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Abstract

Submodular functions are relevant to machine learning for at least two
reasons: (1) some problems may be expressed directly as the optimiza-
tion of submodular functions and (2) the Lovász extension of submod-
ular functions provides a useful set of regularization functions for su-
pervised and unsupervised learning. In this monograph, we present the
theory of submodular functions from a convex analysis perspective,
presenting tight links between certain polyhedra, combinatorial opti-
mization and convex optimization problems. In particular, we show how
submodular function minimization is equivalent to solving a wide vari-
ety of convex optimization problems. This allows the derivation of new
efficient algorithms for approximate and exact submodular function
minimization with theoretical guarantees and good practical perfor-
mance. By listing many examples of submodular functions, we review
various applications to machine learning, such as clustering, experi-
mental design, sensor placement, graphical model structure learning
or subset selection, as well as a family of structured sparsity-inducing
norms that can be derived and used from submodular functions.

F. Bach. Learning with Submodular Functions: A Convex Optimization Perspective.
Foundations and Trends R© in Machine Learning, vol. 6, no. 2-3, pp. 145–373, 2013.

DOI: 10.1561/2200000039.
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1

Introduction

Many combinatorial optimization problems may be cast as the min-
imization of a set-function, that is a function defined on the set of
subsets of a given base set V . Equivalently, they may be defined as
functions on the vertices of the hyper-cube, i.e, {0, 1}p where p is
the cardinality of the base set V—they are then often referred to as
pseudo-boolean functions [27]. Among these set-functions, submodular
functions play an important role, similar to convex functions on vector
spaces, as many functions that occur in practical problems turn out
to be submodular functions or slight modifications thereof, with ap-
plications in many areas areas of computer science and applied math-
ematics, such as machine learning [125, 154, 117, 124], computer vi-
sion [31, 97], operations research [99, 179], electrical networks [159]
or economics [200]. Since submodular functions may be minimized ex-
actly, and maximized approximately with some guarantees, in polyno-
mial time, they readily lead to efficient algorithms for all the numerous
problems they apply to. They also appear in several areas of theoretical
computer science, such as matroid theory [186].

However, the interest for submodular functions is not limited to dis-
crete optimization problems. Indeed, the rich structure of submodular

2
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3

functions and their link with convex analysis through the Lovász exten-
sion [134] and the various associated polytopes makes them particularly
adapted to problems beyond combinatorial optimization, namely as
regularizers in signal processing and machine learning problems [38, 7].
Indeed, many continuous optimization problems exhibit an underlying
discrete structure (e.g., based on chains, trees or more general graphs),
and submodular functions provide an efficient and versatile tool to cap-
ture such combinatorial structures.

In this monograph, the theory of submodular functions is presented
in a self-contained way, with all results proved from first principles
of convex analysis common in machine learning, rather than relying
on combinatorial optimization and traditional theoretical computer
science concepts such as matroids or flows (see, e.g., [72] for a ref-
erence book on such approaches). Moreover, the algorithms that we
present are based on traditional convex optimization algorithms such
as the simplex method for linear programming, active set method for
quadratic programming, ellipsoid method, cutting planes, and condi-
tional gradient. These will be presented in details, in particular in the
context of submodular function minimization and its various continu-
ous extensions. A good knowledge of convex analysis is assumed (see,
e.g., [30, 28]) and a short review of important concepts is presented in
Appendix A—for more details, see, e.g., [96, 30, 28, 182].

Monograph outline. The monograph is organized in several chapters,
which are summarized below (in the table of contents, sections that can
be skipped in a first reading are marked with a star∗):

– Definitions: In Chapter 2, we give the different definitions of sub-
modular functions and of the associated polyhedra, in particular,
the base polyhedron and the submodular polyhedron. They are cru-
cial in submodular analysis as many algorithms and models may be
expressed naturally using these polyhedra.

– Lovász extension: In Chapter 3, we define the Lovász extension as
an extension from a function defined on {0, 1}p to a function defined
on [0, 1]p (and then R

p), and give its main properties. In particular

Full text available at: http://dx.doi.org/10.1561/2200000039



4 Introduction

we present key results in submodular analysis: the Lovász extension
is convex if and only if the set-function is submodular; moreover,
minimizing the submodular set-function F is equivalent to minimiz-
ing the Lovász extension on [0, 1]p. This implies notably that sub-
modular function minimization may be solved in polynomial time.
Finally, the link between the Lovász extension and the submodular
polyhedra through the so-called “greedy algorithm” is established:
the Lovász extension is the support function of the base polyhedron
and may be computed in closed form.

– Polyhedra: Associated polyhedra are further studied in Chapter 4,
where support functions and the associated maximizers of linear
functions are computed. We also detail the facial structure of such
polyhedra, which will be useful when related to the sparsity-inducing
properties of the Lovász extension in Chapter 5.

