). Note: Each data point is a different simulation.

control network has significantly fewer selective neurons (251 compared to 744)
and selectivity is lower on average. Individual responses of our simulated neurons
resemble the direction selectivity found in Superior Colliculus [112].

Further, we examine the network behaviour over a wide range of simulations
times, ranging from 40 minutes up to 20 hours. Figure 7.34(a) shows the evo-
lution of the population-level firing rate and the evolution of the DSI metric
(Figure 7.34(c)). The network is thus shown to be stable over long periods of time,
rather than showing destructive dynamics.

A readout or classification mechanism relying on two mutually inhibitory neu-
rons is sufficient to resolve the two directions presented in the input. Static excita-
tory connectivity originating from the excitatory layer results in a potential 100%
classification accuracy based on rank-order encoding. After 40 seconds, the two
neurons have self-organised to respond to one of two input patterns. Figure 7.35
shows the spiking behaviour of the two neurons in the first 1.8 seconds of training
and testing. STDP reduces the latency in neural response to the stimuli, making
the neurons respond to the stimulus onset, thus making them ideal for classification
using rank-order encoding, rather than a WTA classification based on spike count
across a time period [103].
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(a)

(b)

Figure 7.35. Initial spiking activity of the two readout neurons during training (a) and

testing (b). The full-height vertical bars denote the edges of the pattern presentation time

bins (every tstim =200 ms). Neuron class is established post hoc as the one maximising

classification accuracy.

7.6 Neuroevolution

SNNs are not solely defined by hierarchical-layered architectures and activa-
tion functions but also by neuron model parameters that can alter neuron
behaviour over time. The extra spatio-temporal degrees of freedom afforded by
SNNs give models a larger parameter space than ANNs. This is of particular
note for SNNs that are models of biological neural networks where experimen-
tal or ethical limitations mean that it can be difficult or impossible to collect
the data in vivo to define all the necessary model parameters. Optimisation
techniques can be used to explore the parameter spaces of such models and
find plausible values. We anticipate that this will be a fruitful area of future
research.

A practical method for optimisation and the exploration of the large search
spaces seen with SNNs is to use gradient-free (also known as random search) opti-
misation methods such as Evolutionary Algorithms (EAs). EAs involve evaluat-
ing a population of potential solutions (known as agents or individuals) against a
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Figure 7.36. A flowchart showing the steps in an EA.

target task.3 The agents in the population that perform best are selected to repro-
duce, with the offspring having some variation applied. The offspring form the
population for the next generation, see Figure 7.36, often with a small portion of
the best-performing agents automatically passing into the next generation. This is
known as elitism and has been shown to aid convergence to solutions [46]. Like
evolution by natural selection in biology [43], survival of the fittest in EAs is an
unguided force which can lead towards better performing agents.

How the performance of agents is evaluated is task specific; however, it does not
require gradient information, making an EA approach particularly well suited for
tasks in which the error is either difficult or impossible to differentiate. The terms
EA and Genetic Algorithm (GA) are often used interchangeably but technically
GAs are a subclass of EAs in which agents are encoded as discrete values in ‘genes’
and random mutation and crossover adding variation to offspring.

The scale of large SpiNNaker systems, such as the one million core machine at
the University of Manchester, lend themselves to population-based search meth-
ods. The parallelism available with such systems allows model execution to become
invariant with respect to population or network size, the main components leading

3. So far, population has been used in the context of PyNN to describe a group of neurons. In the context of
EAs population is used to refer to a group of individuals (whole networks) to be optimised, unless otherwise
specified.
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to increased simulation time on other platforms. Larger population sizes increase
the effectiveness of an EA as they increase the coverage of the search space. With
more serial systems, a practical limit is placed on the size of the population but with
SpiNNaker such scaling problems are diminished. There is an overhead in terms
of loading models on to SpiNNaker; however, by separating the population of net-
works into a collection of smaller jobs, the loading time can be made similar to
the time taken to run a single network assuming sufficient auxiliary computational
resource.

7.6.1 Pac-Man on SpiNNaker

The first concrete application of neuroevolution to develop SNNs on SpiNNaker
was undertaken by Vandesompele et al. [259] in which the NeuroEvolution of Aug-
menting Topologies (NEAT) algorithm [237] was used to generate an agent able
to play the Pac-Man arcade game as well as solve the XOR problem. In Pac-Man,
the agent had a view of the tiles one or two spaces around it, closer to modelling
an agent in a maze than a conventional human player. The algorithm converges
on the XOR problem, although it required 49,750 evaluations compared to the
13,459 in the worst-case performance of NEAT using an ANN (average of 4,800).
The Pac-Man game was a proof of concept. The performance did improve with
time; however, it did not get close to the theoretical maximum score. This is to be
expected of an agent that cannot see further than two positions around itself as any
high level of forward planning necessary to eat ghosts, representing a large increase
in score, is not feasible.

7.6.2 Further Exploration of NEAT

Work is currently being undertaken to increase the efficiency of the algorithmic
implementation of NEAT on SpiNNaker. One key aspect to improving perfor-
mance is to run the target task on SpiNNaker directly so that the model and the
environment with which it interacts need not communicate via Ethernet; instead of
having spike communication with a host computer, connections are kept local and
fast, eliminating an input/output bottleneck and increasing the scale of population
possible with SpiNNaker. So far, models running on SpiNNaker have been created
for the multi-armed bandit task, inverted pendulum and Breakout (the classic Atari
game) as well as a number of other tasks.

7.6.3 An Evolutionary Optimisation Framework for SpiNNaker

Another approach developed an EA framework for SNN models running on
SpiNNaker and looked to understand the scaling and performance of this kind
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of optimisation. The weight parameters of a small convolutional network for the
MNIST digit recognition task were evolved as a test case. A GA was chosen as
the optimisation algorithm because of its biological relevance and the potential for
model evaluation to be parallelised by running multiple models simultaneously on
SpiNNaker.

7.6.4 Methods

Figure 7.37 shows the structure of the simple convolutional SNN model, the
weights of which were optimised for the MNIST digit recognition task using a GA.
The spikes of the 28 × 28 input layer were rate-coded representations generated
from the MNIST images. The hidden layer was a 24× 24 layer that is the convo-
lution of input with a 5 × 5 filter. The hidden layer was fully connected to the
10 output neurons. The 25 weights of the filter and the 5,760 weights of the
fully connected layer were encoded in a 5,785 base gene, with the bases taking
integer values in the range −1 to +1. The details of the GA used are detailed in
Table 7.9. Two experiments were carried out to better understand the effect of dif-
ferent initialisation on the evolution of the population over 304 generations: the

Figure 7.37. The structure of the simple SNN model optimised using a GA.

Table 7.9. A summary of the GA parameters.

Variable Value

Population size (individuals) 24,000

Mutation rate 0.1%

Mutation type Base substitution

Crossover rate 50%

Crossover type Two-point crossover
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(a) (b)

Figure 7.38. The centre-surround filters used to seed the seeded population.

first experiment tracked the accuracy of a population of 24,000 individuals with
randomly initialised genes (the unseeded population) and in the second the initial
population (the seeded population) was seeded with 12,000 individuals with one
centre-surround filter (6,000 positive, 6,000 negative, see Figure 7.38). In each of
these experiments, 7.29× 106 networks were evaluated on SpiNNaker.

7.6.5 Results

Figure 7.39 shows the evolution of the training accuracy of the two populations
over 304 generations. The five top performing individuals from the final popula-
tions were evaluated against the MNIST testing set and the best individuals gave
66.7% and 63.9% testing accuracy, unseeded and seeded, respectively. These results
are far from state-of-the-art accuracies but demonstrate that a GA can be used for
optimisation in this way.

It was hypothesised that the same convolutional filter may evolve from an
unseeded population independent of the random initialisation; however, multiple
runs of smaller populations showed that, on the order of hundreds of generations,
this is not the case. During the course of these experiments, the time performance
of the system was evaluated. It was found that the overhead of submitting a Spalloc
job merited redesigning the framework to allow multiple models to be evaluated
in one job. As a reminder, Spalloc is the current SpiNNaker job submission sys-
tem which allocates a subset of the entire machine to individual users. This work
demonstrated that it is possible and feasible to use a GA to tune the parameters of
an SNN model on SpiNNaker.

7.6.6 Future Work

There are a number of avenues for future work in the field of SpiNNaker and opti-
misation algorithms. Future work could involve the use of different optimisation
algorithms, and the application of optimisation algorithms to the conversion of
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Figure 7.39. A graph comparing number of generations compared with training accuracy

for a GA with two populations of 24,000 individuals, each being a SNN model. The seeded

population was initialised with 12,000 centre-surround filters, 6,000 positive and 6,000

negative and 12,000 individuals with randomly initialised filters. The unseeded population

was initialised with 24,000 random individuals.

ANN models and to uncover novel learning mechanisms in SNNs. Looking more
broadly, the development of robust model optimisation frameworks could well lead
to a change in the way that research is carried out.

Different EAs

The modification of genes in EAs is random and mutations are undirected; an Evo-
lutionary Strategies (ES) algorithm [15] may well be able to achieve similar results
with far fewer evaluations. It does this by mutating the best agent in a population
multiple times to create a new generation. The mutation vector of all individuals is
then scaled by their performance and totalled to give an approximation of the gra-
dient allowing the next-generation mutation to be in the direction in the solution
space which produced the best performance.

One of the key features of SpiNNaker is its asynchronicity, a feature that lends
itself to lesser-studied asynchronous steady-state EAs [2]. In these types of models,
fitness values are not gathered at the end of a generation as they would be in a typical
generational GA, rather models compete between themselves locally. This kind of
optimisation algorithm could be run directly on SpiNNaker and would minimise
the overheads associated with scattering and gathering data to across multiple chips
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and boards. We estimate that running the EA ‘on-machine’ could half the time
taken to evaluate models similar in scale to that of the MNIST test network above.

Machine Learning

A key area of interest is understanding the relationship between SNN and ANN
models and translation between them. Deep ANN models trained by error back-
propagation give state-of-the-art performance in many benchmark machine learn-
ing tasks. An automated optimisation framework could be used to help convert
ANN models to SNNs to be run on SpiNNaker. This would dramatically increase
energy efficiency for practical applications as well as adding to our understanding
of how information is processed in neural networks more generally.

Learning-to-Learn

A current fruitful area of research, dubbed Learning-to-Learn (L2L), applies opti-
misation techniques to fine tune the hyperparameters of another optimisation algo-
rithm [12]. An example of this could be using a genetic algorithm to evolve the
parameters which control how backpropagation performs. This can help find cer-
tain parameters and starting conditions conducive of fast learning on novel tasks.
With both optimisers working at different time scales, it simulates the slow evolu-
tionary process of genetic variation with the fast time scale acting in a similar way
to learned behaviour during a lifetime.

Impact on Computational Neuroscience

By allowing work with biological models that do not have full parameter sets,
the focus of researchers working with experimentally derived models could move
towards higher levels of abstraction and larger-scale models. This step is an impor-
tant one to bridge the gap between understanding information processing in the
brain and the application of such knowledge in future neuromorphic systems.
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The best way to predict the future is to create it.

— Abraham Lincoln

In this chapter, we take a look into the future of this technology. First we sur-
vey interesting developments in hardware accelerators for SNNs and ANNs, but
then we focus primarily on the second-generation SpiNNaker developments. Here
we will refer to the current SpiNNaker machine as SpiNNaker1 and the second-
generation machine as SpiNNaker2.

8.1 Survey of Currently Available Accelerators

This is an exciting time as large corporations are exploring the usefulness of neu-
romorphic systems, and it is no longer an effort driven solely by academia. Most
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systems are in a research prototype phase, rather than fully commercially viable
products. Current offerings include:

• Intel’s Loihi1; IBM’s TrueNorth2; Eta Compute’s Tensai3; aiCTX4;
BrainChip’s Akida.5

Although neuromorphic systems are still at an early stage, many companies
already offer or are close to offering options for accelerating inference and learning
in artificial DNNs. These include:

• In data centres: NVidia’s Tesla Graphics Processing Units (GPUs) (P100 for
training, P4 & P40 for inference)6; Intel’s Nervana L-1000 Neural Network
Processor (NNP)7; Graphcore’s Colossus Intelligence Processing Unit (IPU)8;
Google’s Tensor Processing Unit (TPU).9

• In mobile devices: Huawei’s Kirin970 AI Processor10; Qualcomm’s AI
Engine11; Imagination’s PowerVR Series2NX and Series3NX12; Apple’s A12
Bionic13; Cadence’s and Tensilica’s HiFi 5 Digital Signal Processor (DSP)14;
ARM’s Trillium Project15; LG’s AI Chip.16

1. https://newsroom.intel.com/tag/loihi/#gs.7e79qw

2. http://www.research.ibm.com/articles/brain-chip.shtml

3. https://etacompute.com/

4. https://aictx.ai/

5. https://www.brainchipinc.com/

6. https://www.nvidia.com/en-gb/deep-learning-ai/

7. https://www.intel.ai/nervana-nnp/

8. https://www.graphcore.ai/

9. https://cloud.google.com/tpu/

10. http://www.hisilicon.com/en/Media-Center/News/Key-Information-About-the-Huawei-Kirin970

11. https://www.qualcomm.com/snapdragon/artificial-intelligence

12. https://www.imgtec.com/vision-ai/powervr-series3nx/

13. https://www.apple.com/uk/iphone-xs/a12-bionic/

14. http://www.cadence.com/go/hif i5

15. https://www.arm.com/products/silicon-ip-cpu/machine-learning/project-trillium

16. http://www.lgnewsroom.com/2019/05/lg-to-accelerate-development-of-artificial-intelligence-with-own-ai-
chip-2/
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Applications of these accelerators mostly focus on visual pattern recognition and
inference, that is, ConvNets, and thus, they share some common features. Firstly,
data movement incurs time and energy costs that are minimised by keeping the
data close to the computational unit, a trait that SpiNNaker shares. Secondly, at
least during inference, high accuracy can be achieved with relatively low precision
computation.

Regardless of the level of biological plausibility, this explosion of products and
interest in custom accelerators seems to be driven by a desire for cars to drive them-
selves and for mobile phones to perform inference locally rather than relying on
data centres as at present.

This section captured a snapshot of the current state of hardware development
for accelerating neural network processing. At the time of reading, it is most likely
out of date. However, its purpose is to show the very high interest both in neu-
ral networks and in designing ASICs to compute efficiently in spite of Moore’s
law [168] coming to its end.

8.2 SpiNNaker2

In this increasingly competitive environment of novel ANN and SNN hardware
offerings, we embarked upon the development of a second-generation SpiNNaker
system. The resulting chip will be fabricated in 2020, and small- and large-scale
systems will follow. Here we present the thinking behind SpiNNaker2, and the
approach taken to its design.

8.2.1 Lessons from SpiNNaker1

The full SpiNNaker1 chip was delivered in 2011, since when considerable experi-
ence has been gained in its use. This experience allows us to identify the strengths
and weaknesses of the design, and in the second-generation system we can build on
the former and try to address the latter.

Strengths

• Software neuron and synapse modelling. Although the use of software inevitably
compromises energy-efficiency compared with hard-wired analogue or digi-
tal algorithms, for a research platform we believe that the resulting flexibility
more than warrants this sacrifice.

• Multicast packet routeing. The SpiNNaker packet routeing mechanism
has proved its ability to adapt to a wide range of use profiles and
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is still the most flexible neuromorphic interconnect mechanism devised
to date.

Weaknesses

• Host I/O performance. The 100 Mbit Ethernet I/O on each SpiNNaker1
board has proved a major bottleneck in the machine’s use. Although we have
found ways to circumvent this bottleneck in a number of circumstances,
much higher I/O bandwidth would greatly improve the performance and
usability of the machine.

• Memory sharing. In SpiNNaker1, each processor core has its private local
memory and (slower) access to the shared SDRAM. The trend towards
increased communication between the cores on a chip, for example, when
neuron and synapse modelling runs on different cores, has made moving data
between cores increasingly important, but on SpiNNaker1 this can only be
done via SDRAM.

In addition to these strengths and weaknesses, it is notable that the SpiN-
Naker1 cores spend a lot of time in a few oft-repeated algorithms for func-
tions such as random number generation and computing exponentials. All of
this experience has been fed into the design of the second-generation system,
SpiNNaker2.

8.2.2 Scaling Performance and Efficiency

An obvious way to scale the performance and improve the energy efficiency of
the next-generation SpiNNaker is to benefit from Moore’s Law [168] and imple-
ment this multi-processor SoC (MPSoC) in an advanced technology node. Here
the 22-nm Fully-depleted Silicon-on-Insulator (FDSOI) technology 22FDX by
GlobalFoundries [34] has been chosen.

The second aspect for improvements is the application of circuit design tech-
niques to enhance both the compute performance and the energy efficiency of
SpiNNaker2. This includes specific hardware extensions to the neuromorphic Pro-
cessing Element (PE) as shown in Section 8.5 and power management techniques,
such as dynamic voltage and frequency scaling [105], that have been proven on
previous MPSoCs in the fields of mobile communication [88, 181] and database
processing [87].

The overall target for the SpiNNaker2 system is to enhance the capacity for
brain-size spiking network simulation in biological real time by at least 10×, at
the same power consumption as SpiNNaker1. The envisioned scaling involves the
three key aspects for neuromorphic computing of the processing of neural states and
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synaptic weights, the communication of spike events and the storage of synaptic
weights.

8.3 SpiNNaker2 Chip Architecture

Figure 8.1 shows the SpiNNaker2 chip top-level architecture. It follows the same
concept as the SpiNNaker1 neuromorphic computation system with:

• a homogeneous array of ARM core-based processing elements for software-
defined neuromorphic computation;

• a lightweight spike packet communication fabric based on the SpiNNaker
router (see Section 2.2.3) and energy efficient chip-to-chip links;

• off-chip SDRAM interfaced by two Low-Power Double Data Rate version 4
(LPDDR4) memory interface channels for synaptic weight storage.

The processing elements (PEs) are arranged in groups of quads (QPEs) which
form tiles for the homogeneous processor array. SpiNNaker2 employs a mesh-based
NoC where every QPE constitutes one node of the mesh grid. The NoC is respon-
sible for all types of communication between the on-chip components and from/to
the off-chip interfaces. This includes chip boot-up and configuration data transfers,
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spike traffic and off-chip memory data traffic. Therefore, all other chip top-level
components are connected to the NoC as well. These include the following:

• Two LPDDR4 memory interfaces, consisting of a memory controller and a
PHY for a total maximum external memory bandwidth of 6 GBytes/s.

• The SpiNNaker2 router, which is similar in principle to the SpiNNaker1
router but with a larger routeing table (16 k vs. 1 k entries) and a number of
other optimisations.

• Six bidirectional chip-to-chip links with up to 3 GByte/s per link in each
direction. These links employ features such as low I/O signal voltage swing
and forwarded clocking to achieve low power consumption, proportional to
the data payload traffic.

• The host interface that provides connectivity to an external Ethernet PHY by
means of SGMII with 4 lanes with up to 2.5 Gbits/s each.

• A periphery block providing functionality for autonomous chip boot-up,
housekeeping and standard interfaces to off-chip sensors and actors for
neuromorphic applications.

The definition of the SpiNNaker2 chip architecture is optimised for efficient
implementation and verification. This includes the following aspects:

• The strictly homogeneous architecture partitioning of PE and QPE allows
for hierarchical physical design implementation. This significantly reduces
the tool run-times for synthesis and place and route to enable layout imple-
mentation within reasonable time frames.

• The QPEs and all other macro blocks are realised for connection to their
neighbour directly by abutment placing. There are no flat top-level routeing
signals in the SpiNNaker2 core area.

• Signal interfaces between macro blocks are asynchronously decoupled by
FIFOs, realising a Globally Asynchronous Locally Synchronous (GALS)
architecture. This avoids the need to implement a globally synchronous clock
distribution network (e.g. a clock tree) and allows for individual frequency
scaling of the individual components.

• The packet-based NoC communication fabric handles various types of data
traffic, including configuration data, Design for Test (DfT) scan data, inter-
rupts, spikes, DMA traffic. This avoids the need for various side signals, such
as interrupt signals or DfT signal nets, which would complicate the top-level
physical implementation.

• The DfT concept is strictly hierarchical, with scan chains inserted per macro
block. The PEs can be set to DfT mode during system operation and execute
tests (stuck-at scan, MBIST) with data transfer over the NoC.
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8.4 SpiNNaker2 Packet Router

The SpiNNaker router is the key component in the SpiNNaker machine for SNN
simulations. The SpiNNaker1 router was described in detail in Section 2.2.3.
The router on the second-generation SpiNNaker chip incorporates improvements
required here to support the larger routeing tables and increased communication
throughput; the SpiNNaker2 chip contains more than 100 processing elements.
All the on-chip and inter-chip spikes are routed by the SpiNNaker router. The
whole SpiNNaker2 packet router is designed with fully pipelined packet flows
and provides higher throughput and performance. The top-level structure of the
SpiNNaker2 packet router is shown in Figure 8.2.

The SpiNNaker2 packet router has 6 (parameterised) on-chip and 7 off-chip
communication channels occupying the same area as 2 QPEs. These channels
attach and share the 6 bi-directional NoC ports running at a 400 MHz speed.
Compared with the single input stream in the SpiNNaker1 packet router (running
at around 100 MHz), the 6 parallel ports can absorb 2.4 G input packets per second
(GPKT/s) which is 24 times larger than the SpiNNaker1 packet router. Further-
more, the parallel routeing engines enable the SpiNNaker2 packet router to have
better routeing efficiency than the SpiNNaker1 packet router where only one packet
can be processed every cycle at maximum.

