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Rényi Institute of Mathematics,
Hungarian Academy of Sciences

POB 127, H-1364 Budapest,
Hungary

csiszar@renyi.hu

Paul C. Shields

Professor Emeritus of Mathematics,
University of Toledo,

Ohio,
USA

paul.shields@utoledo.edu

Boston – Delft

Full text available at: http://dx.doi.org/10.1561/0100000004



Foundations and Trends R© in
Communications and Information Theory

Published, sold and distributed by:
now Publishers Inc.
PO Box 1024
Hanover, MA 02339
USA
Tel. +1 781 871 0245
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

A Cataloging-in-Publication record is available from the Library of Congress

Printed on acid-free paper

ISBN: 1-933019-05-0; ISSNs: Paper version 1567-2190; Electronic
version 1567-2328
c© 2004 I. Csiszár and P.C. Shields

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any
means, mechanical, photocopying, recording or otherwise, without prior
written permission of the publishers.

now Publishers Inc. has an exclusive license to publish this mate-
rial worldwide. Permission to use this content must be obtained from
the copyright license holder. Please apply to now Publishers, PO Box
179, 2600 AD Delft, The Netherlands, www.nowpublishers.com; e-mail:
sales@nowpublishers.com

Full text available at: http://dx.doi.org/10.1561/0100000004



Contents

1 Preliminaries 3

2 Large deviations, hypothesis testing 11

2.1 Large deviations via types 11
2.2 Hypothesis testing 16

3 I-projections 23

4 f-Divergence and contingency tables 31

5 Iterative algorithms 43

5.1 Iterative scaling 43
5.2 Alternating divergence minimization 47
5.3 The EM algorithm 55

6 Universal coding 59

v

Full text available at: http://dx.doi.org/10.1561/0100000004



vi Contents

6.1 Redundancy 60
6.2 Universal codes for certain classes of processes 65

7 Redundancy bounds 77

7.1 I-radius and channel capacity 78
7.2 Optimality results 85

8 Redundancy and the MDL principle 91

8.1 Codes with sublinear redundancy growth 92
8.2 The minimum description length principle 98

A Summary of process concepts 107

References 113

Full text available at: http://dx.doi.org/10.1561/0100000004



Contents 1

Preface

This tutorial is concerned with applications of information theory con-
cepts in statistics. It originated as lectures given by Imre Csiszár at the
University of Maryland in 1991 with later additions and corrections by
Csiszár and Paul Shields.

Attention is restricted to finite alphabet models. This excludes some
celebrated applications such as the information theoretic proof of the
dichotomy theorem for Gaussian measures, or of Sanov’s theorem in
a general setting, but considerably simplifies the mathematics and ad-
mits combinatorial techniques. Even within the finite alphabet setting,
no efforts were made at completeness. Rather, some typical topics were
selected, according to the authors’ research interests. In all of them, the
information measure known as information divergence (I-divergence) or
Kullback–Leibler distance or relative entropy plays a basic role. Sev-
eral of these topics involve “information geometry”, that is, results of
a geometric flavor with I-divergence in the role of squared Euclidean
distance.

In Chapter 2, a combinatorial technique of major importance in
information theory is applied to large deviation and hypothesis test-
ing problems. The concept of I-projections is addressed in Chapters
3 and 4, with applications to maximum likelihood estimation in ex-
ponential families and, in particular, to the analysis of contingency
tables. Iterative algorithms based on information geometry, to compute
I-projections and maximum likelihood estimates, are analyzed in Chap-
ter 5. The statistical principle of minimum description length (MDL)
is motivated by ideas in the theory of universal coding, the theoret-
ical background for efficient data compression. Chapters 6 and 7 are
devoted to the latter. Here, again, a major role is played by concepts
with a geometric flavor that we call I-radius and I-centroid. Finally,
the MDL principle is addressed in Chapter 8, based on the universal
coding results.

