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Abstract

Active learning is a protocol for supervised machine learning, in which
a learning algorithm sequentially requests the labels of selected data
points from a large pool of unlabeled data. This contrasts with passive
learning, where the labeled data are taken at random. The objective in
active learning is to produce a highly-accurate classifier, ideally using
fewer labels than the number of random labeled data sufficient for pas-
sive learning to achieve the same. This article describes recent advances
in our understanding of the theoretical benefits of active learning, and
implications for the design of effective active learning algorithms. Much
of the article focuses on a particular technique, namely disagreement-
based active learning, which by now has amassed a mature and coherent
literature. It also briefly surveys several alternative approaches from
the literature. The emphasis is on theorems regarding the performance
of a few general algorithms, including rigorous proofs where appropri-
ate. However, the presentation is intended to be pedagogical, focusing
on results that illustrate fundamental ideas, rather than obtaining the
strongest or most general known theorems. The intended audience in-
cludes researchers and advanced graduate students in machine learning
and statistics, interested in gaining a deeper understanding of the re-
cent and ongoing developments in the theory of active learning.

S. Hanneke. Theory of Disagreement-Based Active Learning. Foundations and
Trends® in Machine Learning, vol. 7, no. 2-3, pp. 131-309, 2014.

DOI: 10.1561/2200000037.
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1

Introduction

Active learning is a general protocol for supervised machine learning,
involving interaction with an expert or oracle. Though there are many
variants of active learning in the literature, the focus of this article
is the so-called pool-based active learning model. Specifically, we sup-
pose the user has obtained a (typically large) number of unlabeled data
points (i.e., only the features, or covariates, are present), referred to as
the unlabeled pool. The learning algorithm is permitted complete ac-
cess to these unlabeled data. It additionally has access to an expert or
oracle, capable of providing a label for any instance in this pool upon
request, where the label corresponds to the concept to be learned. The
queries to this expert can be sequential, in the sense that the algo-
rithm can observe the responses (labels) to its previous requests before
selecting the next instance in the pool to be labeled. As is typically
the case in supervised machine learning, the objective is to produce a
classifier such that, if presented with fresh unlabeled data points from
the same data source, the classifier would typically agree with the label
the expert would produce if he or she were (hypothetically) asked. We
are especially interested in algorithms that can achieve this objective
without requesting too many labels from the expert. In this regard,
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the active learning protocol enables us to design more powerful learn-
ing methods compared to the traditional model of supervised learning
(including semi-supervised learning), here referred to as passive learn-
ing, in which the data points to be labeled by the expert are effectively
selected at random from the pool. Indeed, the driving question in the
study of active learning is how many fewer labels are sufficient for an
active learning algorithm to achieve a given accuracy, compared to the
number of labels necessary for a passive learning algorithm to achieve
the same.

The motivation for active learning is that, in many machine learning
problems, unlabeled data are quite inexpensive to obtain in abundance,
while labels require a more time-consuming or resource-intensive effort
to obtain. For instance, consider the problem of webpage classification:
say, classifying a webpage as being about “news” or not. A basic web
crawler can very quickly collect millions of web pages, which can serve
as the unlabeled pool for this learning problem. In contrast, obtaining
labels typically requires a human to read the text on these pages to
determine whether it is a news article or not. Thus, the time-bottleneck
in the data-gathering process is the time spent by the human labeler.
It is therefore desirable to minimize the number of labels required to
obtain an accurate classifier. Active learning is a natural approach to
doing so, since we might hope to reduce the amount of redundancy
in the labels provided by the expert by only asking for labels that we
expect to be, in some sense, quite informative, given the labels already
provided up to that time.