The SpiNNaker2 packet router is currently designed to run at 400 MHz (via
6 NoC ports) which maintains the same maximum theoretical throughput as the
SpiNNaker1 packet router. However, the realistic throughput will be increased
by improving the communication bottleneck. The PE running at the same speed
(200 MHz) now can take packet from the network every 1 or 2 processor cycles.
The bandwidth of the off-chip I/Os is also increased significantly.

The output star network of the SpiNNaker1 packet router is an efficient net-
work for multicasting. However, the centralised arbitration and buffering limit its
scalability. The SpiNNaker2 chip will incorporate 152 PEs. Therefore, a 2D mesh
network is chosen to provide a better scalability. Compared with SpiNNaker1,
the different network topology also brings different design challenges for the
SpiNNaker2 packet router.

The basic function of a router is to route each packet to its destination(s). How-
ever, the SpiNNaker2 packet router is more complicated than that, performing
different routeing algorithms, system monitoring functions and including power
optimisation and high-performance circuits within a limited power and area bud-
get. Below are some new features and differences compared with the SpiNNaker1
packet router.

The 7th SpiNNaker link: This is an additional SpiNNaker link which is func-
tionally similar to the other 6 SpiNNaker links. There are several advantages of



SpiNNaker2 Packet Router 269

MC
+

OoOBuffer
C2C NN

Link outputs

General
Registers

on-chip inputs Link inputs

on-chip outputs

Figure 8.2. The internal organisation of the SpiNNaker2 packet router.

this additional link. First, the addition of the 7th link provides a dedicated con-
nection for the interaction with other neuromorphic devices without breaking the
torus which is already formed using the other 6 SpiNNaker link. Second, the 7th
link can be used for a hyperconnection to another node in the system which can
significantly reduce the routeing latency in the simulation, because the routeing
through this short-cut path does not need to pass through multiple nodes to reach
the destination. The disadvantage is that it introduces cost where the size of the
multicast look-up table increases by adding one more destination bit per entry.
However, it does not incur extra cost to the SpiNNaker core-to-core (C2C) and



270 Creating the Future

nearest-neighbour (NN) routeing, because the 3-bit destination information in the
C2C look-up table and the 3-bit outgoing path information in the NN packets are
not fully occupied in SpiNNaker1.

Interrupt packet messaging mechanism: The SpiNNaker1 packet router has
direct interrupt lines to all the processing elements where the processing ele-
ments have interrupt vector controllers deciding whether or not to pay attention
to the interrupt. This dedicated interrupt network is expensive to implement in
SpiNNaker2 due to the cost and timing closure problem in a large area of silicon.
All the communications between the SpiNNaker2 packet router and other units
are designed to be carried by the on-chip data network (DNoC). Therefore, an
interrupt messaging mechanism, sending exception packets, has been devised.

Out-of-order issue buffer: The output star network in the SpiNNaker1 packet
router can issue a single multicast (MC) packet efficiently. The output strategy for
MC packets is All or Nothing (AoN) where the MC packet will only be sent if
all of its destinations are available. Therefore, in the SpiNNaker1 packet router,
if one MC packet stalls due to an unavailable destination, all the subsequent MC
packets will stall. In the SpiNNaker2 packet router, the out-of-order issue buffer is
designed to further improve the output efficiency of MC packets. If the first MC
packet stalls at the output of the multicast routeing engine, it will move to the
out-of-order buffer unit. The out-of-order issue buffer can accommodate several
MC packets. At each router clock cycle, the out-of-order issue buffer can send any
MC packet which does not have a blocked destination. The output efficiency is
increased by issuing the MC packets out of order.

Latch-based TCAM and built-in self-test: The ternary content addressable mem-
ory is the key component in multicast routeing. It is designed without read out
circuitry to save area. In SpiNNaker1, testing the TCAM involved a lot of human
effort to design the test program. Therefore, a built-in self-test unit is devised to
facilitate test automation and improve test efficiency.

8.5 The Processing Element (PE)

The key component of SpiNNaker2 is its processing element PE. The PE architec-
ture is shown in Figure 8.3.

The PE is based on an ARM Cortex-M4 core with FPU. It contains 128 kBytes
of local SRAM which is accessible as data and instruction memory by the processor.
A crossbar handles local SRAM access from the processor core, the communication
controller and from neighbouring PEs inside one QPE. Various components are
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Figure 8.3. SpiNNaker2 PE architecture.

added to the PE to enhance its neuromorphic computation capabilities, as described
below.

8.5.1 PE Components

Communications Controller

The Communications Controller is the interface between the PE and the NoC
router. It is responsible for transmitting and receiving NoC packets to and from
the communication network. It incorporates a bridge unit, a communication unit,
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a DMA engine, an ML accelerator, a response packet generator and an exception
unit.

The bridge is the interface between the system bus of the ARM M4F and
the NoC. It provides a method for the M4F to access remote registers or
SRAM/SDRAM. A large part of the M4F system bus address space is bridged onto
the NoC. The mechanism is implemented by suspending the M4F bus operation
whilst a request packet is transmitted and a response packet is returned. Operation
is therefore transparent to software apart from the speed of the operation. The cor-
responding hardware response packet generator unit in each PE translates request
packets into local SRAM cycles and hence to response packets. As the data width
of the system bus is 32 bits, the ARM M4F can only read or write a byte, half
word or word through the bridge unit and the NoC. Note that there is an address
translation from the local system bus address to the global NoC address.

The DMA unit is responsible for transferring data to/from remote SRAM/
SDRAM memories. The transfer can be either reading, which transfers data from
remote memories to local memories, or writing, which transfers data from local
memories to remote memories. The transfer is at block level. Before the M4F ini-
tiates a transfer, some registers, such as the local start address, remote start address
and the transfer length (in words), need to be configured.

The response packet generator answers requests from remote bridge or DMA
units. This unit is not visible to the ARM M4F. Request packets arriving from the
NoC are routed to this unit where they cause local bus activity – either read(s) or
write(s). The appropriate response packets are generated and routed back to the
source interface, as specified in the request. Zero (in the case of a write marked as
‘buffered’) up to eight (for a 128-byte read) response packets may be generated for
each incoming request.

The communications unit within the SpiNNaker2 Communications Controller
has three components: one default DMA (defaultDMA) and two SpiNNaker
Packet DMAs (spDMAs). The two spDMAs are responsible for receiving specific
types of SpiNNaker packet. There is a packet selector in each spDMA, which selects
the type of packet that it accepts and rejects any other type of packet. If the packet
is directed to the communications unit but neither spDMA0 nor spDMA1 accepts
it, then it goes to the defaultDMA. The defaultDMA accepts any packets that the
other components refuse to accept irrespective of packet type. In this way, no packet
will be stuck at the NoC router, thus ensuring that the NoC always flows.

Random Number Accelerator

Spiking neural networks often make extensive use of random numbers, for example,
to model intrinsic stochasticity or the influence of neighbouring brain areas that are
not directly included in the model. While simple random number generators can
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be implemented cheaply in software, high-quality random sources are complex and
much more efficient when implemented in hardware, so this is the solution adopted
for SpiNNaker2.

The Pseudo-Random Number Generator (PRNG) chosen is a version of
Marsaglia’s KISS64 algorithm [155]. This has had several incarnations – we are
using David Jones’ implementation of what is called KISS99 here [133]. This is
now the default PRNG on the SpiNNaker system, with a long cycle length≈ 2123

and produces a high-quality random stream of 32-bit integers that satisfy the strin-
gent TESTU01 BigCrush [133] and Dieharder [26] test suites.

In addition, a true random number is available, for exploring the impact of ran-
domness on a neural network. The random source is provided by a random bus,
which is driven from the noise generated in the phase-frequency detector of an All
Digital Phase-Locked Loop (ADPLL) [177] used to generate the various clock sig-
nals required on the chip, and therefore incurs nearly zero overhead in terms of
power and chip area.

The raw random data (after entropy extraction) is available directly and can also
be used to scramble the seeds of the PRNGs from time to time. This is done by
an XOR operation, which ensures an accumulation of entropy and is transparent
to the user, which is why the migration from pseudo random to true random is a
minor configuration change.

Rounding Accelerator

To improve the accuracy of a reduced precision neuron model, rounding can
be done at scalar operation level [102]. To support this in the next-generation
SpiNNaker chip, we are including a small hardware accelerator for stochastic round-
ing and round-to-nearest. Stochastic rounding in SpiNNaker is performed on fixed-
point numbers by rounding them to a specified bit position (usually to fit a long
number into 32 bits) probabilistically. The probability of rounding such a number
up is proportional to the round-off residual, and to achieve this, a PRNG is used.
Stochastically rounding fixed-point multiplication results has been shown to reduce
numerical error in the Izhikevich neuron ODE solvers on SpiNNaker [102].

Elementary Function (exp, log) Accelerator

The exponential function is extensively used in neuroscience models, so an expo-
nential accelerator will be added to the next-generation SpiNNaker chip. At the
time of writing, prototype chips with such an accelerator have already been manu-
factured. The first prototype chip has a fixed-point version of the accelerator [188].
Using the accelerator on this chip, Yan et al. [266] demonstrated approximately
41% energy reduction in simulating a novel plasticity model. The second proto-
type has a fixed-point version with logarithm and accuracy control [164]. The final
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chip is currently planned to have both fixed- and floating-point exponential and
logarithm functions with accuracy control in hardware and here we present some
information about the design of this accelerator.

In the SpiNNaker1 system, there is no hardware support for transcenden-
tal functions, including exponentials, so the models that were developed used
pre-computed Look-up tables (LUTs); this solution was explored in detail by
Vogginger et al. [263]. The SpiNNaker compiler first takes a high-level description
of the network dynamics specified by the user and pre-calculates a range of values
of exponential decay for a specific time constant and a number of time instances
on a fixed simulation time grid (either all possible times in a grid or a subset of
times, depending on memory constraints). Then, the LUTs are copied into each
core’s local memory and used while the application is running.

However, this approach has two limitations:

• a limited number of timing constants and a limited input range can be used
due to the constraints of the on-chip memory, and

• in the case where a model requires timing constants that depend on some
dynamic quantity, such as the voltage-dependent timing constants in the
intrinsic currents of the well-known Hodgkin-Huxley neuron model and its
variants, the number of required look-up tables for each possible value that
the time constant can take would be too large to store in the local SpiNNaker
memory.

The memory requirements are further increased if the simulation time step
is 0.1 ms, which is rarely used on SpiNNaker, but will be used on SpiNNaker2
as it will give more accuracy in all the parts of the simulation. In this scenario,
the size of the LUTs for the same amount of time decay look-up will grow 10

times. For example, modelling a 16-bit exponential decay e−
1t
τx for 1 second and

all the values that 1t can take at 0.1 ms simulation time step will require 20 kB
of memory space. A software exponential function is also available in the SpiN-
Naker software library, but with the latency of approximately 95 clock cycles it is
a major limitation to real-time synaptic plasticity processing, where a single pair of
spikes takes approximately 30 cycles (using LUTs for the exponential) as reported
by Knight and Furber [127]. With most learning rules we usually require more
than one exponential per spike pair processed. Learning rules requiring three or
more decay time constants have already started appearing in the computational
neuroscience literature and some have already been tried on SpiNNaker: see, for
example, voltage-dependent STDP [37] implemented on SpiNNaker [69], the
BCPNN learning rule [128, 263] and the neuromodulated STDP [165] learn-
ing rule.
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Most of the algorithms for performing elementary functions are categorised into
two types: polynomial approximations or convergence algorithms [56, 173]. For this
accelerator, a well-known convergence algorithm [173] was chosen, which provides
exponential and natural logarithm functions with overlapping hardware compo-
nents. (Note that having both of these functions also allows us to derive a general
power function for a limited range of arguments). The implementation is based on
the iterative shift-add algorithms that are usually considered to be slower than poly-
nomial approximation due to the serial dependencies in the algorithm, but they do
not require multiplication, which reduces the area of the circuit. A further useful
property of these iterative algorithms is that after just a few iterations they already
contain an approximate result. This property is used to provide programmable
accuracy control, following the principles of approximate computing [92] (in this
case approximation comes not from the errors in the circuit as is most common,
but by running fewer iterations than are required for a precise result) in order to add
options for modellers to trade-off accuracy against speed and energy. This property
will provide a platform for experimenting with concepts arising from the ongoing
discussion about the maximum precision of arithmetic required in neuromorphic
systems, for example, for representing weights in STDP [191] – the smaller the
weight, the less precise the calculation of weight changes that is required.

Machine Learning (ML) Accelerator

In order to speed up machine learning algorithms, specifically DNNs, an acceler-
ator for Multiply-Accumulate (MAc) operations is included in the PE. This accel-
erator performs matrix multiplication and convolution operations autonomously,
off-loading significant work from the processor and thereby accelerating forward
calculation of convolutional and fully-connected DNN layers. Moreover, matrix
multiplication is a basic, calculation-intensive operation performed by many ML
and data processing algorithms, and the accelerator can help speeding up these
algorithms as well.

The structure of the ML accelerator is shown in Figure 8.4. It consists of a 16×4
array of MAc units operated by a data fetch and execution controller. Each MAc
unit receives two 8-bit inputs and hosts a 29-bit accumulation register. Input data
can be fetched from local SRAM and from the NoC, both connected via 128-bit
wide interfaces. The resulting data are written to local SRAM.

The ML accelerator is configured and started either from the ARM processor
via the AHB bus, or via the NoC. For matrix multiplication, memory addresses
for the two input matrices and the output matrix, as well as dimensions of the
matrices, have to be configured. Upon start, the ML accelerator fetches the next
128 bits of input data for each input matrix to two local registers and activates the
MAc array. The processing follows an output-stationary data flow, that is, all MAc
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Figure 8.4. SpiNNaker2 machine learning accelerator.

operations for one output value are performed in one sequence and the output is
written back afterwards. Due to the 16×4 arrangement of the MAc array, 128-bit
data for the first operand and 32-bit data for the second operand are required in
each clock cycle. Thus, the first operand fully occupies the bandwidth of either
SRAM or NoC interface. If both operands are located in local SRAM or both are
accessed via the NoC, MAc operations are interrupted periodically to fetch data for
the second operand.

For a convolution operation, the dimensions of the convolution have to be con-
figured besides the memory locations of input feature maps, kernels and output
feature maps. Each row of the MAc array is used for a different output channel,
that is, four output channels are calculated in parallel. Data flow is again output-
stationary.

The ML accelerator supports both signed and unsigned inputs/output, which
can be configured independently. Furthermore, input data width can be changed
to 16-bit for either operand. This is realised with low overhead by adding together
several MAc register results upon write-back. Also, configurable truncation and
ReLU calculation are included in the write-back path. Output bit width can be
chosen to be 8-, 16- or 32-bit, so that output data can be either directly used for
the next DNN layer or further processed by the ARM core.

As a result, the wide-spread convolutional and fully-connected DNN layers with
ReLU activation function can be processed completely by the machine learning
accelerator, with the ARM core only configuring and starting it. Full flexibility for
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other layer types or activation functions (e.g. pooling layers or sigmoid activation
functions) is still provided by the ARM core.

8.5.2 PE Implementation Strategy and Power Management

To achieve maximum energy efficiency, the PE is implemented for opera-
tion under ultra-low voltage (ULV) conditions with down to 0.50 V nominal
supply voltage. This is enabled by the body bias capability of the 22-nm fully-
depleted silicon-on-insulator (FDSOI) Complementary Metal Oxide Semiconduc-
tor (CMOS) technology [34], in combination with the Adaptive Body Biasing
(ABB) technique [104]. As shown in Figure 8.3, the PE core logic standard cells in
the ULV domain are connected to the body bias voltages VNW and VPW, which
are adaptively controlled during system operation to compensate for Process, Volt-
age and Temperature (PVT) variations. The SRAMs are realised as dual rail macros
where bitcells are operated from a 0.80 V nominal supply without body-biasing,
and the SRAM periphery circuits are operated from the ULV domain with body
bias. Therefore, robust ULV operation can be achieved, since the adaptation of the
body bias voltages prevents near- or even sub-threshold operation, even at worst-
case speed conditions (slow silicon, low supply voltage, minimum temperature).
Following the approach from [104], the ABB technique is fully visible during phys-
ical implementation (logic synthesis, place and route, static timing analysis, power
analysis), since the logic standard cells and SRAMs are characterised with the corre-
sponding body bias values to the PVT corners. Therefore, synthesis and place and
route can take advantage of the tightened PVT corners by means of ABB, which
results in significantly improved power performance and area results. This is caused
by the fact that the implementation tools can use logic cells with higher thresh-
old voltage or longer gate length to meet the timing specification in the critical
paths under worst-case speed conditions (slow silicon, low supply voltage, mini-
mum temperature), thereby significantly reducing the leakage power consumption
under worst-case power conditions (fast silicon, high supply voltage, maximum
temperature).

Figure 8.5 shows the layout of the PE in 22FDX technology [34]. Iterative layout
implementations with power analysis on the gate-level netlist have been executed
for design space exploration. The main parameters are the nominal target supply
voltage and the maximum constrained clock frequency. As an example, Figure 8.6
shows the simulation results for the energy per operation (normalised to the 0.60 V
300 MHz point) for a neuron state update kernel running on the PE. At low supply
voltages down to 0.40 V, the maximum achievable clock frequency with reasonable
cell leakage power drops significantly, resulting in more leakage energy accumulated
per operation cycle, thereby increasing the energy-per-operation figure of merit. At
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Figure 8.5. SpiNNaker2 PE layout in 22FDX technology.

Figure 8.6. SpiNNaker2 PE relative energy per operation.

higher supply voltages, the dynamic power consumption dominates the total energy
consumed. There exists a minimum energy point (MEP) around 0.50 V, where the
PE implementation is capable of operating at 150 MHz. Note that at 0.50 V all
standard cells are operating in a super-threshold regime for all PVT conditions,
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since the ABB approach adaptively compensates the device threshold voltages for
PVT variations.

Although it is desired to operate the PE at the MEP for maximum efficiency, this
obviously does not result in significant processor performance scaling compared to
SpiNNaker1. Performance enhancement is achieved by applying Dynamic Volt-
age and Frequency Scaling (DVFS) [106, 107] to the PE. As shown in Figure 8.3
the PE core logic can be connected to one of two supply voltage rails. This allows
for energy-efficient operation at a low-performance level at 0.50 V and peak per-
formance operation at a higher-performance level at 0.60 V. It has been shown
[106, 107] that under the dynamics of spiking neuromorphic applications, where
peak processing power is only required in few simulation cycles, this technique
significantly reduces the PE power consumption while still maintaining the tem-
poral peak performance of the PE. The performance level transition is scheduled
from a local power management controller at QPE level, based on the concept from
[105]. Clocks are generated by PLLs [216]. Using this approach, each PE is capable
of managing its own DVFS level just by knowing its local workload in the current
simulation cycle (e.g. the number of synaptic events to be processed) independently
of the other PEs. Performance level switching is realised in less than 100 ns, which
is a negligible timing overhead compared to the neuromorphic real-time simulation
with 0.1 ms or 1 ms timing resolution.

8.6 Summary

SpiNNaker2 represents the next step in the SpiNNaker story and brings us up to
date. The SpiNNaker2 chip has yet (at the time of writing) to be fabricated, but
will appear in 2020 and will form a new basis for the project for the future.

We have learnt a great deal in the 20 years that have gone into the project
so far, about neuromorphic computing of course, but also about building large
machines and making them reliable, about building large and complex software
stacks, and about the areas of research of our users and collaborators in neuro-
science and robotics. We have tried to capture those lessons, warts and all, in the
accounts given in this book by the many contributing writers.

The book ends here, but the story goes on – there is still a great deal more to be
learnt!



References

[1] Adams, S. V., A. D. Rast, C. Patterson, F. Galluppi, K. Brohan, J.-A.
Pérez-Carrasco, T. Wennekers, S. Furber, and A. Cangelosi. 2014. “Towards
Real-World Neurorobotics: Integrated Neuromorphic Visual Attention”. In:
Neural Information Processing. Ed. by C. K. Loo, K. S. Yap, K. W. Wong,
A. T. Beng Jin, and K. Huang. Cham: Springer International Publishing.
563–570. ISBN: 978-3-319-12643-2.

[2] Alba, E. and J. M. Troya. 2001. “Analyzing synchronous and asynchronous
parallel distributed genetic algorithms”. Future Generation Computer Systems.
Workshop on Bio-inspired Solutions to Parallel Computing problems 17(4):
451–465. ISSN: 0167-739X. DOI: 10.1016/S0167-739X(99)00129-6.

[3] Albada, S. J. V., A. G. Rowley, J. Senk, M. Hopkins, M. Schmidt, A. B.
Stokes, D. R. Lester, M. Diesmann, and S. B. Furber. 2018. “Performance
comparison of the digital neuromorphic hardware SpiNNaker and the neu-
ral network simulation software NEST for a full-scale cortical microcircuit
model”. Frontiers in Neuroscience. 12(5): 1–20. ISSN: 1662-453X. DOI:
10.3389/fnins.2018.00291.

[4] Amunts, K., C. Ebell, J. Muller, M. Telefont, A. Knoll, and T. Lippert. 2016.
“The Human Brain Project: Creating a European research infrastructure to
decode the human brain”. Neuron. 92(3): 574–581. ISSN: 0896-6273. DOI:
10.1016/j.neuron.2016.10.046.

