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Foreword

Explosive growth in devices and software connected to the internet has led to cur-
rent estimates of 46 billion “things” connecting and integrating on the internet.
Increasing numbers of applications are being facilitated by the use of technology
attached to the internet as part of this Internet of Things (IoT). The scale of IoT has
inevitably led to the increasing complexity of any solution. Theoretical solutions
must quickly give way to pragmatic technology. Smart IoT Systems (SIS) have a
highly distributed infrastructure that relies on a wide range of topologies includ-
ing, but not restricted to, cloud computing, edge computing, and closed or open
networks. It requires tools and technology that are reliable, robust, adaptable and
secure. Improvements in software, methodology, AI, data-analysis and decision-
making are leading to practical applications that will improve the target systems in
which they are implemented. The ENACT project indicates that there are many
feature and functionality gaps in both the applications and enablers present in this
environment and aims to close some of the significant gaps.

The ENACT project has been funded by the European Commission under its
H2020 program. The project consortium consists of twelve member organisations
spread across the EU as a whole. The funding has allowed the research and devel-
opment of three toolkits covering trustworthiness, continuous development and
agile operation. The emphasis of the toolkits is to build applications quickly and
maintain those applications as the application target’s circumstances change. The
development of the toolkits has benefitted from the research excellence that has
pervaded all stages of the project.

Proof of concept use cases will support the development and testing of the toolk-
its. Use cases that are significant in scope and demonstrate the challenges to be met
by the project researchers have been chosen and are discussed in this book. The three

x
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case study domains are in the domains of eHealth, Smart buildings and Intelligent
Transport Systems.

In the context of eHealth both wellness and preventative medicine programs are
being seen as the best direction for the ever-growing healthcare sector. Instead of
reactive medicine proactive medicine is now the preferred approach supported by
the use of technology to move beyond health and disease monitoring to a contin-
uum of support for the healthy to maintain their wellbeing. This is individualised
by the use of machine learning and activation of AI systems capable of making
diagnostic forecasts based on data collected.

In the post Covid 19 world smart buildings will become more pervasive, provid-
ing the facilities to monitor not just temperature and light but air quality, security
and general health and wellbeing of the building users. Air quality monitors should
be able to detect any airborne viruses, extract them or direct the airflow away from
users. Individualised warnings or cautions should ensure that only people who are
vulnerable or who are possibly threatened by poor air quality can be warned or
relocated.

Intelligent transport systems are slowly being developed that take advantage of
IoT devices to monitor and manage areas of the transport environment that were
not previously managed. Autonomous cars use a variety of sensing and analytical
tools to create a world view in which they can operate. Rail services also need to
understand the context in which they move. Failed signals or unhitched rolling
stock can pose an immediate danger on the track. The physical infrastructure of a
rail system uses resources that take time to be implemented but the human machine
interface of equipment/driver/passenger/bystander is adapting all the time. Predic-
tion of component or train integrity failures will ensure a more secure and safe
solution. Adaptable systems will enhance delivery and business models.

Each of these case studies needs tools for developing applications quickly, ensure
that the optimum infrastructure can be built, managed and maintained. The whole
environment must be able to adapt to changes rapidly and required updates or
new applications can be delivered quickly and simply integrated into the whole
infrastructure. The Dev-Ops philosophy is one of the foundations of the project
and will support rapid and agile development and continuous delivery that can be
demonstrated in these case studies.

I have been researching and writing about innovation and solutions develop-
ment for many years and am familiar with the pragmatic research and demonstra-
tions that are part of the European Commission framework programs. I attended
the ENACT project kick-off meeting and later as a member of the project advisory
board attended project reviews. The project case studies are in domains that I am
familiar with from my work on automation and collaborative robotics. The domain
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specific problems in the use cases can be resolved with the general toolkits devel-
oped by the project and will aid decision making, development, deployment and
maintenance. This book contains detailed and well written chapters that cover the
most important areas of the project. The progress made in the project is excellent
and I have been able to observe their progress over the project’s duration. In my
experience it is always difficult to manage such a large project, but the consortium
has managed this well. This book has many interesting topics but I found that
the book chapter on “Looking Ahead” was most interesting as it highlights future
issues with integration and customisation of applications, an area that has been at
the heart of my own work over many years. The authors clear view of what still
remains to be done and the potential for further research is insightful.

Peter Matthews
31st March 2021
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Chapter 1

Introduction

By Erkuden Rios, Nicolas Ferry, Hui Song and Andreas Metzger

Internet of Things (IoT) systems are evolving towards what we denote as Smart
IoT Systems (SIS) – i.e., systems involving not only sensors but also actuators with
control loops distributed all across the IoT, Edge and Cloud infrastructure.

However, the capacity in building novel and innovative SIS faces specific chal-
lenges, that entail (i) how to efficiently build and operate new value-added software
across IoT, edge and cloud infrastructures, (ii) how to close the loop of sensing and
actuation, and (iii) how to establish trustworthiness in these systems. Whilst point
(iv) is already critical in classical IoT systems: according to the IEC report on smart
and secure IoT platforms [5], security, trust, privacy and identity management are
major challenges in today’s IoT systems, this is all the more exacerbated when actu-
ators are involved.

One of the fundamental research questions concerning these issues is: “how can
we tame the complexity of developing and operating smart IoT systems, which
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2 Introduction

Figure 1.1. The generic DevOps life-cycle model.

(i) consist of software running on all types of resources along the IoT-edge-cloud
continuum, (ii) involve sensors and actuators and (iii) need to be trustworthy?”.
The answer to these questions has formed the core of the Horizon 2020 project
ENACT [1, 3]. The overall ambition of ENACT was to expand current DevOps
methods and solutions to support the development and operation of trustworthy
Smart IoT Systems.

DevOps has established itself as a software development life-cycle model that
encourages developers to continuously patch, update, or bring new features to the
system under operation without sacrificing quality [8]. By enabling DevOps in the
realm of SIS, ENACT not only facilitates the development and operation of SIS
but also enables the continuous and agile evolution of SIS, which is necessary to
adapt the system to changes in its environment, including such as newly appearing
trustworthiness threats. ENACT supports DevOps practices during the develop-
ment and operation of trustworthy smart IoT systems by offering software tools,
called “enablers”, for each of the seven stages of the DevOps life-cycle model as
depicted in Figure 1.1.

• Plan: ENACT supports privacy and security risk assessment enabling the
risk-driven planning of IoT systems development cycles as well as the smooth
transition towards the code stage.

• Code: First, ENACT evolves recent advances of the ThingML language and
generators to support modelling of system behaviours and generation of
code executable across the whole IoT, edge and cloud continuum. Second,
ENACT provides a model-based solution to automatically identify and solve
conflicts when multiple applications manage actuators.

• Test: Targeting the constraints related to the distribution and infrastructure
of IoT systems, ENACT enables continuous testing of SIS in an environment
by emulating and simulating IoT and Edge infrastructures.
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• Release and Deploy: ENACT provides novel deployment modelling lan-
guages and the corresponding execution engines to support the continuous
and automatic fleet deployment, by assigning multiple deployments to many
devices in the fleet, without human interaction. It enables deployment from
the IoT to the cloud ends with security as a first-class concern.

• Operate: ENACT provides enablers for the automatic adaptation of IoT
systems based on their run-time context, including smart preventive secu-
rity mechanisms such as access control. In addition, ENACT offers machine
learning capabilities at runtime in order to deliver self-adaptive SIS. Such
automatic self-adaptation addresses the issue that the management complex-
ity of open-context IoT systems exceeds the capacity of human operation
teams, and by this, improve the trustworthiness of the smart IoT system exe-
cution.

• Monitor: ENACT has delivered innovative mechanisms to observe and anal-
ysis (i) the status of a SIS including security and privacy aspects at all the net-
work, system, and application levels, (ii) failures, (iii) the overall effectiveness
of the SIS in reaching its goals.

ENACT was part of a cluster of related H2020 projects all contributing to IoT
security [2]. Among the eight projects that formed the cluster, two are most notably
related to ENACT and share common objectives. The Semiotics project1 also con-
siders SIS with a specific focus on the management of actuators. The project pro-
poses a pattern-driven framework, built upon existing IoT platforms, to enable
and guarantee secure and dependable actuation and semi-autonomic behaviour in
IoT applications. While not specifically focusing on DevOps, one of the technical
objectives of the Brain-IoT project2 was to facilitate the rapid model-based devel-
opment, integration, and deployment of interoperable IoT solutions that support
smart cooperative behaviour involving actuation in IoT scenarios.

This book describes the ENACT project outcomes (cf. Figure 1.2) and how they
solve major challenges in the DevOps of trustworthy SIS. The overall approach pur-
sued in the ENACT project is introduced in Chapter 2, and the chapters following
afterwards detail the outcomes of ENACT. In Chapter 3 the privacy and security
risk assessment and management in SIS is discussed, and the ENACT enabler deal-
ing with risks is presented. Chapter 4 is focused on deployment support offered by
ENACT and the deployment and diversification methods and enablers are detailed
therein. Chapter 5 deals with the issues of actuation conflict resolution in SIS that

1. https://www.semiotics-project.eu

2. http://www.brain-iot.eu

https://www.semiotics-project.eu
http://www.brain-iot.eu
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Figure 1.2. ENACT project results.

include actuators, and how to detect and analyse behaviour deviations at SIS opera-
tion from those designed when building the SIS. In Chapter 6 reinforcement learn-
ing techniques are studied as the ENACT approach for continuously ensuring and
improving the quality of SIS during operations. Chapter 7 explains all the details
of the ENACT support to security aspects of SIS, including context-aware access
control enabler, security monitoring enabler, as well as security control through
capabilities embedded in IoT platforms. Chapter 8 describes the ENACT enablers
dedicated to the SIS verification and validation activities, including the support
to testing, simulation and root cause analysis. Chapters 9, 10 and 11 explain the
real IoT system use cases where the ENACT enablers were validated, dedicated to
eHealth, Intelligent Transport Systems (ITS) and Smart Buildings domains, respec-
tively. Chapter 12 concludes the book with an outlook on future research challenges
and opportunities.
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Chapter 2

The ENACT Approach

By Nicolas Ferry, Hui Song, Erkuden Rios and Andreas Metzger

Smart IoT Systems (SIS) are the next generation of IoT systems that span across the
complete computing continuum, from IoT via Edge/Fog to the Cloud, with local
data analytics, decision making, and actuators involved. Software plays a key role in
such systems. The systems’ increased complexity, the unpredictability of their envi-
ronment, as well as the changes in their requirements and infrastructure are many
factors that can result in new threats hindering their trustworthiness. The proper
functioning and correctness of such systems is critical especially when they control
actuators that can have a direct impact on the physical world. The ability of these
systems to continuously evolve and adapt to these changes is decisive to ensure and
increase their trustworthiness, quality and user experience. Currently, DevOps is
the mainstream practice in the software and Cloud industry to foster continuous
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evolution of software systems. DevOps promotes a rapid and efficient value deliv-
ery to the market, through a tight collaboration between the developers and the
teams that deploy and operate the software systems. DevOps seeks to decrease the
gap between product design and its operation by introducing software design and
development practices and approaches to the operation domain and vice versa [8].

When the ENACT project was created in 2017, there was no DevOps support
for trustworthy Smart IoT Systems [12, 34]. Even if DevOps is not bound to any
application domain, many challenges appear when the IoT intersects with DevOps,
in particular, due to the lack of key enabling tools. ENACT focused specifically on
the following three challenges [3].

The first key challenge, as opposed to Cloud environments which are relatively
reliable and homogeneous, is the wide diversity that characterizes SIS, not only in
terms of hardware but also in terms of their software stack. There is typically a lack
of coherent languages, abstractions, security and privacy solutions that can be used
to support development and the orchestration of software and their deployment
across heterogeneous devices.

Second, SIS are by nature massively distributed on top of a highly heteroge-
neous and geographically-distributed infrastructure, which means that software is
more complex to apprehend, develop, operate, and maintain than on top of Cloud
infrastructures. Each device has a unique operational context, in terms of hardware
capacity, end-user preference, exposure to security risks, role in the whole data flow,
connection to sensors and actuators, etc. This context is dynamic and often unpre-
dictable, e.g., the volume of data may change, the network connectivity among
devices can be unstable. Therefore, the management and operation of each software
module, e.g., where to place it, when to deploy it, how to configure it, and how to
monitor it, etc, needs to be handled individually and continuously to fit its unique
and evolving context. For large scale SIS which can include thousands of devices,
handling each device individually inevitably leads to enormous operational effort
and cost, which, as identified by Gartner, “can easily exceed the project’s financial
benefits.”1

Third, SIS can have an impact on the physical world through actuators. There
is a need to properly manage these actuators and to ensure that such systems and
in particular the software deployed on these systems always work within safe oper-
ational boundaries. Only a few approaches exist in the literature focusing on the
management of actuation conflicts, and none are meant to be used in a DevOps
context.

1. https://www.gartner.com/en/newsroom/press-releases/2018-12-03-gartner-says-the-future-of-it-infrastruct
ure-is-always-on-always-available-everywhere

https://www.gartner.com/en/newsroom/press-releases/2018-12-03-gartner-says-the-future-of-it-infrastructure-is-always-on-always-available-everywhere
https://www.gartner.com/en/newsroom/press-releases/2018-12-03-gartner-says-the-future-of-it-infrastructure-is-always-on-always-available-everywhere
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These key challenges had to be addressed to enable DevOps for trustworthy
Smart IoT Systems. In this chapter we present how the overall approach followed in
the ENACT project proposes to evolve existing DevOps methods and techniques
to support the development and operation of Smart IoT Systems, which (i) are
distributed, (ii) involve sensors and actuators and (iii) need to be trustworthy (i.e.,
trustworthiness refers to the preservation of security, privacy, reliability, resilience,
and safety [13]).

The remainder of the chapter is organized as follows. Section 2.1 introduces
the overall ENACT approach and lists the enablers that will form the core con-
tribution of ENACT supporting the DevOps of SIS. Section 2.1.4 details how
these enablers can be organized together to form a comprehensive and continuous
DevOps Framework. Section 2.2 summarizes how the developed solutions facili-
tate the development and operation of SIS that are trustworthy. Finally, Section 2.3
reports on the three use cases of the project and how they supported validation of
the ENACT enablers.

2.1 ENACT Enablers to Deliver DevOps for SIS

To foster the adoption of DevOps practices in the realm of SIS, ENACT’s approach
is to deliver a set of enablers (i.e., tools and services) that support the continu-
ous development, evolution and operation of SIS. These enablers are designed to
integrate with DevOps, Cloud, and Edge services and are loosely coupled, pro-
viding SIS providers with the ability to pick the enablers that best fit their needs.
In other words, it is not necessary to gather the whole ENACT framework to ben-
efit from one or more of these enablers, and these can be integrated as part of exist-
ing DevOps pipelines. As depicted in Figure 2.1, the different enablers contribute
to different stages within the DevOps life-cycle and, overall, the ENACT Frame-
work contributes to all the DevOps stages. In the following we provide an overview
for each of the enablers, which are detailed in the remaining chapters of this
book.

2.1.1 Enablers for the Development Phase

The following three enablers provide specific support for the development of trust-
worthy SIS.

Risk Management enabler: This enabler provides concepts and tools for the
agile, context-aware, and risk-driven decision support and mechanisms for appli-
cation developers and operators to support the continuous delivery of trustwor-
thy SIS [12]. By leveraging the evidences collectors provided by the enabler,
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Figure 2.1. Contribution of the ENACT tools to the DevOps lifecycle.

organizations use it not only to assess risks but also to monitor and control treat-
ment implementation and effectiveness during the development and operation of
SIS, enabling the treatment of security and privacy risks together and making them
actionable for software engineers. This makes this enabler the first DevOps-enabled
continuous risk control solution, improving software development and operation
organizations’ awareness on risks. In addition, it facilitates compliance with stan-
dards such as ISO 27001 and regulations such as GDPR, in near real-time. Further
details about this enabler can be found in Chapter 3.

ThingML: ThingML [4] is an open source IoT framework that includes a language
and a set of generators to support the modelling of system behaviours and their
automatic derivation across heterogeneous and distributed devices at the IoT and
edge end. The ThingML code generation framework has been used to generate code
in different languages, targeting around 10 different target platforms (ranging from
tiny 8 bit microcontrollers to servers). A challenge for approaches such as ThingML
is how to properly log, monitor and debug the generated programs. Indeed, to fully
benefit from the approach, such logging should be performed by relating to the
concepts of the original abstraction level. To address this challenge, ThingML has
been extended with an automated,platform-independent and easy to use logging
mechanism to ThingML developers. This logging approach aims at providing log
information about the execution of their ThingML programs, in terms of ThingML
concepts being executed.

Actuation Conflict Management enabler (ACM): Actuation conflicts can occur
when concurrent applications have a shared access to an actuator and when
actuators produce actions within a common physical and local environment, whose
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effects are contradictory. This enabler supports the identification and resolution
of direct and indirect actuation conflicts as part of a DevOps pipeline in a plat-
form independent and technology agnostic way [6]. DevOps team can integrate
the ACM solution as part of their DevOps pipeline to detect automatically direct
and indirect actuation conflicts in a complex SIS. Off-the-shelf actuation conflict
managers are automatically injected into the SIS. New actuation managers can be
designed using a tool-supported domain-specific modelling language and checked
against logical and temporal properties. While traditionally, the management of
actuation conflicts is handled at the code level, the ACM enabler applies over and
abstract representation of the SIS that is decoupled from its detailed code enabling
the detection, analysis and resolution of actuation conflicts as part of a typical
DevOps process. Verification mechanisms ensure the conflict management solu-
tion injected into the SIS satisfies temporal and logical properties making DevOps
teams confident to place it in the system. Further details about this enabler can be
found in Chapter 5.

Test and Simulation enabler (TaS): Software testing is a crucial step of any soft-
ware development process, especially in DevOps. Having access to a production-
like environment that reproduces the same conditions where a piece of software
would run is usually tricky or close to being an impossible task. This is exacer-
bated in IoT environments where (i) developers need to test their applications to
ensure trustworthiness requirements, including scalability, are met, and (ii) build-
ing a large-scale testbed that includes a realistic physical infrastructure of devices
and sensors can quickly be expensive. The test and simulation enabler provides a
light-weight, user-friendly approach for simulating large number of IoT devices
and cyber-attacks, in order to set up the testing environment and test SIS in a cost-
effective way. The enabler goes beyond the state of the art on sensor and actuation
simulation solutions that typically reproduce how the devices behave according to
the physical environment. Instead, it focuses on the pure software simulation, by
reproducing how devices interact with software in the IoT system.

2.1.2 Enablers for the Deployment Phase

Within the DevOps life-cycle, deployment is typically the activity that bridges
development and operation activities. The following two enablers provide specific
support for the deployment of trustworthy SIS.

Orchestration and Continuous Deployment enabler (GeneSIS): This enabler,
also known as GeneSIS, supports the automatic deployment of software, together
with the attached security mechanisms, across the computing continuum from IoT,
Edge to Cloud [20]. Developers use a declarative modelling language to specify
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what software components and security mechanisms they want to deploy, and the
engine automatically deploys them into the resources in the computing continuum,
continuously monitoring the deployment status. The GeneSIS modelling language
is independent of the underlying technologies, i.e., GeneSIS can deploy compo-
nents anywhere in the IoT-Edge-Cloud continuum: from microcontrollers with-
out direct Internet access to virtual machines running in the Cloud. It also includes
security mechanisms as first-class modeling elements thus promoting security-by-
design. Further details about this enabler can be found in Chapter 4.

Fleet Management and Diversity enabler (DivEnact): This enabler, also known
as DivEnact, supports automatic software deployment for IoT applications that
comprise a large fleet of devices, and maintains software diversity among the
fleet [44]. It provides DevOps teams with a mean to deploy a new software ver-
sion into the abstract fleet, without worrying about what exact devices are in the
fleet, their contexts, and whether they are online or not. DivEnact maintains the
devices and their contexts in the fleet, the software variants, and assign the variants
to the appropriate devices depending on their contexts. Further details about this
enabler can be found in Chapter 4.

2.1.3 Enablers for Operation Phase

Finally, the following four enablers focus on supporting the operation and moni-
toring of SIS.

Behavioral Drift Analysis enabler (BDA): The complex nature of the cyber-
physical environment in which a SIS operate makes it impossible for DevOps teams
to predict if, once under operation, the system will behave as expected during devel-
opment. For instance, many unanticipated surrounding physical processes may dis-
rupt and hamper the SIS from achieving its goal. The Behavioral Drift Analysis
enabler provides a novel way to overcome this issue by shifting the monitoring and
analysis from the internal of the system to its context by observing and analysing
the effects of the commands sent to the actuators on the cyber-physical context
of the SIS [29]. This makes the approach generic an applicable to any SIS inde-
pendently of its implementation and it makes it non-invasive in the sense that it
does not require any modification of the applications. DevOps teams can use this
enabler during operation as a monitoring solution to detect symptoms indicating
that the effects of the system on its environment are no longer as expected and to
understand this loss of effectiveness. Further details about this enabler can be found
in Chapter 5.

Online Learning enabler (OLE): To develop a self-adaptive SIS, software engi-
neers have to create self-adaptation logic encoding when the SIS should execute
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which adaptation actions. However, developing self-adaptation logic may be dif-
ficult due to design time uncertainty; e.g., anticipating all potential environment
changes at design time is, in most cases, infeasible. In addition, due to simplified
design assumptions, the precise effect of an adaptation action may not be known,
making it difficult to accurately determine how the SIS should adapt itself. The
Online Learning Enabler addresses these challenges by leveraging modern machine
learning algorithms during the operation phase [16]. In particular, the enabler
uses reinforcement learning to address design time uncertainty by learning suitable
adaptation actions through interactions with the environment at run time.

Security and Privacy Control and Monitoring enabler (S&P): This enabler is
a one-stop solution for the near real-time monitoring and control of security- and
privacy-related anomalies across multiple layers of Smart IoT Systems, from things,
devices, Edge to Cloud. DevOps teams use the S&P enabler for controlling data
protection and secure communications all along the lifecycle of the SIS, through
continuous monitoring of security metrics, and automatic detection and feedback
for subsequent DevOps loops. The enabler uses machine learning to correlate data
captured by multiple probes or monitoring agents deployed in different layers, in
order to offer a holistic view of the SIS and enable the detection of sophisticated
attacks. The tool has a flexible architecture to adapt to the different information
availability and the specific types of anomalies, and is fully elastic for the rapid
scaling of the target systems. Further details about this enabler can be found in
Chapter 6.

Context-Aware-Access Control (CAAC): Context-Aware-Access Control provides
a unified access control of all the IoT actors from administrators, end-users, and
services, to devices, and dynamically adapts the authorization according to the
changing context [23]. It is a SaaS solution that can be integrated into the IoT
applications, and provides a user-friendly authentication interface. The solution
ensures the data is only exposed to authorized users and devices. It supports the
applications in adapting the authorizations according to context changes, without
requiring developers to modify the code. This is done by adding dynamicity to the
OAuth 2.0 standard protocol to make the provided authorizations responsive to the
context, injecting contextual risk levels as dynamic attributes in the authorization
mechanisms. Further details about this enabler can be found in Chapter 6.

Root Cause Analysis enabler (RCA): Understanding the origin of a failure in a
SIS is a complex and time consuming task. This is in particular due to the fact
that these systems are large, vastly heterogeneous as well as widely distributed. This
enabler observes the symptoms of the IoT systems, such as loss of messages, delay
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of response, etc. and automatically diagnoses the root cause, such as device fail-
ures or broken networks. DevOps teams can thus use the RCA enabler during the
operation of their IoT application in order to receive alarms when there are inci-
dents. The alarms will include details about the origin and possibly the reason of
the accident as well as targeted instruction about how to fix the incidents. Instead
of relying on human experts to exhaust all the causal connections between inci-
dents and symptoms, the Root Cause Analysis tool builds this knowledge itself, by
recording the typical incidents and their symptoms. During runtime, it compares
the similarity between the observed symptoms with the recorded ones in the library
to identify the possible incidents. Further details about this enabler can be found
in Chapter 6.

2.1.4 Focus of the Different Enablers

In real cases, a large scale IoT system usually comprises many duplicates of the
same or similar sub-systems, which contain a relatively smaller number of nodes.
A typical example is the eHealth use case (see Chapter 9). In the eHealth use case,
a remote patient monitoring system aims at supporting thousands of patients, and
each patient is provided with a sub-system that includes one gateway and several
sensors. These sub-systems are similar to each other, in terms of architecture, soft-
ware and configurations. Under such setups, the DevOps of Smart IoT Systems
usually includes two complementary activities: (i) the development, testing and
optimization of the functionality within one sample sub-system, and (ii) the oper-
ation of the system of systems, with many duplicates of the sample sub-system.

The ENACT enablers naturally have different focuses. While the Risk Man-
agement, test and simulation, security and privacy control enablers and DivEnact
are solutions that can be used at the system-of-systems level, the other enablers are
aimed for the sub-system level. Yet, it is worth noting that the tools that system-of-
systems enablers can also be applied at the scale of one sub-system.

2.2 Architecture of the ENACT Framework

The set of ENACT enablers introduced above form the ENACT DevOps Frame-
work. Below we detail the architecture of this framework as well as the relationships
between the enablers within this framework.

Figure 2.2 depicts the overall architecture of the ENACT Framework. It is a
multi-layer architecture composed of 4 layers hierarchically organized plus one
crosscutting layer. In the following we detail each of these layers. It is worth not-
ing that Figures 2.1 and 2.2 are complementary in explaining the relationships
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Figure 2.2. The ENACT architecture.

and complementarity of the enablers. The former details the contribution of the
enablers within a DevOps pipeline while the later details how they can be integrated
within a comprehensive Framework for the development and operation of SIS.

From the most abstract to the most concrete (i.e., from the farthest to the closest
to the running system), the layers are described as follows:

1. Evolution & Adaptation Improvement Layer: This layer provides the
mechanisms to continuously improve and manage the development and
operation processes of trustworthy SIS. On the one hand, the Risk Manage-
ment enabler helps organizations to analyze the architecture of their Smart
IoT Systems and detecting potential vulnerabilities and the associated risk (in
particular related to security and privacy aspects) and propose related miti-
gation actions. On the other hand, the Online Learning enabler focuses on
improving the behaviour of the adaptation engine that will support the oper-
ation of trustworthy SIS. This tool typically relates to the Operate stage of
the DevOps process. In general, the improvement layer provides feedback
and knowledge to all the other DevOps stages with the aim to improve the
development and operation of trustworthy SIS. Thus, in this architecture,
information from this layer are provided to the evolution and adaptation
management layer with the aim to improve it.

2. Evolution & Adaptation Management Layer: This layer first embeds a set
of editors to specify the behaviours as well as the orchestration and deploy-
ment of SIS across IoT, Edge and Cloud infrastructure. These editors inte-
grate with mechanisms to maximize and control the trustworthiness of the
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system. All together, these components cover activities in both the Dev and
Ops parts of a DevOps process and in particular to the code, build and oper-
ate stages. The activities performed at this layer are strongly affected by the
inputs from the improvement layer.

3. Evolution & Adaptation Enactment Layer: This layer bridges the gap
between development and operation as its goal is to enact the deployment
and adaptation actions decided at the Evolution & Adaptation Management
Layer. The mechanisms of this layer monitor and manage the deployment of
the running system.

4. Environment Layer: This layer consists of the running system together with
the environment and infrastructure in which it executes. This includes both
production and testing environments.

5. Monitoring and Analytics Layer: This layer is orthogonal and feeds the
other four. The enablers at this layer are supporting the monitoring stage of
the DevOps process and typically aim at providing feedback from Ops to
Dev. More precisely, this layer provides mechanisms to monitor the status of
the system and of its environment. This includes mechanisms to monitor the
security and privacy of a SIS. In addition, it performs analytic tasks provid-
ing: (i) high level notifications with insights on ongoing security issues, (ii)
diagnostics and recommendations on system’s failures, and (iii) feedback on
the behavioural drift of SIS (i.e., system is functioning but not delivering the
expected behaviour).

2.3 Improving SIS Trustworthiness

In this section we first summarize the contributions of the enablers in terms of
supporting the development and operation of trustworthy SIS.

Based on the NIST definition of trustworthiness for Cyber Physical Sys-
tems [13], within ENACT, we adopt the following definition of trustworthiness
and its different properties: “Trustworthiness refers to the preservation of security,
privacy, safety, reliability, and resilience of SIS”.

We adopt the following definitions of the different properties:

• Security refers to the preservation of confidentiality, integrity and availability
of information [9].

– Integrity is the property of protecting the accuracy and completeness of
information [1].

– Confidentiality is the property that information is not made available or
disclosed to unauthorized individuals, entities, or processes [1].
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– Availability is the property of information being accessible and usable
upon demand by an authorized entity [1].

• Privacy refers to the protection of personally identifiable information
(PII) [10]. PII refers to any information that (a) can be used to identify the
PII principal to whom such information relates, or (b) is or might be directly
or indirectly linked to a PII principal.

• Safety refers to the ability of the cyber-physical system (CPS) to ensure the
absence of catastrophic consequences on the life, health, property, or data of
CPS stakeholders and the physical environment [13].

• Reliability refers to the ability of the CPS to deliver stable and predictable
performance in expected conditions [13].

• Resilience refers to the ability of the CPS to withstand instability, unexpected
conditions, and gracefully return to predictable, but possibly degraded, per-
formance [13].

Figure 2.3 summarizes how each individual ENACT enabler contributes to the
development and operation of trustworthiness of SIS. It is also worth noting that
the support offered by the ENACT enablers to the DevOps of SIS is, by itself, a
major contribution for supporting the trustworthiness aspect. Indeed, the adoption
of the DevOps principles and practices in the field of the IoT is decisive to enable
the continuous and agile evolution of SIS, which is necessary to adapt the system
to newly appearing trustworthiness threats and to ensure its overall quality.

Some enablers are marked as indirectly contributing to the privacy property.
This is because the support for security provided by these enablers also contributes

Figure 2.3. ENACT contribution to SIS trustworthiness.
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preserving the privacy of a SIS. The same applies to the safety property, the contri-
butions of the enablers on security, privacy, reliability and resilience properties are
important to help ensuring the safety of a SIS.

The enablers from the monitoring and analytics layer of the ENACT DevOps
Framework (i.e., security and privacy monitoring, behavioural drift analysis, and
root cause analysis) are considering security, privacy, reliability and resilience
aspects. It is worth noting that these tools are complementary: On the one hand, the
security and privacy monitoring enabler focuses on observing symptoms of security
and privacy issues, and the behavioural drift analysis enabler focus on symptoms of
reliability and resiliency issues. On the other hand, the root cause analysis focuses
on understanding the causes of these symptoms.

2.4 Evaluation and Validation: the ENACT use Cases

The general applicability of the ENACT enablers was validated and demonstrated
in the context of three use cases: Smart Building, Intelligent Transport System
(ITS), and eHealth. Each of these use cases represent different application domains,
all facing specific trustworthiness challenges as depicted in Figure 2.4.

2.4.1 The Smart Building use Case

The first use case explored and validated ENACT in the domain of Smart Build-
ings, i.e., Smart IoT Systems that make use of Smart Building sensors, actuators
and services. The use case leveraged the Kubik test facility,2 which is a three floors
smart building owned by Tecnalia and designed for testing and research. Kubik

Figure 2.4. ENACT use cases and project partners in charge of the use cases.

2. https://www.tecnalia.com/images/stories/Catalogos/CAT_KUBIK_EN_dobles.pdf

https://www.tecnalia.com/images/stories/Catalogos/CAT_KUBIK_EN_dobles.pdf
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offers SIS providers with a flexible framework not only to explore the opportuni-
ties offered by a rich ecosystem of sensors and actuators when designing novel IoT
solutions but also to test and make experiments with the SIS resulting from this
design in a real infrastructure. Thus, the smart building use case helped us validat-
ing our ENACT enablers in the early design stage of a SIS. During the project,
several applications dedicated to aspects such as energy efficiency or user comfort
were designed, developed and tested in Kubik. This context introduced specific
DevOps and trustworthiness requirements that motivated the use of the some of
the ENACT enablers.

For SIS providers it is especially important in this early design phase being able
to quickly deploy and test the different applications and services that will compose
or extend the existing SIS and thus run on IoT, Edge and Cloud infrastructure.
The GeneSIS and TaS enablers aim at supporting DevOps teams in such activities.

Smart Building systems are typically composed of several applications control-
ling different actuation devices within the building (e.g., HVAC, roller shutters,
lights, TVs). In such a setting, it is of paramount importance to make sure the
actuators are properly managed as to control their effects on the environment (i.e.,
applications are behaving as expected). On the one hand, while it can be assumed
that one application in isolation has a proper control over the actuators it applies,
from the SIS perspective this assumption does not sustain as several applications
may concurrently control shared actuators. Without proper mechanisms to handle
such situation, the behavior of the actuator can quickly become unpredictable and
possibly harmful. The ACM enabler aim at support the design of such actuation
conflict handling mechanisms. On the other hand, indirectly, one actuator, possi-
bly managed by an application, may hinder the effectiveness of another, managed
by another application. Avoiding such loss of effectiveness is a complex task, which,
without proper support, requires a deep analysis of the applications under opera-
tions. The BDA enabler propose to relieve developers from such a task, whilst the
ACM enabler help mitigating the problem.

As in many other domains, smart buildings typically expose a broad attack sur-
face and their security must not be an afterthought. The S&P Monitoring and
control enabler provide a means to observe the security of the SIS and support
security by design.

More details about the use case can be found in Chapter 11.

2.4.2 The Intelligent Transport System use Case

The second use case explored and validated ENACT in the domain of Intelli-
gent Transport Systems, in particular exploring how SIS could be used for train
integrity control. INDRA, as the system integrator, needs to continuously evaluate
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the subsystems with both software and hardware from their suppliers (i.e., EDI
and BOSC in this project), and adjust the design and implementation of their
main services accordingly in order to maximize the integration of the subsystems.
DevOps guarantees the effectiveness of the integration process, and provides real-
time feedback to both the integrator and the suppliers as reference for subsequent
development activities. The ENACT enablers were thus exploited in the use case at
a stage where the focus was on understanding how best the hardware and the soft-
ware can integrate, and if the integrated solution fits requirements for the solution
to be scaled in production.

In particular, key challenges included to understand (i) how the software per-
forms on the gateway and handles failures as well as (ii) how the overall SIS scales
as, in the long term, the number of gateways and sensors is aimed to grow up to
thousands of nodes.

To understand how the software performs on the gateway the first step was to
actually deploy it. The use case exploited GeneSIS for this. The later was integrated
as part of the Indra delivery pipeline, making sure that, when a new version of the
software is ready, it is only deployed if the train is in a state where such maintenance
activity is authorized. The second step was to monitor the system under operation
and to report and analyse any failure. Because there can be many reason from which
a problem in the software may originate, the use case leveraged the Root Cause
Analysis enabler to guide DevOps engineers through a faster understanding of the
problem.

For the testing of the solution at scale, building a testbed consisting of real devices
was not an option as each individual gateway is already expensive. Instead, the
approach selected was to build a hybrid testing environment combining a few real
devices with simulated sensors and gateways. In such context, to make the tests as
relevant and realistic as possible, the simulated devices must be able to replay real
data from real scenarios as well as to inject erroneous data providing a means to
evaluate how the system performs when operating properly and when error occurs.
The Test and Simulation enablers perfectly fits these requirements and was a natural
choice for Indra to evaluate their solution. The enabler was used to record real
data from the system, simulate large infrastructure composed of several hundreds
of nodes, and test the system accordingly, sometimes also simulating errors and
attacks.

More details about the use case can be found in Chapter 10.

2.4.3 The eHealth use Case

The third use case explored a solution for remote patient monitoring and assis-
tance that leverage a Personal Health Gateways (PHG) installed in patients’ homes.



20 The ENACT Approach

The PHG is at the core of the service as it integrates and controls various types of
sensors and medical devices (e.g., blood pressure meter, fall detection sensors, glu-
cose meter, video surveillance, indoor and out-door location tracking, etc.), and
ensure that the right data are provided to the various stakeholders and to the inte-
grated systems. The services running on the gateway needs to be customized to
patient and family needs and requirements. This eHealth solution was partially
developed within ENACT and is now in production with a large set of PHGs in
production.

For eHealth systems, security and privacy are of paramount importance and
compliance to GDPR and ISO 27001 is mandatory. As a result, risks must be care-
fully analysed and the necessary security and privacy mechanisms must be imple-
mented on the medical gateway and secure communications with the Tellu Cloud
platform need to be ensured. For instance, no data can be stored or processed on
the gateways without strong gateway authentication and without enforcing a strong
binding between the patient and the gateway. Before ENACT, no solution in the
market fitted Tellu needs, preventing the migration of services to their medical gate-
way and thus hindering the full exploitation of the gateways. The Context-Aware
Access Control enabler is the first solution to address this challenge. In comple-
ment, the Risk Management enabler provided Tellu with a mean to continuously
perform the required risk analysis but also facilitating its reporting.

This eHealth solution was partially developed within ENACT and is now in
production with a large set of PHGs in production. Each gateway should be config-
ured to best fit (i) patient and family needs and requirements, and (ii) its operation
context, including the set of sensors and medical devices connected to it. When
dealing with a large fleet of gateways, the service provider (Tellu) cannot afford to
operate and configure each Personal Health Gateway manually as this could easily
overwhelm their operation teams, resulting in a service that is not scalable. The
DivEnact enabler aim at addressing this challenge.

More details about the use case can be found in Chapter 9.

2.5 Conclusion

This chapter provided an overview of the ENACT approach to help the reader
better apprehend the next chapters of the book. The focus was in particular on
(i) the different enablers offered by ENACT for supporting DevOps for SIS, (ii)
the ENACT Framework showing how the enablers may be combined, as well as
(iii) the validation of these results in the context of realistic use cases from differ-
ent IoT domains. Details about the enablers and use cases, such as scientific basis,
implementation, application, and effect, can be found in the following chapters.
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Chapter 3

Privacy Issues Control in Continuous Risk
Management

By Victor Muntés-Mulero, Jacek Dominiak, Elena González-Vidal,
Guillaume Mockly, Yuliya Miadzvetskaya and Tommaso Crepax

3.1 Introduction

In order to fully exploit the potential of IoT, it is crucial to facilitate the creation
and operation of trustworthy Smart IoT Systems or, for short, trustworthy SIS.
The different dimensions of trust for IoT systems were described by Yan et al. [22]
concluding that risk management is an essential piece to guarantee trustworthi-
ness. Markets in the need of trustworthy SIS, such as Smart Vehicles, Smart Grids
or eHealth, are just flourishing and businesses will be continuously adapting to
new technologies. In this context, poor risk management together with a reactive
strategy usually forces companies to continuously re-factor application architec-
tures to improve software quality and security, incurring high re-implementation
costs [2]. Besides, there is a lack of solutions to support continuous control of
risks. In general, organizations struggle to collect valuable evidence to control
on actual effectiveness of the mitigation actions defined during risk management
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process. In addition, many organizations use manual procedures based on using
spreadsheets, by departments and locally [1]. This approach becomes quickly inef-
ficient as projects or teams grow.

In the ENACT project, the Risk Management enabler is an evolution of the
MUSA (H2020 Project No. 644429) Risk Management tool. While the tool cre-
ated in the MUSA project focused in assessing risks and mitigation actions of Cloud
Security based primarily on security related risks, ENACT enabler has evolved
towards trustworthy SIS. While MUSA risk management tool explored risks related
to the use of cloud services and recommended cloud services to be leverage from
the system, ENACT enabler is able to consume the whole architecture of a SIS,
expressed in GeneSIS, and find any type of vulnerabilities related to entities, pro-
cesses, data store or data flows in the system. The basic risk management method-
ology the enabler is based on is described in [12] and, during the project, the risk
management enabler has been effective embedded in the software development life-
cycle both from a Dev and Ops perspective. Besides, although automated vulnera-
bility detection is also discussed in [11], the details on how to create a knowledge
base to support the detection are not discussed.

In parallel, GDPR discusses data protection by design and by default, remarking
that it is essential to consider privacy from the beginning of any software develop-
ment process to address related issues successfully. This is specially important for
trustworthy SIS, since many IoT technologies are still under evolution and mixing
legal requirements with a deep technical understanding is challenging. Therefore,
including privacy aspects in a continuous risk management process is not straight-
forward.

Previous work related to this enabler, made in collaboration with the PDP4E
project (H2020 Project No. 787034), is focused on showing how we embedded
privacy-related risks explicitly through the combined use of models for both the
architecture and the data flow implemented on the components of the architec-
ture [12]. We achieve this by enabling the use of the information that is typically
collected from the infrastructure to control security, thanks to the link that LIND-
DUN [21] establishes between privacy and security threats in STRIDE [16]. How-
ever, relevant aspects such as risk severity assessment is unclear, since most risk rating
methodologies such as OWASP Risk Rating methodology are focused on security
rather than privacy. As a consequence, impact assessment is usually focused on pro-
tecting the components of the system or the organization rather than data subject
(DS) rights or other privacy-related principles.

Besides, even when it is possible to detect risks related to privacy from an engi-
neering perspective (for instance based on LINDDUN) there is not a clear link
between these and the main assets to be protected described in GDPR, includ-
ing GDPR principles and DS rights. This makes it difficult for an organization
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to declare how they stand in front of GDPR in terms of risk control. While this
issue is not exclusively relevant for IoT systems, it is essential to guarantee trust-
worthiness, specially when IoT devices are involved and the complexity of the
architecture of the system grows, together with the attack surface. Because of this,
we found it essential to guarantee an explicit analysis of privacy challenges in this
book.

In this chapter, we focus on the missing pieces mentioned above, namely:

1. Extension of the impact assessment methodology to enable a more privacy-
friendly assessment.

2. Discussion about the mapping of engineer-related aspects with higher level
concepts in GDPR such as principles and rights.

3. Creation of a knowledge base to enable automated vulnerability detection.
4. Evaluation of the enabler in an IoT-based use case scenario related to smart

vehicles.

This chapter is organized as follows: Section 3.2 provides a brief description of
some previous work used through the chapter to found its main contributions.
Section 3.3 proposes an extension to the OWASP Risk Rating methodology. Then,
Section 3.4 discusses the relationship between LINDDUN threats and GDPR-
friendly vocabulary related to data processing principles and DS rights. Section 3.6
describes an IoT use case related to smart vehicles where trustworthiness is essential
and we discuss the concepts presented in the previous sections. Finally, we draw
some conclusions related to the contributions of the chapter.

3.2 Previous Work

3.2.1 LINDDUN Methodology

LINDDUN is a threat modelling methodology that encourages risk analysts to
address privacy risks affecting end-users of the application or system. This method-
ology provides some guidance to identify and categorize threats under a set of gen-
eral risks (Linkability, Identifiability, Non-repudiation, Detectability, Disclosure of
information, Unawareness, and Non-compliance). LINDDUN is sometimes con-
sidered the privacy-oriented alternative to the STRIDE framework [16]. In fact,
LINDDUN threats are described in the so-called LINDDUN trees which are
explicitly connected to STRIDE threats trees. LINDDUN methodology requires
to formalize the functionality of the system and its dependencies with respect to
personal data. In such sense, LINDDUN proposed the usage of the Data Flow
Diagrams (DFD) [4]. The notation of a DFD is based upon 4 distinct element
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types: (i) an external entity (i.e., end-users or third-party services that are exter-
nal to the system), (ii) a data flow (explains data propagation and dependencies
between all the functional components), (iii) a data store (i.e., a passive container
of information) and (iv) a process (i.e., a computation unit).

3.2.2 Automated Vulnerability Detector

In order to facilitate an effective identification of privacy-related risks, it is impor-
tant to make it easy for our enabler users to detect the vulnerabilities that expose
the system to attacks that may violate DSs’ rights. For that, we created an Auto-
matic Vulnerability Detector (AVD) [11]. An AVD starts out from a set of DFDs
to describe a software system under development. Based on these DFDs, it is able
to detect potential vulnerabilities to kick off the risk analysis process. As explained,
the AVD relies on a list of conditions that need to hold for a vulnerability to be
effective. These conditions will need to be defined and stored in the Knowledge
Base for the correct performance of the AVD.

3.2.3 Common Weaknesses Enumeration (CWE)

According to their website,1 CWE™ is a community-developed list of software
and hardware weakness types. It serves as a common language, a measuring stick
for security tools, and as a baseline for weakness identification, mitigation, and
prevention efforts.

3.2.4 Common Attack Pattern Enumeration and Classification
(CAPEC)

According to their website,2 CAPEC™ helps by providing a comprehensive dictio-
nary of known patterns of attack employed by adversaries to exploit known weak-
nesses in cyber-enabled capabilities. It can be used by analysts, developers, testers,
and educators to advance community understanding and enhance defences.

3.2.5 GDPR Enforcement Tracker

According to their website,3 the CMS Law GDPR Enforcement Tracker is an
overview of fines and penalties which data protection authorities within the EU

1. CWE – Common Weakness Enumeration (mitre.org): https://cwe.mitre.org/

2. CAPEC – Common Attack Pattern Enumeration and Classification (CAPEC) (mitre.org): https://capec.
mitre.org/

3. GDPR Enforcement Tracker – list of GDPR fines: https://www.enforcementtracker.com/

https://cwe.mitre.org/
https://capec.mitre.org/
https://capec.mitre.org/
https://www.enforcementtracker.com/
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have imposed under the EU General Data Protection Regulation (GDPR). Our aim
is to keep this list as up-to-date as possible. The list does not list any fines imposed
under national/non-European laws, under non-data protection laws (e.g. competi-
tion laws/electronic communication laws) and under “old” pre-GDPR laws.

3.3 Extending Risk Rating Methodology for Privacy

The ENACT Risk Management enabler uses LINDDUN as the baseline for pri-
vacy threat modelling. LINDDUN, just like any other modelling system based on
STRIDE, has the issue that, once you automate the threat elicitation process, it
returns as output an enormous amount of potential threats. Therefore, engineers
need to identify in a given system what are, among a pool of many, the threats that
actually need mitigation. At this point, we resort to risk assessment to prioritize the
risks to mitigate.

Among the many risk assessment methodologies, the ENACT Risk Manage-
ment enabler is based on the risk rating methodology of OWASP [20], a widely
tested and accepted risk rating methodology for security. Unfortunately, the secu-
rity nature of OWASP implies that the objectives it aims to achieve only partially
intersect, but do not fully align, with those of privacy engineering. On the one
hand, in ‘traditional’ security, the risk assessment is mainly carried out on behalf
and benefit of the organization. Simply put, if the organization faces economic
losses, the impact is deemed negative. Differently, in privacy and data protection,
the assessment is made on behalf and interest of the DS, meaning that even if the
organization can profit, the impact is negative if the DS suffers from a violation of its
rights and freedoms. On the other hand, even though privacy engineering objectives
of predictability, manageability and disassociability are in line with GDPR princi-
ples, we nonetheless acknowledge the existence of ontological differences between
engineering objectives and privacy legal principles.

With all this in mind, the aim is to ensure that the use of OWASP does not
undermine the protection of personal data. To do so, it is necessary to check up to
which point OWASP’s methods address legal requirements and, when needed, to
customize them for privacy compliance.

3.3.1 Risk Appraisal and Risk Assessment

From a practical perspective, should a controller wish to process personal data, it is
required by article 35, paragraph 1 GDPR to make two assessments. First, it has to
assess whether the type of processing to be carried out is “likely to result in a high
risk to the rights and freedoms of natural persons”, which we call “Risk Appraisal”.
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Should the outcome of the Risk Appraisal be positive, then a second assessment
is in order, this time on the “impact of the envisaged processing operation” – also
known as Data Protection Impact Assessment, or DPIA. The Article 29 Working
Party released official guidelines on how to conduct both [13]. It shall be noted
that, both stages consider the overall risk value from the perspective of risk analysis
(i.e. encompassing both what we term as ‘likelihood’ and as ‘impact’, regardless the
different wording employed by the GDPR), albeit the former does so in a shallower
and more abstract way.

3.3.2 A GDPR-friendly, OWASP-Based Privacy Risk Estimation
System

DPIAs and Risk Appraisals are functionally dependent on privacy risk assessments.
For this reason, we thought it would be twice as useful to propose an effective
privacy risk rating system to underpin either of them. For the privacy risk rating
system to be GDPR friendly, we look into what the GDPR requires in regards to
DPIAs and Risk Appraisals and extrapolate concepts to use as factors.

The law is not clear in determining whether the concepts that are critical to the
initial Risk Appraisal and the risk assessments are different. For example, recital 84
GDPR states that aspects to consider for risk evaluation are origin, nature, partic-
ularity and severity, but does not clarify whether such aspects only relate to risk
assessment or also to Risk Appraisal. In addition, the WP29 is of the opinion that
controllers have a constant obligation to implement measures to manage privacy
risks:

‘The mere fact that the conditions triggering the obligation to carry out DPIA have
not been met does not, however, diminish controllers’ general obligation to implement
measures to appropriately manage risks for the rights and freedoms of DSs. In practice,
this means that controllers must continuously assess the risks created by their processing
activities in order to identify when a type of processing is “likely to result in a high risk
to the rights and freedoms of natural persons”.

