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Abstract 

t0 t−1 t−2 · · · t−(n−1)

t1 t0 t−1

t2 t1 t0
...

...
. . .

tn−1 · · · t0


The fundamental theorems on the asymptotic behavior of eigenvalues,
inverses, and products of banded Toeplitz matrices and Toeplitz matri-
ces with absolutely summable elements are derived in a tutorial man-
ner. Mathematical elegance and generality are sacrificed for conceptual
simplicity and insight in the hope of making these results available
to engineers lacking either the background or endurance to attack the
mathematical literature on the subject. By limiting the generality of the
matrices considered, the essential ideas and results can be conveyed in
a more intuitive manner without the mathematical machinery required
for the most general cases. As an application the results are applied to
the study of the covariance matrices and their factors of linear models
of discrete time random processes.
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1

Introduction

1.1 Toeplitz and Circulant Matrices

A Toeplitz matrix is an n × n matrix Tn = [tk,j ; k,j = 0,1, . . . ,n − 1]
where tk,j = tk−j , i.e., a matrix of the form

Tn =



t0 t−1 t−2 · · · t−(n−1)

t1 t0 t−1

t2 t1 t0
...

...
. . .

tn−1 · · · t0

 . (1.1)

Such matrices arise in many applications. For example, suppose that

x = (x0,x1, . . . ,xn−1)′ =


x0

x1
...

xn−1


is a column vector (the prime denotes transpose) denoting an “input”
and that tk is zero for k < 0. Then the vector

1
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2 Introduction

y = Tnx =



t0 0 0 · · · 0
t1 t0 0

t2 t1 t0
...

...
. . .

tn−1 · · · t0




x0

x1

x2
...

xn−1



=


x0t0

t1x0 + t0x1∑2
i=0 t2−ixi

...∑n−1
i=0 tn−1−ixi


with entries

yk =
k∑

i=0

tk−ixi

represents the the output of the discrete time causal time-invariant filter
h with “impulse response” tk. Equivalently, this is a matrix and vector
formulation of a discrete-time convolution of a discrete time input with
a discrete time filter.

As another example, suppose that {Xn} is a discrete time ran-
dom process with mean function given by the expectations mk =
E(Xk) and covariance function given by the expectations KX(k,j) =
E[(Xk − mk)(Xj − mj)]. Signal processing theory such as prediction,
estimation, detection, classification, regression, and communcations
and information theory are most thoroughly developed under the
assumption that the mean is constant and that the covariance is
Toeplitz, i.e., KX(k,j) = KX(k − j), in which case the process is said
to be weakly stationary. (The terms “covariance stationary” and “sec-
ond order stationary” also are used when the covariance is assumed
to be Toeplitz.) In this case the n × n covariance matrices Kn =
[KX(k,j); k,j = 0,1, . . . ,n − 1] are Toeplitz matrices. Much of the the-
ory of weakly stationary processes involves applications of Toeplitz
matrices. Toeplitz matrices also arise in solutions to differential and
integral equations, spline functions, and problems and methods in
physics, mathematics, statistics, and signal processing.

Full text available at: http://dx.doi.org/10.1561/0100000006



1.1. Toeplitz and Circulant Matrices 3

A common special case of Toeplitz matrices – which will result in
significant simplification and play a fundamental role in developing
more general results – results when every row of the matrix is a right
cyclic shift of the row above it so that tk = t−(n−k) = tk−n for k =
1,2, . . . ,n − 1. In this case the picture becomes

Cn =



t0 t−1 t−2 · · · t−(n−1)

t−(n−1) t0 t−1

t−(n−2) t−(n−1) t0
...

...
. . .

t−1 t−2 · · · t0

 . (1.2)

A matrix of this form is called a circulant matrix. Circulant matrices
arise, for example, in applications involving the discrete Fourier trans-
form (DFT) and the study of cyclic codes for error correction.