[5] Appel, K. I. and W. Haken. 1989. Every Planar Map is Four Colorable. Vol.
98. American Mathematical Soc.

[6] ARM. 2004. “ARM968E-S Technical Reference Manual”. ARM. URL: http
s://static.docs.arm.com/ddi0311/d/DDI0311.pdf .

280

http://dx.doi.org/10.1016/S0167-739X(99)00129-6
http://dx.doi.org/10.3389/fnins.2018.00291
http://dx.doi.org/10.1016/j.neuron.2016.10.046
https://static.docs.arm.com/ddi0311/d/DDI0311.pdf
https://static.docs.arm.com/ddi0311/d/DDI0311.pdf


References 281

[7] Azevedo, F. A., L. R. Carvalho, L. T. Grinberg, J. M. Farfel, R. E. Ferretti,
R. E. Leite, W. J. Filho, R. Lent, and S. Herculano-Houzel. 2009. “Equal
numbers of neuronal and nonneuronal cells make the human brain an
isometrically scaled-up primate brain”. Journal of Comparative Neurology.
513(5): 532–541. ISSN: 00219967. DOI: 10.1002/cne.21974.

[8] Bamford, S. A., A. F. Murray, and D. J. Willshaw. 2010. “Synaptic rewiring
for topographic mapping and receptive field development”. Neural Networks.
23(4): 517–527. ISSN: 08936080. DOI: 10.1016/j. neunet.2010.01.005.

[9] Barahona, F. 1982. “On the computational complexity of Ising spin glass
models”. Journal of Physics A: Mathematical and General. 15(10): 3241.

[10] Bassett, D. S., D. L. Greenfield, A. Meyer-Lindenberg, D. R. Weinberger, S.
W. Moore, and E. T. Bullmore. 2010. “Efficient physical embedding of topo-
logically complex information processing networks in brains and computer
circuits”. PLOS Computational Biology. 6(4): 1–14. DOI: 10.1371/jour-
nal.pcbi.1000748.

[11] Becker, S. 2005. “A computational principle for hippocampal learning
and neurogenesis”. Hippocampus. 15(6): 722–738. ISSN: 10509631. DOI:
10.1002/hipo.20095. arXiv: 1507.07580.

[12] Bellec, G., D. Salaj, A. Subramoney, R. Legenstein, and W. Maass. 2018.
“Long short-term memory and learning-to-learn in networks of spiking
neurons”. arXiv:1803.09574 [cs, q-bio]. arXiv: 1803.09574. URL: http:
//arxiv.org/abs/1803.09574.

[13] Bengio, Y., P. Lamblin, D. Popovici, and H. Larochelle. 2007. “Greedy layer-
wise training of deep networks”. In: Advances in Neural Information Processing
Systems. 153–160.

[14] Bengio, Y., D. Lee, J. Bornschein, and Z. Lin. 2015. “Towards Biologi-
cally Plausible Deep Learning”. CoRR. abs/1502.04156. arXiv: 1502.04156.
URL: http://arxiv.org/abs/1502.04156.

[15] Beyer, H.-G. and H.-P. Schwefel. 2002. “Evolution strategies – A compre-
hensive introduction”. Natural Computing. 1(1): 3–52. ISSN: 1572-9796.
DOI: 10.1023/A:1015059928466.

[16] Bi, G. Q. and M. M. Poo. 1998. “Synaptic modifications in cultured hip-
pocampal neurons: dependence on spike timing, synaptic strength, and
postsynaptic cell type.” The Journal of Neuroscience: The Official Journal
of the Society for Neuroscience. 18(24): 10464–10472. ISSN: 0270-6474.
DOI: 10.1038/25665.

[17] Bi, Z. 2018. Finite Element Analysis Applications. Elsevier. DOI:
10.1016/c2016-0-00054-2.

http://dx.doi.org/10.1002/cne.21974
http://dx.doi.org/10.1016/j. neunet.2010.01.005
http://dx.doi.org/10.1371/journal.pcbi.1000748
http://dx.doi.org/10.1371/journal.pcbi.1000748
http://dx.doi.org/10.1002/hipo.20095
http://arxiv.org/abs/1803.09574
http://arxiv.org/abs/1803.09574
http://arxiv.org/abs/1502.04156
http://dx.doi.org/10.1023/A:1015059928466
http://dx.doi.org/10.1038/25665
http://dx.doi.org/10.1016/c2016-0-00054-2


282 References

[18] Bienenstock, E. L., L. N. Cooper, and P. W. Munro. 1982. “Theory for
the development of neuron selectivity: orientation specificity and binocular
interaction in visual cortex”. The Journal of Neuroscience. 2(1): 32–48.

[19] Binzegger, T., R. J. Douglas, and K. A. C. Martin. 2004. “A quantitative
map of the circuit of cat primary visual cortex”. Journal of Neuroscience.
24(39): 8441–8453. ISSN: 0270-6474. DOI: 10.1523/JNEUROSCI.1400-
04.2004. eprint: https://www.jneurosci.org/content/24/39/8441.full.pdf .

[20] Bliss, T. V. and T. Lømo. 1973. “Long-lasting potentiation of synaptic trans-
mission in the dentate area of the anaesthetized rabbit following stimulation
of the perforant path”. The Journal of Physiology. 232(2): 331–356.

[21] Bogdan, P. A. 2020. “Structural Plasticity on SpiNNaker”. PhD Thesis. Uni-
versity of Manchester. 204. DOI: 10.13140/RG.2.2.33591.06568.

[22] Bogdan, P. A., G. Pineda-Garcıéa, S. Davidson, R. James, M. Hopkins,
and S. Furber. 2019. “Event-based computation: Unsupervised elementary
motion decomposition”. In: Proceedings of the 2019 Emerging Technology
Conference. Ed. by M. Bane and V. Holmes. Huddersfield: EMiT/University
of Huddersfield/High End Compute Ltd/University of Manchester. 20–23.

[23] Bogdan, P. A., A. G. D. Rowley, O. Rhodes, and S. Furber. 2018.
“Structural plasticity on the SpiNNaker many-core neuromorphic sys-
tem”. Frontiers in Neuroscience. 12(12): 1–20. ISSN: 1662-453X. DOI:
10.3389/fnins.2018.00434.

[24] Borst, A. and T. Euler. 2011. “Seeing things in motion: Models, cir-
cuits, and mechanisms”. Neuron. 71(6): 974–994. ISSN: 08966273. DOI:
10.1016/j.neuron.2011.08.031.

[25] Brown, A. D., S. Furber, J. S. Reeve, J. D. Garside, K. J. Dugan, L.
A. Plana, and S. Temple. 2015. “SpiNNaker – Programming Model”.
In: IEEE Transactions on Computers. Vol. 64. 6. 1769–1782. DOI:
10.1109/TC.2014.2329686.

[26] Brown, R. G., D. Eddelbuettel, and D. Bauer. 2013. “Dieharder: A random
number test suite”. Open Source Software Library, Under Development, URL:
http://www.phy.duke.edu/~rgb/General/dieharder.php. URL: http://webh
ome.phy.duke.edu/%5C~%7B%7Drgb/General/dieharder.php.

[27] Brunel, N. 2000. “Dynamics of sparsely connected networks of excitatory
and inhibitory spiking neurons”. Journal of Computational Neuroscience. 8:
193–208. ISSN: 09252312. DOI: 10.1016/S0925-2312(00)00179-X.

[28] Burnett, D. 2016. The Idiot Brain: A Neuroscientist Explains What Your
Head Is Really Up To. HarperCollins, Canada. 336. ISBN: 978144345
0089.

http://dx.doi.org/10.1523/JNEUROSCI.1400-04.2004
http://dx.doi.org/10.1523/JNEUROSCI.1400-04.2004
https://www.jneurosci.org/content/24/39/8441.full.pdf
http://dx.doi.org/10.13140/RG.2.2.33591.06568
http://dx.doi.org/10.3389/fnins.2018.00434
http://dx.doi.org/10.1016/j.neuron.2011.08.031
http://dx.doi.org/10.1109/TC.2014.2329686
http://www.phy.duke.edu/~rgb/General/dieharder.php
http://webhome.phy.duke.edu/%5C~%7B%7Drgb/General/dieharder.php
http://webhome.phy.duke.edu/%5C~%7B%7Drgb/General/dieharder.php
http://dx.doi.org/10.1016/S0925-2312(00)00179-X


References 283

[29] Butz, M. and A. van Ooyen. 2013. “A simple rule for dendritic spine
and axonal bouton formation can account for cortical reorganization after
focal retinal lesions”. PLoS Computational Biology. 9(10): 39–43. ISSN:
1553734X. DOI: 10.1371/journal.pcbi.1003259.

[30] Buzsáki, G. and K. Mizuseki. 2014. “The log-dynamic brain: How
skewed distributions affect network operations”. Nature Reviews Neuro-
science. 15(4): 264–278. ISSN: 14710048. DOI: 10.1038/nrn3687. arXiv:
NIHMS150003.

[31] Camuñas-Mesa, L. A., Y. L. Domıénguez-Cordero, A. Linares-Barranco,
T. Serrano-Gotarredona, and B. Linares-Barranco. 2018. “A configurable
event-driven convolutional node with rate saturation mechanism for mod-
ular ConvNet systems implementation”. Frontiers in Neuroscience. 12: 63.
ISSN: 1662-453X. DOI: 10.3389/fnins.2018.00063.

[32] Cao, Y., Y. Chen, and D. Khosla. 2015. “Spiking deep convolutional neu-
ral networks for energy-efficient object recognition”. International Journal of
Computer Vision. 113(1): 54–66.

[33] Carnevale, N. T. and M. L. Hines. 2006. The NEURON Book. Cambridge
University Press, New York, NY, USA. 1–457. ISBN: 9780511541612.
DOI: 10.1017/CBO9780511541612. arXiv:1011.1669v3.

[34] Carter, R., J. Mazurier, L. Pirro, J. Sachse, P. Baars, J. Faul, C. Grass,
G. Grasshoff, P. Javorka, T. Kammler, A. Preusse, S. Nielsen, T. Heller,
J. Schmidt, H. Niebojewski, P. Chou, E. Smith, E. Erben, C. Metze, C. Bao,
Y. Andee, I. Aydin, S. Morvan, J. Bernard, E. Bourjot, T. Feudel, D. Harame,
R. Nelluri, H. -. Thees, L. M-Meskamp, J. Kluth, R. Mulfinger, M. Rashed,
R. Taylor, C. Weintraub, J. Hoentschel, M. Vinet, J. Schaeffer, and B. Rice.
2016. “22nm FDSOI technology for emerging mobile, Internet-of-Things,
and RF applications”. In: 2016 IEEE International Electron Devices Meeting
(IEDM). 2.2.1–2.2.4. DOI: 10.1109/IEDM.2016.7838029.

[35] Chaitin, G. J. 1982. “Register allocation & spilling via graph coloring”.
SIGPLAN Not. 17(6): 98–101. ISSN: 0362-1340. DOI: 10.1145/872726.
806984.

[36] Christian, B. and T. Griffiths. 2016. Algorithms to Live By: The Computer
Science of Human Decisions. New York, NY, USA: Henry Holt and Co., Inc.
ISBN: 9781627790369.

[37] Clopath, C., L. Büsing, E. Vasilaki, and W. Gerstner. 2010. “Connectivity
reflects coding: a model of voltage-based STDP with homeostasis.” Nature
Neuroscience. 13(3): 344–52. ISSN: 1546-1726. DOI: 10.1038/nn.2479.

[38] Colbourn, C. 1984. “The complexity of completing partial Latin squares”.
English (US). Discrete Applied Mathematics. 8(1): 25–30. ISSN: 0166-218X.
DOI: 10.1016/0166-218X(84)90075-1.

http://dx.doi.org/10.1371/journal.pcbi.1003259
http://dx.doi.org/10.1038/nrn3687
http://dx.doi.org/10.3389/fnins.2018.00063
http://dx.doi.org/10.1017/CBO9780511541612
http://dx.doi.org/10.1109/IEDM.2016.7838029
http://dx.doi.org/10.1145/872726.806984
http://dx.doi.org/10.1145/872726.806984
http://dx.doi.org/10.1038/nn.2479
http://dx.doi.org/10.1016/0166-218X(84)90075-1


284 References

[39] Crair, M. C. and W. Bialek. 1990. “Non-Boltzmann dynamics in networks
of spiking neurons”. In: Advances in Neural Information Processing Systems.
109–116.

[40] Curtis, A. R., T. Carpenter, M. Elsheikh, A. López-Ortiz, and S. Keshav.
2012. “Rewire: An optimization-based framework for unstructured data cen-
ter network design”. English. In: INFOCOM, 2012 Proceedings IEEE. 1116–
1124.

[41] Dailey, D. P. 1980. “Uniqueness of colorability and colorability of planar
4-regular graphs are NP-complete”. Discrete Math. 30(3): 289–293. ISSN:
0012-365X. DOI: 10.1016/0012-365X(80)90236-8.

[42] Dally, W. J. and B. Towles. 2004. Principles and Practices of Interconnection
Networks. Morgan Kaufmann Publishers.

[43] Darwin, C. and G. Beer, eds. 2008. On the Origin of Species. Revised Edition.
Oxford World’s Classics. Oxford, New York: Oxford University Press. ISBN:
978-0-19-921922-3.

[44] Davison, A. P., D. Brüderle, J. Eppler, J. Kremkow, E. Muller, and D.
Pecevski. 2008. “PyNN: a common interface for neuronal network simu-
lators”. Frontiers in Neuroinformatics. 2(January): 1–10. ISSN: 16625196.
DOI: 10.3389/neuro.11.011.2008.

[45] Dayan, P. and L. Abbott. 2002. “Theoretical neuroscience: Compu-
tational and mathematical modeling of neural systems (computational
neuroscience)”. Journal of Cognitive Neuroscience. 60(3): 480. DOI:
10.1016/j.neuron.2008.10.019. arXiv: 0-262-04199-5 [arXiv:gr-qc].

[46] Deb, K. and T. Goel. 2001. “Controlled Elitist Non-dominated Sort-
ing Genetic Algorithms for Better Convergence”. In: Evolutionary Multi-
Criterion Optimization. Ed. by E. Zitzler, L. Thiele, K. Deb, C. A. Coello
Coello, and D. Corne. Berlin, Heidelberg: Springer Berlin Heidelberg. 67–
81. ISBN: 978-3-540-44719-1.

[47] Delbruck, T. and P. Lichtsteiner. 2007. “Fast sensory motor control
based on event-based hybrid neuromorphic-procedural system”. In: 2007
IEEE International Symposium on Circuits and Systems. 845–848. DOI:
10.1109/ISCAS.2007.378038.

[48] Denk, C., F. Llobet-Blandino, F. Galluppi, L. A. Plana, S. Furber, and
J. Conradt. 2013. “Real-Time Interface Board for Closed-Loop Robotic
Tasks on the SpiNNaker Neural Computing System”. In: Artificial Neu-
ral Networks and Machine Learning – ICANN 2013. Ed. by V. Mladenov,
P. Koprinkova-Hristova, G. Palm, A. E. P. Villa, B. Appollini, and N.
Kasabov. Berlin, Heidelberg: Springer Berlin Heidelberg. 467–474. ISBN:
978-3-642-40728-4.

http://dx.doi.org/10.1016/0012-365X(80)90236-8
http://dx.doi.org/10.3389/neuro.11.011.2008
http://dx.doi.org/10.1016/j.neuron.2008.10.019
http://dx.doi.org/10.1109/ISCAS.2007.378038


References 285

[49] Destexhe, A., Z. F. Mainen, and T. J. Sejnowski. 2002. “Kinetic models for
synaptic interactions”. The Handbook of Brain Theory and Neural Networks
(2nd ed): 1126–1130.

[50] Diehl, P. U. and M. Cook. 2014. “Efficient implementation of STDP rules
on SpiNNaker neuromorphic hardware”. In: Proceedings of the International
Joint Conference on Neural Networks. Beijing, China. 4288–4295. ISBN:
9781479914845. DOI: 10.1109/IJCNN. 2014.6889876.

[51] Diehl, P. U., D. Neil, J. Binas, M. Cook, S.-C. Liu, and M. Pfeiffer. 2015.
“Fast-classifying, high-accuracy spiking deep networks through weight and
threshold balancing”. In: Neural Networks (IJCNN), 2015 International Joint
Conference on. IEEE. 1–8.

[52] Dominguez-Morales, J. P., Q. Liu, R. James, D. Gutierrez-Galan, A.
Jimenez-Fernandez, S. Davidson, and S. Furber. 2018. “Deep Spiking Neu-
ral Network model for time-variant signals classification: a real-time speech
recognition approach”. In: 2018 International Joint Conference on Neural
Networks (IJCNN). IEEE. 1–8.

[53] Eliasmith, C. 2013. How to Build a Brain: A Neural Architecture for Biological
Cognition. Oxford University Press.

[54] Eliasmith, C., T. C. Stewart, X. Choo, T. Bekolay, T. DeWolf, Y. Tang, and
D. Rasmussen. 2012. “A large-scale model of the functioning brain”. Science.
338(6111): 1202–1205. DOI: 10.1126/science.1225266.

[55] Elliott, T. and N. R. Shadbolt. 1999. “A neurotrophic model of the devel-
opment of the retinogeniculocortical pathway induced by spontaneous reti-
nal waves.” Journal of Neuroscience. 19(18): 7951–7970. ISSN: 1529-2401.
URL: https://www.jneurosci.org/content/19/18/7951.

[56] Ercegovac, M. and T. Lang. 2004. Digital Arithmetic. Morgan Kaufmann
Series in Comp. Morgan Kaufmann. ISBN: 9781558607989. URL: https:
//books.google.co.uk/books?id=uUk%5C_AQAAIAAJ.

[57] Ercsey-Ravasz, M. and Z. Toroczkai. 2012. “The chaos within Sudoku”.
Scientific Reports. 2: 725.

[58] Euler, T., S. Haverkamp, T. Schubert, and T. Baden. 2014. “Retinal bipo-
lar cells: elementary building blocks of vision”. Nature Reviews Neuroscience.
15(8): 507–519.

[59] Fisher, S. D., P. B. Robertson, M. J. Black, P. Redgrave, M. A. Sagar, W. C.
Abraham, and J. N. Reynolds. 2017. “Reinforcement determines the timing
dependence of corticostriatal synaptic plasticity in vivo”. Nature Communi-
cations. 8(1). ISSN: 20411723. DOI: 10.1038/s41467-017-00394-x.

http://dx.doi.org/10.1109/IJCNN. 2014.6889876
http://dx.doi.org/10.1126/science.1225266
https://www.jneurosci.org/content/19/18/7951
https://books.google.co.uk/books?id=uUk%5C_AQAAIAAJ
https://books.google.co.uk/books?id=uUk%5C_AQAAIAAJ
http://dx.doi.org/10.1038/s41467-017-00394-x


286 References

[60] Florian, R. V. 2005. “A reinforcement learning algorithm for spiking neu-
ral networks”. Seventh International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing (SYNASC’05): 8 pp. DOI: 10.1109/
SYNASC.2005.13.

[61] Fonseca Guerra, G. A. and S. Furber. 2017. “Using stochastic spiking neu-
ral networks on SpiNNaker to solve constraint satisfaction problems”. Fron-
tiers in Neuroscience. 11(12). ISSN: 1662453X. DOI: 10.3389/fnins.2017.
00714.

[62] Francis, H. 2001. “ARM DSP-Enhanced Extensions”. URL: https://pdfs.
semanticscholar.org/5e30/761e1b43b3ad93270940bbe31a74d9c7fa20.pdf.

[63] Fukushima, K. and S. Miyake. 1982. “Neocognitron: A self-organizing neu-
ral network model for a mechanism of visual pattern recognition”. In: Com-
petition and Cooperation in Neural Nets. Springer. 267–285.

[64] Furber, S. B., F. Galluppi, S. Temple, and L. A. Plana. 2014. “The SpiNNaker
project”. Proceedings of the IEEE. 102(5): 652–665. ISSN: 00189219. DOI:
10.1109/JPROC.2014.2304638. arXiv: 1011.1669v3.

[65] Furber, S. B., D. R. Lester, L. A. Plana, J. D. Garside, E. Painkras, S. Temple,
and A. D. Brown. 2013. “Overview of the SpiNNaker system architecture”.
IEEE Transactions on Computers. 62(12): 2454–2467. ISSN: 00189340.
DOI: 10.1109/TC.2012.142.

[66] Furukawa, H., S. K. Singh, R. Mancusso, and E. Gouaux. 2005. “Subunit
arrangement and function in NMDA receptors”. Nature. 438(7065): 185.

[67] Galluppi, F., K. Brohan, S. Davidson, T. Serrano-Gotarredona, J.-A. P. Car-
rasco, B. Linares-Barranco, and S. Furber. 2012. “A real-time, event-driven
neuromorphic system for goal-directed attentional selection”. In: Neural
Information Processing. Springer. 226–233.

[68] Galluppi, F., S. Davies, A. Rast, T. Sharp, L. A. Plana, and S. Furber. 2012.
“A hierarchical configuration system for a massively parallel neural hardware
platform”. Proceedings of the 9th conference on Computing Frontiers – CF ’12:
183. DOI: 10.1145/2212908.2212934.

