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Abstract

Online learning is a well established learning paradigm which has both
theoretical and practical appeals. The goal of online learning is to
make a sequence of accurate predictions given knowledge of the cor-
rect answer to previous prediction tasks and possibly additional avail-
able information. Online learning has been studied in several research
fields including game theory, information theory, and machine learning.
It also became of great interest to practitioners due the recent emer-
gence of large scale applications such as online advertisement placement
and online web ranking. In this survey we provide a modern overview
of online learning. Our goal is to give the reader a sense of some of
the interesting ideas and in particular to underscore the centrality of
convexity in deriving efficient online learning algorithms. We do not
mean to be comprehensive but rather to give a high-level, rigorous yet
easy to follow, survey.
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Introduction

Online learning is the process of answering a sequence of questions
given (maybe partial) knowledge of the correct answers to previous
questions and possibly additional available information. The study of
online learning algorithms is an important domain in machine learn-
ing, and one that has interesting theoretical properties and practical
applications.

Online learning is performed in a sequence of consecutive rounds,
where at round t the learner is given a question, X¢, taken from an
instance domain X, and is required to provide an answer to this ques-
tion, which we denote by p;. After predicting an answer, the correct
answer, ¥, taken from a target domain ), is revealed and the learner
suffers a loss, I(ps,y:), which measures the discrepancy between his
answer and the correct one. While in many cases p; is in ), it is some-
times convenient to allow the learner to pick a prediction from a larger
set, which we denote by D.
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Online Learning

fort=1,2,...
receive question x; € X
predict p € D
receive true answer y; € Y
suffer loss I(ps, yt)

The specific case of yes/no answers and predictions, namely D =
Y =1{0,1}, is called online classification. In this case it is natural to
use the 0-1 loss function: {(ps,y:) = [pr — y¢|. That is, I(ps, ) indicates
if p, = y; (the prediction is correct) or p; # y; (the prediction is wrong).

For example, consider the problem of predicting whether it is going
to rain tomorrow. On day ¢, the question x; can be encoded as a vector
of meteorological measurements. Based on these measurements, the
learner should predict if it’s going to rain tomorrow. In the following
day, the learner knows the correct answer.

We can also allow the learner to output a prediction in [0, 1], which
can be interpreted as the probability of raining tomorrow. This is an
example of an application in which D # ). We can still use the loss
function (ps,y) = |pr — Y|, which can now be interpreted as the prob-
ability to err if predicting that it’s going to rain with probability p;.

The learner’s ultimate goal is to minimize the cumulative loss suf-
fered along its run, which translates to making few prediction mistakes
in the classification case. The learner tries to deduce information from
previous rounds so as to improve its predictions on present and future
questions. Clearly, learning is hopeless if there is no correlation between
past and present rounds. Classic statistical theory of sequential predic-
tion therefore enforces strong assumptions on the statistical properties
of the input sequence (e.g., that it is sampled i.i.d. according to some
unknown distribution).

In this review we survey methods which make no statistical assump-
tions regarding the origin of the sequence of examples. The sequence is
allowed to be deterministic, stochastic, or even adversarially adaptive
to the learner’s own behavior (as in the case of spam email filtering).
Naturally, an adversary can make the cumulative loss to our online
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learning algorithm arbitrarily large. For example, the adversary can ask
the same question on each online round, wait for the learner’s answer,
and provide the opposite answer as the correct answer. To make non-
trivial statements we must further restrict the problem. We consider
two natural restrictions.

The first restriction is especially suited to the case of online classi-
fication. We assume that all the answers are generated by some target
mapping, h* : X — ). Furthermore, h* is taken from a fixed set, called
a hypothesis class and denoted by H, which is known to the learner.
With this restriction on the sequence, which we call the realizable case,
the learner should make as few mistakes as possible, assuming that
both h* and the sequence of questions can be chosen by an adversary.
For an online learning algorithm, A, we denote by M4(H) the max-
imal number of mistakes A might make on a sequence of examples
which is labeled by some h* € H. We emphasize again that both A*
and the sequence of questions can be chosen by an adversary. A bound
on Ma(H) is called a mistake-bound and we will study how to design
algorithms for which M4(H) is minimal.

