
Approximate String

Processing

Full text available at: http://dx.doi.org/10.1561/1900000010



Approximate String
Processing

Marios Hadjieleftheriou

AT&T Labs - Research

180 Park Ave

Florham Park, NJ 07932

USA

marioh@research.att.com

Divesh Srivastava

AT&T Labs - Research

180 Park Ave

Florham Park, NJ 07932

USA

divesh@research.att.com

Boston – Delft

Full text available at: http://dx.doi.org/10.1561/1900000010



Foundations and Trends R© in
Databases

Published, sold and distributed by:
now Publishers Inc.
PO Box 1024
Hanover, MA 02339
USA
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

The preferred citation for this publication is M. Hadjieleftheriou and D. Srivastava,

Approximate String Processing, Foundation and Trends R© in Databases, vol 2, no 4,
pp 267–402, 2009

ISBN: 978-1-60198-418-0
c© 2011 M. Hadjieleftheriou and D. Srivastava

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, mechanical, photocopying, recording
or otherwise, without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Cen-
ter, Inc., 222 Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for
internal or personal use, or the internal or personal use of specific clients, is granted by
now Publishers Inc for users registered with the Copyright Clearance Center (CCC). The
‘services’ for users can be found on the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system
of payment has been arranged. Authorization does not extend to other kinds of copy-
ing, such as that for general distribution, for advertising or promotional purposes, for
creating new collective works, or for resale. In the rest of the world: Permission to pho-
tocopy must be obtained from the copyright owner. Please apply to now Publishers Inc.,
PO Box 1024, Hanover, MA 02339, USA; Tel. +1-781-871-0245; www.nowpublishers.com;
sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to now
Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com; e-mail:
sales@nowpublishers.com

Full text available at: http://dx.doi.org/10.1561/1900000010



Foundations and Trends R© in
Databases

Volume 2 Issue 4, 2009

Editorial Board

Editor-in-Chief:
Joseph M. Hellerstein
Computer Science Division
University of California, Berkeley
Berkeley, CA
USA
hellerstein@cs.berkeley.edu

Editors
Anastasia Ailamaki (EPFL)
Michael Carey (UC Irvine)
Surajit Chaudhuri (Microsoft Research)
Ronald Fagin (IBM Research)
Minos Garofalakis (Yahoo! Research)
Johannes Gehrke (Cornell University)
Alon Halevy (Google)
Jeffrey Naughton (University of Wisconsin)
Christopher Olston (Yahoo! Research)
Jignesh Patel (University of Michigan)
Raghu Ramakrishnan (Yahoo! Research)
Gerhard Weikum (Max-Planck Institute)

Full text available at: http://dx.doi.org/10.1561/1900000010



Editorial Scope

Foundations and Trends R© in Databases covers a breadth of top-
ics relating to the management of large volumes of data. The journal
targets the full scope of issues in data management, from theoretical
foundations, to languages and modeling, to algorithms, system archi-
tecture, and applications. The list of topics below illustrates some of
the intended coverage, though it is by no means exhaustive:

• Data Models and Query
Languages

• Query Processing and
Optimization

• Storage, Access Methods, and
Indexing

• Transaction Management,
Concurrency Control and Recovery

• Deductive Databases

• Parallel and Distributed Database
Systems

• Database Design and Tuning

• Metadata Management

• Object Management

• Trigger Processing and Active
Databases

• Data Mining and OLAP

• Approximate and Interactive
Query Processing

• Data Warehousing

• Adaptive Query Processing

• Data Stream Management

• Search and Query Integration

• XML and Semi-Structured Data

• Web Services and Middleware

• Data Integration and Exchange

• Private and Secure Data
Management

• Peer-to-Peer, Sensornet and
Mobile Data Management

• Scientific and Spatial Data
Management

• Data Brokering and
Publish/Subscribe

• Data Cleaning and Information
Extraction

• Probabilistic Data Management

Information for Librarians
Foundations and Trends R© in Databases, 2009, Volume 2, 4 issues. ISSN paper
version 1931-7883. ISSN online version 1931-7891. Also available as a com-
bined paper and online subscription.

