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Abstract

Discretization and reconstruction are fundamental operations in computer
graphics, enabling the conversion between sampled and continuous repre-
sentations. Major advances in signal-processing research have shown that
these operations can often be performed more efficiently by decomposing
a filter into two parts: a compactly supported continuous-domain function
and a digital filter. This strategy of “generalized sampling” has appeared in a
few graphics papers, but is largely unexplored in our community. This survey
broadly summarizes the key aspects of the framework, and delves into specific
applications in graphics. Using new notation, we concisely present and extend
several key techniques. In addition, we demonstrate benefits for prefiltering in
image downscaling and supersample-based rendering, and analyze the effect
that generalized sampling has on the noise due to Monte Carlo estimation.
We conclude with a qualitative and quantitative comparison of traditional and
generalized filters.

D. Nehab and H. Hoppe. A Fresh Look at Generalized Sampling. Foundations and Trends R© in
Computer Graphics and Vision, vol. 8, no. 1, pp. 1–84, 2012.

DOI: 10.1561/0600000053.
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1
Introduction

Many topics in computer graphics involve digital processing of continuous-
domain data, so it is unsurprising that discretization and reconstruction are
essential operations. Figure 1.1 shows the traditional sampling and reconstruc-
tion pipeline. During discretization (e.g., rasterization of a scene, or capture
of a digital photograph), a continuous input signal f is passed through an

mixed
synthesissampling

continuous
analysis

input output

discretization reconstruction

Figure 1.1: The traditional signal-processing pipeline is divided into two major stages: dis-
cretization and reconstruction. During discretization, a continuous input signal f is convolved
with the reflection ψ∨ of a given analysis filter ψ. The resulting prefiltered signal fψ = f ∗ ψ∨

is then uniformly sampled into a discrete sequence JfψK. To obtain the output approximation f̃ ,
the reconstruction stage computes the mixed convolution between JfψK and a given recon-
struction kernel ϕ, i.e., a sum of shifted copies of ϕ, where each shifted copy scaled by the
corresponding entry in JfψK. (Our notation is explained in greater depth in section 3.)

2
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3

Prefiltering

f

∗

ψ = β0

=

fψ

Sampling

fψ

× X =

JfψK

ReconstructionJfψK
∗

ϕ = β1

=

f̃

Figure 1.2: A continuous function f is prefiltered with analysis kernel ψ (here the box func-
tion β0, not to scale). The resulting signal fψ is sampled into a discrete sequence JfψK. The
final output f̃ is obtained by mixed convolution between the discrete sequence JfψK and the
reconstruction kernel ϕ (here the hat function β1, not to scale).

analysis filter ψ (a.k.a. sampling kernel, prefilter, or antialiasing filter) before
being sampled. The result is a discrete sequence JfψK (e.g., an image). During
reconstruction (e.g., interpolation of a texture, or display of an image on a
screen), the continuous approximation f̃ of the original signal is obtained by
mixed convolution with a reconstruction kernel ϕ (a.k.a. generating function,
basis function, or postfilter). Figure 1.2 illustrates each step of the process
with a concrete example in 1D.

The roles of the analysis filter ψ and reconstruction kernel ϕ are tradi-
tionally guided by the sampling theorem [Shannon, 1949]. Given a sampling
rate 1/T , the analysis filter ψ = sinc(·/T) eliminates from the input signal f
those frequencies higher than or equal to 1/2T so that the bandlimited fψ
can be sampled without aliasing. And in that case, the reconstruction ker-
nel ϕ = sinc(·/T) recreates f̃ = fψ exactly from the samples.

Sampling may also be interpreted as the problem of finding the function f̃
that minimizes the norm of the residual ‖f − f̃‖L2 . If we restrict our attention

Full text available at: http://dx.doi.org/10.1561/0600000053



4 Introduction

mixed
synthesissampling

continuous
analysis

input output

discretization reconstruction

Figure 1.3: The main idea in generalized sampling is to broaden the analysis and reconstruction
kernels by expressing these as mixed convolutions (p ∗ψ and r ∗ϕ) with a pair of digital filters
(p and r) while retaining compact support for the functions ψ and ϕ.

K |K̂| β3 |β̂3|

β3
int

= β3 ∗ 1
6Jβ3K-1

|β̂3
int|

Figure 1.4: The traditional Keys cubic (Catmull-Rom spline)K has support 4 and a reasonably
sharp frequency response |K̂|. The cardinal cubic B-Spline β3

int is a generalized kernel formed
from the basic cubic B-spline β3 and a digital filter. The digital filter acts to widen support to
infinity (though with exponential decay) and to significantly sharpen the frequency response.

to the space of bandlimited functions, the ideal prefilter is still ψ = sinc(·/T).
However, functions are often not bandlimited in practice (e.g., due to object
silhouettes, shadow boundaries, vector outlines, detailed textures), and for
efficiency we desire ψ and ϕ to be compactly supported.

