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Abstract

Learning to rank for Information Retrieval (IR) is a task to automat-
ically construct a ranking model using training data, such that the
model can sort new objects according to their degrees of relevance,
preference, or importance. Many IR problems are by nature rank-
ing problems, and many IR technologies can be potentially enhanced
by using learning-to-rank techniques. The objective of this tutorial
is to give an introduction to this research direction. Specifically, the
existing learning-to-rank algorithms are reviewed and categorized into
three approaches: the pointwise, pairwise, and listwise approaches. The
advantages and disadvantages with each approach are analyzed, and
the relationships between the loss functions used in these approaches
and IR evaluation measures are discussed. Then the empirical evalua-
tions on typical learning-to-rank methods are shown, with the LETOR
collection as a benchmark dataset, which seems to suggest that the list-
wise approach be the most effective one among all the approaches. After
that, a statistical ranking theory is introduced, which can describe dif-
ferent learning-to-rank algorithms, and be used to analyze their query-
level generalization abilities. At the end of the tutorial, we provide a
summary and discuss potential future work on learning to rank.
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1

Introduction

With the fast development of the Web, every one of us is experi-
encing a flood of information. It was estimated that there are about
25 billion pages on the Web as of October 2008,1 which makes it
generally impossible for common users to locate desired information
by browsing the Web. As a consequence, efficient and effective Infor-
mation Retrieval (IR) has become more important than ever, and
search engines (or IR systems) have become an essential tool for many
people.

Ranking is a central problem in IR. Many IR problems are by
nature ranking problems, such as document retrieval, collaborative
filtering [58], key term extraction [30], definition finding [130], impor-
tant email routing [23], sentiment analysis [94], product rating [36],
and anti Web spam [56]. In this tutorial, we will mainly take document
retrieval as an example. Note that document retrieval is not a narrow
task. Web pages, emails, academic papers, books, and news articles are
just a few of the many examples of documents. There are also many
different ranking scenarios for document retrieval of our interest.

1 http://www.worldwidewebsize.com/

1
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2 Introduction

Scenario 1 : Rank the documents purely according to their relevance
with regards to the query.

Scenario 2 : Consider the relationships of similarity [117], website
structure [35], and diversity [139] between documents in the ranking
process. This is also referred to as relational ranking [103].

Scenario 3 : Aggregate several candidate ranked lists to get a better
ranked list. This scenario is also referred to as meta search [7]. The
candidate ranked lists may come from different index servers or different
vertical search engines, and the target ranked list is the final result
presented to users.

Scenario 4 : Find whether and to what degree a property of a web-
page influences the ranking result. This is referred to as “reverse engi-
neering” in search engine optimization (SEO).2

To tackle the problem of document retrieval, many heuristic ranking
models have been proposed and used in IR literature. Recently, given
the amount of potential training data available, it has become possi-
ble to leverage Machine Learning (ML) technologies to build effective
ranking models. Specifically, we call those methods that learn how to
combine predefined features for ranking by means of discriminative
learning “learning-to-rank” methods.

In recent years, learning to rank has become a very hot research
direction in IR, and a large number of learning-to-rank algorithms have
been proposed, such as [9, 13, 14, 16, 17, 26, 29, 33, 34, 47, 49, 59, 63,
73, 78, 90, 97, 99, 102, 114, 119, 122, 129, 134, 136]. We foresee that
learning to rank will have an even bigger impact on IR in the future.

When a research area comes to this stage, several questions
naturally arise.

• To what respect are these learning-to-rank algorithms similar
and in which aspects do they differ? What are the strengths
and weaknesses of each algorithm?

• Empirically, which of those many learning-to-rank algorithms
perform the best? What kind of datasets can be used to make
fair comparison among different learning-to-rank algorithms?

2 http://www.search-marketing.info/newsletter/reverse-engineering.htm
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1.1 Ranking in IR 3

• Theoretically, is ranking a new ML problem, or can it be sim-
ply reduced to existing ML problems? What are the unique
theoretical issues for ranking that should be investigated?

• Are there many remaining issues regarding learning to rank
to study in the future? What are they?