Full text available at: http://dx.doi.org/10.1561/1900000010



Foundations and Trends R© in
Databases

Vol. 2, No. 4 (2009) 267–402
c© 2011 M. Hadjieleftheriou and D. Srivastava

DOI: 10.1561/1900000010

Approximate String Processing

Marios Hadjieleftheriou1 and Divesh Srivastava2

1 AT&T Labs - Research, 180 Park Ave, Florham Park, NJ, 07932, USA,
marioh@research.att.com

2 AT&T Labs - Research, 180 Park Ave, Florham Park, NJ, 07932, USA,
divesh@research.att.com

Abstract

One of the most important primitive data types in modern data pro-
cessing is text. Text data are known to have a variety of inconsisten-
cies (e.g., spelling mistakes and representational variations). For that
reason, there exists a large body of literature related to approximate
processing of text. This monograph focuses specifically on the problem
of approximate string matching, where, given a set of strings S and a
query string v, the goal is to find all strings s ∈ S that have a user spec-
ified degree of similarity to v. Set S could be, for example, a corpus of
documents, a set of web pages, or an attribute of a relational table. The
similarity between strings is always defined with respect to a similar-
ity function that is chosen based on the characteristics of the data and
application at hand. This work presents a survey of indexing techniques
and algorithms specifically designed for approximate string matching.
We concentrate on inverted indexes, filtering techniques, and tree data
structures that can be used to evaluate a variety of set based and edit
based similarity functions. We focus on all-match and top-k flavors of
selection and join queries, and discuss the applicability, advantages and
disadvantages of each technique for every query type.

Full text available at: http://dx.doi.org/10.1561/1900000010



Contents

1 Introduction 1

2 String Similarity Functions 7

2.1 Edit Based Similarity 7
2.2 Set Based Similarity 11
2.3 Related Work 18

3 String Tokenization 21

3.1 Non-overlapping Tokens 21
3.2 Overlapping Tokens 22

4 Query Types 25

4.1 Selection Queries 25
4.2 Join Queries 26

5 Index Structures 27

5.1 Inverted Indexes 27
5.2 Trees 30
5.3 Related Work 33

ix

Full text available at: http://dx.doi.org/10.1561/1900000010



6 Algorithms for Set Based Similarity Using
Inverted Indexes 35

6.1 All-Match Selection Queries 35
6.2 Top-k Selection Queries 59
6.3 All-Match Join Queries 63
6.4 All-Match Self-join Queries 68
6.5 Top-k Join and Self-join Queries 69
6.6 Index Construction 69
6.7 Index Updates 70
6.8 Discussion and Related Issues 72
6.9 Related Work 73

7 Algorithms for Set Based Similarity Using
Filtering Techniques 75

7.1 The Prefix Filter 76
7.2 Partitioning and Enumeration Signatures 91
7.3 The Filter Tree 100
7.4 Index Updates 102
7.5 Discussion and Related Issues 102
7.6 Related Work 103

8 Algorithms for Edit Based Similarity 105

8.1 Inverted Indexes 105
8.2 Filtering Techniques 109
8.3 Trees 112
8.4 Discussion and Related Issues 128
8.5 Related Work 129

9 Conclusion 133

Acknowledgments 135

References 137

Full text available at: http://dx.doi.org/10.1561/1900000010



1

Introduction

Arguably, one of the most important primitive data types in modern
data processing is strings. Short strings comprise the largest percentage
of data in relational database systems, long strings are used to repre-
sent proteins and DNA sequences in biological applications, as well as
HTML and XML documents on the Web. In fact this very monograph
is safely stored in multiple formats (HTML, PDF, TeX, etc.) as a col-
lection of very long strings. Searching through string datasets is a fun-
damental operation in almost every application domain. For example,
in SQL query processing, information retrieval on the Web, genomic
research on DNA sequences, product search in eCommerce applica-
tions, and local business search on online maps. Hence, a plethora of
specialized indexes, algorithms, and techniques have been developed
for searching through strings.

