
Proximal Algorithms

Neal Parikh
Department of Computer Science

Stanford University

npparikh@cs.stanford.edu

Stephen Boyd
Department of Electrical Engineering

Stanford University

boyd@stanford.edu

Boston — Delft

Full text available at: http://dx.doi.org/10.1561/2400000003



Foundations and Trends R© in Optimization

Published, sold and distributed by:

now Publishers Inc.
PO Box 1024
Hanover, MA 02339
United States
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:

now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

The preferred citation for this publication is

N. Parikh and S. Boyd. Proximal Algorithms. Foundations and Trends R© in
Optimization, vol. 1, no. 3, pp. 127–239, 2014.

This Foundations and Trends R© issue was typeset in LATEX using a class file designed

by Neal Parikh. Printed on acid-free paper.

ISBN: 978-1-60198-717-4
c© 2014 N. Parikh and S. Boyd

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, mechanical, photocopying, recording
or otherwise, without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Cen-
ter, Inc., 222 Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for
internal or personal use, or the internal or personal use of specific clients, is granted by
now Publishers Inc for users registered with the Copyright Clearance Center (CCC). The
‘services’ for users can be found on the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system
of payment has been arranged. Authorization does not extend to other kinds of copy-
ing, such as that for general distribution, for advertising or promotional purposes, for
creating new collective works, or for resale. In the rest of the world: Permission to pho-
tocopy must be obtained from the copyright owner. Please apply to now Publishers Inc.,
PO Box 1024, Hanover, MA 02339, USA; Tel. +1 781 871 0245; www.nowpublishers.com;
sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to
now Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com;
e-mail: sales@nowpublishers.com

Full text available at: http://dx.doi.org/10.1561/2400000003



Foundations and Trends R© in Optimization

Volume 1, Issue 3, 2014

Editorial Board

Editors-in-Chief

Stephen Boyd

Stanford University
United States

Yinyu Ye

Stanford University
United States

Editors

Dimitris Bertsimas
Massachusetts Institute of Technology

John R. Birge
University of Chicago

Robert E. Bixby
Rice University

Emmanuel Candès
Stanford University

David Donoho
Stanford University

Laurent El Ghaoui
University of California, Berkeley

Donald Goldfarb
Columbia University

Michael I. Jordan
University of California, Berkeley

Zhi-Quan (Tom) Luo
University of Minnesota, Twin Cites

George L. Nemhauser
Georgia Institute of Technology

Arkadi Nemirovski
Georgia Institute of Technology

Yurii Nesterov
UC Louvain

Jorge Nocedal
Northwestern University

Pablo A. Parrilo
Massachusetts Institute of Technology

Roman Polyak
George Mason University

Tamás Terlaky
Lehigh University

Michael J. Todd
Cornell University

Kim-Chuan Toh
National University of Singapore

John N. Tsitsiklis
Massachusetts Institute of Technology

Lieven Vandenberghe
University of California, Los Angeles

Robert J. Vanderbei
Princeton University

Stephen J. Wright
University of Wisconsin

Full text available at: http://dx.doi.org/10.1561/2400000003



Editorial Scope

Topics

Foundations and Trends R© in Optimization publishes survey and tuto-
rial articles on methods for and applications of mathematical optimiza-
tion, including the following topics:

• Algorithm design, analysis, and implementation (especially on modern
computing platforms)

• Models and modeling systems

• New optimization formulations for practical problems

• Applications of optimization in:

– Machine learning
– Statistics
– Data analysis
– Signal and image processing
– Computational economics and finance
– Engineering design
– Scheduling and resource allocation
– and other areas

Information for Librarians

Foundations and Trends R© in Optimization, 2013, Volume XX, 4 issues. ISSN
paper version 2167-3888. ISSN online version 2167-3918. Also available as a
combined paper and online subscription.