A great deal is known about the behavior of Toeplitz matrices – the
most common and complete references being Grenander and Szegö [15]
and Widom [33]. A more recent text devoted to the subject is Böttcher
and Silbermann [5]. Unfortunately, however, the necessary level of
mathematical sophistication for understanding reference [15] is fre-
quently beyond that of one species of applied mathematician for whom
the theory can be quite useful but is relatively little understood. This
caste consists of engineers doing relatively mathematical (for an engi-
neering background) work in any of the areas mentioned. This apparent
dilemma provides the motivation for attempting a tutorial introduc-
tion on Toeplitz matrices that proves the essential theorems using the
simplest possible and most intuitive mathematics. Some simple and
fundamental methods that are deeply buried (at least to the untrained
mathematician) in [15] are here made explicit.

The most famous and arguably the most important result describing
Toeplitz matrices is Szegö’s theorem for sequences of Toeplitz matrices
{Tn} which deals with the behavior of the eigenvalues as n goes to
infinity. A complex scalar α is an eigenvalue of a matrix A if there is a
nonzero vector x such that

Ax = αx, (1.3)

Full text available at: http://dx.doi.org/10.1561/0100000006



4 Introduction

in which case we say that x is a (right) eigenvector of A. If A is Hermi-
tian, that is, if A∗ = A, where the asterisk denotes conjugate transpose,
then the eigenvalues of the matrix are real and hence α∗ = α, where
the asterisk denotes the conjugate in the case of a complex scalar.
When this is the case we assume that the eigenvalues {αi} are ordered
in a nondecreasing manner so that α0 ≥ α1 ≥ α2 · · · . This eases the
approximation of sums by integrals and entails no loss of generality.
Szegö’s theorem deals with the asymptotic behavior of the eigenvalues
{τn,i; i = 0,1, . . . ,n − 1} of a sequence of Hermitian Toeplitz matrices
Tn = [tk−j ;k,j = 0,1,2, . . . ,n − 1]. The theorem requires that several
technical conditions be satisfied, including the existence of the Fourier
series with coefficients tk related to each other by

f(λ) =
∞∑

k=−∞
tke

ikλ; λ ∈ [0,2π] (1.4)

tk =
1
2π

∫ 2π

0
f(λ)e−ikλ dλ. (1.5)

Thus the sequence {tk} determines the function f and vice versa,
hence the sequence of matrices is often denoted as Tn(f). If Tn(f)
is Hermitian, that is, if Tn(f)∗ = Tn(f), then t−k = t∗k and f is real-
valued.

Under suitable assumptions the Szegö theorem states that

lim
n→∞

1
n

n−1∑
k=0

F (τn,k) =
1
2π

∫ 2π

0
F (f(λ))dλ (1.6)

for any function F that is continuous on the range of f . Thus, for
example, choosing F (x) = x results in

lim
n→∞

1
n

n−1∑
k=0

τn,k =
1
2π

∫ 2π

0
f(λ)dλ, (1.7)

so that the arithmetic mean of the eigenvalues of Tn(f) converges to
the integral of f . The trace Tr(A) of a matrix A is the sum of its
diagonal elements, which in turn from linear algebra is the sum of the
eigenvalues of A if the matrix A is Hermitian. Thus (1.7) implies that

lim
n→∞

1
n

Tr(Tn(f)) =
1
2π

∫ 2π

0
f(λ)dλ. (1.8)
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1.2. Examples 5

Similarly, for any power s

lim
n→∞

1
n

n−1∑
k=0

τ s
n,k =

1
2π

∫ 2π

0
f(λ)s dλ. (1.9)

If f is real and such that the eigenvalues τn,k ≥m > 0 for all n,k,
then F (x) = lnx is a continuous function on [m,∞) and the Szegö
theorem can be applied to show that

lim
n→∞

1
n

n−1∑
i=0

lnτn,i =
1
2π

∫ 2π

0
lnf(λ)dλ. (1.10)

From linear algebra, however, the determinant of a matrix Tn(f) is
given by the product of its eigenvalues,

det(Tn(f)) =
n−1∏
i=0

τn,i,

so that (1.10) becomes

lim
n→∞

lndet(Tn(f))1/n = lim
n→∞

1
n

n−1∑
i=0

lnτn,i

=
1
2π

∫ 2π

0
lnf(λ)dλ. (1.11)

As we shall later see, if f has a lower bound m > 0, than indeed all the
eigenvalues will share the lower bound and the above derivation applies.
Determinants of Toeplitz matrices are called Toeplitz determinants and
(1.11) describes their limiting behavior.