1.1 Why Do We Need a Theory of Active Learning?

The potential for active learning to achieve accuracies comparable to
passive learning using fewer labels has been observed in many prac-
tical applications over the past several decades. However, intermixed
with these shining positive outcomes has been an equally-vast array of
applications for which these same active learning methods failed to pro-
vide any benefits; some of these algorithms have even been observed to
perform worse than their passive learning counterparts in certain appli-
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cation domains. How should we interpret these negative outcomes? Is
the active learning protocol fundamentally unable to provide any ben-
efits in these application domains, or might these observations simply
reflect the need to develop smarter active learning algorithms? Ques-
tions such as these beg for a theoretical treatment. More abstractly,
we are asking what kind of performance we should expect from a well-
designed active learning algorithm, so that we may evaluate whether
a given method meets this standard. Is it reasonable to expect an al-
gorithm to always provide improvements over passive learning, or will
there be some applications where no active learning strategy can out-
perform a given passive learning strategy? In the scenarios where active
learning is potentially beneficial, how many fewer labels should we ex-
pect a well-designed active learning algorithm to require for obtaining
a given accuracy? Attempts to answer these questions naturally lead us
to a deeper understanding of the general principles that should underly
well-designed active learning algorithms, so that the result of such an
investigation is both a better understanding of the fundamental ca-
pabilities of active learning, and insights that can guide the design of
practical active learning algorithms.

A second motivation for developing a theory of active learning is
that, as will hopefully be apparent in the presentation below, many
wonderfully beautiful and elegant mathematical concepts and theo-
rems arise quite naturally out of the active learning formalism. We are
incredibly lucky that such a natural framework for interactive machine
learning can be studied in such generality, with many general properties
concisely characterized by such simple mathematical constructions. For
reasons such as these, the exploration of this fascinating mathematical
landscape has become a source of satisfaction and joy for many in the
growing community of active learning researchers.

1.2 What is Covered in This Article?

This article includes some of the recent advances in the theory of ac-
tive learning, focusing on characterizing the number of label requests
sufficient for an active learning algorithm to achieve a given accuracy;
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this number is known as the label complexity. As our interest in ac-
tive learning is in its ability to reduce the label complexity compared
to passive learning, we will also review some of the known results for
passive learning, so as to establish a baseline for comparison.

Throughout much of the article, we will focus on one particular
active learning technique, known as disagreement-based active learn-
ing. The reason for this choice is that the literature on disagreement-
based active learning represents a fairly coherent, elegant, and mature
thread in the broader active learning literature, and is now quite well-
understood, with a rich variety of established results. It provides us a
unified approach to active learning, which can be applied with essen-
tially any classifier representation, can be studied under a variety of
noise models, and composes well with standard relaxations that enable
computational efficiency (namely, the use of surrogate losses). The es-
tablished results bounding the label complexity of this technique are
concise, easy to comprehend, and often fairly tight (in the sense that
the algorithm actually requires nearly that many labels).

However, it is known that disagreement-based active learning is
sometimes not optimal. For this reason, we additionally discuss sev-
eral alternative techniques, most of which are more involved and less
understood, but which are known to sometimes yield smaller label com-
plexities than disagreement-based methods. As the literature on these
other techniques is less developed, our discussion of each of them will
necessarily be somewhat brief; however, some of these approaches rep-
resent important directions for investigation, and further development
of these techniques would undoubtedly be of great value.

The basic outline of the article is as follows. Chapter [2| introduces
the formal setting, some basic notation, and essential definitions, along
with a few basic examples illustrating the fundamental concepts, style
of analysis, and typical results. Chapter [3] briefly surveys the known
results on the label complexity of passive learning, which serve as a
baseline for comparison throughout. Chapter [4 describes several known
lower bounds on the label complexity of active learning, which pro-
vide an additional point of comparison, particularly in discussions
of optimality. Chapter [ introduces the basic idea of disagreement-
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based active learning, along with a thorough analysis of the technique
for the simple scenario of noise-free learning (the so-called realizable
case). This is followed by a description of a noise-robust variant of
the disagreement-based learning strategy, and an analysis of its label
complexity under various commonly-studied noise conditions. In Chap-
ter[6, we discuss a simple trick, involving the use of a convex relaxation
of the loss function, which can make the previously-discussed algo-
rithm computationally efficient, while still allowing us to provide formal
guarantees on its label complexity under certain restricted conditions.
The results concerning the label complexity of disagreement-based ac-
tive learning are expressed in terms of a simple quantity, known as
the disagreement coefficient. Chapter [7] is dedicated to describing the
known properties of the disagreement coefficient, including sufficient
conditions for it to obtain favorable values, and several specific learn-
ing problems for which the value of the disagreement coefficient has
been calculated. Finally, Chapter [§ briefly surveys several of the other
threads from the literature on the theory of active learning. It is worth
mentioning that the dependences among several of these chapters are
rather weak. In particular, most of the discussion of bounds on the dis-
agreement coefficient in Chapter[7]can be read anytime after Chapter 2]
Additionally, the discussion of surrogate losses in Chapter[6] can be con-
sidered largely optional in the sequence, and may be skipped without
significant loss of continuity (aside from dependences in Section [8.8).
Much of the article is structured around a few algorithms, empha-
sizing several theorems concerning their respective label complexities,
along with a variety of results on the relevant quantities those results
are expressed in terms of. Where appropriate, I have accompanied these
results with rigorous proofs. However, as this discussion is intended
to be pedagogical, in many cases I have refrained from presenting the
strongest or most general form of the results from the literature, instead
choosing a form that clearly illustrates the fundamental ideas without
requiring too many additional complications; the article includes nu-
merous references to the literature where the interested reader can find
the stronger or more general forms of the results. I have also attempted
to provide high-level reasoning for each of the main results, so that ca-
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sual readers can grasp the core ideas motivating the algorithms and
leading to the formal theorems, without needing to wade through the
details needed to convert the ideas into a formal proof. The technical
content of this article is intended to be suitable for researchers and
advanced graduate students in statistics or machine learning, familiar
with the basics of probability theory and statistical learning theory at
the level of an introductory graduate course.

