Full text available at: http://dx.doi.org/10.1561/1000000028

Electronic Design
Automation with Graphic

Processors: A Survey

Full text available at: http://dx.doi.org/10.1561/1000000028

Electronic Design
Automation with Graphic
Processors: A Survey

Yangdong Deng

Tsinghua University
China

dengydQ@tsinghua.edu.cn

Shuai Mu

Tsinghua University
China

mus04ster@gmail.com

Now

the essence of knowledge

Boston — Delft

Full text available at: http://dx.doi.org/10.1561/1000000028

Foundations and Trends® in
Electronic Design Automation

Published, sold and distributed by:
now Publishers Inc.

PO Box 1024

Hanover, MA 02339

USA

Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.

PO Box 179

2600 AD Delft

The Netherlands

Tel. +31-6-51115274

The preferred citation for this publication is Y. Deng and S. Mu, Electronic Design
Automation with Graphic Processors: A Survey, Foundations and Trends™~ in Elec-
tronic Design Automation, vol 7, nos 1-2, pp 1-176, 2013

ISBN: 978-1-60198-680-1
(© 2013 Y. Deng and S. Mu

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, mechanical, photocopying, recording
or otherwise, without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Cen-
ter, Inc., 222 Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for
internal or personal use, or the internal or personal use of specific clients, is granted by
now Publishers Inc for users registered with the Copyright Clearance Center (CCC). The
‘services’ for users can be found on the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system
of payment has been arranged. Authorization does not extend to other kinds of copy-
ing, such as that for general distribution, for advertising or promotional purposes, for
creating new collective works, or for resale. In the rest of the world: Permission to pho-
tocopy must be obtained from the copyright owner. Please apply to now Publishers Inc.,
PO Box 1024, Hanover, MA 02339, USA; Tel. +1-781-871-0245; www.nowpublishers.com;
sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to now
Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com; e-mail:
sales@nowpublishers.com

Full text available at: http://dx.doi.org/10.1561/1000000028

Foundations and Trends® in
Electronic Design Automation

Volume 7 Issues 1-2, 2013
Editorial Board

Editor-in-Chief:
Radu Marculescu
Dept. of Electrical & Computer Engineering

Carnegie Mellon University
Pittsburgh, PA 15213-3890

Editors

Robert K. Brayton (UC Berkeley)
Raul Camposano (Nimbic)

K.T. Tim Cheng (UC Santa Barbara)
Jason Cong (UCLA)

Masahiro Fujita (University of Tokyo)
Georges Gielen (KU Leuven)

Tom Henzinger (IST Austria)

Andrew Kahng (UC San Diego)
Andreas Kuehlmann (Coverity)
Sharad Malik (Princeton)

Ralph Otten (TU Eindhoven)

Joel Phillips (Cadence Berkeley Labs)
Jonathan Rose (University of Toronto)
Rob Rutenbar (UIUC)

Alberto Sangiovanni-Vincentelli (UC Berkeley)
Leon Stok (IBM Research)

Full text available at: http://dx.doi.org/10.1561/1000000028

Editorial Scope

Foundations and Trends® in Electronic Design Automation
will publish survey and tutorial articles in the following topics:

e System Level Design e Physical Design

e Behavioral Synthesis e Circuit Level Design

e Logic Design e Reconfigurable Systems
e Verification e Analog Design

e Test

Information for Librarians

Foundations and Trends® in Electronic Design Automation, 2013, Volume 7,
4 issues. ISSN paper version 1551-3939. ISSN online version 1551-3947. Also
available as a combined paper and online subscription.

Full text available at: http://dx.doi.org/10.1561/1000000028

Foundations and Trends® in
Electronic Design Automation

Vol. 7, Nos. 1-2 (2013) 1-176 n.w

© 2013 Y. Deng and S. Mu
DOI: 10.1561/1000000028 the essence of knowledge

Electronic Design Automation with
Graphic Processors: A Survey

Yangdong Deng' and Shuai Mu?

1 Institute of Microelectronics, Tsinghua University, Beijing, 100084,
China, dengyd@tsinghua.edu.cn

2 Institute of Microelectronics, Tsinghua University, Beijing, 100084,
China, mus04ster@gmail.com

Abstract

Today’s Integrated Circuit (IC) architects depend on Electronic Design
Automation (EDA) software to conquer the overwhelming complexity
of Very Large Scale Integrated (VLSI) designs. As the complexity of
IC chips is still fast increasing, it is critical to maintain the momentum
towards growing productivity of EDA tools. On the other hand, single-
core Central Processing Unit (CPU) performance is unlikely to see sig-
nificant improvement in the near future. It is thus essential to develop
highly efficient parallel algorithms and implementations for EDA appli-
cations, so that their overall productivity can continue to increase in a
scalable fashion. Among various emergent parallel platforms, Graphics
Processing Units (GPUs) now offer the highest single-chip computing
throughput. A large body of research, therefore, has been dedicated to
accelerating EDA applications with GPUs. This monograph is aimed to
develop a timely review of the existing literature on GPU-based EDA
computing. Considering the substantial diversity of VLSI CAD algo-
rithms, we extend a taxonomy of EDA computing patterns, which can

Full text available at: http://dx.doi.org/10.1561/1000000028

be used as basic building blocks to construct complex EDA applica-
tions. GPU-based acceleration techniques for these patterns are then
reviewed. On such a basis, we further survey recent works on building
efficient data-parallel algorithms and implementations to unleash the
power of GPUs for EDA applications.

Categories and Subject Descriptors: J.6 [Computer-Aided Engi-
neering| — Computer-aided design (CAD).

General Terms: Algorithms, Design, Performance

Additional Keywords and Phrases: Electronic Design Automation
(EDA), VLSI, GPU, Graphics Processor, GPGPU, logic simulation,
circuit simulation, matrix, linear algebra, sparse matrix, graph
traversal, graph algorithm, dynamic programming, simulated anneal-
ing, structured grid

Full text available at: http://dx.doi.org/10.1561/1000000028

Contents
(1__Introduction| 1
2 GPU Architecture and Programming Model 9
2.1 GPU Background| 9
2.2 GPU Hardware Architecturel 13
2.3 GPU Programming Model| 27
3 EDA Computing Patterns| 41
|4 Accelerating Key Design Patterns on GPUs| 47
4.1 Dense Linear Algebral 47
|4.2 Sparse Linear Algebral 66
4.3 Graph Algorithms| 83
A4 Backtrack and Branch-and-Bound] 98
4.5 MapReduce| 103
4.6 Dynamic Programming| 107
4.7 Structured Grid 110
5 GPU-Accelerated EDA Applications| 113
5.1 System-Level Design| 115
5.2 RTL Designl 118
[5.3 Physical Design| 124

(.4 Simulationl 135

Full text available at: http://dx.doi.org/10.1561/1000000028

6 Conclusion and Future Workl 157

|Acknowledgments| 161

[References] 163

Full text available at: http://dx.doi.org/10.1561/1000000028

1

Introduction

As the foundation of information technology, Integrated Circuits (ICs)
are playing a fundamental role in our society. In the foreseeable future,
IC technology will still be one of the major enablers for sustainable
development. To further improve the working efficiency and living stan-
dards of the human beings, the number of ICs deployed around the
world will still be rapidly increasing in the future. It is predicted that
15X more transistors are going to be deployed in the next 5 years to
“manage, store, and interpret data” [194].

At the same time, the complexity of ICs has been growing as indi-
cated by Moore’s law to maintain the momentum towards increasing
performance and functionality. Today, it is already feasible to inte-
grate over 7 billion transistors on a consumer IC chip [I87]. To conquer
the overwhelming complexity of modern ICs, circuit designers depend
on Electronic Design Automation (EDA) software to convert a design
intention into working silicon. EDA tools, therefore, have to be scalable
with the growing IC complexity, so that the design turnaround time
can be kept in a reasonable level. Current EDA tools are facing chal-
lenges from two ends, big system and small physics [216]. The former
means the integration of a whole hardware/software system onto a

Full text available at: http://dx.doi.org/10.1561/1000000028

2 Introduction

single chip, while the latter involves the manufacturability, reliability,
and other issues incurred by the shrinking physical size of IC fabrication
processes. Both trends pose significant requirements to the processing
throughput of EDA software.

In the past, the performance scalability of EDA tools had always
been the result of two interacting factors, smarter algorithms and faster
CPUs. The latter factor is especially handy because the same EDA
algorithm automatically runs faster on a CPU with higher perfor-
mance. In early 2000s, however, single-core CPU performance is satu-
rating due to the inability to extract more instruction-level parallelism
and improve power efficiency. Such a stall in computing performance
had serious implications on the design turnaround time of IC design
projects. Given the complexity of today’s IC designs, the runtime of
EDA applications can still be excessive even using the best algorithm
to date. For instance, a timing analysis will take a couple of hours
to perform on a 5M-gate design. Such a runtime seriously constrains
the number of optimization steps that can be conducted in a given
design turnaround time, since virtually every post-synthesis optimiza-
tion operation requires a run of timing analysis to validate the cor-
rectness. A runtime of a few hours suggests that only a small portion
of the complete solution space can be explored and the design quality
has to be relaxed. Another example is the circuit simulation problem.
Given a Giga-Hertz phase-lock loop (PLL) circuit, a transient analysis
needs to simulate the circuit for millions of cycles before the frequency
can be stabilized. Thus a complete run will take months to finish on
a single CPU. Besides, the continuously shrinking market window of
today’s electronic appliances also poses challenging requirements to the
productivity of EDA software.