Full text available at: http://dx.doi.org/10.1561/2400000003



Foundations and Trends R© in Optimization
Vol. 1, No. 3 (2014) 127–239
c© 2014 N. Parikh and S. Boyd

DOI: 10.1561/2400000003

Proximal Algorithms

Neal Parikh
Department of Computer Science

Stanford University
npparikh@cs.stanford.edu

Stephen Boyd
Department of Electrical Engineering

Stanford University
boyd@stanford.edu

Full text available at: http://dx.doi.org/10.1561/2400000003



Contents

1 Introduction 2

1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Interpretations . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Proximal algorithms . . . . . . . . . . . . . . . . . . . . . 5

1.4 What this paper is about . . . . . . . . . . . . . . . . . . 6

1.5 Related work . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.6 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Properties 8

2.1 Separable sum . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Basic operations . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Fixed points . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Proximal average . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Moreau decomposition . . . . . . . . . . . . . . . . . . . 12

3 Interpretations 14

3.1 Moreau-Yosida regularization . . . . . . . . . . . . . . . . 14

3.2 Resolvent of subdifferential operator . . . . . . . . . . . . 16

3.3 Modified gradient step . . . . . . . . . . . . . . . . . . . 17

3.4 Trust region problem . . . . . . . . . . . . . . . . . . . . 18

3.5 Notes and references . . . . . . . . . . . . . . . . . . . . 19

ii

Full text available at: http://dx.doi.org/10.1561/2400000003



iii

4 Proximal Algorithms 21

4.1 Proximal minimization . . . . . . . . . . . . . . . . . . . . 21

4.2 Proximal gradient method . . . . . . . . . . . . . . . . . . 27

4.3 Accelerated proximal gradient method . . . . . . . . . . . 31

4.4 Alternating direction method of multipliers . . . . . . . . . 32

4.5 Notes and references . . . . . . . . . . . . . . . . . . . . 38

5 Parallel and Distributed Algorithms 40

5.1 Problem structure . . . . . . . . . . . . . . . . . . . . . . 40

5.2 Consensus . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.3 Exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.4 Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.5 Notes and references . . . . . . . . . . . . . . . . . . . . 50

6 Evaluating Proximal Operators 51

6.1 Generic methods . . . . . . . . . . . . . . . . . . . . . . . 52

6.2 Polyhedra . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.3 Cones . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.4 Pointwise maximum and supremum . . . . . . . . . . . . . 64

6.5 Norms and norm balls . . . . . . . . . . . . . . . . . . . . 66

6.6 Sublevel set and epigraph . . . . . . . . . . . . . . . . . . 69

6.7 Matrix functions . . . . . . . . . . . . . . . . . . . . . . . 70

6.8 Notes and references . . . . . . . . . . . . . . . . . . . . 74

7 Examples and Applications 75

7.1 Lasso . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.2 Matrix decomposition . . . . . . . . . . . . . . . . . . . . 79

7.3 Multi-period portfolio optimization . . . . . . . . . . . . . 83

7.4 Stochastic optimization . . . . . . . . . . . . . . . . . . . 88

7.5 Robust and risk-averse optimization . . . . . . . . . . . . 89

7.6 Stochastic control . . . . . . . . . . . . . . . . . . . . . . 90

8 Conclusions 95

References 98

Full text available at: http://dx.doi.org/10.1561/2400000003



Abstract

This monograph is about a class of optimization algorithms called prox-

imal algorithms. Much like Newton’s method is a standard tool for solv-

ing unconstrained smooth optimization problems of modest size, proxi-

mal algorithms can be viewed as an analogous tool for nonsmooth, con-

strained, large-scale, or distributed versions of these problems. They are

very generally applicable, but are especially well-suited to problems of

substantial recent interest involving large or high-dimensional datasets.

Proximal methods sit at a higher level of abstraction than classical al-

gorithms like Newton’s method: the base operation is evaluating the

proximal operator of a function, which itself involves solving a small

convex optimization problem. These subproblems, which generalize the

problem of projecting a point onto a convex set, often admit closed-

form solutions or can be solved very quickly with standard or simple

specialized methods. Here, we discuss the many different interpreta-

tions of proximal operators and algorithms, describe their connections

to many other topics in optimization and applied mathematics, survey

some popular algorithms, and provide a large number of examples of

proximal operators that commonly arise in practice.

