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Abstract

Autonomous navigation is an essential capability for mobile robots. In
order to operate robustly, a robot needs to know what the environ-
ment looks like, where it is in its environment, and how to navigate in
it. This work summarizes approaches that address these three problems
and that use particle filters as their main underlying model for repre-
senting beliefs. We illustrate that these filters are powerful tools that
can robustly estimate the state of the robot and its environment and
that it is also well-suited to make decisions about how to navigate in
order to minimize the uncertainty of the joint belief about the robot’s
position and the state of the environment.

C. Stachniss and W. Burgard. Particle Filters for Robot Navigation. Foundations
and Trends® in Robotics, vol. 3, no. 4, pp. 211-282, 2012.

DOI: 10.1561/2300000013.
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1

Particle Filters for Robot Navigation

The ability to reliably navigate is an essential capability for au-
tonomous robots. In order to perform effective navigation tasks, robots
typically need to know what the environment looks like, where they are
in the environment, and how to reach a target location. Thus, models of
the environment play an important role for effective navigation. Learn-
ing maps has therefore been a major research focus in the robotics
community over the last decades.

Three main capabilities are needed for traveling through an en-
vironment and for learning an appropriate representation. These are
mapping, localization, and motion generation. Mapping is the problem
of integrating the information gathered with the robot’s sensors into a
given representation. It can be described by the question “What does
the world look like?” In contrast to this, localization is the problem of
estimating the pose, i.e., the position and heading, of the robot relative
to a map. In other words, the robot has to answer the question, “Where
am [7” Finally, the motion generation problem involves the question of
where to go and how to efficiently calculate a path to guide a vehicle
to that location. Expressed as a simple question, this problem can be
described as, “Where should I go and how to reach that location?”
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Unfortunately, these three tasks cannot be solved independently
of each other. Before a robot can answer the question of what the
environment looks like given a set of observations, it needs to know
from which locations these observations have been made. At the same
time, it is hard to estimate the current position of a vehicle without
a map. Planning a path to a goal location is also tightly coupled with
the knowledge of what the environment looks like as well as with the
information about the current pose of the robot.

It is important to acknowledge that robots operate in unpredictable
environments and that the sensors and the actuation of robots are in-
herently uncertain. Therefore, robots need the ability to deal with un-
certainty and to explicitly model it, even for performing basic tasks.
Particle filters are one way for performing state estimation in the pres-
ence of uncertainty. They offer a series of attractive capabilities, includ-
ing the ability to deal with non-Gaussian distributions and nonlinear
sensor and motion models. This article describes particle filter-based
systems developed by the authors in the context of robot navigation.

1.1 The Bayes Filter

Before introducing the particle filter, we start with the Bayes filter as
the particle filter is a special implementation of the Bayes filter. The
Bayes filter is a general algorithm for estimating a belief given control
commands and observations. The goal is to estimate the distribution
about the current state z; at time t given all commands uy.4 = u1,...,us
and observations zi.+ = z1,...,2: The Bayes filter performs this esti-
mation in a recursive manner using a prediction step that takes into
account the current control command and a correction step that uses
the current observation.

In the prediction step, the filter computes a predicted belief bel(x;)
at time ¢ based on the previous belief bel(x;—1) and a model that de-
scribes how the command wu; changes the state from ¢ — 1 to ¢. This
model p(z; | £4—1,u) is called transition model or motion model.

In the correction step, the filter corrects the predicted belief by tak-
ing into account the observation. It does so by multiplying the predicted
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belief bel(x;) with the observation model p(z; | z;) and a normalizing
constant 7. The normalizer ensures that the integral over all possible
states x; equals to 1 so that we obtain a probability distribution.

Algorithm [I-T] depicts the Bayes filter algorithm with the prediction
step in Line 2 and the correction step in Line 3. The algorithm computes
the belief at time ¢ based on the previous belief at t — 1. Thus, an initial
belief at time ¢t = 0, the so called prior belief, serves as a starting point
for the estimation process. If no prior knowledge is available, the bel(z)
is a uniform distribution.

