
Design Automation of

Real-Life Asynchronous

Devices and Systems

Full text available at: http://dx.doi.org/10.1561/1000000006



Design Automation of
Real-Life Asynchronous

Devices and Systems

Alexander Taubin

Boston University, USA

Jordi Cortadella

Universitat Politècnica de Catalunya, Spain

Luciano Lavagno

Politecnico di Torino, Italy

Alex Kondratyev

Cadence Design Systems, USA

Ad Peeters

Handshake Solutions, The Netherlands

Boston – Delft

Full text available at: http://dx.doi.org/10.1561/1000000006



Foundations and Trends R© in
Electronic Design Automation

Published, sold and distributed by:
now Publishers Inc.
PO Box 1024
Hanover, MA 02339
USA
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

The preferred citation for this publication is A. Taubin, J. Cortadella, L. Lavagno,
A. Kondratyev and A. Peeters, Design Automation of Real-Life Asynchronous

Devices and Systems, Foundations and Trends R© in Electronic Design Automation,
vol 2, no 1, pp 1–133, 2007

ISBN: 978-1-60198-058-8
c© 2007 A. Taubin, J. Cortadella, L. Lavagno,
A. Kondratyev and A. Peeters

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, mechanical, photocopying, recording
or otherwise, without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Cen-
ter, Inc., 222 Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for
internal or personal use, or the internal or personal use of specific clients, is granted by
now Publishers Inc for users registered with the Copyright Clearance Center (CCC). The
‘services’ for users can be found on the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system
of payment has been arranged. Authorization does not extend to other kinds of copy-
ing, such as that for general distribution, for advertising or promotional purposes, for
creating new collective works, or for resale. In the rest of the world: Permission to pho-
tocopy must be obtained from the copyright owner. Please apply to now Publishers Inc.,
PO Box 1024, Hanover, MA 02339, USA; Tel. +1-781-871-0245; www.nowpublishers.com;
sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to now
Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com; e-mail:
sales@nowpublishers.com

Full text available at: http://dx.doi.org/10.1561/1000000006



Foundations and Trends R© in
Electronic Design Automation

Volume 2 Issue 1, 2007

Editorial Board

Editor-in-Chief:
Sharad Malik
Department of Electrical Engineering
Princeton University
Princeton, NJ 08544

Editors
Robert K. Brayton (UC Berkeley)
Raul Camposano (Synopsys)
K.T. Tim Cheng (UC Santa Barbara)
Jason Cong (UCLA)
Masahiro Fujita (University of Tokyo)
Georges Gielen (KU Leuven)
Tom Henzinger (EPFL)
Andrew Kahng (UC San Diego)
Andreas Kuehlmann (Cadence Berkeley Labs)
Ralph Otten (TU Eindhoven)
Joel Phillips (Cadence Berkeley Labs)
Jonathan Rose (University of Toronto)
Rob Rutenbar (CMU)
Alberto Sangiovanni-Vincentelli (UC Berkeley)
Leon Stok (IBM Research)

Full text available at: http://dx.doi.org/10.1561/1000000006



Editorial Scope

Foundations and Trends R© in Electronic Design Automation
will publish survey and tutorial articles in the following topics:

• System Level Design

• Behavioral Synthesis

• Logic Design

• Verification

• Test

• Physical Design

• Circuit Level Design

• Reconfigurable Systems

• Analog Design

Information for Librarians
Foundations and Trends R© in Electronic Design Automation, 2007, Volume 2,
4 issues. ISSN paper version 1551-3939. ISSN online version 1551-3947. Also
available as a combined paper and online subscription.

Full text available at: http://dx.doi.org/10.1561/1000000006



Foundations and TrendsR© in
Electronic Design Automation

Vol. 2, No. 1 (2007) 1–133
c© 2007 A. Taubin, J. Cortadella, L. Lavagno,
A. Kondratyev and A. Peeters

DOI: 10.1561/1000000006

Design Automation of Real-Life
Asynchronous Devices and Systems

Alexander Taubin1, Jordi Cortadella2, Luciano
Lavagno3, Alex Kondratyev4 and Ad Peeters5

1 Boston University, USA, taubin@bu.edu
2 Universitat Politècnica de Catalunya, Spain, jordi.cortadella@upc.edu
3 Politecnico di Torino, Italy, lavagno@polito.it
4 Cadence Design Systems, USA, kalex@cadence.com
5 Handshake Solutions, The Netherlands,

ad.peeters@handshakesolutions.com

Abstract

The number of gates on a chip is quickly growing toward and beyond the
one billion mark. Keeping all the gates running at the beat of a single or
a few rationally related clocks is becoming impossible. In static timing
analysis process variations and signal integrity issues stretch the timing
margins to the point where they become too conservative and result in
significant overdesign. Importance and difficulty of such problems push
some developers to once again turn to asynchronous alternatives.

However, the electronics industry for the most part is still reluctant
to adopt asynchronous design (with a few notable exceptions) due to a
common belief that we still lack a commercial-quality Electronic Design
Automation tools (similar to the synchronous RTL-to-GDSII flow) for
asynchronous circuits.

Full text available at: http://dx.doi.org/10.1561/1000000006



The purpose of this paper is to counteract this view by presenting
design flows that can tackle large designs without significant changes
with respect to synchronous design flow. We are limiting ourselves to
four design flows that we believe to be closest to this goal. We start
from the Tangram flow, because it is the most commercially proven
and it is one of the oldest from a methodological point of view.

The other three flows (Null Convention Logic, de-synchronization,
and gate-level pipelining) could be considered together as asynchronous
re-implementations of synchronous (RTL- or gate-level) specifications.
The main common idea is substituting the global clocks by local syn-
chronizations. Their most important aspect is to open the possibility
to implement large legacy synchronous designs in an almost “push but-
ton” manner, where all asynchronous machinery is hidden, so that syn-
chronous RTL designers do not need to be re-educated. These three
flows offer a trade-off from very low overhead, almost synchronous
implementations, to very high performance, extremely robust dual-rail
pipelines.

Full text available at: http://dx.doi.org/10.1561/1000000006



Contents

1 Introduction 1

1.1 Requirements for an Asynchronous Design Flow 1
1.2 Motivation for Asynchronous Approach 4
1.3 Asynchronous Design 7
1.4 An Overview of Asynchronous Design Styles 9
1.5 Asynchronous Design Flows 11
1.6 Paper Organization 16

2 Handshake Technology 19

2.1 Motivation 19
2.2 Functional Design 21
2.3 Design Language Haste 21
2.4 Handshake Circuits 29
2.5 Handshake Implementations 32
2.6 Library Connection 34
2.7 Simulation and Verification 35
2.8 Structural Design Flow 36
2.9 Physical Design 39

3 Synchronous-to-asynchronous RTL Flow
Using NCL 43

3.1 Overview 43

ix

Full text available at: http://dx.doi.org/10.1561/1000000006



3.2 Null Convention Logic 45
3.3 NCL Design Flow with HDL Tools 49
3.4 DIMS-based NCL Design Flow 51
3.5 NCL Flow with Explicit Completeness 53
3.6 Verification of NCL Circuits 55

4 De-synchronization: Simple Mutation Circuit
into Asynchronous 63

4.1 Introduction 63
4.2 Signal Transition Graphs 64
4.3 Revisiting Synchronous Circuits 66
4.4 Relaxing the Synchronous Requirement 68
4.5 Minimum Requirements for Correct Asynchronous

Communication 69
4.6 Handshake Protocols for De-synchronization 76
4.7 Implementation of Handshake Controllers 80
4.8 Design Flow 82
4.9 Why De-synchronize? 83
4.10 Conclusions 84

5 Automated Gate Level Pipelining (Weaver) 85

5.1 Automated Pipelining: Motivation 85
5.2 Automated Gate-Level Pipelining: General Approach 88
5.3 Micropipeline Stages: QDI Template 91
5.4 Design Flow Basics 92
5.5 Fine-Grain Pipelining with Registers 93
5.6 Pipeline Petri Net Model of the Flow 95
5.7 Weaving: Simple Examples 100

6 Applications and Success Stories 107

6.1 Low-Power Robust Design Using Haste 107
6.2 Low-Power Robust Design using De-synchronization 109
6.3 Design of Cryptographic Coprocessor 111

Full text available at: http://dx.doi.org/10.1561/1000000006



7 Conclusions 121

Acknowledgments 125

References 127

Full text available at: http://dx.doi.org/10.1561/1000000006



1

Introduction

1.1 Requirements for an Asynchronous Design Flow

With the increases in die size and clock frequency, it has become
increasingly difficult to drive signals across a die following a globally
synchronous approach. Process variations and signal integrity stretch
the timing margins in static timing analysis to the point where they
become too conservative and result in significant over-design. Asyn-
chronous circuits measure, rather than estimate, the delay of the
combinational logic, of the wires, and of the memory elements. They
operate reliably at very low voltages (even below the transistor thresh-
old), when device characteristics exhibit second and third order effects.
They do not require cycle-accurate specifications of the design, but can
exploit specification concurrency virtually at every level of granular-
ity. They can save power because they naturally perform computation
on-demand.