Alternatively, the second restriction of the online learning model
we consider is a relaxation of the realizable assumption. We no longer
assume that all answers are generated by some h* € H, but we require
the learner to be competitive with the best fixed predictor from 7. This
is captured by the regret of the algorithm, which measures how “sorry”
the learner is, in retrospect, not to have followed the predictions of
some hypothesis h* € H. Formally, the regret of the algorithm relative
to h* when running on a sequence of T examples is defined as

T T
Regrety (h*) = Zl(ptvyt) N Zl(h*(l‘t)ayt), (1.1)
t=1 t=1

and the regret of the algorithm relative to a hypothesis class H is
Regretr(H) = max Regret,(h*). (1.2)
*e

We restate the learner’s goal as having the lowest possible regret
relative to H. We will sometime be satisfied with “low regret” algo-
rithms, by which we mean that Regret(H) grows sub-linearly with
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the number of rounds, T', which implies that the difference between the
average loss of the learner and the average loss of the best hypothesis
in H tends to zero as T goes to infinity.

1.1 Examples

We already mentioned the problem of online classification. To make the
discussion more concrete, we list several additional online prediction
problems and possible hypothesis classes.

Online Regression In regression problems, X =R? which cor-
responds to a set of measurements (often called features), and
Y = D = R. For example, consider the problem of estimating the fetal
weight based on ultrasound measurements of abdominal circumference
and femur length. Here, each x € X = R? is a two-dimensional vector
corresponds to the measurements of the abdominal circumference and
the femur length. Given these measurements the goal is to predict the
fetal weight. Common loss functions for regression problems are the
squared loss, £(p,y) = (p — y)?, and the absolute loss, £(p,y) = [p — y|.
Maybe the simplest hypothesis class for regression is the class of linear
predictors, H = {x — Zle wli]z[i] : Vi,w[i] € R}, where w[i] is the ith
element of w. The resulting problem is called online linear regression.

Prediction with Expert Advice On each online round the
learner has to choose from the advice of d given experts. Therefore,
x; € X CRY where x4[i] is the advice of the ith expert, and
D ={1,...,d}. Then, the learner receives the true answer, which is a
vector y; € Y = [0,1]¢, where y;[i] is the cost of following the advice of
the ith expert. The loss of the learner is the cost of the chosen expert,
U(p,yt) = y¢[pe]. A common hypothesis class for this problem is the
set of constant predictors, H = {h1,...,hq}, where h;(x) =1 for all x.
This implies that the regret of the algorithm is measured relative to
the performance of the strategies which always predict according to
the same expert.

Online Ranking On round ¢, the learner receives a query x; € X
and is required to order k elements (e.g., documents) according to
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their relevance to the query. That is, D is the set of all permuta-
tions of {1,...,k}. Then, the learner receives the true answer y; € Y =
{1,...,k}, which corresponds to the document which best matches the
query. In web applications, this is the document that the user clicked
on. The loss, (pt,yt), is the position of y; in the ranked list py.

1.2 A Gentle Start

We start with studying online classification problem, in which Y =D =
{0,1}, and £(p,y) = |p — y| is the 0-1 loss. That is, on each round, the
learner receives x; € X and is required to predict p; € {0,1}. Then, it
receives y; € {0,1} and pays the loss |p; — y|]. We make the following
simplifying assumption:

e Finite Hypothesis Class: We assume that |H| < oco.

Recall that the goal of the learner is to have a low regret relative to
the hypotheses set, H, where each function in H is a mapping from X
to {0,1}, and the regret is defined as

T T
Regret(H) = max (; Ipt — ye| — ; |h(x¢) — yt|)

We first show that this is an impossible mission — no algorithm
can obtain a sublinear regret bound even if |H| = 2. Indeed, consider
H = {ho,h1}, where hg is the function that always returns 0 and h; is
the function that always returns 1. An adversary can make the number
of mistakes of any online algorithm to be equal to T', by simply waiting
for the learner’s prediction and then providing the opposite answer as
the true answer. In contrast, for any sequence of true answers, y1,...,yr,
let b be the majority of labels in y1,...,yr, then the number of mistakes
of hy is at most T'/2. Therefore, the regret of any online algorithm
might be at least T'— T'/2 =T/2, which is not a sublinear with 7'
This impossibility result is attributed to Cover [13].

To sidestep Cover’s impossibility result, we must further restrict the
power of the adversarial environment. In the following we present two
ways to do this.
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1.2.1 Realizability Assumption

The first way to sidestep Cover’s impossibility result is by making one
additional assumption:

® Realizability: We assume that all target labels are generated
by some h* € H, namely, y, = h*(x;) for all t. Our goal is to
design an algorithm with an optimal mistake bound. Namely,
an algorithm for which M4(H) is minimal. See definition of
Ma(H) in the prequel.

Next, we describe and analyze online learning algorithms assuming
both a finite hypothesis class and realizability of the input sequence.
The most natural learning rule is to use (at any online round) any
hypothesis which is consistent with all past examples.