In spite of the relative saturation of single-core CPU performance
in the conceivable future, the semiconductor processes are still offering
continuously growing integration capacity. As a result, all major CPU
vendors switched to offer multi-core products since 2006. Multi-core
processors are inevitably becoming the dominant computing platform
for EDA applications. Accordingly, it is crucial to develop parallel solu-
tions to EDA software such that the momentum of function increase in
VLSI designs can be maintained [46).

Full text available at: http://dx.doi.org/10.1561/1000000028

3

In the past few years, major EDA vendors proposed R&D initia-
tives to take advantage of the computing power of multi-core pro-
cessors [220]. At the present time, the POSIX threads or Pthreads
[115] based multithreading has been the most popular programming
model for multi-core CPUs. Multithreaded versions of cutting-edge
EDA software have already been released. Such applications include
parallel circuit simulator (e.g., [42] 240]), router (e.g., [241]), and physi-
cal verification (e.g., [126]). Among these, multithreaded parallel circuit
simulation proves to be especially successful. Meanwhile, the academia
also introduced parallel algorithms for many EDA applications (e.g.,
[110} 157, 170, 220]).

Despite their many successful applications, the multithreaded
parallel programming model on multi-core CPUs still has serious limi-
tations. A CPU thread is associated with a relatively high overhead in
initialization, context switching, and synchronization [40]. Accordingly,
P threads and similar programming models belong to the category of
coarse-grain multithreading, which suggests parallel processing of tasks
and/or large chunks of data of a problem. However, many complex
EDA applications feature abundant fine-grain parallelism (i.e., data
parallelism) exemplified by matrix and graph operations. A multi-core
microprocessor at most supports a few tens of threads and cannot fully
take advantage of the inherent fine-grain parallelism. In addition, the
scalability of a coarse-grained multithreaded program is seriously lim-
ited by the thread management overhead. A context switching of a
thread on a multi-core CPU takes a few hundreds of microseconds [145].
Generally, such an overhead will outweigh the speed-up of increasing
parallelism when the number of threads is beyond a given level. A recent
work showed that the performance of a highly optimized parallel logic
simulator saturated at 15 threads on a 10-core CPU [201].

The above problems of multi-core processors as well as the pursuit
for more computing power motivate EDA researchers and engineers
to explore alternative parallel computing platforms. Recently, Graphic
Processing Units (GPUs) have emerged as a new general-purpose
computing platform [28], 195, 196]. GPUs were originally designed as
application-specific ICs for graphics rendering. Pushed by the relentless
pursuit for better visual experiences, GPUs evolved to offer both high

Full text available at: http://dx.doi.org/10.1561/1000000028

4 Introduction

GFLOPS
4500
—+Intel CPU GK110
4000 - -=-NVIDIA GPU
AMD GPU /
3500 /
3000

RVS70 / GCN
2500 /
2000
PentiumD /
GF100
R500 /' Core2Duo
R300 : RV770

1000 i R400 ;o :
; ; i/ / G90 /
i i I Gsl-l,'/./ GT200
500 { L

/ RV600
.'" Core2 Quad Core 2 Extreme

1500

NV35 Coreis Corei?
S 4

0 a : T T v T T T T T
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

Fig. 1.1 Comparison of peak throughput of CPUs and GPUs.

programmability and superior computing throughput. In 2004, NV35
GPU began to deliver a higher level of performance than the best CPU
at that time. Current GPUs outperform their multi-core CPU equiva-
lents by a factor of over 30 in terms of peak computing throughput.

The above performance trend is depicted in Figure where
the computing throughputs of NVIDIA and AMD GPUs and Intel
CPUs are compared in terms of Giga FLoating Operation Per Second
(GFLOPS). We collected performance data from publically available
datasheets [5 [186]. GPU chip makers usually release multiple GPUs
with varying performance levels at each technology node. Meanwhile,
the above three companies have different schedules for releasing new
products. In Figure [1.1] we only show the “flagship” GPU for each
generation and take NVIDIA’s release schedule as the time reference.
Clearly, GPU has been outperforming CPU since 2004 and the perfor-
mance gap is still broadening.

Along with the high computing throughput, GPUs are also equipped
with a high bandwidth memory bus because it is installed on the

Full text available at: http://dx.doi.org/10.1561/1000000028

5
GBis
300
-=-NVIDIA GPU
GCN
AMD GPU
250
GK110
200 /f
150
RV870 GF100
RV600 RVTT0
100
G80 _/GTZOO
G70
G90
50
NV35 NV40_~ DDR4 34GB/s
DDR317GBls —
R300 — RS00 DDR28.5GB/s I
0 ; I\"I.ll.lI

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

Fig. 1.2 Comparison of peak throughput of CPUs and GPUs.

graphics card and dedicated to GPU applications. The memory
characteristics of major GPUs are demonstrated in Figure The
bandwidth values of four generations of DDR memories, i.e., the mem-
ory standard for CPUs, are also depicted as reference. The latest
NVIDIA and AMD GPUs have a peak memory bandwidth of 208 GB/s
and 264 GB/s, respectively, while the current DDR3 memory standard
only supports 17GB/s (the next generation DDR4 will double the band-
width to 34GB/s) [122]. Certainly the superior memory bandwidth of
GPUs will significantly benefit memory-intensive EDA applications.
Traditionally, GPUs are programmed with shading languages like
OpenGL [191]. Although OpenGL can be used for general-purpose
computing on GPUs (GPGPU), the resultant programming process is
laborious and error-prone. To ease the programming effort of GPGPU,
NVIDIA introduced the Compute Unified Device Architecture (CUDA)
technology [178, [183] so that programmers can develop GPGPU pro-
grams in a C/C++ alike language with a few extensions. While CUDA

Full text available at: http://dx.doi.org/10.1561/1000000028

6 Introduction

can only be used on NVIDIA GPUs, OpenCL is defined by a group of
industry players as a standard cross-platform GPGPU language [134].

The synergy of GPU hardware and software has resulted in suc-
cessful applications in a diverse range of scientific and engineering
domains [28, 195]. On workloads with appropriate computing and
memory accessing patterns, GPU can even attain a speed-up of over
100X. It is thus appealing to unleash the computing power of GPU for
EDA applications.

Different CPUs, GPUs adopt a fine-grain multithreading model.
Equipped with dedicated hardware for context switching, GPU threads
are light-weighted and excel in massively data-parallel processing. Such
an execution model makes GPU proper for EDA applications featuring
data-parallelism. There is already a large body of literature presenting
encouraging results on utilizing GPU to solve various EDA problems.
GPGPU proved to be effective in such time consuming applications
as system level design, logic simulation, timing analysis, power grid
analysis, placement, and routing. The positive results suggest that the
superior computing power of GPUs can be unleashed by developing
carefully designed data-parallel algorithms and highly tuned implemen-
tations.

On the other hand, EDA applications pose unique challenges to the
GPGPU model. The nature of circuits determines that the underly-
ing data structures capturing IC designs tend to be irregular. Typical
EDA applications are thus constructed on the basis of such irregular
data structures as sparse matrix, tree, and graphE The resultant mem-
ory accessing patterns are less amenable to GPUs, which only have
a limited capacity of cache and assume regular memory accesses to
fully utilize its large memory bandwidth. Accordingly, current works on
GPU-based EDA computing generally resort to two strategies: (1) iden-
tifying regular sub-problems in an EDA application and then use GPU
as an accelerator for them; and (2) re-designing or re-structuring algo-
rithms on GPU so as to convert irregular data accesses into (at least
partially) regular ones. Another challenge is that EDA applications are

I There exist special cases where the data structure can be quite regular. One such typical
example is the power distribution network, which in many designs consists of a relatively
regular power mesh.

Full text available at: http://dx.doi.org/10.1561/1000000028

7

extremely complex and cover many different domains of computations.
Accordingly, an application-by-application parallelization approach can
be infeasible. A viable line of attack, instead, is to identify the funda-
mental computing patterns and perform parallelization on them. Such
a pattern-based strategy of parallel programming proves to be crucial
for many other software applications [162].