[69] Galluppi, F., X. Lagorce, E. Stromatias, M. Pfeiffer, L. A. Plana, S. Furber,
and R. B. Benosman. 2015. “A framework for plasticity implementation on
the SpiNNaker neural architecture”. Frontiers in Neuroscience. 9(JAN): 1–20.
ISSN: 1662453X. DOI: 10.3389/fnins.2014.00429.

[70] Gardner, B. and A. Grüning. 2013. “Learning Temporally Precise Spiking
Patterns through Reward Modulated Spike-Timing-Dependent Plasticity”.
In: Artificial Neural Networks and Machine Learning – ICANN 2013. Ed. by
V. Mladenov, P. Koprinkova-Hristova, G. Palm, A. E. P. Villa, B. Appollini,
and N. Kasabov. Berlin, Heidelberg: Springer Berlin Heidelberg. 256–263.
ISBN: 978-3-642-40728-4.

http://dx.doi.org/10.1109/SYNASC.2005.13
http://dx.doi.org/10.1109/SYNASC.2005.13
http://dx.doi.org/10.3389/fnins.2017. 00714
http://dx.doi.org/10.3389/fnins.2017. 00714
https://pdfs.semanticscholar.org/5e30/761e1b43b3ad93270940bbe31a74d9c7fa20.pdf
https://pdfs.semanticscholar.org/5e30/761e1b43b3ad93270940bbe31a74d9c7fa20.pdf
http://dx.doi.org/10.1109/JPROC.2014.2304638
http://dx.doi.org/10.1109/TC.2012.142
http://dx.doi.org/10.1145/2212908.2212934
http://dx.doi.org/10.3389/fnins.2014.00429


References 287

[71] Gardner, M. 1970. “Mathematical Games: The fantastic combinations of
John Conway’s new solitaire game “life””. Scientific American. 223: 120–123.
URL: http://www.worldcat.org/isbn/0894540017.

[72] Garside, J. D., S. B. Furber, S. Temple, D. M. Clark, and L. A. Plana. 2012.
“An asynchronous fully digital delay locked loop for DDR SDRAM data
recovery”. In: 2012 IEEE 18th International Symposium on Asynchronous Cir-
cuits and Systems. 49–56. DOI: 10.1109/ASYNC.2012.18.

[73] George, R., G. Indiveri, and S. Vassanelli. 2017. “Activity dependent
structural plasticity in neuromorphic systems”. In: Biomedical Circuits and
Systems Conference (BioCAS). Torino, Italy: IEEE. 1–4. DOI: 10.1109/BIO-
CAS.2017.8325074.

[74] Gerstner, W., W. M. Kistler, R. Naud, and L. Paninski. 2014. Neu-
ronal Dynamics: From Single Neurons to Networks and Models of Cognition.
Cambridge University Press. 1–577. ISBN: 9781107447615. DOI:
10.1017/CBO9781107447615.

[75] Gerstner, W., M. Lehmann, V. Liakoni, D. Corneil, and J. Brea. 2018. “Eli-
gibility traces and plasticity on behavioral time scales: Experimental sup-
port of neoHebbian three-factor learning rules”. Frontiers in Neural Circuits.
12(7): 1–16. ISSN: 1662-5110. DOI: 10.3389/fncir.2018.00053. arXiv:
1801.05219.

[76] Gewaltig, M.-O. and M. Diesmann. 2007. “NEST (NEural Simulation
Tool)”. Scholarpedia. 2(4): 1430. ISSN: 1941-6016. DOI: 10.4249/schol-
arpedia.1430.

[77] Gewaltig, M.-O. and M. Diesmann. 2007. “NEST (NEural Simulation
Tool)”. Scholarpedia. 2(4): 1430.

[78] Gibbs, M. E., D. Hutchinson, and L. Hertz. 2008. “Astrocytic involve-
ment in learning and memory consolidation”. Neuroscience and Bio-
behavioral Reviews. 32(5): 927–944. ISSN: 0149-7634. DOI: 10.1016/
j.neubiorev.2008.02.001.

[79] Gittis, A. H., A. B. Nelson, M. T. Thwin, J. J. Palop, and A. C. Kreitzer.
2010. “Distinct roles of GABAergic interneurons in the regulation of striatal
output pathways”. Journal of Neuroscience. 30(6): 2223–2234. ISSN: 0270-
6474. DOI: 10.1523/JNEUROSCI.4870-09.2010.

[80] Goodfellow, I., J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio. 2014. “Generative adversarial nets”.
In: Advances in Neural Information Processing Systems. 2672–2680.

[81] Goodman, D. F. M. and R. Brette. 2008. “Brian: a simulator for spiking
neural networks in Python”. Frontiers in Neuroinformatics. 2(5). ISSN: 1662-
5196. DOI: 10.3389/neuro.11.005.2008.

http://www.worldcat.org/isbn/0894540017
http://dx.doi.org/10.1109/ASYNC.2012.18
http://dx.doi.org/10.1109/BIOCAS.2017.8325074
http://dx.doi.org/10.1109/BIOCAS.2017.8325074
http://dx.doi.org/10.1017/CBO9781107447615
http://dx.doi.org/10.3389/fncir.2018.00053
http://dx.doi.org/10.4249/scholarpedia.1430
http://dx.doi.org/10.4249/scholarpedia.1430
http://dx.doi.org/10.1016/j.neubiorev.2008.02.001
http://dx.doi.org/10.1016/j.neubiorev.2008.02.001
http://dx.doi.org/10.1523/JNEUROSCI.4870-09.2010
http://dx.doi.org/10.3389/neuro.11.005.2008


288 References

[82] Goodman, D. F. and R. Brette. 2009. “The brian simulator”. Frontiers
in Neuroscience. 3(9): 192–197. ISSN: 1662-453X. DOI: 10.3389/neuro.
01.026.2009.

[83] Graves, A. and N. Jaitly. 2014. “Towards end-to-end speech recognition with
recurrent neural networks.” In: ICML. Vol. 14. 1764–1772.

[84] Gurney, K., T. J. Prescott, and P. Redgrave. 2001. “A computational
model of action selection in the basal ganglia. I. A new functional
anatomy.” Biological Cybernetics. 84(6): 401–410. ISSN: 0340-1200. DOI:
10.1007/PL00007984.

[85] Gurney, K., T. J. Prescott, and P. Redgrave. 2001. “A computational model
of action selection in the basal ganglia. II. Analysis and simulation of
behaviour.” Biological Cybernetics. 84(6): 411–423. ISSN: 0340-1200. DOI:
10.1007/PL00007985.

[86] Gütig, R., R. Aharonov, S. Rotter, H. Sompolinsky, R. Gu, R. Aharonov, S.
Rotter, and H. Sompolinsky. 2003. “Learning input correlations through
nonlinear temporally asymmetric Hebbian plasticity”. The Journal of
Neuroscience: The Official Journal of the Society for Neuroscience. 23(9): 3697–
3714. ISSN: 1529-2401. URL: http://www.ncbi.nlm.nih.gov/pubmed/12
736341.

[87] Haas, S., O. Arnold, B. Nöthen, S. Scholze, G. Ellguth, A. Dixius, S. Höpp-
ner, S. Schiefer, S. Hartmann, S. Henker, T. Hocker, J. Schreiter, H. Eisen-
reich, J. U. Schlüßler, D. Walter, T. Seifert, F. Pauls, M. Hasler, Y. Chen,
H. Hensel, S. Moriam, E. Matús, C. Mayr, R. Schüffny, and G. P. Fettweis.
2016. “An MPSoC for energy-efficient database query processing”. In: 2016
53nd ACM/EDAC/IEEE Design Automation Conference (DAC). 1–6. DOI:
10.1145/2897937.2897986.

[88] Haas, S., T. Seifert, B. Nöthen, S. Scholze, S. Höppner, A. Dixius, E. P.
Adeva, T. Augustin, F. Pauls, S. Moriam, M. Hasler, E. Fischer, Y. Chen,
E. Matúš, G. Ellguth, S. Hartmann, S. Schiefer, L. Cederström, D. Walter,
S. Henker, S. Hänzsche, J. Uhlig, H. Eisenreich, S. Weithoffer, N. Wehn,
R. Schüffny, C. Mayr, and G. Fettweis. 2017. “A heterogeneous SDR
MPSoC in 28 nm CMOS for low-latency wireless applications”. In: Pro-
ceedings of the 54th Annual Design Automation Conference 2017. DAC ’17.
Austin, TX, USA: ACM. 47:1–47:6. ISBN: 978-1-4503-4927-7. DOI:
10.1145/3061639.3062188.

[89] Habenschuss, S., Z. Jonke, and W. Maass. 2013. “Stochastic computations
in cortical microcircuit models”. PLOS Computational Biology. 9(11): 1–28.
DOI: 10.1371/journal.pcbi.1003311.

http://dx.doi.org/10.3389/neuro. 01.026.2009
http://dx.doi.org/10.3389/neuro. 01.026.2009
http://dx.doi.org/10.1007/PL00007984
http://dx.doi.org/10.1007/PL00007985
http://www.ncbi. nlm.nih.gov/pubmed/12736341
http://www.ncbi. nlm.nih.gov/pubmed/12736341
http://dx.doi.org/10.1145/2897937.2897986
http://dx.doi.org/10.1145/3061639.3062188
http://dx.doi.org/10.1371/journal.pcbi.1003311


References 289

[90] Hagmann, P., L. Cammoun, X. Gigandet, R. Meuli, C. J. Honey, V.
J. Wedeen, and O. Sporns. 2008. “Mapping the structural core of
human cerebral cortex”. PLOS Biology. 6(7): 1–15. DOI: 10.1371/jour-
nal.pbio.0060159.

[91] Halassa, M. M., T. Fellin, and P. G. Haydon. 2007. “The tripartite
synapse: roles for gliotransmission in health and disease”. Trends in Molecular
Medicine. 13(2): 54–63. ISSN: 1471-4914. DOI: 10.1016/j.molmed.
2006.12.005.

[92] Han, J. and M. Orshansky. 2013. “Approximate computing: An emerging
paradigm for energy-efficient design”. In: 2013 18th IEEE European Test
Symposium (ETS). 1–6. DOI: 10.1109/ETS.2013.6569370.

[93] He, K., X. Zhang, S. Ren, and J. Sun. 2016. “Deep residual learning for
image recognition”. In: 2016 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR). 770–778. DOI: 10. 1109/CVPR.2016.90.

[94] Heathcote, J. 2016. “Building and operating large-scale SpiNNaker
machines”. PhD Thesis. University of Manchester, UK. URL: http://www.
manchester.ac.uk/escholar/uk-ac-man-scw:305482.

[95] Heathcote, J. 2016. “Spalloc: SpiNNaker machine partitioning and allo-
cation server”, Available online. URL: https://github.com/SpiNNakerManc
hester/spalloc_server.

[96] Heathcote, J. 2016. “SpiNNer: SpiNNaker wiring tool”, Available online.
URL: https://github.com/SpiNNakerManchester/SpiNNer.

[97] Heitger, F., L. Rosenthaler, R. V. D. Heydt, E. Peterhans, and O. Kübler.
1992. “Simulation of neural contour mechanisms: from simple to end-
stopped cells”. Vision Research. 32(5): 963–981. ISSN: 0042-6989. DOI:
https://doi.org/10.1016/0042-6989(92)90039-L.

[98] Hinton, G., S. Osindero, and Y. W. Teh. 2006. “A fast learning algorithm
for deep belief nets.” Neural Computation. 18(7): 1527–1554.

[99] Hochreiter, S. and J. Schmidhuber. 1997. “Long short-term memory”.
Neural Computation. 9(8): 1735–1780.

[100] Hodgkin, A. L. and A. F. Huxley. 1952. “A quantitative description of mem-
brane current and its application to conduction and excitation in nerve”. The
Journal of Physiology. 117(4): 500.

[101] Hopkins, M. and S. Furber. 2015. “Accuracy and efficiency in fixedpoint
neural ODE solvers”. Neural Computation. 27(10): 2148–2182.

[102] Hopkins, M., M. Mikaitis, D. R. Lester, and S. Furber. 2020. “Stochas-
tic rounding and reduced-precision fixed-point arithmetic for solving neural
ordinary differential equations”. Philosophical Transactions of the Royal Society
A: Mathematical, Physical and Engineering Sciences. 378(2166): 20190052.
DOI: 10.1098/rsta.2019.0052.

http://dx.doi.org/10.1371/journal.pbio.0060159
http://dx.doi.org/10.1371/journal.pbio.0060159
http://dx.doi.org/10.1016/j.molmed. 2006.12.005
http://dx.doi.org/10.1016/j.molmed. 2006.12.005
http://dx.doi.org/10.1109/ETS.2013.6569370
http://dx.doi.org/10. 1109/CVPR.2016.90
http://www.manchester.ac.uk/escholar/uk-ac-man-scw:305482
http://www.manchester.ac.uk/escholar/uk-ac-man-scw:305482
https://github.com/SpiNNakerManchester/spalloc_server
https://github.com/SpiNNakerManchester/spalloc_server
https://github.com/SpiNNakerManchester/SpiNNer
http://dx.doi.org/https://doi.org/10.1016/0042-6989(92)90039-L
http://dx.doi.org/10.1098/rsta.2019.0052


290 References

[103] Hopkins, M., G. Pineda-Garcıéa, P. A. Bogdan, and S. Furber. 2018. “Spik-
ing neural networks for computer vision”. Interface Focus. 8(4). ISSN: 2042-
8898. DOI: 10.1098/rsfs.2018.0007.

[104] Höppner, S., H. Eisenreich, D. Walter, U. Steeb, A. Scharfe, C. Dmello,
R. Sinkwitz, H. Bauer, A. Oefelein, F. Schraut, J. Schreiter, R. Niebsch,
S. Scherzer, M. Orgis, U. Hensel, and J. Winkler. 2019. “How to achieve
world-leading energy efficiency using 22FDX with adaptive body biasing on
an arm Cortex-M4 IoT SoC”. In: ESSDERC Conference 2019 – 49st Euro-
pean Solid-State Device Research Conference (ESSDERC).

[105] Höppner, S., C. Shao, H. Eisenreich, G. Ellguth, M. Ander, and R. Schüffny.
2012. “A power management architecture for fast per-core DVFS in hetero-
geneous MPSoCs”. In: 2012 IEEE International Symposium on Circuits and
Systems (ISCAS). 261–264. DOI: 10.1109/ISCAS.2012.6271840.

[106] Höppner, S., B. Vogginger, Y. Yan, A. Dixius, S. Scholze, J. Partzsch,
F. Neumärker, S. Hartmann, S. Schiefer, G. Ellguth, L. Cederstroem,
L. A. Plana, J. Garside, S. Furber, and C. Mayr. 2019. “Dynamic
power management for neuromorphic many-core systems”. IEEE Transac-
tions on Circuits and Systems I: Regular Papers. 66(8): 2973–2986. DOI:
10.1109/TCSI.2019.2911898.

[107] Höppner, S., Y. Yan, B. Vogginger, A. Dixius, J. Partzsch, F. Neumärker,
S. Hartmann, S. Schiefer, S. Scholze, G. Ellguth, L. Cederstroem, M. Eber-
lein, C. Mayr, S. Temple, L. A. Plana, J. Garside, S. Davison, D. R. Lester,
and S. Furber. 2017. “Dynamic voltage and frequency scaling for neuromor-
phic many-core systems”. In: 2017 IEEE International Symposium on Circuits
and Systems (ISCAS). 1–4. DOI: 10.1109/ISCAS.2017.8050656.

[108] Howard, A. G., M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam. 2017. “MobileNets: Efficient Convolutional
Neural Networks for Mobile Vision Applications”. arXiv: 1704.04861. URL:
http://arxiv.org/abs/1704.04861.

[109] Hubel, D. H. and T. N. Wiesel. 1962. “Receptive fields, binocular inter-
action and functional architecture in the cat’s visual cortex”. The Journal of
Physiology. 160(1): 106–154.

[110] Humphries, M. D., R. D. Stewart, and K. N. Gurney. 2006. “A physiologi-
cally plausible model of action selection and oscillatory activity in the basal
ganglia”. Journal of Neuroscience. 26(50): 12921–12942. ISSN: 0270-6474.
DOI: 10.1523/JNEUROSCI.3486-06.2006.

[111] Hunsberger, E. and C. Eliasmith. 2015. “Spiking deep networks with LIF
neurons”. arXiv preprint.

http://dx.doi.org/10.1098/rsfs.2018.0007
http://dx.doi.org/10.1109/ISCAS.2012.6271840
http://dx.doi.org/10.1109/TCSI.2019.2911898
http://dx.doi.org/10.1109/ISCAS.2017.8050656
http://arxiv.org/abs/1704.04861
http://dx.doi.org/10.1523/JNEUROSCI.3486-06.2006


References 291

[112] Inayat, S., J. Barchini, H. Chen, L. Feng, X. Liu, J. Cang, X. S. Inayat, J.
Barchini, X. H. Chen, L. Feng, X. Liu, and X. J. Cang. 2015. “Neurons in the
most superficial lamina of the mouse superior colliculus are highly selective
for stimulus direction”. Journal of Neuroscience. 35(20): 7992–8003. ISSN:
02706474. DOI: 10.1523/JNEUROSCI.0173-15. 2015.

[113] Inc., W. R. 2018. “Mathematica, Version 11.3”. Champaign, IL.
[114] Indiveri, G., B. Linares-Barranco, T. J. Hamilton, A. Van Schaik, R. Etienne-

Cummings, T. Delbruck, S.-C. Liu, P. Dudek, P. Häfliger, S. Renaud, et al.
2011. “Neuromorphic silicon neuron circuits”. Frontiers in Neuroscience.
5(OCT): 1–2. ISSN: 1662-4548. DOI: 10.3389/fnins.2011. 00118.

[115] Iyer, R., V. Menon, M. Buice, C. Koch, and S. Mihalas. 2013. “The influence
of synaptic weight distribution on neuronal population dynamics”. PLOS
Computational Biology. 9(10): 1–16. DOI: 10.1371/journal.pcbi.1003248.

[116] Izhikevich, E. 2003. “Simple model of spiking neurons”. IEEE Transac-
tions on Neural Networks. 14(6): 1569–1572. ISSN: 1045-9227. DOI:
10.1109/TNN.2003.820440.

[117] Izhikevich, E. M. 2007. “Solving the distal reward problem through link-
age of STDP and dopamine signaling”. BMC Neuroscience. 8(2): S15. ISSN:
1471-2202. DOI: 10.1186/1471-2202-8-S2-S15.

[118] Izhikevich, E. M. 2007. “Solving the distal reward problem through linkage
of STDP and dopamine signaling”. Cerebral Cortex. 17(10): 2443–2452.
ISSN: 10473211. DOI: 10.1093/cercor/bhl152.

[119] James, R., J. Garside, L. A. Plana, A. Rowley, and S. B. Furber. 2018. “Par-
allel distribution of an inner hair cell and auditory nerve model for real-
time application”. IEEE Transactions on Biomedical Circuits and Systems: 1–9.
ISSN: 1932-4545. DOI: 10.1109/TBCAS. 2018.2847562.

[120] James, R., J. Garside, M. Hopkins, L. A. Plana, S. Temple, S. Davidson,
and S. Furber. 2018. “Parallel distribution of an inner hair cell and auditory
nerve model for real-time application”. 2017 IEEE Biomedical Circuits and
Systems Conference, BioCAS 2017 – Proceedings. 2018-Janua(5): 1–4. ISSN:
19324545. DOI: 10.1109/BIOCAS.2017.8325171.

[121] Jin, X., A. Rast, F. Galluppi, S. Davies, and S. Furber. 2010. “Imple-
menting spike-timing-dependent plasticity on SpiNNaker neuromorphic
hardware”. In: Proceedings of the International Joint Conference on Neu-
ral Networks. Barcelona, Spain: IEEE. 1–8. ISBN: 9781424469178. DOI:
10.1109/IJCNN.2010.5596372.

[122] Jug, F., M. Cook, and A. Steger. 2012. “Recurrent competitive net-
works can learn locally excitatory topologies”. In: Proceedings of 2012
International Joint Conference on Neural Networks (IJCNN). 1–8. DOI:
10.1109/IJCNN.2012.6252786.

http://dx.doi.org/10.1523/JNEUROSCI.0173-15
http://dx.doi.org/10.3389/fnins.2011. 00118
http://dx.doi.org/10.1371/journal.pcbi.1003248
http://dx.doi.org/10.1109/TNN.2003.820440
http://dx.doi.org/10.1186/1471-2202-8-S2-S15
http://dx.doi.org/10.1093/cercor/bhl152
http://dx.doi.org/10.1109/TBCAS. 2018.2847562
http://dx.doi.org/10.1109/BIOCAS.2017.8325171
http://dx.doi.org/10.1109/IJCNN.2010.5596372
http://dx.doi.org/10.1109/IJCNN.2012.6252786


292 References

[123] Kaas, J. H. 1997. “Topographic maps are fundamental to sensory pro-
cessing”. Brain Research Bulletin. 44(2): 107–112. ISSN: 03619230. DOI:
10.1016/S0361-9230(97)00094-4.

[124] Kappel, D., S. Habenschuss, R. Legenstein, and W. Maass. 2015.
“Network plasticity as Bayesian inference”. PLoS Computational Biology.
11(11): 1–31. ISSN: 15537358. DOI: 10.1371/journal.pcbi. 1004485.
arXiv:1504.05143v1.