Reading this tutorial requires no prerequisites beyond basic proba-
bility theory. Measure theory is needed only in the last three Chapters,
dealing with processes. Even there, no deeper tools than the martin-
gale convergence theorem are used. To keep this tutorial self-contained,
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2 Contents

the information theoretic prerequisites are summarized in Chapter 1,
and the statistical concepts are explained where they are first used.
Still, while prior exposure to information theory and/or statistics is
not indispensable, it is certainly useful. Very little suffices, however,
say Chapters 2 and 5 of the Cover and Thomas book [7] or Sections
1.1, 1.3, 1.4 of the Csiszár-Körner book [14], for information theory, and
Chapters 1–4 and Sections 9.1–9.3 of the book by Cox and Hinckley
[8], for statistical theory.
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1

Preliminaries

The symbol A = {a1, a2, . . . , a|A|} denotes a finite set of cardinality
|A|; xn

m denotes the sequence xm, xm+1, . . . , xn, where each xi ∈ A; An

denotes the set of all xn
1 ; A∞ denotes the set of all infinite sequences

x = x∞
1 , with xi ∈ A, i ≥ 1; and A∗ denotes the set of all finite

sequences drawn from A. The set A∗ also includes the empty string Λ.
The concatenation of u ∈ A∗ and v ∈ A∗ ∪ A∞ is denoted by uv. A
finite sequence u is a prefix of a finite or infinite sequence w, and we
write u ≺ w, if w = uv, for some v.

The entropy H(P ) of a probability distribution P = {P (a), a ∈ A}
is defined by the formula

H(P ) = −
∑
a∈A

P (a) log P (a).

Here, as elsewhere in this tutorial, base two logarithms are used and
0 log 0 is defined to be 0. Random variable notation is often used in
this context. For a random variable X with values in a finite set, H(X)
denotes the entropy of the distribution of X. If Y is another random
variable, not necessarily discrete, the conditional entropy H(X|Y ) is
defined as the average, with respect to the distribution of Y , of the
entropy of the conditional distribution of X, given Y = y. The mutual

3

Full text available at: http://dx.doi.org/10.1561/0100000004



4 Preliminaries

information between X and Y is defined by the formula

I(X ∧ Y ) = H(X) − H(X|Y ).

If Y (as well as X) takes values in a finite set, the following alternative
formulas are also valid.

H(X|Y ) = H(X,Y ) − H(Y )

I(X ∧ Y ) = H(X) + H(Y ) − H(X,Y )

= H(Y ) − H(Y |X).

For two distributions P and Q on A, information divergence (I-
divergence) or relative entropy is defined by

D(P‖Q) =
∑
a∈A

P (a) log
P (a)
Q(a)

.

A key property of I-divergence is that it is nonnegative and zero if and
only if P = Q. This is an instance of the log-sum inequality, namely,
that for arbitrary nonnegative numbers p1, . . . , pt and q1, . . . , qt,

t∑
i=1

pi log
pi

qi
≥
( t∑

i=1

pi

)
log
∑t

i=1 pi∑t
i=1 qi

with equality if and only if pi = cqi, 1 ≤ i ≤ t. Here p log p
q is defined

to be 0 if p = 0 and +∞ if p > q = 0.
Convergence of probability distributions, Pn → P , means point-

wise convergence, that is, Pn(a) → P (a) for each a ∈ A. Topological
concepts for probability distributions, continuity, open and closed sets,
etc., are meant for the topology of pointwise convergence. Note that
the entropy H(P ) is a continuous function of P , and the I-divergence
D(P‖Q) is a lower semi-continuous function of the pair (P,Q), contin-
uous at each (P,Q) with strictly positive Q.

A code for symbols in A, with image alphabet B, is a mapping
C:A �→ B∗. Its length function L:A �→ N is defined by the formula

C(a) = b
L(a)
1 .

In this tutorial, it will be assumed, unless stated explicitly otherwise,
that the image alphabet is binary, B = {0, 1}, and that all codewords
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C(a), a ∈ A, are distinct and different from the empty string Λ. Often,
attention will be restricted to codes satisfying the prefix condition that
C(a) ≺ C(ã) never holds for a �= ã in A. These codes, called prefix codes,
have the desirable properties that each sequence in A∗ can be uniquely
decoded from the concatenation of the codewords of its symbols, and
each symbol can be decoded “instantaneously”, that is, the receiver of
any sequence w ∈ B∗ of which u = C(x1) . . . C(xi) is a prefix need not
look at the part of w following u in order to identify u as the code of
the sequence x1 . . . xi.