The Bayes filter can be derived formally by using only Bayes’ rule,
Markov assumptions, and the law of total probability:

bel(xt)
Definition 0 1 ug) (1.1)
BTl b (o | @ 211, ) P(@e | 211, wtse) (1.2)
Markov np(z | 2¢) p(ee | 21:0-1,u1:¢) (1.3)
Total prob. (et | 70) /p(:ct | 241, 2101, Ur) (1.4)
p(Te—1 | 21:6—1, U1t) dp—1 (1.5)

Mark
= np(zt | fL"t)

/ pat | Toor, ) p(@eo | 210, ure) doeey (1.6
Ignoring u¢

np(zt | wt)

/p(mt | 21, ue) p(@i—1 | 21:0—1, Ut:—1) dre—1 (1.7)

DRI ) (2 | ) / (@ [ w1, up) bel(wer) deey - (1.8)

prediction step

correction step

This derivation shows that the belief bel(z;) can be estimated re-
cursively based on the previous belief bel(z;—1) and that is given by
the product of the prediction step and the correction step.

The Bayes filter makes several assumptions in order to derive the
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recursive update scheme. It makes the assumption that given we know
the state x;, the observation z; is independent from the previous ob-
servations and controls, see . In the same way, it assumes that the
state x; is independent from all observations and controls collected up
to t — 1 if we know x;_1, see . Finally, it assumes that estimating
the state of the system at time ¢t — 1 is independent from the future
control command u;, see (|1.7)).

Algorithm 1.1 The Bayes filter algorithm
Input: wuy, 2z, bel(zi—1)

: for all z; do

2 bel(xy) = [play | me—1,ur) bel(xi—1) dxy_q
3. bel(xy) = np(z | ) bel(xy)

4: end

5. return bel(x;)

—_

1.2 The Particle Filter

The root of particle filters can be traced back for around 60 years [32]
but they have become popular only in the last two decades. Particle
filters represent a posterior through a set of samples or particles. Each
sample is best thought as a concrete guess of what the true value of the
state may be. By maintaining a set of samples, i.e., a set of different
state hypotheses, the sample set approximates the posterior distribu-
tion.

The particle filter is an implementation of the Bayes filter. As the
Bayes filter, it allows for maintaining a probability distribution that is
updated based on the commands that are executed by the robot and
based on the observations that the robot acquires. The particle filter
is a nonparametric Bayes filter as it presents the belief not in closed
form but using a finite number of parameters. It models the belief by
samples, which represent possible states the system might be in. For
example, if we aim at estimating the pose of a robot, the particles
model all possible positions and orientations the robot may be located
at given our current knowledge.
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£(x) f(x)

= samples = samples
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(5] (5]
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Figure 1.1: Two functions and their approximations by samples with uniform
weights. The samples are illustrated by the vertical bars below the two functions.

The belief at time ¢ is represented by a set S; of N weighted random
samples

S, = {<x?]wtm> ‘2‘:1,...,]\7}, (1.9)
is the state vector of the i-th sample and w,gi] the correspond-
ing weight. The weight is a non-zero value and the sum over all weights
is 1. The sample set represents the distribution

where xl[f’]

N .
p(z) = Zwy](sxy](xt), (1.10)
=1

where 6x£i] is the Dirac function in a:l[tﬂ. As a result of , the higher
the sum of weights of samples that fall in one region of the space, the
higher the likelihood that the true state lies in this region.

One interesting property of sample-based representations is the abil-
ity to approximate arbitrary distributions. This is an advantage over
frequently used parametric models. For example, the ability to model
multi-modal distributions by the set of samples is an advantage com-
pared to Gaussian distributions. To illustrate such an approximation,
Figure depicts two distributions and their corresponding sample
sets. In general, the more samples are used, the better the approxima-
tion is.