[125] Karpathy, A. and L. Fei-Fei. 2015. “Deep visual-semantic alignments for gen-
erating image descriptions”. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition. 3128–3137.

[126] King, A. J. 2004. “The superior colliculus.” Current Biology: CB. 14(9):
R335–R338. ISSN: 0960-9822. DOI: 10.1016/j.cub.2004.04.018.

[127] Knight, J. C. and S. Furber. 2016. “Synapse-centric mapping of cortical
models to the SpiNNaker neuromorphic architecture”. Frontiers in Neuro-
science. 10(9): 1–14. ISSN: 1662453X. DOI: 10.3389/fnins.2016.00420.

[128] Knight, J. C., P. J. Tully, B. A. Kaplan, A. Lansner, and S. B. Furber. 2016.
“Large-scale simulations of plastic neural networks on neuromorphic hard-
ware.” Frontiers in Neuroanatomy. 10(April): 37. ISSN: 1662-5129. DOI:
10.3389/fnana.2016.00037.

[129] Knight, J. C. 2016. “Plasticity in large-scale neuromorphic models of the
neocortex”. PhD Thesis. University of Manchester. 169.

[130] Knuth, D. E. 1969. The Art of Computer Programming, Vol. 2: Seminumerical
Algorithms. Addison-Wesley.

[131] Kohonen, T. 1982. “Self-organized formation of topologically correct fea-
ture maps”. Biological Cybernetics. 43(1): 59–69. ISSN: 0340-1200. DOI:
10.1007/BF00337288.

[132] Krizhevsky, A., I. Sutskever, and G. E. Hinton. 2012. “ImageNet classifica-
tion with deep convolutional neural networks”. In: Advances in Neural Infor-
mation Processing Systems. 1097–1105.

[133] L’Ecuyer, P. and R. Simard. 2007. “TestU01: A C Library for Empir-
ical Testing of Random Number Generators”. ACM Transactions on
Mathematical Software. 33(4): 22:1–22:40. ISSN: 0098-3500. DOI:
10.1145/1268776.1268777.

[134] La Camera, G., M. Giugliano, W. Senn, and S. Fusi. 2008. “The response
of cortical neurons to in vivo-like input current: theory and experiment”.
Biological Cybernetics. 99(4–5): 279–301.

http://dx.doi.org/10.1016/S0361-9230(97)00094-4
http://dx.doi.org/10.1371/journal.pcbi. 1004485
http://dx.doi.org/10.1016/j.cub.2004.04.018
http://dx.doi.org/10.3389/fnins.2016.00420
http://dx.doi.org/10.3389/fnana.2016.00037
http://dx.doi.org/10.1007/BF00337288
http://dx.doi.org/10.1145/1268776.1268777


References 293

[135] Lanzerotti, M. Y., G. Fiorenza, and R. A. Rand. 2005. “Microminia-
ture packaging and integrated circuitry: The work of E. F. Rent, with
an application to on-chip interconnection requirements”. IBM Journal of
Research and Development. 49(4.5): 777–803. ISSN: 0018-8646. DOI:
10.1147/rd.494.0777.

[136] Lazzaro, J., J. Wawrzynek, M. Mahowald, M. Sivilotti, and D. Gillespie.
1993. “Silicon auditory processors as computer peripherals”. IEEE Trans-
actions on Neural Networks. 4(3): 523–528. ISSN: 1045-9227. DOI:
10.1109/72.217193.

[137] Le, Q. V. 2013. “Building high-level features using large scale unsupervised
learning”. In: 2013 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), IEEE. 8595–8598.

[138] LeCun, Y., L. Bottou, Y. Bengio, and P. Haffner. 1998. “Gradient-based
learning applied to document recognition”. Proceedings of the IEEE. 86(11):
2278–2324. ISSN: 00189219. DOI: 10.1109/5.726791.

[139] LeCun, Y. and Y. Bengio. 1995. “Convolutional networks for images, speech,
and time series”. The Handbook of Brain Theory and Neural Networks.
3361(10): 1995.

[140] LeCun, Y., L. Bottou, Y. Bengio, and P. Haffner. 1998. “Gradient-based
learning applied to document recognition”. Proceedings of the IEEE. 86(11):
2278–2324.

[141] Lenero-Bardallo, J. A., T. Serrano-Gotarredona, and B. Linares-Barranco.
2011. “A 3.6µs latency asynchronous frame-free event-driven dynamic-
vision-sensor”. IEEE Journal of Solid-State Circuits. 46(6): 1443–1455. ISSN:
0018-9200. DOI: 10.1109/JSSC.2011.2118490.

[142] Levy, W. and O. Steward. 1983. “Temporal contiguity requirements for long-
term associative potentiation/depression in the hippocampus”. Neuroscience.
8(4). URL: http://www.sciencedirect.com/science/article/pii/0306452283
900106.

[143] Lichtsteiner, P., C. Posch, and T. Delbruck. 2006. “A 128 × 128 120 db
30 mw asynchronous vision sensor that responds to relative intensity
change”. In: Solid-State Circuits Conference, 2006. ISSCC 2006. Digest of
Technical Papers. IEEE International. IEEE. 2060–2069.

[144] Liu, G., P. Camilleri, S. Furber, and J. Garside. 2015. “Network traffic explo-
ration on a many-core computing platform: SpiNNaker real-time traffic visu-
aliser”. English. In: 11th Conference on Ph.D. Research in Microelectronics and
Electronics (PRIME). DOI: 10.1109/PRIME.2015.7251376.

[145] Liu, G., J. Garside, S. Furber, L. Plana, and D. Koch. 2017. “Asynchronous
interface FIFO design on FPGA for high-throughput NRZ synchronisa-
tion”. English. In: The 27th International Conference on Field Programmable
Logic and Applications. DOI: 10.23919/FPL.2017.8056801.

http://dx.doi.org/10.1147/rd.494.0777
http://dx.doi.org/10.1109/72.217193
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1109/JSSC.2011.2118490
http://www. sciencedirect.com/science/article/pii/0306452283900106
http://www. sciencedirect.com/science/article/pii/0306452283900106
http://dx.doi.org/10.1109/PRIME.2015.7251376
http://dx.doi.org/10.23919/FPL.2017.8056801


294 References

[146] Liu, Q. 2018. “Deep spiking neural networks”. PhD Thesis. University of
Manchester. 212.

[147] Liu, Q. and S. Furber. 2016. “Noisy Softplus: a biology inspired activa-
tion function”. In: International Conference on Neural Information Processing.
Springer. 405–412.

[148] Liu, Q., G. Pineda-Garcıéa, E. Stromatias, T. Serrano-Gotarredona, and
S. B. Furber. 2016. “Benchmarking spike-based visual recognition: a dataset
and evaluation”. Frontiers in Neuroscience. 10.

[149] Liu, Y. H. and X. J. Wang. 2001. “Spike-frequency adaptation of a general-
ized leaky integrate-and-fire model neuron”. Journal of Computational Neuro-
science. 10(1): 25–45. ISSN: 09295313. DOI: 10.1023/A: 1008916026143.

[150] Lopez-Poveda, E. A. and R. Meddis. 2001. “A human nonlinear cochlear
filterbank”. The Journal of the Acoustical Society of America. 110(6):
3107–3118.

[151] Lowe, D. G. 1999. “Object recognition from local scale-invariant features”.
In: The Proceedings of the Seventh IEEE International Conference on Computer
Vision, 1999. Vol. 2. IEEE. 1150–1157.

[152] Mahowald, M. 1992. “VLSI analogs of neuronal visual processing: A syn-
thesis of form and function”. Technology. 1992(5): 236. URL: http://caltec
hcstr.library.caltech.edu/591/.

[153] Malmierca, M. S., L. A. Anderson, and F. M. Antunes. 2015. “The corti-
cal modulation of stimulus-specific adaptation in the auditory midbrain and
thalamus: a potential neuronal correlate for predictive coding”. Frontiers in
Systems Neuroscience. 9.

[154] Markram, H., J. Lubke, M. Frotscher, and B. Sakmann. 1997. “Regula-
tion of synaptic efficacy by coincidence of postsynaptic APs and EPSPs”.
Science. 275(5297): 213–215. ISSN: 00368075. DOI: 10.1126/science.
275.5297.213.

[155] Marsaglia, G. and A. Zaman. 1993. “The KISS generator”. Tech. rep.,
Department of Statistics, University of Florida.

[156] Mazaris, D. 1997. “The reality of patch-cord management”. Cabling Instal-
lation & Maintenance. Feb.

[157] Mazurek, M., M. Kager, and S. D. V. Hooser. 2014. “Robust quantifica-
tion of orientation selectivity and direction selectivity”. Frontiers in Neural
Circuits. DOI: 10.3389/fncir.2014.00092.

[158] Mead, C. 1989. Analog VLSI and Neural Systems. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc. ISBN: 0-201-05992-4.

[159] Meddis, R., W. Lecluyse, N. R. Clark, T. Jürgens, C. M. Tan, M. R. Panda,
and G. J. Brown. 2013. “A computer model of the auditory periphery and
its application to the study of hearing”. In: Basic Aspects of Hearing. Springer.
11–20.

http://dx.doi.org/10.1023/A: 1008916026143
http://caltechcstr.library.caltech.edu/591/
http://caltechcstr.library.caltech.edu/591/
http://dx.doi.org/10.1126/science.275.5297.213
http://dx.doi.org/10.1126/science.275.5297.213
http://dx.doi.org/10.3389/fncir.2014.00092


References 295

[160] Mel, B. W. 1992. “NMDA-based pattern discrimination in a modeled cor-
tical neuron”. Neural Computation. 4(4): 502–517.

[161] Mendat, D. R., S. Chin, S. Furber, and A. G. Andreou. 2015. “Markov
Chain Monte Carlo inference on graphical models using event-based pro-
cessing on the SpiNNaker neuromorphic architecture”. In: 2015 49th
Annual Conference on Information Sciences and Systems (CISS). 1–6. DOI:
10.1109/CISS.2015.7086903.

[162] Merolla, P. A., J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada,
F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo,
S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk,
R. Manohar, and D. S. Modha. 2014. “A million spiking-neuron inte-
grated circuit with a scalable communication network and interface”. Sci-
ence. 345(6197): 668–673. DOI: 10.1126/science.1254642. eprint: http:
//www.sciencemag.org/content/345/6197/668.full.pdf .

[163] Merolla, P. A., J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F.
Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I.
Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P.
Risk, R. Manohar, and D. S. Modha. 2014. “A million spiking-neuron inte-
grated circuit with a scalable communication network and interface”. Science.
345(6197): 668–673. ISSN: 0036-8075. DOI: 10.1126/science.1254642.

[164] Mikaitis, M., D. R. Lester, D. Shang, S. Furber, G. Liu, J. Garside, S. Scholze,
S. Höppner, and A. Dixius. 2018. “Approximate fixed-point elementary
function accelerator for the SpiNNaker-2 neuromorphic chip”. In: 2018
IEEE 25th Symposium on Computer Arithmetic (ARITH). 37–44. DOI:
10.1109/ARITH.2018.8464785.

[165] Mikaitis, M., P. G. Garibaldi, J. C. Knight, and S. B. Furber. 2018. “Neu-
romodulated synaptic plasticity on the SpiNNaker neuromorphic system”.
Frontiers in Neuroscience. 12(February): 1–13. ISSN: 1662-453X. DOI:
10.3389/fnins.2018.00105.

[166] Mikolov, T., M. Karafiát, L. Burget, J. Cernocky, and S. Khudanpur. 2010.
“Recurrent neural network based language model.” In: Interspeech. Vol. 2. 3.

[167] Mnih, V., A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu. 2016. “Asynchronous methods for deep
reinforcement learning”. 48. arXiv: 1602.01783. URL: http://arxiv.org/abs/
1602.01783.

[168] Moore, G. E. 1965. “Craming more components onto integrated cir-
cuits”. Electronics. 38(8): 114–117. ISSN: 0018-9219. DOI: 10.1109/jproc.
1998.658762.

http://dx.doi.org/10.1109/CISS.2015.7086903
http://dx.doi.org/10.1126/science.1254642
http://www.sciencemag.org/content/345/6197/668.full.pdf
http://www.sciencemag.org/content/345/6197/668.full.pdf
http://dx.doi.org/10.1126/science.1254642
http://dx.doi.org/10.1109/ARITH.2018.8464785
http://dx.doi.org/10.3389/fnins.2018.00105
http://arxiv.org/abs/1602.01783
http://arxiv.org/abs/1602.01783
http://dx.doi.org/10.1109/jproc. 1998.658762
http://dx.doi.org/10.1109/jproc. 1998.658762


296 References

[169] Moore, S., P. Fox, S. Marsh, A. Markettos, and A. Mujumdar. 2012. “Blue-
hive – A field-programmable custom computing machine for extreme-scale
real-time neural network simulation”. In: 2012 IEEE 20th Annual Inter-
national Symposium on Field-Programmable Custom Computing Machines
(FCCM), 133–140. DOI: 10.1109/FCCM.2012.32.

[170] Morrison, A., A. D. Aertsen, M. Diesmann, A. Morrison, and M. Diesmann.
2007. “Spike-timing-dependent plasticity in balanced random networks”.
Neural Computation Massachusetts Institute of Technology. 19: 1437–1467.
ISSN: 0899-7667. DOI: 10.1162/neco.2007.19.6.1437.

[171] Morrison, A., M. Diesmann, and W. Gerstner. 2008. “Phenomenological
models of synaptic plasticity based on spike timing”. Biological Cybernetics.
98(6): 459–478. ISSN: 03401200. DOI: 10.1007/s00422-008-0233-1.

[172] Morrison, A., C. Mehring, T. Geisel, A. D. Aertsen, and M. Diesmann.
2005. “Advancing the boundaries of high-connectivity network simula-
tion with distributed computing.” Neural Computation. 17(8): 1776–1801.
ISSN: 0899-7667. DOI: 10.1162/0899766054026648.

[173] Muller, J.-M. 2016. Elementary Functions – Algorithms and Implementation.
3rd ed. Birkhäuser Basel.

[174] Mundy, A., J. Heathcote, and J. D. Garside. 2016. “On-chip order-
exploiting routing table minimization for a multicast supercomputer
network”. IEEE International Conference on High Performance Switch-
ing and Routing, HPSR. 2016 July: 148–154. ISSN: 23255609. DOI:
10.1109/HPSR.2016.7525659.

[175] Natrella, M. 2010. “NIST/SEMATECH e-handbook of Statistical Meth-
ods”. Ed. by C. Croarkin and P. Tobias. https://www.itl.nist.gov/div898/ha
ndbook/pmc/section4/pmc431.htm. (Accessed on 2018).

[176] Neil, D. and S.-C. Liu. 2014. “Minitaur, an event-driven FPGA-based
spiking network accelerator”. IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems. 22(12): 2621–2628. ISSN: 1063-8210. DOI:
10.1109/TVLSI.2013.2294916.

[177] Neumarker, F., S. Höppner, A. Dixius, and C. Mayr. 2016. “True
random number generation from bang-bang ADPLL jitter”. In: 2016
IEEE Nordic Circuits and Systems Conference (NORCAS). 1–5. DOI:
10.1109/NORCHIP.2016.7792875.

[178] Neuroinformatics of the University of Zürich, I. of. 2007. “jAER: Java tools
for Address-Event Representation (AER) neuromorphic vision and audio
sensor processing”. URL: https://github.com/SensorsINI/jaer (accessed on
2018).

http://dx.doi.org/10.1109/FCCM.2012.32
http://dx.doi.org/10.1162/neco.2007.19.6.1437
http://dx.doi.org/10.1007/s00422-008-0233-1
http://dx.doi.org/10.1162/0899766054026648
http://dx.doi.org/10.1109/HPSR.2016.7525659
https://www.itl.nist.gov/div898/handbook/pmc/section4/pmc431.htm
https://www.itl.nist.gov/div898/handbook/pmc/section4/pmc431.htm
http://dx.doi.org/10.1109/TVLSI.2013.2294916
http://dx.doi.org/10.1109/NORCHIP.2016.7792875


References 297

[179] Newcomer, J. W., N. B. Farber, and J. W. Olney. 2000. “NMDA receptor
function, memory, and brain aging”. Dialogues in Clinical Neuroscience. 2(3):
219.

[180] Nguyen, T. 2013. “Total number of synapses in the adult human neocortex”.
Undergraduate Journal of Mathematical Modeling: One + Two. 3(1). DOI:
10.5038/2326-3652.3.1.26.

[181] Noethen, B., O. Arnold, E. Perez Adeva, T. Seifert, E. Fischer, S. Kunze,
E. Matus, G. Fettweis, H. Eisenreich, G. Ellguth, S. Hartmann, S. Höpp-
ner, S. Schiefer, J.-U. Schlusler, S. Scholze, D. Walter, and R. Schüffny.
2014. “A 105GOPS 36mm2 heterogeneous SDR MPSoC with energy-
aware dynamic scheduling and iterative detection-decoding for 4G in
65nm CMOS”. In: Solid-State Circuits Conference Digest of Technical Papers
(ISSCC), 2014 IEEE International. DOI: 10.1109/ISSCC.2014.6757394.

[182] Nordlie. 2009. “Visualizing neuronal neonnectivity with connectivity pat-
tern tables twork c”. Frontiers in Neuroinformatics. 3(January): 1–15. ISSN:
16625196. DOI: 10.3389/neuro.11.039.2009.

[183] O’Connor, P., D. Neil, S.-C. Liu, T. Delbruck, and M. Pfeiffer. 2013.
“Real-time classification and sensor fusion with a spiking deep belief
network”. Frontiers in Neuroscience. 7(178). ISSN: 1662-453X. DOI:
10.3389/fnins.2013.00178.

[184] Oja, E. 1983. “A simplified neuron model as a principal component ana-
lyzer”. Journal of Mathematical Biology. 15: 267–273.

[185] Orchard, G., X. Lagorce, C. Posch, S. B. Furber, R. Benosman, and
F. Galluppi. 2015. “Real-time event-driven spiking neural network object
recognition on the SpiNNaker platform”. In: 2015 IEEE International Sym-
posium on Circuits and Systems (ISCAS). 2413–2416. DOI: 10.1109/IS-
CAS.2015.7169171.

[186] Painkras, E., L. A. Plana, J. Garside, S. Temple, F. Galluppi, C. Patterson,
D. R. Lester, A. D. Brown, and S. B. Furber. 2013. “SpiNNaker: A 1-W
18-core system-on-chip for massively-parallel neural network simulation”.
IEEE Journal of Solid-State Circuits. 48(8): 1943–1953. ISSN: 00189200.
DOI: 10.1109/JSSC.2013.2259038.

[187] Pakkenberg, B., D. Pelvig, L. Marner, M. J. Bundgaard, H. J. G. Gunder-
sen, J. R. Nyengaard, and L. Regeur. 2003. “Aging and the human neo-
cortex”. Experimental Gerontology. 38(1-2): 95–99. ISSN: 05315565. DOI:
10.1016/S0531-5565(02)00151-1.

[188] Partzsch, J., S. Höppner, M. Eberlein, R. Schüffny, C. Mayr, D. R. Lester,
and S. Furber. 2017. “A fixed point exponential function accelerator for a
neuromorphic many-core system”. In: 2017 IEEE International Symposium
on Circuits and Systems (ISCAS). 1–4. DOI: 10.1109/ISCAS.2017.8050528.

http://dx.doi.org/10.5038/2326-3652.3.1.26
http://dx.doi.org/10.1109/ISSCC.2014.6757394
http://dx.doi.org/10.3389/neuro.11.039.2009
http://dx.doi.org/10.3389/fnins.2013.00178
http://dx.doi.org/10.1109/ISCAS.2015.7169171
http://dx.doi.org/10.1109/ISCAS.2015.7169171
http://dx.doi.org/10.1109/JSSC.2013.2259038
http://dx.doi.org/10.1016/S0531-5565(02)00151-1
http://dx.doi.org/10.1109/ISCAS.2017.8050528


298 References

[189] Perea, G., M. Navarrete, and A. Araque. 2009. “Tripartite synapses: Astro-
cytes process and control synaptic information”. Trends in Neurosciences.
32(8): 421–431. ISSN: 0166-2236. DOI: 10.1016/j.tins. 2009.05.001.

[190] Pérez-Carrasco, J. A., B. Zhao, C. Serrano, B. Acha, T. Serrano-Gotarredona,
S. Chen, and B. Linares-Barranco. 2013. “Mapping from frame-driven to
frame-free event-driven vision systems by low-rate rate coding and coin-
cidence processing–application to feedforward ConvNets”. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence. 35(11): 2706–2719. ISSN:
0162-8828. DOI: 10.1109/TPAMI.2013.71.

[191] Pfeil, T., T. Potjans, S. Schrader, W. Potjans, J. Schemmel, M. Diesmann,
and K. Meier. 2012. “Is a 4-Bit synaptic weight resolution enough? –
constraints on enabling spike-timing dependent plasticity in neuromor-
phic hardware”. Frontiers in Neuroscience. 6: 90. ISSN: 1662-453X. DOI:
10.3389/fnins.2012.00090.

[192] Pfister, J.-P. 2006. “Triplets of spikes in a model of spike timing-dependent
plasticity”. Journal of Neuroscience. 26(38): 9673–9682. ISSN: 0270-6474.
DOI: 10.1523/JNEUROSCI.1425-06.2006.

[193] Pineda-Garcıéa, G. 2019. “A Visual Pipeline Using Networks of Spiking
Neurons”. PhD Thesis. The University of Manchester. 166.