Asynchronous design also provides unique advantages, such as
reduced electromagnetic emission, extremely aggressive pipelining for
high performance, and improved security for cryptographic devices.
In addition, asynchronous design might become a necessity for

1

Full text available at: http://dx.doi.org/10.1561/1000000006



2 Introduction

non-standard future fabrication technologies, such as flexible electron-
ics based on low-temperature poly-silicon TFT technology [50] or nano-
computing [97].

In the next section, we will discuss more in detail the main motiva-
tions to start using asynchronous approaches in real-life designs. Here
we just mention that the problems listed above are suggesting some
designers to consider asynchronous implementation strategies again,
after decades of disuse.

Despite all its potential advantages, asynchronous design has tra-
ditionally been avoided by digital circuit and system designers due to
several reasons:

• There were no good EDA tools and methodologies that com-
pletely covered the design flow (especially for the large, real-
istic designs).
• Testing without a clock did not benefit from the well-

established and reliable set of procedures ensuring that a
synchronous circuit will work as expected after fabrication.
• Asynchrony required a deep change in designers’ mentality

when devising the synchronization among various compo-
nents of a digital system.

Custom and semi-custom design of asynchronous devices and sys-
tems, on the other hand, is a well established academic research area,
offering several well-known success stories including realistic designs
(e.g., [31, 113, 36, 50, 72, 79, 80]). Some asynchronous implementa-
tions have been reportedly developed and sometimes commercialized
by major design companies (e.g., Intel’s RAPPID design [107]; Sun’s
high-speed pipelined devices used in a commercial Sun Ultra are based
on results from [15, 83, 124]; IBM/Columbia low-latency synchronous–
asynchronous FIR filter chip [114, 128] was fabricated, etc.).

However, until recently design and testing automation was consid-
ered a major weakness of asynchronous design approaches.

Asynchronous design is a very large research domain, and it is
almost impossible to cover it in depth within a single paper. The
interested reader is referred to a number of excellent research papers,
books, and surveys devoted to design automation tools and flows for

Full text available at: http://dx.doi.org/10.1561/1000000006



1.1 Requirements for an Asynchronous Design Flow 3

asynchronous circuits (e.g., [17, 18, 23, 32, 33, 64, 88]) and in general
to asynchronous design (e.g., [123, 51, 81]).

This article is devoted specifically to one topic: automation of
asynchronous design based on industrial-quality tools and flows. This
requires support throughout the design cycle, mostly re-using syn-
chronous tools and modeling languages due to the otherwise prohibitive
investment in training and development.

We also aim at dispelling a common misbelief, namely that asyn-
chronous design is difficult, and that only specially educated PhDs can
do it. We show that this is no true and that there exist flows and tools
that satisfy the following key requirements:

• They must be able to handle real-size designs and to re-use
the huge investments in tools, languages and methodologies
that enable synchronous design.
• They must use standard hardware description languages

(HDL), such as Verilog or VHDL, with a modeling style that
does not differ much from the synthesizable subset, in order
to handle legacy designs.
• They must use standard EDA tools to synthesize, map, place,

route the design, and to perform timing analysis, equiva-
lence checking, parasitics extraction, scan insertion, auto-
mated test pattern generation and so on.
• They must use CMOS standard-cell libraries, except when

specially designed dynamic CMOS libraries are required for
maximum performance and minimum power consumption.
• They must be scalable, in order to create industrial-quality

and industrial-size designs.

Any change in the design methodology, no matter how small, must
be strongly motivated. We believe that this is happening now, par-
ticularly since asynchrony is the most natural, powerful and effective
mechanism to address manufacturing and operating condition variabil-
ity. For integrated circuits at 45 nm and beyond, asynchrony is also a
natural way to overcome power, performance and timing convergence
issues related to the use of clock signals, supply voltage drop and delay
uncertainty caused by noise.

Full text available at: http://dx.doi.org/10.1561/1000000006



4 Introduction

1.2 Motivation for Asynchronous Approach

Feedback closed-loop control is a classical engineering technique used
to improve the performance of a design in the presence of manufac-
turing uncertainty. In digital electronics, synchronization is performed
in an open-loop fashion. That is, most synchronization mechanisms,
including clock distribution, clock gating, and so on are based on a
feed-forward network. All delay uncertainties in both the clock tree
and the combinational logic must be designed out, i.e., taken care of
by means of appropriate worst-case margins.

This approach has worked very well in the past, but currently it
shows several signs of weakness. A designer, helped by electronic design
automation tools, must estimate at every design stage (floor-planning,
logic synthesis, placement, routing, mask preparation) the effect that
uncertainties will have on geometry, performance and power (or energy)
of the circuit. Cycles in the design and/or fabrication flow translate
into both time-to-market delays and direct non-recurrent engineering
costs. In the case of mask geometry and fabrication, these uncertain-
ties have so far had mostly a local effect, which can be translated into
design rules. However, as technology progresses towards 45 nm and
beyond, non-local effects, e.g., due to geometry density and orienta-
tion, are becoming more and more significant. In the case of delay and
power, these uncertainties add up to significant margins (e.g., 30% was
reported in [89]) in order to ensure that a sufficiently large percentage
of manufactured chips works within specifications.

Statistical timing analysis [3] attempts to improve the model of the
the impact of correlated and independent variability sources on perfor-
mance. However, it requires a deep change in the business relationship
between foundries and design houses in order to make statistical pro-
cess data available to design tools. The commercial demonstrations of
statistical timing analysis viability have been scarce up to now. More-
over, it is still based on improving predictions, not on actual post-
manufacturing measurements.

Signal integrity comes into play as both crosstalk-induced timing
errors and voltage drop on power lines. Commercial tools for signal and
power integrity analysis and minimization (e.g., [11, 112]) predict and

Full text available at: http://dx.doi.org/10.1561/1000000006



1.2 Motivation for Asynchronous Approach 5

Fig. 1.1 Delay penalties in a synchronous system.

help reduce the impact of voltage drop and crosstalk noise on circuit
performance. However, it is believed that up to 25% of delay penalty
may be due to signal integrity.

Figure 1.1 (from [7]) summarizes the delay penalties that are typical
for a state-of-the-art synchronous methodology.

In addition to design flow and manufacturing process uncertainties,
modern circuit-level power minimization techniques, such as Dynamic
Voltage Scaling and Adaptive Body Biasing, deliberately introduce per-
formance variability. Changing the clock frequency in order to match
performance with scaled supply voltage is very difficult since it multi-
plies the complexity of timing analysis by the number of voltage steps,
and variability impact at low voltages is much more significant. Doing
the same in the presence of varying body biasing, and hence varying
threshold voltages, is even more complex. Moreover, phase-locked loops
provide limited guarantees about periods and phases during frequency
changes, hence the clock must be stopped while frequency is stepped
up or down.

It is well-known that, under normal operating conditions, the delay
of a CMOS circuit scales linearly with its voltage supply, while its power
scales quadratically. Thus the normalized energy-per-cycle or energy-
per-operation efficiency measure scales linearly with voltage supply.
However, it is very difficult to use this optimization opportunity to the
extreme by operating very close to the threshold voltage.

Two approaches have been proposed in the literature to tackle this
problem with purely synchronous means. Both are based on sampling

Full text available at: http://dx.doi.org/10.1561/1000000006



6 Introduction

the output of a signal which is forced to make a transition very close
to the clock cycle, and slow down the clock frequency or increase the
voltage supply if this critical sampling happens at the current voltage
and frequency conditions.

The Razor CPU [25] is designed with double slave latches and an
XOR in each master-slave pair (thus increasing by over 100% the area
of each converted latch). The second slave is clocked half a clock cycle
later than the first slave. When the comparator detects a difference in
values between the slaves, the inputs must have changed very close to
the falling edge of the clock of the first slave, and the latch memorized
an incorrect value. The Razor in that case “skips a beat” and restarts
the pipeline with the value of the second latch, which is always (assum-
ing that environmental conditions change slowly) latched correctly. An
external controller always keeps voltage and clock frequency very close
to this “critical clocking” condition in order to operate the processor
very close to the best V dd point for the required clock frequency, under
the current temperature conditions.

The approach, while very appealing for processors, has an inherent
problem that makes it not applicable to ASICs. Due to the near-critical
clocking, it is always possible that the first latch goes meta-stable. In
that case, the whole detector and the clock controller may suffer from
meta-stability problems. That case is detected with analogue mecha-
nisms, and the whole pipeline is flushed and restarted. This is easy to
do in a processor, for which flushing and restarting is already part of a
modern micro-architecture. However, it is very difficult, if not impos-
sible, to achieve the same objective automatically for a generic logic
circuit.