Due to the complexity of collecting, storing and managing strings,
string datasets almost always contain representational inconsistencies,
spelling mistakes, and a variety of other errors. For example, a represen-
tational inconsistency occurs when the query string is ‘Doctors With-
out Borders’ and the data entry is stored as ‘Doctors w/o Borders’. A
spelling mistake occurs when the user mistypes the query as ‘Doctors

1

Full text available at: http://dx.doi.org/10.1561/1900000010



2 Introduction

Witout Borders’. Even though exact string and substring processing
have been studied extensively in the past and a variety of efficient string
searching algorithms have been developed, it is clear that approximate
string processing is fundamental for retrieving the most relevant results
for a given query, and ultimately improving user satisfaction.

How many times have we posed a keyword query to our favorite
search engine, only to be confronted by a search engine suggestion for
a spelling mistake? In a sense, correcting spelling mistakes in the query
is not a very hard problem. Most search engines use pre-built dictio-
naries and query logs in order to present users with meaningful sugges-
tions. On the other hand though, even if the query is correct (or the
search engine corrects the query) spelling mistakes and various other
inconsistencies can still exist in the web pages we are searching for,
hindering effective searching. Efficient processing of string similarity as
a primitive operator has become an essential component of many suc-
cessful applications dealing with processing of strings. Applications are
not limited to the realm of information retrieval and selection queries
only. A variety of other applications heavily depend on robust process-
ing of join queries. Such applications include, but are not limited to,
record linkage, entity resolution, data cleaning, data integration, and
text analytics.

The fundamental approximate text processing problem is defined as
follows:

Definition 1.1 (Approximate Text Matching). Given a text T
and a query string v one desires to identify all substrings of T that
have a user specified degree of similarity to v.

Here, the similarity of strings is defined with respect to a particular
similarity function that is chosen based on specific characteristics of
the data and application at hand. There exist a large number of simi-
larity functions specifically designed for strings. All similarity functions
fall under two main categories, set based and edit based. Set based simi-
larity functions (e.g., Jaccard, Cosine) consider strings as sets of tokens
(e.g., q-grams or words), and the similarity is evaluated with respect
to the number, position and importance of common tokens. Edit based

Full text available at: http://dx.doi.org/10.1561/1900000010



3

similarity functions (e.g., Edit Distance, Hamming) evaluate the simi-
larity of strings as a function of the total number of edit operations that
are necessary to convert one string into the other. Edit operations can
be insertions, deletions, replacements, and transpositions of characters
or tokens.

Approximate text processing has two flavors, online and offline. In
the online version, the query can be pre-processed but the text can-
not, and the query is answered without using an index. A survey on
existing work for this problem was conducted by Navarro [54]. In the
offline version of the problem the text is pre-processed and the query
is answered using an index. A review of existing work for this problem
was conducted by Chan et al. [16].

Here, we focus on a special case of the fundamental approximate
text processing problem:

Definition 1.2 (Approximate String Matching). Given a set of
strings S and a query string v, one desires to identify all strings s ∈ S
that have a user specified degree of similarity to v.

The approximate string matching problem (which is also referred to as
the approximate dictionary matching problem in related literature) is
inherently simpler than the text matching problem, since the former
relates to retrieving strings that are similar to the query as a whole,
while the latter relates to retrieving strings that contain a substring that
is similar to the query. Clearly, a solution for the text matching problem
will yield a solution for the string matching problem. Nevertheless,
due to the simpler nature of approximate string matching, there is
a variety of specialized algorithms for solving the problem that are
faster, simpler, and with smaller space requirements than well-known
solutions for text matching. The purpose of this work is to provide an
overview of concepts, techniques and algorithms related specifically to
the approximate string matching problem.

To date, the field of approximate string matching has been devel-
oping at a very fast pace. There now exists a gamut of specialized data
structures and algorithms for a variety of string similarity functions
and application domains that can scale to millions of strings and can

Full text available at: http://dx.doi.org/10.1561/1900000010



4 Introduction

provide answers at interactive speeds. Previous experience has shown
that for most complex problems there is almost never a one size fits all
solution. Given the importance of strings in a wide array of applica-
tions, it is safe to assume that different application domains will benefit
from specialized solutions.