The above questions have been brought to the attention of the IR
and ML communities in a variety of contexts, especially during recent
years. The aim of this tutorial is to review the recent work that attempts
to answer these questions. Needless to say, the comprehensive under-
standing of the task of ranking in IR is the key to finding the right
answers. Therefore, we will first give a brief introduction of ranking in
IR, and then formalize the problem of learning to rank so as to set the
stage for the upcoming detailed reviews.

1.1 Ranking in IR

In this subsection, we briefly review representative ranking models in
IR literature, and introduce how these models are evaluated.

1.1.1 Conventional Ranking Models for IR

In IR literature, many ranking models have been proposed [8]; they
can be roughly categorized as query-dependent models and query-
independent models.

Query-dependent models

The early models retrieve documents based on the occurrences of the
query terms in the documents. Examples include the Boolean model [8].
Basically these models can only predict whether a document is relevant
to the query or not, but cannot predict the degree of relevance.

To further model the relevance degree, the Vector Space model
(VSM) was proposed [8]. Both documents and queries are represented
as vectors in a Euclidean space, in which the inner product of two vec-
tors can be used to measure their similarities. To get an effective vector
representation of queries and documents, TF–IDF weighting has been

Full text available at: http://dx.doi.org/10.1561/1500000016



4 Introduction

widely used.3 The TF of term t in a vector is defined as the normalized
number of its occurrences in the document, and the IDF of it is defined
as follows:

IDF(t) = log
N

n(t)
, (1.1)

where N is the total number of documents in the collection, and n(t)
is the number of documents containing term t.

While VSM implies the assumption on the independence between
terms, Latent Semantic Indexing (LSI) [37] tries to avoid this assump-
tion. In particular, Singular Value Decomposition (SVD) is used to lin-
early transform the feature space and thus a “latent semantic space”
is generated. Similarity in this new space is then used to define the
relevance between queries and documents.

As compared with the above, models based on the probabilistic
ranking principle [83] garnered more attention and achieved more suc-
cess in past decades. The famous ranking models like BM25 [111]4 and
language model for IR can both be categorized as probabilistic ranking
models.

The basic idea of BM25 is to rank documents by the log-odds of
their relevance. Actually BM25 is not a single model, but it defines a
whole family of ranking models, with slightly different components and
parameters. One of the popular instantiations of the model is as follows.

Given query q, containing terms t1, . . . , tM , the BM25 score of
document d is computed as below:

BM25(d,q) =
M∑
i=1

IDF(ti) · TF(ti,d) · (k1 + 1)

TF(ti,d) + k1 ·
(

1 − b + b · LEN(d)
avdl

) , (1.2)

where TF(t,d) is the term frequency of t in document d; LEN(d) is the
length (number of words) of document d; avdl is the average document
length in the text collection from which documents are drawn; k1 and

3 Note that there are many different definitions of TF and IDF in IR literature. Some are

purely based on the frequency and the others include smoothing or normalization [116].

Here we just give some simple examples to illustrate the main idea.
4 The name of the actual model is BM25. However, it is usually referred to as “OKapi

BM25”, since the OKapi system was the first system to implement this model.
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1.1 Ranking in IR 5

b are free parameters; IDF(t) is the IDF weight of term t, computed by
using Equation (1.1), for example.

Language model for IR [96] is an application of the statistical lan-
guage model on IR. A statistical language model assigns a probabil-
ity to a sequence of terms. When used in IR, a language model is
associated with a document. With query q as input, documents are
ranked based on the query likelihood, or the probability that the doc-
ument’s language model would generate the terms in the query (i.e.,
P (q |d)). By further assuming the independence among terms, one has
P (q |d) =

∏M
i=1P (ti |d), if query q contains terms t1, . . . , tM .

To learn the document’s language model, a maximum likelihood
method is used. As in many maximum likelihood methods, the issue
of smoothing the estimate is critical. Usually a background language
model estimated using the entire collection is used for this purpose.
Then, the document’s language model can be constructed as follows:

p(ti |d) = (1 − λ)
TF(ti,d)
LEN(d)

+ λp(ti |C), (1.3)

where p(ti |C) is the background language model for term ti, and λ ∈
[0,1] is a smoothing factor.

There are many variants of language model for IR, some of them
even go beyond the query likelihood retrieval model (e.g., the models
based on K–L divergence [140]). We will not introduce more about
them, and readers are encouraged to read the tutorial authored by
Zhai [138].