1.2 Examples

A few examples from statistical signal processing and information
theory illustrate the the application of the theorem. These are described
with a minimum of background in order to highlight how the asymp-
totic eigenvalue distribution theorem allows one to evaluate results for
processes using results from finite-dimensional vectors.
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6 Introduction

The differential entropy rate of a Gaussian process

Suppose that {Xn; n = 0,1, . . .} is a random process described by
probability density functions fXn(xn) for the random vectors Xn =
(X0,X1, . . . ,Xn−1) defined for all n = 0,1,2, . . . . The Shannon differen-
tial entropy h(Xn) is defined by the integral

h(Xn) = −
∫
fXn(xn) lnfXn(xn)dxn

and the differential entropy rate of the random process is defined by
the limit

h(X) = lim
n→∞

1
n
h(Xn)

if the limit exists. (See, for example, Cover and Thomas[7].)
A stationary zero mean Gaussian random process is completely

described by its mean correlation function rk,j = rk−j = E[XkXj ] or,
equivalently, by its power spectral density function f , the Fourier trans-
form of the covariance function:

f(λ) =
∞∑

n=−∞
rne

inλ,

rk =
1
2π

∫ 2π

0
f(λ)e−iλk dλ

For a fixed positive integer n, the probability density function is

fXn(xn) =
e−

1
2
xn′R−1

n xn

(2π)n/2det(Rn)1/2
,

where Rn is the n × n covariance matrix with entries rk−j . A straight-
forward multidimensional integration using the properties of Gaussian
random vectors yields the differential entropy

h(Xn) =
1
2

ln(2πe)ndetRn.

The problem at hand is to evaluate the entropy rate

h(X) = lim
n→∞

1
n
h(Xn) =

1
2

ln(2πe) + lim
n→∞

1
n

lndet(Rn).
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1.2. Examples 7

The matrix Rn is the Toeplitz matrix Tn generated by the power spec-
tral density f and det(Rn) is a Toeplitz determinant and we have imme-
diately from (1.11) that

h(X) =
1
2

log
(

2πe
1
2π

∫ 2π

0
lnf(λ)dλ

)
. (1.12)

This is a typical use of (1.6) to evaluate the limit of a sequence of finite-
dimensional qualities, in this case specified by the determinants of of a
sequence of Toeplitz matrices.

The Shannon rate-distortion function of a Gaussian process

As a another example of the application of (1.6), consider the eval-
uation of the rate-distortion function of Shannon information theory
for a stationary discrete time Gaussian random process with 0 mean,
covariance KX(k,j) = tk−j , and power spectral density f(λ) given by
(1.4). The rate-distortion function characterizes the optimal tradeoff of
distortion and bit rate in data compression or source coding systems.
The derivation details can be found, e.g., in Berger [3], Section 4.5,
but the point here is simply to provide an example of an application of
(1.6). The result is found by solving an n-dimensional optimization in
terms of the eigenvalues τn,k of Tn(f) and then taking limits to obtain
parametric expressions for distortion and rate:

Dθ = lim
n→∞

1
n

n−1∑
k=0

min(θ,τn,k)

Rθ = lim
n→∞

1
n

n−1∑
k=0

max(0,
1
2

ln
τn,k

θ
).

The theorem can be applied to turn this limiting sum involving eigen-
values into an integral involving the power spectral density:

Dθ =
∫ 2π

0
min(θ,f(λ))dλ

Rθ =
∫ 2π

0
max

(
0,

1
2

ln
f(λ)
θ

)
dλ.
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8 Introduction

Again an infinite dimensional problem is solved by first solving a finite
dimensional problem involving the eigenvalues of matrices, and then
using the asymptotic eigenvalue theorem to find an integral expression
for the limiting result.

