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Abstract

Today’s Integrated Circuit (IC) architects depend on Electronic Design
Automation (EDA) software to conquer the overwhelming complexity
of Very Large Scale Integrated (VLSI) designs. As the complexity of
IC chips is still fast increasing, it is critical to maintain the momentum
towards growing productivity of EDA tools. On the other hand, single-
core Central Processing Unit (CPU) performance is unlikely to see sig-
nificant improvement in the near future. It is thus essential to develop
highly efficient parallel algorithms and implementations for EDA appli-
cations, so that their overall productivity can continue to increase in a
scalable fashion. Among various emergent parallel platforms, Graphics
Processing Units (GPUs) now offer the highest single-chip computing
throughput. A large body of research, therefore, has been dedicated to
accelerating EDA applications with GPUs. This monograph is aimed to
develop a timely review of the existing literature on GPU-based EDA
computing. Considering the substantial diversity of VLSI CAD algo-
rithms, we extend a taxonomy of EDA computing patterns, which can
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be used as basic building blocks to construct complex EDA applica-
tions. GPU-based acceleration techniques for these patterns are then
reviewed. On such a basis, we further survey recent works on building
efficient data-parallel algorithms and implementations to unleash the
power of GPUs for EDA applications.

Categories and Subject Descriptors: J.6 [Computer-Aided Engi-
neering| — Computer-aided design (CAD).

General Terms: Algorithms, Design, Performance

Additional Keywords and Phrases: Electronic Design Automation
(EDA), VLSI, GPU, Graphics Processor, GPGPU, logic simulation,
circuit simulation, matrix, linear algebra, sparse matrix, graph
traversal, graph algorithm, dynamic programming, simulated anneal-
ing, structured grid
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1

Introduction

As the foundation of information technology, Integrated Circuits (ICs)
are playing a fundamental role in our society. In the foreseeable future,
IC technology will still be one of the major enablers for sustainable
development. To further improve the working efficiency and living stan-
dards of the human beings, the number of ICs deployed around the
world will still be rapidly increasing in the future. It is predicted that
15X more transistors are going to be deployed in the next 5 years to
“manage, store, and interpret data” [194].

At the same time, the complexity of ICs has been growing as indi-
cated by Moore’s law to maintain the momentum towards increasing
performance and functionality. Today, it is already feasible to inte-
grate over 7 billion transistors on a consumer IC chip [I87]. To conquer
the overwhelming complexity of modern ICs, circuit designers depend
on Electronic Design Automation (EDA) software to convert a design
intention into working silicon. EDA tools, therefore, have to be scalable
with the growing IC complexity, so that the design turnaround time
can be kept in a reasonable level. Current EDA tools are facing chal-
lenges from two ends, big system and small physics [216]. The former
means the integration of a whole hardware/software system onto a
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single chip, while the latter involves the manufacturability, reliability,
and other issues incurred by the shrinking physical size of IC fabrication
processes. Both trends pose significant requirements to the processing
throughput of EDA software.

In the past, the performance scalability of EDA tools had always
been the result of two interacting factors, smarter algorithms and faster
CPUs. The latter factor is especially handy because the same EDA
algorithm automatically runs faster on a CPU with higher perfor-
mance. In early 2000s, however, single-core CPU performance is satu-
rating due to the inability to extract more instruction-level parallelism
and improve power efficiency. Such a stall in computing performance
had serious implications on the design turnaround time of IC design
projects. Given the complexity of today’s IC designs, the runtime of
EDA applications can still be excessive even using the best algorithm
to date. For instance, a timing analysis will take a couple of hours
to perform on a 5M-gate design. Such a runtime seriously constrains
the number of optimization steps that can be conducted in a given
design turnaround time, since virtually every post-synthesis optimiza-
tion operation requires a run of timing analysis to validate the cor-
rectness. A runtime of a few hours suggests that only a small portion
of the complete solution space can be explored and the design quality
has to be relaxed. Another example is the circuit simulation problem.
Given a Giga-Hertz phase-lock loop (PLL) circuit, a transient analysis
needs to simulate the circuit for millions of cycles before the frequency
can be stabilized. Thus a complete run will take months to finish on
a single CPU. Besides, the continuously shrinking market window of
today’s electronic appliances also poses challenging requirements to the
productivity of EDA software.