In addition to the above examples, many other models have also
been proposed to compute the relevance between a query and a docu-
ment. Some of them [118] take the proximity of the query terms into
consideration, and some others consider the relationship between doc-
uments in terms of content similarity [117], hyperlink structure [113],
website structure [101], and topic diversity [139].

Query-independent models

In IR literature, there are also many models that rank documents based
on their own importance. We will take PageRank [92] as an example
for illustration. This model is particularly applicable to Web search
because it makes use of the hyperlink structure of the Web for ranking.

Full text available at: http://dx.doi.org/10.1561/1500000016



6 Introduction

PageRank uses the probability that a surfer randomly clicking on
links will arrive at a particular webpage to rank the web pages. In the
general case, the PageRank value for any page du can be expressed as:

PR(du) =
∑
dv∈Bu

PR(dv)
U(dv)

. (1.4)

That is, the PageRank value for page du is dependent on the
PageRank values for each page dv out of the set Bu (containing all
pages linking to page du), divided by U(dv), the number of outlinks
from page dv.

To get a meaningful solution to Equation (1.4), a smoothing term
is introduced. When the random surfer walks on the link graph, she/he
does not necessarily always follow the existing hyperlinks. There is a
small probability that she/he will jump to any other page uniformly.
This small probability can be represented by (1 − α), where α is called
the damping factor. Accordingly, PageRank is refined as follows:

PR(du) = α
∑
dv∈Bu

PR(dv)
U(dv)

+
(1 − α)
N

, (1.5)

where N is the total number of pages on the Web.
There is much work discussing the theoretical properties, variations,

and efficient implementations of PageRank. Furthermore, there are
also many other link analysis algorithms, such as Hyperlink Induced
Topic Search (HITS) [72] and TrustRank [57]. Some of these algo-
rithms even leverage the content or topic information in the process
of link analysis [91].

1.1.2 Query-level Position-based Evaluations in IR

Given the large number of ranking models as introduced in the pre-
vious subsection, a standard evaluation mechanism is needed to select
the most effective model. For this purpose, one usually proceeds as
follows:

• Collect a large number of (randomly sampled) queries to form
a test set.

Full text available at: http://dx.doi.org/10.1561/1500000016



1.1 Ranking in IR 7

• For each query q,

— Collect documents {dj}mj=1 associated with the query.

— Get the relevance judgment for each document by
human assessment.

— Use a given ranking model to rank the documents.

— Measure the difference between the ranking results
and the relevance judgment using an evaluation
measure.

• Use the average measure on all the queries in the test set to
evaluate the performance of the ranking model.

As for collecting the documents associated with a query, a num-
ber of strategies can be used. For example, one can simply collect all
the documents containing the query word. One can also choose to use
some predefined rankers to get documents that are more likely to be
relevant. A popular strategy is the pooling method used in TREC.5 In
this method a pool of possibly relevant documents is created by taking
a sample of documents selected by various participating systems. In
particular, the top 100 documents retrieved in each submitted run for
a given query are selected and merged into the pool for human assess-
ment. On average, an assessor judges the relevance of approximately
1500 documents per query.

As for the relevance judgment, three strategies were used in the
literature.

(1) Specifying whether a document is relevant or not to the query
(i.e., binary judgment 1 or 0), or further specifying the degree
of relevance (i.e., multiple ordered categories, e.g., Perfect,
Excellent, Good, Fair, or Bad). Suppose for document dj
associated with query q, we get its relevance judgment as lj .
Then for two documents du and dv, if lu � lv, we say that
document du is more relevant than document dv, with regards
to query q, according to the relevance judgment.

5 http://trec.nist.gov/
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8 Introduction

(2) Specifying whether a document is more relevant than another
with regards to a query. For example, if document du is
judged to be more relevant than document dv with regards to
query q, we give the judgment lu,v = 1; otherwise, lu,v = −1.
That is, this kind of judgment captures the relative prefer-
ence between documents.6

(3) Specifying the partial order or even total order of the docu-
ments with respect to a query. For the group of documents
{dj}mj=1 associated with query q, this kind of judgment is
usually represented as a certain permutation of these docu-
ments, denoted as πl, or a set of such permutations.