There are four fundamental primitives that characterize an indexing
solution for approximate string matching:

• The similarity function: As already discussed, there are two
types of similarity functions for strings, set based and edit
based.
• String tokenization: Tokenization is the process of decompos-

ing a string into a set of primitive components, called tokens.
For example, in a particular application a primitive compo-
nent might refer to a word, while in some other application a
primitive component might refer to a whole sentence. There
are two fundamental tokenization schemes, overlapping and
non-overlapping tokenization.
• The query type: There are two fundamental query types,

selections and joins. Selection queries retrieve strings sim-
ilar to a given query string. Join queries retrieve all simi-
lar pairs of strings between two sets of strings. There are
also two flavors of selection and join queries, all-match and
top-k queries. All-match queries retrieve all strings (or pairs
of strings) within a user specified similarity threshold. Top-k
queries retrieve the k most similar strings (or pairs of strings).
• The underlying index structure: There are two fundamental

indexing schemes, inverted indexes and trees. An inverted
index consists of a set of lists, one list per token in the token
universe produced by the tokenization scheme. A tree orga-
nizes strings into a hierarchical structure specifically designed
to answer particular queries.

Every approximate string indexing technique falls within the space
of the above parametrization. Different parameters can be used to
solve a variety of problems, and the right choice of parameters — or
combination thereof — is dependent only on the application at hand.

Full text available at: http://dx.doi.org/10.1561/1900000010



5

This work explains in detail the available choices for each primitive, in
an effort to delineate the application space related to every choice.

For example, consider a relevant document retrieval application that
uses cosine similarity and token frequency/inverse document frequency
weights1 to retrieve the most relevant documents to a keyword query.
The application uses a set based similarity function, implying a word-
based, non-overlapping tokenization for keyword identification, a clear
focus on selection queries, and most probably an underlying inverted
index on keywords. Notice that this particular application is not related
to approximate matching of keywords. A misspelled keyword, either
in the query or the documents, will miss relevant answers. Clearly,
to support approximate matching of keywords, a relevant document
retrieval engine will have to use a combination of primitives.

As another example, consider an application that produces query
completion suggestions interactively, as the user is typing a query in
a text box. Usually, query completion is based on the most popular
queries present in the query logs. A simple way to enable query sugges-
tions based on approximate matching of keywords as the user is typing
(in order to account for spelling mistakes) is to use edit distance to
match what the user has typed so far as an approximate substring of
any string in the query logs. This application setting implies an edit
based similarity, possibly overlapping tokenization for enabling identi-
fication of errors on a per keyword level, focus on selection queries, and
either an inverted index structure built on string signatures tailored for
edit distance, or specialized trie structures.

The monograph is organized into eight sections. In the first four
sections we discuss in detail the fundamental primitives that charac-
terize any approximate string matching indexing technique. Section 2
presents in detail some of the most widely used similarity functions
for strings. Section 3 discusses string tokenization schemes. Section 4
gives a formal definition of the four primitive query types on strings.
Finally, Section 5 discusses the two basic types of data structures used
to answer approximate string matching queries. The next three sections
are dedicated to specialized indexing techniques and algorithms for

1 Token frequency is also referred to as term frequency.

Full text available at: http://dx.doi.org/10.1561/1900000010



6 Introduction

approximate string matching. Section 6 discusses set based similarity
algorithms using inverted indexes. Section 7 discusses set based simi-
larity algorithms using filtering algorithms. Finally, Section 8 discusses
edit based similarity algorithms using both inverted indexes and filter-
ing algorithms. Section 9 concludes the monograph.

Full text available at: http://dx.doi.org/10.1561/1900000010



References

[1] S. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, “Basic local
alignment search tool,” Journal of Molecular Biology, vol. 215, pp. 403–410,
October 1990.

[2] A. Amir, Y. Aumann, G. M. Landau, M. Lewenstein, and N. Lewenstein, “Pat-
tern matching with swaps,” in IEEE Symposium on Foundations of Computer
Science (FOCS), p. 144, 1997.

[3] A. Andoni and K. Onak, “Approximating edit distance in near-linear
time,” in Proceedings of ACM Symposium on Theory of Computing (STOC),
pp. 199–204, 2009.