The ambiguity of the law on one side, and a more functional approach towards
risk assessment on the other, not only seem to allow for, but to encourage that
risk management be continuously active in parallel to the data processing activity.
In our case, this translates into the chance to use the same tool for Risk Appraisal,
risk assessment and even to check whether there are residual risks after the DPIA
is conducted. Consequently, since our study provides for a more granular analysis
of privacy risks, it can discover issues at earlier stages of the process, and is partially
automated, it can be used repetitively by the data controller to track and manage
changing privacy risks over time.
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The GDPR key in relation to DPIAs is article 35 paragraphs 1, 3 and 4, together
with a number of recitals giving insights on what the law considers important to
determine the severity of a risk, namely 71, 75, 76, 84, 89, 91, 92, and 116. By a
combined reading of article 35 and the recitals, the WP29 extrapolated 9 processing
operations as ‘likely to result in a high risk’ for the DS. If two or more of the
following coexist, then the high risk is likely to occur and, thus, a DPIA is in order.

The processing operations are:

1. Personal evaluation or scoring of the DS, including profiling and predicting;
2. Automated decision-making that significantly affects the DS;
3. Systematic monitoring that results in observation, monitoring, or controlling

of DSs;
4. Processing of sensitive or highly personal data;
5. Data processed on a large scale, considering number of DSs, volume and

range of data, duration of activity and geographical extent;
6. Matching or combining data-sets;
7. Vulnerable DSs, when there is a power imbalance between the controller and

the subject who is unable to consent or object to the processing;
8. New technology or innovative use of technology or organizational solutions;
9. Processing prevents a DS to exercise its rights, enter into contracts or make

use of services.

Rather than systematizing privacy risk assessments, the GDPR gives a number
of rules scattered among articles and recitals on how to understand what to con-
sider while evaluating the severity of privacy risks. Similarly do the Guidelines of
the WP29, which only better refine the categories of data processing operations
considered ‘high risk’. Therefore, one has to resort to the privacy engineering aca-
demic scholarship to find attempts to systematize privacy risk assessments that can
help quantifying privacy risk factors.

Methodologically, the difficulty that any expert encounters when estimating risk
values depends on that their factors, namely likelihood and impact, are impossible
to quantify with precision. Only a few scholars have tried to lay the theoretical
foundations for such assessment, and it is in fact from the studies of the building
blocks of privacy risk metrics by Wagner and Boiten 2018 [19] that we start our
exercise of combining the requirements of the GDPR, their interpretations by the
WP29, and OWASP risk rating.

Our aim is to model a privacy risk rating system on the basis of the data process-
ing operations considered ‘high risk’ by the WP29, with the further trust that such
system will guarantee a high level of compliance with GDPR requirements.

In the next sections we put forward our solutions to address the issues of esti-
mating risk likelihood and impact.
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3.3.3 Likelihood

The calculation of likelihood is one that risk methodologies take at best as rough
estimate, mostly because risks may or may not materialize due to a number
of unforeseeable circumstances, as well as their probability of occurrence being
stretched over an uncertain amount of time. Moreover, it is hard to determine com-
plexity, variation and hiding of multiple root causes and consequences associated
to each risk.

The imprecision of likelihood measurements does not put the privacy risk assess-
ment to a halt. In fact, from a functional perspective, risk severity — labelled on
a scale “from low to high” — provides enough data to inform risk management
decisions in compliance with GDPR requirements. Nevertheless, a more accurate
quantification of likelihood is important because the privacy controls that will be
used for the mitigation of privacy threats will most likely decrease risks’ likelihood,
rather than impact [19].

The OWASP likelihood estimation methodology considers two sets of factors,
the first being threat agents and their characteristics, and the second being vulnera-
bilities. Different threat agents, or attackers, are analysed on the basis of their poten-
tial skills, motives, opportunities and size. The idea behind such differentiation is that,
for instance, attackers coming from the inside of an organization may have more
opportunities in terms of access than outside attackers, yet be less skilled in terms
of hacking abilities.

Privacy and security risks are different in nature, but the analysis for determining
their likelihood seems, at first sight, similar. In fact, the determination of likelihood
is only similar for those privacy risks that share analogous characteristics with secu-
rity risks. Consequently, such privacy risks’ likelihood is rated on the basis of how
easily can a vulnerability be discovered and exploited by an identified threat agent,
how many threat agents of the same type know about the vulnerability (i.e., aware-
ness), and what intrusion detection measures are put in place against exploits by
threat agents. Visibly, OWASP’s determination of likelihood is fundamentally con-
nected to threat agents, fact that depends on OWASP being designed on security
attacks.

Regrettably, what OWASP does not consider is that threats may not be caused
by a willing threat agent. In fact, there are privacy risks that lie outside the attacker-
type scheme. As far as data protection is concerned, the controller organization
itself can be considered as an attacker from which the DS shall be protected. Upon
this assumption, many privacy-by-design and minimization concepts are rooted.

Bearing in mind the mentioned difference between ‘traditional’ security and pri-
vacy risk assessments, back to the comparison with OWASP, the threat agents in
the privacy case are still the same individuals as in security, that is organization
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employees, executives, etc.; however, for a given risk, they will have different
motives, such as the exploitation of the DSs’ personal data for economic advan-
tage – more a matter of privacy than security [10].

Harms, both for security and privacy, can be caused by a poorly designed pol-
icy within an organization, the careless work of a DPO, or even the use of a badly
designed tool for risk estimation. All these events increase the likelihood of materi-
alization of adverse effects on the rights and freedoms of the DS, which the NIST
defines “problematic data action”, an “operation that a system is performing on
personally identifiable information, that could cause an adverse effect or a problem
for individuals [3].

Accordingly, the likelihood of problematic data actions cannot be quantified
just over the characteristics of what may not be an attack. Therefore, the NIST
suggests that, within a specific context, controllers take DSs’ perceptions of which
data actions they consider problematic through customer demographics, focus
groups, surveys, etc. Once a list of problematic data actions is created, it should
be possible to determine the likelihood of their happening. If, for instance, in
one specific area, DSs have indicated “destruction of personal data due to earth-
quake” as problematic data action, the controller should be able to determine
the likelihood of an earthquake happening. Similarly, if the DSs have identi-
fied “ambiguity of privacy policy wording”, a controller should be able to regis-
ter how many times did such unwanted events happen in its organization. Such
problematic data actions can be monitored and quantified, and with them their
likelihood.

A rating can be created to determine whether data actions that are perceived as
problematic happen in the real world in a fashion that is rare to unlikely (1 to 3),
possible to likely (4 to 6), or almost certain to certain (7 to 9). The mentioned levels
mimic those of OWASP, where the likelihood of a security risk happening is rated
as low (1 to 3), medium (4 to 6) or high (7 to 9).

3.3.4 Impact

In comparison to security, it is the use of OWASP to quantify the impact of privacy
risks on DSs that presents the most substantial differences. Such differences, in
turn, imply equivalent adjustments to the privacy risk rating system. Keeping the
framework of OWASP as baseline, we combine it with the impact factors, categories
and dimensions of Wagner and Boiten, mentioned before. To every impact category
of Wagner and Boiten, namely, harm, scale, sensitivity and expectation, we map the
key aspects of WP29’s processing operations. To appreciate the varying impact of
each of the four categories, we will do a simple exercise of analysing one category
while keeping the other three constant.
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OWASP divides the impacts of an attack into two categories, namely ‘technical
impact’ on application, data, and functions, and ‘business impact’ on the orga-
nization. In regards to technical impacts, OWASP lists the loss of confidentiality,
integrity, availability and accountability as factors. Evidently fundamental to secu-
rity, such factors also have repercussions on privacy so long as the confidential,
incorrupted, available and accountable information are personally identifiable. This
means that, the four technical factors in OWASP for privacy are similar to, but have
a much restricted material scope that excludes all data other than personal.

Harm. In regards to business impacts on the organization, it is crucial to understand
that “only individuals — not agencies can directly experience a privacy problem” [3].
This means that each individual has a different perception of the harm caused by
one problematic data action, and that such perception may also vary depending on
the context.

The most important consequence of the personal nature of impacts is that it
makes them very challenging to quantify consistently. NISTIR 8062 does not
address the problem of quantification of harms directly, but suggests instead that
businesses (or organizations) use costs, such as reputational or legal costs incurred
for legal compliance, as proxies for the quantification of individuals’ impacts. Wag-
ner and Boyten suggest a different solution, that is either using a Likert scale (called
‘perceived harm’) or, as a proxy, the amount of damage that a court would be likely
to grant (called ‘damages awarded’) [19].

Although non-optimal, the measure of harm from the standpoint of a DS is
arguably to average scales similar to Likert’s. An organization willing to understand
the perceived harm to the DS involved in its systems should answer the following
questions: “How much do you think that this problematic privacy action would
harm the DSs related to your system? Not at all to moderately (0 to 3), considerably
to significantly (4 to 6), highly to irreparably (7 to 9)”.

The scales solve the problem of defining and finding a common metrics to harms
of different nature, such as reputational harm, financial harm, etc. We suggest orga-
nizations to conduct a survey with their DSs to get a better understanding of how
much the dreadful event would impact them. The averaging of the Likert scales
comes to solve the problem that harm is felt differently among DSs, and it is thus
impossible to tailor its measuring to each DS involved in a problematic data action.

It is safe to say that all high risk operations can be mapped to the cate-
gory of harm. This is due to that, if no harm were to be inflicted to the DS,
the related risk would not exist. We can take as examples the following cate-
gories: automated decision-making that significantly affects the DS, because it
may bring to discrimination and exclusion, which are harms that are person-
ally felt differently from one DS to another; systematic monitoring, because the
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knowledge of being constantly monitored is also perceived differently by differ-
ent DSs, and may affect their behaviour accordingly; vulnerable DS, because the
power imbalance between the controller and the DS is greater when the lat-
ter is a child, an employee, a mentally ill person, an elderly, an asylum seeker,
a patient, or another category of people who are unable to consent or oppose
to processing due to relational or personal circumstances; processing prevents
a DS to exercise its rights, because, e.g., the inability to enter into an insur-
ance contract has different implications depending on the denied person, who
not only may personally perceive the denial differently, but also be objectively
awarded different damages by a court depending on the circumstances of the
case.

Scale. To Wagner and Boiten, between two problematic data actions that affect (a)
the same type of data (e.g., medical data), which belong to (b) equally harmed DSs
(that is, DS who would feel the same personal harm as well as would be awarded
the same amount of damages by a court) with (c) the same expectation of privacy,
the one with the greater impact is that which affects the larger number of people.

Thanks to the processing operation ‘data processed on a large scale’, we are able to
extend the scale category to a second dimension that is, volume of data. As regards
to volume, the processing of more data items has a bigger impact than that of fewer
data items: considering two data-sets, A and B, which contain exactly the same
personal data belonging to the exact same people, the action of replicating multiple
times and in different places data-set A would have a bigger impact on the DSs,
because the chance for unlawful processing is likewise multiplied, or because more
personal data are anyhow more demanding to protect.

Measuring scale is perhaps the easiest quantification among the impacts cate-
gories, because the number of DS involved and the volume of data are all objective,
ordinal numbers that are either known, or so can be through data analytics. It is
possible to use a specific category in OWASP called ‘Privacy Violation’ that com-
bines the dimensions of volume and number of persons by measuring how much
personally identifiable information could be disclosed by one particular process-
ing activity. OWASP lists a number of options, and gives to each option an impact
rating (in brackets), from 0 to 10: one individual (3), hundreds of people (5), thou-
sands of people (7), millions of people (9).

Sensitivity. Keeping other impact categories constant, the more sensitive the pro-
cessed personal data, the higher the impact on the DS. The law gives exceptional
attention to data that, because of their nature, are considered special, namely: data
revealing racial or ethnic origin, political opinions, religious or philosophical beliefs,
or trade union membership; genetic data and biometric data used for the purpose
of uniquely identifying a natural person; data concerning health; data concerning
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a natural person’s sex life or sexual orientation; and data related to criminal convic-
tions or offenses.

Additionally, the WP29 lists a number of data types that should be considered
sensitive because they increase the risk to rights and freedoms [13] (Sensitive data
or data of a highly personal nature): “personal data linked to household and private
activities (such as electronic communications whose confidentiality should be pro-
tected), or because they impact the exercise of a fundamental right (such as location
data whose collection questions the freedom of movement) or because their viola-
tion clearly involves serious impacts in the DS’s daily life (such as financial data that
might be used for payment fraud)”.

Processing operations involving all such data are considered ‘high risk’ but,
unfortunately, there is no way to objectively determine which of these special data
types have a bigger impact on the DS without considering the context and purposes
of use. However, on the one hand, the law gives sensitive data a greater weight
compared to non sensitive personal data and, on the other, it is safe to say that,
between two processing activities of the same volume about the same person, that
which includes the most categories of special data types must have a bigger impact.
For these reasons, Wagner and Boiten suggest to use the number of different data
types as means to measure sensitivity.

One measuring rating for sensitivity could be created by answering the question:
how sensitive is the processed personal data? The options, with related impact rating
in brackets (from 1 to 10), could be: not in the list [13] of sensitive data types (2);
Not in the list, but could be easily used to predict sensitive data (5), Matches 1
category in the list (7), Matches 2 or more categories in the list (10).

Expectation. DSs have reasonable expectations about how their personal data will
be handled by a controller. For instance, when consent is given as legal basis for
processing, a DS should be able to predict what will happen to its data; simi-
larly, a DS managing privacy settings to decide what types of cookies is a web-
site allowed to use, or what information can it share with third parties, has an
expectation on that only those cookies will be stored, and only those specific
information be shared with predetermined third parties. Once the expectation is
set, it is possible to determine to what extent has the actual processing deviated
from it.

Processing operations involving evaluation or scoring of DSs are generally pre-
cursory to profiling, or to some forms of behavioural prediction. They are consid-
ered high risk because often leading to one or more of the other high risk processing
operations, such as discriminating DSs on the basis of their personal vulnerability,
race or other sensitive data, automated decision-making significantly affecting the
DS, or preventing DSs to exercise rights or enter contracts. For this reasons, between



Extending Risk Rating Methodology for Privacy 35

two collections of personal data, the one collection based on which a profile is cre-
ated has a bigger impact on the DS.

Systematic monitoring of DSs with the purposes of observing, monitoring
and controlling has a different impact on each DS. People tend to change their
behaviour according to whether they know of being constantly monitored (so called
‘chilling effect’ [18]), and governments as well as private companies exploit more
or less obtrusive technologies as means of control. When systematic monitoring is
undetectable, personal data may be collected in circumstances where DSs may not
be aware of who is collecting their data, how they will be used, and that personal
data is being collected in the first place. When technologies for systematic monitor-
ing are purposefully non obtrusive, the expectation of privacy of the DSs are very
high and, thus, any type of personal data processing inherently diverges from such
expectation.

Matching or combining data-sets of an unaware DS is an intrinsic violation of
the principle of purpose limitation. Given a specific set of personal data, the DS
should always be able to predict the consequences of a specific type of processing.
The combination of multiple data-sets, thanks to data analytics, can reveal personal
information that were not deemed to be shared within the principal processing, or
even create new personal data [9]; both of the outcomes exceed the DS’s expectation
of privacy.

DSs have expectations on how a technology or a process will manage their per-
sonal data given the information they have on that technology at the time of collec-
tion. Therefore, innovative uses, or new technological or organizational solutions
for data processing exceed such expectations unless the DS was put in the position
to agree on the new means of processing. Given two processing operations on the
same data of the same DS, the one using new technologies or solutions has a bigger
impact.

To quantify the impact of exceeded expectation it is critical to first set a baseline
and, to do so, we welcome Wagner and Boiten’s suggestion to use Solove’s taxonomy
of privacy [17]. Based on the typically American concept of expectation of privacy,
Solove’s taxonomy is useful to determine what a DS expects from a data processing
activity from the moment of collection, to dissemination, through management
and storage. The divergence between the expected and actual means of process-
ing, expected and actual types of created and shared data, and expected and actual
consequences of processing can be measured by counting the number of exceeded
categories of processing (collection, storage, dissemination, etc.) or, more granu-
larly, by referring to the metrics we already used in other impact categories. This
means that, for exceeded expectations on the types of processed data, one can refer
to the higher sensitivity of the personal data, their bigger volume, the more severe
personal or objective harm, and so on.
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Another way to conduct such measuring is by considering that, as a general rule,
the deviation from expectation gets bigger every time that the personal data, col-
lected for a specific purpose, are reprocessed, re-used, re-analyzed, re-combined,
etc. However, an engineer may not be able to count that, as the code may be
implemented by several people. Therefore, we follow Solove’s taxonomy and focus
on expected intrusiveness into DS’s life through the following question: “Con-
sidering that a potential system may collect, analyse, process and disseminate
information, what is, in the eye of a DS, your system expected to do with the
information?”. Collect, analyse, process and disseminate information (2); Only dis-
seminate information (4); Process, without disseminating information (6); Only
collect information (9)”. The idea is, the less the user expects the system to do
with the information, the farther it will be from their expectation if a breach
happens.

3.3.5 Summing up

To assess likelihood, a controller could determine in what fashion do data actions
that are perceived as problematic by a DS happen in the real world. To assess
impact, there are 4 categories to consider: harm, calculated on the controller’s esti-
mation of the damages to its specific categories of DSs; scale, calculated on the
basis of how many individuals are involved in the processing activity; sensitivity,
measured depending on whether the processed data belong to one or more of the
categories identified by the WP29 as “high risk”; and expectations, calculated on
the (un)expected intrusiveness of the data processing into a DS’s private life, from
the perspective of the data controller.

3.4 Connecting Engineer-driven Privacy Practices
with GDPR

Despite the fact that the GDPR is a legal text and LINDDUN is an engineering
method, an attempt can be made to align LINDDUN and the GDPR in order
to bridge the existing gap between legal and technical practices and, thus, address
the demands of privacy engineering community of, first, translating legal jargon of
rights, values and principles into notions and tools that engineers are more familiar
with, such as threat trees, data flow diagrams, etc.; and second, of operationalizing
the GDPR, particularly in the the detection of the privacy threats and the elicitation
of the associated mitigation strategies.
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3.4.1 Initial Considerations

We start by remarking some initial considerations about the relationship between
LINDDUN and GDPR.

Linkability (L), identifiability (I), detectability (D), and to some extent non-
repudiation (Nr) are all pointing out to the existence of personal data, since the
occurrence of one of these threats could lead to the identification of a natural per-
son. According to the European legislation, the anonymous information does not
require protection for compliance with the principles of data protection. Anony-
mous data do not relate to an identified or identifiable natural person and are there-
fore considered non-personal. However, “in this era of big data, full anonymity is
hard, if not impossible, and even more advanced anonymity techniques cannot
guarantee full anonymity when data are linkable” [8]. The threat of linkability may
necessitate a further analysis since it cannot be established without context whether
the linkability of two items of interest would allow the identification of a natural
person and, thus, qualify as personal data.

Linkability might lead to identifiability (i.e. linking data to an identity).
Once the DS is identified or is identifiable, the information qualifies as personal
data and triggers the applicability of GDPR.

Information disclosure links to arguably all principles of GDPR art. 5. In fact,
when personal data are disclosed to non-authorised parties they are no longer under
the control of the DS nor of the responsibility of the controller/processor, which
means that all the procedural and substantial safeguards provided by art. 5 and
related rights are exposed to risk of violation. Personal data shall be processed in
such a manner that ensures appropriate security, including protection against unau-
thorised or unlawful processing, alteration or accidental loss.

Unawareness is linked to principles related to information requirements, as well
as to the procedural enjoyment of the DS rights. Not only shall the DS be given
all the information about data processing activities, but more importantly she has
to be made aware that any processing of her personal data is happening. Unaware-
ness links to the principle of lawful processing, insofar as the DS cannot consent
to processing she is unaware of; same applies to any other right she is entitled to
enjoy by active personal request (e.g., right to information, access, rectification,
erasure, etc.).

Non-compliance threat could be associated with data protection by design
requirement, accountability obligation under Article 24 GDPR, such as adopting
appropriate technical and organisational measures ensuring the GDPR compliance
or adopting internal privacy policies. For the most part we can speak about gen-
eral GDPR non-compliance resulting in a pyramid of sanctions: from warnings to
sanctions as a last resort.
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In this subsection, we provide the description of each LINDDUN threat cate-
gory and its relation with the GDPR.

3.4.2 Linkability

Linkability means “being able to sufficiently distinguish whether 2 IOI (items of
interest) are linked or not, even without knowing the actual identity of the subject
of the linkable IOI”. Pfitzmann and Hansen give the following definition: “un-
linkability of two or more items of interest (IOIs, e.g., subjects, messages, actions,
etc.) from an attacker’s perspective means that within the system (comprising these
and possibly other items), the attacker cannot sufficiently distinguish whether these
IOIs are related or not” [15]. For instance, unlinkablity of a message sender/recipi-
ent to a message sent or received or unlinkability of a relationship between a sender
and a recipient [15]. Unlinkability is one of prerequisites of anonymity. Neverthe-
less, failing unlinkability will not necessarily eliminate anonymity, but will decrease
its strength [15].

From a legal perspective, linkability means that the failure to hide the link
between different actions, identities or pieces of information could potentially result
in the unexpected personal data processing. For instance, the Article 29 WP pro-
vides for the following example: Titius has these fingerprints, this object has been
touched by someone with these fingerprints and these fingerprints correspond to
Titius, therefore this object has been touched by Titius [14]. Thus, linkability
allowed to establish a link between one piece of information and the individual.
The linking of different pieces of information can result in the misuse of the per-
sonal data by third parties. Such misuse can be caused by the failure to implement
the necessary controls to ensure an appropriate level of protection of personal data
(e.g., failed anonymization). If the controller is not aware of the personal data pro-
cessing operation due to the failed anonymization, it will not be able to comply
with the GDPR data processing principles and, thus, will fail to ensure the respect
for DSs’ rights. Thus, linkability may result in the violation of a number of the
personal data processing principles and of DSs’ rights listed in the GDPR.

Relationship with personal data processing principles. First, the principle of
lawfulness will be violated since there will be no lawful grounds for processing, as
provided in Article 6 of the GDPR. Second, the principle of transparency will not
be complied with, because DS will not be informed about the processing activities
over their data. The DS might not be even aware at all that such personal data have
been collected, used, consulted or otherwise processed and what is the extent of this
processing.

Third, the purpose limitation principle will be also jeopardized since the con-
troller, unable to establish the existence of personal data, will not be able to ensure
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that the data collection is limited to “specified, explicit and legitimate purposes”
(Article 5(1)(b) GDPR). Moreover, in this case the controller will be collecting
personal data without knowing itself how and when these data will be used, since
in its system the data are not identified as personal.

Moreover, the data minimisation and storage limitation principles will be also
violated since the unawareness about the personal data mere existence will prevent
controllers from establishing whether the same purpose can be achieved with a
narrower amount of personal data and for a shorter retention period.

The inability to establish that the personal data exist in the system or that a third
party can establish links between different pieces of information and, consequently,
guess the existence of such data, will prevent us from ensuring that the data are
accurate and kept up to date. As a result, controllers will not be able to ensure
accuracy at all stages of collecting and processing of personal data and take every
reasonable step to ensure that inaccurate data are erased or rectified without delay.
Thus, contrary to the principle of accuracy, controllers will not make sure that
outdated data are eliminated, or that data are correctly interpreted.

The compliance with the principle of integrity and confidentiality will be also
jeopardized since the processing of the data, deemed as non-personal, will not
be as secure as required for the personal data processing, “including protection
against unauthorised or unlawful processing and against accidental loss, destruction
or damage, using appropriate technical or organisational measures” (Art. 5(1)(f )
GDPR) . This will result in a lack of appropriate controls to prevent unauthorised
access to the personal data as well as implement systemic quality controls in order to
ensure that an appropriate level of security is reached. Moreover, the personal data
will not be validated (e.g. using hashes), which might lead to some negative conse-
quences, such as inability to guarantee its integrity and, consequently, the accuracy
of that data.

According to the principle of accountability, the controller shall be responsible
for, and be able to demonstrate compliance with, principles relating to processing
of personal data and listed in Article 5 of the GDPR. The non-respect for one of
these principles will trigger the accountability obligation.

Relationship with DS rights. Since linkability in many cases is undetected
because the personal data is not recognized as such and is not traceable in the sys-
tem, the controller will not comply with information obligation, as substantiated
in Articles 13-14. Thus, DSs will be deprived of the right to obtain information
about the processing activities over their data, the identity and the contact details
of the controller, the purposes of the processing, the categories of the data and
their recipients, and how the data are being controlled, monitored or used fur-
ther. The information obligation is the essential first step setting out the stage
towards the exercise of other DSs’ rights. Neither right of access, nor right to
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rectification or erasure of personal data, nor restriction or objecting to their pro-
cessing will be possible unless the DS knows the personal data is processed by the
controller.

3.4.3 Identifiability

“Identifiability of a subject from an attacker’s perspective means that the attacker
can sufficiently identify the subject within a set of subjects.” [15] Identity can be
explained and defined as the opposite of anonymity and the opposite of unlinka-
bility [15]. In a positive wording, identifiability enables both to be identifiable as
well as to link IOIs. The less is known about the linking to a subject, the stronger
is the anonymity. The anonymity decreases with a growing linking [15].

The definition of identifiability provided in the technical literature seems not
to be totally in line with the legal understanding of an identifiable natural per-
son. While both the legal and technical literature recognise pseudonimisation as
one of the techniques decreasing the likelihood of identifiability, the GDPR takes
a stricter stance on pseudonimised data. For instance, Recital 26 GDPR sets out
that “pseudonimised personal data, which could be attributed to a natural person
by the use of additional information should be considered to be information on an
identifiable natural person”. And, thus, such data will be treated as personal under
the GDPR, since pseudonym means that it is possible to backtrack to the indi-
vidual and discover individual’s identity. At the same time, the technical literature
admits the flawlessness and high linkability potential of pseudonimised data, but
still seems to treat pseudonimity as a concept in a slight opposition to identifiabil-
ity [8]. “Whereas anonymity and identifiability (or accountability) are the extremes
with respect to linkability to subjects, pseudonymity is the entire field between and
including these extremes” [21].

In addition the concept of identifiability is not that straightforward. For instance,
the GDPR provides a non-exhaustive list of identifiers in Article 4, such as a name,
an identification number, location data, an online identifier or to one or more fac-
tors specific to the physical, physiological, genetic, mental, economic, cultural or
social identity of that natural person. “The natural person is “identifiable” when,
although the person has not been identified yet, it is possible to do it” [14]. But the
likelihood of identifiability should be analysed on a case-by-case basis. For instance,
a very common name will not necessarily allow to single out one particular person
from the whole of a country’s population [14], but can achieve the identification
of a pupil in the classroom. In addition, the name, combined with some additional
information can also allow the identification of someone as a result of this “unique
combination” set. Even a very descriptive information can identify someone, i.e.
someone wearing a red hat at the bus stop at a particular moment.
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The identifiability is a dynamic process and, while it may not be possible to
identify someone today with all the available means, it may happen at a later stage
due to a technological progress. To determine whether an individual is identifi-
able, Recital 26 GDPR underlines, “account should be taken of all the means
reasonably likely to be used, such as singling out, either by the controller or by
another person to identify the natural person directly or indirect”. The likeli-
hood of identification must be assessed in light of “objective factors, such as the
costs of and the amount of time required for identification, taking into consid-
eration the available technology at the time of the processing and technological
developments”.

Since identifiability is closely related to linkability, it will affect the same GDPR
principles and DSs’ rights.

3.4.4 Non-repudiation

Non-repudiation is the opposite of plausible deniability. Plausible deniability from
an attacker’s perspective means that she cannot prove a user knows, has done or has
said something [21]. While the goal of non-repudiation is to provide irrefutable
evidence concerning the occurrence or non-occurrence of an event, it must be
admitted that some participants may desire that there is no irrefutable evidence con-
cerning a disputed event or action [21]. Wuyts provides for some concrete examples
where non-repudiation is a privacy threat. For instance, e-commerce applications,
where the vendor can later use the signed receipt by the buyer as evidence that
the user received the item. For other applications similarly users may desire plau-
sible deniability in order to ensure that there will be no record to demonstrate the
communication event.

In an attempt to single out the most linkable GDPR principles with non-
repudiation, we came to the conclusion that non-compliance with integrity and
confidentiality requirements might lead to the loss of control over the personal data
and increase the probability that unauthorized parties can access it. Logically, the
controller will be held accountable for such incidents and for lack of appropriate
confidentiality strategies. We consider that right to be forgotten and right to rectifi-
cation are intrinsically linked with plausible deniability, since they allow for ex ante
rectification of the personal data inaccuracies and the possibility to ask for erasure
of those data, which are no longer necessary for the purposes for which it was col-
lected or where such purpose ceases to exist, or where the DS withdraws consent on
which the processing is based. Thus, right to be forgotten and right to rectification
will prevent a priori the third parties from getting access to the information, which
the DS considers as inaccurate or compromising. Nevertheless, as provided in Arti-
cle 17 GDPR some exceptions might apply to the exercise of the right to erasure,
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including the situations where there is a need to strike a right balance between
public interests, freedom of expression and other competing rights and legitimate
interests. In addition, Deng et al. notes with regard to plausible deniability that
it ensures that “an instance of communication between computer systems leaves
behind no unequivocal evidence of its having taken place” [5]. Thus, in relation to
the right to be forgotten and right to rectification, one might ask whether the con-
troller should store requests for personal data erasure or rectification. And would not
such storage be detrimental to plausible deniability? Thus, the right balance should
be again struck between accountability obligations and DSs’ legitimate interests.

In addition, in order to guarantee plausible deniability the data controller may
decide to make the data less accurate to “cover user’s tracks”. While the GDPR
requires to keep the personal data up to date and ensure that inaccurate data
are erased or rectified without delay, plausible deniability may require a different
approach towards accuracy. On one hand, the accuracy of personal data should not
be compromised, on the other hand, making personal data less discernible from the
outside may be necessary for ensuring plausible deniability.

3.4.5 Detectability

“Undetectability of an item of interest (IOI) from an attacker’s perspective means
that the attacker cannot sufficiently distinguish whether it exists or not. If we con-
sider messages as IOIs, this means that messages are not sufficiently discernible
from, e.g., random noise” [15]. The difference between unlinkability and unde-
tectability is the following: in unlinkability, the IOI itself is not protected, but
only its relationship to the subject or other IOIs is protected. For undetectabil-
ity, the IOIs are protected as such [21]. Undetectability consists in, for instance,
hiding the user’s activities or location [21]. Undetectability in the past was referred
as unobservability. However, since unobservability comprises both anonymity and
undetectability, LINDDUN method focuses on undetectability.

Detectability threat is strongly related to the context. It is impossible to establish
without further details whether detectability of one particular activity can lead to
identifiability of an individual. But if we assume that detectability results in an
identifiability of a natural person, the scope of the GDPR will be triggered in a
similar way to linkability and identifiability.

3.4.6 Disclosure of Information

Information Disclosure is the exposure of information to individuals who are not
supposed to have access to it. Principles of integrity and confidentiality will be the
most relevant to guarantee the security of the personal data processing. While Wuyts
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considers confidentiality as a security property, she highlights also its importance
for preserving privacy properties, such as anonymity and unlinkability [21].

Similarly to linkability, information disclosure will also trigger all personal data
processing related principles, since the data could be further collected, stored by
third parties without specific purpose and without informing the DS. Thus, data
minimisation and storage limitation principles cannot be complied with either.
In addition, the accuracy of the personal data can be also jeopardized.

3.4.7 Unawareness

Unawareness occurs when a user is unaware of the information she is supplying to
the system, and the consequences of her acts of sharing. In the era of digitalisation
users tend to provide excessive information resulting in a loss of control of their
personal information. Thus, awareness aims at ensuring that users are aware of
their personal data and that only the minimum necessary information should be
collected [21].

Unawareness points out to the violation of fairness and transparency require-
ments, since the DS is not informed of all the risks related to the personal data
processing and was not provided all the information required in relation to their
personal data processing. Unawareness also leads to the fact that the DS provides
more personal information than required, and thus, the principles of data minimi-
sation and purpose limitation are violated [21].

3.4.8 Non-compliance

Non-compliance is related to legislation, policy and consent and implies that
the DS should be informed by the controller about the system’s privacy policy
and allows the DS to specify consent [21]. Wuyts gives some examples of non-
compliance, such as incorrect privacy policies provided to the user or when the
policy rules are incorrectly managed by the system administrator [21].

Wuyts notes that policy specifies one or more rules with respect to data pro-
tection and these are general rules determined by the stakeholders of the system;
consent specifies one or more data protection rules and is determined by the user
and only relate to the data regarding this specific user [21]. From a legal perspec-
tive, while the processing of personal data can be based on DS’s consent, lawfulness
of the processing is not limited to consent as a lawful ground for data processing
activities. The GDPR provides for 5 additional legal grounds where the processing
of personal data is not based on consent (Art. 6 GDPR).

When it comes to policy, Wuyts mentions compliance with internal policies of
the company. However, compliance with internal policies of the company will not
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be enough if those policies are not correct, lack detail or are not user friendly with
regard to privacy notices provided. Thus, non-compliance with policies should be
related to broader issues covering also some external requirements and legal frame-
work applying to controllers.

Non-compliance threat, as described in LINDDUN, seems to be too generic
and lacks in precision. Its current wording suggests that all the data protection
related legal frameworks will be triggered. However, eliminating this threat is easier
said than done, since the legal compliance is like shooting at a moving target, as it
continuously changes while you are working on it.

3.5 Privacy-Related Risk Knowledge Base

In this section we briefly describe the knowledge base created in ENACT and
PDP4E projects. This knowledge base is the baseline for the recommendations
provided in the risk management enabler, as well as the main database for the Auto-
mated Vulnerability Detector described in Section 3.2.

The proposed knowledge base is founded on the LINDDUN methodology to
frame privacy-related threats, as well as on STRIDE to cover security issues. We
use the threat trees proposed in LINDDUN as the starting point to populate our
knowledge base. We connect the content of our knowledge base to public con-
tent in the Common Weaknesses Enumeration (CWE) list. Besides, we also lever-
age information from the Common Attack Pattern Enumeration and Classification
(CAPEC) dictionary, through their link from CWE. In addition, our knowledge
base contains information to facilitate the link of its content to known fines and
penalties which data protection authorities within the EU have imposed under the
GDPR.

3.5.1 Definition of Concepts to be Stored in the Knowledge
Base

Figure 3.1 presents the class diagram published in [12] to model risk management
concepts to allow to control privacy risks using DFDs. In particular, we consider
each element of a DFD (Entity, Data Flow, Data Store and Process) a specific asset,
according to LINDDUN methodology. This diagram is inspired by the UML dia-
gram presented by Gupta et al. [8].

Based on this class diagram, our knowledge base will contain the following infor-
mation:

• LINDDUN threat category: Our knowledge base will classify all vulner-
abilities depending on one of the LINDDUN threat categories, namely,
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Figure 3.1. Class diagram to model risk management concepts using DFDs to describe

system functionality [12].

Linkability, Identifiability, Non-repudiation, Detectability, Disclosure of
information, Unawareness and Non-compliance. Note that LINDDUN is
remarked because of the focus on this chapter on security issues. However,
the knowledge base also uses STRIDE threats to classify privacy and security
issues.

• Type of DFD component: we allow to express vulnerabilities of each of the
four different types of components considered in a DFD, namely, entity, data
flow, data store and process.

• Vulnerability information: We store information about vulnerabilities.
This will include information such as a unique identifier, a short title, a longer
description, etc. As mentioned before we will also need to store the conditions
that are considered for a particular vulnerability to be relevant.

• Threat information: In order to simplify the information, we do not explicitly
store the information about unwanted incidents, but we directly store the
potential threats that may exploit a particular vulnerability.

• Control/Treatment information: we create a collection of controls that can be
used as potential treatments to mitigate risks related to specific vulnerabilities
and threats.

Based on this, in Figure 3.2, we describe the schema that represents the data
schema of the information stored in this knowledge base.

The central concept of the schema is the Vulnerability. Vulnerabilities are con-
nected to threats and threats are connected to controls. These link between these
three types of elements constitutes the backbone of any risk management tool to
provide options related to vulnerabilities and related threats and controls or miti-
gation actions. As explained in [11], vulnerabilities are also related to conditions.
Besides, our knowledge base allows to establish dependencies among conditions.
A certain condition may only make sense if another condition holds. For instance,
let us assume a condition with id c1 that evaluates the following question: “Does
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Figure 3.2. Knowledge base schema.

this entity represent a DS or a proxy to DSs?” From a privacy perspective, if c1 is
true then other conditions may be relevant such as for instance “Does this entity
need to be authenticated to execute this DFD?” or “Are credentials of this entity
shared with any potentially untrustworthy receiver entity?”. So, the relevance of
conditions may depend on the evaluation of other conditions.

Besides, vulnerabilities are related to other vulnerabilities. In reality, inspired by
STRIDE and LINDDUN, we have also created and extended threat trees in the
knowledge base. Therefore, a vulnerability may be decomposed in more detailed
vulnerabilities in a structure shaped like a tree. Relation VulnerabilityDependency
represents the link between vulnerabilities in the tree. Vulnerability relation is also
related to Label relation and CWEitem relation. The first link represents keywords
related to the vulnerabilities that we will need later on to look for cases in the GDPR
Enforcement Tracker.4 This way, we will be able to show actual cases of GDPR
enforcement in cases related to this type of vulnerability. For instance, “Information
disclosure of a process” may be labelled with “Confidentiality” label or vulnerability
named “Data is not encrypted” may be labelled as “Encryption”. The actual map-
ping between cases and labels has been implemented in the PDP4E project. The
second link corresponds to a manual exercise to connect the STRIDE vulnerabili-
ties with CWE items. When the link is established, our enabler uses the url stored

4. www.enforcementtracker.com

www.enforcementtracker.com
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in the database for each CWE item and scans online information to automatically
detect mitigation actions and add them as controls in the Control relation. We also
follow links to the CAPEC database related to attack patterns related with that vul-
nerability and store the information in the Threat relation and potential connected
mitigation actions in the Control relation.

3.6 IoT Use Cases Description

Risk Management enables building trustworthy systems. Especially when consid-
ering SIS because of the way multiple independent devices connect together and
exchange data. To illustrate this, the following section will describe the kind of
challenges found in an IoT use case in terms of privacy risks for a DS. Privacy is
specially challenging in IoT systems, not only because IoT systems rely on technol-
ogy that is still not mature and in continuous evolution, but also because the higher
integration of devices in the physical world makes those devices actual proxies to
DS. For instance, the location of a device may easily act as a mechanism to deduce
the location of a DS. For this purpose, following we describe a use case which is
particularly relevant under this point of view.

3.6.1 Connected Vehicles

In this section we present an IoT-related use case focused on communications
between vehicles and other vehicles or the road infrastructure, also called V2X.
More specifically, the use case focused on the Cooperative Awareness Messages
protocol [6], a part of the Cooperative Intelligent Transportation System (C-ITS)
ecosystem which aims to make the different actors of road infrastructure share infor-
mation on vehicle status, traffic, road works, etc... This protocol specifies how vehi-
cles can share data about their position and status, like speed or heading, with other
vehicles around them. This type of communication is of particular interest for the
development of advanced driver-assistance systems (ADAS) as well as autonomous
vehicle. It allows a vehicle to build a map of its surrounding and track nearby vehi-
cles to anticipate possible incidents.

We chose to consider this system because it highlights a potential loss of control
of data related to a DS, which can lead to significant privacy issues. The V2X net-
work on which the CAM messages are transmitted is a local radio network. Because
this system aims to inform other participants in the neighborhood about the sta-
tus of the vehicle, messages are broadcast to every station capable of listening to the
network. A consequence of broadcasting is that these messages cannot be encrypted
with anything else than a key shared among all participants. As a result, the data
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they carry can effectively be read by any station with access to the network without
control of the sender.

Because the data received from these messages can be used to trigger warnings
to drivers or even collision avoidance systems, it is necessary to ensure that they
come from a reliable source. One of the mechanisms deployed to this end is the
use of cryptographic signatures to authenticate the messages. When signing a mes-
sage, a vehicle uses a pair of cryptographic keys provided by an external authority
trusted by every participant of the network. This signature shows that they have
been authorized to send messages and the receivers will be able to trust the data
they send.

If used in a privately-owned vehicle, this system can raise issues about the privacy
of the owner. First, to provide the information about the vehicle, a lot of parameters
are collected by the equipment which generates those messages. Those parameters
show when and where the vehicle has been driven, but also give information about
the behaviour of the driver, like the speed of the vehicle. If these parameters were
recorded and stored for analysis, they could be used to determine the driving habits
of the owner. On top of that, because of the signature they carry, it can be possible
to classify the messages by which vehicle has sent them. This could make mass
recording of messages a source of personal data leakage if a link between a signature
and specific vehicles can be made.

Relevant attack scenarios

The CAM system could be used in different ways which have consequences on
the privacy of the owner of the vehicle. For example, it could be used to tail a
specific vehicle, or the data collected inside the transmission equipment could be
harvested by a malicious entity. For the purpose of this demonstration, we will use
an attack scenario that leverages the signatures used to authenticate vehicles to track
the behaviour of a specific vehicle. This scenario could be carried out by recording
messages thanks to stations deployed across the road infrastructure. Because the
vehicle is registered to a specific owner, such a record would allow to get the trip
history of the owner and determine his usual destinations. The time at which the
messages are emitted can also be used to build his schedule, the additional informa-
tion on vehicle status like speed, light status, brake indicator can be used to analyse
his driving profile. This data could be, for example, used by insurance companies to
determine fees, or to show that an individual goes regularly to a political meeting.

3.6.2 Practical Implementation Aspects

All the contributions presented in this chapter have been implemented in the lat-
est version of the ENACT Risk Management enabler in collaboration with the
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PDP4E project. In particular, the enabler includes the extended version of the
OWASP Risk Rating methodology presented in Section 3.3. Specifically, the ques-
tions suggested for impact analysis have been added to the enabler. Besides, the
mapping between LINDDUN threat categories and GDPR data processing prin-
ciples and DS rights have been embedded in the enabler. The enabler has a GDPR-
based dashboard that allows to understand the overall level of risk for each principle
and DS rights, based on the status of each risk detected in the enabler. Finally, the
knowledge base described in 3.5 has been also embedded in the enabler, this enables
not only the automated detection of vulnerabilities, but also benefiting from open
databases such as CWE or CAPEC.

3.7 Risk Management Enabler Evaluation

This section aims to demonstrate the usage of the enabler on the connected vehicle
use case. The enabler is evaluated based on its ability to help the user identify privacy
risks in the use case and suggest meaningful treatments to manage them. The results
are also compared with the way these issues are currently handled to demonstrate
how adequate the enabler with respect to real world constraints.

Figure 3.3 presents the Data Flow Diagram used to support the attack scenario
described in the previous section. It features two main processes: Key Provisioning
and C-ITS App. The Key provisioning process is in charge of generating the key
used by the vehicle to sign the messages it will send. The C-ITS App is collecting
information on the vehicle position and status from the GPS and sensors to generate
the messages, sign them and send them to the CAM network.

In the attack scenario, we consider the possibility of recording messages sent to
the network. This corresponds to the data flow sending signed messages between
the C-ITS process and the CAM Network entity.

The Risk Management enabler allows providing information on the role of these
elements through the questionnaire described in [11] and used to fit the Automated
Vulnerability Detector (AVD), presented in Section 3.2. This questionnaire con-
tains the conditions used to discriminate the relevance of potential vulnerabilities
and it is stored in the knowledge base, as described in Subsection 3.5. Table 3.1
gives some examples of questions that the user has to answer.

In particular, the question related to anonymous communication triggers several
vulnerabilities based on the threat trees defined by LINDDUN. We now analyze
a particular example based on the linkability of a data flow threat tree defined,
presented in Figure 3.4. Those vulnerabilities are presented in Table 3.2. The vul-
nerabilities on linkability based on computer or session ID are both similar to the
potential privacy issue of using the vehicle signature to track it. In this case, the
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Figure 3.3. Data flow diagram of the C-ITS use case.

Table 3.1. Sample questions.

Type of Element Question Answer

Data Flow Is the communication channel wireless? Yes

Are messages sent through this data flow encrypted? No

Is anonymous communication used? No

Entity Does this entity represent a DS or a proxy to DSs? No

Could this entity be or become untrustworthy (now
or in the future)?

Yes

public key used for the signature serves as the ID linking together different mes-
sages, posing a privacy threat as an attacker may be able to continuously monitor
a vehicle, and using other means to finally identify the driver, learn detailed infor-
mation about her location, movements, habits, etc…

From a pure security point of view these privacy vulnerabilities would probably
not be highlighted. On the contrary, they are probably desirable in some way as
being able to trace the origin of a communication helps avoiding security issues
related to repudiation or authentication, which is the reason why this signature has
been added to the messages.
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Figure 3.4. LINDDUN threat tree for linkability in data flows from https://www.linddun.

org/linkability

Table 3.2. Privacy vulnerabilities detected.

Vulnerability LINDDUN Property Category Associated Risk

Based on
computer ID

Linkability Non-anonymous
Communication
traced to entity

The data flow can be linked on
computer ID and an attacker
could link the ID to a person.

Based on
session ID

Linkability Non-anonymous
Communication
traced to entity

The data flow can be linked on
session ID and an attacker
could link the ID to a person.

Based on
behavioural
patterns

Linkability Non-anonymous
Communication
traced to entity

Packet Counting Attacks,
Timing attacks

If we consider more specifically the risk where data flows share a computer ID
that can be linked to a person, the following controls are proposed by the Risk
Management enabler:

• Use tunneling through a Virtual Private Network (VPN). This control
aims at hiding the actual sender by using the exit point of the VPN as a
public address. The messages can still be linked together but linking to the
sender is harder.

• Randomizing the computer ID. This control uses unpredictable identifiers
to break the link between messages. It may still be possible to link an identifier
to a person but only the messages sent with this identifier will be impacted.

• Use temporary identifiers which can be reused by different individuals
across different periods of time. This control hides the origin of messages

https://www.linddun.org/linkability
https://www.linddun.org/linkability
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among the different participants. Both identifying the sender and linking the
messages together is harder.

Out of these controls, the solution chosen to address this linkability issue in the
described C-ITS use case is to randomly choose identifiers, called pseudonyms, in
a pool assigned to a vehicle. This approach is also described in [7] and corresponds
to the “Randomizing the computer ID” control described before as it makes it
more difficult to link different messages by introducing randomness when choos-
ing the pseudonym. This results in a more complex overall system as these identi-
fiers will also need to be certified by a trusted authority but achieves a compromise
between the security and privacy requirements. As an example, the ETSI Tech-
nical Report[7] also mentions the possibility of exchanging pseudonyms between
vehicles. However, because multiple senders could be associated with the same
pseudonym, this exchange would prevent law enforcement as access to the iden-
tity of a sender would not be available when required in an investigation. As the
pseudonym scheme still allows for limited disclosure of identity, the impact on DSs
is kept to a minimum while still addressing security requirements.

With this example, we demonstrated a full iteration of the risk management
cycle, going from a guided identification of vulnerabilities to the selection of treat-
ments. As shown the privacy risks identified and treatments selected are consistent
with real privacy issues identified and discussed in the context of C-ITS systems.
The knowledge base, being based on CWE and CAPEC, is definitely more suited
for more classic IT systems than C-ITS systems in the way it describes issues
and treatments so issues more specific to the domain considered are likely to be
missed. For example being able to send forged messages could lead to traffic disrup-
tion. However, despite these shortcomings, it is still able to manage fairly specific
issues.

The screenshot from Figure 3.5 shows how the enabler helps its user by offering
direct access to potential risks and controls from the selection of vulnerabilities. This
presentation allows to have a better view of potential consequences of a vulnerabil-
ities, it also saves the engineer’s time by grouping together the relevant information
about a vulnerability and its associated risks.

3.7.1 Analysis of the Extended OWASP Risk Rating
Methodology

In this section, we will evaluate how the modified OWASP risk appraisal method
described before can help having a better view of the impact of a risk on privacy.
This analysis will focus on the impact evaluation part because likelihood evaluation
has not been modified.
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Figure 3.5. Screenshot from the risk management enabler showing the presentation of

risks and controls.

Taking the example of the Identification based on machine ID risks that was con-
sidered before, with the classic OWASP methodology, the impact would be evalu-
ated as presented in Table 3.3. This results in a technical impact of 3 and a business
impact of 4.75. We choose the maximum of both categories as the final impact
which gives a 4.75 impact score. This corresponds to a Medium rating according
to the scales defined in the OWASP methodology.