Another technique that has been proposed is to dynamically mon-
itor the delay of the logic at the current voltage value and adjust
the clock frequency accordingly (the PowerWiseTM technology from
National Semiconductors). It samples, with a high frequency clock,
the output of a digital delay line that toggles once per system clock
cycle. This is used, more or less as in Razor, to measure the delay
of the line in the current environment conditions (temperature, V dd

etc.). The scheme is safer than Razor, because it allows one to insert
enough synchronizers after the delay line to reduce the meta-stability

Full text available at: http://dx.doi.org/10.1561/1000000006



1.3 Asynchronous Design 7

danger. However, it is an indirect measure, and requires a complicated
(patented) logic to monitor and control the clock speed.

Asynchronous implementation, as demonstrated, e.g., in [52, 80, 90],
achieves similar goals with much simpler logic, because the delay of
the logic is directly used to generate the synchronization signals in a
feedback control fashion.

On the other hand, several kinds of applications, in particular most
of those that use complex processor architectures for part of the com-
putation (e.g., general purpose computing and multi-media), and sev-
eral others that are tolerant to environmental variations (e.g., wireless
communications), do not have to obey strict timing constraints at all
times. The widespread use of caches, the difficulty of tight worst-case
execution time analysis for software, and the use multi-tasking ker-
nels, require the use of DSP algorithms that are tolerant to internal
performance variations and offer only average case guarantees. Hence,
a design style in which the device provides average case guarantee,
but may occasionally go slower or faster is quite acceptable for many
applications. If the performance of that device on average is twice
that of a traditionally designed device, then the performance advan-
tage is significant enough to make a limited change in the design flow
acceptable.

1.3 Asynchronous Design

Asynchronous design can be viewed as a method to introduce feed-
back control for synchronization of latches and flip–flops in a digital
design. Asynchronous circuits measure, rather than estimate, the delay
of the combinational logic, of the wires, and of the memorization ele-
ments. Handshaking between controllers that generate the clock signal
for groups of flip–flops and latches ensures the satisfaction of both setup
and hold constraints as illustrated in Figure 1.2.

Asynchronous circuits also reduce electromagnetic emission with
respect to equivalent synchronous ones [53, 82] because they reduce
the power consumption peaks in the vicinity of clock edges. Hence they
produce a flatter power spectrum and exhibit smaller voltage supply
drops.

Full text available at: http://dx.doi.org/10.1561/1000000006



8 Introduction

Fig. 1.2 Synchronous–Asynchronous Direct Translation: from synchronous (a) to de-
synchronized (b) and fine-grain pipelined (c) circuits.

Asynchronous circuits offer two kinds of power-related advantages.
First, they provide a very fine-grained control over activation of both
datapath and storage resources in a manner that is similar to clock gat-
ing but much easier to describe, verify, and implement robustly at the
circuit level. Second, they reliably operate at very low voltages (even
below the transistor threshold), when device characteristics exhibit sec-
ond and third order effects. Synchronous operation becomes virtually
impossible under these conditions [90] because:

• Library cells are seldom characterized by the manufacturer
at such extreme operating conditions. Hence the normal syn-
chronous ASIC design flow is unsuitable to guarantee correct
operation.
• The transistor electrical models deviate significantly from

those used under nominal conditions and make a straight-
forward scaling of performance and power impossible, or at
least very risky.
• The effects of various random or hard-to-predict phenomena,

such as threshold voltage variations, wire width variations,
and local voltage supply variations due to IR drop, are dra-
matically magnified.

All this means that, even if one were able to use the traditional
synchronous flow for circuits that will operate at a voltage supply that is
close to or even below the transistor threshold voltage the performance
margins that one would have to use to ensure correct operation would
be huge. Robustness of asynchronous circuits to delay variations allows
them to run at very low voltage levels. Recently, Achronix reported that

Full text available at: http://dx.doi.org/10.1561/1000000006



1.4 An Overview of Asynchronous Design Styles 9

an asynchronous FPGA chip, built in 90 nm CMOS, reliably operates
with a supply of just 0.2 V and exhibits an 87% power consumption
reduction by scaling the supply voltage from 1.2 V to 0.6 V [2].

1.4 An Overview of Asynchronous Design Styles

Clocking is a common, simple abstraction for representing the timing
issues in the behavior of real circuits. Generally speaking, it lets design-
ers ignore timing when considering functionality. Designers can describe
both the functions performed and the circuits themselves in terms of
logical equations (Boolean algebra). In general, synchronous designers
do not need to worry about the exact sequence of gate switching as
long as the outputs are correct at the clock pulses.

In contrast, asynchronous circuits must strictly coordinate their
behavior. Logic synthesis for asynchronous circuits not only must han-
dle circuit functionality but must also properly order gate activity
(switching). The solution is to use functional redundancy to explicitly
model computation flows without using abstract means such as clocks.
Using logic to ensure correct circuit behavior under any delay distri-
bution can be costly and impractical. Therefore, most asynchronous
design styles use some timing assumptions to correctly coordinate and
synchronize computations.

These assumptions can have different degrees of locality, from
matching delays on some fanout wires, to making sure that a set of
logic paths are faster than others. Localized assumptions are easier to
meet in a design because they simplify timing convergence and provide
more modularity. But ensuring the correctness of such assumptions can
be costly because it requires more system redundancy at the functional
level. Asynchronous design styles differ in the way they handle the
trade-off between locality of timing assumptions [121] and design cost.

The main asynchronous design flows rely on the following
assumptions:

• Delay-insensitive (DI ) circuits [86] impose no timing assump-
tions, allowing arbitrary gate and wire delays. Unfortu-
nately, the class of DI implementations is limited and
impractical [77].

Full text available at: http://dx.doi.org/10.1561/1000000006



10 Introduction

• Quasi-delay-insensitive (QDI ) circuits [76] partition wires
into critical and noncritical categories. Designers of such cir-
cuits consider fanout in critical wires to be safe by assum-
ing that the skew between wire branches is less than the
minimum gate delay. Designers thus assume these wires,
which of course must be constrained to physically lie
within a small area of the chip, to be isochronic. In con-
trast, noncritical wires can have arbitrary delays on fanout
branches.
• Bundled-delay (BD ) circuits assume that the maximum delay

of each combinational logic island is smaller than that of
a reference logic path (usually called matched delay) [121].
Matched delays are implemented using the same gate library
as the rest of the datapath and they are subject to the same
operating conditions (temperature, voltage). This results in
consistent tracking of datapath delays by matched delays and
allows one to reduce design margins with respect to syn-
chronous design (bundled-data protocols).

As Figure 1.3 shows, the locality of timing assumptions decreases,
from DI systems (which make no global assumptions) to synchronous
circuits.

Fig. 1.3 Functional redundancy and locality of timing assumptions in asynchronous designs.

Full text available at: http://dx.doi.org/10.1561/1000000006



1.5 Asynchronous Design Flows 11

The imposed timing assumptions help in differentiating asyn-
chronous implementations. For further categorizing of asynchronous
design flows one needs to find out how the following key issues are
addressed: (a) which way a designer expresses his/her intents, i.e.,
a design specification and (b) which way a designer proceeds with
synthesis. The spectrum of the flow described in this paper ranges
from think asynchronously — implement asynchronously to think syn-
chronously — implement almost synchronously. Table 1.1 gives a high-
level picture of the observed flows.

1.5 Asynchronous Design Flows

The ability to specify a design at a relatively high level, roughly equiv-
alent to Register Transfer Level (RTL), is essential in order to enable
enough designer productivity today. Two basic approaches have been
proposed in the asynchronous domain for this purpose.

(1) The first one is to use an asynchronous HDL, generally
based on the formal model of Communicating Sequential Pro-
cesses (CSP [44]), because it fits very well the underlying
asynchronous implementation fabrics [75, 134]. By nature,
asynchronous circuits are highly concurrent and commu-
nication between modules is based on handshake channels
(local synchronization). Haste, the design language used by
the flow in Chapter 2, offers a syntax similar to behavioral
Verilog, and in addition has explicit constructs for paral-
lelism, communication, and hardware sharing. Starting from
Haste, one can compile to behavioral Verilog for functional
verification.

Its main forte is the ability to achieve all the advantages
of asynchronous implementation, e.g., by controlling the acti-
vation of both control and datapath units (and hence power
and energy consumption) at a very fine level with direct and
explicit HDL support.

Several groups tried to combine RTL with handshake
channel based specifications, particularly, to add channel as
an extension of standard HDL (e.g., Verilog or VHDL) [103,

Full text available at: http://dx.doi.org/10.1561/1000000006



12 Introduction

T
a
b
le

1
.1

H
ig

h
-l
ev

el
v
ie

w
o
n

p
re

se
n
te

d
fu

ll
y
-a

u
to

m
a
te

d
d
es

ig
n

fl
o
w

s.