In addressing these concerns, the signal-processing community has
adopted a generalization of the sampling and reconstruction pipeline [Unser,
2000]. The idea is to represent the prefilter and reconstruction kernels as mixed
convolutions of compactly supported kernels and digital filters. As shown in
figure 1.3, digital filters p and r respectively modify the prefilter ψ and the
reconstruction kernel ϕ. The additional degrees of freedom and effectively
larger filter support enabled by p and r allow the design of generalized kernels
with better approximation properties or sharper frequency response. Figure 1.4
compares a traditional piecewise cubic kernel (the Catmull-Rom spline, or
Keys cubic) with a generalized cubic kernel (the cardinal cubic B-spline).

Full text available at: http://dx.doi.org/10.1561/0600000053
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mixed
synthesissampling

continuous
analysis

digital
filtering

input output

discretization reconstruction

Figure 1.5: Generalized sampling adds a digital filtering stage to the pipeline. The output JfψK
of the sampling stage is convolved with a digital transformation filter q = p∨ ∗ r. It is the
result c of this stage (and not JfψK) that is convolved with the reconstruction kernel ϕ to
produce the output signal.

Equivalently, the digital filters p and r can be combined as q = p∨ ∗r into
a separate filter stage as shown in figure 1.5. The result JfψK of the sampling
stage is transformed by the digital filter q (a.k.a. correction or basis change)
to form a new discrete sequence c, which is then convolved with ϕ as usual to
reconstruct f̃ . The key to the efficiency of this generalized sampling framework
is that the digital filters p and r that arise in practice are typically compact
filters or their inverses [Unser et al., 1991], both of which are parallelizable
on multicore CPU and GPU architectures [Ruijters et al., 2008, Nehab et al.,
2011]. Thus, the correction stage adds negligible cost.

An important motivation for generalized sampling is improved interpo-
lation [Blu et al., 1999]. As demonstrated in figure 1.6, an image JfψK is
processed by a digital filter q resulting in a coefficient array c which can then
be efficiently reconstructed with a simple cubic B-spline filter β3. The result-
ing interpolation is sharper and more isotropic (i.e., has higher quality) than
that produced by the popular Mitchell-Netravali filter [1988], even though
both filters have the same degree and support. The implementation of the
digital filtering stage is described in detail in section 4.2. The theory of image
upscaling is described in section 5.2, with implementation notes in section 8.2.
Source-code in provided in appendix A.

In graphics, careful prefiltering is often necessary to prevent aliasing.
McCool [1995] describes an early application of generalized sampling, in
which rendered triangles are antialiased analytically by evaluating a prism
spline prefilter. The resulting image is then convolved with a digital filter. In
this work, we apply generalized sampling to image downscaling and in general

Full text available at: http://dx.doi.org/10.1561/0600000053



6 Introduction

Input f Reconstructed f ∗M

→

M

↓

→

β3

Corrected c = f ∗ r Reconstructed c ∗ β3

Figure 1.6: Reconstruction example. The top row shows the result of the traditional cubic
Mitchell-Netravali filter M . The bottom row uses the generalized sampling approach, first
applying a digital filter r =

q 1
6 ,

4
6. ,

1
6
y-1 as a preprocess, and then reconstructing with the cubic

B-spline β3 — which is less expensive to evaluate on a GPU than filter M .

to rendering with supersampling. Figure 1.7 shows an example. The input f is
prefiltered using the cubic B-spline basis β3. The resulting over-blurred image
is then transformed with a digital filter p∨ that reshapes the antialiasing kernel
a posteriori. The final low-resolution image is sharper and exhibits less aliasing
than with a Catmull-Rom filter, for a similar computational cost. The theory
of image downscaling is described in section 5.2, with implementation notes
in section 8.2 and source-code in appendix A. Generalized supersampling is
described in section 7.

Our aim is to present a concise overview of the major developments in
generalized sampling and to extend these techniques to prefiltering in graphics.
To facilitate exposition and exploration, we develop a new concise notation
for sampling. With this parameter-free notation, key techniques are derived
using simple algebraic manipulation. We conclude by comparing a variety of

Full text available at: http://dx.doi.org/10.1561/0600000053
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Input f Prefiltered, sampled Jf ∗K∨K

→

K

↓

→

β3

Prefiltered, sampled
q
f ∗ (β3)∨

y
Corrected

q
f ∗ (β3)∨

y
∗ p∨

Figure 1.7: Prefiltering example. The top row shows the result of rendering with the Keys
(Catmull-Rom) prefilter K. The bottom row shows rendering using a B-spline β3, followed
by convolution with a digital filter p∨ =

q 1
6 ,

4
6. ,

1
6
y-1. The generalized prefilter p ∗ β3 equals

the cubic cardinal B-spline β3
int. Kernels K and β3 have the same support, but the improved

frequency response of β3
int reduces aliasing while maintaining sharpness. (Our notation is

explained in section 3.)

traditional and generalized filters, using frequency-domain visualizations and
empirical experiments using both L2 and SSIM metrics, to identify the best
strategies available.
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