Following, Table 3.4 presents the evaluation of the new categories introduced to
measure impact on the DS. By reorganizing the previous score to take into account
that the Privacy violation factor is now in the Privacy impact category and it is
renamed as Scale according to Section 3.3, we get a technical impact of 3, business
impact of 3.33, and privacy impact of 7. The new impact score is 7 which is a High
rating.

As expected, the privacy-oriented factors indicate a significant potential impact
for the privacy of a person using this system. Considering each impact category
separately and using the score of the most important one as the final impact avoids
minimising the contribution of a category if the others are rated low. This is an
important aspect as security and privacy can be at odds with each other and the
apparition of compensation mechanisms where one low-rated aspect could reduce
the overall impact and undermine the proper assessment of risks.

3.7.2 Connecting the use Case with GDPR

Besides, the Risk Management enabler will establish a link with respect to GDPR
principles and DS rights. This is an important benefit as, to our knowledge, it is
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Table 3.3. OWASP evaluation of the identification by machine ID risk.

Factor Value Justification

Technical Impact

Loss of confidentiality 1 The data sent through this data flow is not encrypted
therefore it is not confidential

Loss of integrity 1 The integrity of the data is not affected by this risk

Loss of availability 1 The availability of either this communication or the
CAM service is affected by this risk

Loss of accountability 9 The threat agent can listen passively to the network

Business Impact

Financial damage 1 No financial damage will come directly to the maker of
the system by exploiting the risk.

Reputation damage 5 Exploiting the risk can lead customers to be suspicious
of using the system

Non-compliance 4 The system does not take into account privacy concerns
like anonymity so it does not comply with GDPR, but
it complies with technical specifications which also do
not take into account privacy.

Privacy violation 9 The number of people affected can be measured in the
millions

Table 3.4. Extended OWASP impact evaluation of the identification by machine ID risk.

Factor Value Justification

Harm 7 The information collected can be used to track the movements of
a person. It can also be used to profile its driving style which
could be used by insurance companies.

Sensitivity 5 Knowing where a person went can help deduce a political or
religious affiliation

Expectation 7 The expectation on the CAM system is that messages are only
processed locally by the surrounding vehicles and is not
disseminated beyond the neighbourhood

the first tool that allows to map technical risks and controls with GDPR concepts,
which are established from a legal perspective.

In the particular IoT use case presented above in this section, linkability issues
have been detected related to the particular attack scenario under analysis. How-
ever, it is not straightforward to understand and explain, in front of a potential
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Figure 3.6. Example of dashboard the risk status categorized by GDPR principles and

DS rights.

explicit audit, what are the practical steps that we are considering from a technical
perspective, to protect DS rights and GDPR principles, a part from a vague under-
standing that the mentioned threat may affect confidentiality.

Once the risks are detected and the mitigation actions selected, we can mark risks
as mitigated if their severity was considered high enough and controls are deemed
sufficient to accept the residual risk.

Thanks to the analysis performed in Section 3.4, we are able to connect linka-
bility threats to different related GDPR principles such as lawfulness, transparency,
purpose limitation, data minimisation, storage limitation, accuracy, integrity and
confidentiality or accountability. Also, they can be connected to DS rights such as
rights to be informed, of access, to data portability, to rectification, to be forgot-
ten, to restriction of processing, to object and not to be subject to a decision based
solely on automated processing. Omitting the responsibility for adequately man-
aging these privacy-related risks, as the IoT system architect and developer, goes
against GDPR and may involve harm to users and other DSs as well as penalties.

The Risk Management enabler will help users to control the impact from GDPR
perspective, showing a GDPR-specific dashboard that may specify the level of miti-
gation of risks related to each GDPR principle and DS right. An example is depicted
in Figure 3.6.

3.8 Conclusions and Future Work

In many cases, security and privacy are conflicting requirements. While security has
been largely explored for decades, privacy is a much more immature area. This is
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specially true when we try to control privacy in digital ecosystems based on newer
and evolving technologies such as in the case of IoT systems.

In this chapter we have contributed to eliminate different roadblocks to achieve
a better control of privacy through risk management. One of these is the capacity
to improve risk assessment under the scope of privacy, essential for IoT systems, but
also in general for any type of digital system. A second one is the capacity to connect
the management of technical risks controlled by architects, developers and risks
analysts based on privacy-related threat analysis methodologies like LINDDUN,
with current legal frameworks to protect privacy such as GDPR. In particular, the
level of connectivity between the GDPR concepts and LINDDUN threat categories
is very large since they rely on different vocabulary and it is difficult to establish a
1:1 relationship between concepts. This interdisciplinary exercise is one of the first
attempts to bridge the existing gap between the legal approach towards privacy risks
and engineers approach towards privacy risks.
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Chapter 4

Model-based Continuous
Deployment of SIS

By Nicolas Ferry, Hui Song, Rustem Dautov, Phu Nguyen
and Franck Chauvel

4.1 Introduction

Smart IoT Systems (SIS) are characterized by the presence of software deployed
along the entire IoT-Edge-Cloud continuum. Software defines the behaviour of the
SIS, and such behavior keeps evolving during the entire system life cycle following
the ever-changing system context. This evolution may be realized as self-adaptation
(such as the use of online learning for dynamic adaptation, as elaborated in Chap-
ter 6) or manual reconfiguration of the existing software, but, very often, it requires
releasing new versions of software. On the one hand, this evolution characteristic
of SIS is typically conflicting with the traditional IoT systems vision consisting
of devices with immutable code, once deployed at the factories. There must be
new approaches for supporting the evolution of SIS. DevOps, on the other hand,
promotes the idea of continuously delivering new software updates. Indeed, the
DevOps movement promotes an iterative and incremental approach enabling the
continuous evolution of software systems. Embracing DevOps can support the
continuous evolution of SIS and improve their trustworthiness (e.g., security).
As an evolution of the DevOps movement, DevSecOps [30] promotes security
as an aspect that must be carefully considered in all the development and oper-
ation phases for the continuous evolution of systems to be secure. However, how
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to effectively deploy the software update to the computing continuum is a main
obstacle to enable DevOps or DevSecOps for SIS as it requires the capability of
continuous deployment of software at all levels.

Continuous and automatic software deployment is still an open question for SIS,
especially at the Edge and IoT ends. The state-of-the-art Infrastructure as Code
(IaC) solutions are established on a clear specification about which part of the soft-
ware goes to which types of resources. This is based on the assumption that in
the Cloud it is easy to obtain the exact computing resources as required. However,
this assumption is not valid on the Edge and IoT levels. A typical SIS in produc-
tion often contains hundreds or thousands of heterogeneous and distributed devices
(also known as a fleet of IoT/Edge devices1), each of which has a unique context, while
their connectivity and quality are not always guaranteed. The major challenges are
as follows:

• How to automate the deployment of software on heterogeneous devices pos-
sibly with limited or no direct Internet access?

• How to manage variants of the software which fit different types or contexts
of Edge or IoT devices in the fleet?

• How to ensure the trustworthiness of the deployed software whilst the quality
of the underlying resources are not guaranteed?

In the ENACT project, we focus on the problem of automatic software develop-
ment for SIS, and our research attempts to address these challenges resulted in two
complementary prototype tools for the deployment of SIS at two different layers:
(i) GENESIS targets at the device layer, providing a unified way to deploy software
on heterogeneous devices, including those without direct internet connection; (ii)
DivEnact targets at the fleet layer, allowing developers to deploy software into the
abstract fleet as a whole instead of focusing on concrete individual devices. The
tool maintains the software variants and assigns them automatically to the devices
according to their contexts. With trustworthiness (e.g., security) being a concern
cross-cutting both layers, our tools provide solutions that contribute making the
deployment and the SIS trustworthy. At the device layer, we support the specifi-
cation and deployment of security and privacy mechanisms together with the SIS
software in a DevSecOps fashion. Moreover, we provide the novel rolling deployment
method to guarantee the availability of the deployed software as well as to handle
errors during a deployment, i.e., in addition to the main software, we also deploy a

1. Similar to a fleet of vehicles in a transportation company, a fleet of devices are owned by the same application
providers and distributed to different places or users. Devices in a fleet conduct relatively independent tasks,
whilst coordinated by the application provider from a global perspective.
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backup copy which will replace the main one when necessary without delay. At the
fleet level, we maintain the software diversity within the fleet for security purposes.

Model-Driven Engineering (MDE) is the scientific basis underlying both
GENESIS and DivEnact. MDE is a branch of software engineering that aims at
improving the productivity and cost-effectiveness of software development by shift-
ing the paradigm from code-centric to model-centric. It has shown to be effective in
supporting design activities [42]. This approach, which is commonly summarised
as “model once, generate anywhere”, is particularly relevant to tame the complexity
of developing heterogeneous systems such as SIS. Models and modelling languages
as the main artefacts of the development process enable developers to work at a
high level of abstraction by focusing on deployment concerns rather than imple-
mentation details.

This chapter is organized as follows. Section 4.2 provides an overview of the cur-
rent state of the art and of the practice for the automatic deployment of SIS. Sec-
tion 4.3 introduces our solutions for the automatic deployment of SIS, first describ-
ing how they can be integrated in order to form a coherent deployment bundle and
then detailing each our two enablers: GENESIS and DivENACT. Section 4.4 focus
on the support offered by our solutions to ensure the trustworthiness deployment
of SIS. Finally, Section 4.5 draws some conclusions.

4.2 The State of the Art

Software deployment has been evolving from deployment of component-based
commercial desktop software [39], deployment of component-based distributed
applications [25], to deployment on Cloud resources, and more recently deploy-
ment for IoT systems along the entire IoT-Edge-Cloud continuum. Even though
some core concepts from deployment of component-based applications such as
capability, port in [25] can be inherited for deployment on Cloud or IoT resources,
they need to be tailored and customized to fully address the specificities of these
environments.

4.2.1 On the Deployment at the Device Layer

For some years now, multiple tools have been available on the market to support
the deployment and configuration of software systems, e.g., Puppet,2 Chef.3 These
tools were first defined as configuration management tools aiming at automating

2. https://puppet.com/

3. https://www.chef.io/chef/

https://puppet.com/
https://www.chef.io/chef/
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the installation and configuration of software systems on traditional IT infrastruc-
ture. Recently, they have been extended to offer specific support for deployment on
Cloud resources. Meanwhile, new tools emerged and were designed for deployment
of Cloud-based systems or even multi-Cloud systems (i.e., systems deployed across
multiple Clouds from different providers) such as CloudMF [19], OpenTOSCA
[43], Cloudify,4 and Brooklyn.5 Those are tailored to provision and manage virtual
machines or PaaS solutions. In addition, similar tools focus on the management
and orchestration of containers, e.g., Docker Compose,6 Kubernetes.7 As opposed
to hypervisor virtual machines, containers leverage lightweight virtualization tech-
nology, which executes directly on the operating system of the host. As a result,
the container engine shares and exploits a lot of resources offered by the operating
system thus reducing containers’ footprint. These characteristics make container
technologies suitable not only for the Cloud, but also for Edge devices [13].

Besides, a few tools, such as Resin.io (Balena)8 and ioFog,9 are specifically
designed for the IoT. In particular, Resin.io provides mechanisms for (i) the auto-
mated deployment of code on devices, (ii) the management of a fleet of devices,
and (iii) the monitoring of the status of these devices. Resin.io supports the fol-
lowing continuous deployment process. Once the code of the software component
is pushed to the Git server of the Resin.io Cloud, it is built in an environment
that matches the targeted hosting device(s) (e.g., ARM for a Raspberry Pi) and a
Docker image is created before being deployed on the hosting device(s). However,
Resin.io offers limited support for the deployment and management of software
components on tiny devices that cannot host containers.

Regarding the deployment of elements of hardware and software that are to oper-
ate in harmony within a networked system, the Software Communications Archi-
tecture (SCA) [1] and IoT deployment share some basic concepts. The SCA is an
open architecture that specifies a standardized infrastructure for a software-defined
radio (SDR). However, the SDR SCA specification requires an SCA-compliant
system for elements of hardware and software to operate within. In other words,
the SCA is tightly tied to the specific needs for standardizing the development
of SDRs, which is much less heterogeneous than the IoT domain in terms of

4. http://cloudify.co/

5. https://brooklyn.apache.org

6. https://docs.docker.com/compose/

7. https://kubernetes.io

8. https://www.balena.io/

9. https://iofog.org/

http://cloudify.co/
https://brooklyn.apache.org
https://docs.docker.com/compose/
https://kubernetes.io
https://www.balena.io/
https://iofog.org/
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communication means, systems of systems, which may span all the layers of Cloud,
Edge, IoT devices. Moreover, the SCA does not have any concept about supporting
the deployment on devices not directly accessible.

In [34], we conducted a systematic literature review (SLR) to systematically study
a set of 17 primary studies of orchestration and deployment specifically for the IoT.
We found a sharp increase in the number of primary studies published in two-
three recent years. We also found that most approaches do not really support the
IoT deployment and orchestration at low-level IoT devices. As for the continuous
deployment tools mentioned before, these approaches mainly focus on the deploy-
ment of software systems over edge and Cloud infrastructures whilst little support
is offered for the IoT space. When this feature is available, it is often assumed that a
specific bootstrap is installed and running on the IoT device. A bootstrap is a basic
executable program on a device, or a run-time environment, which the system in
charge of the deployment rely on (e.g., Docker engine). Approaches such as Calvin
run-time [28], WComp [27], or D-LITE [10], D-NR [24] all rely on their specific
run-time environment where mechanisms such as dynamic component loading or
class loading are typically used. There is a lack of addressing the trustworthy aspects
and advanced support in the deployment and orchestration of the IoT.

To the best of our knowledge, none of the approaches and tools aforementioned
have specifically been designed for supporting deployment over the whole IoT,
Edge, and Cloud infrastructure. In particular, they do not provide support for
deploying software components on IoT devices with no direct or limited access
to internet. In addition, we also identified they do not offer support for including
security concerns as core concepts in the tool and/or language.

4.2.2 On the Deployment at the Fleet Layer

While all these solutions discussed above are focusing on the deployment of a soft-
ware system, they typically do not offer specific support for the management of a
fleet of devices or a fleet of systems, which basically consists in managing large set
of deployments with those solutions.

To the best of our knowledge, there is no effective solution to this fleet deploy-
ment problem. The start-of-the-art Infrastructure as Code (IaC) tools automate
the deployment of one application on one device, or a predefined set of devices,
but lack the support for distributing multiple variants across a large fleet. They
also do not provide sufficient automated support for updating devices with con-
strained resources and limited (or none) Internet connectivity [34]. Such embedded
and microcontroller-enabled devices traditionally have been flashed with ‘one-off ’
firmware not intended to be updated in the future, but they are not often seen
as active contributors to the common pool of shared computing resources, which
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can be iteratively assigned and deployed with updated firmware. This has also led
to the so-called concept of IoT-edge-cloud computing continuum, where comput-
ing and storage tasks are distributed across all three levels. On the other hand, the
mainstream IoT/Edge fleet management platforms offer tools to maintain multi-
ple deployments, the fleet of devices, and their contexts, but developers still need
to manually designate which deployment goes to which device.

Another relevant reference architecture for deploying component-based appli-
cations into heterogeneous distributed target systems is described in [37]. In par-
ticular, the proposed architecture includes the concept of Planner – a component
responsible for matching software requirements to available platform resources and
deciding whether a component is compatible with a device. These existing specifi-
cations remain implementation-agnostic and only describe the high-level concepts.
Software diversity is a new dimension of architecture-level properties, which is both
a result of the hardware heterogeneity and a method toward more secure system.
The fleet deployment approach provides a implementation-level support to our
theoretical approaches towards a more diverse software [29, 45].

The assignment problem (such as assigning software components to the devices
in an IoT fleet) frequently appears in ICT scenarios, where some resources
need to be allocated to available nodes, often taking into consideration various
context-specific characteristics [38, 40]. The research community has come up
with multiple algorithms, ranging in their computational complexity, complete-
ness, preciseness, etc. Many of these approaches treat assignment as a collection of
constraints, which need to be satisfied in order to find an optimal solution in the
given circumstances [2, 7]. The approaches based on Satisfiability Modulo Theories
(SMT) are specifically popular and efficient due to their expressively and rich mod-
elling language [8]. In this respect, a relevant approach that also makes use of SMT
and Z3 Solver is described by Pradhan et al. [41]. The authors introduce orchestra-
tion middleware, which continuously evaluates available resources on Edge nodes
and re-deploys software accordingly. Similar goal is pursued by Vogler et al. in [46],
where authors report on a workload balancer for distributing software components
at the Edge. Multiple approaches specifically focus on the autonomic and wireless
nature of IoT devices and contribute to energy-efficient resource allocation, where
the primary criterion for software deployment is energy efficiency [47]. A main
obstacle for using SMT in practice is the gap between real platforms and the math-
ematical model.

Model-based techniques are often used to support DevOps. Combemale
et al. [12] present an approach to use a continuum of models from design to run-
time to accelerate the DevOps processes in the context of cyber-physical systems.
Artavc et al. [3] uses deployment models on multiple Cloud environments, which
is a promising way to support the smooth transition of software from testing to
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production environments. Looking at approaches targeted at particular application
domains, Bucchiarone et al. [9] use multi-level modelling to automate the deploy-
ment of gaming systems. In [16, 17], the authors apply model-driven design space
exploration techniques to the automotive domain and demonstrate how different
variants of embedded software are identified as more beneficial in different con-
texts, depending on the optimisation objective and subject to multiple constraints
in place. To solve this optimisation problem, the authors also employ the SMT
techniques and the Z3 solver implementation.

4.3 Overview of the ENACT Deployment Bundle

The ENACT approach to automatic software deployment is implemented as a pro-
totype deployment bundle with two enablers, i.e., GENESIS and DivEnact, support-
ing automatic deployment at the device and fleet layers, respectively.

Figure 4.1 illustrates how the ENACT deployment bundle is used in a typical
SIS. The illustrative SIS has six subsystems, each of which is in charge of a particular
business task, such as serving a user, monitoring a room, etc. Such a subsystem is
usually composed by at least one edge device and several IoT devices such as sensors
and actuators. For the sake of simplicity, we do not show all the IoT devices. These
subsystems form the fleet of this SIS. Since each subsystem contains one main edge
device as the main contact point, or gateway with the back-end service, we also refer
to such fleet as an edge fleet. A fleet is normally distributed, with the edge devices
(together with its IoT devices) serving different customers or tenants, and deployed
in different locations. The developers often maintain one or several edge devices at
their own premises for testing or trial purposes.

Figure 4.1. The ENACT deployment bundle.
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GENESIS supports the automatic deployment within a local subsystem, for exam-
ple the deployment on the devices located on the developers’ side. In such case,
the developers can directly interact with the GENESIS engine hosted on the local
edge device, and use it as the bridge to further deploy required code to the associ-
ated IoT devices. In the development phase, developers define a deployment model
in the GENESIS modelling language specifying which software artefacts should
be deployed onto which devices. Once the development phase completed, in the
deployment phase, the same deployment model, or a slightly modified one, will be
provided to the GENESIS deployment engine, running either on a local machine or
the edge device. The engine will install or update the software artefacts according
to the deployment model.

DivEnact handles a different automatic deployment problem at the fleet level.
When the developers want to release the new version of their application to pro-
duction, they need to deploy software artefacts to all the devices on the users’ sites.
They cannot extend the deployment model to include every device in the fleet,
because such a huge model is not maintainable, especially when the devices keep
joining and exiting the fleet. Instead, since each user has a subsystem similar to the
one at the developers’ side, the developers can provide the deployment models they
developed in the previous phase for the local subsystem to DivEnact. The latter
maintains the list of all subsystems, and sends the deployment model to the devices
before invoking the GENESIS engine running on the edge device of the subsystem,
to eventually deploy the software artefacts according to the deployment model.
Within a fleet, the subsystems have different contexts, such as the device capacity,
the connectivity, the user preferences, etc., and developers need multiple variants of
their software to fit different contexts. DivEnact accepts multiple deployment mod-
els representing different software variants and configurations, coming for a series
of releases, and automatically assign them to the proper subsystems. For the sake
of availability, we recommend running the main service of DivEnact in the Cloud,
with a light-weight DivEnact broker running on edge devices of each subsystem.

Next, we present GENESIS and DivEnact, detailing their main innovations as
well as how they contribute ensuring the trustworthiness of SIS.

4.3.1 GENESIS

GENESIS enables the continuous orchestration and deployment of Smart IoT Sys-
tems throughout the IoT-Edge-Cloud continuum. Given a description of a deploy-
ment topology, GENESIS deploys and configures the needed software components,
by connecting to the hardware (or software) nodes. This topology, the so-called
deployment model, only prescribes what components must be deployed, how a
single component can be deployed, and how they connect to each other. GENESIS
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automatically derives how to deploy them. Therefore, GENESIS is composed of two
key components: (i) a domain-specific modelling language for specifying deploy-
ment models, and (ii) an execution engine to enact the provisioning, deployment
and adaptation of a SIS. We refer the reader to [20] for more details about the
GENESIS modelling language.

The target user groups of GENESIS are mainly DevOps engineers, software devel-
opers, and software architects. The GENESIS modelling language has been con-
ceived so the deployment model can act as a touch point between development
and operation activities. DevOps teams can use it to deploy either in development,
staging or production environments. It is also worth noting a deployment model
written using the GENESIS modelling language is independent of the underlying
technologies, i.e., GENESIS can deploy components anywhere in the IoT-Edge-
Cloud continuum: from microcontrollers without direct Internet access to virtual
machines running in the Cloud.

The main task of the GENESIS deployment engine is to reconcile two views of
the system: the deployment model given by the user, and the current state of the
running infrastructure, assuming that software components may already be running
on the infrastructure, for example, as a result of a system upgrade. To reconcile
these two views, the GENESIS deployment engine adheres to the “models@runtime”
architectural pattern [6]. It compares these two views and deduces what changes the
adaptation engine must carry out on the running infrastructure to align it with the
prescription, i.e., the deployment model given by the user. After the deployment,
the engine synchronizes the current GENESIS model with the actual deployment
result. Such synchronization will ensure that all the tools in future DevOps cycles
will leverage an up-to-date deployment model.

The GENESIS deployment engine is non-invasive, meaning it does not require
any GENESIS bootstrap or agent running on a target device to deploy software
on it. However, when decided by the DevOps engineer, the GENESIS deployment
engine can deploy on a target device a monitoring agent. This agent is an instance
of netdata10 and provides information about the performance and health status of
a device, including data about software components it hosts.

Finally, the deployment engine can delegate parts of its activities to deployment
agents running in the field. It is not always possible for the GENESIS deployment
engine to directly deploy software on all hosts. For instances, tiny devices do not
always have direct access to the Internet or even the necessary facilities for remote
access (in such case, the access to the Internet is typically granted via a gateway)
or for specific reasons (e.g., security) the deployment of software components can

10. https://github.com/netdata/netdata

https://github.com/netdata/netdata
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only be performed via a local connection (e.g., a physical connection via a serial
port). In such case, the actual deployment of the software on the device has to be
delegated to the gateway locally connected to the device. The GENESIS deployment
agent aims at addressing this issue. It is generated dynamically by GENESIS based on
the artefact to be deployed and its target host, and is implemented as a Node-RED
application. We refer the reader to [20, 21] for more details.

GENESIS comes with a set of predefined component types that can be seamlessly
instantiated in deployment models. In addition, GENESIS embeds a plugin mech-
anism that enables the dynamic loading of new component types. A components
type repository is scanned by the GENESIS execution engine before each deploy-
ment ensuring all available types are loaded before a deployment model is analyzed
and deployed.

4.3.2 DivEnact

While GENESIS focus on the deployment of a single system, DivEnact, the
diversity-oriented fleet deployment enabler, is an implementation of our concept
of fleet deployment. Fleet deployment is an automatic software deployment support
for IoT/Edge applications, which allows developers to deploy software artefacts
onto a fleet of devices as an abstract whole, without concerning about the con-
crete devices and their contexts in the fleet. The automatic fleet deployment tool,
such as DivEnact, will maintain the devices and their contexts in the fleet, the soft-
ware variants, and assign the variants to the appropriate devices depending on their
contexts.

DivEnact utilizes Azure IoT Edge to maintain a list of edge devices, together
with their contexts and run-time status. Developers provide DivEnact with a set of
deployment models (typically GENESIS models), each of which specifies a partic-
ular software artefact, together with the specification about how to configure and
deploy it on an Edge device. In order to facilitate the definition of similar deploy-
ment models, we also introduce the concept of deployment templates and variants.
A template defines the common parts among a number of deployment models, and
a variant further instantiates the template as a deployment model. A common use
case for this is to define a deployment model for a particular software, and then
use variants to represent the different versions of this software. After receiving all
the deployment models, DivEnact automatically assigns them to the list of edge
devices, and enacts the deployment model on each edge devices to finalize the local
deployment.

Figure 4.2 illustrates the technical architecture of the DivEnact tool. The DivE-
nact tool is designed and implemented following the established Model-View-
Controller (MVC) design pattern for client-server application systems.
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Figure 4.2. The architecture of DivEnact.

The DivEnact knowledge base stores various deployment- and fleet-related
artefacts and is modified by the DivEnact back-end upon the user input received
through the graphical user interface. The modification actions (CRUD – create,
read, update, delete) are implemented on top of standard APIs and libraries. The
model itself is spread across the following three repositories. MongoDB database
is installed locally, along with a DivEnact instance, and serves to store information
about templates and variants unique to each application system. There is a cen-
tralised repository in CouchDB for storing various ENACT artefacts, including
deployment models used by DivEnact. In particular, the CouchDB database stores
previously designed GENESIS deployment models that are to be enacted on low-
level IoT devices as part of the “last mile deployment”. Azure IoT Hub Cloud portal
keeps track of registered devices in the fleet and existing deployments. The infor-
mation obtained from the hub reflects the current state of all the devices through
continuously updated digital twins, as well as deployments applied to these devices
(i.e., software modules currently deployed and running on each device).

The DivEnact graphical user interface remains the main point of interaction
with the user. The main functionality is structured across several functions, i.e., the
editing and maintenance of templates, variants, deployment models, devices and
the assignment.

The back end of the DivEnact tool is implemented in Node.js. It receives REST-
ful requests originating from the user’s graphical interface and manipulates the
data model accordingly. It also interacts with the Azure IoT Hub API to update
some information about the devices in the fleet and trigger deployments. The back
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end also implements the actual diversification functionality (described in the next
subsections) by receiving the input model from the user and passing it to the under-
lying Python script. Upon execution, the calculated solution is passed back to the
user for the final approval.

The main function of the back end is the automatic assignment of deployment
models into the list of devices, considering the constraints, the deployment pref-
erences, the resource optimization, etc. We have implemented two experimental
assignment approaches, using constraint solving and resource assignment theories
as the back end mechanisms. The details of these two approaches can be found in
our recent publications [15, 44].

4.4 Trustworthy Deployment

As explained before, ensuring the trustworthiness of the deployment and of the SIS
is critical and challenging. It is a concern that crosscuts both the device or at fleet
layers. In the following we detail how GENESIS and DivEnact help addressing this
challenge. Our effort is concentrated on three complementary directions, i.e., how
to increase the availability of deployed system; how to automatically deploy the
required security mechanisms together with the application; and how to maintain
the software diversity across the whole fleet.

4.4.1 Deploying Availability Mechanisms

Availability refers to “the ability of the system to mask or repair faults such as the
cumulative service outage period does not exceed a required value over a specified
time interval” [4, p. 174]. Availability is a primary concern for business stakehold-
ers because service interruptions often translate into money loss. The failure of an
electricity meter for instance may affect the capacity of the electricity company to
properly bill its customers.

Availability, as any extra-functional requirements, does not affect the system
function, but rather affects its architecture. Building high-availability systems
requires additional components to detect, repair, or even prevent faults, such as
monitors, watchdogs, replicas, or voting mechanisms to name a few. Availability
tactics are now well documented, so we refer the reader to [4, Chap. 5] for an
introduction.

Many things can go wrong in Smart IoT Systems, including incorrect algo-
rithms, network failure and delays, hardware failure, etc. In the following, we focus
on scheduled outages, which are interruptions of service needed because of soft-
ware upgrade, and internal faults, which are faults that occur because of defects
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in the source code of the components. In other words, the availability support we
present hereafter contributes (i) improving trustworthiness of a SIS by maximis-
ing its availability (by minimizing downtime during upgrades); and (ii) improving
deployment trustworthiness by modifying a system and its deployment only if the
deployment process is successful (i.e., old version of a software is removed only if
the new version is up and running).

We extended GENESIS with the ability to deploy mechanisms that cope with
these two kinds of fault. To mask internal faults, GENESIS deploys multiple
instances of the same service/component (so called replicas) behind a proxy. When
one replica fails, the proxy can query another replica. To mask scheduled outages,
GENESIS provides zero-downtime upgrades. We leverage the same architecture and
deploys the new version (behind the proxy) before to decommission the older one.
That way, there is always a replica available and upgrades do not affect availability.

Modern execution platforms such as Docker or AWS already implement vari-
ous availability mechanisms, and, they have strategies for both scheduled outages
and fault-tolerance. Docker Swarm for instance performs zero-downtime upgrades
by deploying new services instances before to decommission the older ones. The
challenge is that, from a deployment perspective, the availability tactics are tightly
coupled to the underlying execution platform. Changing platform requires chang-
ing the deployment configuration.

To decouple availability from deployment platform, GENESIS captures these
deployment tactics independently of the underlying platform. If the platform
already provides mechanisms (such as Docker Swarm), GENESIS uses those, other-
wise it deploys built-in components to implement the selected tactics. In the fol-
lowing, we illustrate three scenarios that show how GENESIS copes with scheduled
outages and internal faults.

1. Initial Deployment: GENESIS deploys the system following the availability
tactics selected by the user.

2. Internal Fault: A fault occurs in the system and we explain how the mecha-
nisms that GENESIS has deployed deal with that fault, so that it is not visible
to the end-user.

3. Zero-downtime Upgrades: The user requests the deployment of a new ver-
sion of the system and we illustrate how GENESIS leverage the underlying
mechanisms to minimize service disruption.

4.4.1.1 Using built-in components on top of docker

By default, GENESIS does not make any assumption of the capability of the plat-
form where it should install a component. It could be a very fully featured platform
such as Docker Swarm (see Section 4.4.1.2) or simply an operating system offering



72 Model-based Continuous Deployment of SIS

remote access (through SSH, Telnet, etc.). We detail here the later case, that is when
the host is a bare OS. Recall that GENESIS uses two strategies to improve availabil-
ity: Replication to deal with internal faults, and zero-downtime deployment to deal
with scheduled outages. To implement these two strategies, we need three capabil-
ities that are provided by additional components:

• Routing, that is, the capability of redirecting incoming traffic to a selected
replica. Network proxies provide this and in GENESIS, we selected Nginx.

• Error detection, that is, the capability to proactively detect replicas that have
failed (for whatever reasons). We used a watchdog, that is a component that
periodically connects to the replicas and runs a so-called “health check”. The
health check is an application specific behaviour that confirms that the repli-
cas is up and running. It could be requesting a predefined resource using
HTTP, checking the status or OS-level services, or any other “quick-check”.
In GENESIS, we have implemented simple watchdogs using Shell scripts and
CRON tasks.

• Spatial isolation, that is, the capability to deploy multiple instances of the same
application with guarantees that they can access external resources (network
port, files on disks, etc.) without stepping on each other. GENESIS uses con-
tainers (i.e. Docker in the current implementation) to ensure spatial isolation
of replicas, but other container technologies such as LXC apply.

Scenario 1: Initial Deployment

The first step is for GENESIS to ensure that the underlying host offers “spatial iso-
lation” guarantees. To do so, GENESIS first installs Docker as container offer such
guarantees. Figure 4.3 below illustrates how GENESIS interacts with the host to
install docker and to create a “replicable image” of the software stack.

Given a component to deploy, GENESIS first connects to the host through SSH
and installs Docker (Step 1). Then GENESIS configures Docker in remote mode
so that other components (including itself ) can access it through the network.
Then, GENESIS creates a new temporary container (by default, using the image
“debian:10-slim”) and installs the underlying software stack. To do this, GENESIS
traverses the underlying software stack and installs all underlying components by
triggering the associated SSH commands into the container (Step 6, 7 and 8). Once
the stack is installed and configured, GENESIS converts it to a separate Docker
image, that it later uses to install multiple replicas (Step 9). Finally, GENESIS destroy
the temporary container. At this stage, GENESIS has enforced spatial isolation, and
can then proceeds with replication and zero-downtime upgrades.

Once Docker is operational and the component to install is available as a
Docker image, GENESIS proceeds with the two remaining capabilities, namely
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Figure 4.3. Automatically converting SSH resources into a Docker image. GeneSIS con-

nects to the host, and execute all SSH commands into a new container, which it then

saves as a new “ready to use” image.

detecting errors and routing as shown on Figure 4.4. First GENESIS installs the
proxy component through Docker (Step 1 and 2). Then, it installs the watchdog
and configures it with the endpoints of the Docker host, the proxy and with the
number of replicas to maintain (Step 2 and 3). For each missing replica, the watch-
dog requests Docker to provision a new instance of the image built in Scenario 1
and then the watchdog start checking the health of each replica periodically (Step
6 and 7). As soon as a replica is detected as healthy, the watchdog registers it to the
proxy (Step 8), which uses it process user requests (Step 9 and 10).

Scenario 2: Fault tolerance

We now turn to the second scenario where one replica fails and we explain on
Figure 4.5 how the watchdog detects and reacts to such a failure. The main mech-
anism to detect failure is the health check. Since a health check is an application-
dependent behaviour, the user must provide it as a script to be executed periodically
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Figure 4.4. Configuring watchdogs and proxies to improve availability.

by the watchdog. GENESIS defines the interface of the health check script as fol-
lows. The health check must accept the endpoint of the replica to query as its sole
input parameter and must output the replica status in return through its exit code:
Zero if the replica is healthy and any other value otherwise. This gives the user the
capability to integrate any application-specific health check logic. The listing below
shows one such health check script based on the HTTP status code, returned by a
service.

1 #!/ bin/bash
2 ENDPOINT="${1} "
3 response=$( curl - -write -out ’%{http_code} ’ - - s i l ent - -output /dev/ nul l "

${ENDPOINT}" )
4 i f [ "${response}" != 200 ]
5 then
6 exit 1
7 f i

Listing 4.1. A Sample health-check script.



Trustworthy Deployment 75

Figure 4.5. Masking internal faults to improve availability.

Note that this architecture can only detect replicas’ failure as fast as the watchdog
waits between two health checks. Besides, for the failure to be invisible to the user,
there must at least two replicas, for the proxy to switch between them as soon as a
delegation fails. Finally, transient phenomena such as network delays may be mis-
taken for replica failures and lead to unnecessary starts and stops of the container.

Scenario 3: Zero-downtime Upgrades

Finally, GENESIS leverages these proxy and watchdog to guarantee zero-downtime
upgrades, as shown on Figure 4.6.

When the user requests an upgrade, that is the deployment of a new version,
GENESIS first builds a new docker image of the software stack, including this new
version. We described this process in Figure 15. Once this new image is ready,
GENESIS request the watchdog to perform the upgrade (Step 2). The watchdog
thus provisions new instance of the new version (Steps 3 and 4) and, once these
new replicas are operational, the watchdog registers them to the proxy (Steps 4, 5, 6
and 7). At that stage, incoming requests from the user are still delegated to the older
version (Steps 8 and 9). Only once all replicas of the new version is operational, then
the watchdog starts to decommission the older versions (Steps 10 and 11).



76 Model-based Continuous Deployment of SIS

Figure 4.6. Using proxy and watchdog to guarantee zero-downtime upgrades.

4.4.1.2 Using docker swarm

In many cases, developers do not choose the platform on which their software runs:
It may result from organizations’ policies, customer requirements, etc. Platform
such as Kubernetes, Docker Swarm or Rancher for instance all implement availabil-
ity tactics, including replication and zero-downtime releases. Should the user use
such platform, GENESIS can exploit these native features to ensure fault-tolerance
and zero-downtime upgrades. Docker swarm already implements routing among
multiple replicas and fault detection. GENESIS therefore delegates these features to
Docker Swarm. We briefly example how GENESIS handles our three scenarios using
Docker Swarm.

Scenario 1: Initial deployment

This step is the simplest as we assume here that the host already runs Docker Swarm
and that it therefore already guarantees spatial isolation. Here, GENESIS simply
requests Docker Swarm to deploy the given number of replicas of a given Docker
image.
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Scenario 2: Fault tolerance

This is also fully transparent from the GENESIS standpoint. When GENESIS del-
egates the deployment to Docker Swarm it specifies the number of replicas and
the health check script to be used to detect faults. It is docker swarm that period-
ically checks the replicas status, provisions new ones if some have failed and route
incoming requests accordingly.

Scenario 3: Zero-downtime redeployment

Further Docker Swarm also offers various strategies to upgrade a service (i.e., the
set of replicas in Docker Swarm parlance). Among many options, Docker Swarm
lets the user specify the “update order”. If this order is “stop-first”, then Docker
Swarm first stops all the replicas of the older version, and only then starts pro-
visioning replica for the new version. By contrast, if the update-order is “start-
first”, then Docker Swarm provisions all new replicas before to decommissions, as
GENESIS would do without Docker Swarm (see Figure 18). This “start-first” option
let Docker Swarm minimize service interruptions.

4.4.1.3 Limitations

The support for availability tactics in GENESIS is limited to Docker platform,
although the general principle applies regardless of the underlying technology and
other can extend GENESIS and support other technologies. In addition, there are
other types of faults that the current tactics cannot deal with. Hardware failure for
instance would take down the whole host and therefore all the replicas at once.
To tackle hardware failure, replication would have encompassed hardware, but
this goes beyond GENESIS whose mission is to provide platform agnostic deploy-
ment. Nevertheless, using the ENACT framework, the Root Cause Analysis enabler
can be used to monitor and identify such failures and DevOps engineers can use
GENESIS to migrate the software components on a new host, benefiting from
its platform independence. Programming faults are also not dealt with. Because
GENESIS is oblivious to the inner working of the components it deploys, all repli-
cas are similar and fail in a similar manner. For instance, if a defect in the code
lead to a fault of one replica (say because of invalid user input), then all replicas
will exhibit this fault. Only diversification techniques [5] could help having repli-
cas whose behaviours differ from one another, and that exhibit different failure
profiles.

Improving availability from a pure deployment perspective, as GENESIS pro-
vides, is bound to stateless components that can be easily replicated. Replicating
a component that persists state requires some modification of its code. Either we
separate its state from its application logic (using a local database, for instance) and
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we ensure that all replica can access this single data source. Alternatively, each repli-
cas also have its own local copy but we must now define a strategy to ensure the
correct and timely synchronization of the multiple copies of the state, and possible
conflicts. Modern database engines offer such mechanisms and would need to be
integrated with GeneSIS in an ad-hoc manner. Edge platforms however often only
pass data further on to Cloud services, and are thus likely to be stateless, or can
simply leverage a local database as a cache, a strategy that the GeneSIS availability
mechanisms handles.

Finally, on an Edge platform there are resources that cannot be replicated and
that would require further investigation. A serial link for instance cannot be shared
between replicas and, in this case, dedicated, application-specific logic must be in
place to ensure consistent behaviour between all the replicas.

4.4.2 GENESIS for Continuous Deployment Supporting
DevSecOps

GENESIS empowers a DevOps team to cope with security and privacy concerns of
SIS as it natively offers support for including, as part of the deployment models,
concepts to express security and privacy requirements and for the automatic deploy-
ment of the associated security mechanisms [20]. More importantly, GENESIS
enables the continuous enhancement of security controls in a DevSecOps cycle to
keep security mechanisms up-to-date and well-aligned with the evolution of SIS,
as well as addressing IoT security risks that are always evolving.

In this sub-section, we present the latest development of GENESIS for better sup-
porting the continuous deployment and enhancement of security controls that can
refine or override the associated (default) security and privacy mechanisms of the
IoT platforms such as SMOOL [9] or FIWARE [11]. Such security mechanisms are
further elaborated in Chapter 7. More specifically, GENESIS provides a generic way
for a DevOps team to extend such existing security mechanisms with other (third-
party) security mechanisms to provide enhanced security controls in a DevSecOps
fashion.

4.4.2.1 GENESIS for the specification and deployment of security

components

To better support DevSecOps, GENESIS promotes specifying security mecha-
nisms as explicit elements in the deployment model, instead of hidden (and thus
tightly coupled) in the source code, so that developers can see and change the
security mechanisms in the deployment model level. This includes specifying
security requirements and capabilities, and supporting the deployment of secu-
rity mechanisms as components reusable in different scenarios. Compared to the
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previous GENESIS version reported in [21], we have built a new library of off-the-
shelf security components that can be selected for instantiating in the deployment
model. More importantly, we provide DevOps teams with mechanisms to configure
security components and inject fine-grained security policies into deployment com-
ponents (without modifying their business logic), enabling their seamless integra-
tion with third party security mechanisms (services, libraries, etc.). These supports
can ease the development, integration, and deployment of SIS with continuously
enhanced security mechanisms (see Section 4.4.2.2).

GENESIS supports the deployment of security components as any other software
components in the way that their deployment and configuration can be defined via
exposed APIs and configuration files. A security component to be deployed together
with an IoT application can be declared in GENESIS with “security capabilities” in
a provided port. A required port of a software component that requires a match-
ing security capability can be bound with the provided port of the security com-
ponent that provides such security capability. Before enacting a deployment, the
GENESIS deployment engine validates the correctness of the provided deployment
model. In particular, it ensures that the required “security capabilities” match the
provided ones.

GENESIS allows specifying the deployment of security mechanisms and policies
built on top of IoT platforms. We present here its application to the SMOOL IoT
platform, which is used in our ENACT project. Similar approach can be applied
to other IoT platforms. At the development phase (as well as at the deployment
phase presented below), GENESIS provides the support to relieve developers from
manually specifying and maintaining security monitoring and control mechanisms
in the code of a SMOOL client. Instead, a developer can define its own SMOOL
client, focusing on its business logic. We integrated the SMOOL client wizard with
ThingML11. As a result, a single Eclipse IDE can be used to generate the code of
a SMOOL client, which can then be directly used as part of a ThingML program.
The proper Maven manifests are automatically created facilitating the building and
release of the desired application. This means that the DevOps team can quickly
develop the business logic of the SIS based on the SMOOL platform, including nec-
essary security mechanisms. DevOps teams can define SMOOL clients that lever-
age built-in security properties to check and enforce security concepts on messages
requiring security controls.

The SMOOL’s default security enforcement can be done with the
SMOOL clients built-in security metadata checker to verify messages exchanged

11. https://github.com/TelluIoT/ThingML

https://github.com/TelluIoT/ThingML
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among them. In cases where a deeper control is needed, a specialised security meta-
data checker can be included in SMOOL clients, with additional privileges to watch
and process the security metadata in messages exchanged, in the same way it is
done with business logic concepts such as sensed temperature or gas values. This
provides a fine-grained control on critical messages that may have a significant secu-
rity impact in the IoT system such as orders to actuators. More precisely, a client
code can conduct security checks based on policies to be fulfilled by ontology con-
cepts by using any of these options: (i) the default security metadata checker (for
minimal configuration), (ii) a custom security metadata checker implemented in
the development phase (for full control of security), and (iii) a custom security
metadata checker for integration with external security services. Whatever security
options, GENESIS provides support for easily configuring the security mechanisms
and how they should be integrated and deployed with the SIS. Thanks to ThingML,
GENESIS provides advanced support for the three options.

To support the first option, GENESIS enables the DevOps team to specify explic-
itly the default security policy that must be enforced by the Security checker. To
support the second option, where the DevOps team can implement its own ad-hoc
security checker, GENESIS provides the means to automatically inject this security
checker into the code of the component to be deployed and to rebuild the compo-
nent automatically. More precisely, when deploying this security component, the
GENESIS deployment engine injects the security policy into the ThingML code of
the SMOOL client. This code injection is done before GENESIS triggers the com-
pilation of this code to generate the actual implementation of the SMOOL client
with the corresponding security policy.

To support the third option, GENESIS not only injects the security checker code
that integrates with a third party security solution (e.g., Casbin12 or the Context-
aware Access Control mechanism [23], or a “gatekeeper” in [33]) but it can also
deploy the latter. At the deployment phase, a SMOOL client can be deployed by
GENESIS as any other software components. Once the SMOOL client has been
developed, the developer can specify how to deploy it together with the security and
monitoring mechanisms that should apply to its SMOOL client. GENESIS will then
inject within the SMOOL client the necessary code to perform the security checks
before actually deploying it. To do so, we created a generic security component
that represents a SMOOL client as a deployable artefact. This client can follow any
of the security check options discussed above and is implemented with ThingML
code, which integrates (i) the necessary SMOOL libraries, (ii) the SMOOL client
business logic, (iii) and the security logic. The main rationale behind this choice is

12. https://casbin.org/

https://casbin.org/
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the following. ThingML offers an extra abstraction layer that provides the ability to
wrap the code and dependencies that compose a SMOOL client and to inject into
it the necessary security code. In addition, it provides GENESIS with a standard and
platform-independent procedure to generate, compile, configure, and deploy the
implementation of the security mechanisms. A similar approach could be applied
to other IoT platforms. In this way, GENESIS allows DevOps teams to reconfigure
and update security mechanisms by design, in line with the evolution of IoT appli-
cations and the development of security and privacy risks. In the next section, we
present more details on the DevSecOps support.

4.4.2.2 The DevSecOps support for the continuous enhancement

of security mechanisms

SIS typically expose a broad attack surface and their security must not be an
afterthought [22]. The ability to continuously evolve and adapt these systems to
their dynamic environment is decisive to ensure and increase their trustworthiness,
quality, and user experience. This includes security mechanisms, which must evolve
along with the SIS, continuously fixing security defects and dealing with new secu-
rity threats [32, 35]. Following the DevSecOps principles [30], there is an urgent
need for supporting the continuous deployment of SIS, including security mecha-
nisms, over IoT, Edge, and Cloud infrastructures [1]. The DevOps movement pro-
motes an iterative and incremental approach enabling the continuous evolution of
software systems. As an evolution of the DevOps movement, DevSecOps promotes
security as an aspect that must be carefully considered in all the development and
operation phases for the continuous evolution of systems to be secure.

In this section, we present how GENESIS can enable the continuous enhance-
ment of security controls in a DevSecOps cycle: from development to operation.
GENESIS also supports the adaptation of the system having enhanced security
mechanisms or updated security policies with minimal impact on the already deliv-
ered and under operation. Our approach [18, 20, 21] for the continuous deploy-
ment of SIS with enhanced security mechanisms can serve the DevOps team in
both adaptation and evolution of the SIS. First, GENESIS supports for evolving SIS
with updated security mechanisms according to a new development cycle. Second,
GENESIS supports for adapting security enforcement to improve how the IoT sys-
tem operates securely. This DevSecOps support leverages the GENESIS ’ necessary
mechanisms, interfaces, and abstractions to dynamically adapt the deployment and
configuration of a SIS as presented earlier. We elaborate more on the two kinds of
DevSecOps support in the following paragraphs.

First, GENESIS supports for evolving SIS with updated security mechanisms
according to a new development cycle. In this line of adaptation, the SIS in opera-
tion is evolving with new business logic components or even new physical devices
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Figure 4.7. An initial version of a smart home system (deployment view).

being added resulting in the need for enhancing security mechanisms accordingly.
We demonstrate this support using a smart home simulation called HomeIO.13

More details on the deployment demo using the HomeIO simulation can be found
in this video.14 In the smart home system, there are IoT applications (e.g., UserCom-
fortApp) that get access to sensors’ data (e.g., temperature) from the smart home to
make decisions and send commands to control the actuators, e.g., window blinds.
The applications interact with the smart home devices and services via the SMOOL
platform (in the middle of Fig. 4.7). GENESIS can easily support for the deploy-
ment of components that are either built on top of the existing IoT platforms like
SMOOL or are independent of any IoT platform because of its generic approach for
specifying deployment components. However, to make GENESIS even more useful
in practice, we have developed GENESIS to ease the integration of IoT platform-
specific components (e.g., SMOOL clients) and IoT platform-independent com-
ponents (e.g., third-party security mechanisms like Casbin presented below) from
development to operation.