In this monograph, we present an up-to-date survey on the
progresses in GPU-accelerated EDA computing. Considering the high
complexity of EDA applications, an essential objective of this work is
to extract key computing patterns of EDA and present state-of-the-art
GPU programming techniques to resolve such patterns. We believe that
this approach will substantially ease the deployment of GPUs in future
EDA software. This monograph focuses on using GPU to accelerate
applications in the EDA domain, while the techniques also have wide
applications in many other scientific and engineering domains. Inter-
ested readers please also refer to [Owens et al. 2007; Refs. [28, [195]] for
surveys on applications in other disciplines.

The remainder of this monograph is organized as follows. Section
provides an overview of GPU hardware architectures and the corre-
sponding data-parallel programming model. In Sections [3] and [4 we
develop a taxonomy for the basic computing patterns of EDA appli-
cations and then review relevant GPU programming techniques for
these patterns. In Section [5| we survey successful applications of GPU-
accelerated EDA computing. In Section [6] we conclude this work and
propose future research directions.

Full text available at: http://dx.doi.org/10.1561/1000000028

References

M. Abramovici, P. R. Menon, and D. T. Miller, “Critical path tracing — an
alternative to fault simulation,” in Proceedings of Design Automation Confer-
ence, pp. 214-220, 1983.

E. Agullo et al., “LU Factorization for accelerated-based systems,” in Pro-
ceedings of International Conference on Computer Systems and Applications,
pp. 217-224, 2011.

AMD, “ATI stream computing — technical overview,” (http://developer.
amd.com/gpu_assets/Stream_Computing_Overview.pdf), 2009.

AMD, “Graphics core mnext architecture,” http://www.amd.com/us/
products/technologies/gcen /Pages/gen-architecture.aspx, 2011.

AMD, “AMD Radeon™ and AMD FirePro™ graphics cards,” http://www.
amd.com/us/products/Pages/graphics.aspx, 2012.

M. Anderson, G. Ballard, J. Demmel, and K. Keutzer, “Communication-
avoiding QR decomposition for GPUs,” Technical Report No. UCB/EECS-
2010-131, 2010.

E. Anderson et al, “LAPACK: A portable linear algebra library for high-
performance computers,” in Proceedings of Conference on Supercomputing,
pp. 2-11, 1990.

D. Ashlock, Fwolutionary Computation for Modeling and Optimization.
Springer, 2006. ISBN 0-387-22196-4.

C. Augonnrt, S. Thibault, and R. Namyst, “StarPU: A runtime system
for scheduling tasks over accelerator-based multicore machines,” INRIA,
Technique Report 7240, http://hal.archives-ouvertes.fr/inria-00467677,
2010.

163

Full text available at: http://dx.doi.org/10.1561/1000000028

164

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

18]

(19]

20]

(21]

(22]

23]
(24]
(25]
[26]

27]

References

M. Baboulin, S. Donfack, J. Dongarra, L. Grigori, A. Remy, and S. Tomov,
“A class of communication-avoiding algorithms for solving general dense lin-
ear systems on CPU/GPU parallel machines,” in Proceedings of International
Conference on Computational Science, pp. 17-26, 2012.

D. L. Baggio, “GPGPU based image segmentation livewire algorithm imple-
mentation,” Master Thesis of Technological Institute of Aeronautics, SdoJos’e
dos Campos, 2007.

M. L. Bailey, J. V. Brinerjr, and R. D. Chamnerlain, “Parallel logic simulation
of VLSI systems,” ACM Computing Survey, vol. 26, no. 3, pp. 255—294, 1994.
W. Banzhaf, P. Nordin, R. Keller, and F. Francone, Genetic Programming —
An Introduction. San Francisco, CA: Morgan Kaufmann, 1998. ISBN 978-
1558605107.

S. Barrachina, M. Castillo, F. D. Igual, R. Mayo, E. S. Quintana-Orti, and
G. Quintana-Orti, “Exploiting the capabilities of modern GPUs for dense
matrix computations,” Concurrency and Computation: Practice and Experi-
ence, vol. 21, no. 18, pp. 2457-2477, 2009.

R. Barret et al., Templates for the Solution of Linear Systems. SIAM, 2nd
ed., 1994.

M. M. Baskaran and R. Bordawekar, “Optimizing sparse matrix—vector mul-
tiplication on GPUs,” IBM Technical report RC24704, 2009.

M. Bauer, H. Cook, and B. Khailany, “CudaDMA: Optimizing GPU memory
bandwidth via warp specialization,” in Proceedings of Conference on Super-
computing, 2011.

S. Beamer, K. Asanovi’c, and D. Patterson, “Direction-optimizing breadth-
first search,” in Proceedings of International Conference on High Performance
Computing, Networking, Storage and Analysis, 2012.

N. Bell and M. Garland, “Efficient sparse matrix-vector multiplication on
CUDA,” NVIDIA Technical Report, 2008.

N. Bell and M. Garland, “Implementing sparse matrix-vector multiplication
on throughput-oriented processors,” in Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis, 2009.

Y. Ben-Asher, D. Egozi, and A. Schuster, “2-D SIMD algorithms in the perfect
shuffle networks,” in Proceedings of International Symposium of Computer
Architecture, pp. 8895, 1989.

Berkeley Logic Synthesis and Verification Group, “ABC: A system for
sequential synthesis and verification,” http://www.cad.eecs.berkeley.edu/
~alanmi/abc, 2005.

A. Biere, M. Heule, H. Van Maaren, and T. Walsh, Handbook of Satisfiability.
10S Press, 2009.

BLAS, “Basic linear algebra subprograms,” http://www.netlib.org/blas/,
2008.

A. Bleiweiss, “GPU accelerated pathfinding,” in Proceedings of Symposium on
Graphics Hardware, pp. 65-74, 2008.

A. Bleiweiss, “Multi agent navigation on the GPU,” in Proceedings of Game
Developers Conference, 2009.

G. E. Blelloch, Vector Models for Data-Parallel Computing. MIT Press, 1990.

Full text available at: http://dx.doi.org/10.1561/1000000028

(28]

29]

(30]

(31]

(32]
33]

(34]
(35]

(36]

(37]
(38]

39]

(40]

[41]

42]

(43]

(44]

(45]

References 165

D. Blythe, “Rise of the Graphics Processor,” Proceedings of IEEE, vol. 96,
no. 5, pp. 761- 778, 2008.

N. Bombieri, S. Vinco, V. Bertacco, and D. Chatterjee, “SystemC simulation
on GP-GPUs: CUDA vs. OpenCL,” in Proceedings of International Conference
on Hardware/Software Codesign and System Synthesis, pp. 343-352, 2012.
U. D. Bordoloi and S. Chakraborty, “GPU-based acceleration of system-level
design tasks,” International Journal of Parallel Programming, vol. 38, no. 3—4,
pp- 225-253, 2010.

A. Boukedjar, M. E. Lalami, and D. El-Baz, “Parallel branch and bound on
a CPU-GPU system,” in Proceedings of Euromicro International Conference
on Parallel, Distributed and Network-Based Processing, pp. 392-398, 2012.
W. Briggs, A Multigrid Tutorial. STAM Press, 1987.

S. Brown, “Cadence contributes ESL methodology to TSMC reference flow,”
http://www.cadence.com/community/blogs/sd/archive/2010/06/11/system-
realization-costs-seen-as-critical-barrier-to-ic-development-and-potentially-
impacting-foundry-business.aspx, 2010.

R. E. Bryant, “Simulation of packet communications architecture computer
system,” MIT Technical Report MITLCS-TR-188, 1977.

R. E. Bryant, “Graph-based algorithms for boolean function manipulation,”
IEEE Transactions on Computers, vol. C-35, no. 8, pp. 677-691, 1986.

L. Buatois, G. Caumon, and B. Levy, “Concurrent number cruncher: A GPU
implementation of a general sparse linear solver,” in International Journal of
Parallel, Emergent and Distributed Systems, vol. 24, no. 3, pp. 205-223, 2009.
I. Buck et al., “Brook for GPUs: Stream computing on graphics hardware,”
in Proceedings of SIGGRAPH, pp. 777786, 2004.

A. Bulug, J. R. Gilbert, and C. Budak, “Solving path problems on the GPU,”
Parallel Computing, vol. 36, no. 5-6, pp. 241-253, 2010.

M. Burton and A. Morawiec, eds., Platform Based Design at the Electronic
System Lewvel: Industry Perspectives and Ezxperiences. Springer, 2006 ed., 2006.
ISBN 978-1-4020-5138-8.

D. R. Butenhof, Programming with POSIX Threads. Addison-Wesley Profes-
sional, 1997. ISBN-10: 0201633922.

A. Buttari, J. Langou, J. Kurzak, and J. Dongarra, “A class of parallel tiled
linear algebra algorithms for multicore architectures,” Parallel Computing,
vol. 35, no. 1, pp. 38-53, 2009.

Cadence, “Virtuoso accelerated parallel simulator,” http://www.cadence.
com/products/cic/accelerated_parallel/pages/default.aspx, 2008.

A. E. Caldwell, A. B. Kahng, and I. L. Markov, “Can recursive bisection
alone produce routable placements?,” in Proceedings of Design Automation
Conference, pp. 693698, 2000.