In spite of the relative saturation of single-core CPU performance
in the conceivable future, the semiconductor processes are still offering
continuously growing integration capacity. As a result, all major CPU
vendors switched to offer multi-core products since 2006. Multi-core
processors are inevitably becoming the dominant computing platform
for EDA applications. Accordingly, it is crucial to develop parallel solu-
tions to EDA software such that the momentum of function increase in
VLSI designs can be maintained [46).
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In the past few years, major EDA vendors proposed R&D initia-
tives to take advantage of the computing power of multi-core pro-
cessors [220]. At the present time, the POSIX threads or Pthreads
[115] based multithreading has been the most popular programming
model for multi-core CPUs. Multithreaded versions of cutting-edge
EDA software have already been released. Such applications include
parallel circuit simulator (e.g., [42] 240]), router (e.g., [241]), and physi-
cal verification (e.g., [126]). Among these, multithreaded parallel circuit
simulation proves to be especially successful. Meanwhile, the academia
also introduced parallel algorithms for many EDA applications (e.g.,
[110} 157, 170, 220]).

Despite their many successful applications, the multithreaded
parallel programming model on multi-core CPUs still has serious limi-
tations. A CPU thread is associated with a relatively high overhead in
initialization, context switching, and synchronization [40]. Accordingly,
P threads and similar programming models belong to the category of
coarse-grain multithreading, which suggests parallel processing of tasks
and/or large chunks of data of a problem. However, many complex
EDA applications feature abundant fine-grain parallelism (i.e., data
parallelism) exemplified by matrix and graph operations. A multi-core
microprocessor at most supports a few tens of threads and cannot fully
take advantage of the inherent fine-grain parallelism. In addition, the
scalability of a coarse-grained multithreaded program is seriously lim-
ited by the thread management overhead. A context switching of a
thread on a multi-core CPU takes a few hundreds of microseconds [145].
Generally, such an overhead will outweigh the speed-up of increasing
parallelism when the number of threads is beyond a given level. A recent
work showed that the performance of a highly optimized parallel logic
simulator saturated at 15 threads on a 10-core CPU [201].

The above problems of multi-core processors as well as the pursuit
for more computing power motivate EDA researchers and engineers
to explore alternative parallel computing platforms. Recently, Graphic
Processing Units (GPUs) have emerged as a new general-purpose
computing platform [28], 195, 196]. GPUs were originally designed as
application-specific ICs for graphics rendering. Pushed by the relentless
pursuit for better visual experiences, GPUs evolved to offer both high
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Fig. 1.1 Comparison of peak throughput of CPUs and GPUs.

programmability and superior computing throughput. In 2004, NV35
GPU began to deliver a higher level of performance than the best CPU
at that time. Current GPUs outperform their multi-core CPU equiva-
lents by a factor of over 30 in terms of peak computing throughput.

The above performance trend is depicted in Figure where
the computing throughputs of NVIDIA and AMD GPUs and Intel
CPUs are compared in terms of Giga FLoating Operation Per Second
(GFLOPS). We collected performance data from publically available
datasheets [5 [186]. GPU chip makers usually release multiple GPUs
with varying performance levels at each technology node. Meanwhile,
the above three companies have different schedules for releasing new
products. In Figure [1.1] we only show the “flagship” GPU for each
generation and take NVIDIA’s release schedule as the time reference.
Clearly, GPU has been outperforming CPU since 2004 and the perfor-
mance gap is still broadening.

Along with the high computing throughput, GPUs are also equipped
with a high bandwidth memory bus because it is installed on the



Full text available at: http://dx.doi.org/10.1561/1000000028

5
GBis
300
-=-NVIDIA GPU
GCN
AMD GPU
250
GK110
200 /f
150
RV870 GF100
RV600 RVTT0
100
G80 _/GTZOO
G70
G90
50
NV35 NV40_~ DDR4 34GB/s
DDR317GBls —
R300 — RS00 DDR28.5GB/s I
0 ; I\"I.ll.lI