In the initial version of the smart home system, there is the EnergyEfficiency appli-
cation, which gets access to sensors’ data to make decisions for energy efficiency
and send commands to control the actuators, e.g., window blinds. In particular,
it maximizes the exploitation of daylights and regulates the in-door temperature
whilst minimizing the energy consumption. If the room is bright because of day-
light, it will switch off the LED-lights, and vice versa. On the other hand, if the
room temperature is high, the application may need to close the window blinds to

13. https://realgames.co/home-io/

14. https://youtu.be/yQ9XYWu-EZM

https://realgames.co/home-io/
https://youtu.be/yQ9XYWu-EZM
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prevent sunlight heating the room. The EnergyEfficiency application interacts with
the smart home devices via the SMOOL platform. There are two notable secu-
rity mechanisms associated in this first version of the smart home. The first one
is a secure API gateway (Express Gateway15) that allows secure remote API access
to the EnergyEfficiency application. The second one is a SecurityEnforcer by default
of the SMOOL middleware that enforcing the security check for the data passing
through, e.g., only allowing genuine actuation commands to be sent to the actu-
ators of the smart home. The latest version of GENESIS has provided a built-in
support to ease the specification of the Express API Gateway in the deployment
model. Adding a new instance of Express API Gateway is easy. The remaining
work for the DevOps team is to specify the configuration files of the API gate-
way, which define how the API of the EnergyEfficiency application can be securely
accessed.

In IoT platforms like SMOOL, there are often default security enforcements.
For example, the actuation orders must be checked before they are actually sent
to the actuators. This check (embedded in the SMOOL2HOMEIO component,
Fig. 4.7) makes sure only genuine actuation commands can be sent to the actuators.
In other words, the SMOOL platform allows to check for actuation commands
with valid security tokens. All the IoT apps must send actuation commands with
valid security tokens.

However, during the evolution of the smart building system, new applications
can be added, and new physical devices can also be added. In the subsequent devel-
opment cycle, another application called UserComfortApp has been added to the
smart home system. Moreover, the smart home system can also have new IoT
devices such as AirQualitySensor or SmartDisplay as shown in Fig. 4.8.

New security requirements come up because the smart building system must
control which apps can access which actuators. This means that more fine-grained
security control must be introduced, which may not be available in the IoT plat-
form. GENESIS should support for seamlessly integrating new (third-party) security
mechanisms into the IoT platforms. In this new development cycle, not only that
the secure API gateway must be updated with a new configuration file, but also the
DevOps team needs to introduce a new security mechanism that can enhance the
fine-grained control of how different applications can access to the sensors and
actuators of the smart home system. GENESIS has a generic support for seamlessly
integrating and deploying any advanced security mechanism together with the IoT
platform in use, e.g., the SMOOL platform. More specifically, in this example,
the DevOps team develop an access control mechanism based on an open source

15. https://www.express-gateway.io/

https://www.express-gateway.io/
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Figure 4.8. New applications and new IoT devices can be added in a development cycle.

Figure 4.9. An enhanced security control has been added.

framework called jCasbin,16 and then specify the integration point with the IoT
platform in use (with GENESIS support, see Fig. 4.9). During the deployment pro-
cess, GENESIS compiles the integration code before orchestrating the deployment
of the integrated components.

To enable such DevSecOps adaptation support, GENESIS not only provides the
modelling language embedded in a web UI for specifying the components of such
IoT platforms, but also the reconfiguration and rebuild of these components (for
integrating new security mechanisms with the IoT platform) before deployment
(for adaptation or for a new development cycle). For example, in the SMOOL

16. https://casbin.org/

https://casbin.org/
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Figure 4.10. An enhanced security control has been added.

platform, each SMOOL producer or consumer is associated with a security checker
for checking the security key of sensor data or actuation commands. GENESIS allows
updating the configuration of the security checker (e.g., by injecting new config-
uration to overwrite the default one), and automatically rebuilding the SMOOL
producer or consumer including the reconfigured security checker. By doing so,
GENESIS enables the DevOps team to make reconfiguration or redevelopment and
redeployment easily for the evolution of SMOOL producers or consumers includ-
ing security checkers. Figure 4.10 shows an example of the GENESIS’s UI for extend-
ing the SecurityChecker (in SMOOL2HOMEIO) to become a security enforcement
point of the external access control service. Thanks to ThingML support within
GENESIS, the extended SecurityChecker is compiled in the SMOOL2HOMEIO
component for a new version of SMOOL2HOMEIO to be deployed that works
as a security enforcement point of the external access control service.

This approach is what we call the DevSecOps adaptation support for the co-
evolution of business logic components and the security mechanisms. This means
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that when new business logic components require security mechanisms to evolve,
GENESIS can support for the adaptation, even including the integration of the IoT
platform with other (third-party) security mechanisms.

After the successful deployment, GENESIS allows dynamic adaptations that can
be triggered at any point, manually or automatically for adapting security enforce-
ment to improve how the IoT system operates securely. In this line of adaptation,
new security policies or configurations can be updated dynamically for the security
mechanisms that are in operation. For example, the role-based access control policy
can be easily updated according to new requirements. The trigger of such adapta-
tion can be manually, but also can be automatically from a risk assessment process
or after a reasoning process of actuation conflict management.

In summary, with the support from GENESIS, the DevOps team can develop
a new version of the smart home system together with enhanced security mecha-
nisms according to its evolution. The deployment of this new development cycle
can be triggered manually from GENESIS’s GUI. After the successful deployment,
GENESIS also allows dynamic adaptations that can be triggered at any point, man-
ually or automatically for adapting security enforcement to improve how the IoT
system operates securely. In both ways presented so far, GENESIS allows DevSecOps
teams to reconfigure and update security mechanisms by design, in line with the
evolution of IoT applications and the development of security and privacy risks.

It is important to note that in this chapter we have not addressed the security of
the build and deployment pipeline itself. The security of this pipeline is critical to
protect the integrity of the code and the systems being deployed. For the production
environment, GENESIS must adhere to the secure deployment practice.17 One of
the main principles in secure deployment is to support automatic testing as part of
the deployments to gain confidence in the security of the code (see Section 8.2 for
Test and Simulation).

4.4.3 Software Diversity Within IoT Fleet

Software diversity in an IoT fleet, i.e., deploying variants of software on different
devices, creates a moving target for malicious attacks, and therefore improves the
overall security of the system. The DivEnact tool assigns the available variants to
the fleet of devices and maintains the balance between the variants. The remaining
questions is how to obtain functionally-equivalent variants.

The ENACT IoT diversity-by-design tool takes as input a single deployment
or behaviour specification and generates multiple diverse specifications. Within a
DevOps context, it is important and necessary to keep the diversity generation fully

17. https://owaspsamm.org/model/implementation/secure-deployment/

https://owaspsamm.org/model/implementation/secure-deployment/
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automatic, instead of relying on developer’s manual effort to diversify systems (such
as the traditional N-Version Programming approach). Developers can focus on a
single line of code to achieve frequent iteration, and the diversification tool, as part
of automatic building step, will generate diversified versions automatically [14].

Automated diversity is a promising means of mitigating the consequences of a
security breach. However, current automated diversity techniques operate on indi-
vidual processes, leveraging mechanisms available at the lower levels of the software
stack (in operating systems and compilers), yielding a limited amount of diver-
sity. In this section, we present a novel approach for the automated synthesis of
diversified protocols between processes. This approach builds on (i) abstraction,
where the original protocol is modelled by a set of communicating state machines,
(ii) automated synthesis, applying mutation operators onto those protocols, which
produces semantically-equivalent, yet phenotypically-different protocols, and (iii)
automated implementation of these protocols through code generation.

The tool is currently in an experimental stage. Automatic diversity of communi-
cation protocols is a novel technology, yet without convincing implementation and
applications, to the best of our knowledge. Therefore, our focus is currently on the
theoretical feasibility of the idea and the experimental evaluation of its effects. In
the next step, we will improve the user experience of the tool and its applicability
to practical scenarios.

Mass-produced software applications denote clonal applications, with thousands
or millions of identical siblings. Think of, for example, a popular mobile application
installed on millions of mobile phones, or software embedded into a widely-used
connected device. To mitigate the risks of such large mono-cultures, diversity is
typically automatically introduced either in a generic way, typically at the OS level,
oblivious of the actual logic and semantics of the software, or in some very specific
places, typically low-level libraries reused across applications, in order to improve
security. This leaves most of the actual business logic unchanged, unaffected by
the diversity. In addition, diversity often affects individual processes, but leaves the
communication between processes intact.

A more holistic approach to diversity is challenging. Consider a typical client-
server application, where multiple clients interact with a server, and where each
client has a different implementation, and a different way of communicating with
the server. This would significantly hinder a hacker, be it a human being or a
machine, when attempting to generalize an attack through all possible protocols.
This would make large-scale exploits a time-consuming and costly endeavour for
hackers. Yet, the engineering, e.g., the production, maintenance and integration,
of such levels of diversity raises several challenges. How to ensure that each imple-
mentation still behaves as specified? How to ensure that each client is still able
to communicate with the server, without information loss or distortion? How to
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ensure that different clients are fundamentally (i.e., sufficiently) different, and not
merely cosmetically different? How to keep the development and operation costs
of a diversified system significantly lower than the cost of mitigating large scale
attacks?

We have seen that abstraction, synthesis and automated implementation can
yield a convincing solution to introduce a wide diversity into protocols, for example
between a device and a gateway, or a web/mobile app and a server. This approach:

• abstracts protocols into (i) a structural view describing the messages to be
exchanged, and (ii) a behavioral view based on state machines describing how
those messages are exchanged between the participants, including sequencing
and timing.

• combines and applies a number of atomic mutations to this protocol model,
yielding a large number of diversified protocols, which operate differently,
still with the same semantics.

• automatically implements protocols, diversified or not, by generating fully
operational code targeting C, Go, Java and JavaScript, able to run on a wide
range of platforms.

Our empirical assessment indicated that this approach implies a reasonable over-
head in terms of execution time, memory consumption and bandwidth, fully com-
patible with the requirements of mass-produced software. We also showed that this
approach could generate a significant amount of diversity. Our assumption was that
this diversity would contribute to the diversity-stability hypothesis, i.e., this would
make the whole ecosystem more robust by making it less likely for an exploit to
propagate to the whole population. In other words, if the protocol between a spe-
cific client and the server could be observed, analysed and eventually understood,
this would not systematically imply that all other diversified protocols could be
understood following the very same procedure. In this section, we briefly describe
the mechanisms and the corresponding tools we developed to automatically gener-
ate the diverse protocols. Technical details and the experiment results can be found
in our conference paper [29].

Our approach relies on ThingML [26] for the specification of protocols.
ThingML provides a way to formalize the messages involved in protocols, in a com-
parable way to what Protocol Buffer proposes. In addition, ThingML provides a
mean to formalize the behavior of protocols through state machines. ThingML
specifications are both human-readable and machine-readable, which makes it
possible to analyse protocols at a high-level of abstraction and to fully automate
the implementation of those protocols through code generation. In the next-sub-
section, we present relevant aspects of ThingML on our motivating example.
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We model communication protocols as a set of communicating state-machines,
encapsulated into components. A protocol typically involves two roles: (i) a client,
i.e., a device, a web-browser or a mobile app, and (ii) a server, i.e., a gateway or a
Cloud back-end. The clients and the server need to agree on a common API. Since
communication is typically asynchronous in a distributed system, the common API
is specified as a set of messages. Next, this API is imported by the client component
and the server component, and the messages are organized into ports.

The ultimate goal of our approach is to diversify the wire image of protocols.
Diversifying the wire image of protocols basically means shuffling the sequence of
bytes exchanged over the network e.g., turning the payloads while ensuring the
interoperability between the client and the server.

4.5 Conclusions

This chapter summarizes our effort in the ENACT project towards automatic
software deployment for Smart IoT Systems. Automatic deployment is a corner-
stone of DevOps, as it connects development with operation, and ensures that
changes on the software will be placed into the production in a correct and
prompt way.

Although there are already mature deployment solutions for Cloud computing
in the market, automatic deployment for smart IoT systems is still an open problem.
The main challenges are from two fundamental characters of smart IoT systems:
First, an IoT application involves software running at all types of resources along
the Cloud-Edge-IoT continuum, and it is difficult to provide a consistent way to
support the deployment on all those different types of resources. Second, an IoT
application in the production stage usually contains many subsystems of Edge and
IoT devices, each of which serves a particular user or manages a particular part of
the physical world. It is difficult to deploy a new change on the software to all those
subsystems regardless of the different contexts and status among them.

During the ENACT project, we conducted research aiming at these two chal-
lenges, resulting in two ENACT enablers, namely GENESIS and DivEnact. We
briefly introduced how these enablers work, both as individual tools and as an inte-
grated deployment bundle for the automatic deployment of SIS. More details about
the theories, implementations and use cases can be founded in our recent publica-
tions [15, 44]. In this chapter, we focused on the mechanisms and practices of using
these tools to ensure the trustworthiness of the deployment software, including the
availability of software components on unstable resources, the deployment support
of security and privacy mechanisms, and the automatic generation and maintenance
of software diversity towards a more secure systems.
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In the next step, we will extend the concepts and implementation of auto-
matic deployment into the more general edge computing domain, providing an
engineering solution for the core problem of edge computing, i.e., the distribu-
tion and offloading of computation among the complex and dynamic resources.
Currently, the deployment is driven by manually define deployment models which
embeds the resource allocation and the constraints about software-device mapping.
An important future plan is to introduce intelligence into automatic deployment,
which learns from historical deployments and their effects to automatically assign
software parts to the proper resources.
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Chapter 5

A DevOps Toolchain for Managing
Actuation Conflicts in Smart IoT Systems

By Gérald Rocher, Thibaut Gonnin, Franck Dechavanne,
Stéphane Lavirotte and Jean-Yves Tigli

5.1 Introduction

To assist users in their daily lives, Smart IoT Systems (SIS) have long been lim-
ited to the exploitation of environmental information; the use of ‘smart objects’
was mainly motivated by their ability to collect these information from sensors.
However, in many areas such as home automation, factory 4.0, Intelligent Trans-
portation Systems (ITS), etc., SIS are no longer limited to collecting sensor data
to infer actionable information, they also interact with the physical environment
through actuators. This evolution brings new challenges that the scientific com-
munity has to meet in collaboration with industrial players, as evidenced by the
numerous calls from the European Commission, in which the ENACT project is
part of: “Most of the today’s IoT systems are however mainly focused on sensors, whereas
in the future actuation and smart behaviour will be the key points. Platforms should
provide connectivity and intelligence, actuation and control features” [9], p. 100.
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5.1.1 SIS Actuation Challenges

By physically interacting with their environment through actuators, SIS become
critical; in the absence of end-to-end human control (utopian in complex oper-
ational contexts such as ITS, etc.), they have immediate impacts on the physical
environment with all the social and economical risks that this may entail. At design-
time, these applications must be conceived to formally prevent any undesirable
effect in the physical environment, whether caused by sending contradictory or
simultaneous commands to the actuators. At run-time, it is yet necessary to ensure
that the effects produced in the physical environment are in line with the expecta-
tions. Indeed, the lack of a perfect model of the physical environment (of a complex
nature) prevents designers from fully predicting the effects of the commands sent
to the actuators; effects that are therefore likely to be hampered by possibly disrup-
tive surrounding physical processes. These challenges bring with them heightened
concerns about trustworthiness of SIS which includes, among others, safety and reli-
ability aspects. As defined in [13], safety concerns are related to the ability of SIS
to prevent catastrophic consequences for humans and the physical environment;
reliability concerns are related to the ability of SIS to deliver predictable perfor-
mance in expected conditions. While the DevOps methodology is part of the good
practices in software development and is applicable to SIS limited to merely collect
sensor data, it requires new tools in the realm of trustworthy SIS, both at Dev and
Ops Times.

5.1.2 DevOps Still Lacks the Tools to Meet These Challenges

While the DevOps approach is not specific to a particular field of applications,
many challenges arise when it comes to applying it to the field of SIS. DevOps prac-
tices are therefore still far from being fully adopted in their development, notably
due to a lack of key enabling tools [1, 34]. Among these key tools, those capa-
ble of taking into account SIS operating in open and complex environments and
requiring continuous testing at run-time (i.e., in-situ) beyond the tests traditionally
conducted on emulated and simulated infrastructures, are missing [1]. In general,
there is a lack of tools that address the trustworthiness of SIS, which, as far as this
chapter is concerned, is about safety and reliability aspects, exacerbated by the abil-
ity of SIS to act in the physical environment through actuators. A study of the
literature around the actuation problem [19] shows that, without even consider-
ing the DevOps approach, this problem is still in its infancy in the IoT field and
therefore still open. Moreover, the approaches proposed in the literature for man-
aging actuation in SIS are often (1) monolithic, they do not or hardly meet the best
practices advocated by the DevOps approach; (2) applied to controlled operational
environments; they have a software vision of the problem by focusing on the com-
mands sent to the actuators more than on the effects they produce [29].
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The work carried out as part of the ENACT European project and described
throughout this chapter aims to fill this gap by proposing a toolchain meant to
be integrated into the DevOps framework and meeting end-to-end SIS actuation
challenges.

5.1.3 An End-to-end DevOps Toolchain

The contribution is built around two complementary toolsets, deployed through-
out the DevOps life-cycle phases. This combination of tools aims to improve the
trustworthiness of SIS within a framework which, as advocated by the DevOps
approach, creates synergies and foster communication between development and
operations activities.

At design-time (Dev), a complete toolset is developed for identifying and locally
resolving actuation conflicts [12], i.e., (a) preventing contradictory or simultane-
ous commands to be sent to actuators (direct conflicts), (b) preventing, as much as
it can be, antagonistic effects to occur in the physical environment (indirect con-
flicts). At run-time (Ops), a first tool observes specific environmental features and
quantitatively assesses the effectiveness of the SIS, i.e., for the extent to which it
produces the expected effects. A second tool is meant to analyse drifts in effective-
ness. It makes clear the symptoms of the drifts in effectiveness, providing guidance
to designers to help them investigate their possible root causes. Within the frame-
work of the ENACT project, other investigation tools may be used to complement
this latter tool, such as, for instance, the Root Cause Analysis (RCA) (Section 8.3)
toolset. The analysis resulting from these tools then trigger a new design phase,
closing the DevOps life-cycle loop.

The rest of the chapter is organized as follows. Section 5.2 describes the SIS
actuation management toolset along with the workflow (Section 5.2.2) involved
in the identification and resolution of direct and indirect actuation conflicts. Sec-
tion 5.3 describes the behavioural drift assessment (Section 5.3.2) and analysis (Sec-
tion 5.3.3) toolset. Section 5.4 demonstrates, throughout a smart-home use-case
described in Section 5.4.1, the complementarity and relevancy of both toolset as
part of the DevOps life-cycle. This use-case involves two consecutive DevOps cycles
to converge towards a SIS with satisfactory behaviour.

5.2 Overview of the SIS Actuation Conflict Management
Toolset

IoT devices, at the edge of SIS infrastructures, have long been leveraged for their
capacity at gathering environmental data from sensors, paving the way for decision
making support systems covering a broad range of application domains from smart-
health, smart-city to smart-grid, Factory 4.0, etc. just to name a few. However,
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beyond merely gathering data from sensors, new challenges arise as soon as it comes
to leverage IoT devices to interact with the physical environment through actuators
that turn commands received from SIS into physical effects. One of these challenges
concerns the actuation conflict management. Such conflicts are likely to occur when
different applications compete for accessing (1) shared actuators at the edge of the
IoT infrastructure (direct conflicts), e.g., simultaneously applying ON and OFF to
a light bulb, and/or (2) shared physical properties (indirect conflicts), i.e., turning
ON both a cooler and a heater in the same room.

The actuation conflict management challenge goes beyond the technologi-
cal challenge that shared multi-layered IoT infrastructures usually meet by, for
instance, providing sensors with access control mechanisms. Indeed, besides this
technological challenge, actuation conflict management also poses a semantical
challenge; accounting for the locality of the actuators and the physical properties
they act on is here essential. In the realm of trustworthy SIS, actuation conflict man-
agement is of paramount importance. Designers must prevent SIS from producing
any undesirable effects in the physical environment, whether it is caused by sending
contradictory or simultaneous commands to the actuators. To this end, designers
must be provided with decision support tools that can assist them in identifying
and resolving direct and indirect actuation conflicts, and in deploying relevant, yet
robust and safe Actuation Conflict Managers (ACM).

In the sequel, a complete toolset for identifying and resolving actuation conflicts
is introduced. This toolset consists of three stages throughout the DevOps life-cycle,
as described in Fig. 5.1).

Underlying the tools for actuation conflict identification and resolution, a
meta-model, denoted Workflow and Interaction Model for Actuation Conflict
management (WIMAC), is used to build a structural model of the SIS upon deploy-
ment, implementation and physical environment models (phase 1 in Fig. 5.1) [27].
WIMAC provides a modelling language for describing inter-relationships between
SIS software components and actuators at the edge of the infrastructure along with
their effects on the physical environment.

On the basis of the structural model, potential direct and indirect actua-
tion conflicts are identified (phase 2 in Fig. 5.1). Actuation conflict identi-
fication is based on Attributed Graph Grammar (AGG) rules [18] meant to
detect conflicting patterns; actuation conflict resolution is based on AGG rewrit-
ing rules meant to instantiate local ACMs. DevOps approach aims to provide
continuous and rapid software deployment capabilities. In accordance with this
approach, a set of pre-configured off-the-shelf and ready-to-use ACMs are offered to
designers.

Third, besides off-the-shelf ACMs, a complete formal verification flow is pro-
posed in the Discrete EVent system Specification formalism (DEVS) [39] for
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Figure 5.1. Usage of Actuation Conflict Management (ACM) tool-set throughout the

DevOps life-cycle.

designing and verifying reusable custom ACMs, covering different implementation
strategies at the edge of the infrastructure (phase 3 in Fig. 5.1).

Finally, the WIMAC-based structural model, with ACMs instantiated, is trans-
formed back to deployment and implementation models (phase 4 in Fig. 5.1).

5.2.1 Beyond the State of the Art

The problem of identifying and resolving IoT-based systems actuation conflicts is
still in its infancy. While most of the existing solutions focus on the identification
and the resolution of direct actuation conflicts (a legacy of the technical challenge
mentioned above), few focus on identifying and resolving indirect ones [19, 21].
Moreover, the solutions proposed in the literature raise two main problems when it
comes to applying them to the DevOps framework; (1) most of them require an a
priori knowledge on the system components and the rules governing their evolution
[33]; (2) the solutions proposed are thereby monolithic, they implement global
identification and resolution mechanisms not easily reusable (e.g., [2, 21, 22]).

In [24], authors recognize that interactions between IoT devices are an increas-
ing cause of safety and security violations whose detection “[…] requires a holistic
view of installed apps, component devices, their configurations, and more importantly,
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how they interact”. This is the approach followed by the SIS actuation conflict man-
agement toolset presented in the sequel.

5.2.2 Actuation Conflict Management Workflow

The actuation conflict management workflow is depicted in Fig. 5.2.
DevOps approach provides designers with deployment and implementation

models from which it is possible to extract the structural interactions between
the SIS software components down to the devices and the actuators they embed.
To identify indirect conflicts, however, it is necessary to describe the effects that the
actuators produce in the environment in which they operate. Unless each actuator
is accompanied by semantic annotations, these descriptions have to be provided by
the designers, using a model of the physical environment.

From these models, an holistic description model is generated. This model is
built on a metamodel called WIMAC (Workflow and Interaction Model for Actu-
ation Conflict management). This metamodel (Fig. 5.3) provides a language to
describe (1) the inter-relationships between software components, down to the

Figure 5.2. Actuation conflicts identification and resolution workflow.
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Figure 5.3. WIMAC meta-model.

actuators at the edge of the infrastructure as well as (2), the effects that the actu-
ators produce in the physical environment in which they operate. The WIMAC
metamodel main entities are the following:

1. SoftwareComponents are black-box components. They conceptualize sin-
gle applications or composite applications described through implementa-
tion models (e.g., Node-RED1 flow). The actuation conflict management
solution proposed in the sequel is based solely on the structural links that exist
between software components for inferring their interrelationships, identify-
ing and resolving potential conflicts.

2. ActionComponents are SoftwareComponents controlling actuators,
3. PhysicalSystems are spatially delimited physical entities whose properties

can be changed by ActionComponents (e.g. the temperature in the kitchen).

Relying on the WIMAC-based model, potential direct and indirect actuation
conflict points can be identified and monitoring ACMs instantiated locally. This
first step is automatically achieved through a set of predefined Attributed Graph
Grammar (AGG) rules [18] in the form of attributed graphs. These rules define (1)
conflict patterns to be identified in the WIMAC-based model and (2) associated

1. https://nodered.org

https://nodered.org
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Figure 5.4. Example of AGG identification and rewriting rules for direct (left) and indirect

(right) actuation conflicts.

graph transformations to be applied on the model so as to instantiate monitoring
ACMs (Fig. 5.4).

DevOps approach aims to provide continuous and rapid deployment capabili-
ties. To support this objective, a set of off-the-shelf generic ACMs are proposed to
designers thereby, replacing dummy ACMs with relevant concrete ones. Although
this approach requires designers to take responsibility on the ACMs to be instan-
tiated before applications are deployed, it has several advantages. (1) it helps rein-
forcing SIS trustworthiness, specifically as actuation conflict management implies
some semantic background humans are better able to grasp considering SIS com-
plexity globally; (2) this is all the more important as ACMs are instantiated locally,
addressing points of potential conflict in the design. The advantage here is that
software components are regarded as black boxes, ACMs do not change their logic.

While off-the-shelf reusable ACMs are relevant for resolving common actuation
conflicts, they may not be suitable for some particular cases. To address this concern,
state-of-the-art Model Driven Engineering (MDE) tools are leveraged, allowing
designers to develop custom, yet robust and safe ACMs, throughout a two-level
design workflow (Fig. 5.5).

At the first level, logic of the custom ACMs are defined through Finite State
Machines (FSM) built on the basis Event-Condition-Action rules. These concep-
tual models allow logical properties (e.g. completeness, safety, liveness, etc.) to be
formally verified using state-of-the-art methodologies [3].

At the second level, implementation models allow temporal properties to be
formally verified by applying different asynchronous timing strategies. Implemen-
tation models are proposed to be described through the DEVS formalism (Discrete
EVent system Specification)[39]. This formalism brings key advantages in the realm
of trustworthy SIS and DevOps.

1. DEVS atomic models allow to encapsulate conceptual models into DEVS
Atomic models, coupled with synchronizers that can implement different
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Figure 5.5. Custom ACM design workflow.

timing strategies on the inputs of the FSM and targeting different hard-
ware platforms. This approach is particularly relevant considering that SIS
software components are likely to be deployed on resource-constrained plat-
forms at the edge of the IoT infrastructure, governed by asynchronous events
relative to wireless communication protocols, computational capabilities,
etc. [35]. Several modelling and simulation tools are available to facilitate
this process [6, 25, 36],

2. It provides a common representation to different discrete event modelling
formalisms (including Petri Nets, FSM, etc.) [41]. Designers are therefore
not bounded to a particular modelling framework when designing custom
ACMs.

3. DEVS Atomic models, once verified for temporal properties, can be trans-
lated into any high-level programming language (e.g., C, C++, C#, etc.)
and compiled for further deployment. This allows to build a library
of reusable off-the-shelf DEVS-based ACM software components (a.k.a.,
DEVS kernels) targeting different implementation strategies (i.e., hardware
platforms).

5.3 Overview of the SIS Behaviour Monitoring
and Analysis Toolset

While, during the development phase, the ACM tool allows for the identifica-
tion, analysis and resolution of actuation conflicts, it remains, however, based on
the global architecture of the SIS and its operational environment, i.e., and is
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therefore based on a priori acquired knowledge. However, by interacting with the
physical environment through actuators, SIS inherits the complex nature of this
open environment. Thus, assuming that the knowledge acquired a priori is com-
plete and immutable is illusory, no matter how complicated the associated models
may be; an infinite number of unexpected physical processes are likely to disrupt,
at any time, operation of the SIS. In the realm of trustworthy SIS, the ACM tool
alone thus cannot meet the concerns of reliability and safety. It is therefore neces-
sary to complement this tool with a systemic approach, required to the modelling
of complex SIS [30].

Without being able to predict the behaviour of SIS in their design phase, a
DevOps tool-set is developed for analysing SIS behavioural drifts at run-time
(Fig. 5.6). The aim of the first tool described in the sequel is to quantitatively
assess SIS effectiveness at run-time, i.e., the extent to which the effects produced
in the physical environment are legitimate (phase 2 in Fig. 5.6). It is no longer
a question of describing the global architecture of the SIS, but of describing a

Figure 5.6. Usage of the Behavioural Drift Analysis (BDA) tool-set throughout the

DevOps life-cycle.
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model of the effects they have to legitimately produce in the physical environ-
ment in different contexts (phase 1 in Fig. 5.6). However, being quantitative in
nature, the effectiveness assessment is difficult to interpret by humans and does
not allow for creating synergies and fostering communication between develop-
ment and operations activities, as advocated by the DevOps approach. Indeed,
from the designers’ point of view, while the effectiveness assessment allows the
detection of unexpected and/or abnormal behaviour at run-time, it does not allow
their causes to be identified. Thereby, this hampers a new DevOps cycle from
being initiated rapidly so as to implement the corrective actions required. To
address this concern, a second tool is presented in the sequel. This tool (phase 3 in
Fig. 5.6), produces a model of the behaviour observed in the field and compares
this model with the model of the legitimate behaviour produced in phase 1. This
results in a dissimilarity graph between both models which, without identifying the
causes of the drifts in effectiveness, sheds light on the symptoms likely to explain
them [29].

5.3.1 Beyond the State of the Art

The problem raised in this research, and the solution described in the sequel,
concerns the detection, identification and intelligible representation of the symp-
toms characterizing SIS abnormal behaviours, for the purpose of empirical analysis.
A recent systematic literature review carried out on the anomaly detection, analysis
and prediction techniques in IoT environments [10], corroborates fairly well the
novelty of the approach proposed in this work and the impacts it can have in the
SIS community. Indeed, authors found gaps in the visualization of anomalies in
IoT-based systems. They conclude that new methods and approaches are needed
to represent intuitively IoT-based systems for analytical purposes. This is what the
solution described in the sequel is all about.

5.3.2 Behavioural Drift Assessment Tool

Current software engineering approaches, which include formal testing and ver-
ification methodologies, claim for predictability. However, “in practice, analytical
modelling is increasingly proving inadequate, whenever it is agreed that one is not sure
that something cannot be forgotten (the hypothesis of closing the model), that objective
evidence is only evident in a given ideology (…), in other words, whenever one has to
make the assumption that the phenomenon modelled is not complicated but complex”
[20] p. 19.

SIS, by their interaction with the open physical environment, are complex sys-
tems; At best, can we hope to get as close as possible to the desired behaviour
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without reaching it exactly: “[…] as soon as a system is open there is no optimum
and any equilibrium is in interaction with its environment” [31]. As a result, while
the formal testing and verification methods still need to be conducted at design-
time, they are not sufficient; the effectiveness of the SIS, i.e., the extent to which
SIS behave as expected, must also be continuously evaluated at run-time.

Analytical modelling being inadequate, SIS effectiveness assessment has to rely
on a systemic model of the physical effects they are legitimate to produce in the
physical environment [30]. In the sequel, it is proposed to build this model in
the framework of the Input/Output Hidden Markov Models (IOHMM) [4]. This
framework is broadly used in behavioural modelling approaches [14, 40] where it
has many advantages [37]; (1) it is an explainable graphical model [15] part of the
Dynamic Bayesian Networks (DBN) family; (2) it formalizes conditional dependen-
cies between the effects and their stimuli (i.e., contextual input, events); (3) it handles
tolerances on expectations that may reflect randomness of some expected behaviours
(through probability theory) or epistemic gaps in SIS knowledge (through the
possibility theory and the Transferable Belief Model (TBM), an extension of the
Dempster-Shafer evidence theory).

Formally, an IOHMM is defined by the tuple < Q, Eπ, A, EB > where:

• Q = {x1, x2, . . . , xN }, N ∈ N, is the finite set of hidden states where x(k)
denotes the hidden state at time k ∈ N,

• Eπ = (π1, π2, . . . , πN )
T is the initial state distribution vector where πi

denotes the likelihood of the state i to be the first state of a state sequence,2

• A is the N × N state transition matrix, where each element ai j of the matrix
is an n-dimensional input distribution (1 ≤ i, j ≤ N ). Thus, ai j (Eu) =
p(x(k+1) = j |x(k) = i, Eu(k) = Eu) denotes the likelihood of transitioning
to state x(k+1) = j at time k + 1, given the current state x(k) = i and the
contextual input vector Eu(k) = Eu ∈ Rn at time k. The function p has here
to be understood in the general framework of the uncertainty theory. While
most of the hidden Markov-based models are defined in the probabilistic
framework (i.e., p is a measure of probability), the model is also compatible
with the possibility theory [28], the imprecise probabilities [11], etc.

• EB = (b1, b2, . . . , bN )
T is the state emission vector, where each element bi

(1 ≤ i ≤ N ) is an m-dimensional output distribution. bi (Ey) = p(Ey(k) =
Ey|x(k) = i) denotes the likelihood of observing the output vector Ey(k) =
Ey ∈ Rm at time k, i.e., the physical effects produced, while being in the state
x(k) = i . The output observation Ey(k) at time k only depends on the state
x(k) at time k.

2. In this work, we assume that the elements πi of Eπ are equally probable, i.e., equal to 1
N .
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Figure 5.7. Possibilistic IOHMM model describing the legitimate effects that a luminosity

control system must produce.

This model serves as a basis for efficient solutions to several inference prob-
lems [26]. Among these problems, the problem of inferring the likelihood of an
observation sequence (i.e., p((Eu(k), Ey(k))K

k=1)) to have been generated by the model
(filtering), is particularly close to the one of assessing SIS effectiveness whose solu-
tion is given by the forward algorithm, here below in its (qualitative) possibilistic
form where the function p is a measure of possibility denoted by 5:

1. Initialization – ∀x ∈ Q:

α(1)(x) = min
(
πx ,5(Ey(1)|x)

)
(5.1)

2. Induction – ∀x, x ′ ∈ Q, ∀2 ≤ k ≤ K :

α(k)(x) = min

(
max
x ′∈Q

(
min

[
α(k−1)(x ′),5(x |x ′, Eu(k−1))

])
,5(Ey(k)|x)

)
(5.2)

3. Termination

5
(
(Eu(k), Ey(k))K

k=1

)
= max

x∈Q
(α(K )(x)) (5.3)

An example is depicted in Fig. 5.7. The model describes the legitimate effects
that a luminosity control system must produce where tolerances on expectations are
described through distributions of possibility as depicted in Fig. 5.8. Here, Eu corre-
sponds to the value of a presence sensor, Ey corresponds to the value of a luminosity
sensor.

5.3.3 Behavioural Drift Analysis Tool

On the basis of the IOHMM model and field observations, the effectiveness
assessment allows the detection of behavioural drifts, consequence of unexpected
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Figure 5.8. Distributions of possibility defining tolerances on expectations of the model

depicted in Fig. 5.7.

Figure 5.9. Effectiveness assessment results obtained on the model depicted in
Fig. 5.7 from synthetic observations applied to the forward algorithm.

behaviours, whether legitimate or not. It complements the formal testing and veri-
fication approaches carried out at design-time. However, while the model underly-
ing this evaluation is explainable, the same does not apply to the evaluation itself.
Indeed, as a quantitative evaluation, it does not provide designers with informa-
tion that would support them in understanding the reasons for its drifts, limiting
de facto their ability to quickly take corrective actions and mitigate risks. The tool
described in the sequel is meant to fill this gap.
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This tool is mainly based on a generic clustering-based algorithm meant to learn
IOHMM structure (states and state transitions) and parameters (distributions)
from field observations. This algorithm consists in segmenting Eu and Ey observa-
tion spaces into a finite number of relevant regions such that each region represents
respectively an input context and a discrete state, i.e., it is assumed that there exists
a bijection between state and observation spaces [32], thereby taking advantage of
understanding the structure of the IOHMM from the observation space [16].

Considering the observation sequence (Eu(k), Ey(k))K
k=1, the algorithm works as

follows (detailed in [29]):

1. Get the set Y of clusters from (Ey(k))K
k=1 such that each observation Ey(k) is

associated to a cluster Yi (i.e., a state), i ∈ |Y|
2. Get the set U of clusters from (Eu(k))K

k=1 such that each observation Eu(k) is
associated to a cluster U j (i.e., an input context), j ∈ |U |

3. Get distribution parameters of Bi from {Ey} associated to Yi
4. Get the state-transition matrix A

a. the sequence of clusters (Y(k))K
k=1 obtained from (Ey(k))K

k=1 defines the
valid state-transitions Ai i ′(h), i, i ′ ∈ |Y|, h ∈ U

b. Ai i ′(h) distribution parameters, h ∈ U , are computed from {Eu} ∈ h.

On the basis of this algorithm, a framework is proposed for investigating drifts
in effectiveness of SIS. This framework conceptually takes place in two steps as
depicted in Figure 5.10.

1 The learning algorithm is fed with observations corresponding to the effects
expected to be produced by a SIS in different contexts, leading to the learn-
ing of a model of its legitimate behaviour.

Figure 5.10. Steps to implement the proposed approach.
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2 This model is complemented with real-world observations, leading to the
learning of a model of the observed behaviour. Then, on the basis of these
models, an algorithm is developed to build a directed dissimilarity graph
that makes clear the differences between both models, thereby helping
designers direct their research and identify the possible causes of drifts in
effectiveness.

Let us consider an observation sequence corresponding to the legitimate
behaviour, defined by (Eu?(k), Ey

?
(k))

K
k=1, followed by an observation sequence cor-

responding to real-world observations, (Eu(k), Ey(k))Gk=K+1. The algorithm works as
follows (detailed in [29]):

1. Get the set Y of clusters from (Ey(k))Gk=1
2. Get the set U of clusters from (Eu(k))Gk=1
3. Get the set Y? ⊂ Y of clusters associated to (Ey?(k))

K
k=1

4. Get the set U? ⊂ U of clusters associated to (Eu?(k))
K
(k=1)

F Yi /∈ Y?, i ∈ |Y| corresponds to unexpected states.
F Ui /∈ U?, i ∈ |U| corresponds to unexpected contextual input.

5. The sequence of clusters obtained from (Ey(k))K
k=1 defines legitimate state-

transitions A?i i ′(h), i, i ′ ∈ |Y?|, h ∈ U?. Also, the sequence of clusters
obtained from (Ey(k))Gk=K+1 defines observed state-transitions Ai i ′(h), i, i ′ ∈
|Y|, h ∈ U.
F State-transitions Ai i ′(.) defined in the state-transition matrix A but not
defined in the state-transition matrix A? correspond to unexpected state-
transitions.
F State-transitions Ai i ′(h) defined in the state-transition matrix A and in
the state-transition matrix A? with h /∈ U? correspond to unexpected state-
transitions (i.e., are triggered by unexpected contextual input).

6. Plot the dissimilarity graph where expected states (nodes) and state-
transitions (edges) are coloured in green while unexpected ones are coloured
in red as depicted in Fig. 5.10.

The dissimilarity graph, without identifying the causes of the drifts in effective-
ness, sheds light on the symptoms likely to explain them.

5.4 Smart Home Use-Case and Illustration

The purpose of this section is to illustrate the toolset presented in this chapter and
its benefits throughout DevOps life cycles. The illustration is carried out on a real
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world smart-home scenario, providing the reader with technical details and key
results.

5.4.1 Smart Home use Case Description

The experimentation is built upon the widely spread three-layer IoT architec-
ture [17]. The first layer (Perception Layer) at the edge of the infrastructure consists
of 57 IoT devices providing up to 319 parameters including 249 sensor/actua-
tor whose values/states are updated on a regular basis on a centralized time series
database (Synology DS418 Network Attached Storage (NAS) + InfluxDB [23]).
IoT devices part of this infrastructure layer are mainly consumer electronics devices
(e.g., Netatmo devices, Neato vacuum cleaner, LG TV, etc.), complemented with
custom IoT devices based on Arduino Uno/Nano and Raspberry Pi equipped with
sensors and actuators targeting specific purposes. The second layer (Network layer)
enables data transmission and processing, throughout the different IoT wireless
communication protocols (Wifi, ZWave [38], etc.). OpenHab [5] and MQTT
middlewares provide this layer with the functionalities required for the illustra-
tion. Finally, the third layer (Application layer) consists in several software compo-
nents controlling actuators and processing sensor data. These software components
(along with middlewares) are encapsulated into docker containers hosted on com-
putational resources (Raspberry Pi) at the edge of the infrastructure.

To illustrate SIS actuation conflict management (Paragraph 5.2) and behavioural
assessment/drift analysis (Paragraph 5.3) toolsets, the following devices are used; a
smart phone, a TV along with its remote control, a light bulb, an Amazon echo
smart speaker and an autonomous smart vacuum cleaner. These devices are all
located in the living-room and are implemented as part of a scenario focusing on
inhabitants well-being. In this scenario, user-comfort is driven by luminosity and
sound physical properties.

A first application set (UserComfortApps) is dedicated to give sensor data access
to decision making algorithms (App_Lum and App_RC_TV) that respectively con-
trol (1) the luminosity level by acting on the roller shutters and the light bulb and
(2) the sound by acting on the TV remote controller and the Amazon echo smart
speaker. A second application set (i.e. CommunicationCenterApps) is deployed,
creating a home-working environment where the focus is put on controlling sound
sources so as to prevent home workers to be disturbed during phone calls or video
conferences (e.g., App_Phone_TV mutes TV while a phone call is in progress).
All applications are implemented through Node-RED flows.

To illustrate the toolsets proposed within the DevOps approach, a scenario with
two DevOps cycles has been defined, each cycle covering the development and the
operational stages.
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Figure 5.11. Smart Home use case setup.

5.4.2 Software Development (Devs, Cycle 1)

At this stage, the aforementioned software components are designed and developed
(Fig. 5.12). Before deploying the whole system, the toolset developed for identify-
ing and resolving actuation conflicts (Paragraph 5.2.2) is applied on the WIMAC
model built from deployment, implementation and physical environment models.
Designers specify the physical environment model by linking ActionComponents

to the PhysicalProperty they act on. At this point, a potential direct actuation con-
flict is identified on App_RC_TV and App_Phone_TV; these applications being
meant to control the TV sound source (Fig. 5.13).

The management of this direct actuation conflict is straightforward, applications
merely send a Boolean value to a shared actuator (ActionComponent). The devel-
oper can then select, among the available off-the-shelf ACMs, the one relevant to
resolve this generic conflict type (here, a simple OR logic ACM has to be instanti-
ated between both software components (App_Phone_TV and App_RC_TV) and
the actuator they act on (TV)). Once the selected ACM is instantiated into the
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Figure 5.12. Excerpt of App_Phone_TV and App_RC_TV structural inter-relationships,

as described in the WIMAC model, without environment model description.

Figure 5.13. Excerpt of App_Phone_TV and App_RC_TV structural inter-relationships,

as described in the WIMAC model with environment model description and the direct

ACM instantiated.

WIMAC model, a new deployment model is generated from WIMAC and pushed
to GeneSIS which concretizes the deployment.

5.4.3 System Operations (Ops, Cycle 1)

Throughout the execution of the SIS, the effects produced in the physical envi-
ronment are observed and, thanks to the behavioural drift assessment toolset, the
effectiveness of the SIS is measured from a model of the legitimate behaviour it has
to comply with (Fig. 5.14).

The model of the legitimate behaviour is built upon a set of sound features com-
puted from a microphone signal. Output observations (expected effects to be pro-
duced by the SIS) are then characterized by a Mel-Frequency Cepstral Coefficient3

3. https://en.wikipedia.org/wiki/Mel-frequency_cepstrum

https://en.wikipedia.org/wiki/Mel-frequency_cepstrum
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Figure 5.14. Possibilistic model of the legitimate behaviour. States are defined by the

operating status of the TV and the communication status (i.e., OFF/ON means TV:ON,

COM:OFF). The configuration ON/ON is not legitimate, the direct ACM instantiated is

supposed to mute the TV while a communication is in progress.

(MFCCs) and the Zero Crossing Rate4 (ZCR) sound features. These sound features
lead a good segmentation of the observation space thereby, allow identifying device
states on the basis of the sound they emit. Contextual inputs are characterized by
the operating status of the TV and the communication status.

As depicted in Fig. 5.15, the ACM instantiated during the design phase ful-
fils its role and prevents the TV to operate while a communication is in progress.
No behavioural drift is therefore reported.

While the SIS operates, free of unexpected effects produced in the physical
environment, an autonomous smart vacuum cleaner moving around in the house,
bursts into the living-room. By operating in the living-room, this device produces
unexpected sounds leading behavioural drifts to occur (Fig. 5.16).

From the designers’ point of view, the quantitative effectiveness assessment is not
informative on the reasons for the drifts in effectiveness observed. At that point,
the behavioural drift analysis tool (Paragraph 5.3.2 and 5.3.3) is leveraged to guide
designers and help them correlate the symptoms of the drifts in effectiveness to
various events (Fig. 5.17).

On the basis of the dissimilarity graph depicted in Fig. 5.17, designers can infer
that drifts in effectiveness are the result of the smart vacuum cleaner unexpectedly

4. https://en.wikipedia.org/wiki/Zero-crossing_rate

https://en.wikipedia.org/wiki/Zero-crossing_rate
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Figure 5.15. Observations from the field corresponding to the legitimate behaviour. The

ACM instantiated during the development phase fulfils its role (green part of the graph)

and no drift is reported here, the SIS behaves as expected.

(but legitimately) operating in the living-room and producing conflicting noise.
This device was unforeseen by designers in the initial model of the legitimate
behaviour. Moreover, this device has to be controlled so as to be integrated into
the user-well being control strategy and prevent indirect conflicts to occur on the
sound physical property.
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Figure 5.16. Observations from the field coloured in red denote the presence of the smart

vacuum cleaner not anticipated/foreseen in the model of the legitimate behaviour (lead-

ing behavioural drifts to occur).

5.4.4 Software Development (Devs, Cycle 2)

The behavioural drift reported at run-time suggests that the model of the phys-
ical environment is incomplete. Indeed, the indirect conflict on the sound phys-
ical property should have been identified during the first phase of development.
A new development cycle is therefore necessary to correct the model of the
physical environment. The updated model is depicted in Fig. 5.18; an indirect
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Figure 5.17. Dissimilarity graph. Nodes and edges coloured in blue correspond to the

legitimate behaviour, those in red correspond to unexpected behaviour resulting from

the appearance of the smart vacuum cleaner in the living-room.

actuation conflict is now detected between the App_RC_TV, App_Phone_TV and
the App_Vaccum_Cleaner applications and a dummy ACM has been instantiated.

The management of this indirect actuation conflict implies semantic concerns
that cannot be managed through generic off-the-shelf ACMs. A custom ACM
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Figure 5.18. Excerpt of indirect conflict detection and management.

has to be developed. This task relies on “ECA” rules that define the ACM logic,
further transformed into an FSM. More specifically, designers have to describe
a control strategy that prevent the TV and the smart vacuum cleaner robot to
produce sound simultaneously. The custom ACM thus receives commands from
App_RC_TV), App_Phone_TV and App_Vaccum_Cleaner. On the basis of these
input, the ACM control logic defines a strategy resulting in sending commands to
the TV and the vacuum cleaner such that it is stopped while a communication is in
progress or while inhabitants watch TV. The ACM control strategy defines some
prioritization whose semantic has to be defined by designers.

Along with the logical strategy of the custom ACM, some logical and tempo-
ral properties to be formally verified have to be specified. To this end, ECA rules
are extended into ECA+ rules (more details about this language are given in [7])
to provide the model with the properties to be verified by state-of-the-art MDE
verification tools.

Logical properties are verified through NuSMV [8], a state of the art model
checker. Model checkers are meant to ensure that logical properties are always veri-
fied, regardless of the state sequence being executed. Two main types of logical prop-
erties are formally verified: safety (i.e., something bad will never occur) and Liveness
(i.e., something good will eventually happen). In the context of ACM design, safety
properties ensure that conflicting states will never occur (e.g., the vacuum cleaner
will never operate while a communication is in progress).

Temporal properties are verified through DEVS formalism. FSMs are defined
by two functions: (i) the state-transition function computes the new state given the
previous state x(k−1) at time k − 1 and the current input Eu(k) at time k, (ii) the
output function computes the outputs Ey(k) that solely depend on the state x(k) at
time k. DEVS formalism allows an FSM to be encapsulated into DEVS atomic
model coupled with a synchronizer managing asynchronous timings on the inputs
of the FSM. The ECA+ language provides a syntax to specify asynchronous tim-
ings management strategies for the synchronizer. Temporal properties can then be
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verified for each strategy within a DEVS simulation environment. It is worth not-
ing that asynchronous timing strategies are meant to reproduce the asynchronous
timings that govern the different hardware platforms ACMs are supposed to be
deployed to, at the edge of the IoT infrastructure.

Once ACMs temporal properties have been verified in DEVS simulated oper-
ational contexts, associated DEVS Atomic models (embedding the synchronizer
and the logical behaviour) can be directly used for implementation. Indeed, DEVS
Atomic models can be translated into high level programming languages (C, C++,
C#, Node.js, etc.), embedding a lightweight execution engine (DEVS kernel). This
makes ACMs completely portable on the lightweight hardware platforms available
at the edge of the IoT infrastructure.