CAPS, “OpenHMPP directives,” http://www.caps-entreprise.com/open
hmpp-directives/, 2007.

B. Catanzaro, M. Garland, and K. Keutzer, “Copperhead: Compiling an
embedded data-parallel language,” in Proceedings of Symposium on Princi-
ples and Practice of Parallel Programming, pp. 47-56, 2011.

Full text available at: http://dx.doi.org/10.1561/1000000028

166

[46]

(47]

(48]

(49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

References

B. Catanzaro, K. Keutzer, and B.-Y. Su, “Parallelizing CAD: A timely
research agenda for EDA,” in Proceedings of Design Automation Conference,
pp. 12-17, 2008.

I. Chakroun, M. Mezmaz, N. Melab, and A. Bendjoudi, “Reducing thread
divergence in a GPU-accelerated branch-and-bound algorithm,” Concurrency
and Computation: Practice and Ezxperience, vol. 25, no. 8, pp. 1121-1136, 2012.
T. Chan, J. Cong, and K. Sze, “Multilevel generalized force-directed method
for circuit placement,” in Proceedings of International Symposium on Physical
Design, pp. 185—-192, 2005.

K. M. Chandy and J. Misra, “Distributed simulation: A case study in design
and verification of distributed programs,” IEEE Transactions on Software
Engineering, vol. SE-5, no. 5, pp. 440-452, 1979.

B. Chapman, G. Jost, and R. van der Pas, Using OpenMP: Portable shared
memory parallel programming. The MIT Press, 2007. ISBN: 9780262533027.
D. Chatterjee and V. Bertacco, “EQUIPE: Parallel equivalence checking with
GPUs,” in Proceedings of International Workshop on Logic & Synthesis,
pp. 486-493, 2010.

D. Chatterjee, A. DeOrio, and V. Bertacco, “High-performance gate-level sim-
ulation with GP-GPUs,” in Proceedings of Design, Automation, and Test in
Europe (DATE) Conference, pp. 1-3, 2007.

D. Chatterjee, A. DeOrio, and V. Bertacco, “Event-driven gate-level sim-
ulation with GP-GPUs,” in Proceedings of Design Automation Conference,
pp- 557-562, 2009.

D. Chatterjee, A. DeOrio, and V. Bertacco, “Gate-level simulation with GPU
computing,” ACM Transactions on Design Automation of Electronic Systems,
vol. 16, no. 3, 2011.

D. Chen and D. Singh, “Parallelizing FPGA technology mapping using graph-
ics processing units (GPUs),” in Proceedings of International Conference on
Field Programmable Logic and Applications, pp. 125-132, 2010.

J. W. Choi, A. Singh, and R. W. Vuduc, “Model-driven autotuning of sparse
matrix-vector multiply on GPUs,” in Proceedings of Principles and Practice
of Parallel Computing, pp. 115-126, 2010.

A. Choong, R. Beidas, and J. Zhu, “Parallelizing simulated annealing-based
placement using GPGPU,” in Proceedings of International Conference on
Field Programmable Logic and Applications, 2010.

K.-W. Chu, Y. Deng, and J. Reinitz, “Parallel simulated annealing by mixing
of states,” Journal of Computational Physics, vol. 148, pp. 646-662, 1999.

J. H. Clark, “The geometry engine: A VLSI geometry system for graphics,”
in Proceedings of Annual Conference on Computer Graphics and Interactive
Techniques, pp. 127-133, 1982.

E. M. Clarke and O. Grumberg, “Avoiding the state explosion problem in
temporal logic model checking,” in Proceedings of Symposium on Principles
of Distributed Computing, pp. 294-303, 1987.

J. Cong and Y. Zou, “Parallel multi-level analytical global placement on graph-
ics processing units,” in Proceedings of International Conference on Computer
Aided Design, pp. 681-688, 2009.

Full text available at: http://dx.doi.org/10.1561/1000000028

(62]

(63]

(64]

(65]

(66]

(67]

(68]

(69]

[70]

(71]
(72]

(73]

(74]

[75]

[76]

[77]

(78]

References 167

R. L. Cook, L. Carpenter, and E. Catmul, “The Reyes image rendering archi-
tecture,” in Proceedings of Conference on Computer Graphics and Interactive
Techniques, pp. 95102, 1987.

T. H. Cormen, C. E. Leiserson, R. L. Riverst, and C. Stein, Introduction to
Algorithms. MIT Press, 2nd ed., 2001.

CUDPP, “CUDA data-parallel primitives library,” http://code.google.
com/p/cudpp/, 2010.

F. Darema, “SPMD model: Past, present and future. Recent advances in paral-
lel virtual machine and message passing interface,” in Proceedings of Furopean
PVM/MPI Users’ Group Meeting, Lecture Notes in Computer Science 2131.1,
2001.

J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on large
clusters,” in Proceedings of Symposium on Operating System Design and
Implementation, pp. 137-149, 2004.

Y. Deng and S. Mu, “The potential of GPUs for VLSI physical design
automation,” in Proceedings of International Conference on Solid-State and
Integrated-Circuit Technology, pp. 2272-2275, 2008.

Y. Deng, B. Wang, and S. Mu, “Taming irregular EDA applications on
GPUs,” in Proceedings of International Conference on Computer Aided
Design, pp. 539-546, 2009.

J. Dongarra, V. Eijkhout, and P. Luszczek, “Recursive approach in sparse
matrix LU factorization,” Scientific Programming, vol. 9, no. 1, pp. 51-60,
1998.

Y. Dotsenko, N. K. Govindaraju, P.-K. Sloan, C. Boyd, and J. Manferdelli,
“Fast scan algorithms on graphics processors,” in Proceedings of International
Conference on Supercomputing, pp. 205-213, 2008.

H. Eisenmann and F. M. Johannes, “Generic global placement and floorplan-
ning,” in Proceedings of Design Automation Conference, pp. 269-274, 1998.
K. Fatahalian and M. Houston, “GPUs: A closer look,” ACM Queue, vol. 6,
no. 2, pp. 18-28, 2008.

Z. Feng and P. Li, “Multigrid on GPU: Tackling power grid analysis on parallel
SIMT platforms,” in Proceedings of International Conference on Computer
Aided Design, pp. 647-654, 2008.

Z. Feng and P. Li, “Fast thermal analysis on GPU for 3D-ICs with integrated
microchannel cooling,” in Proceedings of International Conference on Com-
puter Aided Design, pp. 551-555, 2010.

Z. Feng and Z. Zeng, “Parallel multigrid preconditioning on graphics process-
ing units (GPUs) for robust power grid analysis,” in Proceedings of Design
Automation Conference, pp. 661-666, 2010.

J. A. Fisher, “Very long instruction word architecture and the ELI-512,” in
Proceedings of International Symposium on Computer Architecture, pp. 140—
150, 1983.

T. Folley, “Parallel programming on Larrabee,” Special Tutorial on SIG-
GRAPH 2008, 2008.

R. M. Fujimoto, Parallel and Distributed Simulation Systems. Wiley-
Interscience, 2000. ISBN: 0471183830.

Full text available at: http://dx.doi.org/10.1561/1000000028

168

[79]

(80]

(81]

(82]

(83]
(84]
(85]

(86]

(87]

(88]

(89]

(90]

(91]

(92]

(93]

(94]

(95]

References

W. L. Fung, I. Sham, G. Yuan, and T. M. Aamodt, “Dynamic warp formation
and scheduling for efficient GPU control flow,” in Proceedings of International
Symposium on Microarchitecture, pp. 407-420, 2007.

V. Galiano, N. H. Migallé, V. Migall6N, and J. PenadéS, “GPU-based parallel
algorithms for sparse nonlinear systems,” Journal of Parallel and Distributed
Computing, vol. 72, no. 9, pp. 1098-1105, 2012.

N. Galoppo et al., “LU-GPU: Efficient algorithms for solving dense linear
systems on graphic hardware,” in Proceedings of ACM/IEEE Conference on
Supercomputing, pp. 3—14, 2005.

M. Garland, “Sparse matrix computations on many-core GPUs,” in Proceed-
ings of Design Automation Conference, pp. 2-6, 2008.

A. Ghuloum et al., “Ct: A flexible parallel programming model for
tera-scale architectures,” Intel White Paper. http://download.intel.com/
pressroom /kits /research/Flexible_Parallel_ Programming_Ct.pdf, 2007.

J. R. Gilbert and T. Peierls, “Sparse partial pivoting in time proportional
to arithmetic operations,” SIAM Journal of Scientific Statistical Computing,
vol. 9, no. 5, pp. 862-874, 1988.

Graph500, “The graph 500 list,” http://www.graph500.org/, 2010.

L. Greengard and V. Rokhlin, “A fast algorithm for particle simulations,”
Journal of Computing Physics, vol. 73, no. 2, pp. 325-348, 1987.