Given the vital role that relevance judgments play in a test collec-
tion, it is important to assess the quality of the judgments. In previous
practices like TREC, both the completeness and the consistency of rel-
evance judgments are of interest. Completeness measures the degree to
which all the relevant documents for a topic have been found; con-
sistency measures the degree to which the assessor has marked all
the “truly” relevant documents relevant and the “truly” irrelevant
documents irrelevant.

Since manual judgment is time consuming, it is almost impossible
to judge all the documents with regards to a query. Consequently, there
are always unjudged documents returned by the ranking model. As a
common practice, one regards the unjudged documents as irrelevant in
the evaluation process.7

With the relevance judgment, several evaluation measures have been
proposed and used in IR literature. It is clear that understanding these
measures will be very important for learning to rank, since to some
extent they define the “true” objective function of ranking. Below we
list some popularly used measures.

Mean reciprocal rank (MRR): For query q, the rank position of its first
relevant document is denoted as r(q). Then 1

r(q) is defined as MRR for

6 This kind of judgment can also be mined from click-through logs of search engines

[68, 69, 105].
7 In recent years, several new evaluation mechanisms [18] that consider the relevance prob-

ability of an unjudged document have also been proposed.
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1.1 Ranking in IR 9

query q. It is clear that documents ranked below r(q) are not considered
in MRR.

Mean average precision (MAP): To define MAP [8], one needs to
define Precision at position k (P@k) first,

P@k(q) =
#{relevant documents in the top k positions}

k
. (1.6)

Then, the Average Precision (AP) is defined below:

AP(q) =
∑m

k=1P@k(q) · lk
#{relevant documents}

, (1.7)

where m is the total number of documents associated with query q, and
lk is the binary judgment on the relevance of the document at the k-th
position. The mean value of AP over all the test queries is named MAP.

Discounted cumulative gain (DCG): While the aforementioned mea-
sures are mainly designed for binary judgments, DCG [65, 66] can lever-
age the relevance judgment in terms of multiple ordered categories, and
has an explicit position discount factor in its definition. More formally,
suppose the ranked list for query q is π, then DCG at position k is
defined as follows:

DCG@k(q) =
k∑
r=1

G(π−1(r))η(r), (1.8)

where π−1(r) denotes the document ranked at position r of the list
π, G(·) is the rating of a document (one usually sets G(π−1(r)) =
(2lπ−1(r) − 1)), and η(r) is a position discount factor (one usually sets
η(r) = 1/ log2(r + 1)).

By normalizing DCG@k with the maximum value of it (denoted
as Zk), we will get another measure named Normalized DCG (NDCG).
That is:

NDCG@k(q) =
1
Zk

k∑
r=1

G(π−1(r))η(r). (1.9)

It is clear that NDCG takes values from 0 to 1.

Rank correlation (RC): The correlation between the ranked list
given by the model (denoted as π) and the relevance judgment

Full text available at: http://dx.doi.org/10.1561/1500000016



10 Introduction

(denoted as πl) can be used to define a measure. For example, when
the weighted Kendall’s τ is used, the RC measures the weighted pair-
wise inconsistency between two lists. Its definition is given below:

τK(q) =
∑

u<vwu,v(1 + sgn((π(u) − π(v))(πl(u) − πl(v))))
2
∑

u<vwu,v
, (1.10)

where wu,v is the weight, and π(u) means the rank position of document
du in list π.

To summarize, there are some common properties in these evalua-
tion measures.

(1) All these evaluation measures are calculated at the query
level. That is, first the measure is computed for each query,
and then averaged over all queries in the test set. No matter
how poorly the documents associated with a particular query
are ranked, it will not dominate the evaluation process since
each query contributes similarly to the average measure.

(2) All these measures are position based. That is, rank posi-
tion is explicitly used. Considering that with small changes
in the scores given by a ranking model the rank positions
will not change until one document’s score passes another,
the position-based measures are usually non-continuous and
non-differentiable with regards to the scores. This makes the
optimization of these measures quite difficult. We will con-
duct more discussions on this in Section 4.1.