[194] Pineda-Garcıéa, G., P. Camilleri, Q. Liu, and S. Furber. 2016. “pyDVS: An
extensible, real-time Dynamic Vision Sensor emulator using off-the-shelf
hardware”. In: IEEE Symposium Series on Computational Intelligence, SSCI.
ISBN: 9781509042401. DOI: 10.1109/SSCI.2016.7850249.

[195] Plana, L. A., D. Clark, S. Davidson, S. Furber, J. Garside, E. Painkras,
J. Pepper, S. Temple, and J. Bainbridge. 2011. “SpiNNaker: Design and
Implementation of a GALS Multicore System-on-Chip”. ACM J. Emerg.
Tech. Comput. 7(4): 17:1–17:18.

[196] Plana, L. A., S. B. Furber, S. Temple, M. Khan, Y. Shi, J. Wu, and S. Yang.
2007. “A GALS infrastructure for a massively parallel multiprocessor”.
IEEE Design Test of Computers. 24(5): 454–463. ISSN: 0740-7475. DOI:
10.1109/MDT.2007.149.

[197] Plana, L. A., J. Heathcote, J. S. Pepper, S. Davidson, J. Garside, S. Temple,
and S. B. Furber. 2014. “spI/O: A library of FPGA designs and reusable
modules for I/O in SpiNNaker systems”. DOI: 10.5281/zenodo.51476.

[198] Plana, L. A. 2017. “Interfacing AER devices to SpiNNaker using an FPGA”.
Tech. Rep. http://spinnakermanchester.github.io/docs/spinn-app-8.pdf ,
SpiNNaker Application Note 8. University of Manchester.

http://dx.doi.org/10.1016/j.tins. 2009.05.001
http://dx.doi.org/10.1109/TPAMI.2013.71
http://dx.doi.org/10.3389/fnins.2012.00090
http://dx.doi.org/10.1523/JNEUROSCI.1425-06.2006
http://dx.doi.org/10.1109/SSCI.2016.7850249
http://dx.doi.org/10.1109/MDT.2007.149
http://dx.doi.org/10.5281/zenodo.51476
http://spinnakermanchester.github.io/docs/spinn-app-8.pdf


References 299

[199] Plesser, H. E., J. M. Eppler, A. Morrison, M. Diesmann, and M.-O.
Gewaltig. 2007. “Efficient Parallel Simulation of Large-Scale Neuronal Net-
works on Clusters of Multiprocessor Computers”. In: Euro Par 2007 Par-
allel Processing. Ed. by A.-M. Kermarrec, L. Bougé, and T. Priol. Berlin,
Heidelberg: Springer Berlin Heidelberg. 672–681. ISBN: 978-3-540-
74466-5.

[200] Ponulak, F. and A. Kasinski. 2010. “Supervised learning in spiking neural
networks with ReSuMe: Sequence learning, classification, and spike shift-
ing”. Neural Computation. 22(2): 467–510.

[201] Potjans, T. C. and M. Diesmann. 2014. “The cell-type specific cortical
microcircuit: Relating structure and activity in a full-scale spiking net-
work model”. Cerebral Cortex. 24(3): 785–806. ISSN: 10473211. DOI:
10.1093/cercor/bhs358.

[202] Prescott, T. J., F. M. Montes González, K. Gurney, M. D. Humphries, and
P. Redgrave. 2006. “A robot model of the basal ganglia: Behavior and intrin-
sic processing”. Neural Networks. 19(1): 31–61. ISSN: 08936080. DOI:
10.1016/j.neunet.2005.06.049.

[203] Radford, A., L. Metz, and S. Chintala. 2015. “Unsupervised representa-
tion learning with deep convolutional generative adversarial networks”. arXiv
preprint arXiv:1511.06434.

[204] Ramón y Cajal, S. 1928. Degeneration & Regeneration of the Nervous System.
London: Oxford University Press, Humphrey Milford.

[205] Rast, A. D., A. B. Stokes, S. Davies, S. V. Adams, H. Akolkar, D. R. Lester,
C. Bartolozzi, A. Cangelosi, and S. Furber. 2015. “Transport-Independent
Protocols for Universal AER Communications”. In: Neural Information Pro-
cessing. Ed. by S. Arik, T. Huang, W. K. Lai, and Q. Liu. Cham: Springer
International Publishing. 675–684. ISBN: 978-3-319-26561-2.

[206] Rauch, A., G. La Camera, H.-R. Lüscher, W. Senn, and S. Fusi. 2003. “Neo-
cortical pyramidal cells respond as integrate-and-fire neurons to in vivo-like
input currents”. Journal of Neurophysiology. 90(3): 1598–1612.

[207] Rhodes, O., A. Bogdan, C. Brenninkmeijer, S. Davidson, D. Fellows, A.
Gait, D. R. Lester, M. Mikaitis, L. A. Plana, A. G. D. Rowley, A. B. Stokes,
and S. B. Furber. 2018. “sPyNNaker: A software package for running PyNN
simulations on SpiNNaker”. Frontiers in Neuroscience. 12 (November). ISSN:
1662-453X. DOI: 10.3389/fnins.2018.00816.

[208] Rhodes, O., P. A. Bogdan, C. Brenninkmeijer, S. Davidson, D. Fellows,
A. Gait, D. R. Lester, M. Mikaitis, L. A. Plana, A. G. D. Rowley, A. B.
Stokes, and S. B. Furber. 2018. “Supplementary material: sPyNNaker: A
software package for running PyNN simulations on SpiNNaker”. Frontiers.
Collection.

http://dx.doi.org/10.1093/cercor/bhs358
http://dx.doi.org/10.1016/j.neunet.2005.06.049
http://dx.doi.org/10.3389/fnins.2018.00816


300 References

[209] Richter, C., S. Jentzsch, R. Hostettler, C. Richter, S. Jentzsch, R. Hostet-
tler, F. Röhrbein, P. van der Smagt, and J. Conradt. 2016. “Musculoskeletal
Robots: Scalability in Neural Control”. IEEE Robotics & Automation Maga-
zine. 23(4): 128–137. DOI: 10.1109/MRA.2016. 2535081.

[210] Rodriguez-Pineda, J. A. 2000. “Competitive Hebbian Learning Through
Spiking-Timing Dependent Plasticity (STDP)”. Thesis & Dissertation. 3:
919–926. ISSN: 1308-0911. DOI: 10.16953/deusbed.74839.

[211] Roelfsema, P. R. and A. v. Ooyen. 2005. “Attention-gated reinforcement
learning of internal representations for classification”. Neural Computation.
17(10): 2176–2214.

[212] Rotter, S. and M. Diesmann. 1999. “Exact digital simulation of
time-invariant linear systems with applications to neuronal model-
ing.” Biological Cybernetics. 81(5-6): 381–402. ISSN: 0340-1200. DOI:
10.1007/s004220050570.

[213] Rowley, A. G. D., C. Brenninkmeijer, S. Davidson, D. Fellows, A.
Gait, D. R. Lester, L. A. Plana, O. Rhodes, A. B. Stokes, and S.
Furber. 2019. “SpiNNTools: The execution engine for the SpiNNaker
platform”. Frontiers in Neuroscience. 13: 231. ISSN: 1662-453X. DOI:
10.3389/fnins.2019.00231.

[214] Rubin, J., D. D. Lee, and H. Sompolinsky. 2001. “Equilibrium properties
of temporally asymmetric Hebbian plasticity”. Physical Review Letters. 86(2):
364–367. ISSN: 00319007. DOI: 10.1103/PhysRevLett. 86.364. arXiv:
0007392 [cond-mat].

[215] Russakovsky, O., J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A.
Karpathy, A. Khosla, M. Bernstein, et al. 2015. “ImageNet large scale visual
recognition challenge”. International Journal of Computer Vision. 115(3):
211–252.

[216] Schraut, F., S. Höppner, C. Mayr, and H. Eisenreich. 2019. “A Fast Lock-
in Ultra Low-Voltage ADPLL Clock Generator with Adaptive Body Biasing
in 22nm FDSOI Technology”. In: 2019 IEEE International Symposium on
Circuits and Systems (ISCAS).

[217] Sen-Bhattacharya, B., S. Member, S. James, O. Rhodes, I. Sugiarto, A. B.
Stokes, K. Gurney, A. Rowley, A. B. Stokes, K. Gurney, and S. Furber.
2018. “Building a spiking neural network model of the basal ganglia on
SpiNNaker”. IEEE Transactions on Cognitive and Developmental Systems: 1–1.
ISSN: 2379-8920. DOI: 10.1109/TCDS.2018.2797426.

http://dx.doi.org/10.1109/MRA.2016. 2535081
http://dx.doi.org/10.16953/deusbed.74839
http://dx.doi.org/10.1007/s004220050570
http://dx.doi.org/10.3389/fnins.2019.00231
http://dx.doi.org/10.1103/PhysRevLett. 86.364
http://dx.doi.org/10.1109/TCDS.2018.2797426


References 301

[218] Serrano-Gotarredona, R., M. Oster, P. Lichtsteiner, A. Linares-Barranco,
R. Paz-Vicente, F. Gomez-Rodriguez, L. Camuñas-Mesa, R. Berner, M.
Rivas-Pérez, T. Delbruck, S. Liu, R. Douglas, P. Hafliger, G. Jiménez-
Moreno, A. C. Ballcels, T. Serrano-Gotarredona, A. J. Acosta-Jiménez,
and B. Linares-Barranco. 2009. “CAVIAR: A 45k Neuron, 5M Synapse,
12G connects/s AER hardware sensory-processing-learning-actuating sys-
tem for high-speed visual object recognition and tracking”. IEEE Trans-
actions on Neural Networks. 20(9): 1417–1438. ISSN: 1045-9227. DOI:
10.1109/TNN.2009.2023653.

[219] Serrano-Gotarredona, T. and B. Linares-Barranco. 2013. “A 128×128
1.5% contrast sensitivity 0.9% FPN 3 µs latency 4 mW asynchronous
frame-free dynamic vision sensor using transimpedance preamplifiers”. IEEE
Journal of Solid-State Circuits. 48(3): 827–838. ISSN: 0018-9200. DOI:
10.1109/JSSC.2012.2230553.

[220] Serrano-Gotarredona, T., A. G. Andreou, and B. Linares-Barranco. 1999.
“AER image filtering architecture for vision-processing systems”. IEEE Trans-
actions on Circuits and Systems I: Fundamental Theory and Applications. 46(9):
1064–1071.

[221] Shannon, C. E. 1948. “A mathematical theory of communication”. The
Bell System Technical Journal. 27(3): 379–423. DOI: 10.1002/j.1538-7305.
1948.tb01338.x.

[222] Sharp, T., F. Galluppi, A. Rast, and S. Furber. 2012. “Power-efficient
simulation of detailed cortical microcircuits on SpiNNaker”. Journal
of Neuroscience Methods. 210(1): 110–118. ISSN: 01650270. DOI:
10.1016/j.jneumeth.2012.03.001.

[223] Sharp, T., L. A. Plana, F. Galluppi, and S. Furber. 2011. “Eventdriven simu-
lation of arbitrary spiking neural networks on SpiNNaker”. In: Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics). Vol. 7064 LNCS. 3. Heidelberg. 424–
430. ISBN: 9783642249648. DOI: 10.1007/978-3-642-24965-5_48.

[224] Shi, Y., S. B. Furber, J. Garside, and L. A. Plana. 2009. “Fault tolerant delay
insensitive inter-chip communication”. In: 2009 15th IEEE Symposium on
Asynchronous Circuits and Systems. 77–84. DOI: 10. 1109/ASYNC.2009.21.

[225] Shi, Y. 2010. “Fault-Tolerant Delay-Insensitive Communication”. PhD
Thesis. The University of Manchester. URL: http://apt.cs.manchester.ac.uk/
publications/thesis/YShi10_phd.php.

[226] Siegert, A. J. 1951. “On the first passage time probability problem”. Physical
Review. 81(4): 617.

http://dx.doi.org/10.1109/TNN.2009.2023653
http://dx.doi.org/10.1109/JSSC.2012.2230553
http://dx.doi.org/10.1002/j.1538-7305. 1948.tb01338.x
http://dx.doi.org/10.1002/j.1538-7305. 1948.tb01338.x
http://dx.doi.org/10.1016/j.jneumeth.2012.03.001
http://dx.doi.org/10.1007/978-3-642-24965-5_48
http://dx.doi.org/10. 1109/ASYNC.2009.21
http://apt.cs.manchester.ac.uk/publications/thesis/YShi10_phd.php
http://apt.cs.manchester.ac.uk/publications/thesis/YShi10_phd.php


302 References

[227] Silver, D., A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S.
Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap,
M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis. 2016. “Master-
ing the game of Go with deep neural networks and tree search”. Nature.
529(7587): 484–489. ISSN: 0028-0836. DOI: 10.1038/nature16961.

[228] Simonyan, K. and A. Zisserman. 2014. “Very deep convolutional networks
for large-scale image recognition”. arXiv preprint arXiv:1409.1556.

[229] Sjöström, P. J., G. G. Turrigiano, and S. B. Nelson. 2001. “Rate, timing, and
cooperativity jointly determine cortical synaptic plasticity”. Neuron. 32(6):
1149–1164. ISSN: 08966273. DOI: 10.1016/S0896-6273(01)00542-6.

[230] Sloss, A., D. Symes, and C. Wright. 2004. ARM System Developer’s Guide:
Designing and Optimizing System Software. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc. ISBN: 1558608745.

[231] Sofroniew, M. V. and H. V. Vinters. 2010. “Astrocytes: Biology and
pathology”. Acta Neuropathologica. 119(1): 7–35. ISSN: 00016322. DOI:
10.1007/s00401-009-0619-8. arXiv: NIHMS150003.

[232] Softky, W. R. and D. Koch. 2015. “The highly irregular temporal integra-
tion firing of cortical cells is inconsistent of random EPSPs”. The Journal of.
13(January): 334–350.

[233] Song, S. and L. F. Abbott. 2001. “Cortical development and remapping
through spike timing-dependent plasticity”. Neuron. 32(2): 339–350. ISSN:
08966273. DOI: 10.1016/S0896-6273(01)00451-2.

[234] SpiNNaker. 2011. “SpiNNaker Application Programming Interface”. Tech.
Rep. University of Manchester. URL: http://spinnakermanchester.github.io/
docs/SpiNNapi_docV200.pdf.

[235] SpiNNaker. 2011. “SpiNNaker Datasheet Version 2.02”. Tech. Rep. Univer-
sity of Manchester. URL: http://spinnakermanchester.github.io/docs/Spi
NN2DataShtV202.pdf .

[236] Srivastava, N., G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.
2014. “Dropout: A simple way to prevent neural networks from overfitting”.
Journal of Machine Learning Research. 15: 1929–1958. ISSN: 15337928.
DOI: 10.1214/12-AOS1000. arXiv: 1102.4807.

[237] Stanley, K. O. and R. Miikkulainen. 2002. “Evolving Neural Networks
through Augmenting Topologies”. Evolutionary Computation. 10(2): 99–
127. ISSN: 1063-6560, 1530-9304. DOI: 10.1162/106365602320169811.

[238] Stein, R. B. 1967. “Some models of neuronal variability”. Biophysical Journal.
7(1): 37–68.

http://dx.doi.org/10.1038/nature16961
http://dx.doi.org/10.1016/S0896-6273(01)00542-6
http://dx.doi.org/10.1007/s00401-009-0619-8
http://dx.doi.org/10.1016/S0896-6273(01)00451-2
http://spinnakermanchester.github.io/docs/SpiNNapi_docV200.pdf
http://spinnakermanchester.github.io/docs/SpiNNapi_docV200.pdf
http://spinnakermanchester.github.io/docs/SpiNN2DataShtV202.pdf
http://spinnakermanchester.github.io/docs/SpiNN2DataShtV202.pdf
http://dx.doi.org/10.1214/12-AOS1000
http://dx.doi.org/10.1162/106365602320169811


References 303

[239] Stromatias, E., D. Neil, F. Galluppi, M. Pfeiffer, S. Liu, and S. Furber.
2015. “Live demonstration: Handwritten digit recognition using spik-
ing deep belief networks on SpiNNaker”. In: 2015 IEEE Interna-
tional Symposium on Circuits and Systems (ISCAS). 1901–1901. DOI:
10.1109/ISCAS.2015.7169034.

[240] Stromatias, E., D. Neil, F. Galluppi, M. Pfeiffer, S. Liu, and S.
Furber. 2015. “Scalable energy-efficient, low-latency implementations of
trained spiking Deep Belief Networks on SpiNNaker”. In: 2015 Inter-
national Joint Conference on Neural Networks (IJCNN). 1–8. DOI:
10.1109/IJCNN.2015.7280625.

[241] Stromatias, E. 2016. “Scalability and robustness of artificial neural net-
works”. PhD Thesis. University of Manchester.

[242] Stromatias, E., F. Galluppi, C. Patterson, and S. Furber. 2013. “Power anal-
ysis of large-scale, real-time neural networks on SpiNNaker”. In: The 2013
International Joint Conference on Neural Networks (IJCNN). IEEE. 1–8.

[243] Stromatias, E., D. Neil, M. Pfeiffer, F. Galluppi, S. Furber, and S.-C. Liu.
2015. “Robustness of spiking Deep Belief Networks to noise and reduced bit
precision of neuro-inspired hardware platforms”. Frontiers in Neuroscience. 9:
222. ISSN: 1662-453X. DOI: 10.3389/fnins.2015. 00222.

[244] Sugiarto, I., L. A. Plana, S. Temple, B. S. Bhattacharya, S. Furber, and
P. Camilleri. 2019. “Profiling a many-core neuromorphic platform”. 2017
IEEE 11th International Conference on Application of Information and Com-
munication Technologies (AICT): 1–6. DOI: 10.1109/icaict.2017.8687014.

[245] Sumner, C. J., E. A. Lopez-Poveda, L. P. O’Mard, and R. Meddis. 2002.
“A revised model of the inner-hair cell and auditory-nerve complex”. The
Journal of the Acoustical Society of America. 111(5): 2178–2188.

[246] Surungan, T., F. P. Zen, and A. G. Williams. 2015. “Spin glass behavior of
the antiferromagnetic Heisenberg model on scale free network”. Journal of
Physics: Conference Series. 640(1): 012005. URL: http://stacks.iop.org/174
2-6596/640/i=1/a=012005.

[247] Sutskever, I., O. Vinyals, and Q. V. Le. 2014. “Sequence to sequence learning
with neural networks”. In: Advances in Neural Information Processing Systems.
3104–3112.

[248] Sutton, R. S. and A. G. Barto. 1998. Reinforcement Learning: An Introduction.
The MIT Press.

[249] Szeliski, R. 2010. Computer Vision: Algorithms and Applications. Springer
Science & Business Media.

[250] Telecommunication Industry Association. 2006. “ANSI/TIA-942: Data
Center Standards”.

http://dx.doi.org/10.1109/ISCAS.2015.7169034
http://dx.doi.org/10.1109/IJCNN.2015.7280625
http://dx.doi.org/10.3389/fnins.2015. 00222
http://dx.doi.org/10.1109/icaict.2017.8687014
http://stacks.iop.org/1742-6596/640/i=1/a=012005
http://stacks.iop.org/1742-6596/640/i=1/a=012005


304 References

[251] Temple, S. 2016. “SARK – SpiNNaker Application Runtime Kernel”. Tech.
Rep. University of Manchester. URL: http://spinnakermanchester.github.i
o/docs/sarkV200.pdf .

[252] Terreros, G. and P. H. Delano. 2015. “Corticofugal modulation of peripheral
auditory responses”. Frontiers in Systems Neuroscience. 9.

[253] Tewari, S. G. and K. K. Majumdar. 2012. “A mathematical model of the
tripartite synapse: astrocyte-induced synaptic plasticity”. Journal of Biologi-
cal Physics. 38(3): 465–496. ISSN: 1573-0689. DOI: 10.1007/s10867-012-
9267-7.

[254] Theodosis, D. T., D. A. Poulain, and S. H. R. Oliet. 2008. “Activity-
dependent structural and functional plasticity of astrocyte-neuron inter-
actions”. Physiological Reviews. 88(3): 983–1008. ISSN: 0031-9333.
DOI: 10.1152/physrev.00036.2007. eprint: http://physrev.physiology.org/
content/88/3/983.full.pdf.

[255] THOCP. 2013. “Cray 1, Available online”. URL: http://www.thocp.net/
hardware/cray_1.htm.

[256] Turing, A. 1950. “Computing machinery and intelligence”. Mind – A
Quarterly Review of Psychology and Philosophy. 59(236): 433–460. DOI:
https://doi.org/10.1093.

[257] Turing, A. 1936. “On computable numbers, with an application to the
Entscheidungsproblem”. Proceedings of the London Mathematical Society.
42(1): 230–265. DOI: 10.2307/2268810.

[258] Vainbrand, D. and R. Ginosar. 2010. “Network-on-Chip architectures for
neural networks”. In: 2010 Fourth ACM/IEEE International Symposium on
Networks-on-Chip. 135–144. DOI: 10.1109/NOCS.2010.23.

[259] Vandesompele, A., F. Walter, and R. Florian. 2016. “Neuro-evolution of
spiking neural networks on SpiNNaker neuromorphic hardware”. In: 2016
IEEE Symposium Series on Computational Intelligence (SSCI). 1–6. DOI:
10.1109/SSCI.2016.7850250.