One-step prediction error

Another application with a similar development is the one-step predic-
tion error problem. Suppose that Xn is a weakly stationary random
process with covariance tk−j . A classic problem in estimation theory is
to find the best linear predictor based on the previous n values of Xi,
i = 0,1,2, . . . ,n − 1,

X̂n =
n∑

i=1

aiXn−i,

in the sense of minimizing the mean squared error E[(Xn − X̂n)2]
over all choices of coefficients ai. It is well known (see, e.g., [10])
that the minimum is given by the ratio of Toeplitz determinants
detTn+1/detTn. The question is to what this ratio converges in the
limit as n goes to ∞. This is not quite in a form suitable for applica-
tion of the theorem, but we have already evaluated the limit of detT 1/n

n

in (1.11) and for large n we have that

(detTn)1/n ≈ exp
(

1
2π

∫ 2π

0
lnf(λ)dλ

)
≈ (detTn+1)1/(n+1)

and hence in particular that

(detTn+1)1/(n+1) ≈ (detTn)1/n

so that

detTn+1

detTn
≈ (detTn)1/n → exp

(
1
2π

∫ 2π

0
lnf(λ)dλ

)
,

providing the desired limit. These arguments can be made exact, but
it is hoped they make the point that the asymptotic eigenvalue distri-
bution theorem for Hermitian Toeplitz matrices can be quite useful for
evaluating limits of solutions to finite-dimensional problems.

Full text available at: http://dx.doi.org/10.1561/0100000006



1.3. Goals and Prerequisites 9

Further examples

The Toeplitz distribution theorems have also found application in more
complicated information theoretic evaluations, including the channel
capacity of Gaussian channels [30, 29] and the rate-distortion functions
of autoregressive sources [12]. The examples described here were chosen
because they were in the author’s area of competence, but similar appli-
cations crop up in a variety of areas. A Google

TM
search using the title

of this document shows diverse applications of the eigenvalue distribu-
tion theorem and related results, including such areas of coding, spec-
tral estimation, watermarking, harmonic analysis, speech enhancement,
interference cancellation, image restoration, sensor networks for detec-
tion, adaptive filtering, graphical models, noise reduction, and blind
equalization.

1.3 Goals and Prerequisites

The primary goal of this work is to prove a special case of Szegö’s
asymptotic eigenvalue distribution theorem in Theorem 9. The assump-
tions used here are less general than Szegö’s, but this permits more
straightforward proofs which require far less mathematical background.
In addition to the fundamental theorems, several related results that
naturally follow but do not appear to be collected together anywhere
are presented. We do not attempt to survey the fields of applications of
these results, as such a survey would be far beyond the author’s stamina
and competence. A few applications are noted by way of examples.

The essential prerequisites are a knowledge of matrix theory, an
engineer’s knowledge of Fourier series and random processes, and cal-
culus (Riemann integration). A first course in analysis would be help-
ful, but it is not assumed. Several of the occasional results required of
analysis are usually contained in one or more courses in the usual engi-
neering curriculum, e.g., the Cauchy-Schwarz and triangle inequalities.
Hopefully the only unfamiliar results are a corollary to the Courant-
Fischer theorem and the Weierstrass approximation theorem. The lat-
ter is an intuitive result which is easily believed even if not formally
proved. More advanced results from Lebesgue integration, measure the-
ory, functional analysis, and harmonic analysis are not used.

Full text available at: http://dx.doi.org/10.1561/0100000006



10 Introduction

Our approach is to relate the properties of Toeplitz matrices to those
of their simpler, more structured special case – the circulant or cyclic
matrix. These two matrices are shown to be asymptotically equivalent
in a certain sense and this is shown to imply that eigenvalues, inverses,
products, and determinants behave similarly. This approach provides
a simplified and direct path to the basic eigenvalue distribution and
related theorems. This method is implicit but not immediately appar-
ent in the more complicated and more general results of Grenander in
Chapter 7 of [15]. The basic results for the special case of a banded
Toeplitz matrix appeared in [13], a tutorial treatment of the simplest
case which was in turn based on the first draft of this work. The results
were subsequently generalized using essentially the same simple meth-
ods, but they remain less general than those of [15].

As an application several of the results are applied to study certain
models of discrete time random processes. Two common linear models
are studied and some intuitively satisfying results on covariance matri-
ces and their factors are given.

We sacrifice mathematical elegance and generality for conceptual
simplicity in the hope that this will bring an understanding of the
interesting and useful properties of Toeplitz matrices to a wider audi-
ence, specifically to those who have lacked either the background or the
patience to tackle the mathematical literature on the subject.
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