Full text available at: http://dx.doi.org/10.1561/2300000013

1.2. The Particle Filter

1.2.1 An Intuitive Explanation of the Particle Filter Algorithm

Whenever we are interested in estimating the state of a dynamic sys-
tem over time, we can apply the particle filter algorithm for updating

and maintaining a sample set given controls and observations. The al-

gorithm allows us to recursively estimate the particle set S; based on
the estimate S;_1 of the previous time step. The particle filter can be

summarized by the following three steps:

1. Sampling: Create the next generation S; of particles based on

the previous set S;_1 of samples. In this step, we draw samples
from a so-called proposal distribution. The proposal distribution
thus describes how the state evolves.

If we choose the motion model p(x; | z;—1,u;) starting with S;_1
as our proposal distribution, this sampling process corresponds
to the prediction step of the Bayes filter. This becomes clear if
we consider that each sample in S;_; corresponds to a possible
state hypothesis at time ¢t — 1. Drawing for every state hypothesis
x,[f] , a new state 2/ according to p(a’ | xt] 1, Ut), generates the
predicted belief bel(xy).

[1]

. Importance Weighting: Compute the importance weight w;
for each sample in S;.

Continuing the analogy to the Bayes filter, this operation cor-
responds to the correction step. By assigning to each state hy-

pothesis of the predicted belief the weight wp =np(z | x ) we

obtain bel(z;) by (1.10] -

. Resampling: Draw N samples from the current sample set with
replacement. Thereby, the likelihood to draw a particle is pro-
portional to its weight. The new set S is given by the drawn
particles and their weights are set to 1/N.

The resampling operation has no analogous step in the Bayes fil-
ter algorithm and thus can be confusing at first sight. The resam-
pling step, however, is an important element of all particle filter
implementations. The resampling step creates a new sample set
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that has the same size as the previous one. Before the resampling
step, the particles are distributed according to the predicted be-
lief bel(x;) whereas they are distributed according to bel(x;) after
resampling. This operation tends to eliminate samples with a low
likelihood after the correction step and thus reorganizes the sam-
ple set according to the posterior bel(xy).

1.2.2 A Formal Explanation of the Particle Filter Algorithm

In addition to the intuitive explanation of the particle filter, we can also
introduce the algorithm more formally. The goal is to obtain a sampled
representation of our belief, i.e., the target probability distribution. In
each step, we can draw samples in order to obtain the generation of
particles representing the distribution that was used for sampling. In
general, the target probability distribution p(z) for sampling particles
is not known or not in a suitable form for sampling. It is, however,
possible to draw the samples from a distribution 7(x) that is different
from the distribution p(x) that we want to approximate. A technique
to do that in a sound way is importance sampling. The key idea of
importance sampling is to draw the samples from 7 but use a weight
associated to each sample that considers the difference between m and
p.

In importance sampling, we are faced with the problem of com-
puting the expectation that z, which follows the probability density
function p, lies within a region A. Let B be an indicator function,
which returns 1 if its argument is true and 0 otherwise. We can express
the expectation that = € A by

E,[B(z € A)] = / (¢)B(z € A) dz (1.11)

/ (x)) B(x € A) da, (1.12)
()B(x € A)] (1.13)

= ﬂ.’u)

with w(x) := p(z)/7(x). The factor w(z) can be seen as a weighting
factor that accounts for the difference between the probability den-
sity functions p and 7 at x. This means that even though we aim at
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proposal(x)

= target(x)

= samples

(]

=

B

2

e

o

- |

el

X

Figure 1.2: The goal is to approximate the target distribution by samples. The
samples are drawn from the proposal distribution and weighted according to (|1.14).
After weighting, the resulting sample set is an approximation of the target distribu-
tion.

creating samples from p, we can draw the samples from a different den-
sity function m and weight each sample according to w. This holds as
long as p(z) > 0 always implies that 7w(x) > 0. Otherwise, the state
x could never be sampled. The function p is typically called the target
distribution and 7 the proposal distribution. An example that depicts
a weighted set of samples in case the proposal is different from the
target distribution is shown in Figure Note that the importance
sampling principle requires that we can evaluate the target distribu-
tion in a point-wise fashion. Otherwise, the computation of the weights
would be impossible.