D. Grewe and A. Lokhmotov, “Automatically generating and tuning GPU
code for sparse matrix-vector multiplication from a high-level representation,”
in Proceedings of Workshop on General Purpose Processing on Graphics Pro-
cessing, 2011.

R. Grimes, D. Kincaid, and D. Young, “ITPACK 2.0 user’s guide,” Technical
Report CNA-150. Center for Numerical Analysis, University of Texas, 1979.

Z. Gu, J. Wang, R. P. Dick, and H. Zhou, “Incremental exploration of the
combined physical and behavioral design space,” in Proceedings of Design
Automation Conference, pp. 208-213, 2005.

K. Gulati, J. F. Croix, S. P. Khatri, and R. Shastry, “Fast circuit simulation
on graphics processing units,” in Proceedings of Conference on Asia and South
Pacific Design Automation, pp. 403—408, 2009.

K. Gulati and S. P. Khatri, “Towards acceleration of fault simulation using
graphics processing units,” in Proceedings of Design Automation Conference,
pp- 822-827, 2008.

N. Gumerov and R. Duraiswami, “Fast multipole methods on graphics pro-
cessors,” Journal of Computing Physics, vol. 227, no. 18, pp. 8290-8313, 2008.
J. A. Gunnels, F. G. Gustavson, G. M. Henry, and R. A. van de Geijn,
“FLAME: Formal linear algebra methods environment,” ACM Transactions
on Mathematical Software (TOMS), vol. 27, no. 4, pp. 422-455, 2001.

P. Guo et al., “A model-driven partitioning and auto-tuning integrated frame-
work for sparse matrix-vector multiplication on GPUs,” in Proceedings of Ter-
aGrid, 2011.

T. Hamada et al., “42 TFLOPS hierarchical N-body simulations on GPUs
with applications in both astrophysics and turbulence,” in Proceedings of Con-
ference on High Performance Computing Networking, Storage and Analysis,
2009.

Full text available at: http://dx.doi.org/10.1561/1000000028

References 169

[96] T. D. Han and T. S. Abdelrahman, “hiCUDA: High-level GPGPU program-
ming,” IEEE Transactions on Parallel and Distributed Systems, vol. 22, no. 1,
pp. 78-90, 2011.

[97] Y.Han, D. M. Ancajas, K. Chakraborty, and S. Roy, “Exploring high through-
put computing paradigm for global routing,” in Proceedings of International
Conference on Computer Aided Design, pp. 298-305, 2011.

[98] Y. Han, K. Chakraborty, S. Roy, and V. Kuntamukkala, “Design and imple-
mentation of a throughput-optimized GPU floor planning algorithm,” ACM
Transactions on Design Automation of Electronic Systems, vol. 16, no. 3, 2011.

[99] P. Harish and P. J. Narayanan, “Accelerating large graph algorithms on the
GPU using CUDA,” in Proceedings of High Performance Computing (HiPC),
pp. 197-208, 2007.

[100] P. Harish, V. Vineet, and P. J. Narayanan, “Large graph algorithms for mas-
sively multithreaded architectures,” IIIT Technical Report III'T/TR/2009/74.
http://web.iiit.ac.in/~vibhavvinet/Publications/GraphAlgos_TechRep.pdf,
2009.

[101] M. Harris, “Parallel prefix sum (scan) with CUDA,” http://developer.
download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/scan/
doc/scan.pdf, 2007.

[102] M. Harris, “Optimizing parallel reduction in CUDA,” http://developer.
download.nvidia.com/compute/DevZone/C/html/C/src/reduction/doc/
reduction.pdf, 2008.

[103] Z. He and B. Hong, “Dynamically tuned push-relabel algorithm for the max-
imum flow problem on CPU-GPU hybrid platforms,” in Proceedings of Inter-
national Parallel and Distributed Processing Symposium, pp. 1-10, 2010.

[104] B. He et al., “Mars: A MapReduce framework on graphics processors,” in Pro-
ceedings of Parallel Architectures and Compilation Techniques, pp. 260—269,
2008.

[105] M. T. Heath, E. Ng, and B. W. Peyton, “Parallel algorithms for sparse linear
systems,” SIAM Review, vol. 33, pp. 420—460, 1991.

[106] R. Helfenstein and J. Koko, “Parallel preconditioned conjugate gradient algo-
rithm on GPU,” Journal of Computational and Applied Mathematics, vol. 236,
no. 15, pp. 3584-3590, 2012.

[107] M. Herlihy and N. Shavit, The Art of Multiprocessor Programming. Burling-
ton: Morgan Kaufmann Publishers, 2008.

[108] S. Hong, T. Oguntebi, and K. Olukotun, “Efficient parallel graph exploration
on multi-Core CPU and GPU,” in Proceedings of Parallel Architectures and
Compilation Techniques, pp. 78-88, 2011.

[109] S. Hong et al., “Accelerating CUDA graph algorithms at maximum warp,”
in Proceedings of Symposium on Principles and Practice of Parallel Program-
ming, pp. 267-276, 2011.

[110] C.-J. Hsu, J. L. Pino, and S. S. Bhattacharyya, “Multithreaded simulation for
synchronous dataflow graphs,” in Proceedings of Design Automation Confer-
ence, pp. 331-336, 2008.

[111] J. Huang, “Keynote speech,” in Mini GPU Technology Conference, Beijing,
2010.

Full text available at: http://dx.doi.org/10.1561/1000000028

170

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

References

C. Huijs, “A graph rewriting approach for transformational design of digital
systems,” in Proceedings of EUROMICRO Conference, pp. 177-184, 1996.

J. R. Humphrey et al., “CULA: Hybrid GPU accelerated linear algebra rou-
tines,” in Proceedings of SPIE Modeling and Simulation for Defense Systems
and Applications, pp. V 770502-770502-7, 2010.

M. Hussein, A. Varshney, and L. Davis, “On implementing graph cuts on
cuda,” in Proceedings of the First Workshop on General Purpose Processing
on Graphics Processing Units, 2007.

IEEE, “The open group base specifications Issue 6,” IEEE Standard
1003.1, 2004 Edition. (http://pubs.opengroup.org/onlinepubs/007904975/
basedefs/pthread.h.html), 2004.

IEEE, “SystemC language — 2011,” http://standards.ieee.org/getieee/1666/
download/1666-2011.pdf, 2011.

Intel, “Intel® array building blocks,” http://software.intel.com/en-us/
articles/intel-array-building-blocks, 2010.

Intel, “The Intel® Xeon Phi™ coprocessor 5110P highly-parallel processing
for unparalleled discovery,” http://www.intel.com/content/dam/www /public/
us/en/documents/solution-briefs /high-performance-xeon-phi-coprocessor-
brief-2.pdf, 2012.

T. B. Jablin et al., “Automatic CPU-GPU communication management and
optimization,” in Proceedings of Conference on Programming Language Design
and Implementation, pp. 142-151, 2011.

A. Jantsch, Modeling Embedded Systems and SoCs. Morgan Kaufmann, 2004.
JEDEC, “JEDEC standard: GDDR5 SGRAM,” http://www.jedec.org/
standards-documents/docs/jesd212, 2009.

JEDEC, ¢“JEDEC standard: DDR4 SDRAM,” http://www.jedec.org/
standards-documents/docs/jesd79-4, 2012.

H. Jooybar, W. W. L. Fung, M. O’Connor, J. Devietti, and T. M. Aamodt,
“GPUDet: A deterministic GPU architecture,” in Proceedings of International
Conference on Architectural Support for Programming Languages and Oper-
ating Systems, pp. 1-12, 2013.

T. Jost, S. Contassot-Vivier, and S. Vialle, “An efficient multi-algorithms
sparse linear solver for GPUs,” in Proceedings of International Conference on
Parallel Computing (ParCo), 2009.

J. Jung and D. P. O’Leary, “Cholesky decomposition and linear program-
ming on a GPU,” in Proceedings of Workshop on Edge Computing Using New
Commodity Architectures, 2006.

R. Kapoor, M. Adan, and L. Schaffer, “Achieving optimal performance
scalability for physical verification,” http://www.synopsys.com/Tools/
Implementation/Physical Verification/CapsuleModule/hercules_achiv_wp.pdf,
2004.

K. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multilevel hypergraph
partitioning: Applications in VLSI domain,” IEEFE Transactions on VLSI Sys-
tems, vol. 7, no. 1, pp. 69-79, 1997.

G. J. Katz and J. J. T. Kider, “All-pairs shortest-paths for large graphs on
the GPU,” in Proceedings of Symposium on Graphics Hardware, pp. 47-55,
2008.

Full text available at: http://dx.doi.org/10.1561/1000000028

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

References 171

J. Keller, C. Kefller, and J. Traff, Practical PRAM Programming. John Wiley
and Sons, 2001. ISBN 0-471-35351-5.

A. Kerr, D. Campbell, and M. Richards, “QR decomposition on GPUs,” in
Proceedings of International Conference on Architectural Support for Program-
ming Languages and Operating Systems, pp. 71-78, 2009.