1.2 Learning to Rank

Many ranking models have been introduced in the previous subsection,
most of which contain parameters. For example, there are parameters
k1 and b in BM25 (see Equation (1.2)), parameter λ in language model
for IR (see Equation (1.3)), and parameter α in PageRank (see Equa-
tion (1.5)). In order to get a reasonably good ranking performance (in
terms of IR evaluation measures), one needs to tune these parameters
using a validation set. Nevertheless, the parameter tuning is far
from trivial, especially considering that IR evaluation measures are
non-continuous and non-differentiable with respect to the parameters.

Full text available at: http://dx.doi.org/10.1561/1500000016



1.2 Learning to Rank 11

In addition, a model perfectly tuned on the validation set sometimes
performs poorly on unseen test queries. This is usually called over-
fitting. Another issue is about the combination of these ranking models.
Given that many models have been proposed in the literature, it is
natural to investigate how to combine these models and create an even
more effective new model. This is, however, not straightforward either.

While IR researchers were facing these problems, machine learn-
ing has been demonstrating its effectiveness in automatically tuning
parameters, combining multiple evidences, and avoiding over-fitting.
Therefore, it seems quite promising to adopt ML technologies to solve
the aforementioned problems.

1.2.1 ML Framework

In much ML research (especially discriminative learning), attention has
been paid to the following key components.8

(1) The input space, which contains the objects under investi-
gation: Usually objects are represented by feature vectors,
extracted according to different applications.

(2) The output space, which contains the learning target with
respect to the input objects: There are two related but dif-
ferent definitions of the output space in ML.9 The first is the
output space of the task, which is highly dependent on the
application. For example, in the regression problem the out-
put space is the space of real numbers R; in classification, it is
the set of discrete categories {0,1, . . . ,K − 1}. The second is
the output space to facilitate the learning process. This may
differ from the output space of the task. For example, one
can use regression algorithms to solve the problem of classifi-
cation. In this case, the output space that facilitates learning
is the space of real numbers but not discrete categories.

(3) The hypothesis space, which defines the class of functions
mapping the input space to the output space: The functions

8 For a more comprehensive introduction to the ML literature, please refer to [89].
9 In this tutorial, when we mention the output space, we mainly refer to the second type.
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12 Introduction

operate on the feature vectors of the input objects, and make
predictions according to the format of the output space.

(4) In order to learn the optimal hypothesis, a training set is
usually used, which contains a number of independent and
identically distributed (i.i.d.) objects and their ground truth
labels, sampled from the product of the input and output
spaces. The loss function measures to what degree the pre-
diction generated by the hypothesis is in accordance with the
ground truth label. For example, widely used loss functions
for classification include the exponential loss, the hinge loss,
and the logistic loss. It is clear that the loss function plays
a central role in ML, since it encodes the understanding of
the target application (i.e., what prediction is correct and
what is not). With the loss function, an empirical risk can
be defined on the training set, and the optimal hypothesis is
usually (but not always) learned by means of empirical risk
minimization.

1.2.2 Learning-to-Rank Framework

In recent years, more and more ML technologies have been used to
train the ranking model, and a new research area named “learning
to rank” has gradually emerged. Especially in the past several years,
learning to rank has become one of the most active research areas in IR.

In general, we can call all those methods that use ML technologies
to solve the problem of ranking “learning-to-rank” methods,10 such
as the work on relevance feedback11 [39, 112] and automatically tun-
ing the parameters of existing IR models [60, 120]. However, most of
the state-of-the-art learning-to-rank algorithms learn the optimal way
of combining features extracted from query–document pairs through
discriminative training. Therefore, in this tutorial we define learning
to rank in a more specific way to better summarize these algorithms.

10 In ML literature, there is a topic named label ranking. It is to predict the ranking of mul-

tiple class labels for an individual document, but not to predict the ranking of documents.

In this regard, it is largely different from the task of ranking for IR.
11 We will make further discussions on the relationship between relevance feedback and

learning to rank in Section 2.
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1.2 Learning to Rank 13

We call those ranking methods that have the following two properties
learning-to-rank methods.

Feature based : All the documents under investigation are represented
by feature vectors,12 reflecting the relevance of the documents to the
query. That is, for a given query q, its associated document d can be
represented by a vector x = Φ(d,q), where Φ is a feature extractor.
Typical features used in learning to rank include the frequencies of the
query terms in the document, the BM25 and PageRank scores, and the
relationship between this document and other documents. If one wants
to know more about widely used features, please refer to Tables 6.2
and 6.3 in Section 6.