[4] A. Arasu, S. Chaudhuri, and R. Kaushik, “Transformation-based framework
for record matching,” in Proceedings of International Conference on Data Engi-
neering (ICDE), pp. 40–49, 2008.

[5] A. Arasu, S. Chaudhuri, and R. Kaushik, “Learning string transformations
from examples,” Proceedings of the VLDB Endowment (PVLDB), vol. 2, no. 1,
pp. 514–525, 2009.

[6] A. Arasu, V. Ganti, and R. Kaushik, “Efficient exact set-similarity joins,” in
Proceedings of Very Large Data Bases (VLDB), pp. 918–929, 2006.

[7] A. N. Arslan and Ö. Eğecioğlu, “Dictionary look-up within small edit dis-
tance,” in Proceedings of the Annual International Conference on Computing
and Combinatorics (COCOON), pp. 127–136, 2002.

[8] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval. Addison
Wesley, May 1999.

[9] Z. Bar-Yossef, T. S. Jayram, R. Krauthgamer, and R. Kumar, “Approximating
edit distance efficiently,” in IEEE Symposium on Foundations of Computer
Science (FOCS), pp. 550–559, 2004.

137

Full text available at: http://dx.doi.org/10.1561/1900000010



138 References

[10] R. J. Bayardo, Y. Ma, and R. Srikant, “Scaling up all pairs similarity search,”
in WWW, pp. 131–140, 2007.

[11] A. Behm, S. Ji, C. Li, and J. Lu, “Space-constrained gram-based indexing for
efficient approximate string search,” in Proceedings of International Conference
on Data Engineering (ICDE), pp. 604–615, 2009.

[12] O. Benjelloun, H. Garcia-Molina, D. Menestrina, Q. Su, S. E. Whang, and
J. Widom, “Swoosh: A generic approach to entity resolution,” The VLDB Jour-
nal, vol. 18, no. 1, pp. 255–276, 2009.

[13] G. Brodal and S. Venkatesh, “Improved bounds for dictionary look-up with one
error,” Information Processing Letters, vol. 75, no. 1–2, pp. 57–59, 2000.

[14] G. S. Brodal and L. Gasieniec, “Approximate dictionary queries,” in Proceed-
ings of the Annual Symposium on Combinatorial Pattern Matching (CPM),
pp. 65–74, 1996.

[15] H.-L. Chan, T.-W. Lam, W.-K. Sung, S.-L. Tam, and S.-S. Wong, “Compressed
indexes for approximate string matching,” in Proceedings of the Annual Euro-
pean Symposium (ESA), pp. 208–219, 2006.

[16] H.-L. Chan, T.-W. Lam, W.-K. Sung, S.-L. Tam, and S.-S. Wong, “A linear
size index for approximate pattern matching,” in Proceedings of the Annual
Symposium on Combinatorial Pattern Matching (CPM), pp. 49–59, 2006.

[17] W. I. Chang and E. L. Lawler, “Approximate string matching in sublinear
expected time,” in IEEE Symposium on Foundations of Computer Science
(FOCS), pp. 116–124, vol. 1, 1990.

[18] S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani, “Robust and efficient
fuzzy match for online data cleaning,” in Proceedings of ACM Management of
Data (SIGMOD), pp. 313–324, 2003.

[19] S. Chaudhuri, V. Ganti, and R. Kaushik, “A primitive operator for similarity
joins in data cleaning,” in Proceedings of International Conference on Data
Engineering (ICDE), p. 5, 2006.

[20] S. Chaudhuri and R. Kaushik, “Extending autocompletion to tolerate errors,”
in Proceedings of ACM Management of Data (SIGMOD), pp. 707–718, 2009.

[21] S. Chaudhuri, A. D. Sarma, V. Ganti, and R. Kaushik, “Leveraging aggregate
constraints for deduplication,” in Proceedings of ACM Management of Data
(SIGMOD), pp. 437–448, 2007.

[22] A. Cobbs, “Fast approximate matching using suffix trees,” in Proceedings of
the Annual Symposium on Combinatorial Pattern Matching (CPM), pp. 41–
54, 1995.