Here again, the WIMAC model modified with the custom ACM is sent to Gene-
SIS for the deployment on the platforms, thus completing the second development
cycle.

5.4.5 System Operations (Ops, Cycle 2)

Finally, SIS is deployed and the physical effects it produces in the physical envi-
ronment are observed. The model of the legitimate behaviour is modified to take
into account the autonomous vacuum cleaner, as learned during the first cycle.
No behavioural drift is reported anymore. However, as the physical environment is
complex, there are many reasons why the behaviour of the SIS may drift again and
trigger a new development cycle:

• the introduction of a new software component that drives an actuator not
correctly defined in the model of the physical environment,

• the introduction of a new device producing physical effects in the environ-
ment (as the vacuum cleaner in the use-case),

• unexpected changes in the physical environment in which the SIS operate
(e.g., a tree growing in front of a window is likely to have an impact on the
luminosity of the room in the long term).

5.5 Conclusion and Future Works

This chapter has introduced two innovative toolsets designed to enrich the DevOps
eco-system and meant to address an issue that has been poorly addressed, to date,
in the development of trustworthy SIS: the management of applications that can
interact with their physical environment through actuators.

The first toolset, called “Actuation Conflict Management” toolset (ACM), is to
secure the design of these applications at Devs time. The objective is to identify
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and resolve, through local structural transformations of the SIS, the actuation con-
flicts that might arise as a result of the actuation effects produced in the physical
environment a priori known and limited to its model. While such precautions at
Devs time are necessary, they are not sufficient to guarantee that the SIS will always
operate as expected in the physical environment. There is a risk of behavioural drift
which is observed and quantified at Ops time, thanks to the second toolset called
“Behavioural Drift Assessment & Analysis” toolset (BDA). This toolset makes it
possible to assess and analyse the differences between the expected and observed
effects of the SIS in real-world environment.

Beyond the interest of these toolsets as part of the DevOps methodology, their
complementarity represents a major contribution in the realm of trustworthy SIS.
Indeed, it is during consecutive DevOps cycles that the contribution of the cou-
ple BDA-ACM can be fully appreciated. The BDA toolset provides DevOps team
with information on the observed behavioural drifts, thus motivating new develop-
ment cycles which then results in changes to the model of the physical environment
and/or corrections of the applications carried out in and with the ACM toolset.
This complementarity is highlighted in this chapter throughout a smart-home use-
case which involves two consecutive DevOps cycles to converge towards a SIS with
satisfactory behaviour.

It is within the framework of this complementarity that two possible lines of
work are foreseen. The first axis aims to reinforce the added-value of the infor-
mation obtained from the BDA so as to accelerate the SIS/ACMs re-design cycle.
Indeed, while the BDA toolset allows to obtain a model of the effects observed in
the field and the symptoms of their dissimilarities with the legitimate ones, it is
neither informative on the root-causes underlying these differences nor it provides
insights to infer the corrections to be made to the model of the physical environ-
ment. The second axis is about leveraging behavioural drift measures as rewards
towards self-adaptive ACMs automatically containing/mitigating behavioural drifts
at run-time.
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Chapter 6

Online Reinforcement Learning for
Self-Adaptive Smart IoT Systems

By Alexander Palm, Felix Feit and Andreas Metzger

6.1 Introduction

In this chapter we explain how Reinforcement Learning (RL) techniques can
be leveraged to improve the way self-adaptive smart IoT systems (SIS) adapt at
run-time.

The concept of self-adaptation facilitates developing software systems that are
capable of maintaining their quality requirements even if the systems’ environment
changes dynamically [3, 18]. Self-adaptation thereby helps developing systems that
can operate in a resilient way at run-time. To this end, a self-adaptive software
system (such as a self-adaptive SIS) can modify its own structure, parameters and
behavior at run-time based on its perception of the environment, of itself and of the
fulfilment of its requirements. An example is a self-tuning thermostat for a Heat-
ing, Ventilation and Air Conditioning (HVAC) system. Based on its perception of
the outdoor and indoor temperature it can control the strength of its heating and
cooling devices in order to proactively reach a set point temperature to maximize
user comfort. On the other hand it can learn to reduce energy by reducing heating
and/or cooling strength when no user is present in the room.
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To develop a self-adaptive SIS, software engineers have to develop self-adaptation
logic that encodes when and how the system should adapt itself. Software engineers,
for instance, may specify event-condition-action rules that determine which adap-
tation action is executed in response to a given environment change. Developing
self-adaptation logic requires an intricate understanding of the software system and
its environment, and how adaptations impact on system quality [6, 7]. Among
other concerns, it requires anticipating the potential environment changes the sys-
tem may encounter at run-time to determine how the system should adapt itself in
response to these environment changes.

However, anticipating all potential environment changes at design time is in
most cases infeasible due to design time uncertainty [7, 17]. In addition, while the
principal effects of an adaptation on the system may be known, accurately anticipat-
ing the effect of a concrete adaptation is difficult; e.g., due to simplifying assump-
tions made during design time [7, 10]. One emerging way to address design time
uncertainty is to employ online RL [1, 2, 4, 8, 12, 14, 22–24].

Online RL can learn the effectiveness of adaptation actions through interac-
tions with the system’s environment. This means that instead of software sys-
tem engineers having to manually develop the self-adaptation logic, the system
automatically learns the self-adaptation logic via machine learning at run-time.
The software system engineer expresses the learning problem in a declarative
fashion, in terms of the learning goals the system should achieve. Online RL
thereby automates the manual engineering task of developing the self-adaptation
logic.

Therefore, the remainder of this chapter is structured as follows: Section 6.2
motivates the application of RL in the realm of SIS by briefly introducing the
topics of self-adaptive software systems (SASS) and RL. Section 6.3 combines the
aforementioned topics and introduces the concept of policy-based RL and explains
how it helps to address large continuous state spaces which is a main shortcom-
ing of state-of-the-art approaches leveraging RL at run-time. Section 6.4 shows our
experimental results after using our policy-based RL approach for the realization
of a self-tuning thermostat in the smart building domain. Section 6.5 exemplifies
how the reward function of a RL problem can be decomposed into several reward
streams with different semantics to make decisions of an RL agent explainable.
Finally, Section 6.7 concludes the chapter.

6.2 Fundamentals

In this section the fundamentals of self-adaptive software systems and Reinforce-
ment learning are briefly introduced.



Fundamentals 125
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Figure 6.1. MAPE-K reference model for self-adaptive systems (based on [11]).

6.2.1 Self-adaptive Software Systems

A well-known reference model for self-adaptive systems is the MAPE-K model
[11], which is depicted in Figure 6.1. Following this reference model, a self-adaptive
software system can be logically structured into two main elements: the system logic
(aka. the managed element) and the self-adaptation logic (the autonomic manager).

As shown in Figure 6.1, the self-adaptation logic can be further structured into
four main conceptual activities that leverage a common knowledge base [9]. The
knowledge base includes information about the managed system (e.g., encoded in
the form of models at run-time), its environment, and its adaptation goals and
adaptation policies (e.g., expressed as rules). The four activities are concerned with
monitoring the system logic and the system’s environment via sensors, analysing
the monitoring data to determine the need for an adaptation, planning adaptation
actions, and executing these adaptation actions via actuators, thereby modifying
the system logic at run-time.

6.2.2 Reinforcement Learning

RL aims to learn suitable actions via an agent’s interactions with its environ-
ment [20] as depicted in Figure 6.2. At a given time step t , the agent selects an
action a (from its adaptation space) to be executed in environment state s. As a
result, the environment transitions to s′ at time step t + 1 and the agent receives
a reward r for executing the action. The reward r together with the information
about the next state s′ are used to update the knowledge of the agent. The goal of RL
is to optimize cumulative rewards. One fundamental problem in RL is the trade-off
that must be made between exploitation (using current knowledge) and exploitation



126 Online Reinforcement Learning for Self-Adaptive SIS

Environment
Action at

State st

Reward rt+1Knowledge 
Update

Action 
Selection

Next state st+1

System

Figure 6.2. Schematic illustration of agent-environment interaction in RL (based

on [20]).

(gathering new knowledge). For a self-adaptive service, “agent” refers to the self-
adaptation logic of the service and “action” refers to an adaptation action [16].

6.3 OLE: Policy-based Online Reinforcement Learning

This sections introduces our online RL approach. In Section 6.3.1, we provide an
overview, the conceptual ideas behind the approach how it differs from the state of
the art. In Section 6.3.2, we explain how we prototypically realized the approach.

6.3.1 Overview of Our Approach

The innovative concept underlying the ENACT Online Learning Enabler (OLE)
is that we use a fundamentally different type of reinforcement learning than what
has been used in the state of the art. While the state of the art used value-based RL,
we use policy-based RL. The main idea behind policy-based RL is to directly use
and optimize a parametrized stochastic action selection policy [15, 21]. The action
selection policy maps states to a probability distribution over the action space (i.e.,
set of possible actions). This means that actions are selected by sampling from this
probability distribution. A learning cycle consists of a predefined number of n time
steps. At the end of each learning cycle, the trajectory (comprising the selected n
actions, states and rewards) are used for a policy update. During a policy update,
the policy parameters are perturbed based on the rewards received, such that the
resulting probability distribution is shifted towards a direction which increases the
likelihood of selecting actions which led to a higher cumulative reward.

Figure 6.3 depicts the conceptual architecture of our approach, showing how the
elements of policy-based RL are integrated into the MAPE-K loop. The dark-gray
area indicates where the action selection of RL takes the place of the analyze and plan
activities of MAPE-K. The learned stochastic policy takes the role of the self-adaptive
system’s knowledge base.
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Figure 6.3. Conceptual architecture of policy-based approach.

At run-time the policy is used by the self-adaptation logic to select (via sampling)
an adaptation action at based on the current state st determined by the monitoring
activity. Action selection determines whether there is a need for an adaptation (given
the current state) and plans (i.e., selects) the respective adaptation action to execute.
In our approach, state st may be determined using observations of both the system’s
environment and the system logic itself. This differs from the basic RL model,
where only observations from the system’s environment are considered to determine
the state st . A policy update utilizes the trajectory of actions at , states st+1, and
rewards rt+1 to update the policy. In our approach, policy updates are performed
via so-called policy gradient methods [20, 21], because the policy is represented as
an artificial neural network. Policy gradient methods update the policy according
to the gradient of a given objective function, such as the average reward per learning
cycle to give a simple example. In our architecture, rewards are computed by the
monitoring activity, as this activity has access to all sensor information collected
from the system and its environment.

As mentioned above, the learning problem is stated in a declarative fashion. Typ-
ically, it can be formalized as a Markov decision process M D P = (S, A, T, R),
with

• S being the state space composed of a set of environment and system states
s ∈ S observable by monitoring via the system logic’s sensors (e.g., system
workload and performance of the system),
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• A being the action space with a set of possible adaptation actions a ∈ A, i.e.,
possible ways the system may be adapted using the system logic’s actuators
(e.g., turning off or on different system features),

• T : S × A × S→ [0, 1] being the transition probability among states with
T (st , at , st+1) = Pr(st+1|st , at ), which gives the probability that an adap-
tation action at in state st will lead to a state st+1, and

• R : S → IR, being a reward function which specifies the numerical reward
the system receives in state st . The reward function expresses the learning goal
to achieve, which in our case expresses maintaining the quality requirements
of the system (e.g., performance should not fall below a given threshold).

Policy-based reinforcement learning finds a solution to the MDP in the form
of a parametrized stochastic policy πθ : S × A → [0, 1], giving the probability
of taking adaptation action a in state s, i.e., πθ (s, a) = Pr(a|s). The policy’s
parameters (weights of the artificial neural network) are given as a vector θ ∈ IRd .

Regarding design time uncertainty, we assume that we know A, S, and R, but do
not know T . More precisely, even if we do not know the exact states and thus state
space S, we know the state variables. As an example, even if we do not know exact
workloads of a web application (and maybe not even the maximum workload),
we can express a state variable workload w ∈ IN+. We assume that we do not
know T due to design time uncertainty about how adaptation impacts on system
quality. As an example, we may not have an exact understanding of how different
configurations of the system perform under different workloads.

6.3.2 Prototypical Realization

To select a concrete policy-based RL algorithm for the implementation of our
approach, we took into account two main considerations. First, as we assume we
do not know the transition function T , we need to use a model-free variant of
policy-based RL. Second, to facilitate online learning, we need an algorithm that
continuously updates the policy without waiting for a final outcome, i.e., with-
out waiting for reaching a terminal state. Actor-critic algorithms are a model-free
variant of policy-based RL algorithms that use bootstrapping (i.e., knowledge is
updated continuously without waiting for a final outcome). We use proximal pol-
icy optimization (PPO [19]) as a state-of-the-art actor-critic algorithm. PPO is
rather robust for what concerns hyper-parameter settings. Thereby, we avoid exten-
sive hyper-parameter tuning compared to other actor-critic algorithms. In addition,
PPO avoids too large policy updates by using a so called clipping function. A too
large policy update may mean that RL misses the global optimum and remains
stuck in a local optimum. To represent the actor and critic models of PPO, we used
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multi-layer perceptrons with two hidden layers of 64 neurons each (neurons in the
input and output layers depended on the respective number of action and state
variables).

6.4 Validation in the Smart Building Domain

To show the applicability of our policy-based RL approach on SIS we performed a
series of experimental validations in the smart building domain (cf. Section 10.5).
Therefore, the experimental setup is summarized in Section 6.4.1 before the under-
lying RL problem is formalized as a MDP in Section 6.4.2. Finally, Section 6.4.3
shows the results of our experiments.

6.4.1 Experimental Setup

In the according use case scenario we show that it is possible to learn a control
strategy for a simulated HVAC system by means of policy-based RL. The sim-
ulated HVAC system is based on the ground floor of the KUBIK building (cf.
Section 10.5) and comprises six multi-sensors providing information about user
presence and temperature, as well as 5 fan coils whose capacity is accumulated to
treat them as one single fan coil. An excerpt of the KUBIK specification showing
the room used for the simulation is depicted in Figure 6.4.

The learned control strategy thereby should control the HVAC system in such
a way that thermal comfort is achieved whenever the controlled room is occupied
and energy consumption is minimized otherwise. The run-time of each experiment
corresponds to one year of simulation, while one time-step of an experiment cor-
responds to one minute (i.e. total time-steps of one experiment: 524000). After
several iterations of code improvements of the simulation we were able to simulate

Figure 6.4. Excerpt of the KUBIK specification showing the room used for the simulation.
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between 150 and 1000 time-steps per seconds depending on the hyperparameters
(especially the size of the neural net) of the underlying algorithm.

As a baseline we implemented a simple on/off-controller, that heats or cools the
room whenever the indoor temperature is not close enough to the user set-point
and a user is present. If no user is present the thermostat controller remains inactive.

6.4.2 Problem Formalization as MDP

For the evaluation, in a first step we formulated the problem of learning an HVAC
control strategy as a RL problem. The underlying Markov Decision Process (MDP)
is thereby specified as follows:

State-space: The main state variables are stemming from the from simulation
variables (e.g. indoor temperature). Furthermore, we created some crafted features
resulting in variables relying on main state variables (e.g. deviation from setpoint).
The variable predicted occupancy returns the probability that the room gets occu-
pied within the next 30 min. This variable is computed based on the underlying
occupancy pattern, as we assume that such variables might exist in modern HVAC
systems (cf. [5]).

Action-space: As the main task of the control strategy is to properly control the
HVAC device, the action-space comprises 7 discrete actions, where only one action
could be selected at a time. The actions correspond to the different modes of the
fan coil for heating and cooling, as well as a turning he device off. The different
modes relate to different fan speeds resulting in different air flow rates and different
temperatures concerning the integrated fluids for heating or cooling respectively.

Transition-dynamics: The transitions between the different states (depending on
the selected action) are computed by the simulation according to the underlying
thermal equations. As we employ model-free RL algorithms, the control strategy
does not have access to the environmental model resulting from the simulation.
It is learning through pure interaction with raw experience. The simulation could be
treated as a real environment, with the main difference that with a real environment
the run-time of an experiment would be much longer.

Reward: The main part of the MDP driving the algorithm in a direction to learn
the right control strategy is the reward function. We defined the reward in such a
way, that the algorithm gets a positive feedback whenever its control strategy keeps
the indoor temperature close (i.e. within bounds of 1°C) to the user setpoint when
a user is present and penalized otherwise (i.e. negative feedback corresponding to
the deviation from the setpoint). As the control strategy should minimize energy
consumption, the algorithm gets penalized according to the strength of the current
action, whenever it performs an action other than turning the HVAC system off, if
no user is present in the room (based on the simulated occupancy).
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6.4.3 Results

We evaluate the results from two different perspectives: The domain perspective
and the Reinforcement Learning perspective. For the domain perspective, we plot-
ted the outdoor temperature curve and the indoor temperature curve showing the
moving average of both variables. For the moving average we averaged the last 128
values to reduce the noise inside the diagram and improve the interpretability of
the results. Furthermore, we plotted the average indoor temperature per occupancy
phase. This gives us the option to see whether the learned control strategy is able
to avoid heating or cooling actions in occupancy phases where no user is present
and to keep the indoor temperature close to the user set-point whenever a user is
present. Apart from this domain-related metric, we used the moving average reward
of the last 10000 time-steps as a metric to evaluate the learning process from a RL-
perspective. It is important to note that the values of the average reward are scaled
to fit into the temperature diagram. The scaling factor is neglectable, as it is only
the evolution of the reward curve that is important in this case. The exact evolution
of the cumulative reward is shown in different plots to address solely the Reinforce-
ment Learning perspective, when we compare the results of the RL approach to the
baseline approach.

Figure 6.5 shows how the indoor temperature evolves according to the control
strategy resulting from the baseline thermostat. As can be seen during the first

Figure 6.5. Temperature evolution of baseline thermostat.
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Figure 6.6. Temperature evolution of RL approach.

150.000 time steps, the indoor temperature drops if no user is present resulting
from the heating device being turned off while the outdoor temperature is below
the set point temperature. As the outdoor temperature becomes warmer (from time
step 150.000 onwards) the indoor temperature is higher than the set point temper-
ature (if not user is present) as the cooling device is turned off accordingly. In phases
where a user is present the indoor temperature is kept around the set point temper-
ature. However, from a RL perspective this leads to a non-optimal reward, because
the thermostat controller is purely reactive and for every time step the indoor tem-
perature is too far from the set point temperature this leads to a non-optimal reward.

In contrast, Fig. 6.6 shows how the indoor temperature evolves to a thermostat
controller based on a policy-based RL approach. After a learning phase (until time
step 260.000) the RL approach is able to keep the indoor temperature around the
set point temperature if a user is present and reduce energy consumption by turning
off the heating or cooling device otherwise. Especially during the end of the exper-
iment, after learning has been converged and the approach can reuse its knowledge
about low outdoor temperatures (from time step 450.000 onward), it can be seen
that the same spikes can be observed as in 6.5. However, the drops in the indoor
temperature are not as big as with the baseline approach and the reward is slightly
higher.

Figure 6.7 shows the results from the RL perspective visualizing the cumulative
reward evolution. The baseline approach outperforms the RL approach in terms of
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Figure 6.7. Cumulative reward (baseline vs. RL approach).

cumulative reward, resulting from the poor initial performance during the learn-
ing phase. This is due to the fact that the RL approach has no initial knowledge
about a goal-directed behavior. However, after learning has converged (about time
step 260.000) the increase in reward becomes more steep than that of the baseline
approach, which can be seen from time step 400.000 onward.

After having shown that the RL approach is able to outperform the baseline
approach after its learning process has converged, we did further investigate how it
may perform if its knowledge has been initialized a priori. To do this we did set up
a slightly modified version of the HVAC simulation, with the thermal dynamics
being simplified (and not following complex thermal equations). To perform some
kind of pretraining we let the RL approach learn with this simplified environment
for the same amount of time steps as in the online experiment.

As it can be seen in Fig. 6.8 the pretrained version of the RL approach is able to
adapt its control strategy to the real thermal dynamics pretty fast and after around
50.000 time steps the reward curve converges. This results from a goal-directed
behavior with the pretrained RL approach being able to keep the indoor temper-
ature around the set point temperature whenever a person is present and reduce
energy consumption otherwise. The reason for the slightly better reward compared
to the baseline approach can be seen in Fig. 6.9. The RL approach learns to avoid
the indoor temperature moving too far from the set point temperature, to be able to
reach the set point temperature within fewer time steps than the baseline approach.
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Figure 6.8. Temperature evolution of pretrained RL approach.

Figure 6.9. Temperature evolution of baseline thermostat.

This is done by proactively heating or cooling resulting in small penalty for con-
suming energy while the room is not occupied. However, this penalty is rather small
to the penalty that would be received during a time step (with the room being occu-
pied) where the indoor temperature is not around the desired set point temperature.
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Figure 6.10. Cumulative reward (baseline vs. pretrained RL approach).

Finally, when having a look at the evolution of the cumulative reward as depicted
in Fig. 6.10, the pretrained RL approach clearly outperforms the baseline approach.

6.5 Explaining Adaption Decisions via Reward
Decomposition

Reward Decomposition is a method in which several value-based RL agents are
trained in parallel on different aspects of an environment. At each time step the
knowledge of the agents is aggregated to provide a global decision. To apply this
method, it is necessary that the reward function of the examined environment can
be decomposed into independent subfunctions. As a result, instead of returning
a scalar value at each time step, the reward function returns a vector where each
component reflects the reward of one subfunction or zero if there was no reward or
punishment at the associated time step.

For each component of the reward vector an independent subagent is trained,
which receives the global state as observation and as reward only one component
of the reward vector. In order to derive the action of the overall agent, at each time
step the action values of all subagents are summed up element-wise and on the basis
of these aggregated action values an action is selected (e.g. by using epsilon greedy
action selection).
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This technique was applied to a simplified version of the HVAC environment
(see Chapter 6.4) where the cooling capability was removed. In this environment
the reward was split into the two subfunctions “thermal comfort” and “energy cost”.
The first of these functions always gives a negative value, i.e. a penalty if the per-
son is present but the current temperature is not within a certain tolerance around
the desired temperature. On the other hand, the second component “energy costs”
contains a constant negative value if action “heating” was chosen in the last step.
One value-based RL agent (e.g. DQN) is then trained for each of these two com-
ponents of the reward vector. At each time step the action values of both agents are
summed up for both actions “heating” and “not heating”. The greater sum then
marks the greedy action of the overall agent.

To generate explanations for actions, the action-values of the subagents can
be put in relation to each other. For this purpose, the difference between the
action-value of a particular action and the action-values of all alternative actions
is calculated for each subagent. This is repeated for all actions and yields the rel-
ative importance per action per subagent. The higher the relative importance of
an action, the more influence the subagent has on the selection of this action. By
observing the behaviour and relative importance the reasoning of an agent can be
deduced.

To further increase the explainability of the approach, the reward function can be
broken down into situations instead of subfunctions. Each situation represents a set
of special states of the environment. In addition, each situation receives a non-zero
reward or punishment value that is always given when the agent is in that situation
and zero otherwise. For example, the HVAC environment can be deconstructed
into the following four situations:

• occupied and within the tolerance (reward: +1)
• occupied and out of tolerance (reward: −5)
• unoccupied and within the tolerance (reward: −1)
• unoccupied and out of tolerance (reward: +0.1)

For each of these situations, as before, a separate agent is trained and the relative
importance is calculated. If the importance is then set in relation to the sum of the
relative importance of all actions, the relative importance of an action in relation
to a specific situation can be calculated. These values can then be summed up to
obtain the relative importance of an action across all situations. Using these two
metrics, the following natural language string can be generated for each time step:

“With my current knowledge I am 97% sure that action ‘not heating’ is better.
Arguments in favour of action ‘not heating’ are the prevention of situation ‘occu-
pied and out of tolerance’ (84%), the occurrence of situation ‘occupied and within
the tolerance’ (9%), and the prevention of situation ‘unoccupied and within the
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tolerance’ (4%). An argument in favour of action ‘heating’ is the occurrence of
situation ‘unoccupied and out of tolerance’ (2%).”

The first sentence of this explanatory string contains the relative importance
of an action across all situations (97%) and the following sentences describe the
relative importance of an action in relation to a specific situation (84%, 9%, 4%,
and 2%).

6.6 Synergies with Behavioural Drift Analysis

The main goal of our Online Reinforcement Learning approach is to learn an opti-
mal control strategy for a MDP. Despite of evaluating the learned control strategy
from a RL perspective, it needs to be evaluated from a domain perspective as well.
The latter can also be used to guide the engineering of the reward function. As the
behavioral drift analysis is based on a model capturing the desired control strat-
egy in an abstract way, the computed signal might be used for the evaluation of
the actual control strategy. Unexpected changes in the behavioral drift signal can
then be interpreted as an indicator for context changes that make it impossible for
the learning system to behave according to the obtained model. To showcase this
synergy we derived a model for BDA based on the desired behavior described in
Section 6.4.2 (cf. Figure 6.11).

The behavioural model depicted in Figure 6.11 represents the expected indoor
temperature which depends on whether or not a person is present in the room and
this, independently of the underlying temperature management system. It relies

Figure 6.11. Possibilistic Input/Output Hidden Markov Model describing the expected

indoor temperature depending on whether a person is present or no in a room.
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on the possibility theory where distributions are defined as membership functions.
The model defines the expected behaviour as follows: when a person is present in
the room, the temperature must be equal to 20°C (state 1). When nobody is in
the room, the temperature is expected to be greater than 1°C (state 0). In addi-
tion to fully accepted temperature values (where degree of possibility is equal to
one), the model defines some tolerances. For instance, for the state 1, temperatures
below 19.0°C and above 21°C are totally rejected (degree of possibility = 0) while
temperatures in between 19.0°C and 21.0°C different from 20°C, while not being
perfect, are not totally rejected (0< degree of possibility <1). In conjunction with
temperature and occupancy sensor values, this possibilistic Input/Output Hidden
Markov Model (IOHMM) is used to compute the behavioural drift as the likeli-
hood (possibility measure) of the observation sequences to have been generated by
the model, i.e. the likelihood that the temperature is managed in such a way that it
remains within the accepted boundaries defined by the model.

6.7 Conclusion and Outlook

We motivated the application of Reinforcement Learning as a means to enable a
software system to adapt itself to changing context situations in the realm of SIS.
Furthermore we introduced a concrete realization of an Online Learning approach
which overcomes the main shortcomings of state-of-the-art approaches (e.g. ability
to handle continuous parameters as actions and avoid manual fine-tuning of explo-
ration). Our policy-based Reinforcement Learning approach for a self-adaptation
logic has been validated in the smart building domain by applying it to an HVAC
control problem. The experiment results have shown that our approach is able to
outperform static thermostat implementations by dynamically learning to control
the heating and cooling devices of a smart building. This has been achieved by
finding a trade-off between the maximization of user comfort and minimization
of energy consumption. Additionally, we introduced our conceptual work on the
process of decomposing a reward function of a RL problem into several reward
streams with different semantics to make decisions of an RL agent explainable and
proposed how our Online Learning approach can be enriched by the concept of
Behavioral Drift Analysis.

As future work, we envision extending our approach for online reinforcement
learning for self-adaptive Smart IoT Systems along the following two main dimen-
sions:

Better Pre-training As we demonstrated above, pre-training the reinforce-
ment learning enabler may deliver better performance during operations. On the
one hand, the initial performance (directly after deployment to run-time) can
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be increased. On the other hand, the overall speed of learning and learning per-
formance can be increased, in particular in real-world situations where rewards are
sparse. Yet, such offline pre-training again faces the uncertainty issue when formu-
lating the source learning task to be learned in the offline setting. It is not possible
due to design time uncertainty that this source learning task faithfully captures the
actual online setting. To capture the problem of uncertainty, existing solutions thus
make certain assumptions about the system and its uncertainty in order to be able
to perform the training in the offline setting. This is also what we did above, by tak-
ing certain assumptions about the building domain and even taking real, historic
data into account. However, while this may mean that the reinforcement learn-
ing enabler learns a policy that solves this specific problem (i.e., under the given
assumptions), the learned policy can be useless or may even perform worse than a
policy only trained online when applied to the actual problem at run-time (which
may violate these assumptions), even if it is relatively similar. One approach to this
problem is to leverage the emerging concept of deep meta reinforcement learning.

Coping with large discrete action spaces Existing online reinforcement learn-
ing solutions for self-adaptive services propose randomly selecting adaptation
actions for exploration he effectiveness of exploration therefore directly depends
on the size of the adaptation space, because each adaptation action has an equal
chance of being selected. Some reinforcement learning algorithms can cope with a
large space of actions, but require that the space of actions is continuous in order
to generalize over unseen actions. Self-adaptive Smart IoT Systems may have large,
discrete adaptation spaces; e.g. if their adaptations entail reconfigurations of many
system features or a large set of discrete parameters. In the presence of such large,
discrete adaptation space, random exploration thus may lead to slow learning at
run-time. One approach to this problem is to leverage the structure of the adap-
tion space to better guide the exploration process. In related work, we have demon-
strated that such improved exploration is possible for cloud services [13]. It thus
can serve as a promising basis for applying to Smart IoT Systems.
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Chapter 7

Security of Smart IoT Systems

By Erkuden Rios, Eider Iturbe, Angel Rego, Saturnino Martinez,
Anne Gallon, Christophe Guionneau and Arezki Slimani

7.1 Introduction

Ensuring data confidentiality, integrity, and availability while it is being processed,
stored and transmitted by all parts of the environment are high-priority concerns in
SIS. One of the most interesting approaches to ensure secure behaviour of the SIS is
to embed security features such as monitoring, access control, encryption capabili-
ties, etc. into the IoT Platform used as middleware to capture sensors’ data and act
as gateway to actuators. As SOFIA-SMOOL, or for short, SMOOL [9], is the IoT plat-
form used in the ENACT Smart Building use case (see Chapter 11), the project has
worked in extending this platform with built-in features that enable the platform
to implement some of the required security controls to prevent integrity, confi-
dentiality, access control and non-repudiation related issues. Chapter 7.2 describes
how the SMOOL platform can be used in the SIS development and operation to
monitor and control the desired security properties in the access to resources and
communications between smart things of the SIS.

Security assurance at operation does require an external service, agnostic to sys-
tem design but tailored to final system deployment, that is supervising at all times
the security behaviour of the different elements in the IoT system. The role of this
security monitoring service is to make sure that security incidents or anomalies are

142

http://dx.doi.org/10.1561/9781680838251.ch7


Built-in Security in IoT Platforms 143

early identified and corresponding alerts are raised to system operators. Chapter 7.3
describes the ENACT enabler supporting at operations the situational awareness of
SIS, the so called, Security and Privacy Monitoring Enabler. The enabler is capable of
collecting data from different layers of the IoT system: network, system and applica-
tion layers. All these data are combined by the tool for advanced intrusion detection
and anomaly detection. Artificial intelligence detection mechanisms are combined
with a multi-layer surveillance so as accurate information of holistic security status
of the SIS and all its parts is enabled.

Last but not least, Chapter 7.4 brings an innovative approach to access control in
SIS. The tool implementing it is named Context Aware Access Control since it offers
context-based authentication and authorisation of devices and services exchanging
data within the SIS. The chapter describes the various manners in which this tool
can be used to secure the IoT accesses, considering contextual information in form
of a dynamic risk level computation. The context-awareness capability of the tool
has been integrated and validated in the eHealth use case described in Chapter 9.

7.2 Built-in Security in IoT Platforms

7.2.1 Security-by-Design in IoT Platforms

Complex systems usually cover the security aspects by adding a layer intersecting
or covering other business layers (user interface, data management, processes, etc.).
When dealing with IoT systems, the heterogeneous nature of sensors, communica-
tion channels, Edge devices or Cloud services often demands the architects focusing
on business logic, leaving unattended the needed security controls on sensitive areas
(e.g. securing the Edge devices, credentials management for key devices,…), even if
some sensors may use weak encryption or even produce data in clear because they
rely on transport layer encryption.

Therefore, most of the security management is often handled by the develop-
ers creating dedicated solutions on the IoT platform. The platform could provide
its own battle-tested security mechanisms but those may not fit well or at all with
the security features required by the application developers. In these cases, they are
impelled to provide additional security measures to the ones available in the IoT
platform. And this may bring problems because when custom security is imple-
mented it is likely that flaws occur, particularly when the developer is not a security
expert.

We can introduce the security improvements performed in the SMOOL [1, 9] IoT
middleware as an example of how adding security features “by design” generates
important benefits, like the use of better security patterns, ensuring developer
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confidence on the global security, and focus efforts on IoT application logic devel-
opment and testing, rather than on security aspects.

In this example, we will analyse an application IoT client component exclu-
sively. These components are always the weakest part in potential attacks, since
they have limited resources to implement security mechanisms. While servers can
also be attack targets, they are usually better prepared and include more or more
robust security controls, and changes in the servers are always reviewed and tested
exhaustively to prevent scalability problems or vulnerabilities. In SMOOL terminol-
ogy, a KP (Knowledge Processor) is a client communicating with a SIB (Semantic
Information Broker) or server. The KP can send sensor data or actuation orders,
and it can also subscribe to messages emitted by other clients. The SMOOL KP clients
compose all the messages in Smart Space Access Protocol (SSAP) format (particu-
lar of SMOOL ), where the sensors, the data and the metadata are provided in the
semantic W3C’s Web Ontology Language (OWL) format. This allows other KPs or
clients to subscribe to and consume information concepts in the same way for mul-
tiple types of sensors. If two different sources such as a complex industrial machine
and a simple ambient sensor are providing temperature data to the SMOOL server,
another KP could subscribe through the same mechanism to temperature concept
in both source KPs to get the temperature value from each.

When embedding security mechanisms in SMOOL IoT platform, three differ-
ent approaches can be followed, all of them were tested in ENACT and explained
below.

7.2.1.1 Custom code of security controls in the KPs

The first implementation of security features within SMOOL clients consisted in
adding security metadata to the business data, that is, for example, adding security
metadata to the sensing data transmitted by sensors. For instance, if the client was
transmitting temperature data (value, unit, timestamp), we could also attach the
type and content of security information. These metadata were added as semantic
concepts in SMOOL ontology so as they can be published and subscribed to by KPs
just the same as KPs do with business semantic concepts. This way, specialized secu-
rity KPs could only listen to which security data is flowing, instead of subscribing to
all sensor types containing security metadata. The new security concepts added in
ENACT to the SMOOL ontology covered authentication, authorization, confiden-
tiality, integrity and non-repudiation. They were created to allow flexibility in the
exact implementation of the security (for instance, integrity can allow symmetric or
asymmetric key-based payloads). The new security concepts are shown in Figure 7.1
just as they appear in the Protégé application [13] used to visualize the ontology.

This way, the KP developers could create sensor KPs that publish sensor data
with security information. Other KPs subscribed to the sensor data would check
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Figure 7.1. SMOOL ontology: Security metadata as ontology concepts.

the security data before accepting any values contained in the message. For instance,
the publishers of sensor data could add integrity data, while actuation orders would
be sent with valid authorization data.

This approach has several potential failures. The first one is that the developer
must add extra code to manage security, which means more lines to peer-review
and test, and the application implementation would be prone to insecure execution
paths when running. The second problem is that the developer could miss some of
the things to double-check when using one of the security concepts in the ontology.
For instance, the need of salting before hashing encrypted payloads, or the need to
authenticate the device before allowing it to publish data. The third issue is that
freedom in security coding increases the list of potential security mistakes a non-
expert may make and an expert should review.

In Figure 7.2 a simplified version of KP layers is displayed. When a message
containing sensor data (in SSAP format) arrives, the first layer is the Comms layer
or communications stack, responsible for accepting and assembling the message
by using any of the allowed connectors (TCP, Bluetooth, etc.). The second layer
is the Model layer where various operations on the message take place, such as
parsing, data insertion into the ontology containers, comparison of previous and
updated values, etc. These are the core layers, which facilitate the work of IoT
application developers but their drawback is that they are black boxes for them. The
next layers are the ones created for the real application, including the Custom code
layer to collect, send or retrieve sensing data, and the Security layer with the security
code. The figure shows these two layers separated logically, although in reality they
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Figure 7.2. SMOOL KP (client) layers. Security is handled by the KP developer.

are glued together. The Security layer deals with the management of the security
elements. Since these elements are also part of the ontology, in ENACT we have
developed a user-friendly API for creating content of these elements.

7.2.1.2 Basic SecurityChecker in the core of the KPs

In the second approach to security for KPs, the aim was to provide a better expe-
rience for the KP developer by providing basic built-in security from the KP
design, and therefore, preventing potential security flaws introduced by inexpe-
rienced developers. Security policy usage philosophy was added to the KP and
implemented in the KP core layers. The security control is performed by a Securi-
tyChecker class added in the security layer, which works on all messages received by
a KP extracting any security concept present in the message and testing it against a
list of policies. If the message does not conform to the policies, the message will be
rejected directly from the core layer, so custom code layer will never be aware that
the message was received. This solution is more efficient because there is an auto-
matic security check installed on every newly generated KP, since the mechanism
comes in the KP design itself. The developer has also fewer lines of security code
to implement, because, instead of needing to program the checks of every message
for different security constraints fulfillment, some simple one-line rules are defined
as policies. For instance, all actuation orders to a specific actuator type (e.g. blinds
in a smart building) must contain authorization metadata.

In summary, this second approach, depicted in Figure 7.3, introduces two major
differences compared to the previous approach in Figure 7.2. First, the security
layer is now part of the core layers, shown as a single vertical layer that works for all
the messages, prior to the custom code execution. Second, custom security code is
smaller in number of lines, because it would only be dedicated to the enforcement
of advanced security features, such as the management of sensitive data, while most
of the messages will be filtered or passed by the core security layer.
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Figure 7.3. SMOOL KP (client) layers. Security is enforced for all messages.

7.2.1.3 External SecurityChecker called from the core of the KPs

The third iteration of built-in security in SMOOL IoT KPs takes advantage of the
possibility to use enhanced or external security elements to enforce the needed
security policies at all times. This way, the security policies would be completely
independent from the KPs and adjustable when needed. The approach extends the
built-in SecurityChecker of the KPs to provide better security controls. And these
controls are still performed in the core layer, in the same manner as in the second
approach. When designing the application, these elements are added as a depen-
dency to replace the standard built-in SecurityChecker. The enhanced controls will
be loaded when starting the KP.

To demonstrate this, we have used GENESIS for deploying refined security con-
trols from the design phase. Since SMOOL and GENESIS were integrated in ENACT
to allow deploying KPs with application extended features, we can also add security
features to run either improved extensions of the KP security core layer, or custom
security code. Depending on the security needs of the target IoT system, GENESIS
will deploy a different implementation of the security policies, but from the design
point of view, the declaration of the security enforcement of the policies is the same
regardless what checks the external SecurityChecker will do. In Figure 7.4 below,
the security core layer is bigger in lines of code. But for the KP developer the security
complexity is the same as in the previous iteration.

Now, the core security box is bigger; however, the knowledge about how security
is working in our system remains the same, thanks to the use of policies as main
concept. Information reaching the custom code can be treated as secure, for all new
security upgrades. The security schema remains straightforward, and the applica-
tion can keep growing by focusing on the business logic features of the KPs (the
custom code layer box) rather than security concerns that are handled outside of it.

Therefore, embracing security features of IoT environments from the design
phase carries a set of benefits. The most important benefit is that the majority
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Figure 7.4. SMOOL KP (client) layers. Security is enhanced by GENESIS redeployment.

of the security flaws can be avoided even when building the very first prototype.
The software design can provide some security elements as mandatory and block
non-secure messages, and all of it in a user-friendly manner. The second benefit is
that developers can trust security elements provided from the design phase instead
of needing to develop security features based on ad-hoc preferences. The applica-
tion to be deployed will be more secure and it would be easier to make new releases
in the future. Trends in IoT show that security remains as a main concern, and
ENACT has demonstrated that IoT applications trusting on security-aware IoT
platforms such as SMOOL can be created in a secure manner to prevent most known
issues (legacy libraries or software pieces containing vulnerabilities, broken encryp-
tion mechanisms, credentials leakage, etc.). This way, securing applications during
the design phase can prevent unexpected risky situations when deploying IoT solu-
tions to production environments.

7.2.2 Reaction to Cyber Incidents and Anomalies

Smart IoT systems allow devices and data generated to be in the core of the system
behaviour, leaving human interaction as trigger elements or passive receptors of
actions. In SIS most of the elements must run autonomously, re-adapt based on
rules, start and stop things, etc. In fact, the SIS behave as complex ecosystems where
elements can have different degrees of intelligence but all of them share a high
degree of autonomy. And in these systems, a preventive control monitoring what is
happening in terms of security is important, but also a reactive control when things
go wrong, i.e. issues are detected. For example, hacking only one of the devices
in a SIS could create dangerous situations. Imagine a hacked temperature sensor
sending low values to keep a heat system running all the time. Now, imagine a
hack of a gas or smoke sensor to forge the sensed dangerous values and prevent
them from being detected.
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Therefore, apart from monitoring and identifying potential issues and attacks,
SIS security must be reactive to take countermeasures in real time. The best way
to ensure control is having administration rights on the smart devices and Edge,
but not all IoT elements can be controlled (for instance, generic sensors or devices
from external vendors ready for plug-and-run). Thus, control must sense the IoT
system and must act on it, and in cases where the device cannot be managed from
the inside, the control must be done from some other part of the communication
or data processing chain.

Some security control systems are ready to detect general problems and react
to them. Imagine a new device joins a weak security wireless network. This device
could start flooding the communications in the network, creating a denial of service
for every other legitimate device. The security control system can detect and block
that element, no matter which type of device it is.

Now, a more intelligent and refined malicious IoT device could connect to the
same security weak network and send legitimate data shaped in the same format
other devices are using in their transmissions. The device is accepted, and the data
is also accepted because it fits the format expected to be processed. In this case, a
smart control element should understand operational data, so as to be able to detect
abnormal values and provide feedback to the Security control system.

In the previous Chapter 7.2, we saw how smart IoT devices could enforce secu-
rity controls based on policies. The enforcement was done inside the device itself.
But not all issues could be detected in the device, and security updates may not be
available once deployed. For the security issues not detected and blocked from the
IoT devices, we need reactive security mechanisms dealing with them. In ENACT
he have developed a reactive security control system that relies on SMOOL platform
and its clients as explained below.

Let’s go back to the SMOOL IoT platform we described in the previous
Chapter 7.2. The clients or KPs connected to the IoT platform exchange com-
plex messages. Some security features are already handled by the core security layer
embedded in every KP, and some other security issues are handled by the generic
security control system that reacts to incidents notified by the monitoring system
described in Chapter 7.3. However, to enforce security in the communications of
the SMOOL ecosystem (the server and the smart things connected to it) we have cre-
ated a Security KP to control what information is really exchanged in the messages
of the other KPs, detect non-secure elements, notify the incident, and block the
insecure elements.

Figure 7.5 depicts an attack performed by an elaborated rogue application dis-
guised as an IoT client, i.e. a SMOOL KP. The malicious KP behaves as a normal KP
so connection to server and message exchange is allowed. Note that other type of
rogue KPs will be rejected if their message structure does not conform to the one
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Figure 7.5. SMOOL. Malicious application disguised as a KP.

required by the IoT platform. Thus, this attacking KP is a real danger in the sys-
tem and cannot be detected by the security infrastructure. The client KP2 receives
messages from benign KP1 but also malicious messages from KP Attack (in red).

To solve this problem, a Security KP was created which is a special SMOOL client
that has the unique ability to access and understand every SMOOL message. The
Security KP, being a client rather than a library in the SMOOL server, has another
characteristic: it can be upgraded with new features or customized controls faster
than if it was allocated inside the server.

Instead of subscribing to all kinds of SMOOL messages and all the ontology con-
cepts, the Security KP can subscribe to a subset of concepts corresponding to those
security properties it needs to handle reactions for. Since security metadata was
added in the ontology in the same manner as business data, the Security KP can
process all or part of the messages to produce faster reactive responses. The first
filter could be to check if messages are following the security polices, then inspect-
ing the actual security metadata, and finally, looking for anomalies in the logic or
operational data. If any unwanted message is detected, the Security KP has the right
credentials to invoke the global Security control system to analyse the metadata or
request it to block all communications from the device generating these messages.

Since the IoT server is the real link to the insecure device, a minor implemen-
tation for blocking KPs has been developed. This action can be performed only by
the global Security control system. Figure 7.6 illustrates how the Security KP can
detect refined attacks.

This time, even if the security metadata sent by the malicious KP Attack was
fine (and therefore, the KP2 did not reject the message), the other metadata of the
message were not compliant with the refined security rule set in the Security KP, so
this KP requests the Security control system to block the KP Attack. The Security
control system orders SMOOL server to cut off the connection for the offending KP,
and add the offending IP to the black-list. The attacker KP would not be able to
send further messages because it will not be even able to connect to the server.
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Figure 7.6. SMOOL. Malicious KP detected by Security KP.

By using the Security KP, the application-level messages can be tested against a
detailed rule set, the IoT data can be transformed into another format that the
Security control system could parse, and problems can be detected and block-
ing orders invoked too. The application can also detect even more sophisticated
attacks depending on the use case, because it could have an additional white-list of
allowed IoT devices based on historical activity, or detect abnormal behaviour val-
ues from legitimate devices, and then request the Security control system to inspect
the device.

7.3 Continuous Monitoring and Detection in IoT System
Operation

Information Security Continuous Monitoring (ISCM) is defined by NIST as
“maintaining ongoing awareness of information security, vulnerabilities, and threats
to support organizational risk management decisions” [7]. In an IoT environment,
implementing ISCM provides the security administrator of the SIS with means for
continuous situational awareness of the cybersecurity and privacy status of the sys-
tem. This resource supports the security administrator by identifying cybersecurity
incidents along with the targeted assets, as well as informing about the criticality
and importance of those incidents so that the security expert can decide on the best
cybersecurity strategy to mitigate the cyber threats and protect the assets.

In order to better comprehend the importance of the continuous security moni-
toring, a review of the NIST Security and Privacy Controls for Information Systems
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and Organizations (SP 800-53 Rev. 5) [8] gives the following quick conclusion: at
least 68 security controls of the catalogue are explicitly associated with the monitor-
ing activity distributed in 9 control families: Access Control, Audit and Accountabil-
ity, Assessment, Authorization, and Monitoring, Configuration Management, Incident
Response, Physical and Environmental Protection, Program Management, Risk Assess-
ment, System and Communications Protection, and System and Information Integrity.

The standard ISO/IEC 27035 identifies multiple technologies as sources of the
required security information and events of continuous monitoring as part of detec-
tion and reporting phase within the security incident management process [12].
Mentioned technologies include: Intrusion Detection Systems (IDS), Intrusion
Prevention Systems (IPS), honeypots, log monitoring systems, security information
and event management systems, and network monitoring systems, among others.

Implementing and deploying ISCM mechanisms into IoT environments may
become a complicated task due to the high heterogeneity of standards, technologies,
protocols and deployment architectures in use. Despite of the complexity, trust
models based on security and privacy technologies deployed in IoT systems will be
more and more necessary to ensure consumer acceptance [6].

7.3.1 Architecture and Main Capabilities

In ENACT, ISCM area is covered by the Security and Privacy Monitoring and
Control Enabler (S&P Mon&Con), which aids the SIS operator in learning at all
times the security status of the SIS and control the behaviour of the SIS in order to
ensure it adheres to the security requirements designed. This Enabler delivers three
main capabilities:

• Flexible and extensible continuous monitoring mechanism. A comprehensive
security monitoring involves having granular, modular and dynamic security
controls to be coordinated with. In this way, the enabler can be adapted to
work properly with different types of security controls as data sources, and
furthermore, the enabler can even be configured to respond through the use
of specific security controls deployed in the SIS itself.

• Advanced anomaly detection through user and entity behaviour analysis
using Artificial Intelligence (AI) techniques. Based on a zero trust security
model, the enabler follows a cybersecurity strategy of addressing both internal
and external threats. Particularly, all internal users and entities are considered
for the anomaly-based Intrusion Detection System analytics.

• Scalability of the solution. Both the modular architecture and the technolo-
gies the enabler is based on guarantee the solution is able to rapidly scale up
in large-scale IoT system scenarios, which also implies the need to deploy
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Figure 7.7. High-level architecture of the Security and Privacy Monitoring and Control

Enabler.

hundreds or thousands of monitoring agents depending on the extension of
the system.

Figure 7.7 shows the high-level architecture of the Security and Privacy Moni-
toring and Control Enabler. The enabler captures different kinds of data from the
SIS through multiple distributed probes named agents. There are three types of
monitoring agents:

1. Network agent, which captures network traffic data, network related security
events and asset related data. It integrates an open source signature-based
network IDS that is able to detect well-known security attacks and generate
security events accordingly. Besides that, the agent includes capabilities to
generate protocol-specific security events, e.g. related to ARP protocol so as
to enable the detection of ARP spoofing attacks.