– Convex relaxation of submodular penalties: While submodu-
lar functions may be used directly (for minimization of maximization
of set-functions), we show in Chapter 5 how they may be used to pe-
nalize supports or level sets of vectors. The resulting mixed combi-
natorial/continuous optimization problems may be naturally relaxed
into convex optimization problems using the Lovász extension.

– Examples: In Chapter 6, we present classical examples of submodu-
lar functions, together with several applications in machine learning,
in particular, cuts, set covers, network flows, entropies, spectral func-
tions and matroids.

– Non-smooth convex optimization: In Chapter 7, we review
classical iterative algorithms adapted to the minimization of non-
smooth polyhedral functions, such as subgradient, ellipsoid, simpli-
cial, cutting-planes, active-set, and conditional gradient methods. A
particular attention is put on providing when applicable primal/dual
interpretations of these algorithms.

– Separable optimization - Analysis: In Chapter 8, we consider
separable optimization problems regularized by the Lovász extension
w 7→ f(w), i.e., problems of the form minw∈Rp

∑
k∈V ψk(wk) + f(w),

Full text available at: http://dx.doi.org/10.1561/2200000039



5

and show how this is equivalent to a sequence of submodular function
minimization problems. This is a key theoretical link between com-
binatorial and convex optimization problems related to submodular
functions, that will be used in later chapters.

– Separable optimization - Algorithms: In Chapter 9, we present
two sets of algorithms for separable optimization problems. The first
algorithm is an exact algorithm which relies on the availability of
an efficient submodular function minimization algorithm, while the
second set of algorithms are based on existing iterative algorithms
for convex optimization, some of which come with online and offline
theoretical guarantees. We consider active-set methods (“min-norm-
point” algorithm) and conditional gradient methods.

– Submodular function minimization: In Chapter 10, we present
various approaches to submodular function minimization. We
present briefly the combinatorial algorithms for exact submodular
function minimization, and focus in more depth on the use of spe-
cific convex optimization problems, which can be solved iteratively to
obtain approximate or exact solutions for submodular function min-
imization, with sometimes theoretical guarantees and approximate
optimality certificates. We consider the subgradient method, the el-
lipsoid method, the simplex algorithm and analytic center cutting
planes. We also show how the separable optimization problems from
Chapters 8 and 9 may be used for submodular function minimiza-
tion. These methods are then empirically compared in Chapter 12.

– Submodular optimization problems: In Chapter 11, we present
other combinatorial optimization problems which can be partially
solved using submodular analysis, such as submodular function max-
imization and the optimization of differences of submodular func-
tions, and relate these to non-convex optimization problems on the
submodular polyhedra. While these problems typically cannot be
solved in polynomial time, many algorithms come with approxima-
tion guarantees based on submodularity.

– Experiments: In Chapter 12, we provide illustrations of the opti-
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6 Introduction

mization algorithms described earlier, for submodular function min-
imization, as well as for convex optimization problems (separable or
not). The Matlab code for all these experiments may be found at
http://www.di.ens.fr/~fbach/submodular/.

In Appendix A, we review relevant notions from convex analysis
(such as Fenchel duality, dual norms, gauge functions, and polar sets),
while in Appendix B, we present in details operations that preserve
submodularity.

Several books and monograph articles already exist on the same
topic and the material presented in this monograph rely on those [72,
159]. However, in order to present the material in the simplest way,
ideas from related research papers have also been used, and a stronger
emphasis is put on convex analysis and optimization.

Notations. We consider the set V = {1, . . . , p}, and its power set 2V ,
composed of the 2p subsets of V . Given a vector s ∈ R

p, s also denotes
the modular set-function defined as s(A) =

∑
k∈A sk. Moreover, A ⊆ B

means that A is a subset of B, potentially equal to B. We denote by
|A| the cardinality of the set A, and, for A ⊆ V = {1, . . . , p}, 1A ∈ R

p

denotes the indicator vector of the set A. If w ∈ R
p, and α ∈ R, then

{w > α} (resp. {w > α}) denotes the subset of V = {1, . . . , p} defined
as {k ∈ V, wk > α} (resp. {k ∈ V, wk > α}), which we refer to as
the weak (resp. strong) α-sup-level sets of w. Similarly if v ∈ R

p, we
denote {w > v} = {k ∈ V, wk > vk}.

For q ∈ [1,+∞], we denote by ‖w‖q the ℓq-norm of w, defined as

‖w‖q =
(∑

k∈V |wk|q
)1/q for q ∈ [1,∞) and ‖w‖∞ = maxk∈V |wk|.

Finally, we denote by R+ the set of non-negative real numbers, by R
∗

the set of non-zero real numbers, and by R
∗
+ the set of strictly positive

real numbers.
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