Of fundamental importance is the following fact.

Lemma 1.1. A function L:A �→ N is the length function of some
prefix code if and only if it satisfies the so-called Kraft inequality∑

a∈A

2−L(a) ≤ 1.

Proof. Given a prefix code C:A �→ B∗, associate with each a ∈ A

the number t(a) whose dyadic expansion is the codeword C(a) = b
L(a)
1 ,

that is, t(a) = 0.b1 . . . bL(a). The prefix condition implies that t(ã) /∈
[t(a), t(a) + 2−L(a)) if ã �= a, thus the intervals [t(a), t(a) + 2−L(a)),
a ∈ A, are disjoint. As the total length of disjoint subintervals of the
unit interval is at most 1, it follows that

∑
2−L(a) ≤ 1.

Conversely, suppose a function L:A �→ N satisfies
∑

2−L(a) ≤ 1.
Label A so that L(ai) ≤ L(ai+1), i < |A|. Then t(i) =

∑
j<i 2

−L(aj ) can

be dyadically represented as t(i) = 0.b1 . . . bL(ai), and C(ai) = b
L(ai)
1

defines a prefix code with length function L.

A key consequence of the lemma is Shannon’s noiseless coding
theorem.

Theorem 1.1. Let P be a probability distribution on A. Then each
prefix code has expected length

E(L) =
∑
a∈A

P (a)L(a) ≥ H(P ).

Full text available at: http://dx.doi.org/10.1561/0100000004



6 Preliminaries

Furthermore, there is a prefix code with length function L(a) =

− log P (a)�; its expected length satisfies

E(L) < H(P ) + 1.

Proof. The first assertion follows by applying the log-sum inequal-
ity to P (a) and 2−L(a) in the role of pi and qi and making use of∑

P (a) = 1 and
∑

2−L(a) ≤ 1. The second assertion follows since
L(a) = 
− log P (a)� obviously satisfies the Kraft inequality.

By the following result, even non-prefix codes cannot “substan-
tially” beat the entropy lower bound of Theorem 1.1. This justifies
the practice of restricting theoretical considerations to prefix codes.

Theorem 1.2. The length function of a not necessarily prefix code
C:A �→ B∗ satisfies ∑

a∈A

2−L(a) ≤ log |A|, (1.1)

and for any probability distribution P on A, the code has expected
length

E(L) =
∑
a∈A

P (a)L(a) ≥ H(P ) − log log |A|.

Proof. It suffices to prove the first assertion, for it implies the second
assertion via the log-sum inequality as in the proof of Theorem 1.1.
To this end, we may assume that for each a ∈ A and i < L(a), every
u ∈ Bi is equal to C(ã) for some ã ∈ A, since otherwise C(a) can be
replaced by an u ∈ Bi, increasing the left side of (1.1). Thus, writing

|A| =
m∑

i=1

2i + r, m ≥ 1, 0 ≤ r < 2m+1,

it suffices to prove (1.1) when each u ∈ Bi, 1 ≤ i ≤ m, is a codeword,
and the remaining r codewords are of length m+1. In other words, we
have to prove that

m + r2−(m+1) ≤ log |A| = log(2m+1 − 2 + r),
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or
r2−(m+1) ≤ log(2 + (r − 2)2−m).

This trivially holds if r = 0 or r ≥ 2. As for the remaining case r = 1,
the inequality

2−(m+1) ≤ log(2 − 2−m)

is verified by a trite calculation for m = 1, and then it holds even more
for m > 1.

The above concepts and results extend to codes for n-length mes-
sages or n-codes, that is, to mappings C:An �→ B∗, B = {0, 1}. In
particular, the length function L:An �→ N of an n-code is defined by
the formula C(xn

1 ) = b
L(xn

1 )
1 , xn

1 ∈ An, and satisfies∑
xn
1∈An

2−L(xn
1 ) ≤ n log |A|;

and if C:An �→ B∗ is a prefix code, its length function satisfies the
Kraft inequality ∑

xn
1∈An

2−L(xn
1 ) ≤ 1 .