[260] Vinyals, O., I. Babuschkin, J. Chung, M. Mathieu, M. Jaderberg, W. M.
Czarnecki, A. Dudzik, A. Huang, P. Georgiev, R. Powell, T. Ewalds, D.
Horgan, M. Kroiss, I. Danihelka, J. Agapiou, J. Oh, V. Dalibard, D. Choi,
L. Sifre, Y. Sulsky, S. Vezhnevets, J. Molloy, T. Cai, D. Budden, T. Paine,
C. Gulcehre, Z. Wang, T. Pfaff, T. Pohlen, Y. Wu, D. Yogatama, J. Cohen,
K. McKinney, O. Smith, T. Schaul, T. Lillicrap, C. Apps, K. Kavukcuoglu,
D. Hassabis, and D. Silver. 2019. “AlphaStar: Mastering the Real-Time Strat-
egy Game StarCraft II”. https://deepmind.com/blog/alphastar-mastering-re
al-time-strategy-game-starcraf t-ii.

http://spinnakermanchester.github.io/docs/sarkV200.pdf
http://spinnakermanchester.github.io/docs/sarkV200.pdf
http://dx.doi.org/10.1007/s10867-012-9267-7
http://dx.doi.org/10.1007/s10867-012-9267-7
http://dx.doi.org/10.1152/physrev.00036.2007
http://physrev.physiology.org/content/88/3/983.full.pdf
http://physrev.physiology.org/content/88/3/983.full.pdf
http://www.thocp.net/hardware/cray_1.htm
http://www.thocp.net/hardware/cray_1.htm
http://dx.doi.org/https://doi.org/10.1093
http://dx.doi.org/10.2307/2268810
http://dx.doi.org/10.1109/NOCS.2010.23
http://dx.doi.org/10.1109/SSCI.2016.7850250
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii


References 305

[261] Vogels, T. P., H. Sprekeler, F. Zenke, C. Clopath, and W. Gerstner. 2011.
“Inhibitory plasticity balances excitation and inhibition in sensory pathways
and memory networks.” Science (New York, N.Y.) 334(6062): 1569–1573.
ISSN: 1095-9203. DOI: 10.1126/science.1211095. arXiv: 20.

[262] Vogels, T. P. and L. F. Abbott. 2005. “Signal propagation and logic gating
in networks of integrate-and-fire neurons”. Journal of Neuroscience. 25(46):
10786–10795. ISSN: 0270-6474. DOI: 10.1523/JNEUROSCI.3508-
05.2005. arXiv: NIHMS150003.

[263] Vogginger, B., R. Schüffny, A. Lansner, L. Cederström, J. Partzsch, and
S. Höppner. 2015. “Reducing the computational footprint for real-time
BCPNN learning”. Frontiers in Neuroscience. 9: 2. ISSN: 1662-453X. DOI:
10.3389/fnins.2015.00002.

[264] von der Malsburg, C. 1973. “Self-organization of orientation sensitive cells
in the striate cortex”. Kybernetik. 14(2): 85–100. ISSN: 1432-0770. DOI:
10.1007/BF00288907.

[265] Westerman, L. A. and R. L. Smith. 1987. “Conservation of adapting com-
ponents in auditory-nerve responses”. The Journal of the Acoustical Society of
America. 81(3): 680–691.

[266] Yan, Y., D. Kappel, F. Neumaerker, J. Partzsch, B. Vogginger, S. Hoeppner, S.
Furber, W. Maass, R. Legenstein, and C. Mayr. 2019. “Efficient reward-based
structural plasticity on a SpiNNaker 2 prototype”. IEEE Transactions on
Biomedical Circuits and Systems: 1–1. ISSN: 1932-4545. DOI: 10.1109/TB-
CAS.2019.2906401.

[267] Furber, S.B., D.A. Edwards, and J.D. Garside. 2000. “AMULET3: a 100
MIPS Asynchronous Embedded Processor”. In Proceedings 2000 Interna-
tional Conference on Computer Design. pp. 329–334.

http://dx.doi.org/10.1126/science.1211095
http://dx.doi.org/10.1523/JNEUROSCI.3508-05.2005
http://dx.doi.org/10.1523/JNEUROSCI.3508-05.2005
http://dx.doi.org/10.3389/fnins.2015.00002
http://dx.doi.org/10.1007/BF00288907
http://dx.doi.org/10.1109/TBCAS.2019.2906401
http://dx.doi.org/10.1109/TBCAS.2019.2906401


Index

2-of-7 code, 37, 38, 62, 63, 164
22FDX, 265, 277, 278
2D grid, 71
2D mesh network, 268
3-of-6, 37
3D lattice, 159
3D torus, 49
3D-printed, 133
A3C, 162
ABB, xiii, 277, 279
accuracy, 110
ack, 64, 65
Acorn Computers, 4
action selection, 144–146
activation function, 193, 194, 202, 255
actuator, 129
AD, xiii, 240, 241, 243, 244
additive weight dependence, 222
Address Event Representation, see AER
ADPLL, xiii, 273
AER, xiii, 6–10, 19, 22, 55, 107, 164, 166
AGI, xiii, 128
AHB, xiii, 27, 28, 34, 39, 275
AI, xiii, 128, 155, 156, 160, 161, 163,

179, 203, 263
aiCTX, 263

AlexNet, 162
AlphaGo, 160
Altera, 16
AMBA, 27
Amulet, 5
Amulet3, 14
AN, xiii, 139–142
analytical response function, 187, 189
ANN, xiv, 161, 178–181, 188, 190, 191,

193–196, 199–201, 203, 204, 246,
255, 257, 260–262, 264

antiferromagnetic, 158, 159
API, xiv, 104, 106, 118, 122
Application Edge, 86, 101
Application Graph, 86
Application Vertex, 86, 101
architecture, 271
area under curve, 175
ARM, xiv, 4, 5, 7, 9, 10, 14, 16, 18, 19, 25,

27, 28, 30, 34, 39, 41, 43, 44, 48,
49, 51, 54, 55, 57, 67, 68, 73, 76,
80, 120, 127, 172, 176, 207, 216,
217, 263, 266, 270, 272, 275–277

armcc, 80
Artificial General Intelligence, see AGI
artificial intelligence, 4

306



Index 307

ASIC, xiv, 18–21, 25, 27, 43–45, 264
associative memory, 5, 8
astrocyte, 231
asynchronous advantage actor-critic, 162
asynchronous handshake, 37, 38, 66
asynchronous interconnect, 35, 38, 39, 54
asynchronous interconnection technology,

38
asynchronous link, 43, 50
asynchronous logic, 5, 7
asynchronous network, 44, 45
asynchronous regime, 221
auditory modelling, 138
Auditory Nerve, see AN
auditory nerve fibre, 138, 141
auditory pathway, 137, 138, 143
autoencoders, 161
AXI, xiv, 28, 39
backpropagation, 178, 196, 261
bandwidth, 10, 13, 19, 20, 31, 48, 50, 62,

66, 95, 97, 114, 122, 133, 265, 267
Basilar Membrane, 139
BBC Microcomputer, 4
BCM, 207
BCPNN, 274
BG, xiv, 128, 132, 143–146
BigCrush, 273
biological evidence, 235
bisection bandwidth, 50, 51, 62
blacklist, 54, 55, 60, 61, 79, 83
blinkenlights, 43, 80
blob, 135, 136
BMP, xiv, 57, 59–61, 66–68, 74
Board Management Processor, see BMP
Board-to-board latency, 66
Boolean, 41, 44
boot, 30, 38
boot image, 81
boot sequence, 43
bottleneck, 48

boxplot, 254
brain, 1, 5
BrainChip, 263
BrainScaleS, 207
brainstem, 144
brainstem reticular formation, 144
Brian, 103, 171, 176
buffer, 270
bug, 248
C, 91, 92, 99, 104, 118, 119, 124
C++, 97
C2C, 269, 270
CA, 174
cable installation, 72
cache, 5
CAD, 65
Cadence, 263
callback, 81, 92, 107–109, 112, 114, 122,

123
callback priority, 81
callback queue, 81
CAM, xiv, 22, 24
CAN, xiv, 68
Cartesian, 20
CD, 170
centre-surround filtering, 135
centre-surround kernel, 246
chip area, 273
chip-to-chip links, 267
classification, 166, 254
classification accuracy, 174–177, 199–202,

255
classification latency, 176, 177
clock cycle, 42
clue, 155
cluster, 203
CMOS, xv, 16, 45, 51, 277
cochlea, xvii, 138, 139
cochlea model, 138
coding theory, 155



308 Index

communication, 266
communication network, 43
competition, 155
compiler, 80, 274
compression, 95
computable, 3
computation, 189
Computational Neuroscience,

78, 84
Computer Science, 3, 7, 9
computer vision, 133
Content-Addressable Memory, see CAM
contiguous data, 39
Contrastive Divergence, see CD
control system, 130
control theory, 129
Controller Area Network, see CAN
convergence, 154
ConvNet, xv, 161–166, 169, 196, 197,

201, 264
convolutional filter, 259
convolutional layer, 163, 164, 168, 169
Conway, John, 99–102
cortex, 144
Cortex-M4, 270
cortical regions, 138
counter, 43, 44
CPU, xv, 88, 127, 141, 142, 217
CRC, xv, 30, 46, 64–66
credit assignment, 234, 236
cross-correlation, 135
crossover, 256
crystal, 156
CSP, xv, 148–154, 156, 158
current, 181
Cyclic-Redundancy Check, see CRC
data processing, 163
data-management, 103
DBN, xv, 160, 169–178
dBSPL, 141, 142

DC, xv, 56
DDR, xv, 43
deadlock, 9
debug, 248
debugging, 43
decay rate, 233
decision making, 146
Deep Belief Network, see DBN
deep learning, 160–162, 178
deep neural network, 169
DeepMind, 160, 162
default routeing, 9
defautDMA, 272
delay-insensitive code, 62
Delay-Locked Loop, see DLL
depression, 211
design space exploration, 277
DfT, xv, 267
diagnostic, 72
die area, 51
Dieharder, 273
digital signal processing, 138, 263
Dirac, 171, 210, 233
Dirac delta, 171, 210, 233, 234
Direct Memory Access, see DMA
direction, 101, 252
discriminator, 162
dispatcher thread, 108
distributed system, 77
DLL, xv, 54
DMA, xv, 10, 25, 27–30, 39, 42, 46, 48,

51, 81, 107, 108, 112, 114,
116–118, 123, 213, 215, 267, 272

DNN, xv, 161, 200, 263, 275, 276
dopamine, 146, 232, 233, 235
DOTA 2, 160
DRAM, 10
DRNL, xv, 139, 140
dropped packets, 47
DSI, xv, 251–254



Index 309

DTCM, xvi, 27, 29, 82, 88, 106–108,
112–114, 122, 123, 165, 166, 214,
217

DVFS, xvi, 279
DVS, xvi, 55, 57, 164, 166, 170, 171
Dynamic Vision Sensor, see DVS
EA, xvi, 255–257, 260, 261
edge detection, 135
EIEIO packet, 98
EIEIO protocol, 97
elementary motion decomposition, 238,

249
eligibility trace, 206, 232, 233, 235
emergency routeing, 34, 35, 44, 49
energy consumption, 141
energy consumption auditory model, 141
energy efficiency, 74, 261, 277
Engineering, 147
entropy, 155, 156, 158, 251–254, 273
entropy extraction, 273
Entschedungsproblem, 3
EoP, xvi, 35–38
EPSRC, xii, xvi, 5, 16
error backpropagation, 261
error correction, 155
error detection, 155
ES, xvi, 260
escargot, 155
Eta Compute, 263
Ethernet, 29, 30, 42, 43, 55–57, 59, 60,

67, 79, 80, 82, 83, 95–97, 99, 105,
122, 257, 265

EU, 76
Event Camera, 55
event-based, 219
event-based computation, 133
event-based operating system, see

SpiNNaker, SpiN1API, 108, 118,
122

event-based processing, 133

event-driven, 42, 55, 56, 105, 107, 140,
165, 178, 213, 234, 249

event-driven clustering algorithm, 164
event-driven computation, 234
event-driven library, 105, 107
excitatory projection, 104
executable binary, 86
exhibition, 132
exponential, 150, 179, 208, 226, 274
exponential decay, 274
exponential function, 208
F-score, 252
fabrication cost, 50
Fast Interrupt Requests, see FIQ
fault, 37
fault tolerance, 79
FDSOI, 265, 277
feature map, 163, 169
Feature maps, 165
feedback, 132, 143
ferromagnetic, 158
ferromagnetic lattice, 159
field-effect transistors, xv
Field-Programmable Gate Array, see FPGA
FIFO, xvi, 65, 267
filter bank, 139
FIQ, xvi, 30, 81, 108, 112, 118
FIQ thread, 108, 112
firing rate, 180, 191, 194, 198, 199
fixed simulation timestep, 109
fixed-point datatypes, 121
Flash, xvi
flash, 55
Flash memory, 55
flit, xvi, 35–38
FPGA, xiv, xvi, xxiii, 55, 57–60, 62, 63,

65, 66, 74, 178
FPU, xvi, 172, 270
frequency, 138, 139
fully connected layer, 164



310 Index

fully-depleted silicon on insulator, see
FDSOI

Furhat, 129
GA, xvii, 256, 258–260
Gabor, 134
Gabor filter, 134, 135, 164
GALS, xvii, 267
Game of Life, 99, 102
GAN, xvii, 162
ganglion cells, 133
gate-level netlist, 277
Gaussian, 135, 182, 188
Gaussian distribution, 182, 237
Gaussian kernel, 135
gcc, 80
general purpose I/O, 43
generalisation, 178, 203
Generative Adverserial Network, see GAN
generator, 162
genetic computer, 148
GlobalFoundries, 265
glutamatergic, 144
GND, 56, 58
GNU, xvii, 80
Go, 160
Google, 263
GoogLeNet, 162
GPU, xvii, 263
gradient-free optimisation methods, 255
graph colouring, 152, 153
Graphcore, 263
Graphical User Interface, see GUI
GUI, xvii, 72
h-test, 252
hardware, 32, 44, 47, 48, 69, 77, 84,

141–143, 147, 179, 203, 204, 213,
274

Hardware Abstraction Layer, 81
hardware event, 81, 107, 108, 116
HBP, xvii, 76, 103, 207, 219

Hebb, 206
Hebbian, 15, 231
hidden layer, 171, 173, 175, 177,

258
High-Speed Serial Link, see HSSL
histogram, 44, 141, 177, 248, 253
host computer, 105
host machine, 95
HPC, xvii, 9, 12, 207
HSSL, xvii, 63–65
Huawei, 263
Hubel, 161
Human Brain Project, see HBP
hyperparameters, 261
hypersurface, 148
I/O, 27, 43, 51, 55, 66, 265, 267, 268
I/O library, 55
IHC, xvii, 138–141
image recognition, 162
image subsampling, 163
ImageNet, 162
Imagination, 263
inference, 264
infinite impulse response filters, 139
information theory, 238
inhibitory plasticity, 222–224
inhibitory projection, 104
inhibitory synapses, 250
Inner Hair Cell, see IHC
input current, 118–120, 149, 171, 181,

183, 189, 190, 192, 229
Institute of Neuroinformatics, 170
Instruction tightly-coupled memory, see

ITCM
integrate-and-fire, 226
integrated circuit, 40
Intel, 143, 263
Intellectual Property, 50
inter-board interconnect, 63
interface, 43



Index 311

interrupt, 42
intractable, 147, 148, 206
IP, xvii, 54, 55, 66, 68, 80, 81, 88
ISI, xvii, 216
Ising, 152, 156–158
Ising spin glasses, 152
ITCM, xviii, 27, 29, 80–82, 106
Izhikevich, 118, 121, 144, 226, 227, 229,

273
jAER, 166
Java, 97
Jenkins, 76
Joint Test Action Group, see JTAG
JTAG, xviii, 43, 59
Jupyter, 248
kernel, 42, 118, 134, 135, 164, 165, 168,

172, 197–199, 211, 222, 246
Kilburn, Tom, 3
Kinect, 129
KISS64, 273
KISS99, 273
Kronecker delta, 227
L2L, xviii, 261
latency, 274
Latin square, 155
Latin squares, 152
layer, 163
LCD, xviii, 68
leakage power consumption, 277
learning rule, 9, 178, 219, 222, 227, 232,

234, 274
LED, xviii, 55, 59, 72
Lee Sedol, 160
LG, 263
LIF, xviii, 106, 118, 120, 121, 149, 170,

171, 178, 180–185, 187–193,
195–199, 201, 203, 204, 214, 223,
225, 226, 235, 249

Light-Emitting Diode, see LED
Liquid-Crystal Display, see LCD

local memory, 274
local shared bus, 38
Loihi, 263
Lovelace, Ada, 1, 2
low power consumption, 267
low-level libraries, 124
lower precision, 173
LPDDR4, xviii, 266, 267
LSTM, xviii, 162
LTD, xviii, 235
LTP, xviii, 228, 235
LUT, xviii, 274
LVCMOS, 45
M4F, 272
MAC, xviii, xix, 43, 54, 55, 68, 275, 276
Machine Graph, 86, 89, 90, 99–101,

104–106, 122
machine learning, 78, 158, 160, 162, 224,

261, 275, 276
Machine Vertex, 86, 88, 91, 100, 101, 106
Manchester, 3, 53, 132
Manchester Art Gallery, 128, 132
Manchester Baby machine, 4
MAP, 139, 141–143
Markov Chain Monte Carlo, 78
Markov property, 150
massively-parallel computer, 73
MATLAB, 171, 176
Matlab Auditory Periphery, see MAP
maximum connection distance, 71
MC, xix, 8, 20, 21, 31–33, 44, 47, 50,

141, 172, 270
membrane capacitance, 181
membrane potential, 103, 106, 119–121,

149, 150, 179, 181–183, 205, 218,
226, 228

membrane resistance, 149
membrane time constant, 181
memory bandwidth, 267
memory controller, 267



312 Index

Memory Protection Unit, see MPU, 48
MEP, 278
mesh, 20
microprocessor, x, 4, 18, 19, 127
Microsoft, 129
MII, xix, 43
minimum energy point, see MEP
Minitaur, 176, 178
ML, xix, 162, 272, 275, 276
MNIST, xix, 134, 170–172, 174, 176,

177, 197, 198, 238, 247, 258, 259,
261

Model for Structural Plasticity, 237
modulated plasticity, 233
modulator, 234
monitor, 40, 44
monitor processor, 44
Moore’s Law, 264, 265
motion detection, 136, 249, 251
movement, 252
MPSoC, 265
MPU, 48
multi-processor, 265
multicast, see MC
multiplicative weight dependence, 222
mutation, 260
mutex, 82
mutual exclusion, 39, 41
nack, 64, 65
natural language processing, 162
Nearest Neighbour, see NN
NEAT, xix, 257
Nengo, xix, 130, 131
neocortex, 221
NEST, 103, 197, 200, 201
netlist, 277
network topology, 62
Network-on-Chip, see NoC
neural algorithm, 16
neural dynamics, 118

neural networks, 6
neuroevolution, 257
neuroinformatics, 11
neuromodulated STDP, 274
neuromodulator, 231
neuromorphic, 6, 50, 54, 55, 57, 141, 153,

170, 178, 201, 203, 204, 236, 250,
266, 279

neuromorphic applications, 267
neuromorphic computing, 265
neuromorphic hardware, 142, 196
neuromorphic system, 56, 261, 262
NEURON, 103
neuron model, 181
neuron model parameters, 255
neuron update, 111
neuroprosthetics, 153
neurorobotics, 78, 129
neuroscience, 141, 279
neurotransmitter, 136, 137, 146, 184, 189,

210, 231–233
NMDA, xix, 228–230
NN, xix, 31, 33, 34, 38, 48, 82, 83, 270
NoC, xix, 14, 15, 38, 39, 41, 44, 48, 51,

54, 266–268, 270–272, 275, 276
noise, 189, 190
Non-Return-to-Zero, see NRZ
NP, xix, 148, 152–155, 158
NP-complete, 153
NRZ, xix, 36, 38
NSP, xix, 178, 180, 181, 189–197,

199–201, 203
NVidia, 263
object recognition, 163
ODE, 273
off-chip sensors, 267
OME, 139, 140
OpenAI, 160, 162
optic nerve, 163
optimal packing, 74



Index 313

optimisation, 45, 261
optimisation algorithm, 259
optimisation framework, 261
optimisation method, 196
oriented edges, 163
ossicle bones, 139
out-of-credit, 64, 65
outer and middle ear, see OME
Outgoing Edge Partition, 101
overhead, 273
P, xx, 148, 153, 154
P2P, xx, 31, 49, 83
Pac-Man, 257
packet received event, 108, 112
packet transit time, 110
packets, 79, 272
PACMAN, 84
PAF, xx, 178, 191, 194–197, 201, 203
parallel I/O, 43
Paris, 171
payload, 44
PC, xx, 15, 129
PCB, xx, 12, 36, 43, 49, 56, 58
PE, xx, 265–268, 270–272, 275,

277–279
Peri Stimulus Time Histogram, 141
periodic boundary conditions, 250
peripheral device, 39
Phase-Locked Loop, see PLL
PHY, xx, 43, 267
Physics, 147
PID controller, 130
place and route, 267, 277
plasticity, 127
PLL, xx, 39, 279
Point-to-Point, see P2P
Poisson, 103, 104, 122, 145, 150, 152,