Even if a feature is the output of an existing retrieval model, in
the context of learning to rank, one assumes that the parameter in the
model is fixed, and only the optimal way of combining these features is
learned. In this sense, the previous work on automatically tuning the
parameters of existing models [60, 120] is not categorized as “learning-
to-rank” methods.

The capability of combining a large number of features is a very
important advantage of learning to rank. It is easy to incorporate any
new progress on the retrieval model by including the output of the
model as one dimension of the features. Such a capability is highly
demanding for real search engines, since it is almost impossible to use
only a few factors to satisfy complex information needs of Web users.

Discriminative training : The learning process can be well described
by the four components of discriminative learning as mentioned in the
previous subsection. That is, a learning-to-rank method has its specific
input space, output space, hypothesis space, and loss function.

In ML literature, discriminative methods have been widely used to
combine different kinds of features, without the necessity of defining a
probabilistic framework to represent the objects and the correctness of
prediction. In this sense, previous works that train generative ranking

12 Note that, hereafter in this tutorial, when we refer to a document, we will not use d any
longer. Instead, we will directly use its feature representation x. Furthermore, since our

discussions will focus more on the learning process, we will always assume the features
are pre-specified, and will not purposely discuss how to extract them.
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models are not categorized as “learning-to-rank” methods in this tuto-
rial. If one has interest in such work, please refer to [74, 85, 141], etc.

Discriminative training is an automatic learning process based on
the training data. This is also highly demanding for real search engines,
because everyday these search engines will receive a lot of user feedback
and usage logs indicating poor ranking for some queries or documents.
It is very important to automatically learn from feedback and con-
stantly improve the ranking mechanism.

Due to the aforementioned two characteristics, learning to rank has
been widely used in commercial search engines,13 and has also attracted
great attention from the academic research community.

Figure 1.1 shows the typical “learning-to-rank” flow. From the figure
we can see that since learning to rank is a kind of supervised learning,
a training set is needed. The creation of a training set is very similar to

Fig. 1.1 Learning-to-rank framework.

13 See http://blog.searchenginewatch.com/050622-082709,

http://blogs.msdn.com/msnsearch/archive/2005/06/21/431288.aspx,
and http://glinden.blogspot.com/2005/06/msn-search-and-learning-to-rank.html.
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1.2 Learning to Rank 15

the creation of the test set for evaluation. For example, a typical train-
ing set consists of n training queries qi(i = 1, . . . ,n), their associated
documents represented by feature vectors x(i) = {x(i)

j }m
(i)

j=1 (where m(i)

is the number of documents associated with query qi), and the corre-
sponding relevance judgments.14 Then a specific learning algorithm is
employed to learn the ranking model (i.e., the way of combining the
features), such that the output of the ranking model can predict the
ground truth label in the training set15 as accurately as possible, in
terms of a loss function. In the test phase, when a new query comes in,
the model learned in the training phase is applied to sort the documents
according to their relevance to the query, and return the corresponding
ranked list to the user as the response to her/his query.

1.2.3 Approaches to Learning to Rank

Many learning-to-rank algorithms can fit into the above framework.
In order to better understand them, we perform a categorization on
these algorithms. In particular, we group the algorithms, according to
the four pillars of ML, into three approaches: the pointwise approach,
the pairwise approach, and the listwise approach. Note that different
approaches model the process of learning to rank in different ways. That
is, they define different input and output spaces, use different hypothe-
ses, and employ different loss functions. Note that the output space is
used to facilitate the learning process, which can be different from the
relevance judgments on the documents. That is, even if provided with
the same format of judgments, one can derive different ground truth
labels from it, and use them for different approaches.

The pointwise approach

The input space of the pointwise approach contains the feature vector
of each single document.

14 Please distinguish between the judgment for evaluation and the judgment for constructing

the training set, although the processes of obtaining them may be very similar.
15 Hereafter, when we mention the ground truth labels in the remainder of the tutorial, we

will mainly refer to the ground truth labels in the training set, although we assume every
document has its intrinsic label no matter whether it is judged or not.
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The output space contains the relevance degree of each single doc-
ument. The ground truth label in the output space is usually defined
in the following way. If the judgment is directly given as relevance
degree lj , the ground truth label for document xj is defined as yj = lj .
If the judgment is given as total order πl, one can get the ground truth
label by using a mapping function.16 However, if the judgment is given
as pairwise preference lu,v, it is not straightforward to make use of it
to generate the ground truth label.