K. Keutzer, “DAGON: Technology binding and local optimization by DAG
matching,” in Proceedings of Design Automation Conference, pp. 341-347,
1987.

A. Khabou, J. W. Demmel, L. Grigori, and M. Gu, “LU factorization with
panel rank revealing pivoting and its communication avoiding version,” UCB
Technical Report No. UCB/EECS-2012-15, 2012.

A. Khajeh-Saeed, S. Poole, and J. B. Perot, “Acceleration of the Smith—
Waterman algorithm using single and multiple graphics processors,” Journal
of Computational Physics, vol. 229, no. 11, pp. 4247-4258, 2010.

Khronos Group, “OpenCL — the open standard for parallel programming of
heterogeneous systems,” http://www.khronos.org/opencl/, 2012.

K. Kim, V. Eijkhout, and R. A. Geijn, “Dense matrix computation on a
heterogeneous architecture: A block synchronous approach,” TACC Technique
Report TR-12-04, 2012.

G. Kleinhans, F. J. Sigl, and K. Antreich, “Gordian: VLSI placement by
quadratic programming and slicing optimization,” IEEE Transaction on
Computer Aided Design of Integrated Circuits and Systems, vol. 10, no. 3,
pp. 356-365, 1991.

M. A. Kochte, M. Schaal, H.-J. Wunderlich, and C. G. Zoellin, “Efficient fault
simulation on many-core processors,” in Proceedings of Design Automation
Conference, pp. 380-385, 2010.

J. Kurzak, S. Tomov, and J. Dongarra, “Scheduling dense linear algebra oper-
ations on multicore processors,” Concurrency and Computation: Practice €
Ezperience, vol. 22, no. 1, pp. 15-44, 2010.

J. Kurzak, S. Tomov, and J. Dongarra, “Autotuning GEMM kernels for the
Fermi GPU,” IEEFE Transactions on Parallel and Distributed Systems, vol. 23,
no. 11, pp. 2045-2057, 2012.

W. B. Langdon, “A fast high quality pseudo random number generator for
graphics processing units,” in Proceedings of Congress on Fvolutionary Com-
putation, pp. 459-465, 2008.

C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong pro-
gram analysis & transformation,” in Proceedings of International Symposium
on Code Generation and Optimization, pp. 75-86, 2004.

E. Lee, “The problem with threads,” IEEE Computer, vol. 39, no. 5, pp. 33—42,
2006.

A. Levinthal and P. Porter, “Chap — a SIMD graphics processor,” in Pro-
ceedings of Conference on Computer Graphics and Interactive Techniques,
pp. 77-82, 1984.

D. Lewis, “A hierarchical compiled code event-driven logic simulator,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 10, no. 6, pp. 726-737, 1991.

Full text available at: http://dx.doi.org/10.1561/1000000028

172

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

158

159

[160]

[161]

References

C. Li, C. Ding, and K. Shen, “Quantifying the cost of context switch,” in
Proceedings of Workshop on Experimental Computer Science, 2007.

J. Li, X. Li, G. Tan, M. Chen, and N. Sun, “An optimized large-scale hybrid
DGEMM design for CPUs and ATI GPUs,” in Proceedings of International
Conference on Supercomputing, pp. 377-386, 2012.

M. Li and M. S. Hsiao, “3-D parallel fault simulation with GPGPU,” IFEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 30, no. 10, pp. 1545-1555, 2011.

Y.-L. S. Lin, Essential Issues in SOC Design: Designing Complex Systems-
on-Chip. Springer. Softcover reprint of hardcover 1st ed., 2006 ed., 2010.

J. Liu, “Computational models and task scheduling for parallel sparse
Cholesky factorization,” Parallel Computing, vol. 3, no. 4, pp. 327-342, 1986.
J. Liu, “The multifrontal method for sparse matrix solution: Theory and prac-
tice,” SIAM Review, vol. 34, no. 1, pp. 82-109, 1992.

X. Liu, Z. Liu, S. X.-D. Tan, and J. A. Gordon, “Full-chip thermal analysis
of 3D ICs with liquid cooling by GPU-accelerated GMRES method,” in Pro-
ceedings of IEEE/ACM International Symposium on Low-Power Electronics
and Design, pp. 123-128, 2012.

Y. Liu and J. Hu, “A new algorithm for simultaneous gate sizing and thresh-
old voltage assignment,” in Proceedings of the International Symposium on
Physical Design (ISPD), 20009.

Y. Liu and J. Hu, “GPU-based parallelization for fast circuit optimization,”
ACM Transactions on Design Automation of Electronic Systems, vol. 16, no. 3,
2011.

Y. Liu, B. Schmidt, and D. L. Maskell, “CUDASW++2.0: Enhanced Smith-
Waterman protein database search on CUDA-enabled GPUs based on SIMT
and virtualized SIMD abstractions,” BMC' Research Notes, vol. 3, no. 93, 2010.
W. Liu et al., BSIM3v3.2.2 MOSFET Model. Users’ Manual, 1999.

Y. Low et al., “GraphLab: A new parallel framework for machine learning,”
in Proceedings of Conference on Uncertainty in Artificial Intelligence, 2010.
Y. Lu, H. Zhou, L. Shang, and X. Zeng, “Multicore parallel min-cost flow
algorithm for CAD applications,” in Proceedings of Design Automation Con-
ference, pp. 832-837, 2009.

L. Luo, M. Wong, and W.-M. Hwu, “An effective GPU implementation
of breadth-first search,” in Proceedings of Design Automation Conference,
pp. 52-55, 2010.

G. Martin, B. Bailey, and A. Piziali, ESL Design and Verification: A Pre-
scription for Electronic System Level Methodology. Morgan Kaufmann, 1st
ed., 2007.

K. K. Matam and K. Kothapalli, “Accelerating sparse matrix vector multi-
plication in iterative methods using GPU,” in Proceedings of International
Conference on Parallel Processing, 2011.

K. Matsumoto, N. Nakasato, and S. G. Sedukhin, “Blocked all-pairs short-
est paths algorithm for hybrid CPU-GPU system,” in Proceedings of High
Performance Computing and Communications (HPCC), pp. 145-152, 2011.

Full text available at: http://dx.doi.org/10.1561/1000000028

[162]
[163]

[164]

[165]

[166]

[167]

[168]

[169]
[170]

[171]

[172]
[173]

[174]

[175]

[176]
[177]
[17]
[179]

[180]

References 173

T. G. Mattson, B. A. Sanders, and B. L. Massingill, Patterns for Parallel
Programming. Addison-Wesley Professional, 2004.

M. D. McCool, “Scalable programming models for massively multicore pro-
cessors,” Proceedings of IEEE, vol. 96, no. 5, pp. 816-831, 2008.

S. McGlaun, “GPU market shows impressive growth in Q2 2009,” Slippery-
Brick. http://www.slipperybrick.com/2009/07 /gpu-market-shows-impressive-
growth-in-q2-2009/, 2009.

N. Melab, I. Chakroun, M. Mezmaz, and D. Tuyttens, “A GPU-accelerated
branch-and-bound algorithm for the flow-shop scheduling problem,” in Pro-
ceedings of International Conference on Cluster Computing, 2012.

J. Meng, D. Tarjan, and K. Skadron, “Dynamic warp subdivision for integrated
branch and memory divergence tolerance,” in Proceedings of International
Symposium on Computer Architecture, pp. 235-246, 2011.

D. Merrill, M. Garland, and A. Grimshaw, “Scalable GPU graph traversal,”
in Proceedings of the Symposium on Principles and Practice of Parallel Pro-
gramming, pp. 117-128, 2012.

U. Meyer and P. Sanders, “Delta-stepping: A parallel single source short-
est path algorithm,” in Proceedings of Annual European Symposium on Algo-
rithms, pp. 393-404, 1998.

Microsoft, “DirectX 11,” http://windows.microsoft.com/zh-CN/windows7/
products/features/directx-11, 2000.

D. Muller, “Optimizing yield in global routing,” in Proceedings of International
Conference on Computer Aided Design, pp. 480-486, 2006.

K. Nabors and J. White, “FastCap: A multipole accelerated 3-D capacitance
extraction program,” IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, vol. 10, no. 11, pp. 1447-1459, 1991.

L. Nagel, “SPICE: A computer program to simulate computer circuits,” Uni-
versity of California, Berkeley UCB/ERL Memo M520, 1995.

G.-J. Nam, J. C. Alpert, and P. G. Villarrubia, ISPD 2005/2006 Placement
Benchmarks. Modern Clircuit Placement. US: Springer, 2007.

M. Nanjundappa, H. D. Patel, B. A. Jose, and S. K. Shukla, “SCGPSim: A
fast SystemC simulator on GPUs,” in Proceedings of Asia and South Pacific
Design Automation Conference, pp. 149-154, 2010.