N. Parikh and S. Boyd. Proximal Algorithms. Foundations and Trends R© in
Optimization, vol. 1, no. 3, pp. 127–239, 2014.

DOI: 10.1561/2400000003.
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1

Introduction

This monograph is about a class of algorithms, called proximal algo-

rithms, for solving convex optimization problems. Much like Newton’s

method is a standard tool for solving unconstrained smooth minimiza-

tion problems of modest size, proximal algorithms can be viewed as an

analogous tool for nonsmooth, constrained, large-scale, or distributed

versions of these problems. They are very generally applicable, but

they turn out to be especially well-suited to problems of recent and

widespread interest involving large or high-dimensional datasets.

Proximal methods sit at a higher level of abstraction than classical

optimization algorithms like Newton’s method. In the latter, the base

operations are low-level, consisting of linear algebra operations and the

computation of gradients and Hessians. In proximal algorithms, the

base operation is evaluating the proximal operator of a function, which

involves solving a small convex optimization problem. These subprob-

lems can be solved with standard methods, but they often admit closed-

form solutions or can be solved very quickly with simple specialized

methods. We will also see that proximal operators and proximal algo-

rithms have a number of interesting interpretations and are connected

to many different topics in optimization and applied mathematics.

2
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1.1 Definition

Let f : Rn → R ∪ {+∞} be a closed proper convex function, which

means that its epigraph

epi f = {(x, t) ∈ Rn ×R | f(x) ≤ t}
is a nonempty closed convex set. The effective domain of f is

dom f = {x ∈ Rn | f(x) < +∞},
i.e., the set of points for which f takes on finite values.

The proximal operator proxf : Rn → Rn of f is defined by

proxf (v) = argmin
x

(
f(x) + (1/2)‖x− v‖2

2

)
, (1.1)

where ‖ · ‖2 is the usual Euclidean norm. The function minimized on

the righthand side is strongly convex and not everywhere infinite, so it

has a unique minimizer for every v ∈ Rn (even when dom f � Rn).

We will often encounter the proximal operator of the scaled function

λf , where λ > 0, which can be expressed as

proxλf (v) = argmin
x

(
f(x) + (1/2λ)‖x− v‖2

2

)
. (1.2)

This is also called the proximal operator of f with parameter λ. (To

keep notation light, we write (1/2λ) rather than (1/(2λ)).)

Throughout this monograph, when we refer to the proximal oper-

ator of a function, the function will be assumed to be closed proper

convex, and it may take on the extended value +∞.

1.2 Interpretations

Figure 1.1 depicts what a proximal operator does. The thin black lines

are level curves of a convex function f ; the thicker black line indicates

the boundary of its domain. Evaluating proxf at the blue points moves

them to the corresponding red points. The three points in the domain

of the function stay in the domain and move towards the minimum of

the function, while the other two move to the boundary of the domain

and towards the minimum of the function. The parameter λ controls

Full text available at: http://dx.doi.org/10.1561/2400000003



4 Introduction

Figure 1.1: Evaluating a proximal operator at various points.

the extent to which the proximal operator maps points towards the

minimum of f , with larger values of λ associated with mapped points

near the minimum, and smaller values giving a smaller movement to-

wards the minimum. It may be useful to keep this figure in mind when

reading about the subsequent interpretations.

We now briefly describe some basic interpretations of (1.1) that we

will revisit in more detail later. The definition indicates that proxf (v)

is a point that compromises between minimizing f and being near to

v. For this reason, proxf (v) is sometimes called a proximal point of v

with respect to f . In proxλf , the parameter λ can be interpreted as a

relative weight or trade-off parameter between these terms.

When f is the indicator function

IC(x) =

⎧⎨
⎩0 x ∈ C

+∞ x �∈ C,

Full text available at: http://dx.doi.org/10.1561/2400000003



1.3. Proximal algorithms 5

where C is a closed nonempty convex set, the proximal operator of f

reduces to Euclidean projection onto C, which we denote

ΠC(v) = argmin
x∈C

‖x− v‖2. (1.3)

Proximal operators can thus be viewed as generalized projections, and

this perspective suggests various properties that we expect proximal

operators to obey.

The proximal operator of f can also be interpreted as a kind of

gradient step for the function f . In particular, we have (under some

assumptions described later) that

proxλf (v) ≈ v − λ∇f(v)

when λ is small and f is differentiable. This suggests a close connection

between proximal operators and gradient methods, and also hints that

the proximal operator may be useful in optimization. It also suggests

that λ will play a role similar to a step size in a gradient method.