Consistent

input: A finite hypothesis class H
initialize: V], = H
fort=1,2,...

receive x;

choose any h € V;

predict p; = h(x;)

receive true answer y; = h*(xy)

update Vi1 ={h € Vi: h(xt) =y}

The Consistent algorithm maintains a set, V4, of all the hypothe-
ses which are consistent with (x1,y1),...,(x¢—1,y:—1). This set is often
called the version space. It then picks any hypothesis from V; and
predicts according to this hypothesis.

Obviously, whenever Consistent makes a prediction mistake, at
least one hypothesis is removed from V;. Therefore, after making M
mistakes we have |V;| < |H| — M. Since V; is always nonempty (by the
realizability assumption it contains h*) we have 1 < |Vi| < |H| — M.
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Rearranging, we obtain

Corollary 1.1. Let H be a finite hypothesis class. The Consistent
algorithm enjoys the mistake bound Mconsistens(H) < |H| — 1.

It is rather easy to construct a hypothesis class and a sequence of
examples on which Consistent will indeed make |H| — 1 mistakes.
Next, we present a better algorithm in which we choose h € V; in a
smarter way. We shall see that this algorithm is guaranteed to make
exponentially fewer mistakes. The idea is to predict according to the
majority of hypotheses in V; rather than according to some arbitrary
h € V;. That way, whenever we err, we are guaranteed to remove at
least half of the hypotheses from the version space.

Halving

input: A finite hypothesis class H
initialize: V] = H
fort=1,2,...
receive X;
predict p; = argmax, o1y [{h € Vi : h(x¢) = 1}
(in case of a tie predict p; = 1)
receive true answer i

update Vi1 ={h € Vi: h(x;) =y}

Theorem 1.2. Let H be a finite hypothesis class. The Halving algo-
rithm enjoys the mistake bound Mya1ving(H) < logy(|H|).

Proof. We simply note that whenever the algorithm errs we have
|Vit1] < |V4|/2. (Hence the name Halving.) Therefore, if M is the total
number of mistakes, we have

1< V| < [H|27M.

Rearranging the above inequality we conclude our proof. a

Of course, Halving’s mistake bound is much better than
Consistent’s mistake bound. Is this the best we can do? What is an
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optimal algorithm for a given hypothesis class (not necessarily finite)?
We will get back to this question in Section

1.2.2 Randomization

In the previous subsection we sidestepped Cover’s impossibility result
by relying on the realizability assumption. This is a rather strong
assumption on the environment. We now present a milder restriction on
the environment and allow the learner to randomize his predictions. Of
course, this by itself does not circumvent Cover’s impossibility result as
in deriving the impossibility result we assumed nothing on the learner’s
strategy. To make the randomization meaningful, we force the adver-
sarial environment to decide on y; without knowing the random coins
flipped by the learner on round t. The adversary can still know the
learner’s forecasting strategy and even the random bits of previous
rounds, but it doesn’t know the actual value of the random bits used
by the learner on round ¢. With this (mild) change of game, we analyze
the expected 0—1 loss of the algorithm, where expectation is with respect
to the learner’s own randomization. That is, if the learner outputs
where P[j; = 1] = py, then the expected loss he pays on round ¢ is

P[?}t # yt] = ’pt - yt\.

Put another way, instead of having the predictions domain being
D ={0,1} we allow it to be D =10,1], and interpret p, € D as the
probability to predict the label 1 on round ¢. To summarize, we assume:

® Randomized Predictions and Fxpected Regret: We allow the
predictions domain to be D = [0,1] and the loss function is

still 1(pe,ye) = [pe — yel-

With this assumption it is possible to derive a low regret algorithm
as stated in the following theorem.

Theorem 1.3. Let H be a finite hypothesis class. There exists an algo-
rithm for online classification, whose predictions come from D = [0,1],



Full text available at: http://dx.doi.org/10.1561/2200000018

1.3 Organization and Scope 9

that enjoys the regret bound

T T
- — mi h — <4/0.51 T.
> lpe =l = iy D b(x) = il < VOS]

We will provide a constructive proof of the above theorem in the next
section.

To summarize, we have presented two different ways to sidestep
Cover’s impossibility result: realizability or randomization. At first
glance, the two approaches seem to be rather different. However, there
is a deep underlying concept that connects them. Indeed, we will show
that both methods can be interpreted as converification techniques.
Convexity is a central theme in deriving online learning algorithms.
We study it in the next section.

1.3 Organization and Scope

How to predict rationally is a key issue in various research areas such
as game theory, machine learning, and information theory. The semi-
nal book of Cesa-Bianchi and Lugosi [12] thoroughly investigates the
connections between online learning, universal prediction, and repeated
games. In particular, results from the different fields are unified using
the prediction with expert advice framework.