V. Narasiman, M. Shebanow, C. J. Lee, R. Miftakhutdinov, O. Mutlu, and
Y. N. Patt, “Improving GPU performance via large warps and two-level warp
scheduling,” in Proceedings of International Symposium on Microarchitecture,
pp. 308-317, 2011.

R. Nath, S. Tomov, and J. Dongarra, “An improved magma GEMM for Fermi
GPUs,” Technical Report 227. LAPACK Working Note, 2010.

M. Naumov, L. S. Chien, P. Vandermersch, and U. Kapasi, “CUSPARSE
Library,” in GPU Technology Conference, 2010.

J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel program-
ming with CUDA,” ACM Queue, vol. 6, no. 2, pp. 40-53, 2008.

J. Nie, “Evaluating the potential of Intel Ct technology for EDA Computing,”
Bachelor Thesis. Tsinghua University, 2009.

NVIDIA, “NVIDIA GeForce 8800 GPU architecture overview,” Technical
Brief, 2006.

Full text available at: http://dx.doi.org/10.1561/1000000028

174
[181]
[182]
[183]

[184]
[185]

[186]
[187]

[188]

[189]

[190]
[191]
[192]
[193]
[194]
[195]

[196]

[197]
[198]

[199]

200]

[201]

References

NVIDIA, “CUBLAS,” https://developer.nvidia.com/cublas, 2007.

NVIDIA, “CUFFT,” https://developer.nvidia.com/cufft, 2007.

NVIDIA, “NVIDIA CUDA Compute Unified Device Architecture program-
ming guide,” Version 1.0, 2007.

NVIDIA, “PTX: Parallel Thread Execution ISA,” Version 1.0, 2007.
NVIDIA, “NVIDIA’s next generation CUDATM compute architec-
ture: Fermi™,” http://www.nvidia.com/content/PDF /fermi_white_papers/
NVIDIA Fermi_Compute_Architecture_Whitepaper.pdf, 2009.

NVIDIA, “CUDA GPUs,” https://developer.nvidia.com/cuda-gpus, 2012.
NVIDIA, “NVIDIA’s next generation CUDATM compute architecture:
Kepler™ GK110,” (http://www.nvidia.com/content/PDF /kepler/NVIDIA-
Kepler-GK110-Architecture-Whitepaper.pdf), 2012.

T. Okuyama, F. Ino, and K. Hagihara, “A task parallel algorithm for com-
puting the costs of all-pairs shortest paths on the CUDA-compatible GPU,”
in Proceedings of International Symposium on Parallel and Distributed Pro-
cessing with Applications, pp. 284-291, 2008.

E. Onbasgoglu and L. Ozdamar, “Parallel simulated annealing algorithms in
global optimization,” Journal of Global Optimization, vol. 19, no. 1, pp. 27-50,
2001.

OpenACC, “The OpenACC™ application programming interface,” http://
www.openacc.org/sites/default /files/OpenACC.1.0_0.pdf, 2011.

OpenGL, “The OpenGL graphics system: a specification,” http://www.
opengl.org/registry/doc/glspecd3.core.20120806.pdf, 2012.

OSCI, “SystemC 2.2,” http://www.accellera.org/members/download_files/
check_file?agreement=systemc-2_2-draft, 2007.

V. Osipov, P. Sanders, and J. Singler, “The Filter-Kruskal minimum spanning
tree algorithm,” in Proceedings of Workshop on Algorithm Engineering and
FExperiments, 2009.

P. Otellini, “Keynote speech,” in Intel Developer Forum, 2011.

J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C. Phillips,
“GPU computing,” Proceedings of IEEE, vol. 96, no. 5, pp. 879-899, 2008.
J. D. Owens, D. Luebke, N. Govindaraju, M. Houston, J. Kriiger, A. E. Lefohn,
and T. A. Purcell, “A survey of general-purpose computation on graphics
hardware,” in Eugographics: State of the Art Reports, pp. 21-51, 2005.
PCI-SIG, PCI Express Base Specification. Revision 1.0, 2002.

J. C. Pichel, F. F. Rivera, M. Fernandez, and A. Rodriguez, “Optimization
of sparse matrix—vector multiplication using reordering techniques on GPUs,”
Microprocessors and Microsystems, vol. 36, no. 2, pp. 65-77, 2012.

J. C. Pichel, D. E. Singh, and J. Carretero, “Reordering algorithms for increas-
ing locality on multicore processors,” in Proceedings of the IEEE International
Conference on High Performance Computing and Communications, pp. 123—
130, 2008.

F. Pinel, B. Dorronsoro, and P. Bouvrya, “Solving very large instances of the
scheduling of independent tasks problem on the GPU,” Journal of Parallel
Distributed Computing, vol. 73, no. 1, pp. 101-110, 2013.

K. Pingali et al., “The tao of parallelism in algorithms,” in Proceedings of
Programming Language Design and Implementation, pp. 12-25, 2011.

Full text available at: http://dx.doi.org/10.1561/1000000028

[202]

[203]
[204]

[205]

[206]

[207]

[208]

[209]

[210]
[211]

[212]

[213]

[214]

[215]

[216]

[217]

[218]
219]
[220]

References 175

C. Pinto et al., “GPGPU-accelerated parallel and fast simulation of thousand-
core platforms,” in Proceedings of International Symposium on Cluster, Cloud
and Grid Computing, 2011.

QEMU, “Full system processor emulator,” http ://wiki.qemu.org.

H. Qian and Y. Deng, “Accelerating RTL simulation with GPUs,” in Proceed-
ings of International Conference on Computer Aided Design, pp. 687693,
2011.

H. Qian, Y. Deng, B. Wang, and S. Mu, “Towards accelerating irregular
EDA applications with GPUs,” Integration: The VLSI Journal, vol. 45, no. 1,
pp. 46-60, 2012.

S. Raghav, M. Ruggiero, and D. Atienza, “Scalable instruction set simula-
tor for thousand-core architectures running on GPGPUSs,” in Proceedings of
International Conference on High Performance Computing and Simulation,
2010.

S. Raghav et al., “Full system simulation of many-core heterogeneous SoCs
using GPU and QEMU semihosting,” in Proceedings of GPGPU Workshop,
2012.

A. Ramalingam et al., “An accurate sparse matrix based framework for sta-
tistical static timing analysis,” in Proceedings of International Conference on
Computer Aided Design, 2006.

C. Ranger et al., “Evaluating MapReduce for multi-core and multiprocessor
systems,” in Proceedings of International Symposium on High-Performance
Computer Architecture, pp. 13—24, 2007.

P. Rashinkar, P. Paterson, and L. Singh, System-on-a-Chip Verification:
Methodology and Techniques. Springer, 1st ed., 2000.

L. Ren et al., “Sparse LU factorization for parallel circuit simulation on GPU,”
in Proceedings of Design Automation Conference, 2012.

M. Rhu and M. Erez, “CAPRI: Prediction of compaction-adequacy for han-
dling control-divergence in GPGPU architectures,” in Proceedings of Interna-
tional Symposium on Computer Architecture, pp. 61-71, 2012.

Rocketick, “Harnessing the power of GPU,” http://www.rocketick.com/
technology/harnessing-the-power-of-gpu, 2012.

S. Rostrup, S. Srivastava, and K. Singhal, “Fast and memory-efficient min-
imum spanning tree on the GPU,” International Journal of Computational
Science and Engineering, vol. 8, no. 1, pp. 21-33, 2013.

S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach. Pren-
tice Hall, 2003.

R. Rutenbar, “Next-generation design and EDA challenges: Small physics,
big systems, and tall tool-Chains,” in Proceedings of Asia and South Pacific
Design Automation Conference, 2007.

S. Ryoo et al., “Optimization principles and application performance evalua-
tion of a multithreaded GPU using CUDA,” in Proceedings of Principles and
Practice of Parallel Programming, pp. 73-82, 2008.

Y. Saad, “Iterative methods for sparse linear systems,” STAM, 2000.

S. Sapatnekar, Timing. Springer, 1st ed., 2004. Ch. 5.

S. Sapatnekar et al., “Reinventing EDA with many-core processors,” in Pro-
ceedings of Design Automation Conference, 2008.

Full text available at: http://dx.doi.org/10.1561/1000000028

176

[221]

[222]

[223]

[224]
[225]
[226]
[227]

[228]

[229]

[230]
[231]

[232]

[233]

[234]

[235]

[236]

[237]

[238]

[239]

References

I. Savran and J. D. Bakos, “GPU acceleration of near-minimal logic mini-
mization,” in Proceedings of Symposium on Application Accelerators in High-
Performance Computing, 2010.

L. Seiler et al., “Larrabee: A many-Core X86 architecture for visual
computing,” ACM Transaction on Graphics, vol. 3, no. 8, pp. 18:1-18.16,
2008.