D
es

ig
n

D
es

ig
n

S
p
ec

ifi
ca

ti
o
n

T
y
p
e

o
f

Im
p
le

m
en

ta
ti

o
n

fl
o
w

st
y
le

st
y
le

sy
n
th

es
is

li
b
ra

ry
S
u
m

m
a
ry

H
a
st

e
F
ro

m
Q

D
I

to
A

sy
n
ch

ro
n
o
u
s

A
sy

n
ch

ro
n
o
u
s

A
sy

n
ch

ro
n
o
u
s

T
h
in

k
B

u
n
d
le

d
h
ig

h
-l
ev

el
D

es
ig

n
W

a
re

a
sy

n
ch

ro
n
o
u
sl

y
—

D
a
ta

a
n
d

R
T

L
m

a
p
p
ed

to
im

p
le

m
en

t

(C
S
P

-b
a
se

d
)

st
a
n
d
a
rd

ce
ll
s

a
sy

n
ch

ro
n
o
u
sl

y
N

C
L

Q
D

I
S
y
n
ch

ro
n
o
u
s

S
y
n
ch

ro
n
o
u
s

+
C

u
st

o
m

N
C

L
.

T
h
in

k

R
T

L
fo

r
sc

ri
p
ts

to
m

a
p

P
o
ss

ib
le

to
a
sy

n
ch

ro
n
o
u
sl

y
—

d
a
ta

p
a
th

,
in

to
a
sy

n
c.

ex
te

n
d

to
im

p
le

m
en

t
a
sy

n
ch

ro
n
o
u
s

li
b
ra

ry
st

a
n
d
a
rd

ce
ll
s

a
lm

o
st

fo
r

co
n
tr

o
l

sy
n
ch

ro
n
o
u
sl

y
D

es
y
n
c.

B
u
n
d
le

d
S
y
n
ch

ro
n
o
u
s

S
y
n
ch

ro
n
o
u
s

+
S
ta

n
d
a
rd

ce
ll
s

T
h
in

k

D
a
ta

R
T

L
sc

ri
p
ts

to
sy

n
ch

ro
n
o
u
sl

y
—

im
p
le

m
en

t
im

p
le

m
en

t
lo

ca
l
cl

o
ck

in
g

a
lm

o
st

sy
n
ch

ro
n
o
u
sl

y

F
in

e
g
ra

in
Q

D
I

S
y
n
ch

ro
n
o
u
s

S
y
n
ch

ro
n
o
u
s

+
C

u
st

o
m

(d
y
n
a
m

ic
T

h
in

k
p
ip

el
in

e
R
T

L
sc

ri
p
ts

to
m

a
p

lo
g
ic

)
P
o
ss

ib
le

sy
n
ch

ro
n
o
u
sl

y
—

(W
ea

v
er

)
in

to
p
ip

el
in

e
to

ex
te

n
d

to
im

p
le

m
en

t

ce
ll
s

st
a
n
d
a
rd

ce
ll
s

a
sy

n
ch

ro
n
o
u
sl

y

Full text available at: http://dx.doi.org/10.1561/1000000006



1.5 Asynchronous Design Flows 13

108, 109] that could be considered as HDL level automation
of Caltech group’s ideas [79]. Unfortunately this approach
which is attractive from theoretical point of view requires
reeducation of RTL designers and rewriting of existing
specifications which is not realistic for big and expensive
designs.

(2) The other approach, that we call Synchronous–Asynchronous
Direct Translation (SADT), starts from a synchronous syn-
thesizable specification, translates it into a gate-level netlist
using traditional logic synthesis tools, and then applies a vari-
ety of techniques to translate it into as asynchronous imple-
mentation [20, 68, 70, 117].

Its main advantage is to allow reimplementation of legacy
designs without any designer intervention at the HDL level.
Since eliminating logic bugs takes up to 50% of design time,
this can potentially translate into a significant advantage in
terms of design time and cost, with respect to approaches
that require a significant redesign. This approach is repre-
sented by the following design styles.
(a) The Null-Convention Logic (NCL), that is used by

Theseus Logic and is described in Chapter 3, is based
on a proprietary library of majority gates and pro-
duces fully delay-insensitive circuits. This has very
high overhead (about 3–4× in terms of area), but
is also very robust, because functional correctness is
achieved independent of gate and wire delays.

(b) De-synchronization, that is described in Chapter 4,
uses a micropipeline-style architecture and an inter-
connection of small handshaking controllers to derive
the clock for groups of up to 100 latches (derived
by splitting synchronous flip–flops). It has very low
overhead in terms of area (between 5% and 10%),
but requires careful matching of delays all the way
down through physical design. Note that the same
implementation architecture is used by the Hand-
shake Solution flow of Chapter 2, starting from the

Full text available at: http://dx.doi.org/10.1561/1000000006



14 Introduction

Haste language, thus easing interfacing between logic
blocks produced by one of these two flows.

(c) Automated fine-grain pipelining presented in
Chapter 5. In the finest granularity (gate-level
pipelining Figure. 1.2(c) in addition to replacing
global synchronization with local handshake control
this flow also removes functionally unnecessary syn-
chronization. The flow offers support for automated
pipelining therefore it is targeted to improve the
original design performance. In this flow [115, 117]
by default pipelining is done in the finest degree
resulting in high-performance. The flow can exploit
the use of aggressive pipelining to reduce the per-
formance gap while maintaining low power. For
example, for a standard cell library developed using
180 nm TSMC process the fine-grain pipelined cells
are functional with VDDs down to 0.6 V. FIFO
performance of 780 MHz at nominal 1.8 V drops to
135 MHz at the safe 0.8 V with 14.2× lower power
consumption.

We believe that synchronous–asynchronous directed translation
model could play for asynchronous design automation as important
of a role as RTL did for synchronous EDA. The main contribution
to EDA by RTL model is due to a separation of optimization and
timing (all sequential behavior is in an interaction between registers,
all synthesis and optimization are only about combinational clouds).
The key idea that enables SADT flows is as follows. The RTL model
(Figure 1.2(a)) is based on global synchronization and timing assump-
tions (computations complete in every stage before the next clock edge).
During every clock cycle every latch undergoes two phases: pass and
store. Master–slave flip–flops prevent the register from being trans-
parent at any given time, but introduce the requirement to carefully
control clock skew in order to avoid double-clocking failures (also called
hold time violations), which are especially nasty because they cannot
be fixed simply by slowing down the clock. Dynamic logic also has

Full text available at: http://dx.doi.org/10.1561/1000000006



1.5 Asynchronous Design Flows 15

a two-phase operation: evaluate and precharge (reset). These phases
naturally map to asynchronous handshake (request–acknowledge)
protocols [121].

The separation into phases enables, in asynchronous just as in syn-
chronous design, a clean separation between functionality and timing.
A datapath implemented using any of the techniques described in this
paper behaves just like combinational logic (and is in fact just plain
combinational logic in the Haste and the desynchronization flows) dur-
ing evaluation. A resetting or precharge phase is used in the NCL and
fine-grain pipelining flows to ensure reliable delay-insensitive or high-
speed operation. In other words, asynchronous implementation does
not change the externally observable behavior, and the sequence of val-
ues that appears on the boundary registers is the same before and after
the application of SADT.

Among other advantages (e.g., in terms of reuse of functional
and timing verification simulation vectors), this enables easy interfac-
ing with synchronous logic. The latter could be achieved by driving
the clocks of the synchronous blocks by the request signals coming
from the asynchronous blocks if the following two assumptions are
satisfied:

• Each synchronous block has an interface whose fanin and
fanout registers are all clocked by a single asynchronous
controller.
• Each synchronous block is faster than the asynchronous one

that drives its clock.

For this reason, synchronous legacy logic can be used unchanged in an
asynchronous fabric if it is non-critical.

This is very different from GALS-based methods, which require the
use of wrappers and introduce significant system-level integration prob-
lems due to the need of creating ad-hoc manual handshaking between
blocks that belong to different clock domains.

The various SADT flows described in this paper differ in the
granularity of the pipeline stages. The NCL and desynchronization
approaches retain exactly the same position of registers, and hence
pipelining level, as the original synchronous specification. Gate-level

Full text available at: http://dx.doi.org/10.1561/1000000006



16 Introduction

pipelining, on the other hand, significantly decreases the granularity of
the pipelining, down to the gate level, as shown in Figure 1.2(c).

All the approaches considered in this paper share several com-
mon characteristics. First of all, control is derived through a syntax-
directed translation from a specification, whether it is written in Haste
or in synthesizable Verilog. Second, the datapath is generated (at
least initially, for the NCL and fine-grain pipelining flows) using tradi-
tional logic synthesis techniques, starting from design libraries such as
DesignWare [22]. Third, physical design and implementation verifica-
tion (equivalence checking, extraction, back-annotation etc.) are essen-
tially unchanged. Finally, testing of the datapath and of the controllers
is performed mostly synchronously thanks to the fact that timing faults
in the controller networks are easy to detect with simple functional
tests. Hence design for testability and automated test pattern genera-
tion tools and techniques can be reused almost without change.

We present a variety of automated flows (Haste and the flows related
to SADT approach) because we believe that the full advantages of
asynchronous design to tackle power, energy, variability, and electro-
magnetic emission will come from a judicious mix of:

• Full redesigning performance and power-critical widely used
components (e.g. microprocessors) using a language like
Haste.
• Converting synchronous designs of special-purpose critical

modules to asynchronous implementations, using one of the
SADT techniques outlined in this paper. The choice of
method will depend on whether the main goal is robustness,
cost or performance.
• Leaving non-critical components as synchronous and clock-

ing them with the handshake signals produced by the asyn-
chronous interface controllers.