2. System agent, which gathers log information and data related to the activities
and processes within the devices of the SIS; and,
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3. App agent, which collects data at application layer and generates security
events accordingly. This agent can be customized depending on the SIS
characteristics; e.g. if the SIS is in intensive use of the MQTT protocol, this
agent can be developed with specific MQTT based rules for monitoring and
controlling that only authorized users and assets (smart things, devices, ser-
vices, etc.) can communicate in the SIS.

All the data gathered by the monitoring agents is sent to the back-end of the
enabler. Depending on the size of the SIS, the amount of data recovered after some
time can be huge which would likely cause processing difficulties. In order to avoid a
bottleneck at next phases of data processing and analytics, the entry of the back-end
is implemented by a streaming bus (based on the open source distributed stream-
ing platform Apache Kafka [4]. Moreover, the streaming bus provides extensibility
to the solution by offering multiple channels where various kinds of data can be
collected, and it also allows exchanging the outcome from the enabler in form of
identified security events with external components.

The back-end of the enabler includes a data storage infrastructure which stores
in a NoSQL database (based on Elasticsearch [2]) all the acquired and pre-processed
data from the agents. Multiple indexes are created in the storage infrastructure
depending on the different sources of data. For example, in a Smart Building IoT
system where many communication protocols can be working at the same time,
the network data can easily be stored with the definition of approximately 1800
network attributes as shown in Figure 7.8. Bearing in mind that network traffic
is only one of the multiple data sources considered for the analytics within the
enabler, dealing with enormous amounts of heterogeneous data is one of the major
challenges addressed by this enabler in IoT environments.

The main ground-breaking part of the enabler is the anomaly detection ser-
vice included in the back-end. AI techniques have been leveraged to analyse the
collected SIS data and security events in order to detect anomalies in the system.
Mainly, unsupervised Deep Learning techniques have been used to perform the
SIS behavioural analytics and anomaly detection. Many Deep Learning techniques
have been studied depending on the SIS characteristics so as to implement an accu-
rate anomaly-based detection system. Figure 7.9 depicts Vanilla Long short-term
memory (LSTM), a type of recurrent neural network (RNN) architecture, predic-
tions for MQTT protocol in a Smart Building system showing as red points the
anomalies detected correctly, where real MQTT traffic behaviour deviates largely
from predicted one.
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Figure 7.8. Extract of the network fields of stored indexes in the Smart Building.

Figure 7.9. Vanilla LSTM predictions for MQTT protocol in the Smart Building.

Considering that each SIS can be completely different in terms of diversity of
network protocols in the communications, type and number of devices, type and
amount of operational data exchanged, etc. the anomaly detection capability of
the enabler must be adjusted to each type of SIS, which means that the detection
models need to be re-trained for each SIS.
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Figure 7.10. Extract of the overview dashboard view in the Smart Building.

The security administrator or SIS operator can continuously be aware of the
cybersecurity status of the SIS using the front-end of the enabler, which displays
all SIS status data, prediction data and detected security events in a user-friendly
manner in form of alerts, statistics and graphs. Within ENACT, multiple view-
points have been implemented in the front-end in order to have a comprehensive
overview of the SIS security status; additionally, each of the viewpoints includes
many dashboards. Nevertheless, the front-end can be adapted ad hoc in case the
end user wants to have more details, or customize the graphs and the rest of the
visualization objects.

Figure 7.10 shows an extract of the overview dashboard view of the General
viewpoint in the enabler implemented for the Smart Building System use case
(cf. Chapter 11). It offers the most important information related to the security
events generated over the SIS to protect. The end user can navigate through the
rest of the dashboards to learn more details about security events.

Figure 7.11 shows the network traffic dashboard of the Network viewpoint and
Figure 7.12 shows an extract of the anomalies dashboard of the General view-
point. Both dashboards have also been customized for the Smart Building System
use case.

The Security and Privacy Monitoring and Control Enabler has been designed
with the capability to integrate with an IoT platform, specifically with the SMOOL
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Figure 7.11. Extract of the network traffic dashboard of the Network viewpoint in the

Smart Building.

IoT Platform (cf. Chapter 7.2). This particular implementation allows the security
administrator to continuously monitor all communications and data exchanged
through the IoT Platform. Figure 7.13 shows the architecture of the enabler inte-
grated with SMOOL IoT Platform.

The distinctive feature in this scenario is that a client of the SMOOL IoT Platform,
called Security KP (cf. Chapter 7.2.2), works as an app agent for the enabler by
monitoring all data and communications through the IoT Platform and identifying
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Figure 7.12. Extract of the anomalies dashboard of the General viewpoint in the Smart

Building.

potential malicious intrusions. Furthermore, the integration with SMOOL IoT Plat-
form provides the enabler security control capability to react to security incidents.
For example, when detecting an unauthorized communication within SMOOL IoT
Platform by the app agent (i.e. the Security KP), the enabler can respond by block-
ing all communications coming from the unauthorized client. All these security
events registered by the SMOOL IoT Platform are shown in the front-end of the
enabler.
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Figure 7.13. Architecture of the the Security and Privacy Monitoring and Control Enabler

integrated with SMOOL IoT Platform.

Figure 7.14. Smart Building SIS high-level architecture with the Security and Privacy Mon-

itoring and Control Enabler integrated.
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7.3.2 Validation

The Security and Privacy Monitoring and Control Enabler has been validated in
two different use cases in the ENACT project.

7.3.2.1 Smart Home System

The Smart Home System (cf. Chapter 11) has integrated the Security and Privacy
Monitoring and Control Enabler together with the SMOOL IoT Platform in order
to monitor the IoT applications of user comfort and energy efficiency of the build-
ing. In that way, the Smart Home System has been monitored at different layers:
network layer covered by network monitoring agents, system layer covered by sys-
tem monitoring agents in IoT devices such as Raspberry Pis, and app layer covered
by SMOOL KP clients as app agents.

The SIS operator of the Smart Building System has been able to discover anoma-
lies and security incidents by using the enabler. For example, Figure 7.15 shows
an anomaly in the network protocols used by the Smart Building system related
to HTTP protocol’s content type formats (such as json, image-gif or png); this

Figure 7.15. Example of network anomaly detection in the Smart Building.
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anomaly can be seen in different graphics of the dashboard: (i) in a timeseries
graphic or (ii) in a top 10 anomalies list.

7.3.2.2 Intelligent Transport System

The Intelligent Transport System (cf. Chapter 10) has integrated the Security and
Privacy Monitoring and Control Enabler in order to monitor the security status of
the on board Edge part of the train system. The enabler has been used and validated
for the following scenarios:

1. User and entity behaviour monitoring, which is mainly based on the anomaly
detection capabilities offered by the enabler. Industrial protocol network traf-
fic has been analysed in order to detect potential security incidents related to
abnormal traffic behaviour. When an anomaly is detected, the enabler is able
to react by enabling a specific security control for the SIS itself.

2. Intrusion detection, which uses rule-based detection capabilities imple-
mented within network and app agents of the enabler to spot the unautho-
rized users and devices trying to communicate or get access to resources in
the system.

7.4 Context-aware Access Control

7.4.1 Purpose

Access control and identity governance mechanisms are cornerstones of security
and privacy, which is today focused on addressing people accessing IT applications.
In the context of the Internet of Things, access control needs to be extended to
address not only people accessing IoT, but also to manage the relationships between
connected things. This requires designing and building new access control mecha-
nisms for authorizing access to and from connected things, with ad hoc protocols
while still being able to address traditional access to IT applications.

The key challenge for access control in IoT is dynamicity. IoT systems are chang-
ing continuously: Devices keep entering and exiting the system; The same devices
may be used in different context; New connections emerge among the devices; etc.
For such highly dynamic IoT systems, access rights from people to devices, and
from devices to devices, are not immutable. The access rights may vary according
to the context change. Take an eHealth scenario as an example, where senior adults
use IoT devices to monitor their physiological data such as blood pressure. In the
normal, day-to-day context, only the user himself should have the access right to
the data, due to the privacy concern. However, in a special context, such as under
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emergency rescue, medical staff should be granted with the access right to the jour-
nal with historical physiological data. Therefore, the decision of access right in IoT
systems must be made with awareness of the context.

The objective of the Context-aware Access Control (CAAC) is to deal with these
considerations, by providing dynamic access control mechanisms for IoT systems
based on context awareness and risk identification, applicable to both IT (Infor-
mation Technology) and OT (Operational Technology) domains, through an IAM
(Identity and Access Management) gateway for IoT that includes next-generation
authorization mechanisms.

Evidian Web Access Manager (WAM) provides security features for identity
management and access control. The Context-Aware Access Control tool is an
evolution of the authentication and authorization mechanisms provided by WAM
intended for the Internet of Things.

7.4.2 Background: Industry Standards of Access Control
Protocols

• The traditional dynamic access control chain based on the XACML
model

A first approach is to study how the traditional dynamic access control
chain based on the XACML model [10] could help to answer the challenge
of securing the Internet of Things.

XACML is a policy-based management system that defines a declara-
tive access control policy language implemented in XML and a processing
model describing how to evaluate authorization requests according to the
rules defined in policies. As a published standard specification, one of the
goals of XACML is to promote common terminology and interoperability
between authorization implementations by multiple vendors.

XACML is primarily an Attribute-Based Access Control (ABAC) system,
where attributes associated with an entity are inputs into the decision of
whether a given entity may access a given resource and perform a specific
action.

The XACML model supports and encourages the separation of the autho-
rization decision from the point of use. When authorization decisions are
baked into client applications, it is very difficult to update the decision cri-
teria when the governing policy changes. When the client is decoupled from
the authorization decision, authorization policies can be updated on the fly
and affect all clients immediately.

The access control chain based on the XACML model is depicted in
Figure 7.16.
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Figure 7.16. The dynamic access control chain based on the XACML model.

In this chain:

– The Policy Decision Point (PDP) evaluates access requests against autho-
rization policies before issuing access decisions.

– The Policy Enforcement Point (PEP) intercepts the user’s access request
to a resource, makes a decision request to the PDP to obtain the access
decision (i.e. access to the resource is approved or rejected), and acts on
the received decision.

In fact, this approach is dynamic by essence, since the access control deci-
sions are made based on attributes associated with relevant entities. In addi-
tion, it offers a powerful access control language with which to express a wide
range of access control policies.

But the following points make this approach prohibitive:

– An approach based on rules is difficult to administer. Defining policies is
effort consuming. You need to invest in the identification of the attributes
that are relevant to make authorization decisions and mint policies from
them. In addition, the ABAC system introduces issues, most notably the
‘attribute explosion’ [3] issue and, maybe more importantly, the lack of
audibility.

– Although Service-Oriented Architecture and Web Services offer advanced
flexibility and operability capabilities, they are quite heavy infrastructures
that imply significant performance overheads.

– Since XACML has been designed to meet the authorization needs of the
monolithic enterprise where all users are managed centrally, this central
access control chain is not suitable for cloud computing and distributed
system deployment, and it does not scale to the Internet.
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Figure 7.17. Another approach based on OAuth 2.0.

• Another approach based on OAuth 2.0

Another approach has been studied, based on the OAuth 2.0 industry-
standard protocol for authorization [5].

This approach is depicted in Figure 7.17.
In this approach, a client can access a resource on behalf of a user through

an authorization delegation mechanism. This assumes that the user has given
his consent for the requested scopes.

As a major advantage, this protocol can be implemented in a light way,
by leveraging HTTP and REST-based APIs. In fact, OAuth 2.0 supports the
mobile device application endpoint in a lightweight manner. Its simplicity
makes it the de-facto choice for mobile and also non-mobile applications.
Due to the growing importance of Cloud technologies and APIs, the REST
architecture is now heavily favoured.

In addition, OAuth 2.0 allows a fluid integration with role management:
OAuth 2.0 scopes can be used to provide role-based authorization.

But this protocol does not have the granularity of XACML in terms of
rules. And another point is still an obstacle to meet the need of an IoT
context-aware access control: the dynamicity, allowing to take into account
the context, is not provided by design.

7.4.3 A Solution for a Context-aware Access Control Approach
for IoT

Due to the disadvantages observed on the traditional dynamic access control chain
based on the XACML model, it appears that a solution based on OAuth 2.0 is more
appropriate.
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But to provide an IoT context-aware access control mechanism, the gap must be
filled to deliver dynamic authorizations based on context by using the OAuth 2.0
protocol.

Starting from security features for identity management and access control based
on the protocols OAuth 2.0 and OpenID Connect (OIDC) [11], the approach
is to develop an evolution of these authentication and authorization mechanisms
intended for the Internet of Things. Due to the dynamic nature of the data regard-
ing the environment of the connected devices and the persons they belong to, this
contextual information must be used to manage and adjust the security mech-
anisms, i.e. consider contextual information in the identification of the entity
requesting access and in the evaluation of the conditions to grant access.

By assessing the applicability of OAuth 2.0, the ENACT IoT context-aware
access control leverages it as a key protocol for interoperability, by adding
dynamicity to the authorization decisions produced by OAuth 2.0, although this
was not originally intended in that protocol. This dynamic capability is in charge
of taking contextual information into account and inserting it into authorization
decisions.

7.4.4 Architecture

The Context-aware Access Control tool provides an authorization mechanism that
issues access tokens to the connected objects after successfully authenticating their
owner and obtaining authorization. An access token contains the list of claims and
scopes that an authenticated user has consented for this object to access. These
scopes and claims are used to restrict accesses to the back-end server APIs to a
consented set of resources.

This authorization mechanism may be coupled with contextual information to
adapt the access authorizations according to them (for example to make certain
information more widely available in some urgent case).

To this objective, the Access Control Tool directly communicates with a Risk
Server to make dynamic access controls based on the context information during
the authorization phase. For example, it can reject the authorization if the access
token is valid while other context information does not respect the authorization
policy.

The authorization policy is a set of rules that define whether a user or device must
be permitted or denied access to a back-end server. An administrator can control
this adjustment and create special authorization rules based on the context data
provided.
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Figure 7.18. Context-aware Access Control global infrastructure.

The Context-aware Access Control tool is provided inside an infrastructure
aimed to gather contextual information to deduce a risk level associated with a
user. Figure 7.18 gives a global view of this infrastructure.

The infrastructure is based on the Apache Kafka event streaming platform, which
allows to publish and subscribe to streams of events. The principle is to publish in
this platform contextual information which may come (1) from connected devices
(sensors, alarms, etc.) or (2) from audit events produced by the Evidian Web Access
Manager. The contextual information is sent to an input processing interface (3)
which then publishes it to a Kafka topic. An event is then received by the risk server
from an Apache NiFi interface (4) which will take into account the contextual
information in a dynamic risk level computation. Then, when a device tries to
access a resource, (5) the CAAC retrieves the dynamic risk value associated to the
device owner, and (6) this is transmitted to the back-end server to modulate the
access accordingly.

In this architecture, two components are providing the Context-aware Access
Control mechanisms:

• The Access Control Tool, composed of an Authorization server associated
to a Post authorization plugin, to add more controls during the authorization
phase. Its purpose is to check if the request is authenticated and is authorized
to access the back-end server.
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Indeed, each time a device sends a request to a back-end server (7), WAM
can check the dynamic claims and scopes consented by the user associated
to the device that performs the request and, in turn, realize special actions
according to this information such as blocking the request or limiting the
accessible resources.

The Post authorization plugin extends the basic authorization phase and
is entirely customizable. Any operation can be executed during the autho-
rization phase, including calling external programs, and in particular the
Risk Server. The Post authorization plugin can create injection variables
that can be reused and injected in the initial request sent to the back-end
server.

• A Risk Server which essentially relies on WAM audit events to calculate a
risk level for each user. This allows detection of abnormal behaviour such as
connections from unknown IP addresses, or multiple failed connections.

A user’s risk level is a function of the level of trust given to that user. This
level of risk determines the level of trust that can be placed in the devices
owned by that user. The user’s risk level is based on a system of sanction-
s/rewards depending on the user’s behaviour. Its computation uses a ranking
system based on a user-specific score: the Risk Score.

Contextual information coming from external sources (sensors, other
applications, etc.) makes it possible to modulate this risk, i.e., to increase
or decrease it depending on the situation. For example, in the case of a fire, a
smoke detector immediately sends information to the Risk Server, which will
considerably reduce the user’s risk and allow easier access to resources.

The contextual information is sent to an input processing interface which
then publishes it to a KAFKA topic. For this contextual information trans-
mission to be controlled and secure, the transmitting device must be enrolled
in WAM and associated with a user, and it must have received a valid access
token which allows it getting its owner’s userid to be associated with the con-
textual information. Each device is associated with a risk factor which can be
used to modulate the user’s risk score.

7.4.5 Integrating the Context-aware Access Control Tool

• Device enrolment

The device enrolment procedure allows a device to be associated with the
identity of its owner. The Access Control tool leverages on the OAuth 2.0
Device Flow protocol to achieve this.

The only requirements to use this flow are that the device is connected
to the Internet and able to make outbound HTTPS requests, and that it is
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Figure 7.19. Device enrolment sequence diagram.

able to display or otherwise communicate a URI and code sequence to the
user, and that the user (device owner) has a secondary device (e.g., personal
computer or smartphone) from which to process the request. There is no
requirement for two-way communication between the OAuth client (i.e., the
connected device) and the end user’s user-agent, enabling a broad range of
use-cases.

During this procedure, the user gives his consent to the device to access
data scopes on static attributes (username, email, etc.) and also a dynamic
attribute (a risk level computed from contextual information on the user).
At the end of the enrolment phase, the device receives an access token. The
device has now access to the device owner profile that includes static attributes
(username, email, etc.) but also the dynamic risk level.

The sequence diagram for this device enrolment procedure is described in
Figure 7.19.

• Context-aware Access Control with WAM used as reverse-proxy

In this case, WAM is used as a Reverse proxy to protect the back-end
servers. Additionally, WAM checks the token of the incoming request to
verify if the device is authorized to access the back-end server. If this is the
case, WAM injects in the header of the initial request the consent scopes of
the device owner. This injection does not modify the request and the scopes
injected contain some information about the device owner (username, email,
etc..) and a risk level computed from contextual information. This allows the
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Figure 7.20. Context-aware Access Control with WAM as reverse-proxy — Sequence

diagram.

Figure 7.21. Context-aware Access Control with WAM as OpenID Connect IDP —

Sequence diagram.

back-end server to make the link between the requesting device and the user
associated with it, and to know the risk level depending on the context.

The sequence diagram for this working mode is described in Figure 7.20.
• Context-aware Access Control with WAM used as OpenID Connect IDP

In this case, WAM is used as an OpenID Connect IDP. WAM handles
the access control part by checking if the token sent to a back-end server is
valid. If this is the case, WAM responds with the consent scopes of the device
owner. These scopes contain some information about the user (username,
email, etc.) and the contextual risk level.

In the case where the authorization policy is not respected, the Access Con-
trol tool will inform the back-end server that it has to reject the request made
by the device.

The sequence diagram for this working mode is described in Figure 7.21.
The device uses its token to access the back-end server (for example to

push some data). The back-end server checks the validity of the token and
retrieves the device owner’s consent scopes for this token by calling the user-
info endpoint of WAM (the userinfo endpoint from the Access Control tool
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API consumes a token to retrieve information on the user). WAM returns the
user information (for instance: username, email, address) and the dynamic
contextual risk level associated to the user. The back-end applications can
use this additional information to perform special actions.

7.4.6 Main Innovation

The main innovation brought by the features offered by the Context-Aware Access
Control Enabler can be summarised as follows:

• The solution provides one unique tool to control in the same way the access of
all the IoT actors (end-users, services, devices, administrators) to the operated
data and resources, for both IT and OT (operational technologies) domains.

• The solution adds dynamicity to the authorization decisions OAuth 2.0 pro-
duces, by injecting dynamic scopes in the standard device flow.

• This allows to exploit contextual risk levels as dynamic attributes in the autho-
rization mechanisms.

• Accordingly, the provided authorizations can be adapted based on a risk level
computed from contextual data on the user and his devices, which allows
context-aware dynamic access control behaviors.

7.5 Conclusion

This chapter was dedicated to the Security and Privacy Monitoring and Control
Enabler designed to be used at the Ops phase of the DevOps life-cycle of SIS
to address the security aspects of trustworthy SIS operation. The enabler is an
innovative solution that supports SIS operation with multi-source data captur-
ing, advanced detection combining signature-based IDS and AI techniques, and
comprehensive situational awareness through a rich multi-viewpoint dashboard.
By using this enabler, it is possible to assemble all or only some of the components
in the enabler architecture. This brings flexibility to the continuous monitoring
since it is possible to tailor the enabler design to the particular needs of the SIS
under study in terms of e.g., how many security agents are deployed and where,
which security policies are used by the clients, which metrics are monitored, and
the needed tailored alarms and data visualisations can be created ad hoc.

The continuous monitoring offered is holistic in the sense that it correlates data
captured in the three main layers of the SIS: network, system and application lay-
ers. And this makes possible a high richness and accuracy of security incidents
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and anomalies detection which leverages signature-based detection together with
machine learning and deep learning-based detection.

The enabler also answers to the needs of rapid elasticity and full scalability
required by SIS that involve large amounts of sensors and actuators, while it still is
able to offer the required visualisations and notifications that constitute the basis
for the informed situational awareness of the overall system.

In order to be able to take advantage of the insights gained by the tool over the
SIS, the enabler was designed with a security event bus for integration with other
cybersecurity threat intelligence platforms and services, such as those of forensics
analysis and cybersecurity information sharing with third parties.

Last but not least, the enabler design permits a seamless integration with controls
at application layer, for example those developed on top of the SOFIA SMOOL IoT
platform monitoring and control agents’ management, which are able to monitor
and control secure communications among the smart things of the SIS.

As part of the future lines of work in the enabler, the automatic reaction capa-
bilities will be researched and enriched by extending the controls with intelligent
security orchestrators and decision making support that facilitate the combination
of multiple reaction measures when needed in the different layers of the SIS, so
as the security level of the system is increased in the face of attack or incident
symptoms.
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Chapter 8

Validation, Verification
and Root-Cause Analysis

By Luong Nguyen, Vinh Hoa La, Wissam Mallouli
and Edgardo Montes de Oca

8.1 Motivation

Verification and validation are two significant software development processes for
checking that software meets its requirements and specifications and fulfills its
intended purpose. In these processes, various test cases (e.g., unit tests, integra-
tion tests, regression tests, system tests) need to be designed and executed in a
production-like environment that reproduces the same conditions where the soft-
ware under test would run. However, having access to such an environment is usu-
ally tricky or close to being an impossible task. It is even particularly challenging in
the IoT arena. The access to IoT devices might be nontrivial or limited due to many
factors. Networks of physically deployed devices are typically devoted to production
software. Testing applications on top of those networks might involve additional
testing software, which might affect overall performance and the revenue generated
by the devices (e.g., applications need to be stopped to load their new versions).

Software simulators proved to be valuable in easing the verification of the soft-
ware requirements. They provide software developers a testing environment to at
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least manage the execution of test cases. IoT Testbeds play a similar role in testing
IoT applications. They offer a deployed network of IoT devices where developers
can upload their applications and test their software in a physical environment.
IoT-Lab [1] and SmartSantander [9] are good examples of IoT testbeds. Testbeds
often have a predefined fixed-configuration and architecture. They are also usually
shared with other users, which can be a problem for measuring application quality.
Hence, this problem might make simulators more attractive since they provide a
more customized and controlled environment. Furthermore, simulators avoid the
need for a more expensive physical network of devices.

In recent years, both academia and the commercial market have proposed solu-
tions for the IoT simulation field. These solutions are often entirely different,
although their objectives are similar. The academic solutions implement cutting-
edge technology as proofs-of-concept, and they are usually not ready for production
systems. By contrast, the commercial solutions are designed to be stable and flaw-
less, even though the technology behind them might not be state-of-the-art.

The ENACT project has brought an opportunity to create the Test and Simu-
lation (TaS) tool. Collaborating with universities and research institutions such as
SINTEF and CNRS, we provide a state-of-the-art test and simulation tool with
cutting-edge technology behind it. We have evaluated our solution with several
industrial use cases, such as eHealth (Tellu), Smart Building (Tecnalia), and Intel-
ligent Train System (Indra). The case studies have shown that it is stable and ready
for production systems.

The TaS provides the possibility to test the IoT system based on test scenarios
using pre-prepared datasets. The datasets can be the recorded data from a real system
or the data generated using some data mutation operators. The TaS also allows
stressing the boundaries of the scenarios to detect potential problems.

We focus on the network of sensors and the applications on top of them. There-
fore, we do not consider the physical behavior of the sensors. We take it for granted
that the sensors are reliable and correctly react to the physical changes (e.g., if the
physical temperature rises 2 degrees, the sensor will immediately send a message
with a 2 degree higher reading).

On the other hand, it is also important to note that failures usually propagate
in complex systems through causal chains and produce evolving fingerprints of
noisy symptoms. One of the first tasks to accomplish for an automated tool helping
humans troubleshoot a system is to group events that are causally connected (and
keep unrelated events separated). Achieving this is often not straightforward since
components of a system can exhibit similar symptoms of two unrelated failures.
We need a higher level of granularity in the monitoring indicators and a deeper
analysis to distinguish two unrelated failures. Moreover, it is frequent that failures
are recurrent. The system administrators, who have some experience dealing with
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failures, can react more quickly and efficiently against their recurrence. They can
take the impact estimation and the mitigation action (e.g., reset a particular server
every night) promptly.

Indeed, all aforementioned points lead to the need for a Root-Cause Analy-
sis (RCA) tool which enables systematizing the experience in dealing with faults
and problems to identify the root cause of a newly detected issue. Thanks to RCA
results, remediation actions and reactions could be timely and wisely taken to pre-
vent or mitigate the damage of the recurrence of problems.

The IoT world has promised to connect everything and create systems with an
enormous number of devices. The need for RCA to implement and operate IoT
systems is evident; IoT represents a generic framework that an RCA solution can
target. However, several characteristics of these types of systems need to be con-
sidered: First, IoT networks are often very dynamic environments, with devices
frequently joining and leaving a system (e.g., mobile devices connecting to a par-
ticular antenna). Nevertheless, most of the communications are likely to be wireless.
This can introduce a higher degree of unreliability. The failure, however, can present
symptoms very similar to a normal activity. For example, when we no longer receive
sensed data from a sensor, it is difficult to determine whether the sensor is no longer
in range or the communication has failed. Second, in many cases, the number of
components/ indicators to be taken into the analysis could be enormous. This can
lead to a big volume of data processed. Reducing the data dimension by avoid-
ing less relevant attributes (i.e., noises) is a natural need. Finally, battery-powered
devices may have a low-activity mode to extend their operation autonomy. In this
mode, inputs may not be synchronized and have the same frequency as other infor-
mation RCA uses for the diagnosis. Therefore, RCA must be able to deal with out-
of-order data. In the context of ENACT, our RCA enabler would try to address all
the challenges we mentioned above.

In summary, this chapter focuses on TaS and RCA, two primary parts empow-
ering the validation and verification in an IoT DevOps cycle, which have been
developed and evaluated in the context of the ENACT project. To the best of our
knowledge, no similar tool had ever been created for IoT. On the one hand, the TaS
tool enables the simulation and testing of an IoT system. It collects the events of
a running IoT system without impacting its normal behavior. The recorded events
can be used to simulate the system, inject different kinds of “problems”, and col-
lect all relevant data for detecting errors, failures, and unwanted symptoms. On
the other hand, the RCA tool monitors the real system and performs the diag-
nostic analysis when some errors or failures occur. The enabler allows determining
unknown incidents’ symptoms and evaluating how much the unknown incident is
similar to a known/learned one. We discuss more technical details regarding TaS
and RCA in the following sections.



176 Validation, Verification and Root-Cause Analysis

8.2 Test and Simulation (TaS)

In this section, we first present an overview of the TaS enabler. We then give the
details of the enabler.

8.2.1 Overview and Approach

The TaS enabler is a test and simulation solution well adapted to IoT environ-
ments. It allows simulating different IoT topologies and performing various tests
to detect potential errors and security failures. We first present the main features and
components of the enabler that simulate an IoT system. Then, we give a detailed
description of the TaS enabler architecture.

8.2.1.1 Smart IoT system components

Figure 8.1 shows some main components in a Smart IoT System:

• The Sensor Node: captures, pre-process, and sends the sensor data to the
gateway that can be a Raspberry PI, an Arduino, etc. It implements some
basic modules:

– The Sensor module captures the environment information.
– The Onboard Processing module reads the sensor data and pre-processes

it (e.g., performs calculations and formalizes and validates data). It can be
an IoT application, a Node-RED flow, etc.

– The Communication module component communicates with the gateway
to send or broadcast the processed data.

• The Gateway device: receives data from the sensor nodes and processes or
just forwards it to the other components/services such as cloud-based appli-
cation and control center.

• The Actuator node: reacts and controls the actuator based on the reactions
of the IoT system. It contains some basic modules:

– The Actuator module triggers a change on the IoT device, such as opening
a door and activating an alarm system, etc.

– The Onboard processing module reads the actuator data signal and con-
verts it into an action.

– The Communication module communicates with the gateway to receive
the actuation data signal.

• Other components: Other components are higher-level components that
can provide a service or an application that receives and processes the data
and performs actions depending on the business logic.
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Figure 8.1. IoT system components.

The SIS components can be organized in a multi-layer architecture which we
present in the next section.

8.2.1.2 Simulating a smart information system (SIS)

An SIS can be represented in three levels depicted in Figure 8.1. The physical level
contains all the physical components, such as sensors and actuators, produced by a
manufacturer and cannot be changed by developers. The transport level is respon-
sible for transmitting the data within the SIS network. Developers can configure
the transport level to use a specific port number or protocol. Finally, the highest
level is the application level, which contains the application written by developers.
The application receives the data from sensors, processes it, and produces an action
to be performed by the actuators (e.g., turn the light on or off ). Software engineers
usually work on the application level.

When it comes to developing a software application, a software application needs
to be tested every time there is a change in its source code or in the infrastructure
it uses. The planned tests aim to cover many scopes involving different testing sce-
narios. While coping with multiple test scenarios, the testing environment needs
to be flexible for manipulating input and measuring output. It is not easy to have
such a testing environment for IoT applications since sensors at the physical level
depend on the physical environment. Therefore, only the scenarios matching the
current condition of the environment can take place.
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Figure 8.2. An IoT network architecture with simulated components.

Within an IoT network, a sensor captures the information of its surrounding
environment at a specific time. This information is transformed into a digital for-
mat. Since it is not reasonable to wait for the change in the environment to test IoT
applications, simulating various sensor measurements is very beneficial for testing
them. It allows the developer to control sensor values and, thus, to simulate and
test the IoT application in all scenarios without waiting for environment changes.

An actuator presents the SIS reactions in a specific situation, for example, switch-
ing on a light bulb. In such cases of testing system reactions, it is sufficient to mea-
sure the actuated data sent by the SIS to actuators. In the TaS enabler, the actuator
is simulated by simply creating a hub to receive the actuated data instead of using a
real actuator. Note that the impact of an actuator on a sensor is not yet considered.

With the TaS enabler, we only need to simulate the components at the physi-
cal level. The other (software) components can be cloned from the system under
test and configured to work in a classical test and simulation environment, avoid-
ing the need for communicating with a production environment, as we can see in
Figure 8.2.

8.2.1.3 The TaS enabler’s global approach and architecture

In this subsection, we present the architecture of the TaS enabler, which is based on
the concept of Digital Twins [3]. Figure 8.3 illustrates the TaS enabler architecture.
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Figure 8.3. Test and Simulation (TaS) Enabler approach and architecture.

On the left-hand side, we have the system in a real (production) environment.
The communication between the sensors, actuators with the IoT component is typ-
ically done via a broker. The sensors capture and send the surrounding information
(e.g., temperature) to the IoT system. Based on input data, the IoT system reacts
differently and sends actuation data to change the actuator settings (e.g., “change
the heating level”).

On the right-hand side of the figure, we have the SIS in a test environment and
the TaS enabler. The system under test is the SIS that needs to be tested. The TaS
enabler simulates sensors and actuators. The topology on the left side is very similar
to the topology on the right side. The only difference is the simulated sensors and
actuators. The simulated actuators collect the actuation data sent from the IoT
system. The simulated sensors play the same role as the physical sensors providing
the data signal to the IoT components. However, they are much more valuable than
a physical sensor in terms of testing in the following ways:

• Firstly, by using the dataset recorded from the physical environment, the sim-
ulated sensors can repeatedly simulate the surrounding environment at a spe-
cific time. In reality, an event may happen only once, but the simulated sensor
can generate the same event as many times as needed for testing purposes.

• Secondly, the physical sensors passively capture the state of the surrounding
environment. It can be challenging to obtain different data from the physical
sensors. In contrast, the simulated sensors use the dataset in the Data Stor-
age as a data source. Therefore, we can generate various testing scenarios by
modifying the event in the Data Storage.
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• Moreover, the TaS enabler also provides a module to manipulate the data from
the sensors. The Regular and Malicious Data Generator can generate regular
data to test the functionalities, operations, performance, and scalability. It can
also generate malicious data to test the resiliency of the system to attacks.

Besides the simulated sensors and actuators, the TaS enabler also provides some
modules which support the testing process 8.3. The Data Recorder module records
all the messages going through the broker in the physical environment. Each mes-
sage can be considered as an event happening in the physical environment. Then,
the recorded messages are forwarded to the broker in the testing environment.
In this way, we have a “twin version” of the physical environment. What has
happened in the physical environment is reproduced in the testing environment.
Besides, the recorded messages are stored in a Data Storage as a dataset for later
testing. The recorded dataset can be modified (muted) to create a new dataset,
e.g., “change the event order”, “delete an event”, “add a new event”. All the testing
datasets are stored in the Data Storage. The Regular and Malicious Data Gener-
ator enables the simulation of different sensor behaviors, from normal behavior
to abnormal behavior, such as a DOS attack (the sensor publishes massive data
messages in a short time), node failure (the sensor stops sending data). With data
mutation, the TaS enabler can help build datasets for testing many different cases
hard to produce in real life. Finally, the Evaluation module analyses the simulation
input and output and combines them with the logs collected from the IoT system
to provide the final result of a testing process.

The next section presents more details on how the TaS enabler simulates an SIS.

8.2.2 Simulation of a Smart IoT System

Most of the testing scenarios are defined by the information about the surrounding
environment captured by sensors. The following section goes into detail about the
simulation of sensors.

8.2.2.1 The simulation of sensor

The sensor provides the input data of an IoT system. The simulation of a sensor
corresponds to the simulation of the data stream it provides. The simulated sensor
has been designed for flexibility in the following ways:

• It supports different types of data report formats:

– PLAIN_DATA: the measurement value is published directly without any
transformation, it can be a number, a string or an object, for example: 15
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– JSON_OBJECT: the measurement value is transformed to be an object
in JSON format, with the key is set by user, for example: "temp":15

– IPSO_FORMAT: the reported data follows the Internet Protocol for
Smart Object (Object and Resource Registry). A temperature sensor can
report the data in IPSO format as follows (Temperature Sensor in IPSO):

1 {
2 " InstanceId " : 5 ,
3 "ObjectId" : 3303 ,
4 "TimeStamp" : 1601498832 ,
5 "TimeAccuracy" : 364449977 ,
6 "Resources" : {
7 "5700" : 15 ,
8 "5701 " : " celcius "
9 }

10 }

• It supports different data sources which are used for simulation:

– Dataset: The data source is from the data storage where the data has been
recorded or created before simulating.

– Data Generator: The data will be generated at run-time during the simu-
lation.

– Data Recorder: The data source is the data recorded from a real system
and forwarded to the testing system.

• It supports simulating several abnormal behaviours, such as, low energy, node
failure, DOS attack, and slow DOS attack.

• It supports multiple measurements with the different data types, such as
Boolean, Integer, Float and Enum. For each measurement, there are several
abnormal behaviours that can be selected, such as “fixed value”, “value out of
range”, and “invalid value”.

Figure 8.4 presents the definition of a temperature sensor, which gener-
ates (data source: DATA_SOURCE_GENERATOR) a measurement value every
5 seconds. The measurement value is published in PLAIN_DATA format to
a MQTT/MQTTS message bus communication channel defined by the topic
enact/sensors/temp-01. The sensor does not have any abnormal behaviour.

8.2.2.2 The simulation of actuator

An actuator can be considered as a device that receives the IoT system reac-
tion based on the input data. We simulate the actuator as a component that
will receive the reaction signal (actuation data) from the IoT system. Figure 8.5
shows the configuration of a Heater. The actuator listens for the actuation data on
an MQTT/MQTTS message bus communication channel defined by the topic:

http://www.openmobilealliance.org/wp/OMNA/LwM2M/LwM2MRegistry.html
https://devtoolkit.openmobilealliance.org/OEditor/LWMOView
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Figure 8.4. A temperature sensor.
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Figure 8.5. A Heater actuator.

enact/actuators/heater-01. The topic defines the channel on which the actuator will
connect to obtain the actuation data.

8.2.2.3 The simulation of an IoT device

In an IoT system, the sensor and actuator are usually part of the same device. An IoT
device can contain one to many sensors as well as one to many actuators. Figure 8.6
illustrates the configuration of a Heating System Control device. The device has one
sensor and one actuator. The data is published by the sensor and received by the
actuator via the MQTT protocol.

8.2.2.4 The simulation of a network topology

Figure 8.7 presents a simple simulated network topology.
A list of simulated IoT devices forms the simulated network topology. Besides

the list of devices, a network topology can also provide the identifier of the
dataset (datasetId ),which contains the data to simulate the SIS in a given time,
the global replaying options, the configuration to connect with the database, and
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Figure 8.6. A Heating System Control device.

the definition of the new dataset where the data generated from the simulations
will be stored.

8.2.2.5 The communication between the TaS enabler and the system

under test

In the ENACT project, the communication between the TaS enabler and the system
under test has been implemented based on message queue protocols such as MQTT
and MQTTS. Figure 8.8 presents the Message Bus class diagram, similar to the
interface for all Message Queue Protocols.

Some basic message queue bus protocol methods have been implemented, such
as subscribe, unsubscribe, publish, connect, and close. By design, each IoT device
can have its way of communication with the SIS systems.

8.2.3 The Testing of a SIS

In this section, we present the testing methodologies and techniques we have
adapted in the TaS enabler.
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Figure 8.7. Smarthome network topology.

8.2.3.1 The testing methodologies

This section covers the testing methodologies that the TaS enabler can support.
In this first version of the enabler, we have implemented only data-driven and data-
mutation testing methodologies. The other ones described below are possible future
extensions.

Data Driven Testing

Figure 8.9 presents the data flow of the Data-Driven Testing method. The Data
Storage contains the datasets recorded from the IoT system or entered manually.
Each dataset contains sensor data (inputs for TaS) and expected actuator outputs.
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Figure 8.8. Message queue bus class diagram.

Figure 8.9. Data Driven Testing.
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The expected actuator outputs can be the value recorded from the IoT system in a
normal scenario. Engineers can also enter them manually via the Graphical Inter-
face. The Evaluation module will use the expected outputs to compare them with
the simulation output to determine if they match. A test case passes if the simula-
tion output is the same as the expected output. The Data-Driven Testing method
is suitable for functional and regression testing.

The Data-Driven Testing has been implemented as the main testing methodol-
ogy of the TaS enabler.

Data Mutation Testing

Figure 8.10 illustrates the Data Mutation Testing architecture. The Mutant Gen-
erator generates new sensor data from existing data stored in the Data Storage by
applying one or many mutated functions, such as “change the event order”, “change
a value”, and “delete an event”. The mutated data are input for the simulation. The
Evaluation module generates a report about the output differences when testing the
system with the mutated and the original input data. The Data Mutation Testing
method is for penetration, robustness, security, and scalability testing (e.g., mutat-
ing the device identifier to obtain new devices). In the TaS enabler, we can mutate
the device identity to generate many devices while testing the system scalability.
There is also an interface to apply some mutation functions to a dataset manually.

Figure 8.10. Data Mutation Testing.
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Figure 8.11. DataStorage.

Model-Based Testing [10] and Risk-Based Testing [6] are two other methodolo-
gies that we have studied but not yet implemented in the TaS enabler at the time
of writing of this book chapter.

8.2.3.2 The testbeds

To simulate and test an IoT system in some specific scenarios, one of the easiest
methods is to use a testbed. With testbeds, the developer can define exactly what is
the input and what should be the corresponding output. This way, the tests can be
done automatically and easily integrated in the DevOps Continuous Integration
and Continuous Deployment processes. In TaS, testbeds are built from datasets
which are recorded from a real system or generated by the TaS based on scenarios.

DataStorage

The Data Storage contains all the datasets for testing and simulating.
As depicted in Figure 8.11, the datasets are fed into the DataStorage via three

sources: the data from the real system recorded by the Data Recorder, the data
generated by the Regular and Malicious Data Generator, and the data generated by
the simulation. The datasets in the Data Storage are used to simulate the sensors
and to validate the simulation output.

The database connection of the TaS enabler is flexible. Two simulations can
use different databases. If there is no configuration specified, the TaS enabler uses
a default database. The database to connect to can be any database that the TaS
enabler can reach.

Event

An event represents a message sent through the communication channels. It can be
a data message sent by a sensor or data received by an actuator. Figure 8.12 presents
the format of the event Schema.

The timestamp attribute indicates the time when the event has been captured.
The topic represents the MQTT/MQTTS bus channel related to the event. It is the
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Figure 8.12. Event Schema.

Figure 8.13. Dataset Schema.

source channel of the event where the data message corresponds to sensor data. It is
the destination channel of the event where the data message is data received by an
actuator. Its value is crucial for identifying the event to be replayed. The datasetId
attribute represents the dataset to which the event belongs. The isSensorData is set
to True if the event presents a data message sent by a sensor. It is False if the event
is a data message received by an actuator. The values attribute contains the value of
the message data. This value can be a number, a string, or an object. This design
helps make the event generic and making it possible to consider any message data
type.

Dataset

A dataset contains a series of events for a specific scenario. Figure 8.13 presents the
schema of a dataset. Each dataset has a unique id, name, and description to describe
the dataset objective. The source attribute indicates the dataset source. A dataset can
be created from a recording session by the Data Recorder (source: RECORDED) or
generated by the Regular and Malicious Data Generator (source: GENERATED).
A dataset can also be derived by cloning and modifying data from another dataset
(source: MUTATED).

By grouping the events by the dataset Id, we have all the events belonging to a
dataset.
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Figure 8.14. Data Recorder data flow.

8.2.3.3 The data recorder and digital twins concept

The TaS enabler provides the possibility to simulate an IoT system using historical
data. To this end, a Data Recorder module is needed.

Figure 8.14 presents the data flow of the Data Recorder. All the events in the real
system (coming from the broker) will be recorded. This data (including both sensor
and actuator data) is stored in the Data Storage as a dataset. The sensor data can be
forwarded directly to the testing system (using the forwarding broker). With the
recorded data from the real system, the SIS can be tested with real input. The more
data from sensors are recorded, the more test scenarios are tested. By synchronizing
the Sensor simulator timestamps with the Data Recorder, it is possible to simulate
a particular SIS (following the Digital Twin concept). By monitoring the SIS input
and output, we can build an automatic testing process for a complex IoT system.

The recorded data can be used as a source for simulation. It can also be mutated
so that it can contain different values for obtaining a modified testing scenario.
In the next section, we will explain how to generate a new dataset using a given
behavior profile.

8.2.3.4 The regular and malicious data generator

When testing the IoT system, there are many testing scenarios and cases that do not
frequently occur in reality. With the real IoT system, it is almost impossible to col-
lect the datasets for many testing scenarios. The TaS enabler provides a powerful
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Figure 8.15. Abnormal behaviours based on the data type and the constraints.

tool to solve this problem. The Regular and Malicious Data Generator module
helps developers create a testbed. It enables generating sensor data for various sce-
narios, e.g., making the temperature too high or too low. By combining multiple
data, one can create a testbed that includes many incidents or attack scenarios, such
as DDoS and data poisoning. The Data Storage stores all the generated data for fur-
ther use. Based on the data type and constraints on the time, values, or energy use,
many abnormal behavior types may exist as depicted in Figure 8.15.

The abnormal sensor behaviors are defined by energy, reporting time, and value
constraints.

Figure 8.16 illustrates how a data value is generated based on the selected
behaviours of the sensor. In the beginning, the energy constraint is checked. There
are two behaviors related to energy. If the sensor is in the low-battery mode, we
can reduce the reporting frequency. Notice that the user initially sets the frequency.
If the sensor is out of battery, it stops sending data. In the next step, we consider
the time constraint. We can select among three behaviors. The possible DOS attack
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Figure 8.16. Data generating flow.

increases the reporting frequency to simulate a DOS attack, and the sensor sends a
lot more data than what is considered normal. If there is a constraint on the maxi-
mum delay time for reporting data, we can simulate a behavior like a possible slow
DOS attack. For example, if the system expects to receive the temperature informa-
tion every 5 seconds maximum, then a slow DOS attack could change the sensor
behavior that the sensor sends a message every 6 seconds. Based on the time con-
straint, we can simulate a sensor that stops sending data for a certain period (node
failed). Finally, for each measurement provided by a sensor, the value constraint
is checked. There are many behavior types based on the measured data type, such
as invalid value or fixed value. Based on the selected behavior, the Data Generator
function returns a specific value for the measurement.

Besides the sensor’s behavior, it is also possible to change the behavior of the IoT
devices. For example, the GATEWAY_DOWN behavior makes the simulated IoT
device stop working after some time. When an IoT device stops working, all the
sensors and actuators belonging to that device also stop working.

8.2.3.5 Automatic testing

The TaS enabler has been designed to be easily integrated into any Continuous Inte-
gration and Continuous Delivery processes. Figure 8.17 illustrates the TaS enabler
concept. One of three events trigger the TaS process: code commit, new compo-
nent (software module or hardware device) added, new scenario added. Several tests
are executed by simulating the different testing scenarios on the system under test.
The tests can cover functional, operational, security, performance, and scalability
testing. If all the tests pass, we can deploy the new changes in the real environment.

Following the process we depict above, we can automatically test every change
in the system and cover every test scenario.

Test case

While testing an IoT system, we may want to test different network topologies,
such as adding a new device, removing a device, or just changing the way to
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Figure 8.17. Test and Simulation (TaS) Workflow.

connect devices. A test case is a collection of tests executed on one network topology.
There can be many different testing types (e.g., functional, security, or scalability
testing). A dataset defines a test. For test execution, the TaS enabler runs the simu-
lation and testing using each dataset by following the test order in the test list. We
can change the order of the datasets via the web interface.

Test campaign and the integration into DevOps cycle

While the test case groups the test by the defined network topologies, the test cam-
paign contains all the test cases that should be executed for each change in the IoT
system. The test campaign is the global test that covers every testing scenario and
testing aspect. The test campaigns are executed automatically every time there is
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Figure 8.18. Test and Simulation (TaS) Enabler Docker image.

a change in the system. For each test campaign, the TaS enabler runs test cases
according to the order in the list.

8.2.3.6 The evaluation module

The Evaluation module collects the simulated actuator data as well as the other met-
rics of the system. Then, it performs the evaluation based on the testing method-
ology (see Section 8.2.3.1 for more details).

The next section presents the implementation of the TaS enabler.

8.2.4 Implementation

8.2.4.1 The test and simulation (TaS) docker image

The TaS enabler has been designed to be portable. It can be installed as a Node.js
application and packaged as a docker image. Figure 8.18 presents the communi-
cations between the modules inside a docker container and between the docker
container and other modules.

The REST Server provides an API to interact with the tool. Via this API, we can
execute the module Data Recorder, Simulation, and Regular and Malicious Data
Generator. The Database is external to the docker container and can be connected
via the Data Storage module. The dashboard is the graphical interface implemented
using ReactJS [27].
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Table 8.1. Basic APIs to integrate into a DevOps cycle.

Path Method Data Response

/devops/ GET Get automation testing
configuration

/devops/ POST {webhookURL,
testCampaignId}

Update the automation testing
configuration

/devops/start GET Trigger the simulation and
testing process

/devops/stop GET Stop the simulation and
testing process

/devops/status GET Get the status of the current
execution

8.2.4.2 Basic APIs

Table 8.1 presents the list of basic APIs exposed by the tool for integration into a
DevOps cycle.

8.2.5 Evaluation

The TaS enabler has been evaluated in several use cases in the ENACT project.

8.2.5.1 Itelligent train system

Figure 8.19 shows the data flow of the TaS enabler in the Intelligent Train System
(ITS) use case. The Data Recorder records the WSN Coordinator data from broker-
01 part of the ITS system. The recorded data is stored in the Data Storage. The
Simulated Wire Sensor Network (WSN) Coordinator uses the recorded data to
simulate a several WSN Coordinators for testing the scalability of the ITS system.
All the simulated WSN Coordinators publish the data to broker-02 which is in the
ITS system under test. By evaluating the gateway status, we can assess the scalability
of the ITS system.