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
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graphics card and dedicated to GPU applications. The memory
characteristics of major GPUs are demonstrated in Figure The
bandwidth values of four generations of DDR memories, i.e., the mem-
ory standard for CPUs, are also depicted as reference. The latest
NVIDIA and AMD GPUs have a peak memory bandwidth of 208 GB/s
and 264 GB/s, respectively, while the current DDR3 memory standard
only supports 17GB/s (the next generation DDR4 will double the band-
width to 34GB/s) [122]. Certainly the superior memory bandwidth of
GPUs will significantly benefit memory-intensive EDA applications.
Traditionally, GPUs are programmed with shading languages like
OpenGL [191]. Although OpenGL can be used for general-purpose
computing on GPUs (GPGPU), the resultant programming process is
laborious and error-prone. To ease the programming effort of GPGPU,
NVIDIA introduced the Compute Unified Device Architecture (CUDA)
technology [178, [183] so that programmers can develop GPGPU pro-
grams in a C/C++ alike language with a few extensions. While CUDA



Full text available at: http://dx.doi.org/10.1561/1000000028

6 Introduction

can only be used on NVIDIA GPUs, OpenCL is defined by a group of
industry players as a standard cross-platform GPGPU language [134].

The synergy of GPU hardware and software has resulted in suc-
cessful applications in a diverse range of scientific and engineering
domains [28, 195]. On workloads with appropriate computing and
memory accessing patterns, GPU can even attain a speed-up of over
100X. It is thus appealing to unleash the computing power of GPU for
EDA applications.

Different CPUs, GPUs adopt a fine-grain multithreading model.
Equipped with dedicated hardware for context switching, GPU threads
are light-weighted and excel in massively data-parallel processing. Such
an execution model makes GPU proper for EDA applications featuring
data-parallelism. There is already a large body of literature presenting
encouraging results on utilizing GPU to solve various EDA problems.
GPGPU proved to be effective in such time consuming applications
as system level design, logic simulation, timing analysis, power grid
analysis, placement, and routing. The positive results suggest that the
superior computing power of GPUs can be unleashed by developing
carefully designed data-parallel algorithms and highly tuned implemen-
tations.

On the other hand, EDA applications pose unique challenges to the
GPGPU model. The nature of circuits determines that the underly-
ing data structures capturing IC designs tend to be irregular. Typical
EDA applications are thus constructed on the basis of such irregular
data structures as sparse matrix, tree, and graphE The resultant mem-
ory accessing patterns are less amenable to GPUs, which only have
a limited capacity of cache and assume regular memory accesses to
fully utilize its large memory bandwidth. Accordingly, current works on
GPU-based EDA computing generally resort to two strategies: (1) iden-
tifying regular sub-problems in an EDA application and then use GPU
as an accelerator for them; and (2) re-designing or re-structuring algo-
rithms on GPU so as to convert irregular data accesses into (at least
partially) regular ones. Another challenge is that EDA applications are

I There exist special cases where the data structure can be quite regular. One such typical
example is the power distribution network, which in many designs consists of a relatively
regular power mesh.
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extremely complex and cover many different domains of computations.
Accordingly, an application-by-application parallelization approach can
be infeasible. A viable line of attack, instead, is to identify the funda-
mental computing patterns and perform parallelization on them. Such
a pattern-based strategy of parallel programming proves to be crucial
for many other software applications [162].

In this monograph, we present an up-to-date survey on the
progresses in GPU-accelerated EDA computing. Considering the high
complexity of EDA applications, an essential objective of this work is
to extract key computing patterns of EDA and present state-of-the-art
GPU programming techniques to resolve such patterns. We believe that
this approach will substantially ease the deployment of GPUs in future
EDA software. This monograph focuses on using GPU to accelerate
applications in the EDA domain, while the techniques also have wide
applications in many other scientific and engineering domains. Inter-
ested readers please also refer to [Owens et al. 2007; Refs. [28, [195]] for
surveys on applications in other disciplines.

The remainder of this monograph is organized as follows. Section
provides an overview of GPU hardware architectures and the corre-
sponding data-parallel programming model. In Sections [3] and [4 we
develop a taxonomy for the basic computing patterns of EDA appli-
cations and then review relevant GPU programming techniques for
these patterns. In Section [5| we survey successful applications of GPU-
accelerated EDA computing. In Section [6] we conclude this work and
propose future research directions.
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