1.6 Paper Organization

We will start our review by considering in Chapter 2 the most radi-
cal design approach that has been applied so far to real-life designs. It
is based on the Haste language, and commercialized by Handshake

Full text available at: http://dx.doi.org/10.1561/1000000006



1.6 Paper Organization 17

Solutions. It is radical since it starts from non-standard (asyn-
chronously specific model) and needs some specific education for
designers. However, this non-standard HDL could lead to rather effi-
cient solutions that could be unreachable from standard HDLs spec-
ifications. It was successfully used for real LARGE designs. Then we
will describe the SADT approaches, starting from the pioneering NCL
technique [57, 68] discussed in Chapter 3. NCL was the first approach
to asynchronous design exploiting the idea of synthesizing large designs
using commercial EDA tools. NCL circuits are dual-rail to enable com-
pletion detection. They are architecturally equivalent to the RTL imple-
mentation. However, full synchronization of completion detection at
each register implies that NCL circuits are significantly slower and
larger (by a factor of 2 to 4) than the synchronous starting point.

Reducing NCL overheads moves us to de-synchronization [19, 20],
in Chapter 4, which uses delay matching in order to achieve a good
compromise between robustness, performance, and cost. When run at
their worst-case speed, desynchronized designs exhibit an almost neg-
ligible overhead with respect to synchronous ones. On the other hand,
when run at the actual speed at the process, voltage, and temperature
conditions. They can dramatically reduce the delay margins required
by synchronous design.

None of the above approaches offers support for automated pipelin-
ing, therefore they cannot directly improve this aspect of the perfor-
mance equation. Gate-level pipelining [117, 118], on the other hand,
can pipeline at the level of individual gates, thus achieving performance
levels that are virtually impossible to match with synchronous designs.
We present this flow in Chapter 5.

Chapter 6 is dedicated to design examples that illustrate both the
achievable results and the possible application areas of the various
design flows. Finally, Chapter 7 presents some conclusions on the oppor-
tunities offered by asynchronous circuits and flows.

Full text available at: http://dx.doi.org/10.1561/1000000006



References

[1] A. Abrial, J. Bouvier, M. Renaudin, P. Senn, and P. Vivet, “A new contactless
smart card IC using an on-chip antenna and an asynchronous microcontroller,”
IEEE Journal of Solid-State Circuits, vol. 36, no. 7, pp. 1101–1107, 2001.

[2] Achronix Semiconductor, www.achronix.com, 2006.
[3] A. Agarwal, D. Blaauw, V. Zolotov, and S. Vrudhula, “Statistical timing

analysis using bounds,” in Design, Automation and Test in Europe (DATE),
pp. 10062–10067, 2003.

[4] N. Andrikos, A Fully Automated Desynchronization Flow for Synchronous
Circuits. PhD thesis, University of Crete, 2006.

[5] M. Baleani, F. Gennari, Y. Jiang, Y. Patel, R. K. Brayton, and A. L.
Sangiovanni-Vincentelli, “HW/SW partitioning and code generation of
embedded control applications on a reconfigurable architecture platform,”
in Proceedings of the Tenth International Symposium on Hardware/Software
Codesign, CODES 2002, pp. 151–156, Estes Park, Colorado, USA, May 6–8
2002.

[6] A. Bardsley, Implementing Balsa Handshake Circuits. PhD thesis, Department
of Computer Science, University of Manchester, 2000.

[7] P. Beerel, J. Cortadella, and A. Kondratyev, “Bridging the gap between asyn-
chronous design and designers (Tutorial),” in VLSI Design Conference, (Mum-
bai), 2004.

[8] P. A. Beerel, M. Davies, A. Lines, and N.-H. Kim, “Slack matching asyn-
chronous designs,” in Proc. International Symposium on Advanced Research
in Asynchronous Circuits and Systems, pp. 184–194, March 2006.

127

Full text available at: http://dx.doi.org/10.1561/1000000006



128 References

[9] L. Benini, E. Macii, and M. Poncino, “Telescopic units: Increasing the aver-
age throughput of pipelined designs by adaptive latency control,” in Proc.
ACM/IEEE Design Automation Conference, pp. 22–27, 1997.

[10] Celoxica, Handel-C Language Reference Manual. Celoxica. 2003.
[11] CeltIC signal integrity analysis, www.cadence.com/products.
[12] T. Chelcea and S. M. Nowick, “Resynthesis and peephole transformations for

the optimization of large-scale asynchronous systems,” in Proc. ACM/IEEE
Design Automation Conference, June 2002.

[13] D. Chinnery and K. Keutzer, Closing the Gap between ASIC & Custom. Tools
and Techniques for Gigh-Performance ASIC Design. Kluwer Academic Pub-
lishers, 2002.

[14] T.-A. Chu, C. K. C. Leung, and T. S. Wanuga, “A design methodology for
concurrent VLSI systems,” in Proc. International Conf. Computer Design
(ICCD), pp. 407–410, IEEE Computer Society Press, 1985.

[15] W. S. Coates, J. K. Lexau, I. W. Jones, S. M. Fairbanks, and I. E. Suther-
land, “FLEETzero: An asynchronous switch fabric chip experiment,” in Proc.
International Symposium on Advanced Research in Asynchronous Circuits and
Systems, pp. 173–182, IEEE Computer Society Press, March 2001.

[16] F. Commoner, A. W. Holt, S. Even, and A. Pnueli, “Marked directed graphs,”
Journal of Computer and System Sciences, vol. 5, pp. 511–523, 1971.

[17] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev,
“Petrify: A tool for manipulating concurrent specifications and synthesis of
asynchronous controllers,” IEICE Transactions on Information and Systems,
vol. E80-D, no. 3, pp. 315–325, March 1997.

[18] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev,
Logic Synthesis of Asynchronous Controllers and Interfaces. Springer-Verlag,
2002.

[19] J. Cortadella, A. Kondratyev, L. Lavagno, K. Lwin, and C. Sotiriou, “From
synchronous to asynchronous: An automatic approach,” in Proc. Design,
Automation and Test in Europe (DATE), pp. 1368–1369, February 2004.

[20] J. Cortadella, A. Kondratyev, L. Lavagno, and C. Sotiriou, “Desynchroniza-
tion: Synthesis of asynchronous circuits from synchronous specifications,”
IEEE Transactions on Computer-Aided Design, vol. 25, no. 10, pp. 1904–1921,
October 2006.

[21] M. de Wit and A. Peeters, “Haste language reference manual,” Tech. Rep.,
2006.

[22] Designware, intellectual property: www.synopsys.com/products/design-
ware/.

[23] D. Edwards and A. Bardsley, “Balsa: An asynchronous hardware synthesis
language,” The Computer Journal, vol. 45, no. 1, pp. 12–18, 2002.

[24] S. A. Edwards, “The challenges of hardware synthesis from c-like languages,”
in DATE ’05: Proceedings of the Conference on Design, Automation and Test
in Europe, pp. 66–67, 2005.

[25] D. Ernst, S. Das, S. Lee, D. Blaauw, T. Austin, T. Mudge, N. S. Kim, and
K. Flautner, “Razor: Circuit-level correction of timing errors for low-power
operation,” IEEE Micro, November 2004.

Full text available at: http://dx.doi.org/10.1561/1000000006



References 129

[26] K. M. Fant, Logically Determined Design: Clockless System Design with NULL
Convention Logic. John Wiley & Sons, 2005.

[27] K. M. Fant and S. A. Brandt, “NULL conventional logic: A complete and
consistent logic for asynchronous digital circuit synthesis,” in International
Conference on Application-specific Systems, Architectures, and Processors,
pp. 261–273, 1996.

[28] M. Ferretti and P. A. Beerel, “Single-track asynchronous pipeline templates
using 1-of-N encoding,” in Proc. Design, Automation and Test in Europe
(DATE), pp. 1008–1015, March 2002.

[29] M. Ferretti, R. Ozdag, and P. Beerel, “High performance asynchronous ASIC
back-end design flow using single-track full-buffer standard cells,” in Proc.
International Symposium on AdvancedResearch in Asynchronous Circuits and
Systems, pp. 95–105, IEEE Computer Society Press, April 2004.

[30] FIPS PUB 197: advanced encryption standard, http://csrc.nist.gov/
publications/fips/fips197/fips-197.pdf.

[31] First clockless processor for real-time chip designs – http://www.handshake
solutions.com/News/.

[32] R. M. Fuhrer and S. M. Nowick, Sequential Optimization of Asynchronous and
Synchronous Finite-State Machines: Algorithms and Tools. Kluwer Academic
Publishers, 2001.

[33] R. M. Fuhrer, S. M. Nowick, M. Theobald, N. K. Jha, B. Lin, and L. Plana,
“Minimalist: An environment for the synthesis, verification and testability of
burst-mode asynchronous machines,” Tech. Rep. TR CUCS-020-99, Columbia
University, NY, July 1999.