8.2.5.2 E-Health system

The TaS enabler is used in an e-Health use case to test if the parsing data function
works correctly in the e-Health gateway. Figure 8.20 presents the data flow of the
e-Health use case. The simulated sensors send some valid and invalid data messages
to the internal broker, and then these messages are consumed by the CloudAgent.
By mutating data messages, we can test the CloudAgent in various test scenarios,
such as “invalid data format” and “invalid value”.
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Figure 8.19. Intelligent Train System.

8.2.5.3 Smart home system

In the Smart Home use case, we used the TaS enabler as part of the DevOps cycle.
Figure 8.21 shows the data flow of the TaS enabler. First, the Data Recorder records
and builds the testing dataset from the real system. For each system change, such
as new features, and software updates, the TaS enabler uses the recorded dataset
to check the system reaction. By comparing the recorded system output with the
simulated system output, we can detect miss behaviors in the updated system.

Using the TaS enabler, we can automatically test the SIS in various test scenarios.
However, due to the SIS complexity, a problem may happen at any moment while
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Figure 8.20. E-Health System.

Figure 8.21. Smart Home System.
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the system is running. Knowing the root cause of the problem is very important
to find the solution. Therefore, we need a tool to identify the root cause of the
problem while running an SIS.

8.3 Root-Cause Analysis (RCA)

Root Cause Analysis (RCA) is a systematic process for identifying “root causes” of
problems or events and for responding to them. System administrators and DevOps
engineers use RCA not only for detecting the problems but also for understand-
ing their root-causes to prevent the recurrences and/or mitigate the impact. In the
context of ENACT, the RCA enabler relies on Machine Learning algorithms to
identify the most probable cause(s) of detected anomalies based on the knowledge
of similarly observed ones. Figure 8.22 presents the high-level architecture of the
implemented enabler.

The data collector allows gathering information from different sources (e.g.,
network, application, system, hardware) by relying on dedicated monitoring agents.
It has a plugin architecture that enhances its extension to new data formats. Parsing
such data allows extracting various attribute values relevant to the origin of any
detected incident. We automatically select the most relevant attributes by using
several machine learning algorithms. These attributes increase the analysis accuracy
and reduce the data dimensions as well as the computation resources needed.

The historical data is a set of data used for learning purposes. It consists of
labeled records collected over time. These records describe the original cause of
several incidents (e.g., a sensor is no longer permitted to send data to the central
gateway) and the relative attribute values (e.g., downstream data bit-rate measured

Figure 8.22. RCA Enabler high level architecture.
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in the central gateway decreased). The historical data is constructed by two
means:

• Active learning: We deal with controlled systems. Therefore, the collected
data can be easily labeled by actively performing different tests injecting
known failures and attacks.

• Passive learning: Once an incident is detected and alerted (e.g., by a third-
party tool) without knowing its origin, thanks to the aid of the system experts,
manual RCA is performed by debugging different logs and correlating various
events to determine the corresponding root causes. The result of this work
can be stored in the database with its relevant attribute values.

The historical data are derived from these two sources. The idea is to determine
when the system reaches a known undesirable state with a known cause. It involves
using the concept of Similarity Learning [8], i.e., Ranking Similarity Learning. The
RCA tool calculates the similarity of the new state with the known ones. It presents
the most similar states in the relative similarity order. The final goal is to recog-
nize the incident’s root origin by using historical data. In this way, the tool can
recommend to the operator which countermeasures to perform based on known
mitigation strategies.

The RCA Enabler works following two phases: the knowledge acquisition phase
(Figure 8.23) and the monitoring phase (Figure 8.24). The former is for building
a historical database of known problems and incidents. The latter consists of mon-
itoring the system in real-time, analyzing the newly-coming incident by querying
the historical data, and suggesting possible root causes. It is worth noting that pas-
sive learning in the knowledge acquisition phase can be continuously run during
the monitoring phase. We describe the details of each module in the following sub-
sections.

8.3.1 Data Collection

Analyzing an SIS requires different statistics and data, i.e., the logs, metrics, network
traffic, and any data that could identify the system state. A data collector is necessary
and can be provided by the system (e.g., in the ITS use case, the metrics are collected
and sent to the RCA enabler via the MQTT broker), or an enabler can be deployed
to collect different types of data, namely:

• Capturing network traffic: For example, the MMT-Probe [11] (TCP/IP net-
works) and the MMT-IoT [4] (IoT- 6LoWPAN) are able to sniff and record
the network traffic.
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Figure 8.23. RCA-Knowledge acquisition phase.

Figure 8.24. RCA-Monitoring phase.

• Reading and extracting logs: The current version of the RCA enabler supports
by default reading the data input in the form of JSON and CSV files. Other
formats can be rapidly taken into account thanks to the extensibility of MMT-
Probe (e.g., creating new plugins).

In the knowledge acquisition phase, the data can be collected in two ways:

• Actively injecting or reproducing known failures and attacks, then collecting
labeled corresponding data.

• Passively monitoring the system, debugging different logs and traces, cor-
relating various events and particularly by consulting the system experts to
determine the corresponding root causes as well as the relevant data.
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In the monitoring phase, the data is collected and transmitted to the RCA
enabler in real-time. In theory, there is no restriction in the type of data to be gath-
ered. On the contrary, a maximum of data for identifying the system functionalities
is desirable. Even though some data could be redundant, data processing steps are
performed to extract the most pertinent data.

8.3.2 Data Processing

As we mentioned in Section 8.1, there can be an enormous number of compo-
nents/indicators in the analysis of an IoT system. In the following subsections, we
discuss our techniques that avoid data noise, deal with heterogeneous data, and
calculate the similarity between two different data sets.

8.3.2.1 Attribute selection

Attribute selection (also known as feature selection) [5] is one of the core concepts in
Machine Learning that tremendously impacts the model performance. For complex
systems, it is common that the data collected is too complicated or redundant.
In other words, there might be some irrelevant or less important attributes (i.e.,
noises) contributing less to the target variable. Removing the noises helps not only
to improve the accuracy but also to reduce the training time. It is the first and most
essential step that should be performed automatically based on the feature selection
techniques or manually by system experts.

The current version of the RCA enabler has been integrated with the following
feature selection techniques:

• Univariate feature selection: The selection of the best features is based on uni-
variate statistical tests. Each feature is compared to the target variable while
the other features are temporarily ignored. The goal is to determine whether
there is any statistically significant relationship between them. Each feature
has its test score. The bigger the score is, the more likely the feature is impor-
tant. The features with top scores should be selected. The test score is the
average of the scores calculated based on the chi-square test, the f test, and
the mutual information classification test [5].

• Recursive feature elimination (RFE): It is about selecting features by recur-
sively considering smaller and smaller sets of features. The idea is to use an
external estimator (logistic regression model and random forest model [7])
that assigns weights to features (e.g., linear model coefficients). The least
important features are pruned step-by-step from the current set of features.
This procedure is recursively repeated on the pruned set until the desired
number of features left is eventually reached. Compared to univariate feature
selection, RFE considers all features at once, thus can capture interactions.
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8.3.2.2 Data normalisation

Normalization is a concept informally used in statistics, and the term “normalized
data” may have different meanings. In principle, data normalization means elimi-
nating heterogeneous data measurement units and making the attributes compara-
ble despite different value ranges.

In our perspectives, data normalization consists of two steps:

• Standardizing data to have a mean of zero and a standard deviation(s) of 1
(Equation (8.1) and Figure 8.25):

xstandardi zed =
x − mean(x)

s
(8.1)

• Re-scaling the data to have values between 0 and 1 (Equation (8.2)):

xnormali zed =
x − xmin

xmax − xmin
(8.2)

8.3.2.3 Similarity calculation

Suppose that the system’s temporal state can be reflected by n metrics (i.e., n
attributes). This set of n attributes can be represented by a vector in a multi-
dimensional space of n dimensions. Calculating the similarity and dissimilarity of
two states becomes the problem of measuring the distance of orientation (the angle)
and magnitude (the length) of their two representing vectors. Figure 8.26 depicts
an example in a 3-dimensional space.

The current version of the RCA enabler has been integrated with the following
similarity and distance measures:

• Cosine similarity [2]
• Adjusted cosine similarity [2]
• Jaccard similarity [2]
• Euclidean distance [2]
• Manhattan distance [2]
• Minkowski distance [2]

These measures are used to calculate the similarity score whose value is between
0 and 1. The bigger the similarity score is, the more similar the two compared
states are (e.g., if the similarity score is equal to 0.95, there is a 95% probability
that two compared states are considered the equivalent). The similarity score can
be computed based on one or multiple similarity and distance measures. In the
training phase, we determine the measures. Therefore, when we compare a known
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Figure 8.25. Data standardization.

Figure 8.26. Similarity calculation in 3-dimensional space.
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Figure 8.27. Historical database of known incidents.

state and its repetition, we have a similarity score as big as possible. Besides, to
avoid false positives, the similarity between a common proper state and each known
malicious state should be as low as possible.

8.3.3 Reaction and Visualization

First, the RCA enabler analyses live the data originating from the system under
monitoring. It reports back the similarity score of the current state, its most similar
known incident, and the corresponding root causes. If the similarity score is higher
than a given threshold, an alert is generated. The alert helps the system administra-
tors foresee how the system evolves from a normal functioning state to a known fault
or failure and determine the root causes to perform the most appropriate mitiga-
tion actions. For example, in the ITS use case, the RCA enabler communicates with
the ITS through an MQTT connection. When the RCA enabler receives a message
with all the relevant attributes, it identifies the level at which the system state and
a known incident are similar. It publishes the result to the MQTT exchange.

Regarding the visualization, the results of the RCA enabler can be viewed intu-
itively on a GUI. Figure 8.27, Figure 8.28, Figure 8.29 displays some screenshots
of RCA’s GUI. More results are presented in the following sections.

8.3.4 Evaluation

8.3.4.1 Performance evaluation with generated testing data

To evaluate the RCA enabler, we first generated a learning data set in CSV for-
mat with several known records. Each record describes an “incident” with different
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Figure 8.28. Newly detected incidents.

Figure 8.29. A newly detected incident and its similarity scores in comparison with

known ones.

“attribute” values. These learned “incidents” are stored together with the poten-
tial origin causes. The “attributes” refer to the metric values that can be gathered.
Afterward, we generate new attributes and check whether the system recognizes
them as a known incident among the ones that are already in the historical data.
The RCA enabler measures the similarity of each new record and each learned
incident. It ranks them by determining the most likely similar ones. To assess the
performance, we calculate the enabler’s response time with the function taking as
input the number of known states and the attributes identifying a state. In this
evaluation, the similarity score is the average of all similarity measures mentioned
in Section 8.3.2.3.

Figure 8.30 and Figure 8.31 show the results of our experiments. As expected,
more time is needed when the data volume handled increases. However, we observe
that the number of known states has less impact on the response time than the
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Figure 8.30. RCA Enabler’s response time towards the number of attributes.

Figure 8.31. RCA Enabler’s response time towards the number of known incidents.

number of the attributes has. The processing time needed increases more dras-
tically when more attributes are under consideration than when there are more
known states. This increase reaffirms the need for integrating “attribute selec-
tion” as aforementioned in Section 8.3.2.1. In our evaluation, we did not apply
any selection technique because the data was generated randomly. The attributes
are, thus, seemingly equal and make the selection not useful. However, there will
probably be a different story when real systems are involved (further discussed in
Section 8.3.4.2).
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Figure 8.32. General architecture for the evaluation.

8.3.4.2 Evaluation on a real IoT Testbed

Set-up of the experiment

To evaluate the RCA enabler, we performed several experiments on a real IoT
testbed called w-iLab.t1 provided by Imec.2 Figure 8.32 presents the general archi-
tecture of the experiments. Several IoT devices (Zolertia Re-Mote3) formed an IoT
network where the clients reported sensed data periodically to the border router
before these reports were forwarded via a USB line to a server installed in a more
powerful Linux-based machine. There was an IoT device to perform sniffing tasks:
capturing network traffic and piping via the USB line to the Linux-based machine
where MMT-IoT was deployed to analyze the traffic and extract the metrics for the
RCA enabler. Besides, the IoT network consisted of normal clients reporting sensed
data every 10 seconds, and one (or several) attacker(s) behaved interchangeably in
three modes:

• Normal mode reporting data every 10 seconds.
• DoS (Denial of Service) attack mode reporting data 100 times faster (10 mes-

sages/s) and with incorrect Frame Check Sequence (FCS4).
• Dead mode not reporting data at all (node failure).

1. https://www.fed4fire.eu/testbeds/w-ilab-t/

2. https://www.imec-int.com/

3. https://zolertia.io/zolertia-platforms/

4. FCS: The FCS field contains a number calculated by the source node based on the data in the frame. This
number is added to the end of a frame sent. When the destination node receives the frame, the FCS number
is recalculated and compared with the number sent in the frame. If they are different, the frame is con-
sidered malformed (intentionally or not) or modified between the source node and the destination node.

https://www.fed4fire.eu/testbeds/w-ilab-t/
https://www.imec-int.com/
https://zolertia.io/zolertia-platforms/
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Table 8.2. Attributes extracted and sent to RCA.

Ref. Attribute Description

(1) Network throughput
(bps, pps)

The whole network traffic throughput, computed in bits
per second (bps) and packets per second (pps)

(2) Throughput at
devices (bps, pps)

Throughput estimated at each device.

(3) Traffic transmitted
on links (bytes,
packets)

Traffic volume transmitted on each link during a
parameterized period (e.g., 10 seconds)

(4) Number of
routing-related
packets (packets)

Number of routing-related packets sent and received by
each device during a parameterized period (e.g., 10
seconds)

(5) Transmission delay
(ms)

The duration in millisecond since the packet is created by
a device (timestamp packaged in the sensed data) until it is
captured by the sniffer (captured packet’s timestamp)

(6) CPU usage (%) CPU usage at each device, packaged in the sensed data.

(7) Memory usage (%) Memory usage at each device, packaged in the sensed data.

(8) Battery level (%) Level of battery left at each device, packaged in the sensed
data.

(9) Power consumption
(W)

Power consumption (DC) at each device in Watts,
packaged in the sensed data.

(10) Average packet size
(bytes)

Average size of packets transmitted during a parameterized
period (e.g., 10 seconds)

(11) Probe ID An integer number representing the ID of the MMT-Probe
analysing the traffic and performing the extraction.

(12) Protocol ID An integer number representing the protocol ID

Table 8.2 summarizes the attributes extracted by MMT-IoT and transferred to
RCA for further analysis.

Attribute selection and data normalisation

As the first step, the RCA enabler selects the significant attributes among the 12
listed in Table 10. The selection is done by applying the techniques aforementioned
in Section 8.3.2.1.

An incorrect FCS can signify a malformed packet (e.g., due to a misconfiguration or an error in the imple-
mentation), a jamming attack (i.e., the attacker abuses the network by generating frames that should be
ignored), or a message manipulation attack (i.e., the attacker intercepts and modifies a frame’s content).
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Table 8.3. Feature Selection results.

Univariate feature selection Recursive feature elimination

Chi-square Mutual information Logistic Random

Ref. test f-test classification test regression model forest model

(1) true true true 1 true

(2) true true true 2 true

(3) true true true 2 true

(4) true false true 6 false

(5) true true true 3 true

(6) true true true 2 true

(7) true true true 2 true

(8) false false false 9 false

(9) false true true 6 false

(10) false false false 8 false

(11) false false false 10 false

(12) false false false 10 false

Table 8.3 summarizes the results when different Feature Selection models are
used. There are six attributes, namely (1–3), (5–7), which are considered significant
according to all the models. Four attributes (8), (10), (11), and (12) are concluded
to be not relevant and can be left out. The attributes (4) and (9) are recommended
by some models and not by others. We performed the analysis in the following
subsection with these two attributes and the other six attributes recommended by
all the models.

Similarity calculation and analysis

Firstly, regarding the DoS attack, one can see clearly in the statistics displayed by
MMT-IoT that:

• The traffic volume increased significantly during the attack period
(Figure 8.33).

• The attacker was evidently the most active device (Figure 8.34) and one end
of the most active link (Figure 8.35).

From the RCA point of view, all other selected attributes were more or less
affected by the DoS attack. The attack pattern was learned, and when repeated,
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Figure 8.33. Traffic throughput increased remarkably when the attack took place.

Figure 8.34. The attacker was the most active device.

the similarity score observed by the RCA was always no less than 0.92 (i.e., 92%
similar). It is worth noting that, in this evaluation, we computed the similarity score
based on the “adjusted cosine similarity”.

In node failure (dead device), all the attributes related to the dead device were
affected. The RCA enabler reported a similarity score between 0.84 and 0.87 when
the failure repeated.
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Figure 8.35. The attacker belonged to the most active link.

Lastly, when the border router was affected by the jamming attack of incorrect
FCS values, its CPU usage jumped virtually. When this behavior happened again,
the RCA enabler determined that it was up to 94% similar to the learned inci-
dent’s observed symptoms. However, even when all the network devices worked
normally, the RCA enabler identified that there was up to 78% similarity between
this incident and the event “Possible jamming attack with incorrect FCS values”.

8.4 Conclusion

In conclusion, This chapter presents two tools, i.e., the TaS and RCA enablers,
that enable the validation and verification of IoT systems. The TaS enabler, based
on the idea of “Digital Twins”, is a Software-as-a-Service solution that provides
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(i) a flexible simulation of sensor networks, (ii) a powerful data generator with real-
time data recording, and (iii) support for Continuous Integration and Continuous
Development. It helps IoT application developers save time and money on setting
up the testing environment and thus supports faster application delivery. The RCA
enabler systematizes the knowledge about the potential incidents that may occur
in the system. It prevents the incidents or to quickly and intelligently react against
their recurrences.

In practice, we can apply the TaS and RCA enablers to various systems other than
IoT systems in the context of ENACT. In general, they can work on any system in
which the data about the system’s functioning state can be collected. For the RCA
enabler, it would be beneficial if the owner or administrator has already acquired
a certain level of understanding about the system to facilitate the training phase
and the database creation for known incidents and root causes. Otherwise, we can
perform penetration tests to discover potential vulnerabilities so that the attacks
and failures can be injected and learned.

Moreover, both tools have been developed to be generic enough so that adapta-
tions can be easily made to make them applicable to various types of systems (e.g.,
industrial SCADA systems, 5G mobile networks). We plan to adapt and use these
two tools in several other collaborative projects in different contexts. We hope they
will play a crucial role in the Montimage ecosystem and be commercialized within
the MMT Monitoring solution.5
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Chapter 9

SIS-based eHealth Application: The Tellu
Use Case

By Arnor Solberg, Oscar Zanutto and Franck Fleurey

9.1 From Chronic to Pro-active Care

To date, an average of 80% of public health care resources in Europe are spent to
respond to chronic diseases that are exacerbated in the last three years of people’s
lives, against a low investment of resources in the field of prevention, which can be
pursued by changing lifestyles. Public health expenditure is among the largest and
fastest growing spending items for governments. In 2015, public expenditure on
health was 7.8% of GDP in the EU as a whole, with more than 70% of expenditure
funded by the public sector in two thirds of Member States (EC 2017). In 2013,
premature deaths due to major NCDs (cardiovascular diseases, cancers, respiratory
diseases and diabetes) cost EU economies 0.8% of GDP (OECD/ EC 2016), with
further losses incurred due to the lower productivity and employments rates of peo-
ple living with chronic health problems. Due to population aging, chronic diseases
and the diffusion of new diagnostic and therapeutic technologies, the share of GDP
spending on health is projected to increase in the coming years (EC 2015, OECD/
EC 2016). In most high and middle-income countries, non-communicable dis-
eases are responsible for the biggest share of such healthcare costs (EC 2014).
Furthermore the ongoing pandemic situation has boosted the demand of online
telecare, eHealth solutions. General practitioners and nurses have improved the
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remote physical parameters gathering, almost regarding oxygen saturation and body
temperature. Due to these kind of increasing use of technology, care provider orga-
nizations has improved and scaled up their organizational models also in terms of
digital employees’ digital skills and care workflows.

This panorama indicates that institutions and care providers adopt a pro-active
care approach aimed at significantly influencing individual, collective and organisa-
tional behaviour so that people can consciously plan lifestyles in which the preven-
tive role played by the behavioural determinants of longevity is valued: nutrition,
physical activity, cognitive stimulation and sociality.

This last aspect, in particular, has a decisive role as a health protection factor.
It has been shown that perceived loneliness has an impact in terms of mortality
comparable to smoking fifteen cigarettes a day. Furthermore, it is frequently associ-
ated with anxiety, depression and reduced movement, which can lead to hyperten-
sion and metabolic disorders with chronic degenerative effects. In this sense, living,
lifestyle and technological support are integrating into a unicum that characterises
the ecosystem in which the health design of the future is embedded. Within this
new perspective, the process of longevity requires social and health services to over-
come the dichotomous logic of intervention structured on antitheses such as health
vs. disease, autonomy vs. dependence, placing rather their offer within a contin-
uum that contemplates paths of reversibility, compensation, homeostasis, and new
dynamic adaptations to the needs of the subject.

It is therefore necessary to imagine a model of person-services relationship based
on the concept of co-production of health. In such a framework, the intervention
of technology is inserted in support of care in a co-decided way with the person: at
one extreme, ICT assumes a role of support to the fitness and well-being (i.e. pre-
vention) of autonomous and still healthy citizens, to reach at the opposite extreme
the apex of the technological complexity connected to an increase in the intensity
of health care, passing through moments in which it becomes possible to set up an
“intermediate” action of technological support, for example in the management of
chronicity at home and in the transitions between the services used by the subject.
eHealth solutions have increased their presence, and their perceived usefulness, fol-
lowing the development of the Covid pandemic19. In the global context, and in
the European context in particular, there has been a proliferation of state-sponsored
applications that provide information on the disease, ensure contact tracing, and
create an informed dialogue with one’s doctor and the Covid19 emergency man-
agement team in one’s territory. The applications have also made it possible to
remove much of the bureaucracy involved in the relationship between citizens and
the health system, since many of the activities relating to the booking of diagnostic
examinations, their payment and their reporting have moved online. Lastly, one
of the most interesting aspects of the increase in the use of wearable technologies
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for measuring certain health parameters is the growing possibility of acquiring data
capable of feeding machine learning and data processing systems capable of activat-
ing artificial intelligence systems capable of making diagnostic forecasts and pro-
viding useful information for personalising care in increasing numbers.

At the centre of this paradigm is the decision-making process involving experts
and the person: it is based on the personalisation and timing of the use of tech-
nologies, and on the personalised design of the integrated care process structured
in collaboration with the family (where present) and the social and health services,
public and private, which may be activated.

9.2 e-Health and m-Health for the Digital Evolution
of Services

The European Commission defines eHealth and Digital health and care as: “Digital
health and care refers to tools and services that use information and communication
technologies (ICT) to improve prevention, diagnosis, treatment, monitoring and
management of health and lifestyle. Digital health and care has the potential to
innovate and improve access to care, the quality of care and to increase the overall
efficiency of the health sector”.

In the field of care for the elderly, tele-assistance is one of the answers that best
translates the above statement into concrete terms. It must be understood as the
person’s ability to communicate remotely with home care providers and their social
surroundings through the use of devices such as tablets and smartphones. These
devices, equipped with integrated adapted video communication applications, are
often placed in dialogue with wearable devices capable of automatically acquiring
information about certain significant critical parameters, such as blood pressure
and blood sugar in the case of fragile people suffering from chronic diseases such
as hypertension and diabetes. They are therefore able to signal the exceeding of
individual critical thresholds, activating the subject and starting a pre-set alarm
chain.

In this sense, in 2017 the European Commission launched the initiative
“Blueprint strategy for a digital transformation of health and care in an ageing soci-
ety” proposing a structured path that links four distinct but fundamental worlds
in advancing care innovation alongside technology: universities, companies, pub-
lic authorities and citizens. The objective pursued is to transform social challenges
into opportunities for economic growth associated with an increase in citizens’ well-
being. This initiative foresees a “multiplier effect” to boost the digital transforma-
tion of the entire health care secotr. For companies, research organisations and care
providers operating in the social and health sectors, the indications contained in the
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Figure 9.1. Evidence of the positive results produced by the implementation of this

approach, defined as “quadruple helix”, is the success of numerous experiences mapped

by the study of European excellence in the sites selected by the European Innovation

Partnership for Active and Healthy Ageing.

“Blueprint strategy” represent a fundamental reference point for structuring digi-
tal innovation paths in care. This document directs corporate efforts towards the
adoption of a perspective in which people and their needs are placed at the centre,
aiming at their empowerment to achieve independent living in their own context.
The elements connected to the participatory co-design of technological solutions,
as well as the creation of sustainable business models capable of making care systems
more efficient, represent the drivers to be followed for the digital transformation of
services supporting frail persons.

A virtuous example is represented by the recent HoCare2.0 Project, done in the
Interreg Central Europe Programme (https://www.interreg-central.eu/Content.
Node/HoCare2.0.html) that is going to codesign and provide customer-centered
home care by co-creation with citizens. The Project foresee the creation and the
devices adaptation to the user needs in combination with the SMEs knowledge to
come up with technological solutions that could be relevant and usable in the daily
life.

Another experience is The “Electronic Health Care Record and Integrated Infor-
mation Systems” that has been implemented by the Valencian Health Agency to
improve the integration and interoperability of systems and guarantee their sus-
tainability, with greater efficiency and quality of service and according to a citizen-
centred approach.

Below are some examples of the impact of the programme:

• In the context of the Integrated Home Care Programme, approximately
7,000 patients were treated with an overall satisfaction index of 92.7%; 154

https://www.interreg-central.eu/Content.Node/HoCare2.0.html
https://www.interreg-central.eu/Content.Node/HoCare2.0.html
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were saved for each stay in hospital, which was 30% less than the Spanish
national average duration;

• the Electronic Dossier is accessible to 50,000 health professionals and 373
pharmacies. There are 5.1 million clinical pictures of patients, 43 million
clinical documents are registered, 150,000 visits are conducted daily online.
This information, integrated with each other, has enabled better control of
treatment interactions and drug administration and increased quality support
for professionals’ decision-making;

• system development has created a boost for the IT industry in the region:
1,320 IT specialists and 107 companies have been involved at full capacity.

9.3 H2020 ENACT Project Pilot Testing Experience

This framework includes the experimentation conducted in ISRAA (ISTITUTO
PER SERVIZI DI RICOVERO E ASSISTENZA AGLI ANZIANI) that is a Public
care provider organization for older people, based in Treviso (Italy) concerning the
investigation, and subsequent experimentation, of some technological solutions for
the remote assistance of fragile people living in the residential context of “Borgo
Mazzini Smart Cohousing” foreseen within the Horizon 2020 ENACT DevOps
project on DevOps of trustworthy smart IoT systems.

The residential complex in which the elderly people who participated in the
pilot reside is located in the historic centre of Treviso. It consists of 46 flats with a
total surface area of 5,589 m2 in which elderly people live alone or in pairs with an
average age of 75 years.

9.3.1 ENACT Pilot Scenarios on Smart Building and eHealth
Impact

As the first step to the e-health IoT system design, in order to understand the atti-
tudes and needs of the elderly residents in Cohousing towards technological inno-
vations for the improvement of quality of life, a set of questions were defined to be
asked to the residents in the form of an interview. Then, a focus group followed
where eight residents representative of the elderly population used the designed
technologies for environmental comfort and independent health management.

Below are some of the most significant elements taken from the survey conducted
in August 2020:

The study showed a general inclination towards the adoption of technologies
useful for monitoring both one’s own health and the living environment for the
benefit of one’s comfort and safety.
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Figure 9.2. Percentage of users who agree to sensors installation for environmental

comfort.

Figure 9.3. Percentage of users who agree to presence and movement sensors.

Figure 9.4. Percentage of users who want to get notifications of devices’ malfunctioning.

On the basis of this attitude, some residents with conserved cognitive resources
and a discreet functional autonomy were involved in order to test the devices pro-
vided by the Norwegian Company TellU that provide eHealth solutions in health
care such as: thermometer, saturator, Oxymeter, sphygmomanometer capable of
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Figure 9.5. Percentage of notification modalities preferred from users in case of

malfunctioning.

detecting and transmitting the parameters detected via Bluetooth in real time to
the ISRAA care manager. In this way, on the basis of a personalised care plan, inno-
vative teleprotection paths have been activated based on the detection of critical
alarm thresholds, for each parameter, over which the care manager was able to act
in a timely manner by innovating the care processes.

The experience was favourably in the eyes of the elderly people testing the solu-
tion, who were able to experience the benefits of these health support tools, high-
lighting the high usability of the devices throughout the trial.

With regard to the organisational impact, determined by the experimentation, it
should be noted that the nurses and care management staff involved appreciated the
time savings, the accuracy of information and the possibility of acting proactively,
guaranteeing better health conditions for the people assisted.

9.3.2 Technical Overview of the eHealth Case Study

The industrial-based use case from TellU that was developed in ENACT is a Digital
health system for supporting and helping various patients staying at home or in res-
idencies such as cohousing to the extent possible during treatment and care, as well
as to have tight interaction with health personnel through digital means in addi-
tion to adequate physical meeting points. This makes the patient more independent
and it enables support for extensive self care. One type of “patients” supported by
the provided digital services is elderly people, for whom the Digital health system
will feature elderly care to allow the elderly to live safe at home. Another type of
patients are people with chronic diseases such as Diabetes, Kidney diseases, Chronic
obstructive pulmonary disease (COPD) and people with temporary diseases such
as Covid-19 and cancer. These are patients that need to be regularly followed up
and that would benefit from sensor based health status monitoring and digital self
care services. For example, Diabetes patients apply sensors and devices to follow
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Figure 9.6. The general set up of the ENACT eHealth case study.

their glucose level and regularly provide measurements and questionnaire reports
that can be followed up by health personnel. The general set up of the Tellu eHealth
case study for medical telecare services is illustrated in Figure 9.6.

The digital health system controls both equipment that are deployed for remote
supervision (such as bed sensors, motion sensors, sensors for indoor and out-door
location, video based supervision, etc.) and various types of medical devices and
specific sensors supporting the care and wellness for the specific patient (e.g., blood
pressure meter, sphygmomanometer, Oxymeter, glucose meter, medicine reminder,
etc.). In addition, the system can integrate with other systems, for instance to pro-
vide information or alarms to response centers, caregivers, physicians, family, etc.,
and to feed information to medical systems such as electronic health record systems.

In terms of managing the extensive distribution of devices, sensors and software
across the IoT and edge space we exploit what we denote “the Personal Health
Gateway” (PHG) which integrates the sensors and devices and that controls the
edge and ensures the right data are provided to the various stakeholders and to the
cloud based system. Thus, the handling of large numbers of largely distributed per-
sonal health gateways and their connected sensors has been a main focus in this case
study for the validation and exploitation of the ENACT technologies. In particular,
we have explored the potential of ENACT for the IoT, edge and cloud services, by
having smooth integration of heterogeneous devices, DevOps process for the devel-
opment of the edge components, as well as secure and trustworthy connections and
data transfers. This case study is set up with a local/edge infrastructure consisting
of a set of devices and a home gateway (GW). A set of such local infrastructures
are then connected and aggregated into a cloud-based infrastructure. The overall
technical architecture of the use case including the PHG are depicted in Figure 9.7.

The Personal Health Gateway architecture is the one depicted in the lower part
of the figure, and is the element that is controlling the edge and connecting devices
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Figure 9.7. Overall architecture with the GW architectural components.

and sensors in the IoT and edge space, while the TelluCloud eHealth system resides
in the cloud. The total system encompasses a complex ecosystem spanning IoT,
edge and cloud. The Personal Health Gateway consists of a set of microservices to
manage the various interactions with the devices and cloud services. The applica-
tion level interaction and the management is completely separated. This is partly
to ensure strict security and privacy requirements. The BLE gateway component
manages Bluetooth Low Energy (BLE) enabled devices, for example blood pres-
sure meter, scale, glucose meter, etc. The RPM cloud agent includes the application
logic that resides at the edge level and interacts with the cloud level service. A set of
microservices supports the management and DevOps process, providing access to
system level operations of the Personal Health Gateway through secure channels.
Moreover, it includes the monitoring component providing system and application
level monitoring required for the continuous operation of the service. The Gateway
includes an MQTT broker and support for standard internet communication pro-
tocols. The components run on docker containers. The application of the ENACT
enablers is indicated in the overall architecture of Figure 9.7:

• The context aware access control is explored to provide more advanced
application-level functionality in order to dynamically provide access to dif-
ferent stakeholders based on the context. Context can for example imply an
escalated state or a crisis situation. For example, in case of a fire alarm in the
patient’s house, it may be important to provide further access to the installed
camera for example to provide access to firefighters for them to better assess
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the current situation, while in the normal state the camera will only be pos-
sible to be accessed by authorised health personnel;

• ThingML is fully exploited for the efficient coding and DevOps support of
the Personal Health Gateway;

• GeneSIS together with DivENACT is explored for the efficient management
and continuous deployment of potentially large scale deployments of our tele-
care service, where large amounts of IoT and edge devices such as welfare sen-
sors and medical devices are managed through the deployed Personal Health
Gateways (PHG) residing in people’s homes. Note that the PHG is the soft-
ware stack as depicted in the overall architecture figure above, thus, it may
also be deployed on mobile gateways (e.g., smart phones) and we are cur-
rently releasing a new version of our PHG that can be deployed on Android
and iOS based smart phones, enabling the patient to do medical measure-
ments on travel.

• The ENACT Risk Driven Decision Support tool is explored as part of our
DevOps process that needs to be compliant with standards such as ISO
27001, where risk analysis and risk management is required to be an inte-
gral part of the DevOps process.

Reference

[1] Michel Goossens, Frank Mittelbach, and Alexander Samarin. The LATEX Com-
panion. Addison-Wesley, Reading, Massachusetts, 1993.
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Chapter 10

Intelligent Transport System: The Indra
Use Case

By Francisco Parrilla, Sergio Jiménez Gómez, Modris Greitans
and Janis Judvaitis

10.1 Introduction

The future of the railway market involves digitization, automation, connectiv-
ity and the use of intelligent systems that continue to add value to the soci-
ety by improving management, operation and user experience, in order to face
the challenge posed by the European Green Deal1 as evidenced in the different
Strategic and Innovation European agendas,2 as well as in the plans and reports
of public governs and relevant public organizations and Programs (such as the
Shift2Rail European Innovation Initiative,3 the Innovation Plan for Transport and

1. https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en

2. https://errac.org/publications/strategic-rail-research-and-innovation-agenda/

3. https://shift2rail.org
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Infrastructures launched by the Government of Spain,4 the French-Swedish Strate-
gic Partnership for innovation, green solutions in the transport sector,5 etc).

The digitalization of the railway market, as well as the automation and deploy-
ment of new intelligent systems, requires the design and implementation of new
systems to be deployed in the railway ecosystem; systems that will pose a technolog-
ical challenge to achieve the objectives set in the European agendas for the coming
years, and that will entail major changes as well as the deployment of a large num-
ber of devices and subsystems both On Board and On Track. These systems and
devices, to face a progressive and changing digitalization of the sector, must be pre-
pared for agile development and deployment, where their control and monitoring
provide the necessary mechanisms to guarantee an efficient, robust, safe, secure and
updated operation, according to the demands and challenges to be met.

The ENACT results emerges as a facilitator to meet the proposed challenge, in
line with the strategic lines and programs described for the future digitalization of
the rail market providing DevOps enablers.

10.2 Rationale

The rail domain requires infrastructure and resources that are usually expensive
and require a long-time planning and execution. Therefore, the usage of the rail
systems must be trustworthy, following strict security and safety regulations. Several
functionalities could be implemented within the rail systems to ensure that the
system could tackle its high critical requirements as planned.

The proposed Use Case for railways shows how the use of the ENACT enablers
can be used to enhance the DevOps cycle of new innovative systems – aligned with
other innovation programs mentioned in the Chapter 10.1 – exploiting and eval-
uating their potential. The selected innovative systems have been analyzed, imple-
mented and tested:

• On Board WTI (Wireless Train Integrity)6: This functionality is in charge
of measuring, in real time, train composition parameters and evaluate them

4. Ministerio de Transportes, Movilidad y Agenda Urbana. Gobierno de España: “Plan de Innovación para el
Transporte y las Infraestructuras”. February 2018

5. https://www.tresor.economie.gouv.fr/Articles/2018/03/28/partenariat-franco-suedois-pour-l-innovation-et-
les-solutions-vertes-french-swedish-partnership-for-innovation-and-green-solutions

6. Aligned with On Board Train Integrity Technology demonstrator tasks defined on TD2.5 addressed on
X2RAIL-2 and X2RAIL-4 projects on which Indra is involved https://projects.shift2rail.org/s2r_ip_TD_D.
aspx?ip=2&td=061d0fcf-51a6-4358-a74f-a4d34e8dac01 and making use of SCOTT https://scottproject.
eu/ and DEWI results http://www.dewiproject.eu/

https://www.tresor.economie.gouv.fr/Articles/2018/03/28/partenariat-franco-suedois-pour-l-innovation-et-les-solutions-vertes-french-swedish-partnership-for-innovation-and-green-solutions
https://www.tresor.economie.gouv.fr/Articles/2018/03/28/partenariat-franco-suedois-pour-l-innovation-et-les-solutions-vertes-french-swedish-partnership-for-innovation-and-green-solutions
https://projects.shift2rail.org/s2r_ip_TD_D.aspx?ip=2&td=061d0fcf-51a6-4358-a74f-a4d34e8dac01
https://projects.shift2rail.org/s2r_ip_TD_D.aspx?ip=2&td=061d0fcf-51a6-4358-a74f-a4d34e8dac01
https://scottproject.eu/
https://scottproject.eu/
http://www.dewiproject.eu/
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to report the train integrity status. The On Board system, based on WSN
Sensors among the composition, provides the necessary information to deter-
mine the rolling stock material that composes the consists and evaluate and
ensure, through an On Board unit, its integrity status. This integrity status
is shown to the driver through the Train Management Systems (TMS) and a
Cloud service interface.

• Logistic and Maintenance System7: This functionality provides informa-
tion to register and locate both rolling stock material and on-track signalling
devices and inform about their status. This functionality is required to solve
the rail environment needs to locate and monitor the status of the big het-
erogeneity and flexibility of the compositions and signalling devices, making
a special emphasis on the freight compositions, to optimize the rail business
operation. The points that are optimized into the rail framework are the man-
agement of the rolling stock, cargo tracking, etc. To this end, it is required
deploying IoT On Board and On Track, together with Cloud solutions to
track and manage the rolling stock material data and to perform predictive
maintenance.

These services are illustrated in the following Figure 10.1:
The DevOps role in the Use Case assists to reach this automation and digital-

ization objective, with the following focuses:

• Security and Privacy Monitoring (S&P Mon&Con) tool: This tool is
responsible for monitoring and actuating over the On Board infrastructure
to guarantee its security characteristics.

• GeneSIS tool: This tool monitor performs software remote deployments on
the rail equipment to keep all the devices with the desired software version.

• Behaviour Drift Analysis (BDA) tool: This tool monitors the behaviour of
the equipment to detect deviations related with the proper define behaviour
for them.

• Actuation Conflict Management (ACM) tool: This tool detects conflicts
that may appear in the Use Case operation and to help to resolve the con-
flicting actions.

• Testing and Simulation tool: It is a tool that simulates a part of the Use Case
infrastructure and makes a Digital twin of it to be evaluated.

7. Aligned with Smart radio-connected all-in-all wayside objects demonstrator tasks defined on TD2.10
addressed on X2RAIL-1 and X2RAIL-4 projects on which Indra is involved https://projects.shift2rail.
org/s2r_ip_TD_D.aspx?ip=2&td=061d0fcf-51a6-4358-a74f-a4d34e8dac01 and making use of SCOTT
https://scottproject.eu/ and DEWI results http://www.dewiproject.eu/
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https://projects.shift2rail.org/s2r_ip_TD_D.aspx?ip=2&td=061d0fcf-51a6-4358-a74f-a4d34e8dac01
https://scottproject.eu/
http://www.dewiproject.eu/
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Figure 10.1. On Board WTI (Wireless Train Integrity & Logistic and Maintenance System

Functionalities Scheme).

Source: INDRA.

• Root Cause Analysis (RCA) tool: This tool detects possible failures that may
occur in the Use Case infrastructure informing about the most likely cause
for that fail.

One of the challenges that the Use Case faces to reach the automation and dig-
italization of the rail environment is the scalability. The mentioned DevOps tools
developed in ENACT for the Use Case have different objectives. However, these
objectives converge on solving the scalability issues that the functionalities hide. To
evaluate the scalability impact and to provide the issue’s magnitude, a real rail sce-
nario example is provided. An example to show the scalability issues is the Madrid-
Barcelona French Border line, one of the first high speed lines built in Spain and one
with the higher capacity (more trains per day). An example of a real line magnitude
can be seen in Figure 10.2.

For this real example, focusing only on On Board systems, there are 94 trips
circulating through this line: 47 of them from Madrid to Barcelona and the rest
from Barcelona to Madrid. Each trip is accomplished by a single train composition
that could be built following three different kinds of composition: simple, double,
and mixed.

• Simple: There are 38 simple train compositions per day where there is only
one locomotive wagon. Each simple composition is formed by 12 wagons.
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Figure 10.2. Madrid-Barcelona French Border rail line general characteristics.

Source: INDRA.

• Double: There are 5 double compositions per day where there are two simple
compositions joined. Each double composition is formed by 24 wagons.

• Mixed: There are 5 mixed compositions per day which are formed by differ-
ent kind of pieces of rolling stock. Each mixed train composition is formed
by an average of 18 wagons.

In the real line, there are running 1296 wagons in average, if both directions of
the line are considered (94 trains per day). Based on the functionalities architecture,
further details shown in Section 10.3, it is estimated that around 4000 units of On
Board equipment are required to cover the On Board equipment for this line.

From the magnitude presented, we can verify that it is essential to provide a
deployment mechanism to update all these systems in a controlled, automated and
orchestrated way. It is important to remark that these systems should be devel-
oped with digital twins in mind to test the potential impact of new updates in a
test environment. They faithfully reproduce the potential impacts of these updates
in operating environment with mechanisms that ensure the cybersecurity of com-
munications throughout the ecosystem and adjusts the deviations of the sensor
networks involved. This serves to ensure the robustness of the different orders dis-
tributed throughout the global system.

10.3 Use Case Implementation

In this section, we explain the IoT platform brought to implement the rail function-
alities and show how the ENACT enablers are applied. Moreover, it includes how
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Figure 10.3. Rail Use Case architecture enriched with the DevOps tools.

Source: INDRA.

the DevOps tools enhance the Use Case itself. As illustrated in the Figure 10.3, we
identify three different architecture layers. These layers are the Edge, the Gateway,
and the Cloud layers:

10.3.1 Edge

The edge layer is made up of the various objects (Wireless Sensor and actuator
networks – WSAN – and other concentrating and/or communication devices) dis-
tributed both on the track and in the On Board equipment. This layer also serves
to provide/send raw data to the functionalities. It is used by the BDA (10.4.5)
and ACM (10.4.4) tools to perform conflict analysis and monitor the behavior of
the devices Moreover, it is used by the Testing and Simulation tool to create a fair
Things Digital Twin. The following elements form it:

• Things: The key element in this layer is defined under the name of Thing.
The Things provide the functionality parameters described above.
The Things are defined as a group of nodes which globes coordinators, sensors
or actuators. In such a way, the Things have several capabilities: gather, actuate
and communicate.

It must be emphasized that the layer covers the On Board and On
Track sections. WTI and a set to Logistic and Maintenance parameters are
obtained and processed in the On Board section, while the On Track section
participates in the provision of another set of Logistics and Maintenance
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Figure 10.4. On Board and On Track Things.

Source: INDRA.

specific data. The On Track infrastructure uses RFID technology to obtain
information from the train. These Things are powered up by an energy har-
vesting system to cover the case that no electrification systems are equipped
On Board a train.

– Sensors:

• On Board: an accelerometer, a Received Signal Strength Indicator
(RSSI) sensor, and a Global Navigation Satellite System (GNSS)
receiver, and Radio Frequency Identification (RFID) tag and reader.

• On Track: RFID reader.

– Actuators:

• On Board: Light-Emitting Diode (LED)s and displays.

The Things software consists of 5 modules: data managing module, inau-
guration module, integrity module, logistics module and maintenance mod-
ule. They are working in synergy to provide the data and control over the On
Board and On Track Things infrastructure deployed on the rolling stock.

– Data managing module:

• On Board : The data is gathered at the nodes located on each wagon
of the train. Data are sent over the air using the IEEE 802.15.4 based
ZigBee protocol for secure and reliable communications. As typical
for wireless sensor and actuator network, there is at least one so called
base station, which forwards the data to the next processing point. The
system is also capable of communication in the other direction sending
commands from base station to the nodes.

In this case the next processing point is WSN coordinator. WSN
coordinator acts as a data forwarder from Things to the Communica-
tion middleware (CMW), while also ensuring that the data forwarded
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are in the correct format. WSN coordinator is also responsible about the
forwarding of commands to the Things from CMW. The commands
from CMW can be: start inauguration, start/stop integrity control,
start/stop logistics control, start/stop maintenance control and reset.
All of the commands are part of modules described in next sections.

• On-Track: The on-track data gathering does not require the wireless
network, the RFID sensor readings are gathered and forwarded to the
CMW. On-track infrastructure listens to the following commands
from CMW: start/stop logistics control and reset.

– Inauguration module: The inauguration module is implemented on the
WSN coordinator. After receiving the command about the start of inau-
guration procedure from the CMW, the base station is notified to identify
the nodes located on the wagons belonging to this train and check that
they are operational. In this module also the physical order of the wagons
is calculated using the GNSS and RSSI sensor values and RFID data.
After successful inauguration the WSN coordinator sends corresponding
message to CMW reporting the inauguration status.

– Integrity module: The integrity module is operated only in the On Board
infrastructure and is responsible for continuously validating the train
integrity while it is operational. Integrity control can only be started after
a successful inauguration phase is finished and integrity control is not
already operational. When the WSN coordinator receives the command
from CMW to start the integrity control it notifies the base station to
send out the integrity start command. After start command each of the
nodes and base station reports sensor status every 250 ms or 4 times per
second. The received sensor data is forwarded to the CMW as raw data
consisting of GNSS position, accelerometer data and RSSI value mea-
sured at the base station for each wagon. Using this information also the
train integrity is calculated, it is based on aforementioned sensors and
train integrity is considered lost in case when at least two of three sensors
report data that indicates that there is a train integrity issue. The train
integrity information is also forwarded to the CMW. The train integrity
system remains operational until the stop or reset command is received.
If the start inauguration or start integrity command is received while the
integrity system is operational, the command is ignored.

– Logistics module: The logistics module is responsible for providing the
business information about the train logistics. Logistics module operates
on the On Board and on-track infrastructure and uses the RFID reader
data. On-track infrastructure provides wagon order information, but On
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Board infrastructure provides information about the cargo and also allows
to identify the wagon by RFID tag associated with it. The logistics module
can be started after successful inauguration and stopped at will.

– Maintenance module: The maintenance module is responsible for pro-
viding the maintenance information about the wagons and infrastructure.
While the maintenance module is operational it reports the node energy
consumption and battery charge status. The maintenance module can be
started after successful inauguration and stopped at will. Also the mainte-
nance module handles the reset command, which can be issued by CMW
and will reset the Things software in case of any errors. The reset command
will not be accepted by the WSN coordinator if inauguration process is
running or integrity control module is operational.

– Testing and validation: The developed infrastructure was validated using
the demo setup of Lego train with minimal changes to the setup described
above due to physical limitations of Lego train. The demo setup with Lego
train was used to provide the partners with sensor, logistics and mainte-
nance data from the on-track and On Board infrastructure while located in
the lab environment but still providing non-generated data, thus making
it easier to test, integrate, debug, and showcase developed technologies.

• DMI: The DMI (Driver Machine Interface) is included into this layer and
it is responsible for managing the Things into the train by the driver and to
perform Safety data treatment for the functionalities.

• S&P Monitor: This equipment is the key element in the security properties
for the Use Case Edge layer. The S&P Monitor is an architecture component
located On Board in charge of monitoring the traffic that is carried by the
gateway layer 10.3.2. It must be emphasized that the traffic analysis ignores
the business data related with the ITS functionalities. The reason behind
this decision is that the functionality is in charge of covering the security
aspects of the On Board equipment out of functionality focus. This elements
is formed by several differentiated entities:

– Hardware: The hardware offers the computing capacity to the software,
the connectivity with the gateway by Ethernet and the connectivity with
the S&P Mon&Con Back-end through a 3G/4G interface.

– Monitor SW: The monitor software sniffs the traffic from the gateway in
order to be treated and to be sent to the S&P Mon&Con Back-end for a
further analysis.

– User’s removal Software: The S&P Mon&Con Back-end analysis could
throw as a result that the users that generates the traffic monitored are
intruders, therefore, a notification with the users is published to this
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entity. This entity, developed by Indra, revokes the user in the ITS central
authentication services.