[23] R. Cole, L.-A. Gottlieb, and M. Lewenstein, “Dictionary matching and indexing
with errors and don’t cares,” in Proceedings of ACM Symposium on Theory of
Computing (STOC), pp. 91–100, 2004.

[24] D. Comer, “The ubiquitous B-tree,” ACM Computing Surveys, vol. 11, no. 2,
pp. 121–137, 1979.

[25] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson, Introduction to
Algorithms. McGraw-Hill Higher Education, 2001.

[26] G. Cormode and S. Muthukrishnan, “The string edit distance matching prob-
lem with moves,” ACM Transactions on Algorithms (TALG), vol. 3, no. 1,
pp. 1–19, 2007.

Full text available at: http://dx.doi.org/10.1561/1900000010



References 139

[27] M. G. Elfeky, A. K. Elmagarmid, and V. S. Verykios, “Tailor: A record link-
age tool box,” in Proceedings of International Conference on Data Engineering
(ICDE), pp. 17–28, 2002.

[28] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios, “Duplicate record
detection: A survey,” IEEE Transactions on Knowledge and Data Engineer-
ing (TKDE), vol. 19, no. 1, pp. 1–16, 2007.

[29] R. Fagin, A. Lotem, and M. Naor, “Optimal aggregation algorithms for middle-
ware,” in Proceedings of ACM Symposium on Principles of Database Systems
(PODS), pp. 102–113, 2001.

[30] P. Ferragina and R. Grossi, “The string b-tree: A new data structure for string
search in external memory and its applications,” Journal of the ACM (JACM),
vol. 46, pp. 236–280, 1999.

[31] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas, S. Muthukrishnan, and
D. Srivastava, “Approximate string joins in a database (almost) for free,” in
Proceedings of Very Large Data Bases (VLDB), pp. 491–500, 2001.

[32] R. Grossi and F. Luccio, “Simple and efficient string matching with k mis-
matches,” Information Processing Letters, vol. 33, no. 3, pp. 113–120, 1989.

[33] M. Hadjieleftheriou, A. Chandel, N. Koudas, and D. Srivastava, “Fast indexes
and algorithms for set similarity selection queries,” in Proceedings of Interna-
tional Conference on Data Engineering (ICDE), 2008.

[34] M. Hadjieleftheriou, N. Koudas, and D. Srivastava, “Incremental maintenance
of length normalized indexes for approximate string matching,” in Proceedings
of ACM Management of Data (SIGMOD), pp. 429–440, 2009.

[35] A. Halevy, A. Rajaraman, and J. Ordille, “Data integration: The teenage
years,” in Proceedings of Very Large Data Bases (VLDB), pp. 9–16, 2006.

[36] M. C. Harrison, “Implementation of the substring test by hashing,” Commu-
nications of the ACM, vol. 14, no. 12, pp. 777–779, 1971.

[37] W.-K. Hon, T.-W. Lam, R. Shah, S.-L. Tam, and J. S. Vitter, “Cache-oblivious
index for approximate string matching,” in Proceedings of the Annual Sympo-
sium on Combinatorial Pattern Matching (CPM), pp. 40–51, 2007.

[38] S. Ji, G. Li, C. Li, and J. Feng, “Efficient interactive fuzzy keyword search,” in
WWW, pp. 371–380, 2009.

[39] P. Jokinen and E. Ukkonen, “Two algorithms for approximate string matching
in static texts,” in Proceedings of the Mathematical Foundations of Computer
Science (MFCS), pp. 240–248, 1991.

[40] R. M. Karp and M. O. Rabin, “Efficient randomized pattern-matching algo-
rithms,” IBM Journal of Research and Development, vol. 31, no. 2, pp. 249–260,
1987.

[41] J. D. Kececioglu and D. Sankoff, “Exact and approximation algorithms for the
inversion distance between two chromosomes,” in Proceedings of the Annual
Symposium on Combinatorial Pattern Matching (CPM), pp. 87–105, 1993.

[42] D. K. Kim, J.-S. Lee, K. Park, and Y. Cho, “Efficient algorithms for approx-
imate string matching with swaps,” Journal of Complexity, vol. 15, no. 1,
pp. 128–147, 1999.