Expected length E(L) =
∑

xn
1∈An

Pn(xn
1 )L(xn

1 ) for a probability distribu-

tion Pn on An, of a prefix n-code satisfies

E(L) ≥ H(Pn) ,

while
E(L) ≥ H(Pn) − log n − log log |A|

holds for any n-code.
An important fact is that, for any probability distribution Pn on

An, the function L(xn
1 ) = 
− log Pn(xn

1 )� satisfies the Kraft inequality.
Hence there exists a prefix n-code whose length function is L(xn

1 ) and
whose expected length satisfies E(L) < H(Pn) + 1. Any such code is
called a Shannon code for Pn.

Supposing that the limit

H = lim
n→∞

1
n

H(Pn)
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8 Preliminaries

exists, it follows that for any n-codes Cn:An �→ B∗ with length func-
tions Ln:An �→ N , the expected length per symbol satisfies

lim inf
n→∞

1
n

E(Ln) ≥ H ;

moreover, the expected length per symbol of a Shannon code for Pn

converges to H as n → ∞.

We close this introduction with a discussion of arithmetic codes,
which are of both practical and conceptual importance. An arithmetic
code is a sequence of n-codes, n = 1, 2, . . . defined as follows.

Let Qn, n = 1, 2, . . . be probability distributions on the sets An

satisfying the consistency conditions

Qn(xn
1 ) =

∑
a∈A

Qn+1(xn
1a);

these are necessary and sufficient for the distributions Qn to be the
marginal distributions of a process (for process concepts, see Ap-
pendix). For each n, partition the unit interval [0, 1) into subintervals
J(xn

1 ) = [�(xn
1 ), r(xn

1 )) of length r(xn
1 ) − �(xn

1 ) = Qn(xn
1 ) in a nested

manner, i. e., such that {J(xn
1a): a ∈ A} is a partitioning of J(xn

1 ),
for each xn

1 ∈ An. Two kinds of arithmetic codes are defined by setting
C(xn

1 ) = zm
1 if the endpoints of J(xn

1 ) have binary expansions

�(xn
1 ) = .z1z2 · · · zm0 · · · , r(xn

1 ) = .z1z2 · · · zm1 · · · ,

and C̃(xn
1 ) = zm̃

1 if the midpoint of J(xn
1 ) has binary expansion

1
2

(
�(xn

1 ) + r(xn
1 )
)

= .z1z2 · · · zm̃ · · · , m̃ = 
− log Qn(xn
1 )� + 1. (1.2)

Since clearly �(xn
1 ) ≤ .z1z2 · · · zm̃ and r(xn

1 ) ≥ .z1z2 · · · zm̃ + 2−m̃, we
always have that C(xn

1 ) is a prefix of C̃(xn
1 ), and the length functions

satisfy L(xn
1 ) < L̃(xn

1 ) = 
− log Qn(xn
1 )�+1. The mapping C:An �→ B∗

is one-to-one (since the intervals J(xn
1 ) are disjoint) but not necessarily

a prefix code, while C̃(xn
1 ) is a prefix code, as one can easily see.

In order to determine the codeword C(xn
1 ) or C̃(xn

1 ), the nested
partitions above need not be actually computed, it suffices to find the
interval J(xn

1 ). This can be done in steps, the i-th step is to partition
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the interval J(xi−1
1 ) into |A| subintervals of length proportional to the

conditional probabilities Q(a|xi−1
1 ) = Qi(xi−1

1 a)/Qi−1(xi−1
1 ), a ∈ A.

Thus, providing these conditional probabilities are easy to compute, the
encoding is fast (implementation issues are relevant, but not considered
here). A desirable feature of the first kind of arithmetic codes is that
they operate on-line, i.e., sequentially, in the sense that C(xn

1 ) is always
a prefix of C(xn+1

1 ). The conceptual significance of the second kind of
codes C̃(xn

1 ) is that they are practical prefix codes effectively as good as
Shannon codes for the distribution Qn, namely the difference in length
is only 1 bit. Note that strict sense Shannon codes may be of prohibitive
computational complexity if the message length n is large.
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