[34] Fulcrum microsystems www.fulcrummicro.com/.
[35] S. B. Furber and P. Day, “Four-phase micropipeline latch control circuits,”

IEEE Transactions on VLSI Systems, vol. 4, no. 2, pp. 247–253, June 1996.
[36] J. D. Garside, W. J. Bainbridge, A. Bardsley, D. A. Edwards, S. B. Furber,

J. Liu, D. W. Lloyd, S. Mohammadi, J. S. Pepper, O. Petlin, S. Temple,
and J. V. Woods, “AMULET3i — an asynchronous system-on-chip,” in Proc.
International Symposium on Advanced Research in Asynchronous Circuits and
Systems, pp. 162–175, IEEE Computer Society Press, April 2000.

[37] R. Goering, “Simple designs aren’t easy, speaker says,” EE Times, http://
www.eetimes.com/showArticle.jhtml?articleID=184400784, no. 03/28/2006,
2006.

[38] D. Harris, Skew-Tolerant Circuit Design. Morgan Kaufmann Publishers, 2001.
[39] A. Hartstein and T. R. Puzak, “Optimum power/performance pipeline depth,”

in MICRO-36 International Symposium on Microarchitecture, 2003.
[40] P. J. Hazewindus, Testing Delay-Insensitive Circuits. PhD thesis, California

Institute of Technology, 1992.
[41] J. L. Hennessy and D. Patterson, Computer Architecture: A Quantitative

Approach. Morgan Kaufmann Publisher Inc., 1990.
[42] E. Hess, N. Janssen, B. Meyer, and T. Schutze, “Information leakage attacks

against smart card implementations of cryptographic algorithms and counter-
measures — a survey,” in EUROSMART Security Conference, 2000.

Full text available at: http://dx.doi.org/10.1561/1000000006



130 References

[43] C. A. R. Hoare, “Communicating sequential processes,” Communications of
the ACM, vol. 21, no. 8, pp. 666–677, August 1978.

[44] C. A. R. Hoare, Communicating Sequential Processes. Prentice-Hall, 1985.
[45] A. Hodjat, D. D. Hwang, B. Lai, K. Tiri, and I. Verbauwhede, “A 3.84 gbits/s

AES crypto coprocessor with modes of operation in a 0.18-um CMOS tech-
nology,” in 15th ACM Great Lakes symposium on VLSI, (Chicago, Illinois,
USA), pp. 60–63, 2005.

[46] M. S. Hrishikesh, N. P. Jouppi, K. I. Farkas, D. Burger, S. W. Keckler, and
P. Shivakumar, “The optimal depth per pipeline stage is 6 to 8 fo4 inverter
delays,” in 29th Int’l Symp. Computer Architecture, pp. 14–24, IEEE CS Press,
2002.

[47] H. Hulgaard, S. M. Burns, and G. Borriello, “Testing asynchronous circuits:
A survey,” Integration, the VLSI Journal, vol. 19, no. 3, pp. 111–131, Novem-
ber 1995.

[48] C. Jeong and S. M. Nowick, “Optimal technology mapping and cell merger
for asynchronous threshold networks,” in Proc. International Symposium
on Advanced Research in Asynchronous Circuits and Systems, pp. 128–137,
March 2006.

[49] J. Kahle, “The myth of the optimal fo4,” in ACM/IEEE TAU Workshop on
Timing Issues in the Specification and Synthesis of Digital Systems, 2004.

[50] N. Karaki, T. Nanmoto, H. Ebihara, S. Utsunomiya, S. Inoue, and T. Shi-
moda, “A flexible 8b asynchronous microprocessor based on low-temperature
poly-silicon TFT technology,” in International Solid State Circuits Confer-
ence, pp. 272–274, February 2005.

[51] C. H. (Kees) van Berkel, M. B. Josephs, and S. M. Nowick, “Scanning the
technology: Applications of asynchronous circuits,” Proceedings of the IEEE,
vol. 87, no. 2, pp. 223–233, February 1999.

[52] C. Kelly, V. Ekanayake, and R. Manohar, “SNAP: A sensor-network asyn-
chronous processor,” in Proc. International Symposium on Advanced Research
in Asynchronous Circuits and Systems, pp. 24–33, IEEE Computer Society
Press, May 2003.

[53] J. Kessels and A. Peeters, “The Tangram framework: Asynchronous circuits
for low power,” in Proc. of Asia and South Pacific Design Automation Con-
ference, pp. 255–260, February 2001.

[54] J. Kessels, A. Peeters, T. Kramer, M. Feuser, and K. Ully, “Designing an
asynchronous bus interface,” in Proc. International Symposium on Advanced
Research in Asynchronous Circuits and Systems, pp. 108–117, IEEE Computer
Society Press, March 2001.

[55] R. Kol and R. Ginosar, “A doubly-latched asynchronous pipeline,” in Proc.
International Conf. Computer Design (ICCD), pp. 706–711, October 1996.

[56] T. Kolks, S. Vercauteren, and B. Lin, “Control resynthesis for control-
dominated asynchronous designs,” in Proc. International Symposium on
Advanced Research in Asynchronous Circuits and Systems, March 1996.

[57] A. Kondratyev and K. Lwin, “Design of asynchronous circuits using syn-
chronous CAD tools,” IEEE Design & Test of Computers, vol. 19, no. 4,
pp. 107–117, 2002.

Full text available at: http://dx.doi.org/10.1561/1000000006



References 131

[58] A. Kondratyev, L. Neukom, O. Roig, A. Taubin, and K. Fant, “Checking
delay-insensitivity: 104 gates and beyond,” in Proc. International Symposium
on Advanced Research in Asynchronous Circuits and Systems, pp. 149–157,
April 2002.

[59] A. Kondratyev, L. Sorensen, and A. Streich, “Testing of asynchronous designs
by inappropriate means. synchronous approach,” in Proc. International Sym-
posium on Advanced Research in Asynchronous Circuits and Systems, pp. 171–
180, April 2002.

[60] K. Kulikowski, M. Karpovsky, and A. Taubin, “Power attacks on secure hard-
ware based on early propapation of data,” in 12th IEEE International On-Line
Testing Symposium, 2006.

[61] K. Kulikowski, A. Smirnov, and A. Taubin, “Automated design of crypto-
graphic devices resistant to multiple side-channel attacks,” in Chyptographic
Hardware and Embedded Systems CHES, (Yokohama), 2006.

[62] K. J. Kulikowski, M. Su, A. Smirnov, A. Taubin, M. G. Karpovsky, and
D. MacDonald, “Delay insensitive encoding and power analysis: A balanc-
ing act,” in Proc. International Symposium on Advanced Research in Asyn-
chronous Circuits and Systems, pp. 116–125, 2005.

[63] T. Larrabee, “Test pattern generation using boolean satisfiability,” IEEE
Transactions on Computer-Aided Design, vol. 11, no. 1, pp. 4–15, 1992.

[64] L. Lavagno and S. M. Nowick, “Asynchronous control circuits,” in Logic Syn-
thesis and Verification, pp. 255–284, Kluwer Academic Publishers, 2002.

[65] P. Le Guernic, J.-P. Talpin, and J.-C. L. Lann, “Polychrony for system design,”
Journal of Circuits, Systems and Computers, April 2003.

[66] H. Li, A. Markettos, and S. W. Moore, “Security evaluation against electro-
magnetic analysis at design time,” in Workshop on Cryptographic Hardware
and Embedded Systems (CHES), 2005.

[67] Liberty CCS: www.synopsys.com/products/libertyccs/libertyccs.html.
[68] M. Ligthart, K. Fant, R. Smith, A. Taubin, and A. Kondratyev, “Asyn-

chronous design using commercial HDL synthesis tools,” in Proc. International
Symposium on Advanced Research in Asynchronous Circuits and Systems,
pp. 114–125, IEEE Computer Society Press, April 2000.

[69] D. H. Linder, Phased Logic: A Design Methodology for Delay-Insensitive, Syn-
chronous Circuitry. PhD thesis, Mississippi State University, 1994.

[70] D. H. Linder and J. C. Harden, “Phased logic: Supporting the synchronous
design paradigm with delay-insensitive circuitry,” IEEE Transactions on Com-
puters, vol. 45, no. 9, pp. 1031–1044, September 1996.

[71] A. Lines, Pipelined Asynchronous Circuits. PhD thesis, California Institute of
Technology, 1998. (CaltechCSTR:1998.cs-tr-95-21).

[72] A. Lines, “Nexus: An asynchronous crossbar interconnect for synchronous
system-on-chip designs,” in Proceedings of the 11th Symposium on High Per-
formance Interconnects, pp. 2–9, August 2003.

[73] D. J. MacDonald, MS Thesis. A Balanced-Power Domino-Style Standard Cell
Library for Fine-Grain Asynchronous Pipelined Design to Resist Differential
Power Analysis Attacks. PhD thesis, Boston University, 2005.