[43] D. E. Knuth, “The art of computer programming, volume 3 (2nd ed.),” in
Sorting and Searching, Addison Wesley Longman Publishing Co., Inc., 1998.

Full text available at: http://dx.doi.org/10.1561/1900000010



140 References

[44] N. Koudas, A. Marathe, and D. Srivastava, “Flexible string matching against
large databases in practice,” in Proceedings of Very Large Data Bases (VLDB),
pp. 1078–1086, 2004.

[45] N. Koudas, A. Marathe, and D. Srivastava, “Propagating updates in SPIDER,”
in Proceedings of International Conference on Data Engineering (ICDE),
pp. 1146–1153, 2007.

[46] N. Lester, A. Moffat, and J. Zobel, “Efficient online index construction for text
databases,” ACM Transactions on Database Systems (TODS), vol. 33, no. 3,
pp. 1–33, 2008.

[47] V. I. Levenshtein, “Binary codes capable of correcting deletions, insertions and
reversals (in Russian),” Doklady Akademii Nauk SSSR, vol. 163, no. 4, pp. 845–
848, 1965.

[48] C. Li, J. Lu, and Y. Lu, “Efficient merging and filtering algorithms for approxi-
mate string searches,” in Proceedings of International Conference on Data Engi-
neering (ICDE), pp. 257–266, 2008.

[49] C. Li, B. Wang, and X. Yang, “Vgram: Improving performance of approximate
queries on string collections using variable-length grams,” in Proceedings of
Very Large Data Bases (VLDB), pp. 303–314, 2007.

[50] J. P. Linderman, Personal Communication, 2011.
[51] U. Manber and S. Wu, “An algorithm for approximate membership checking

with application to password security,” Information Processing Letters, vol. 50,
no. 4, pp. 191–197, 1994.

[52] W. J. Masek and M. Paterson, “A faster algorithm computing string edit dis-
tances,” Journal of Computer and System Sciences, vol. 20, no. 1, pp. 18–31,
1980.

[53] M. L. Minsky and S. A. Papert, Perceptrons: An Introduction to Computational
Geometry. MIT Press, 1969.

[54] G. Navarro, “A guided tour to approximate string matching,” ACM Computing
Surveys, vol. 33, no. 1, pp. 31–88, 2001.

[55] S. B. Needleman and C. D. Wunsch, “A general method applicable to the
search for similarities in the amino acid sequence of two proteins,” Journal of
Molecular Biology, vol. 48, no. 3, pp. 443–453, 1970.

[56] R. Ostrovsky and Y. Rabani, “Low distortion embeddings for edit distance,”
Journal of the ACM, vol. 54, no. 5, pp. 23–36, 2007.

[57] O. Owolabi and D. R. McGregor, “Fast approximate string matching,”
Software — Practice & Experience, vol. 18, no. 4, pp. 387–393, 1988.

[58] P. A. Pevzner and M. S. Waterman, “A fast filtration algorithm for the sub-
string matching problem,” in Proceedings of the Annual Symposium on Com-
binatorial Pattern Matching (CPM), pp. 197–214, 1993.

[59] S. Puglisi, W. F. Smyth, and A. H. Turpin, “A taxonomy of suffix array con-
struction algorithms,” ACM Computing Surveys, vol. 39, no. 2, p. 4, 2007.

[60] S. Sarawagi and A. Kirpal, “Efficient set joins on similarity predicates,” in
Proceedings of ACM Management of Data (SIGMOD), pp. 743–754, 2004.

[61] T. F. Smith and M. S. Waterman, “Identification of common molecular subse-
quences,” Journal of Molecular Biology, vol. 147, pp. 195–197, 1981.

Full text available at: http://dx.doi.org/10.1561/1900000010



References 141

[62] G. A. Stephen, String Searching Algorithms. World Scientific Publishing Co.,
1998.

[63] E. Sutinen and J. Tarhio, “On using q-gram locations in approximate
string matching,” in Proceedings of the Annual European Symposium (ESA),
pp. 327–340, 1995.

