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Jeffrey S. Racine

Department of Economics, McMaster University, 1280 Main Street West,
Hamilton, Ontario, Canada L8S 4M4, racinej@mcmaster.ca

Abstract

This review is a primer for those who wish to familiarize themselves
with nonparametric econometrics. Though the underlying theory for
many of these methods can be daunting for some practitioners, this
article will demonstrate how a range of nonparametric methods can in
fact be deployed in a fairly straightforward manner. Rather than aiming
for encyclopedic coverage of the field, we shall restrict attention to a set
of touchstone topics while making liberal use of examples for illustrative
purposes. We will emphasize settings in which the user may wish to
model a dataset comprised of continuous, discrete, or categorical data
(nominal or ordinal), or any combination thereof. We shall also consider
recent developments in which some of the variables involved may in fact
be irrelevant, which alters the behavior of the estimators and optimal
bandwidths in a manner that deviates substantially from conventional
approaches.
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1

Introduction

Nonparametric methods are statistical techniques that do not require
a researcher to specify functional forms for objects being estimated.
Instead, the data itself informs the resulting model in a particular
manner. In a regression framework this approach is known as “non-
parametric regression” or “nonparametric smoothing.” The methods
we survey are known as kernel1 methods. Such methods are becom-
ing increasingly popular for applied data analysis; they are best suited
to situations involving large data sets for which the number of vari-
ables involved is manageable. These methods are often deployed after
common parametric specifications are found to be unsuitable for the
problem at hand, particularly when formal rejection of a parametric
model based on specification tests yields no clues as to the direction in
which to search for an improved parametric model. The appeal of non-
parametric methods stems from the fact that they relax the parametric
assumptions imposed on the data generating process and let the data
determine an appropriate model.

1 A “kernel” is simply a weighting function.

1
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2 Introduction

Nonparametric and semiparametric methods have attracted a great
deal of attention from statisticians in the past few decades, as evidenced
by the vast array of texts written by statisticians including Prakasa Rao
(1983), Devroye and Györfi (1985), Silverman (1986), Scott (1992),
Bickel et al. (1993), Wand and Jones (1995), Fan and Gijbels (1996),
Simonoff (1996), Azzalini and Bowman (1997), Hart (1997), Efromovich
(1999), Eubank (1999), Ruppert et al. (2003), Härdle et al. (2004), and
Fan and Yao (2005). However, the number of texts tailored to the needs
of applied econometricians is relatively scarce including, Härdle (1990),
Horowitz (1998), Pagan and Ullah (1999), Yatchew (2003), and Li and
Racine (2007a) being those of which we are currently aware.

The first published paper in kernel estimation appeared in 1956
(Rosenblatt (1956)), and the idea was proposed in an USAF technical
report as a means of liberating discriminant analysis from rigid para-
metric specifications (Fix and Hodges (1951)). Since then, the field has
undergone exponential growth and has even become a fixture in under-
graduate textbooks (see, e.g., Johnston and DiNardo (1997, Chap. 11)),
which attests to the popularity of the methods among students and
researchers alike.

Though kernel methods are popular, they are but one of many
approaches toward the construction of flexible models. Approaches to
flexible modeling include spline, nearest neighbor, neural network, and
a variety of flexible series methods, to name but a few. In this article,
however, we shall restrict attention to the class of nonparametric kernel
methods, and will also touch on semiparametric kernel methods as well.
We shall also focus on more practical aspects of the methods and direct
the interested reader to Li and Racine (2007a) and the references listed
above for details on the theoretical underpinnings in order to keep this
review down to a manageable size.

It bears mentioning that there are two often heard complaints
regarding the state of nonparametric kernel methods, namely, (1) the
lack of software, and (2) the numerical burden associated with these
methods. We are of course sympathetic to both complaints. The lat-
ter may unavoidable and simply be “the nature of the beast” as
they say, though see Computational Considerations for a discussion
of the issues. However, the former is changing and recent developments
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3

hold the promise for computational breakthroughs. Many statistical
software packages now contain some elementary nonparametric meth-
ods (one-dimensional density estimation, one-dimensional regression)
though they often use rule-of-thumb methods for bandwidth selection
which, though computationally appealing, may not be robust choices
in all applications. Recently, an R (R Development Core Team (2007))
package “np” has been created that provides an easy to use and open
platform for kernel estimation, and we direct the interested reader to
Hayfield and Racine (2007) for details. All examples in this review were
generated using the np package, and code to replicate these results is
available upon request.
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