The hypothesis space contains functions that take the feature vector
of a document as the input and predict the relevance degree of the
document. We usually call such a function f the scoring function. Note
that, based on the scoring function, one can sort all the documents and
produce the final ranked list.

The loss function examines the accurate prediction of the ground
truth label for each single document. In different pointwise ranking
algorithms, ranking is modeled as regression, classification, and ordi-
nal regression (see Section 2). Therefore the corresponding regression
loss, classification loss, and ordinal regression loss are used as the loss
function. Note that the pointwise approach does not consider the inter-
dependency among documents, and thus the position of a document in
the final ranked list is invisible to its loss function. Furthermore, the
approach does not make use of the fact that some documents are actu-
ally associated with the same query. Considering that most IR evalua-
tion measures are query-level and position-based, intuitively speaking,
the pointwise approach has its limitations.

Example algorithms belonging to the pointwise approach include
[24, 25, 26, 31, 33, 34, 49, 53, 73, 78, 90, 114]. We will introduce some
of them in Section 2.

The pairwise approach

The input space of the pairwise approach contains a pair of documents,
both represented as feature vectors.

The output space contains the pairwise preference (which takes val-
ues from {1,−1}) between each pair of documents. The ground truth

16 For example, the position of the document in πl can be used to define the relevance
degree.
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1.2 Learning to Rank 17

label in the output space is usually defined in the following way. If the
judgment is given as relevance degree lj , then the order for document
pair (xu,xv) can be defined as yu,v = 2 · I{lu�lv} − 1. Here I{A} is an
indicator function, which is defined to be 1 if predicate A holds and 0
otherwise. If the judgment is given directly as pairwise preference lu,v,
then it is straightforward to set yu,v = lu,v. If the judgment is given as
total order πl, one can define yu,v = 2 · I{πl(u)<πl(v)} − 1.

The hypothesis space contains bi-variate functions h that take a
pair of documents as the input and output the relative order between
them. Some pairwise ranking algorithms directly define their hypothe-
ses as such [29], however, in more algorithms, the hypothesis is
still defined with a scoring function f for simplicity, i.e., h(xu,xv) =
2 · I{f(xu)>f(xv)} − 1.

The loss function measures the inconsistency between h(xu,xv) and
the ground truth label yu,v. For example, in some algorithms, ranking
is modeled as a pairwise classification, and the corresponding classifi-
cation loss on a pair of documents is used as the loss function. Note
that the loss function used in the pairwise approach only considers
the relative order between two documents. When one looks at only a
pair of documents, however, the position of the documents in the final
ranked list can hardly be derived. Furthermore, the approach ignores
the fact that some pairs are generated from the documents associated
with the same query. Considering that most IR evaluation measures
are query-level and position-based, intuitively speaking, there is still a
gap between this approach and ranking for IR.

Example algorithms belonging to the pairwise approach include
[9, 14, 16, 29, 47, 63, 97, 122]. We will introduce some of them in
Section 3.

The listwise approach

The input space of the listwise approach contains the entire group of
documents associated with query q, e.g., x = {xj}mj=1.

There are two types of output spaces used in the listwise approach.
For some listwise ranking algorithms, the output space contains the rele-
vance degrees of all the documents associated with a query. In this case,
the ground truth label y = {yj}mj=1 can be derived from the judgment
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in terms of the relevance degree or total order, in a similar manner
to that of the pointwise approach. For some other listwise ranking
algorithms, the output space contains the ranked list (or permutation)
of the documents. In this case, the ground truth label, denoted as πy,
can be generated in the following way. When the judgment is given
as total order πl, we can define πy = πl. Otherwise, we can derive πy
by using the concept of the equivalent permutation set (see Section 4).
When πy is given as the ground truth label, the output space that
facilitates the learning process is exactly the output space of the rank-
ing task. Therefore, the theoretical analysis on the listwise approach
has a more direct value where understanding the real ranking problem
than the other approaches where there are mismatches between the
output space that facilitates learning and the real output space of
the task.