[64] T. Takaoka, “Approximate pattern matching with samples,” in Proceedings
of the International Symposium on Algorithms and Computation (ISAAC),
pp. 234–242, 1994.

[65] W. F. Tichy, “The string-to-string correction problem with block moves,” ACM
Transactions on Computer Systems (TOCS), vol. 2, no. 4, pp. 309–321, 1984.

[66] E. Ukkonen, “Algorithms for approximate string matching,” Information and
Control, vol. 64, no. 1–3, pp. 100–118, 1985.

[67] E. Ukkonen, “Approximate string-matching with q-grams and maximal
matches,” Theoretical Computer Science, vol. 92, no. 1, pp. 191–211, 1992.

[68] E. Ukkonen, “Approximate string matching over suffix trees,” in Proceedings of
the Annual Symposium on Combinatorial Pattern Matching (CPM), pp. 228–
242, 1993.

[69] R. Vernica and C. Li, “Efficient top-k algorithms for fuzzy search in string
collections,” in Proceedings of the International Workshop on Keyword Search
on Structured Data (KEYS), pp. 9–14, 2009.

[70] R. A. Wagner and M. J. Fischer, “The string-to-string correction problem,”
Journal of the ACM, vol. 21, no. 1, pp. 168–173, 1974.

[71] I. H. Witten, T. C. Bell, and A. Moffat, Managing Gigabytes: Compressing and
Indexing Documents and Images. John Wiley & Sons, Inc., 1994.

[72] S. Wu and U. Manber, “Fast text searching: Allowing errors,” Communications
of the ACM (CACM), vol. 35, no. 10, pp. 83–91, 1992.

[73] C. Xiao, W. Wang, and X. Lin, “Ed-join: An efficient algorithm for similarity
joins with edit distance constraints,” in Proceedings of the VLDB Endowment
(PVLDB), vol. 1, no. 1, pp. 933–944, 2008.

[74] C. Xiao, W. Wang, X. Lin, and H. Shang, “Top-k set similarity joins,” in
Proceedings of International Conference on Data Engineering (ICDE), pp. 916–
927, 2009.

[75] C. Xiao, W. Wang, X. Lin, and J. X. Yu, “Efficient similarity joins for near
duplicate detection,” in WWW, pp. 131–140, 2008.

[76] X. Yang, B. Wang, and C. Li, “Cost-based variable-length-gram selection for
string collections to support approximate queries efficiently,” in Proceedings of
ACM Management of Data (SIGMOD), pp. 353–364, 2008.

[77] A. C. Yao and F. F. Yao, “Dictionary look-up with one error,” Journal of
Algorithms, vol. 25, no. 1, pp. 194–202, 1997.

[78] Z. Zhang, M. Hadjieleftheriou, B. C. Ooi, and D. Srivastava, “Bed-tree: An
all-purpose index structure for string similarity search based on edit distance,”
in Proceedings of ACM Management of Data (SIGMOD), 2010.

[79] J. Zobel and A. Moffat, “Inverted files for text search engines,” ACM Computing
Surveys, vol. 38, no. 2, p. 6, 2006.

Full text available at: http://dx.doi.org/10.1561/1900000010


	Introduction
	String Similarity Functions
	Edit Based Similarity
	Set Based Similarity
	Related Work

	String Tokenization
	Non-overlapping Tokens
	Overlapping Tokens

	Query Types
	Selection Queries
	Join Queries

	Index Structures
	Inverted Indexes
	Trees
	Related Work

	Algorithms for Set Based Similarity Using Inverted Indexes
	All-Match Selection Queries
	Top-k Selection Queries
	All-Match Join Queries
	All-Match Self-join Queries
	Top-k Join and Self-join Queries
	Index Construction
	Index Updates
	Discussion and Related Issues
	Related Work

	Algorithms for Set Based Similarity Using Filtering Techniques
	The Prefix Filter
	Partitioning and Enumeration Signatures
	The Filter Tree
	Index Updates
	Discussion and Related Issues
	Related Work

	Algorithms for Edit Based Similarity
	Inverted Indexes
	Filtering Techniques
	Trees
	Discussion and Related Issues
	Related Work

	Conclusion
	Acknowledgments
	References