We feel that convexity plays a central role in the derivation of online
learning algorithms, and therefore start the survey with a study of the
important sub-family of online learning problems, which is called online
convex optimization. In this family, the prediction domain is a convex
set and the loss function is a convex function with respect to its first
argument. As we will show, many previously proposed algorithms for
online classification and other problems can be jointly analyzed based
on the online convex optimization framework. Furthermore, convexity
is important because it leads to efficient algorithms.

In Section [3] we get back to the problem of online classification.
We characterize a standard optimal algorithm for online classification.
In addition, we show how online convex optimization can be used for
deriving efficient online classification algorithms.

In Section [4] we study online learning in a limited feedback model,
when the learner observes the loss value I(p¢,y;) but does not observe
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the actual correct answer y;. We focus on the classic multi-armed ban-
dit problem and derive an algorithm for this problem based on the
online convex optimization algorithmic framework. We also present a
low regret algorithm for the general problem of bandit online convex
optimization.

Finally, in Section [5| we discuss several implications of online learn-
ing to batch learning problems, in which we assume that the examples
are sampled i.i.d. from an unknown probability source.

Part of our presentation shares similarities with other surveys on
online prediction problems. In particular, Rakhlin’s lecture notes [34]
and Hazan’s book section [22] are good recent surveys on online
convex optimization. While part of our presentation shares similari-
ties with these surveys, we sometimes emphasize different techniques.
Furthermore, we connect and relate the new results on online convex
optimization to classic results on online classification, thus providing
a fresh modern perspective on some classic algorithms. A more classic
treatment can be found in Blum’s survey [§].

1.4 Notation and Basic Definitions

We denote scalars with lower case letters (e.g., x and \), and vectors
with bold face letters (e.g., x and A). The ith element of a vector x
is denoted by z[i]. Since online learning is performed in a sequence
of rounds, we denote by x; the tth vector in a sequence of vectors
X1,X2,...,X7. The ith element of x; is denoted by x[i].

The inner product between vectors x and w is denoted by (x,w).
Whenever we do not specify the vector space we assume that it is the
d-dimensional Euclidean space and then (x,w) = Z?le[i]w[i]. Sets
are designated by upper case letters (e.g., S). The set of real numbers
is denoted by R and the set of non-negative real numbers is denoted
by Ry. The set of natural numbers is denoted by N. For any k > 1,
the set of integers {1,...,k} is denoted by [k]. Given a predicate 7, we
use the notation 1) to denote the indicator function that outputs 1
if m holds and 0 otherwise. The hinge function is denoted by [a], =
max{0,a}.

The Euclidean (or ¢2) norm of a vector w is ||w||2 = \/(w,w). We

omit the subscript when it is clear from the context. We also use other £,
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norms, ||w|, = (32, |w[i]|?)/?, and in particular |w|; = 3", |w[i]| and
|W||co = max;|w[i]|. A generic norm of a vector w is denoted by ||wl|
and its dual norm is defined as

%]l = max{(w,x) : ||w]| < 1}.
The definition of the dual norm immediately implies the inequality
(w,z) < [|w| ||z (1.3)

For the ¢ norm (which is dual to itself), this is the well known Cauchy—
Schwartz inequality. For p,q > 1 such that %D—|— =1 we have that
the ¢, and ¢; norms are dual, and Equation becomes Holder’s
inequality.

A function f is called L-Lipschitz over a set S with respect to a
norm ||-|| if for all u,w € S we have |f(u) — f(w)| < L||u — w||.

The gradient of a differentiable function f is denoted by V f and
the Hessian is denoted by V2f.

Throughout the review, we make use of basic notions from convex
analysis. A set S is convex if for all w,v € S and « € [0,1] we have
that aw + (1 — a)v € S as well. Similarly, a function f : S — R is con-
vex if for all w,v and a € [0,1] we have f(aw + (1 — a)v) < af(w)+
(1= a)f(v).

It is convenient to allow convex functions to output the value oo.
The domain of a function f is the set of points on which f is finite.
This is convenient, for example, for constraining the solution of an opti-
mization problem to be within some set A. Indeed, instead of solving
minge 4 f(x) we can solve miny f(x) + 14(x), where 14 is the function
that outputs 0 if x € A and oo if x ¢ A. In the next section we make
use of some additional definitions and tools from convex analysis. For
clarity, we define them as per need.

The expected value of a random variable, 1), is denoted by E[].
In some situations, we have a deterministic function h that receives a
random variable as input. We denote by E[h(1))] the expected value of
the random variable h(v). Occasionally, we omit the dependence of h
on 1. In this case, we may clarify the meaning of the expectation by
using the notation Ey[h] or Eyp[h] if ¢ is distributed according to
some distribution P.
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