Remark The present article is an abbreviated version of a longer
manuscript |[Hanneke, 2014], which can be downloaded from the au-
thor’s website. Some of the additional material in the extended version
is referenced in the chapters below. Additionally, the long version may
be updated from time to time as this field continues to develop.

1.3 Conceptual Themes

Before beginning the technical discussion, we first briefly illustrate some
of the main concepts that arise below. Readers completely unfamiliar
with active learning may also find the brief survey of Dasgupta, [2011]
helpful, as it provides a concise and lucid description of the main
themes, without getting into as much technical detail as the present
article.

As mentioned, the focus of much of this article is on the strategy
of disagreement-based active learning, an elegant and general idea in-
troduced in the seminal work of |Cohn, Atlas, and Ladner| [1994]. To
illustrate this idea, consider the problem of learning a linear separator
in the 2-dimensional plane: that is, the label of each point is “+” if the
point is on one side of a particular (unknown) line, called the target
separator, and is “—” if the point is on the other side. Suppose, at some
time, we have observed a few labeled data points, as in Figure
We know the target separator is some line that separates all of the
“4+” points from the “—” points; a few such lines are depicted in Fig-
ure [1.1b] (in truth, there are an infinite number of possibilities). If we
are then given a new unlabeled point, such as the one marked “o” in
Figure the question is whether or not we should request its label.
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+ - - + -
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(a) (b) (c)
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+ 1 : + 1 _ + 1 o
. . +
+ - + A + \
+ + +
+ - + - + -
(d) (e) (f)

Figure 1.1: An illustration of the concepts involved in disagreement-based active
learning, in the context of learning a linear separator in 2 dimensions.

In this particular case, note that all of the lines separating the observed
“4+” points from the observed “—” points have this new point on the
“—7 gide of the line. Since we know the target separator is among these
lines, we can conclude that the correct label of this new point is
The important detail here is that we did not need to observe the correct
label in order to deduce its value.

w_»

On the other hand, what if instead we are given the unlabeled
point depicted in Figure [[.Id? In this case, there is some line that
correctly separates the other points while including this new point on
the “—” side, and there is another line that correctly separates the
other points while including this new point on the “+” side. So we
are unable to deduce the correct label of this point based only on the
information already available. The disagreement-based active learning
strategy is characterized by the fact that it will request the value of
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the label (from the expert/oracle) whenever (and only whenever) this
is the case. Indeed, for this data set, the disagreement-based strategy
would make a label request when presented with any unlabeled point
in the shaded region in Figure[I.1e¢} namely, the set of points such that
there is some disagreement among the separators consistent with the
observed labels. This set is referred to as the region of disagreement
(or region of uncertainty).

Since the disagreement-based active learning strategy requests the
label of a sample only if it is in the region of disagreement, the analysis
of the label complexity of this strategy hinges on understanding the
probability a new sample will be inside the region of disagreement. In
particular, we will be interested in how this probability behaves as a
function of the number of observed data points. The good news is that
often (though not always) this probability decreases as the data set
grows. For instance, suppose, in response to our request, we are told
that the label of the new point in Figure [[.1d]is “+”. If we then add
this point to the data set, the new region of disagreement becomes the
shaded region in Figure [[.1f] which is a significant reduction compared
to the region in Figure m (e.g., under a uniform probability measure
within the figure). In the next chapter, we will introduce a quantity
called the disagreement coefficient, which helps us to characterize the
rate of decrease of the probability of getting a point in the region of
disagreement.

