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Abstract

Over the last years, kernel methods have established themselves as pow-
erful tools for computer vision researchers as well as for practitioners.
In this tutorial, we give an introduction to kernel methods in com-
puter vision from a geometric perspective, introducing not only the
ubiquitous support vector machines, but also less known techniques
for regression, dimensionality reduction, outlier detection, and clus-
tering. Additionally, we give an outlook on very recent, non-classical
techniques for the prediction of structure data, for the estimation of
statistical dependency, and for learning the kernel function itself. All
methods are illustrated with examples of successful application from
the recent computer vision research literature.
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1

Overview

Computer vision has established itself as a broad subfield of computer
science. It spans all areas for building automatic systems that extract
information from images, covering a range of applications, from the
organization of visual information, over control and monitoring tasks,
to interactive and real-time systems for human—computer interaction.
Despite this variability, some principled algorithms have emerged over
the last years and decades that are useful in many different scenarios
and thereby transcend the boundaries of specific applications. One
recently very successful class of such algorithms are kernel methods.
Based on the fundamental concept of defining similarities between
objects they allow, for example, the prediction of properties of
new objects based on the properties of known ones (classification,
regression), or the identification of common subspaces or subgroups
in otherwise unstructured data collections (dimensionality reduction,
clustering).

1.1 The Goals of This Tutorial

With this tutorial, we aim at giving an introduction to kernel methods
with emphasis on their use in computer vision. In the chapter

1
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2 Overview

“Introduction to Kernel Methods” we use the problem of binary
classification with support vector machines as introductory example
in order to motivate and explain the fundamental concepts underlying
all kernel methods. Subsequently, “Kernels for Computer Vision” gives
an overview of the kernel functions that have been used in the area of
computer vision. It also introduces the most important concepts one
needs to know for the design of new kernel functions. Although sup-
port vector machines (SVMs) are the most popular examples of kernel
methods, they are by far not the only useful ones. In the rest of this
tutorial, we cover a variety of kernel methods that go beyond binary
classification, namely algorithms for “Multiclass Classification”, “Out-
lier Detection”, “Regression”; “Dimensionality Reduction”, and “Clus-
tering”. We also include some recent non-standard techniques, namely
“Structured Prediction”, “Dependency Estimation”, and techniques for
“Learning the Kernel” from data. In each case, after introducing the
underlying idea and mathematical concepts, we give examples from
the computer vision research literature where the methods have been
applied successfully. It is our hope that this double-tracked approach
will give pointers into both directions, theory and application, for the
common benefit of researchers as well as practitioners.

1.2 What This Tutorial Is Not

This work is not meant to replace an introduction into machine learn-
ing or generic kernel methods. There are excellent textbooks for this
purpose, e.g., [88] and [90]. In contrast to a formal introduction, we
will sometimes take shortcuts and appeal to the reader’s geometric
intuition. This is not out of disrespect for the underlying theoretical
concepts, which are in fact one of the main reasons why kernel meth-
ods have become so successful. It is rather because otherwise we would
not be able to achieve our main goal: to give a concise overview of
the plethora of kernel methods and to show how one can use them for
tackling many interesting computer vision problems.

The limited space that is available in a text like this has another
unfortunate consequence: we have to omit a lot of technical details that
most textbooks on kernel method spend many pages on. In particular,
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1.2 What This Tutorial Is Not 3

we will not cover: probabilistic foundations, such as the statistical
assumptions on how the data we work with was generated; statisti-
cal learning theory, including the highly elegant PAC theory and gen-
eralization bounds; optimization theory, such as dualization and con-
vexity; and mumerics, for example the many methods developed to
solve the SVMs and related training problems. All good textbooks on
support vector machines and kernel methods cover at least some of
these topics, and it is our hope that after reading this introduction into
Kernel Method for Computer Vision, your interest will be aroused to
do further background reading.
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