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Abstract

A Markov Decision Process (MDP) is a natural framework for formulating
sequential decision-making problems under uncertainty. In recent years, re-
searchers have greatly advanced algorithms for learning and acting in MDPs.
This article reviews such algorithms, beginning with well-known dynamic
programming methods for solving MDPs such as policy iteration and value
iteration, then describes approximate dynamic programming methods such as
trajectory based value iteration, and finally moves to reinforcement learning
methods such as Q-Learning, SARSA, and least-squares policy iteration. We
describe algorithms in a unified framework, giving pseudocode together with
memory and iteration complexity analysis for each. Empirical evaluations of
these techniques with four representations across four domains, provide in-
sight into how these algorithms perform with various feature sets in terms of
running time and performance.

A. Geramifard, T. J. Walsh, S. Tellex, G. Chowdhary, N. Roy, and J. P. How. A Tutorial on
Linear Function Approximators for Dynamic Programming and Reinforcement Learning.
Foundations and Trends® in Machine Learning, vol. 6, no. 4, pp. 375-451, 2013.

DOI: 10.1561/2200000042.
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1

Introduction

Designing agents to act near-optimally in stochastic sequential domains is
a challenging problem that has been studied in a variety of settings. When
the domain is known, analytical techniques such as dynamic programming
(DP) [Bellman, [1957]] are often used to find optimal policies for the agent.
When the domain is initially unknown, reinforcement learning (RL) [Sutton
and Bartol |1998]] is a popular technique for training agents to act optimally
based on their experiences in the world. However, in much of the literature
on these topics, small-scale environments were used to verify solutions. For
example the famous taxi problem has only 500 states [[Dietterich, |2000]]. This
contrasts with recent success stories in domains previously considered unas-
sailable, such as 9x 9 Go [Silver et al., 2012]], a game with approximately 1038
states. An important factor in creating solutions for such large-scale problems
is the use of linear function approximation [Sutton, 1996, Silver et al., 2012,
Geramifard et al., [2011]]. This approximation technique allows the long-term
utility (value) of policies to be represented in a low-dimensional form, dra-
matically decreasing the number of parameters that need to be learned or
stored. This tutorial provides practical guidance for researchers seeking to
extend DP and RL techniques to larger domains through linear value func-
tion approximation. We introduce DP and RL techniques in a unified frame-
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work and conduct experiments in domains with sizes up to ~ 150 million
state-action pairs.

Sequential decision making problems with full observability of the states
are often cast as Markov Decision Processes (MDPs) [Putermanl, [1994]]. An
MDP consists of a set of states, set of actions available to an agent, rewards
earned in each state, and a model for transitioning to a new state given the
current state and the action taken by the agent. Ignoring computational limita-
tions, an agent with full knowledge of the MDP can compute an optimal pol-
icy that maximizes some function of its expected cumulative reward (which
is often referred to as the expected return [Sutton and Bartol [1998]]). This
process is known as planning. In the case where the MDP is unknown, re-
inforcement learning agents learn to take optimal actions over time merely
based on interacting with the world.

A central component for many algorithms that plan or learn to act in an
MDP is a value function, which captures the long term expected return of a
policy for every possible state. The construction of a value function is one of
the few common components shared by many planners and the many forms of
so-called value-based RL methodsﬂ In the planning context, where the under-
lying MDP is known to the agent, the value of a state can be expressed recur-
sively based on the value of successor states, enabling dynamic programming
algorithms [Bellman, [1957] to iteratively estimate the value function. If the
underlying model is unknown, value-based reinforcement learning methods
estimate the value function based on observed state transitions and rewards.
However, in either case, maintaining and manipulating the value of every state
(i.e., a tabular representation) is not feasible in large or continuous domains.
In order to tackle practical problems with such large state-action spaces, a
value function representation is needed that 1) does not require computation
or memory proportional to the size of the number of states, and 2) general-
izes learned values from data across states (i.e., each new piece of data may
change the value of more than one state).

One approach that satisfies these goals is to use linear function approx-
imation to estimate the value function. Specifically, the full set of states is

!There are other MDP solving techniques not covered here (such as direct policy search)
that do not directly estimate a value function and have been used successfully in many ap-
plications, including robotics [Williams), [1992] [Sutton et al.| 2000} |Peters and Schaall 2006,
Baxter and Bartlett, |2000].
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4 Introduction

projected into a lower dimensional space where the value function is repre-
sented as a linear function. This representational technique has succeeded at
finding good policies for problems with high dimensional state-spaces such
as simulated soccer [Stone et al., [2005b]] and Go [Silver et al., [2012]]. This
tutorial reviews the use of linear function approximation algorithms for de-
cision making under uncertainty in DP and RL algorithms. We begin with
classical DP methods for exact planning in decision problems, such as policy
iteration and value iteration. Next, we describe approximate dynamic pro-
gramming methods with linear value function approximation and “trajectory
based” evaluations for practical planning in large state spaces. Finally, in the
RL setting, we discuss learning algorithms that can utilize linear function
approximation, namely: SARSA, Q-learning, and Least-Squares policy itera-
tion. Throughout, we highlight the trade-offs between computation, memory
complexity, and accuracy that underlie algorithms in these families.

In Chapter 3, we provide a more concrete overview of practical linear
function approximation from the literature and discuss several methods for
creating linear bases. We then give a thorough empirical comparison of the
various algorithms described in the theoretical section paired with each of
these representations. The algorithms are evaluated in multiple domains, sev-
eral of which have state spaces that render tabular representations intractable.
For instance, one of the domains we examine, Persistent Search and Track
(PST), involves control of multiple unmanned aerial vehicles in a complex
environment. The large number of properties for each robot (fuel level, loca-
tion, etc.) leads to over 150 million state-action pairs. We show that the linear
function approximation techniques described in this tutorial provide tractable
solutions for this otherwise unwieldy domain. For our experiments, we used
the RLPy framework [Geramifard et al., 2013a] which allows the reproduc-
tion of our empirical results.

There are many existing textbooks and reviews of reinforcement learn-
ing [Bertsekas and Tsitsiklis), (1996 [Szepesvari, 2010} Busoniu et al., 2010,
Gosavi, 2009, [Kaelbling et al., (1996, [Sutton and Bartol [1998]]. This tutorial
differentiates itself by providing a narrower focus on the use of linear value
function approximation and introducing many DP and RL techniques in a
unified framework, where each algorithm is derived from the general concept
of policy evaluation/improvement (shown in Figure 2.1). Also, our extensive
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empirical evaluation covers a wider range of domains, representations, and
algorithms than previous studies. The lessons from these experiments pro-
vide a guide to practitioners as they apply DP and RL methods to their own
large-scale (and perhaps hitherto intractable) domains.
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