Finally, the fixed points of the proximal operator of f are pre-

cisely the minimizers of f (we will show this in §2.3). In other words,

proxλf (x�) = x� if and only if x� minimizes f . This implies a close

connection between proximal operators and fixed point theory, and

suggests that proximal algorithms can be interpreted as solving opti-

mization problems by finding fixed points of appropriate operators.

1.3 Proximal algorithms

A proximal algorithm is an algorithm for solving a convex optimization

problem that uses the proximal operators of the objective terms. For

example, the proximal minimization algorithm, discussed in more detail

in §4.1, minimizes a convex function f by repeatedly applying proxf

to some initial point x0. The interpretations of proxf above suggest

several potential perspectives on this algorithm, such as an approximate

gradient method or a fixed point iteration. In Chapters 4 and 5 we will

encounter less trivial and far more useful proximal algorithms.

Proximal algorithms are most useful when all the relevant proximal

operators can be evaluated sufficiently quickly. In Chapter 6, we discuss

how to evaluate proximal operators and provide many examples.

Full text available at: http://dx.doi.org/10.1561/2400000003



6 Introduction

There are many reasons to study proximal algorithms. First, they

work under extremely general conditions, including cases where the

functions are nonsmooth and extended real-valued (so they contain im-

plicit constraints). Second, they can be fast, since there can be simple

proximal operators for functions that are otherwise challenging to han-

dle in an optimization problem. Third, they are amenable to distributed

optimization, so they can be used to solve very large scale problems.

Finally, they are often conceptually and mathematically simple, so they

are easy to understand, derive, and implement for a particular problem.

Indeed, many proximal algorithms can be interpreted as generalizations

of other well-known and widely used algorithms, like the projected gra-

dient method, so they are a natural addition to the basic optimization

toolbox for anyone who uses convex optimization.

1.4 What this paper is about

We aim to provide a readable reference on proximal operators and prox-

imal algorithms for a wide audience. There are several novel aspects.

First, we discuss a large number of different perspectives on prox-

imal operators, some of which have not previously appeared in the

literature, and many of which have not been collected in one place.

These include interpretations based on projection operators, smooth-

ing and regularization, resolvent operators, and differential equations.

Second, we place strong emphasis on practical use, so we provide many

examples of proximal operators that are efficient to evaluate. Third, we

have a more detailed discussion of distributed optimization algorithms

than most previous references on proximal operators.

To keep the treatment accessible, we have omitted a few more ad-

vanced topics, such as the connection to monotone operator theory.

We also include source code for all examples, as well as a library of

implementations of proximal operators, at

http://www.stanford.edu/~boyd/papers/prox_algs.html

We provide links to other libraries of proximal operators, such as those

by Becker et al. and Vaiter, in the documentation for our own library.

Full text available at: http://dx.doi.org/10.1561/2400000003



1.5. Related work 7

1.5 Related work

We emphasize that proximal operators are not new and that there

have been other surveys written on various aspects of this topic over

the years. Lemaire [123] surveys the literature on the proximal point

algorithm up to 1989. Iusem [110] reviews the proximal point method

and its connection to augmented Lagrangians. An excellent recent ref-

erence by Combettes and Pesquet [63] discusses proximal operators and

proximal algorithms in the context of signal processing problems. The

lecture notes for Vandenberghe’s EE 236C course [196] covers proximal

algorithms in detail. Finally, the recent monograph by Boyd et al. [33] is

about a particular algorithm (ADMM), but also discusses connections

to proximal operators. We will discuss more of the history of proximal

operators in the sequel.

1.6 Outline

In Chapter 2, we give some basic properties of proximal operators.

In Chapter 3, we discuss a variety of interpretations of proximal op-

erators. Chapter 4 covers some core proximal algorithms for solving

convex optimization problems. In Chapter 5, we discuss how to use

these algorithms to solve problems in a parallel or distributed fashion.

Chapter 6 presents a large number of examples of different projection

and proximal operators that can be evaluated efficiently. In Chapter 7,

we illustrate these ideas with some examples and applications.

Full text available at: http://dx.doi.org/10.1561/2400000003
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