Full text available at: http://dx.doi.org/10.1561/1000000006



132 References

[74] R. Manohar and A. J. Martin, “Slack elasticity in concurrent computing,” in
Proc. 4th International Conference on the Mathematics of Program Construc-
tion, (J. Jeuring, ed.), pp. 272–285, 1998.

[75] A. J. Martin, “Programming in VLSI: From communicating processes to delay-
insensitive circuits,” in Developments in Concurrency and Communication,
(C. A. R. Hoare, ed.). UT Year of Programming Series, pp. 1–64, Addison-
Wesley, 1990.

[76] A. J. Martin, “Compiling communicating processes into delay-insensitive VLSI
circuits,” Distributed Computing, vol. 1, no. 4, pp. 226–234, 1986.

[77] A. J. Martin, “The limitations to delay-insensitivity in asynchronous circuits,”
in Advanced Research in VLSI, (W. J. Dally, ed.), pp. 263–278, MIT Press,
1990.

[78] A. J. Martin and P. J. Hazewindus, “Testing delay-insensitive circuits,” in
Advanced Research in VLSI, (C. H. Séquin, ed.), pp. 118–132, MIT Press,
1991.

[79] A. J. Martin, A. Lines, R. Manohar, M. Nyström, P. Pénzes, R. Southworth,
and U. Cummings, “The design of an asynchronous MIPS R3000 micropro-
cessor,” in Advanced Research in VLSI, pp. 164–181, September 1997.

[80] A. J. Martin, M. Nyström, K. Papadantonakis, P. I. Pénzes, P. Prakash, C. G.
Wong, J. Chang, K. S. Ko, B. Lee, E. Ou, J. Pugh, E.-V. Talvala, J. T. Tong,
and A. Tura, “The lutonium: A sub-nanojoule asynchronous 8051 microcon-
troller,” in Proc. International Symposium on Advanced Research in Asyn-
chronous Circuits and Systems, pp. 14–23, IEEE Computer Society Press,
May 2003.

[81] J. Martin Alain and M. Nystrom, “Asynchronous techniques for system-on-
chip design,” Proceedings of the IEEE, vol. 94, no. 6, pp. 1089–1120, June
2006.

[82] J. McCardle and D. Chester, “Measuring an asynchronous processor’s power
and noise,” in SNUG, 2001.

[83] C. E. Molnar, I. W. Jones, B. Coates, and J. Lexau, “A FIFO ring oscilla-
tor performance experiment,” in Proc. International Symposium on Advanced
Research in Asynchronous Circuits and Systems, pp. 279–289, IEEE Computer
Society Press, April 1997.

[84] S. Moore, R. Anderson, R. Mullins, G. Taylor, and J. J. A. Fournier, “Balanced
self-checking asynchronous logic for smart card applications,” Microprocessors
and Microsystems, vol. 27, no. 9, pp. 421–430, October 2003.

[85] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik, “Chaff: Engi-
neering an efficient SAT solver,” in Proc. ACM/IEEE Design Automation
Conference, 2001.

[86] D. E. Muller, “Asynchronous logics and application to information process-
ing,” in Symposium on the Application of Switching Theory to Space Technol-
ogy, pp. 289–297, Stanford University Press, 1962.

[87] T. Murata, “Petri nets: Properties, analysis and applications,” Proceedings of
the IEEE, vol. 77, no. 4, pp. 541–574, April 1989.

[88] C. Myers, Asynchronous Circuit Design. John Wiley & Sons, 2001.

Full text available at: http://dx.doi.org/10.1561/1000000006



References 133

[89] S. R. Nassif, “Modeling and forecasting of manufacturing variations,” in Asia-
South Pacific Design Automation Conference (ASP-DAC), 2001.

[90] L. Necchi, L. Lavagno, D. Pandini, and L. Vanzago, “An ultra-low energy
asynchronous processor for wireless sensor networks,” in Proc. International
Symposium on Advanced Research in Asynchronous Circuits and Systems,
pp. 78–85, March 2006.

[91] . Overview Datasheet -high performance aes (rijndael) cores for asic
http://www.heliontech.com/downloads/aes asic helioncore.pdf.

[92] R. O. Ozdag and P. A. Beerel, “High-speed QDI asynchronous pipelines,” in
Proc. International Symposium on Advanced Research in Asynchronous Cir-
cuits and Systems, pp. 13–22, April 2002.

[93] D. Patterson, “The future of computer architecture. berkeley eecs annual
research symposium 2006, http://www.eecs.berkeley.edu/BEARS/presenta-
tions/06Patterson.ppt,” 2006.

[94] A. Peeters, “Implementation of handshake components,” in Comunicating
Sequential Processes, the First 25 Years, Volume 3525 of Lecture Notes in
Computer Science, (A. E. Abdallah, C. B. Jones, and J. W. Sanders, eds.),
pp. 98–132, 2005.

[95] A. Peeters and K. van Berkel, “Synchronous handshake circuits,” in Proc.
International Symposium on Advanced Research in Asynchronous Circuits and
Systems, pp. 86–95, IEEE Computer Society Press, March 2001.

[96] A. M. G. Peeters, Single-Rail Handshake Circuits. PhD thesis, Eindhoven Uni-
versity of Technology, June 1996.

[97] F. Peper, J. Lee, S. Adachi, and S. Mashiko, “Laying out circuits on asyn-
chronous cellular arrays: A step towards feasible nanocomputers?,” Nanotech-
nology, vol. 14, pp. 469–485, 2003.

[98] O. A. Petlin and S. B. Furber, “Scan testing of micropipelines,” in Proc. IEEE
VLSI Test Symposium, pp. 296–301, May 1995.

[99] L. A. Plana, P. A. Riocreux, W. J. Bainbridge, A. Bardsley, J. D. Garside, and
S. Temple, “SPA — A synthesisable amulet core for smartcard applications,”
in Proc. International Symposium on Advanced Research in Asynchronous
Circuits and Systems, pp. 201–210, April 2002.

[100] P. Prakash and A. J. Martin, “Slack matching quasi delay-insensitive circuits,”
in Proc. International Symposium on Advanced Research in Asynchronous
Circuits and Systems, pp. 195–204, March 2006.

[101] J. M. Rabaey, A. Chandrakasan, and B. Nikolic, Digital Integrated Circuits.
Prentice-Hall, 2nd ed., 2002.

[102] R. B. Reese and M. A. T. C. Traver, “A coarse-grain phased logic CPU,” in
Proc. International Symposium on Advanced Research in Asynchronous Cir-
cuits and Systems, pp. 2–13, IEEE Computer Society Press, May 2003.

[103] M. Renaudin, P. Vivet, and F. Robin, “A design framework for asyn-
chronous/synchronous circuits based on CHP to HDL translation,” in Proc.
International Symposium on Advanced Research in Asynchronous Circuits and
Systems, pp. 135–144, April 1999.

Full text available at: http://dx.doi.org/10.1561/1000000006



134 References

[104] M. Roncken and R. Saeijs, “Linear test times for delay-insensitive circuits:
A compilation strategy,” in Asynchronous Design Methodologies, (S. Furber
and M. Edwards, eds.), pp. 13–27, Elsevier Science Publishers, 1993.

[105] M. Roncken, “Defect-oriented testability for asynchronous IC’s,” Proceedings
of the IEEE, vol. 87, no. 2, pp. 363–375, February 1999.

[106] L. Y. Rosenblum and A. V. Yakovlev, “Signal graphs: From self-timed to
timed ones,” in Proceedings of International Workshop on Timed Petri Nets,
(Torino, Italy), pp. 199–207, IEEE Computer Society Press, July 1985.

[107] S. Rotem, K. Stevens, R. Ginosar, P. Beerel, C. Myers, K. Yun, R. Kol, C. Dike,
M. Roncken, and B. Agapiev, “RAPPID: An asynchronous instruction length
decoder,” in Proc. International Symposium on Advanced Research in Asyn-
chronous Circuits and Systems, pp. 60–70, April 1999.

[108] A. Saifhashemi and P. A. Beerel, “High Level modeling of channel-based
asynchronous circuits using verilog,” in Communicating Process Architectures,
(J. F. Broenink et al., ed.), pp. 275–288, IOS Press, September 2005.

[109] A. Saifhashemi and H. Pedram, “Verilog HDL, powered by PLI: A suitable
framework for describing and modeling asynchronous circuits at all levels of
abstraction,” in Proc. ACM/IEEE Design Automation Conference, pp. 330–
333, June 2003.

[110] Savant Project-http://www.cliftonlabs.com/savantp.htm.
[111] C. L. Seitz, “System timing,” in Introduction to VLSI Systems, (C. A. Mead

and L. A. Conway, eds.), ch. 7, Addison-Wesley, 1980.
[112] Sequence signal-integrity tools, www.sequencedesign.com.
[113] Silistix, self-timed interconnect technology, www.silistix.com.
[114] M. Singh, J. A. Tierno, A. Rylyakov, S. Rylov, and S. M. Nowick, “An

adaptively-pipelined mixed synchronous-asynchronous digital FIR filter chip
operating at 1.3 gigahertz,” in Proc. International Symposium on Advanced
Research in Asynchronous Circuits and Systems, pp. 84–95, April 2002.