10.3.2 Gateway

The gateway, so called CMW (Communication Middleware), is the element that
connects all the Use Case system elements. It gathers the edge data and provides
it to the Cloud. Moreover, it gathers the orders to the Things to start the func-
tionality services. This CMW is based on Indra developed solution certified for rail
environments.

From a general perspective, the basic functionalities of this CMW are as
follows:

• Routing the messages from the different services to be sent to the different
architecture entities. This routing follows a preconfigured topology to guar-
antee the provision of the information in a safe and secured manner.

• Synchronization tasks to keeps all the devices working with the same time
reference.

• Authentication tasks at different OSI levels to enable the connectivity of the
edge elements and to enable the connection of the CMW with the Cloud
layer.

• Provision of CMW status metadata to be evaluated by the DevOps tools.

The Use Case, into the ENACT project framework, relays part the scalability
issues to the CMW. As the CMW equipment cost is high to provide several of
these devices to the project, considering the budget, the scalability is tests will be
done in a single physical CMW and several virtual ones will be provided for testing.
Therefore, the general architecture is formed by a single physical CMW located On
Board and the several virtual CMWs.

10.3.3 Cloud

The Cloud layer is formed by the Cloud platforms that participate on the Use
Case and how they are related. Three different Cloud platforms are considered:
FIWARE [1], Indra Hybrid Cloud Platform, and S&P Back-end.

• Indra Hybrid Cloud Platform8: The cloud is a hybrid solution that com-
bines a private and public part. The private par is in charge of the internal

8. https://www.igi-global.com/chapter/security-in-rail-iot-systems/258896

https://www.igi-global.com/chapter/security-in-rail-iot-systems/258896
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ITS task such as edge data storage, edge elements authentication, and external
partner’s authentication. The public part is in charge of integrating external
elements such as tools or other Cloud platforms. This is the integration point
made for all the Cloud resources and DevOps tools that require it. All the
DevOps tool, except the S&P tool, are integrated in this layer to accomplish
their functions. Moreover, it is the integration point also for the FIWARE
Cloud platform.

• FIWARE: FIWARE is an open source platform that the European Union
supports as a future platform to provide Cloud services. For this Use Case,
the FIWARE tool can allocate several functionalities that goes from systems
authentication, storage, DevOps tools integration. However, for the ENACT
project the functionalities uses this Cloud platform to provide to the Use
Case user several dashboard to track the Use Case functionalities (making
use of the FIWARE ORION component for integration tasks and FIWARE
Grafana component as the presentation tool).

• S&P Mon&Con Back-end: It is a service in a separate Cloud that supports
the security monitoring capabilities. The traffic and security data treated in
the S&P Monitoring tool is sent to this back-end to be evaluated. The service
provides to the Use Case user with an interface to interact with the traffic
behaviour and security rules that are desired for the On Board installation,
as well as it offers the situational awareness functionalities for the user to get
informed on the security status at all times.

10.4 DevOps of ITS System Powered by ENACT Tools

This section is intended to introduce the specific functionalities that the DevOps
tools use and how these has been implemented and tested to enhance the Use Case
itself.

10.4.1 Security Monitoring (S&P Mon&Con)

The Security and Privacy Monitoring and Control Enabler (for short, S&P
Mon&Con) is in charge of providing the security layer that it is required for the
Edge, as IoT technologies can suffer multiple types of attacks at this layer. The mon-
itoring service of the tool is the one used in the Use Case. The S&P Mon&Con is
the only tool that it not integrated into the Use Case at the Indra Hybrid Cloud
Platform, as it acts as supervisor of the Use Case IoT system checking from outside
whether resources at the Edge could be under compromise, thus, it has a parallel
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Figure 10.5. S&P – Rail Use Case integration synoptic.

Source: INDRA.

deployment and a different integration philosophy. A synoptic of the scenario can
be seen in the Figure 10.5.

The tool is divided into two sections, the monitoring and the actuation part.
The monitoring part is in charge of collecting the data that are going through the
On Board gateways, this data includes the Things and the DMI data only. These
data is monitored and sent throw a specific On Board device to the S&P Mon-
itoring Back-end to be analysed. From this analysis the following parameters are
analysed:

• Traffic behaviour monitoring: The traffic behaviour is considered as one of
the characteristics that defines the rail functionalities is regular. The Safety
and Security requirements that defines this kind of functionalities require a
regular traffic that may be affected by intruders. The S&P tool is focus on
detecting deviations in this edge layer traffic and revoking the user, from the
Use Case central authentication servers, that generates that deviations.

• Intrusion detection: The authorised users are those systems that can pub-
lish/subscribe to IoT Platform (authenticated in the central Use Case authen-
tication server), and are registered in the S&P Monitoring tool registry (both
user id and Media Access Control (MAC) addresses). In case a user is authen-
ticated in the central Use Case authentication server but not in the S&P
Monitoring tool database, that user or/and the device they use will be revoked
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Figure 10.6. GeneSIS – Rail Use Case integration synoptic.

Source: INDRA.

in the Use Case central authentication servers, banning its connectivity to the
whole IoT Platform.

10.4.2 Automatic Deployment – GeneSIS

The tool is in charge of managing and controlling the software that is running in
the ITS Use Case.

It deploys the Docker images running in the gateways and ensures that they are
correct and deployed with the access credentials requires to be integrated into the
ITS infrastructure. A synoptic of the scenario can be seen in the Figure 10.6.

The tool also is aware of the status of the system deployed. The tool monitors the
status of the Use Case infrastructure to check if it is possible making a deployment
or not. In case the system is running the Use Case functionalities, the deployment
cannot be performed. Moreover, the tool is able to evaluate if the deployment is
correctly performed and if it has a conflict with previous deployments made in the
same device.

10.4.3 Testing and Simulation

The testing and simulation tools has two roles into the ITS Use Case. The first
one is monitoring the infrastructure in order to validate that the ITS infrastructure
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Figure 10.7. Testing and Simulation – Rail Use Case integration synoptic.

Source: INDRA.

is running properly and to simulate failures into the infrastructure to enhance the
validation value against issues that may appear into the operation of the Use Case
itself. A synoptic of the scenario can be seen in the Figure 10.7.

The Testing and Simulation tool collects all the data gathered by the gateway
layer to monitor its workload when it is operating the rail functionalities’ tasks.
In this case, all the traffic from the Edge and Cloud layers is monitored, in other
words, the 100% of the traffic managed during an operation by the gateway.

Using these data the tool is able to replicate a single gateway, in a simulated
virtual environment, taking as a basis the behaviour of the monitored gateway. This
procedure that replicates the devices in a virtual infrastructure is called Digital Twin.
Generating several Digital Twins as many times as desired provides the tool’s user
the possibility to generate a virtual scenario with all the gateways desired; hence,
the scalability of a scenario can be proved. Moreover, as the virtual infrastructure is
generated, the tool is able to simulate certain situations that may compromise the
infrastructure and check its reliability.

This simulated environment is not enough to test the system’s scalability. Several
metrics to evaluate the simulated gateways are required. A specific report about the
gateways status is required to know how the gateway is dealing with that monitored
data. As it is mentioned in the Section 10.3.2, the gateways report specific data
about its physical and routing status to evaluate their operation. Therefore, the tool
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is able to infer, using these reports, the behavior of this simulated infrastructure in
any situation proved.

10.4.4 Actuation Conflict Management (ACM)

The ACM tool is intended to manage conflicts that may appear in the train opera-
tion. This tool is based on generating behavioural models that can be applied to the
On Board devices to fix an specific behaviour depending on the rail system inputs.
A synoptic of the scenario can be seen in the Figure 10.8.

Figure 10.8. ACM – Rail Use Case integration synoptic.

Source: INDRA.

Based on the operation iterations, the developer can check the conflicts that
may appear. The Safety and Secure functionalities defined are designed to not gen-
erate conflicts in the operation; however, the non-Safety systems that uses the safety
ones may generate conflicts between their behaviours (e.g., audio announcements,
alarms, etc.).

The ACM tool is able to generate models, as shown in the Figure 10.8, which
can be deployed in any device that is the root cause of the conflict.

10.4.5 Behavioral Drift Analysis (BDA)

The BDA in charge of checking that the Things behaviour matches with the real
modelled behaviour defined for them. The tool monitors the business data pub-
lished by the Things to the Cloud layer to check in real time deviations with the
mentioned model.



DevOps of ITS System Powered by ENACT Tools 239

Figure 10.9. BDA – Rail Use Case integration synoptic.

Source: INDRA.

Figure 10.10. RCA – Rail Use Case integration synoptic.

Source: INDRA.

10.4.6 Root Cause Analysis (RCA)

The RCA tool is in charge of checking the security perspective of the ITS infras-
tructure from the gateway to the cloud layer finding the reasons for a failure that
may occur (Figure 10.10). This tool serves to identify the cause of network mistakes
that in a scalable systems is critical due to the quantity of devices deployed.
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Several failure scenarios are simulated and recorded by the RCA tool in order to
store the behaviour of the infrastructure in case of those failures appear. The data
monitored is the physical and routing data reported by the gateways.

10.5 Conclusion

We have tested and validated – focused on developing trustworthy and ready-to-use
scenarios to test the DevOps Enablers – the ENACT DevOps framework. From
the Use Case perspective, the provision of an IoT platform with the characteris-
tics exposed along the chapter makes a first step to enhance the rail environment
and improves the new systems for the future digitalization and automation to an
industry that is experiencing a huge evolution in the last decades.

The main impacts that the DevOps philosophy have on the rail environment,
based on the mentioned DevOps tools that are listed along the document, are
focus on:

• Ensuring the scalability of the system before deploying it. Introducing a Test-
ing and Simulation tool permits the optimization of the infrastructure com-
ponents and reduces the uncertainty about the system reliability. Therefore,
the on-site testing time is reduced.

• Fast and agile deployment of new software versions in a remote manner, this
reduces the infrastructure functionalities updated and the maintenance costs.

• Provision of a security backup to the internal rail authentication mechanisms
covering since the devices to the application layers. The S&P tool locates the
system intruders in a more accurate manner and the by design rail Security
and Safety aspects are increased.

• Monitor the deviation in the behaviour of this systems in real time during
the operation. The BDA tool helps to locate devices issues in a more accurate
manner and, then, as the diagnosis time is improved the maintenance time
and tasks is reduced.

• Ensure the interaction between the drivers and the rail functionalities to
reduce the human errors. The main impact is the reduction of the failures
that may occur in the system caused by the driver. This is highly relevant as
the driver is a key factor to rely on the security and safety aspects in the rail
environment.

Reference

[1] Indra Sistemas S.A. Contribution. X2Rail-1 Deliverable D7.2 – Railway require-
ments and Standards application conditions – Indra Sistemas S.A Contribution.
Tech. rep. May 2018.
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Chapter 11

Smart Building: The Tecnalia KUBIK
Use Case

By Miguel Ángel Antón, Rubén Mulero, Sheila Puente, Larraitz Aranburu
and Sarah Noyé

11.1 Introduction

Buildings have long been equipped with sensors and actuators to automate their
control. Smart buildings are those whose facilities and systems (air condition-
ing, heating, lighting, access control systems, etc.) allow integrated and automated
building management and control to increase energy efficiency, security, and usabil-
ity. With the democratization of the Internet of Things (IoT), the number of sensors
and actuators is constantly increasing, giving ways to new applications. The reduc-
tion of sensors and actuators cost is driving a digital shift in the building sector.

The need for better energy resource control and the requirement to provide bet-
ter comfort for the user has led to a new market of complex Smart IoT Systems able
to provide a vast array of new services or applications to the end-user. Extending
legacy system to take advantage of those new services can be expensive, thus limiting
possibilities. There is a need for a seamless way to integrate solutions from different
manufacturers as well as to ensure effective design, deployment, and operation of
simultaneous IoT applications that respect security and privacy requirements.

In that sense, software needs to be changed when new IoT devices are added
or new functionalities for user comfort are developed. Therefore, it is necessary to
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ensure the continuous development and update of the IoT applications. The ther-
mal and climate control needs to be continuously adapted to the environmental
changes to keep the occupants’ comfort in the buildings. At the same time, poten-
tial conflicts between IoT applications acting on the same actuator or the same
physical parameters must be identified to guarantee the buildings’ trustworthiness.
And finally, cybersecurity threats need to be identified and mitigated to preserve
the security and data privacy.

By leveraging the ENACT DevOps framework, secure and trustworthy IoT
applications can be developed based on the interoperability and orchestrated oper-
ation of multiple sensors and actuators.

The smart building KUBIK, situated close to Bilbao, Spain, was inaugurated
in 2010 as an experimental infrastructure for developing and validating innovative
products and systems to optimize energy efficiency in buildings [1]. It is a three
floors building owned by Tecnalia and designed for testing and research ranging
from passive systems such as modular insulating components for roofs and facades,
to energy generation based on renewable energy and climate control systems. It
includes more than 700 sensors and actuators, central Building Management Sys-
tem (BMS), local Renewable Energy Systems RES (RES), local weather station,
and Combined Heat and Power (CHP) equipment on-site. In the context of the
ENACT project, KUBIK provides the required equipment and well-known bound-
ary conditions for the testing and validation of the enablers developed in the project.

KUBIK experimental infrastructure is relevant to the ENACT project due to
its special needs and characteristics such as the combination of legacy building
automation systems and new smart IoT devices, this fact requires an interoperabil-
ity platform to communicate both systems. At KUBIK, several energy efficiency
applications and user comfort applications share common actuators (fancoils,
lights, blinds, controlled sockets, etc.) which generate actuation control conflicts.
Thermal control of a building is also a trade-off between energy consumption and
user comfort that must be adjusted to the specific physical characteristics of the
building and user preferences. Behavioral drifts in the control of building systems
also need to be identified and addressed. And finally, security and privacy of the
communications is a must, paying special attention in secure actuation.

The ENACT enablers in combination with the SMOOL middleware platform
have been used to solve the challenges described in the previous paragraph. Now,
IoT applications are designed, developed and improved using the DevOps strat-
egy, as ENACT enablers ensure no actuation conflicts, security (secure commu-
nications, access control, threat detection, etc.) and trustworthiness (self-learning
controls, behavioural drifts identification, etc.) saving time and effort.

As a general result of the ENACT project, KUBIK building was leverage to
become a place to develop new applications for energy efficiency and user comfort
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for Smart Buildings that are based on IoT equipment. This exploitation of KUBIK
as an infrastructure/testbed for the IoT domain is completely new. Now, the
KUBIK building offers an environment where new IoT devices can be introduced
and a wide range of IoT applications for smart buildings can be deployed and tested.

Section 11.2 describes the KUBIK building that was used as an experimental
platform to validate the ENACT enablers for smart buildings. Section 11.3 gets
into the detail of the technical architecture of the Smart IoT System of the KUBIK
building. In Section 11.4, we expose different test scenarios and the benefit of the
ENACT enablers. Finally, Section 11.5 concludes.

11.2 The KUBIK Smart Building

KUBIK is an experimental infrastructure focused on the development of new prod-
ucts and systems that provide energy consumption reduction for the building and
increase user comfort (Figure 11.1). Its uniqueness lies in its ability to generate real-
istic scenarios to test energy efficiency resulting from the integration of constructive
solutions, air conditioning and lighting systems, and energy supply from conven-
tional and renewable energies. The building contains three floors with different
testing zones and a cellar. Its ground floor is an apartment. It has a bedroom, a
kitchen, a living room, and a corridor where engineers can test the Energy Efficient
Building scenarios for a real home.

The ground floor has various IoT devices installed. Figure 11.2 shows the sensors
and actuators installed at the ground floor. There is a flood sensor, sensors on doors

Figure 11.1. KUBIK by Tecnalia.
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Figure 11.2. Floor plant of the Ground Floor of KUBIK.

Table 11.1. Device/Signals on the Ground Floor and Floor Plant of KUBIK Building. (K)

values represents Kitchen, (B) values represents Bedroom, (L) value represents Living

Room, (C) value represents corridor.

ID Type Device type Location System Signal

1 Sensor Water Flood K Z-Wave Flood alarm state: ON/OFF

2 Sensor Door Multisensor B Z-Wave Position: OPEN/CLOSED

3 Sensor CO2 Sensor 1 K/L/C Z-Wave CO2 level 0: 0 ppm to 200 ppm

4 Actuator Remote Socket 1 L Z-Wave Switch state: ON/OFF

4 Sensor Remote Socket 1 L Z-Wave Energy consumption: Watts

5 Actuator Remote Socket 2 L Z-Wave Switch state: ON/OFF

5 Sensor Remote Socket 2 L Z-Wave Energy consumption: Watts

6 Actuator Remote Socket 3 B Z-Wave State: ON/OFF

6 Sensor Remote Socket 3 L Z-Wave Energy consumption: Watts

7 Actuator 4 Blinds motors L PLC Position: UP/Down

8 Actuator 2 Blinds motors K PLC Position: UP/Down

that indicate open or closed status, various electrical sockets sensors and actuators,
and motors for the blinds. Except for the blind motors, the devices are wireless sen-
sors and actuators integrated as an additional layer to the building control system.
Table 11.1 shows a detailed description of each device represented in the floor plan
of the ground floor of KUBIK, its location in a specific room, its belonging to the
IoT Smart Space or the wired Building Control group, and finally, the measures or
commands it provides.
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Figure 11.3. Reflected Ceiling plant of the Ground Floor of KUBIK.

Similarly, the reflected ceiling plan of the ground floor of KUBIK with sen-
sors and actuators in their approximate location is shown in Figure 11.3. Those
sensors are wireless Z-wave sensors monitoring ambient conditions (temperature,
humidity, lighting, and occupancy) and smoke detectors. Sensors and actuators of
the fan coil units of the space are connected to the building wired control system.
Table 11.2 gives the details of different sensors and their signal types.

The cohabitation between hard-wired legacy sensors and easy-to-install addi-
tional wireless sensors presents an interesting case in line with the desire for flexi-
bility and evolution of the smart building applications in the market.

11.3 Technical Architecture

A set of sensors, actuators, and devices are deployed inside each floor of the KUBIK
building to capture real-time data and store it in a persistent environment. The
stored data is analyzed to find potential solutions to automate different processes.
Each connected device uses a standardized communication protocol to enable inter-
operability among them. A hub acts as a middleware between connected devices and
external software programs and manages the communication protocol. The com-
munication protocol may vary because of the installed devices’ connectivity and
cause additional complexity for large deployment scenarios. Therefore, it is nec-
essary to create a general-purpose system to centralize the connections no matter
what device type is connected.
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Table 11.2. Devices/Signal on Ground Floor and Reflected Ceiling of KUBIK Building. (K)

values represents Kitchen, (B) values represents Bedroom, (L) value represents Living

Room, (C) value represents corridor.

ID Type Device type Location System Signal

9 Sensor Ceiling Multisensor 1 K Z-Wave Motion: YES/NO

9 Sensor Ceiling Multisensor 1 K Z-Wave Temperature: degrees Celsius

9 Sensor Ceiling Multisensor 1 K Z-Wave Light: 0 lux–1000 lux

9 Sensor Ceiling Multisensor 1 K Z-Wave Relative humidity: 20%–95%

10 Sensor Ceiling Multisensor 2 L Z-Wave Motion: YES/NO

10 Sensor Ceiling Multisensor 2 L Z-Wave Temperature: degrees celsius

10 Sensor Ceiling Multisensor 2 L Z-Wave Light: 0 lux – 1000 lux

10 Sensor Ceiling Multisensor 2 L Z-Wave Relative humidity: 20%–95%

11 Sensor Ceiling Multisensor 3 L/C Z-Wave Motion: YES/NO

11 Sensor Ceiling Multisensor 3 L/C Z-Wave Temperature: degrees Celsius

11 Sensor Ceiling Multisensor 3 L/C Z-Wave Light: 0 lux–1000 lux

11 Sensor Ceiling Multisensor 3 L/C Z-Wave Relative humidity: 20%–95%

12 Sensor Ceiling Multisensor 4 B Z-Wave Motion: YES/NO

12 Sensor Ceiling Multisensor 4 B Z-Wave Temperature: degrees Celsius

12 Sensor Ceiling Multisensor 4 B Z-Wave Light: 0 lux – 1000 lux

12 Sensor Ceiling Multisensor 4 B Z-Wave Relative humidity: 20%–95%

13 Sensor Smoke Detector 1 K/L/C Z-Wave Alarm state: ON/OFF

14 Sensor Smoke Detector 2 B Z-Wave Alarm state: ON/OFF

15 Actuator Ceiling light 1 K PLC Light state: ON/OFF

16 Actuator Ceiling light 2 L PLC Light state: ON/OFF

17 Actuator Ceiling light 3 B PLC Light state: ON/OFF

18 Actuator Fan Coil 1 K PLC Operation state: ON/OFF

18 Actuator Fan Coil 1 K PLC Temperature setpoint: Celsius

19 Actuator Fan Coil 2 L PLC Operation state: ON/OFF

19 Actuator Fan Coil 2 L PLC Temperature setpoint: Celsius

20 Actuator Fan Coil 3 L PLC Operation state: ON/OFF

20 Actuator Fan Coil 3 L PLC Temperature setpoint: Celsius

21 Actuator Fan Coil 4 L PLC Operation state: ON/OFF

21 Actuator Fan Coil 4 L PLC Temperature setpoint: Celsius

22 Actuator Fan Coil 5 C PLC Operation state: ON/OFF

22 Actuator Fan Coil 5 C PLC Temperature setpoint: Celsius

23 Actuator Fan Coil 6 B PLC Operation state: ON/OFF

23 Actuator Fan Coil 6 B PLC Temperature setpoint: Celsius

24 Actuator Fan Coil 7 B PLC Operation state: ON/OFF

24 Actuator Fan Coil 7 B PLC Temperature setpoint: Celsius
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The devices installed in KUBIK use two different communication protocols.
The first one is called Z-Wave,1 a wireless communication protocol that integrates
smart sensors inside a building. Z-Wave devices are widely used in domestic envi-
ronments due to their ease of installation and low cost. However, its signal quality
can be affected by interference and its battery level. The second one is called the
MODBUS2 communication protocol. This protocol is an industry-standard that
is robust, fast, and secure. The connected devices using the MODBUS communi-
cation protocol need a central node called industrial PC or Programmable Logic
controller.3 They need to be connected by a physical connection (a wired cable).
The MODBUS communication protocol is widely used in industrial processes to
obtain information from machines and active processes. Thus, the main difference
between a Z-Wave and a PLC device is that the former does not need any physi-
cal connection, and the latter requires a physical connection to an industrial PC.
In terms of installation, Z-Wave-based devices are more convenient than a PLC
device, but a PLC device offers robust connectivity and high reliable data speeds.

Having two different communication protocols to acquire data or perform actu-
ation processes, we need to implement a middleware that enables interoperability
among various sensors and actuators. The SMOOL IoT middleware that has a
semantic broker for connecting heterogeneous devices or sources of information.
In addition, the Building Management System also centralize all the information
of new wireless sensors/actuators and the legacy building control systems of the
building using a Scada software.

To address the challenges of sharing sensors/actuators between IoT applications
that are running at the same time and also add a security layer to the data streams,
the ENACT project provides tools and enablers to ensure the trustworthiness of the
IoT applications in the KUBIK infrastructure. Figure 11.4 depicts the high-level
architecture of the communications architecture in the KUBIK building.

The high-level architecture of the communications in KUBIK building
is divided into three modules. The first module contains two subsystems:
(i) system 1, the wireless system where each device is connected to a central node
or network hub managing wireless connections; and (ii) system 2, a wired system
where each device is physically connected to a central node or PLC device manag-
ing each wired connection. The second module contains the Building Management
System (BMS) having three main elements: (i) a gateway device managing the con-
nections between PLC/Z-Wave nodes, (ii) a persistent database that gathers the

1. https://www.z-wave.com/

2. https://modbus.org/

3. https://en.wikipedia.org/wiki/Programmable_logic_controller

https://www.z-wave.com/
https://modbus.org/
https://en.wikipedia.org/wiki/Programmable_logic_controller
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Figure 11.4. High level communications architecture in the KUBIK building.

Figure 11.5. Technical components used in KUBIK architecture.

total connected devices and stores the data read by each device, (iii) a SCADA
interface that graphically shows the current status of each deployed device and
enables engineers to update device configurations. The last module is the SMOOL
interoperabilty layer [2]. The entire system is managed by the decisions made
according to a set of rules programmed in the IoT applications.

Figure 11.5 depicts the technical components used in the above architecture.
The “Deployed sensors” part represents the acquisition process in which a set of
sensors using both Z-Wave (system 1) and legacy PLC (system 2) obtain data mea-
sures to be sent to a middle device called “Mosquitto MQTT broker”.4

4. https://mosquitto.org/

https://mosquitto.org/
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Figure 11.6. Jeedom configuration interface.

The SMOOL middleware has two components, i.e., the Producer and Con-
sumer modules. The Producer module sends secure actuations when the Consumer
module requires a security token. The Consumer module executes a set of expert
rules using the obtained data from the Producer module. An expert encodes the
expert rules. He/she decides which recommended actions to take when the data
acquired from sensors meets a condition. For example, if the illumination sensors
detect too much light, the actuators open the blinds for sunlight to get inside the
KUBIK’s living room.

At the low-level in the smart building Architecture (Figure 11.5), the data acqui-
sition and actuation processes are managed by some hub systems called Gateways.
These hubs are configured to allow direct communication between different sen-
sors/actuators and a Mosquitto MQTT broker. Each hub uses its communication
protocol to acquire or send actuation orders to the target device. For example, one
hub is configured to manage only Z-Wave communications towards connected
devices, while another hub is configured with the MODBUS communication
standard. These hub systems use an internal operating system, JEEDOM,5 that
enables a graphical configuration of the connected devices and external services.
In this regard, each hub is configured to make a direct connection to the Mosquitto
MQTT broker. Figure 11.6 shows how JEEDOM is configured to send the data
read from a set of Z-Wave devices directly to the Mosquitto MQTT broker.

Once the connection between the Z-Wave/PLC hub (JEEDOM) and Mosquitto
broker is established, the next step is to program the Node-RED programming tool
to develop a bridge between MQTT messages, SMOOL middleware and logic of
IoT applications. Node-RED6 is a visual flow-based programming environment

5. https://www.jeedom.com/site/en/index.html

6. https://nodered.org/

https://www.jeedom.com/site/en/index.html
https://nodered.org/
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Figure 11.7. Node-RED programming to connect to Mosquitto MQTT Broker.

designed by IBM for the Internet of Things. Figure 11.7 depicts the configuration
parameters needed to connect the Node-RED with the Mosquitto broker. These
parameters enable the configuration of different workflows to make the required
subscriptions to each connected device.

After having the logical connection between Node-RED and Mosquitto, it is
necessary to program the required Node-RED flows for the data acquisition pro-
cess with the SMOOL module. Figure 11.8 shows the acquisition process flow pro-
grammed in Node-RED. It reads the data from the Mosquitto broker and exposes it
directly to its internal REST API module. The Producer SMOOL component reads
the data exposed in the Rest API endpoints. Each connected line in Figure 11.8 rep-
resents a device inside the KUBIK building. There are several sensors deployed in
the KUBIK building, and each one has its action flow. For convenience, Figure 11.8
presents only a minor part of the devices.

Figure 11.9 exhibits the secure actuation process provided by SMOOL middle-
ware having two action flows: (i) one flow to send the available orders from Node-
RED to SMOOL using a security token (top of the image) and (ii) another flow to
sent the secure actuation orders checked in SMOOL to the actuator via Mosquito
broker (low part of the image).

The flows are configured to enable the SMOOL components to send actions to
the hub and write the needed information to perform the move up or move down
actuation orders of the living room/kitchen blinds.
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Figure 11.8. Node-RED flows to publish sensorized data in SMOOL.

Figure 11.9. Node-RED flows to execute orders over devices in KUBIK through SMOOL.
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11.4 KUBIK as an Experimental Platform for the ENACT
Scenarios

In the ENACT project, the KUBIK building has been used as an experimental plat-
form to test enablers in the Smart Building use case. Multiple scenarios have been
implemented to test the ENACT tools relevant to this use case. We give the details
of the scenarios and their main results in the following section. Those scenarios
involve concurrent IoT applications related to energy efficiency and user comfort.
These applications implement thermal comfort controls and smart building alerts
that assure the safety of their occupants. They employ Z-wave and PLC systems
described in the previous section.

11.4.1 Scenario 1: Thermal Comfort Control – Heating Design

Thermal comfort control is an essential smart building function. Sensors measure
the users’ comfort and enable the HVAC control system to keep the temperature
at the level requested. By adding thermostat and temperature sensors with another
protocol than the one of the HVAC system, it is easier to retrofit old systems and
give more flexibility to deploy sensors. On the other hand, this strategy poses poten-
tial threats and risks to the thermal comfort system that must be identified and
addressed.

One of the threats identified is when one of the thermal control devices is
replaced with a similar device but not the same one. The Risk Management enabler
is then used to analyse potential threats to the HVAC control system when new IoT
devices are combined with legacy systems, provide the list of mitigation actions that
the new IoT device needs to fulfil, and support the selection of security controls
to minimize risks. By means of this enabler, HVAC control system designers and
maintainers can also decide the risk level that that it is tolerable.

The retrofitting of old HVAC control systems is usually combined with chang-
ing the logic of the HVAC control program. In addition, the SMOOL middleware
is used to communicate with new IoT devices and ThingML language can pro-
gram those devices to define system behaviours and generation of executable code.
The Orchestration and Continuous Deployment enabler, aka. GeneSIS, enables the
continuous deployment and update of applications. In the ENACT project, Gen-
eSIS has been fully integrated with SMOOL semantic middleware and ThingML
language. In that way, SMOOL and ThingML are automatically deployed by
GeneSIS as any other software component when adding new IoT devices and
changing the HVAC control logic. The programming of the HVAC control logic,
the communication characteristics of the new IoT devices in SMOOL and the
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programming of ThingML devices are done as part of the same project in the same
Integrated Development Environment (IDE).7

The Orchestration and Continuous Deployment enabler has also been used with
the Actuation Conflict Manager enabler in Scenario 2.

11.4.2 Scenario 2: Thermal Comfort Control – Conflict
in Heating Actuator Use

In the continuation of scenario 1, the integration of multiple systems can result
in two or more applications sending different temperature preferences to the same
heating actuator, which causes a fluctuating operation of the thermal control. The
Actuation Conflict Management (ACM) enabler allows findings at design time the
actuation conflicts that may lead to these fluctuations, and then it helps solving the
conflict, thereby fixing the cause of the fluctuation.

A direct conflict occurs when two applications try to access the same node,
e.g. an actuator. These two applications accessing the same actuator might send
contradictory commands resulting in an indeterministic behaviour. An example
of direct actuation conflict has been programmed and tested in the ACM enabler
(see Figure 11.10). Figure 11.10 shows two IoT applications fed with temperature
values from two different sensors. The applications try to change the actuator state
when the temperature values reach a threshold that mimics the thermostat opera-
tion. The temperature sensors are deployed at different parts of the room, and thus
different temperature values are likely obtained. The actuator behavior is similar to
a relay that can switch ON and OFF the thermal heater.

Figure 11.11 shows a Node-RED flow with the implementation of the previously
described scenario. In that flow, two identical subflows represent sensor processes
that access the “command” node to send an actuation command to the same heating

Figure 11.10. Thermal comfort control with conflict in heating actuator use.

7. Details about this integration can be seen in the following video https://www.youtube.com/watch?v=mfT_
AwfkXNc

https://www.youtube.com/watch?v=mfT_AwfkXNc
https://www.youtube.com/watch?v=mfT_AwfkXNc
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Figure 11.11. Node-RED flow example for thermal comfort control to be used by the ACM

enabler.

actuator. The ACM enabler helps the software developer solve actuation conflicts
occurring when two or more concurrent IoT applications try to send simultane-
ously conflicting actuation orders to the same actuator. In this scenario, a docker
component that contains the Node-RED flows of the IoT application is deployed
using GeneSIS. The ACM enabler then imports the model of the IoT system cre-
ated by GeneSIS. GeneSIS enables the creation of an architecture and deployment
model of the Smart IoT System by adding components and links. Although several
model formats can be imported into the ACM enabler, Node-RED and GeneSIS
are the main tools supported by the ACM enabler (Figure 11.11).

Once everything is imported and set up in the ACM enabler, a click on the
“find conflicts” button automatically detects actuation conflicts and add a place-
holder for actuation conflict management component in the model where conflicts
might happen. The ACM enabler proposes several out-of-the-box components to
solve a detected actuation conflict. The user chooses the right component, and the
actuation conflict management placeholder is automatically replaced accordingly.
Then, the IoT application is updated to become a conflict-free thermal comfort
control system that can be redeployed using GeneSIS.

11.4.3 Scenario 3: Luminosity Comfort Control – Indirect
Conflict in Luminosity Level Actuation

Two or more applications may also send actuation orders to different actuators that
cause an indirect actuation conflict. An indirect actuation conflict affects the build-
ing thermal control of a building when two IoT applications managing two actua-
tors act concurrently over the same physical variable, e.g. setting a high-temperature
setpoint to the HVAC and opening a window. For instance, one app opens the win-
dow (lower temperature), and another one increases the setpoint temperature in the
HVAC control system (higher temperature). An indirect actuation conflict can also
occur in the room’s luminosity level control when acting on lights and blinds. One
switch controls the light to set it set ON or OFF, and another one controls the blind
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Figure 11.12. Node-RED flow representing the classic behaviour of the control of lights

and blinds using switches.

to set it UP or DOWN. A physical model of the building is needed to find the indi-
rect conflict on brightness, i.e. the impact of lights and blinds on the luminosity
level.

The Actuation Conflict Management (ACM) enabler also corrects the opera-
tion of a physical system subject to uncertainties to deal with indirect conflicts.
To achieve that, the physical system model is added to the enabler to detect and
solve such indirect actuation conflicts. The ACM enabler imports the IoT system
model created using GeneSIS and Node-RED tools. Once the model is imported,
a physical process configuration is specified. The configuration allows establishing
the interaction between a logical node and the environment. For instance, when
there is an activation of a light, it is linked to a physical process representing lumi-
nosity. The utility of this process is to find an indirect conflict. If two different
actions are linked to the same physical process, it may be an unplanned conflict to
be solved.

In this scenario, the control of lights and blinds are associated with their cor-
responding switches using Node-RED. The classic behaviour of the system is that
the lights are controlled by one switch to set it ON or OFF and the blinds are
controlled by another switch to set it UP or DOWN (see Figure 11.12).

The ACM enabler then is fed with the previous described Node-RED flow for
classic behaviour and the physical representation of the system to find actuation
conflicts, i.e. the impact of lights and blinds on the luminosity level. Then, the
ACM tool detects an actuation conflict in the luminosity level when we turn on
the lights having sufficient brightness outside. The ACM tool creates a new Node-
RED flow that resolves that conflict by adding new ACM components between
the application logic and the actuation command (see Figure 11.13). The modified
new Node-RED flow for luminosity level control can then be redeployed. The
updated behaviour open the blinds instead of turning on the lights when the outside
luminosity is high enough. Also in this sceanario, the Behavioural Drift Analysis
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Figure 11.13. Node-RED flow example for solving the indirect conflict in luminosity level

actuation.

(BDA) enabler was used to evaluate how much the observed behaviours of the IoT
System are different from the expected ones.

11.4.4 Scenario 4: Smart Building Alerts for User Comfort

Data integrity and confidentiality must be ensured during data communica-
tion, especially if the communication is an important alert about equipment and
user safety. Therefore, tampering with the alarms by external people should be
avoided. The Security & Privacy Monitoring & Control (S&P Mon&Con enabler,
cf. Chapter 7.1) enabler ensures the integrity and privacy of the communications
through two services: (i) the Security and Privacy Monitoring for the surveillance
of data security and (ii) the Security and Privacy Adaptation for data security
enforcement.

This scenario addresses smart building alerts for IoT apps monitoring building
aspects, such as an abnormally high or low temperature and smoke presence. The
Security and Privacy Monitoring and Control (S&P Mon&Con) enabler ensures
that the alarm system is not tampered with by external people and safeguard people’s
privacy. These enablers have been applied to the communication architecture in
Figure 11.4.

The Security & Privacy Monitoring & Control enabler uses port mirroring to
send a copy of the network packets that contain sensitive information of the smart
building to a server where the enabler is running. Three different nodes in the
smart building communication architecture have been mirrored: (i) the SMOOL
communication broker, (ii) the Raspberry Pi used as a gateway by the SMOOL,
and (iii) the SCADA node of the Building Management System of the KUBIK
building.
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When sensing information is transmitted, the S&P Mon&Con enabler checks
if the messages are sent by the authorized nodes that belong to the KUBIK net-
work. If an external device tries to send or receive a message to/from the monitored
nodes, the S&P Mon&Con enabler notifies the system administrator to block net-
work traffic if necessary. The S&P Mon&Con enabler also ensures the sensing data
integrity by blocking any attempt of tampering with the message.

Scenario 4 addresses sensor devices that trigger alarms. These alarms may also
trigger a security action or siren. The security actions consist of an ON/OFF com-
mand to a siren.

11.4.5 Scenario 5: Thermal Comfort Control – Self-optimizing
Controller Design

The thermal comfort control of a building is a trade-off between user comfort and
energy consumption, e.g., the heating is off when the room or building is not occu-
pied. Monitoring the building’s thermal inertia and real-time occupation can signif-
icantly improve energy efficiency and comfort compared to traditional controllers.
We used the Online Learning enabler (OLE) to find and update the optimal con-
trol parameters at run time. We employed GeneSIS to properly deploy those control
parameters and orchestrate the involved IoT devices.

The Online Learning (OLE) enabler is a module with an agent-based Artifi-
cial Intelligence (AI) algorithm that performs actions based on the sensors readings
gathered from the KUBIK building infrastructure. This enabler aims to provide a
thermal comfort solution that reduces the energy costs in the building. We have
developed a thermal model of the ground floor of the KUBIK building to imple-
ment the OLE. We have demonstrated the potential for energy saving and increased
thermal comfort.

11.5 Conclusion

Buildings are becoming increasingly smart, and new IoT tools are needed to ensure
the safe and trustworthy operation of the different services they offer. The KUBIK
experimental building is a smart building testbed for the ENACT project tools.

We successfully tested the ENACT enablers that enable continuous deployment,
solving actuation conflicts, ensure security and privacy of the communications,
identify risks at design time, correct behavioral drifts, enforce security and pri-
vacy, and self-optimizing controller.
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Chapter 12

Looking Ahead

By Andreas Metzger, Cristóbal Costa Soria, Juan Garbajosa,
Ana M. Moreno, Daniel Pakkala, Jukka Rantala, Valère Robin,

Jukka Saarinen, Bjørn Skjellaug, Hui Song, Mike Surridge,
Tuomo Tuikka, Josef Urban and Thorsten Weyer

12.1 Introduction

In this book, we reported the main outcomes of the EU Horizon 2020 project
ENACT. ENACT developed a toolkit that facilitates the development and opera-
tions (DevOps) of trustworthy Smart IoT Systems.

Concluding this book, we look ahead and offer perspectives on future research
and innovation opportunities in the area of Smart IoT Systems. These future
research and innovation opportunities are based on research challenges that were
jointly developed with partners from the European Technology Platform NESSI
(Networked European Software and Services Initiative [1]). These research chal-
lenges were contributed as input to the forthcoming European Key Digital Tech-
nologies (KDT) Partnership. We thus use the term KDT applications as an umbrella
term for Smart IoT Systems, and thereby include closely related areas such as
embedded systems, cyber-physical systems and edge-based systems.
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12.2 Research and Innovation Opportunities

12.2.1 Software-driven Integration of KDT Applications

Without interaction with each other, KDT applications are information silos,
which become an obstacle for potential business value creation. Software-driven
integration, i.e., developing new software to integrate existing applications, is a
trend in the software industry. Mainstream cloud applications already underwent
platformization, e.g., Facebook or Salesforce are now platforms that allow third par-
ties to develop and offer value-added services.

Because platformization of KDT applications requires offering powerful APIs
to external components and systems, new research and innovation into such plat-
forms is needed. Platformization also requires novel kinds of software architectures
within the applications to achieve the flexibility for deep customization. Support-
ing integration is challenging because custom code will share the already con-
strained resource of electronic components and may also bring vulnerability to
applications that are security- or safety-critical. New design methods are needed,
with performance and vulnerability assessment considering resource and hardware
aspects, together with novel isolation mechanisms on low-level electronic compo-
nents, potentially supported by virtualization techniques.

KDT applications also need to be integrated with traditional enterprise and con-
sumer software applications, since the latter are currently managing the data and
business processes. Such integration introduces electronic components into the tra-
ditional human-data interaction, and thus calls for novel software-hardware co-
design in an agile and continuous way, in order to bridge the social-cyber-physical
sensing powered by new electronic components with the business data and process
controlled by the traditional enterprise software systems. This integration with tra-
ditional enterprise and consumer software applications, also require a higher-level
analysis of vulnerability and risks. Organizations try to run high level business pro-
cesses over inefficient digital ecosystems, made out of different parts, some of them
new, some of them legacy-based, and in many cases non-interoperable. There is a
lack of mechanisms to collect information about these processes (transversal analyt-
ics) and control risks from data pieces coming from different hardware and software
components.

Software integrators play an important role in the software industry and in the
software value chain. New abstractions, orchestration languages and integration
methodologies are needed to facilitate the interdisciplinary thinking of integrators.
Future research and innovation actions in this direction require close collaboration
among software engineering researchers, application providers, software integrators
and the integration platform providers, resulting in the extension of mainstream
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iPaaS (integration Platform as a Service) solutions to reach the lower-end devices.
Platformization and integration are also important for KDT application providers
to develop ecosystems involving component providers, software vendors and inte-
grators. Research and innovation is needed to investigate business models, legal
issues, data sharing strategies, etc., in order to integrate scattered businesses into
prosperous European KDT ecosystems.

12.2.1.1 Managing complexity, dynamics, and uncertainty of KDT

applications

Digital systems and groups of collaborating systems, as well as the environments in
which these systems operate, are becoming more complex, show highly dynamic
behaviour, and increasingly face uncertainty during operation. The trend toward
digitalization is accompanied by a significant increase in complexity, dynamics and
uncertainty. The increasing complexity can be seen in individual KDT systems,
groups of collaborating systems, as well as the environments in which a particular
KDT system operates.

Managing the dynamics of systems, collaborating groups and their environment
poses an important challenges for the engineering KDT applications. Furthermore,
KDT applications increasingly face uncertainty during runtime, i.e., KDT applica-
tions have incomplete or ambiguous information about the environment in which
they operate. This is especially the case when systems are operating in open contexts
where the relevant properties of the environment cannot be completely anticipated
at design-time, and therefore cannot be fully handled by predefined adaptations.
In many future scenarios, such as autonomous driving or smart factories, systems
must be able to meet their goals even on the basis of incomplete or contradic-
tory information about the environment, e.g., the intentions of other systems or
humans, or the preferences and skills of human users.

While ENACT has indicated how – via machine learning at runtime (see
Chapter 6) – a KDT application may capture uncertainties in the environment,
additional research is needed to answer questions such as how to guarantee appro-
priate and safe cognitive adaptability in complex, highly dynamic and uncertain
environments, and how to verify – at runtime and under hard real-time con-
straints – emergent system behavior resulting from the interactions of subsystems
and the ambiguity faced in such environments.

A central challenge will be the modelling and implementation of human-
machine interactions under those conditions; for example the efficient and effec-
tive transfer of control between systems and human users to avoid effects of mode
confusion in autonomous driving. Developing software for complex and dynamic
systems, able to deal with uncertainties, will require engineering processes involving
multiple disciplines such as cognitive science and sociology.
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Promising approaches to deal with the increasing complexity, dynamics and
uncertainty must consider both design-time and runtime. Such approaches will
be based on innovative combinations and improvements of software technologies
in the following categories:

• innovative technical solutions in the area of software technology including
design-time and runtime techniques for collaborative information fusion;

• collaborative runtime verification (including digital twin technology);
• environment perception with shared models of the environment;
• prediction of future behaviour and cognitive adaptability of individual

systems, collaborative groups and the environment.

Innovative process-related solutions in software technology should include
approaches from design science, agile methods, and the creation of appropriate
team culture. Design science offers a disciplined approach to analyze a problem
in a real-world context, systematically derive solutions (in the form of software
artefacts and prototypes) and validate and evaluate them in order to generate new
knowledge [2]. In design science digital solutions are produced and studied in an
operational application context (real world use context), where the maturity, qual-
ity and value of the solutions can be evaluated. The solutions often involve com-
binations of evolving operational processes, software, hardware and ICT systems
governed by multiple organizations, which creates a complex context for design
and deployment of new digital solutions. At design- time, the related engineering
activities, including software engineering, need to be well aligned with the overall
solution goals and requirements, and hardware and network requirements and lim-
itations, as well as business requirements, need to be considered in parallel with the
software engineering process. At runtime, the resulting technical system (or system-
of-systems) may be widely distributed across different embedded, networked and
cloud computing nodes governed by multiple different organizations. Accordingly,
to discover ways to manage the complexities involved in design and deployment
of new digital solutions, the role of governance boundaries and multi-organization
collaboration, both at design-time and runtime, deserve further research.

12.2.2 Leveraging Spatial Computing for KDT Applications

Spatial Computing is an emerging interaction mechanism for digital content in
a converged cyber-physical world. Advances in devices and user interfaces (e.g.,
mixed reality glasses, gesture recognition, haptic feedback, interfaces built from
new materials) and their integration into a spatial computing system will allow
for more adaptable, responsive and immersive interactions with the digital world.
The services offered by the spatial computing system will provide new ways of
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augmenting user experience and will allow us to ‘feel’ with all senses the virtual
environment around us. Just like the real word, spatial computing offers a rich
environment for multi-user interaction, and empowers a human-centric approach
for future digitalisation. Taking industrial automation as an example, the introduc-
tion of spatial computing will help put human needs and interests in a central role,
focusing not only on how to automate and optimize the production process, but
also on how to get workers involved in the process.

Spatial computing systems will be complex constellations of software and con-
tent components operated by a multitude of ecosystem participants. The intelli-
gence required for smart interaction mechanisms will depend on collecting and
analysing massive amounts of social cyber-physical sensing data across all stake-
holders in the ecosystems into digital super twins. The required computing power
will not be provided by the involved devices only, and thus limited to their capabil-
ities – it will be provided by the cloud or at the edge also, offering additional and
typically more powerful capabilities.

Software engineering approaches for designing and developing spatial comput-
ing systems will need to cope with the challenging environment of diversity in
devices and application domains, with intelligent deployment and adaptation capa-
bilities. New programming models, languages and methodologies will emerge in the
spatial computing era, and research and innovation actions will help to create break-
through progresses. This will require interdisciplinary research integrating advances
in media technologies (new coding technologies for digital content), cognitive psy-
chology (new human-machine interaction for better attention and perception from
the users), social science (new methods and processes for better human collabora-
tion), etc.

12.2.3 Sustainable and Energy-efficient KDT Applications

Although digital technologies and software may provide very powerful tools to opti-
mize the energy efficiency in vertical domains, their absolute and relative energy
and resource consumptions continue to increase, even if hardware itself improves
(notably for embedded systems as a by-product of autonomy optimisation or to
reduce the cost of big data centres). The increasing functional scope of software
and applications, the introduction of data intensive algorithms and systematic log-
ging of events, the use of complex middleware stacks (hypervisors, virtual machines,
containers, languages runtimes, bloated framework) all contribute to the environ-
mental impact of software-based systems, often sacrificing frugality for the sake of
ease of development and time-to-market.

The sustainability concern needs to be natively addressed in the develop-
ment and execution phase of all digital systems (embedded, personal, large-scale,
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communication equipment, etc.). New tools and models are needed to optimize
the interactions between hardware and lower software layers, to adapt to runtime
context, and continuously minimize energy and resource consumption, based on
monitoring not only the internal behaviour of software systems but also the external
physical environment through advanced sensing and learning.

Sustainability also calls for simplified and efficient architectural patterns, along
with the appropriate education of key actors such as developers, software architects,
system integrators and data centre management teams. Interdisciplinary research
will provide novel solutions towards sustainable digital systems, e.g., the use of
energy harvesting from the environment (wind, solar, pressure, etc.) or other energy
sources (body heat, foot strikes, etc.) to power lower-end devices, making them
battery-free. This also calls for new programming models, software architectures
and self-adaptation approaches to cope with novel and potentially unstable power
sources.

12.3 Conclusion

The ENACT project paved the way towards bringing established software engineer-
ing processes and tools to the realm of Smart IoT Systems and KDT applications.
As indicated above, this is a mere start and challenging research and innovation
opportunities are ahead of us. Jointly addressing these challenges will contribute to
European companies, SMEs, and research institutes to remain competitive in this
traditionally strong area of Europe.
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