One of the most remarkable facts about this idea is that it is fully
general, in the sense that the exact same principle can be used in
combination with any type of classifier. For instance, consider instead
the problem of learning an axis-aligned rectangle in the 2-dimensional
plane: that is, the label of each point is “+” if the point is contained
inside an (unknown) rectangle [a1, b1] X [ag, b2] in the plane, and is “—”
if the point is outside this rectangle. Suppose we have obtained a data
set as depicted in Figure A few of the rectangles consistent with
these labels are depicted in Figure m (again, there are in fact an
infinite number of consistent rectangles). The region of disagreement
is then depicted as the shaded region in Figure Thus, if we are
given a new sample outside this shaded region, we can deduce its la-
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(d) (e) (f)

Figure 1.2: The same core idea of disagreement-based active learning can be applied
with any type of classifier. Here we illustrate these concepts in the context of learning
an axis-aligned rectangle in 2 dimensions.

bel without requesting its value; in the interior unshaded region, the
deduced label would be “+”, while in the exterior unshaded region,
the deduced label would be “—”". Again, the disagreement-based active
learning strategy would request the label of a new point if and only if
it is inside the shaded region. As before, given the requested label of
a point in the shaded region, adding this labeled point to the data set
would cause a reduction in the region of disagreement. For instance,
for the new point marked “o” in Figure [I.2d] if we are told the correct
label is “+”, upon adding this point to the data set, the new region of
disagreement would be the shaded region depicted in Figure on
the other hand, if we are told the correct label is “—”, the new region
of disagreement would be the shaded region depicted in Figure [I.2}
In both of the scenarios described above, requesting the labels of



Full text available at: http://dx.doi.org/10.1561/2200000037

1.3. Conceptual Themes 11
B I
S _DH
_ - - -
(a) (b) (c)

Figure 1.3: In the context of learning an axis-aligned rectangle, if all of the ob-
served labels are “—”, every point not in the data set is contained in the region of
disagreement.

points in the region of disagreement resulted in a significant decrease
in the region of disagreement. These would be considered favorable
scenarios for disagreement-based active learning. However, we are not
always so fortunate. For instance, consider again the scenario where
a point is labeled “+4” iff it is contained inside an unknown rectangle
[a1,b1] X [ag,be] in the plane, but this time suppose the data set ob-
served so far is as depicted in Figure [[.3a] Note that all of the points
in this data set are labeled “—7”. In this case, every rectangle that does
not contain any of these data points would be consistent with their
labels; a few such rectangles are depicted in Figure It should be
clear that this is a very different kind of scenario from the prevous two.
In particular, for every point (z1,z2) in the plane that is not among
the few observed samples, the rectangle [x1, 1] X [z2,22] containing
only this point is consistent with all of the observed labels. Since this
is true of every point not among the observed samples, the region of
disagreement is the entire space, minus the few points in the data set;
this is represented by the shaded region in Figure Thus, if we
are given a new point that is not equal to one we have already ob-
served the label of, the disagreement-based strategy will request its
label. If, in response, we are told that the label is “—”, then the region
of disagreement is reduced by only this single point. In particular, if
the probability distribution is non-atomic, then no matter how many
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” we observe, the probability in the region of dis-

samples labeled “—
agreement will always equal 1, and therefore does not decrease. Thus, if
the unknown target rectangle has zero probability inside, then this sit-
uation will continue indefinitely (with probability 1), requesting every
label and never reducing the probability in the region of disagreement.

The distinction raised by contrasting these two kinds of scenarios
is fundamental to the active learning problem. In the chapters below,
we will be highly interested in discussions of general conditions that
distinguish between problems where the probability in the region of
disagreement decreases (and approaches zero) and those where it does
not. In the former case, we will be further interested in understanding
the rates of decrease. With this understanding in hand, we are then able
to describe the label complexities achieved by certain disagreement-
based active learning algorithms abstractly. Various specific scenarios,
such as those described above, can then be studied straightforwardly
as special cases of the general analysis.
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