The hypothesis space contains multivariate functions h that oper-
ate on a group of documents, and predict their relevance degrees or
their permutation. For practical reasons, the hypothesis h is also usu-
ally implemented with scoring function f . When the relevance degree
comprises the output space, h(x) = f(x). When the ranked list (per-
mutation) comprises the output space, h is defined as a compound
function h(x) = sort ◦ f(x). That is, first scoring function f is used to
give a score to each document, and then these documents are sorted in
the descending order of the scores to produce the desired ranked list.

There are also two types of loss functions, corresponding to the two
types of output spaces. When the ground truth label is given as y, the
loss function is usually defined on the basis of the approximation or
bound of widely used IR evaluation measures. When the ground truth
label is given as πy, the loss function measures the difference between
the ranked list given by the hypothesis and the ground truth list. As
compared to the pointwise and pairwise approaches, the advantage of
the listwise approach lies in that its loss function can naturally con-
sider the positions of documents in the ranked list of all the documents
associated with the same query.

Example algorithms that belong to the listwise approach include
[13, 17, 99, 102, 119, 129, 134, 136]. We will introduce some of them in
Section 4.
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1.3 About this Tutorial 19

It is noted that different loss functions are used in different
approaches, while the same IR evaluation measures are used for testing
their performances. A natural question that arises concerns the rela-
tionship between these loss functions and IR evaluation measures. The
investigation on this issue can help us explain the empirical results of
learning-to-rank algorithms. We will introduce some such investigations
in Section 5. In addition, in Section 6, we will introduce a benchmark
dataset for the research on learning to rank, named LETOR, and report
some empirical results of representative learning-to-rank algorithms on
the dataset.

Furthermore, one may have noticed that the scoring function, which
is widely used in defining the hypotheses of different approaches, is a
kind of “pointwise” function. However, it is not to say that all the
approaches are in nature pointwise approaches. The categorization of
the aforementioned three approaches is based on the four pillars of ML.
That is, different approaches regard the same training data as in dif-
ferent input and output spaces, and define different loss functions and
hypotheses accordingly. From the ML point of view, they have differ-
ent assumptions on the i.i.d. distribution of the data and therefore the
theoretical properties (e.g., generalization ability) of their correspond-
ing algorithms will be largely different. We will further discuss this in
Section 7, with the introduction of a new theory, which we call the
statistical ranking theory.

1.3 About this Tutorial

As for the writing of the tutorial, we do not aim to be fully rigorous.
Instead, we try to provide insights into the basic ideas. However, it is
still unavoidable that we will use mathematics for better illustration of
the problem, especially when we jump into the theoretical discussions
on learning to rank. We will have to assume familiarity with basic con-
cepts of probability theory and statistical learning in the corresponding
discussions.

Furthermore, we will use the notation rules as listed in Table 1.1
throughout the tutorial. Here we would like to add one more note. Since
in practice the hypothesis h is usually defined with scoring function f ,
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Table 1.1 Notation rules.

Meaning Notation

Query q, or qi

A quantity z for query qi z(i)

Number of training queries n

Number of documents associated with query q m

Number of document pairs associated with query q m̃

Feature vector of a document associated with query q x

Feature vectors of documents associated with query q x = {xj}mj=1

Term frequency of query q in document d TF(q,d)

Inverse document frequency of query q IDF(q)

Length of document d LEN(d)

Hypothesis h(·)
Scoring function f(·)
Loss function L(·)
Expected risk R(·)
Empirical risk R̂(·)
Relevance degree for document xj lj

Document xu is more relevant than document xv lu � lv
Pairwise preference between documents xu and xv lu,v

Total order of document associated with the same query πl

Ground truth label for document xj yj

Ground truth label for document pair (xu, xv) yu,v

Ground truth list for documents associated with query q πy

Ground truth permutation set for documents associated with query q Ωy

Original document index of the j-th element in permutation π π−1(j)

Rank position of document j in permutation π π(j)

Number of classes K

Index of class k

VC dimension of a function class V

Indicator function I{·}

Gain function G(·)
Position discount function η(·)

we sometimes use L(h) and L(f) interchangeably to represent the loss
function. When we need to emphasize the parameter in the scoring
function, we will use f(w,x) instead of f(x) in the discussion, although
they actually mean the same thing.
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