170, 172, 180, 184, 187, 192, 195,
197, 198, 214, 222, 225, 226, 228,
234, 246, 248, 249, 251

polynomial time, 148
POST, xx, 60
potentiation, 211
power analysis, 277
power consumption, 18, 36, 40, 44, 59,

60, 67, 99, 146–148, 196, 265,
267

power dissipation, 44, 177
Power Spectral Density, see PSD
Power-On Self Test, see POST
precision, 252
PRNG, xx, 273
process technology, 50
processor, 18, 30, 38, 39, 44, 48, 49
profiling, 99
prototype, 16, 54, 263, 273
provenance data, 91
PSD, 184
PSP, xx, 150, 179
PSTH, 141, 142
puzzle, 156
PVT, xx, 277–279
PyNN, 84, 103–106, 110, 113, 114, 118,

119, 122, 126, 130, 138, 171, 183,
185, 204, 207, 219, 222, 250, 256

Python, 84, 85, 87, 89, 91, 97, 99, 103,
106, 119, 122, 171, 227

QPE, xxi, 266–268, 270, 279
Qualcomm, 263
quantum computer, 148
RAM, xxi, 8, 10, 14, 19, 25–27, 31, 34,

44, 46, 48, 49, 51, 147
Ramón y Cajal, 3
random initialisation, 259
random mutation, 256
random number generator, 272
rank-order encoding, 250, 254
Raspberry-Pi, 146, 147
RBM, xxi, 161, 162, 170, 189
read-modify-write operation, 39



314 Index

Read-Only Memory, see ROM
readout neurons, 250
real time, 109, 110, 116, 140, 141, 143
Realising Our Potential Award, see ROPA
realtime, 124
realtime execution, 116
realtime simulation, 105
recall, 252
receptive field, 133, 135, 161, 173, 174,

237–241, 243–245
redundancy, 62
refractory period, 120, 181, 235
register, 41
Reichardt detector, 136
reinforcement learning, 161, 162, 231
ReLU, xxi, 181, 183, 189, 195–201, 203,

276
request-and-response mechanism, 96
research, 279
reset potential, 120
ResNet, 162
response latency, 202
resting potential, 106, 171
Restricted Boltzmann Machine, see RBM
ReSuMe, 232
retina, 133, 163
retinal ganglion cell, 246
RISC, xxi, 4
RK-2 midpoint, 121
RMSE, xxi, 247, 252
RNN, xxi, 162
robot, 80, 129, 132, 203, 279
ROM, xxi, 14, 26, 27, 29, 30, 39, 40, 43,

54, 60, 67, 81
ROPA, 5
routeing, 139
routeing table, 79, 80, 84, 94, 106
router, 8, 21, 23, 26, 29–32, 36, 38, 42,

44, 61, 79, 268–270, 272
Royce, Sir Henry, 52

RTL, 45
RTZ, xxi, 36
run-time modification, 47
Rx, 63, 66
salient stimuli, 143
SARK, xxi, 80, 81, 84, 105, 107
SATA, xxi, 57–60, 66–68, 73, 79
satisfiability, 154
satisfiable, 152
SCAMP, xxi, 80, 82–85, 95, 96
scheduler thread, 108
scheduling of allocations, 74
script, 84
SDP, xxi, 80, 81, 95, 96
SDRAM, xxii, 10–16, 19, 24, 27–30,

38–40, 43–46, 48, 51, 54, 60, 61,
79, 80, 85, 88–96, 100, 101,
106–108, 112–114, 118, 122, 123,
139, 165, 214, 265, 266, 272

search, 152
self-organisation, 250
sensory periphery, 138
SerDes, xxii, 266
Serial AT Attachment, see SATA
Siegert, 170, 171, 179–185, 187–189
Sigmoid, 170, 180, 189
Silicon retina, 55
Silistix, 14
simulation, 143
simulation timestep, 110, 111
simulator, 103
small world, 102
SNN, xxii, 77, 102–105, 107, 110, 116,

117, 119, 122, 127, 128, 136, 138,
149–158, 161, 170, 171, 176–181,
188, 189, 191, 192, 195–197,
199–204, 206, 207, 231, 250, 255,
257–262, 264, 268

SNr, xxii, 144, 145
SoC, xxii, 12, 15, 16, 265



Index 315

Softplus, 183, 195, 197, 199–203
software, 18, 40, 55, 77, 127, 140, 264,

279
software interrupt, 42
solver, 155
Spalloc, xxii, 74, 259
sparse excitatory connections, 250
spDMA, 272
SPI, xxii, 43, 66
spI/O, 66
spike event, 266
spike processing, 109
spike processing pipeline, 117
spike-driven, 165
SpiN1API, xxii, 81, 84, 105, 107, 108
SpineML, 145–147
SpiNN-1, 54
SpiNN-2, 54
SpiNN-3, 54–56, 84
SpiNN-4, 54
SpiNN-5, 54, 55, 57–63, 66–69, 71, 74,

84, 98
SpiNNak-Ear, 127, 137–143
SpiNNaker, xi, xxii, 1, 4, 8–10, 16–20, 24,

27, 30, 31, 36, 38–45, 47, 48,
50–69, 71–80, 82, 84–89, 95–99,
101, 103–108, 110, 116, 118, 120,
122, 127–130, 133, 138–147, 149,
152, 163–172, 176–178, 203, 205,
207, 210, 213–217, 220, 222, 227,
229, 233, 234, 236–238, 241, 248,
250, 251, 256–262, 264–266,
268–270, 272–274, 279

Application edge, 87
Application graph, 87
Application vertex, 87, 88
Machine edge, 87, 88
Machine graph, 87
Machine vertex, 87

SDP, 80
SpiN1API, 81
SpiNNaker boards, 79
SpiNNaker machine, 78, 84, 85, 88
SpiNNaker router, 79

SpiNNaker Application Runtime Kernel,
see SARK

SpiNNaker chip, 79
SpiNNaker Control And Monitor

Program, see SCAMP
SpiNNaker Datagram Protocol, see

SpiNNaker, SDP
SpiNNaker machine, 48, 53, 57, 61, 67,

69, 74, 88, 97, 101, 104
SpiNNaker1, 262, 265, 267
SpiNNaker1M, 53, 60, 68, 71–76
SpiNNaker2, 124, 262, 264–270,

272–274, 276, 278, 279
SpiNNer, 72, 73
spiNNlink, xxiii, 63–66, 73, 79
SpiNNTools, xxiii, 77, 78, 86, 88–90, 93,

94, 97, 101, 106, 111
sPyNNaker, xxiii, 77, 103–107, 109, 111,

112, 116–118, 120–122, 146, 250
SRAM, xxiii, 10, 15, 19, 25–27, 29, 30,

39, 40, 46, 48, 270, 272, 275–277
standard deviation, 183
standard error of the mean, 244
Starburst Amacrine Cells, 136
Starcraft 2, 160
static timing analysis, 277
STDP, xxiii, 205–220, 222, 224–227,

231–233, 235–237, 239, 240, 247,
254, 274, 275

stimulus-specific adaptation, 143
stochastic gradient descent, 196
stochastic process, 182
stochastic search, 154
strategic data, 206



316 Index

Striatum, 144
structural plasticity, 236, 237, 247,

249–251
sub-threshold, 110, 118, 120, 277
sub-threshold dynamics, 120
Sudoku, 155, 156
supercomputer, 69
superior colliculus, 238, 254
supervised learning, 228, 239, 246
supervision, 229
supply voltage, 277
SWTA, xxiii, 227, 228
symbol recognition, 166
synapse event, 107
synaptic contact, 237
synaptic delay, 11, 15, 213–215, 249,

251–253
synaptic efficacy, 179, 207, 208
synaptic event, 279
synaptic input, 118
synaptic input buffer, 110, 111
synaptic matrix, 112–114, 213–215
synaptic plasticity, 207, 249, 250
synaptic rewiring, 236–239, 242,

245–247, 249
synaptic weight, 103, 165, 213, 222, 237,

266
synchronisation, 39, 41, 93
Synchronous Dynamic Random-Access

Memory, see SDRAM
synthesis, 45, 65, 267, 277
System Controller, 40, 41, 60, 82, 99
t-test, 251–253
TCAM, xxiii, 9, 10, 32, 34, 35, 47, 49,

270
TCM, xxiii, 27, 28, 48
Tensilica, 263
Tera Instructions Per Second, see TIPS
Ternary Content-Addressable Memory, see

TCAM

thalamus, 144
The Imitation Game, 128
threads, 81
threshold, xviii, 106, 118–121, 149, 165,

179, 181, 183, 223, 225, 229, 235,
246, 279

Thumb, 80
Tightly-Coupled Memory, see TCM
time constant, 120, 149, 171, 179, 181,

183–185, 187, 188, 194, 195, 208,
210, 211, 217, 218, 223, 274

timer event, 109, 110, 115–117, 122, 123
TIPS, 15
TM, xxiii, 138, 139
topographic map, 238–241, 243, 245
topology, xi, 20, 33, 38, 57, 62, 69–71,

102, 104, 106, 146, 151, 268
torus, 20, 49, 57, 61, 62, 69–71, 269
traffic visualiser, 98
training accuracy, 259
transcendental functions, 274
transistor, xv, xxiv, 44, 51
true random, 273
TrueNorth, 181, 263
Turing test, 4
Turing, Alan, 3, 4, 128
Tx, 63, 65, 66
Tympanic Membrane, see TM
UDP, xxiii, 80–82, 97
ultra-low voltage, see ULV
ULV, 277
undecidable, 148
uniform distribution, 106, 226,

228, 237
Universite Pierre et Marie Curie, 171
University of Manchester, 9, 53, 74, 256
unlabelled data, 161
unsatisfiable constraints, 157
unseeded population, 259
unsolvable, 148



Index 317

unsupervised learning, 161, 170, 227, 229,
247, 249, 250

user, 44, 47, 48, 55, 74, 77, 78, 84, 89, 92,
103–105, 107, 108, 110, 112,
116–119, 139, 142, 143, 146, 178,
219, 259, 273, 274, 279

user event, 107, 108, 112, 117
verifiable, 148
Verilog, 45
VGG Net, 162
VIC, xxiii, 49
virtual machine, 74, 85
vision system, 163
visual cortex, 161, 163
visual pattern recognition, 258, 264
visualisation, 98, 103, 238, 248

VLSI, xxiv, 5, 6
VNW, 277
VPW, 277
watchdog, 29, 30, 37, 40–42, 46
weight precision, 172–176
Wiesel, 161
Williams, Freddie, 3
WTA, xxiv, 151, 250, 254
Xilinx, 58, 66
XML, 146
XOR, 257, 273
ybug, 84
Zero-Insertion-Force,

see ZIF
ZIF, xxiv, 54
Zurich, 170



About the Editors

Steve Furber CBE FRS FREng is ICL Professor of Com-
puter Engineering in the Department of Computer Science
at the University of Manchester, UK. After completing a BA
in mathematics and a PhD in aerodynamics at the University
of Cambridge, UK, he spent the 1980s at Acorn Comput-
ers, where he was a principal designer of the BBC Micro-
computer and the ARM 32-bit RISC microprocessor. Over
130 billion variants of the ARM processor have since been

manufactured, powering much of the world’s mobile and embedded computing.
He moved to the ICL Chair at Manchester in 1990 where he leads research into
asynchronous and low-power systems and, more recently, neural systems engineer-
ing, where the SpiNNaker project has delivered a computer incorporating a million
ARM processors optimised for brain modelling applications.

Petrut, Bogdan is a Research Associate in the Department
of Computer Science at the University of Manchester, UK.
He received a BSc in Computer Science in 2016 and a PhD
in Computer Science in 2019, both from the University
of Manchester. His research focused on structural plastic-
ity and real-time modelling of spiking neural networks on
SpiNNaker.

318



Contributing Authors

Petrut, Bogdan
The University of Manchester

Christian Brenninkmeijer
The University of Manchester

Dave Clark
The University of Manchester

Simon Davidson
The University of Manchester

Andreas Dixius
TU Dresden

Donal Fellows
The University of Manchester

Gabriel Fonseca Guerra
The University of Manchester

Steve Furber
The University of Manchester

Andrew Gait
The University of Manchester

Francesco Galluppi
Gensight Biologics

Jim Garside
The University of Manchester

Jonathan Heathcote
BBC Research and Development

Sebastian Höppner
TU Dresden

Michael Hopkins
The University of Manchester

Dongwei Hu
The University of Manchester

Robert James
The University of Manchester

Edward Jones
The University of Manchester

Florian Kelber
TU Dresden

James Knight
The University of Sussex

David R. Lester
The University of Manchester

Qian Liu
aiCTX, Zurich

Gengting Liu
The University of Manchester

319



320 Contributing Authors

Christian Mayr
TU Dresden

Mantas Mikaitis
The University of Manchester

Felix Neumärker
TU Dresden

Johannes Partzsch
TU Dresden

Jeffrey Pepper
The University of Manchester

Adam Perrett
The University of Manchester

Garibaldi Pineda García
The University of Sussex

Luis A. Plana
The University of Manchester

Oliver Rhodes
The University of Manchester

Andrew G. D. Rowley
The University of Manchester

Stefan Schiefer
TU Dresden

Stefan Scholze
TU Dresden

Basabdatta Sen-Bhattacharya
BITS Pilani, Goa Campus

Teresa Serrano Gotarredona
Instituto de Microelectrónica de Sevilla

Delong Shang
The University of Manchester

Alan B. Stokes
The University of Manchester

Marco Stolba
TU Dresden

Evangelos Stromatias
Medis Medical Imaging Systems

Steve Temple
MindTrace


	Copyright
	Table of Contents
	Preface
	Acknowledgements
	Funding Acknowledgements

	Glossary
	1 Origins
	1.1 From Ada to Alan - Early Thoughts on Brains and Computers
	1.1.1 Ada Lovelace
	1.1.2 Alan Turing

	1.2 Reinventing Neural Networks - Early Thoughts on the Machine
	1.2.1 Mighty ARMs from Little Acorns Grow
	1.2.2 Realising Our Potential
	1.2.3 Reinventing Neural Networks

	1.3 The Architecture Comes Together
	1.3.1 The State of the Neuromorphic Art
	1.3.2 What Could We Bring to Neuromorphics?
	1.3.3 Multicast Packet-switched AER
	1.3.4 Optimise, Optimise…
	1.3.5 Flexibility to Cope with Uncertainty
	1.3.6 Big Memories
	1.3.7 Ready to Go

	1.4 A Scalable Hardware Architecture for Neural Simulation
	1.4.1 Introduction
	1.4.2 Intellectual Property
	1.4.3 Market Opportunity
	1.4.4 System Organisation
	1.4.5 Node Organisation
	1.4.6 System Architecture Issues
	1.4.7 Development Plan

	1.5 Summary


	2 The SpiNNaker Chip
	2.1 Introduction
	2.2 Architecture
	2.2.1 An Overview
	2.2.2 Processor Subsystem
	2.2.3 Router
	2.2.4 Interconnection Networks
	2.2.5 The Rest of the Chip

	2.3 Multiprocessor Support
	2.4 Event-Driven Operation
	2.5 Chip I/O
	2.6 Monitoring
	2.7 Chip Details
	2.8 Design Critique
	2.9 Summary


	3 Building SpiNNaker Machines
	3.1 Putting Chips Together
	3.1.1 SpiNN-3: Development Platform
	3.1.2 SpiNN-5: Production Board
	3.1.3 Nobody is Perfect: Testing and Blacklisting

	3.2 Putting Boards Together
	3.2.1 SpiNNaker Topology
	3.2.2 spiNNlink: High-speed Serial Board-to-Board Interconnect

	3.3 Putting Everything Together
	3.3.1 SpiNNaker1M Assembly
	3.3.2 SpiNNaker1M Interconnect
	3.3.3 SpiNNaker1M Cabling

	3.4 Using the Million-Core Machine: Tear it to Pieces
	3.5 SpiNNaker1M in Action


	4 Stacks of Software Stacks
	4.1 Introduction
	4.2 Making Use of the SpiNNaker Architecture
	4.3 SpiNNaker Core Software
	4.4 Booting a Million Core Machine
	4.5 Previous Software Versions
	4.6 Data Structures
	4.6.1 SpiNNaker Machines
	4.6.2 Graphs

	4.7 The SpiNNTools Tool Chain
	4.7.1 Setup
	4.7.2 Graph Creation
	4.7.3 Graph Execution
	Machine Discovery
	Mapping
	Data Generation
	Loading
	Running

	4.7.4 Return of Control/Extraction of Results
	4.7.5 Resuming/Running Again
	4.7.6 Closing
	4.7.7 Algorithms and Execution
	4.7.8 Data Recording and Extraction
	4.7.9 Live Interaction
	4.7.10 Dropped Packet Re-Injection
	4.7.11 Network Traffic Visualisation
	4.7.12 Performance and Power Measurements

	4.8 Non-Neural Use Case: Conway's Game of Life
	4.9 sPyNNaker - Software for Modelling Spiking Neural Networks
	4.9.1 PyNN
	4.9.2 sPyNNaker Implementation
	4.9.3 Preprocessing
	4.9.4 SpiNNaker Runtime Execution
	Using the Low-Level Libraries
	Time-Driven Neuron Update
	Receiving a Spike
	Activation of the Spike Processing Pipeline
	Synapse processing
	Callback Interaction

	4.9.5 Neural Modelling
	Software Structure
	Leaky Integrate and Fire Neuron
	Izhikevich Neuron

	4.9.6 Auxiliary Application Code
	Spike Input Generation
	Simulating Extended Synaptic Delays


	4.10 Software Engineering for Future Systems
	4.11 Full Example Code Listing


	5 Applications - Doing Stuff on the Machine
	5.1 Robot Art Project
	5.1.1 Building Brains with Nengo and Some Bits and Pieces
	5.2 Computer Vision with Spiking Neurons
	5.2.1 Feature Extraction
	Gabor-like Detection
	Blob Detector
	Motion Detection


	5.3 SpiNNak-Ear - On-line Sound Processing
	5.3.1 Motivation for a Neuromorphic Implementation
	5.3.2 The Early Auditory Pathway
	5.3.3 Model Algorithm and Distribution
	5.3.4 Results
	5.3.5 Future Developments

	5.4 Basal Ganglia Circuit Abstraction
	5.5 Constraint Satisfaction
	5.5.1 Defining the Problem
	5.5.2 Results
	5.5.3 Graph Colouring
	5.5.4 Latin Squares
	5.5.5 Ising Spin Systems



	6 From Activations to Spikes
	6.1 Classical Models
	6.2 Symbol Card Recognition System with Spiking ConvNets
	6.2.1 Spiking ConvNet on SpiNNaker
	6.2.2 Results

	6.3 Handwritten Digit Recognition with Spiking DBNs
	Spiking DBN on SpiNNaker
	Porting DBN onto SpiNNaker
	Simulating Input Sensory Noise
	Limited Weight Precision

	6.3.1 Results

	6.4 Spiking Deep Neural Networks
	6.4.1 Related Work
	6.4.2 Siegert: Modelling the Response Function
	Biological Background
	Mismatch of the Siegert Function to Practice
	Noisy Softplus (NSP)

	6.4.3 Generalised Off-line SNN Training
	Mapping NSP to Concrete Physical Units
	Parametric Activation Functions (PAFs)
	Training Method
	Fine Tuning

	6.4.4 Results
	Experiment Description
	Individual Neuronal Activity
	Learning Performance
	Recognition Performance
	Power Consumption

	6.4.5 Summary



	7 Learning in Neural Networks
	7.1 Sizing Up the (Biological) Competition
	7.2 Spike-Timing-Dependent Plasticity
	7.2.1 Experimental Evidence for Spike-Timing-Dependent Plasticity
	7.2.2 Related Work
	7.2.3 Implementation
	7.2.4 Inhibitory Plasticity in Cortical Networks
	7.2.5 The Effect of Weight Dependencies

	7.3 Voltage-Dependent Weight Update
	7.3.1 Results

	7.4 Neuromodulated STDP
	7.4.1 Eligibility Traces/Synapse Tagging
	7.4.2 Credit Assignment

	7.5 Structural Plasticity
	7.5.1 Topographic Map Formation
	7.5.2 Stable Mappings Arise from Lateral Inhibition
	7.5.3 MNIST Classification in the Absence of Weight Changes
	7.5.4 Visualisation, Visualisation, Visualisation
	7.5.5 Rewiring for Motion Detection

	7.6 Neuroevolution
	7.6.1 Pac-Man on SpiNNaker
	7.6.2 Further Exploration of NEAT
	7.6.3 An Evolutionary Optimisation Framework for SpiNNaker
	7.6.4 Methods
	7.6.5 Results
	7.6.6 Future Work
	Different EAs
	Machine Learning
	Learning-to-Learn
	Impact on Computational Neuroscience




	8 Creating the Future
	8.1 Survey of Currently Available Accelerators
	8.2 SpiNNaker2
	8.2.1 Lessons from SpiNNaker1
	Strengths
	Weaknesses

	8.2.2 Scaling Performance and Efficiency

	8.3 SpiNNaker2 Chip Architecture
	8.4 SpiNNaker2 Packet Router
	8.5 The Processing Element (PE)
	8.5.1 PE Components
	Communications Controller
	Random Number Accelerator
	Rounding Accelerator
	Elementary Function (exp, log) Accelerator
	Machine Learning (ML) Accelerator

	8.5.2 PE Implementation Strategy and Power Management

	8.6 Summary


	References
	Index
	About the Editors
	Contributing Authors