[115] A. Smirnov and A. Taubin, “Synthesizing asynchronous micropipelines with
design compiler,” in Synopsys Users Group, Boston, 2006.

[116] A. Smirnov, A. Taubin, and M. Karpovsky, “Automated pipelining in ASIC
synthesis methodology: Gate transfer level,” in IWLS 2004 Thirteenth Inter-
national Workshop on Logic and Synthesis, 2004.

[117] A. Smirnov, A. Taubin, and M. Karpovsky, “An automated fine-grain pipelin-
ing using domino style asynchronous library,” in ACSD 2005: Fifth Interna-
tional Conference on Application of Concurrency to System Design, (St.Malo,
France), IEEE CS Press, 2005.

[118] A. Smirnov, A. Taubin, M. Karpovsky, and L. Rozenblyum, “Gate transfer
level synthesis as an automated approach to fine-grain pipelining,” in Work-
shop on Token Based Computing (ToBaCo), (Bologna, Italy), 2004.

[119] G. E. Sobelman and K. Fant, “CMOS circuit design of threshold gates
with hysteresis,” in Proc. International Symposium on Circuits and Systems,
pp. 61–64, June 1998.

[120] D. Sokolov, J. Murphy, A. Bystrov, and A. Yakovlev, “Design and analysis of
dual-rail circuits for security applications,” IEEE Transactions on Computers,
vol. 54, no. 4, pp. 449–460, April 2005.

Full text available at: http://dx.doi.org/10.1561/1000000006



References 135

[121] J. Sparsø and S. Furber, eds., Principles of Asynchronous Circuit Design:
A Systems Perspective. Kluwer Academic Publishers, 2001.

[122] J. Sparsø and J. Staunstrup, “Delay-insensitive multi-ring structures,” Inte-
gration, the VLSI Journal, vol. 15, no. 3, pp. 313–340, October 1993.

[123] Special issue on asynchronous circuits and systems. Proceedings of the IEEE,
vol. 87, no. 2, pp. 1–375, February 1999.

[124] I. Sutherland and S. Fairbanks, “GasP: A minimal FIFO control,” in Proc.
International Symposium on Advanced Research in Asynchronous Circuits and
Systems, pp. 46–53, IEEE Computer Society Press, March 2001.

[125] I. E. Sutherland, “Micropipelines,” Communications of the ACM, vol. 32,
no. 6, pp. 720–738, June 1989.

[126] F. te Beest and A. Peeters, “A multiplexer based test method for self-timed
circuits,” in Proc. International Symposium on Advanced Research in Asyn-
chronous Circuits and Systems, pp. 166–175, 2005.

[127] F. te Beest, A. Peeters, K. van Berkel, and H. Kerkhoff, “Synchronous full-scan
for asynchronous handshake circuits,” Journal of Electronic Testing: Theory
and Applications, vol. 19, pp. 397–406, 2003.

[128] J. Tierno, A. Rylyakov, S. Rylov, M. Singh, P. Ampadu, S. Nowick, M. Imme-
diato, and S. Gowda, “A 1.3 GSample/s 10-tap full-rate variable-latency self-
timed FIR filter with clocked interfaces,” in International Solid State Circuits
Conference, February 2002.

[129] K. Tiri, M. Akmal, and I. Verbauwhede, “A dynamic and differential cmos
logic with signal independent power consumption to withstand differential
power analysis on smart cards,” in 28th European Solid-State Circuits Con-
ference (ESSCIRC 2002), 2002.

[130] K. Tiri, W. Hwang, A. Hodjat, L. Bo-Cheng, Y. Shenglin, P. Schaumont,
and I. Verbauwhede, “Prototype IC with wddl and differential routing — dpa
sesistance assessment,” in Chyptographic Hardware and Embedded Systems —
CHES, (Edinburgh), pp. 354–365, LNCS3659, Springer, 2005.

[131] K. Tiri and I. Verbauwhede, “Securing encryption algorithms against dpa at
the logic level: Next generation smart card technology,” Workshop on Cryp-
tographic Hardware and Embedded Systems (CHES 2003), 2003.

[132] K. Tiri and I. Verbauwhede, “A logic level design methodology for a secure
dpa resistant asic or fpga implementation,” Design Automation and Test in
Europe Conference (DATE 2004), 2004.

[133] TSMC 0.18mm Process 1.8-Volt SAGE-X TM Standard Cell Library Data-
book. September 2003.

[134] K. van Berkel, Handshake Circuits: An Asynchronous Architecture for VLSI
Programming. Vol. 5 of International Series on Parallel Computation, Cam-
bridge University Press, 1993.

[135] K. van Berkel and A. Bink, “Single-track handshaking signaling with appli-
cation to micropipelines and handshake circuits,” in Proc. International
Symposium on Advanced Research in Asynchronous Circuits and Systems,
pp. 122–133, IEEE Computer Society Press, March 1996.

Full text available at: http://dx.doi.org/10.1561/1000000006



136 References

[136] K. van Berkel, F. Huberts, and A. Peeters, “Stretching quasi delay insensitivity
by means of extended isochronic forks,” in Asynchronous Design Methodolo-
gies, pp. 99–106, IEEE Computer Society Press, May 1995.

[137] K. van Berkel, A. Peeters, and F. te Beest, “Adding synchronous and LSSD
modes to asynchronous circuits,” Microprocessors and Microsystems, vol. 27,
no. 9, pp. 461–471, October 2003.

[138] V. Varshavsky, V. Marakhovsky, and T.-A. Chu, “Logical timing (global syn-
chronization of asynchronous arrays,” in The First International Symposium
on Parallel Algorithm/Architecture Synthesis, (Aizu-Wakamatsu, Japan),
pp. 130–138, March 1995.

[139] V. I. Varshavsky, ed., Self-Timed Control of Concurrent Processes: The Design
of Aperiodic Logical Circuits in Computers and Discrete Systems, (Dordrecht,
The Netherlands), Kluwer Academic Publishers, 1990.

[140] G. Venkataramani, T. Bjerregaard, T. Chelcea, and S. C. Goldstein, “Hard-
ware compilation of application-specific memory-access interconnect,” IEEE
Trans. on CAD of Integrated Circuits and Systems, vol. 25, no. 5, pp. 756–771,
2006.

[141] G. Venkataramani, M. Budiu, T. Chelcea, and S. Goldstein, “C to asyn-
chronous dataflow circuits: An end-to-end toolflow,” in IWLS, pp. 501–508,
Temecula, CA, June 2004.

[142] G. Venkataramani and S. Copen Goldstein, “Leveraging protocol knowledge in
slack matching,” in IEEE/ACM International Conference on Computer-Aided
Design, (San Jose, CA, USA), November 2006.

[143] T. Verhoeff, “Delay-insensitive codes—an overview,” Distributed Computing,
vol. 3, no. 1, pp. 1–8, 1988.

[144] Weaver: GTL synthesis flow. http://async.bu.edu/weaver/.
[145] Y. Zhou, D. Sokolov, and A. Yakovlev, “Cost-aware synthesis of asynchronous

circuits based on partial acknowledgement,” in Proc. International Conf.
Computer-Aided Design (ICCAD), pp. 255–260, IEEE Computer Society
Press, November 2006.

Full text available at: http://dx.doi.org/10.1561/1000000006


	Introduction
	Requirements for an Asynchronous Design Flow
	Motivation for Asynchronous Approach
	Asynchronous Design
	An Overview of Asynchronous Design Styles
	Asynchronous Design Flows
	Paper Organization

	Handshake Technology
	Motivation
	Functional Design
	Design Language Haste
	Handshake Circuits
	Handshake Implementations
	Library Connection
	Simulation and Verification
	Structural Design Flow
	Physical Design

	Synchronous-to-asynchronous RTL Flow Using NCL
	Overview
	Null Convention Logic
	NCL Design Flow with HDL Tools
	DIMS-based NCL Design Flow
	NCL Flow with Explicit Completeness
	Verification of NCL Circuits

	De-synchronization: Simple Mutation Circuit into Asynchronous
	Introduction
	Signal Transition Graphs
	Revisiting Synchronous Circuits
	Relaxing the Synchronous Requirement
	Minimum Requirements for Correct Asynchronous Communication
	Handshake Protocols for De-synchronization
	Implementation of Handshake Controllers
	Design Flow
	Why De-synchronize?
	Conclusions

	Automated Gate Level Pipelining (Weaver)
	Automated Pipelining: Motivation
	Automated Gate-Level Pipelining: General Approach
	Micropipeline Stages: QDI Template
	Design Flow Basics 
	Fine-Grain Pipelining with Registers
	Pipeline Petri Net Model of the Flow
	Weaving: Simple Examples

	Applications and Success Stories
	Low-Power Robust Design Using Haste
	Low-Power Robust Design using De-synchronization
	Design of Cryptographic Coprocessor

	Conclusions
	Acknowledgments
	References