A. Sen, B. Aksanli, and M. Bozkurt, “Speeding up cycle based logic simulation
using graphics processing units,” International Journal of Parallel Program-
ming, vol. 39, no. 5, pp. 639-661, 2010.

S. Sengupta, M. Harris, Y. Zhang, and J. D. Owens, “Scan primitives for GPU
computing,” in Proceedings of Graphics Hardware, pp. 97-106, 2007.

N. Seoane and A. J. Garcia-Loreiro, “Study of parallel numerical methods for
semiconductor device simulation,” International Journal of Numerical Model-
ing: Electronic Networks, Devices, and Fields, vol. 19, no. 1, pp. 15-32, 2005.
Y. Shapira, Matriz-Based Multigrid: Theory and Applications. Springer, 2009.
N. A. Sherwani, Algorithm for VLSI Physical Design Automation. Springer,
3rd ed., 1998.

J. Shi et al., “GPU friendly fast Poisson solver for structured power grid
network analysis,” in Proceedings of Design Automation Conference, pp. 178—
183, 2009.

A. L. Shimpi and D. Wilson, “Intel’s Larrabee architecture disclosure: A calcu-
lated first move,” (http://www.anandtech.com/showdoc.aspx?i=3367), 2008.
Si2, “OpenEDA,” http://www.si2.org/openeda.si2.org/oso_news.php, 2004.
J. G. Siek, L.-Q. Lee, and A. Lumsdaine, Boost Graph Library: User Guide
and Reference Manual. Addison-Wesley Professional, 2002.

T. Smalley, “RV770: ATI Radeon HD 4850 & 4870 analysis. bit-tech.net,”
(http://www.bit-tech.net /hardware/graphics/2008,/09/02/ati-radeon-4850-
4870-architecture-review /1), 2008.

SMIC, “SMIC-Cadence reference flow 2.1,” http://www.smics.com/eng/
design /reference_flows05.php, 2013.

F. Song, S. Tomov, and J. Dongarra, “Enabling and scaling matrix computa-
tions on heterogeneous multi-core and multi-GPU systems,” in Proceedings of
ACM International Conference on Supercomputing, pp. 365-376, 2012.

R. Stephens, “A survey of stream processing,” Acta Informatica, vol. 34, no. 7,
pp- 491-554, 1995.

B. Stroustrup, The C++ Programming Language. ISBN 0-201-88954-4, 3rd
ed., 1997.

R. Strzodka, “Accelerated ANSYS fluent: Algebraic multigrid on a GPU,”
Available on http://developer.download.nvidia.com/GTC/PDF/GTC2012/
PresentationPDF /RobertStrzodka_Accelerated_ANSYS_Fluent_SC12.pdf,
2012.

L. Subramany, “GPU based lithography simulation and OPC,” Master
Thesis. Department of Electrical and Computer Engineering. University of
Massachusetts Amherst, 2011.

B. Suri, U. D. Bordolo, and P. Eles, “A scalable GPU-based approach to
accelerate the multiple-choice knapsack problem,” in Proceedings of Design,
Automation, and Test in Europe (DATE) Conference, pp. 1126-1129, 2012.

Full text available at: http://dx.doi.org/10.1561/1000000028

[240]

[241]

[242]

[243]

[244]

[245]

[246]

[247]

[248]

[249]

[250]

[251]
[252]
[253]

[254]

[255]

256

References 177

Synopsys, “The gold standard for accurate circuit simulation,” http://
www.synopsys.com/Tools/Verification/AMSVerification/CircuitSimulation/
HSPICE/Pages/default.aspx, 2008.

Synopsys, “Synopsys unveils new IC compiler router delivering 10X speed-up,”
http://news.synopsys.com/index.php?s=43&item=575, 2008.

G. Tan, L. Li, S. Trieche, E. Phillips, Y. Bao, and N. Sun, “Fast implementa-
tion of DGEMM on Fermi GPU,” in Proceedings of International Conference
for High Performance Computing, Networking, Storage and Analysis, 2011.
R. O. Topaloglu, “Fast variational static IR-drop analysis on the graphical
processing unit,” in Proceedings of International Symposium on Quality Elec-
tronic Design, pp. 1-6, 2011.

T. Van Luong, N. Melab, and E. G. Talbi, “Large neighborhood local search
optimization on graphics processing units,” in Proceedings of International
Parallel and Distributed Processing Symposium, pp. 1-8, 2010.

A. Vincenzi, A. Sridhar, M. Ruggiero, and D. Atienza, “Fast thermal simu-
lation of 2D /3D integrated circuits exploiting neural networks and GPUs,”
in Proceedings of International Symposium on Low-Power Electronics and
Design, pp. 151-156, 2011.

S. Vinco, D. Chatterjee, V. Bertacco, and F. Fummi, “SAGA: SystemC accel-
eration on GPU architectures,” in Proceedings of Design Automation Confer-
ence, pp. 115-120, 2012.

V. Vineet, P. Harish, S. Patidar, and P. J. Narayanan, “Fast minimum span-
ning tree for large graphs on the GPU,” in Proceeding of High Performance
Graphics, pp. 167-171, 2009.

V. Vineet and P. Narayanan, “Cuda cuts: Fast graph cuts on the GPU,”
in Proceedings of Conference on Computer Vision and Pattern Recognition:
Workshop on Visual Computer Vision on GPUs, pp. 1-8, 2008.

V. Volkov, “Better performance at lower occupancy,” in Proceedings of GPU
Technology Conference, 2010.

V. Volkov and J. Demmel, “Benchmarking GPUs to tune dense linear alge-
bra,” in Proceedings of International Conference for High Performance Com-
puting, Networking, Storage and Analysis, pp. 1-11, 2008.

B. Wang, Y. Zhu, and Y. Deng, “Distributed time, conservative parallel logic
simulation on GPUs,” in Proceedings of Design Automation Conference, 2010.
L.-T. Wang, C.-W. Wu, and X. Wen, VLSI Test Principles and Architectures:
Design for Testability. Morgan Kaufmann, 1st ed., 2006.

M. S. Waterman, Introduction to Computational Biology: Maps, Sequences
and Genomes. Chapman and Hall/CRC, 1st ed., 1995.

J. Williamson, Y. Lu, L. Shang, H. Zhou, and X. Zeng, “Parallel cross-layer
optimization of high-level synthesis and physical design,” in Proceedings of
Design Automation Conference, pp. 467-472, 2011.

C. M. Wittenbrink, E. Kilgariff, and A. Prabhu, “Fermi GF100 GPU Archi-
tecture,” IEEE Micro, vol. 21, no. 2, pp. 50-59, 2011.

X. Xiao, A. M. Aji, and W.-C. Feng, “On the robust mapping of dynamic
programming onto a graphics processing Unit,” in Proceedings of International
Conference on Parallel and Distributed Systems, pp. 26-33, 2009.

Full text available at: http://dx.doi.org/10.1561/1000000028

178

[257]

[258]

259

260]

[261]

[262]

263

References

X. Xjao and W.-C. Feng, “Inter-block GPU communication via fast barrier
synchronization,” in Proceedings of IEEE International Symposium on Parallel
and Distributed Processing, pp. 1-12, 2010.

Y. Yang, P. Xiang, J. Kong, and H. Zhou, “A GPGPU compiler for memory
optimization and parallelism management,” in Proceedings of Conference on
Programming Language Design and Implementation, pp. 86—97, 2010.

Z. Yu, X. Guan, Y. Deng, and Y. Wang, “Riding bandwagon of parallel
computing for nanoscale device simulation,” in Proceedings of International
Workshop on Quantum Systems and Semiconductor Devices: Analysis, Simu-
lations, Applications, 2009.

Z. Zeng, X. Ye, Z. Feng, and P. Li, “Tradeoff analysis and optimization of
power delivery networks with on-chip voltage regulation,” in Proceedings of
Design Automation Conference, pp. 831-836, 2010.

J. Zhang et al., “GPU-accelerated inverse lithography technique,” in Proceed-
ings of SPIE, vol. 7379, 2009.

X. Zhao and Z. Feng, “Fast multipole method on GPU: Tackling 3-D capac-
itance extraction on massively parallel SIMD platforms,” in Proceedings of
Design Automation Conference, pp. 558563, 2011.

Y. Zhu, B. Wang, and Y. Deng, “Massively parallel logic simulation with
GPUs,” ACM Transactions on Design Automation of Electronic Systems,
vol. 16, no. 3, 2011.

	Introduction
	GPU Architecture and Programming Model
	GPU Background
	GPU Hardware Architecture
	GPU Programming Model

	EDA Computing Patterns
	Accelerating Key Design Patterns on GPUs
	Dense Linear Algebra
	Sparse Linear Algebra
	Graph Algorithms
	Backtrack and Branch-and-Bound
	MapReduce
	Dynamic Programming
	Structured Grid

	GPU-Accelerated EDA Applications
	System-Level Design
	RTL Design
	Physical Design
	Simulation

	Conclusion and Future Work
	Acknowledgments
	References