Let p be the posterior to estimate and 7w the proposal distribution
that is used in Step [l| of the particle filter for sampling. Then, the
importance weighting performed in Step [2 accounts for the fact that
one draws from the proposal 7 by setting the weight of each particle to

. (4]
wl = n? (xtm)), (1.14)

(g

where 7 is a normalizer that ensures that the weights sum up to 1. Thus,

by dividing the target probability distribution p(ml[f]) by the proposal
[i] '

distribution 7(z;"), both evaluated in xy], we re-weight the samples to
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consider the differences between p and .

As the third and final step, the particle filter performs resampling,
which refers to drawing N samples from the weighted sample set with
replacement and resetting all weights in the new sample set to 1/N.
The likelihood to draw a sample is proportional to its weight computed
in and the drawn set is the result of the particle filter iteration.
The resampling step is an important part of the particle filter as it dis-
tributes the samples according to bel(x;). The operation tends to elimi-
nate samples with a low likelihood after the correction step. Therefore,
it can be seen as a “survival of the fittest” step that avoids that sam-
ples deplete into unlikely regions of the state space. One popular way
to implement resampling is low-variance resampling. The key idea of
low-variance resampling is to avoid drawing the samples independently
of each other. Only the first sample for the new set is drawn randomly
and the other samples are drawn deterministically given the first draw
but still with a probability proportional to the importance weight. This
has two advantages. First, if all the samples have the same importance
weight, the input sample set is equivalent to the output sample set,
i.e., no samples are lost in the resampling process. Second, the overall
complexity of the algorithm is linear in the number of samples. The
algorithm for low-variance resampling is shown in Algorithm [I.2] and
the overall algorithm for particle filtering is given in Algorithm

To see the recursive nature of the particle filter mathematically,
we consider the full posterior bel(xg.;) about the sequence of states
xg, ..., 2. We obtain the recursive formula by:

p($0:t | Z1:t, Ul:t)

Bayes’ rul
YEME (e | 2o, 211, wi) P(Toi | 2101, 1) (1.15)

Markov

np(z | ) p(@o: | 21:0—1,U1:4) (1.16)

Product rule
= np(ze | o) p(xy | Xos—1, 21:6—1, Ui:t)

P(zo:t—1 | 2141, U1:t) (1.17)

Markov

np(ze | z) p(ae | Te—1,ut)
p(@o—1 | 21:4—1, ur:4-1), (1.18)
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Algorithm 1.2 The low-variance resampling algorithm

Input: Weighted sample set {<:%£ﬂ,u§y]> ‘z =1,... ,N}.

1:

[

St = @
r = rand_ uniform ((0;1/N))
c= ﬁ)P]
1=1
forn=1to N do
U=r+(n-1)/N
while U > ¢
t=1+1
c=c+ uﬁg}
end ‘
Si=su{(a",1/N)}
: end
: return S;

Algorithm 1.3 The particle filter algorithm

Input: Sample set S;_1 representing the belief at t — 1, control wy,

@

10:
11:
12:

observation z;.

: St - (Z)

for i=1 to N do '
draw & ~ 7(xy | :E,[ﬂl, 2t Ut)
S 51l 51 o) -1
b =n [p( | 2’y 20| 7@ |y, 2 w)]
Sy =S U{< &, >}

end

St == @

for j=1 to N do
draw sample :Z‘F] from S; with probability proportional to
S =s,u{(a",1/N)}

end

return S;

(4]
t
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where 7 is the normalizer resulting from Bayes’ rule. Under the Markov
assumption, we can transform the proposal as

W(fﬁo:t ! Z1:t,U1;t) = 7T(36t ! l‘t—hzt,ut)
T(Zot—1 | 21:t—1, U1:t—1)- (1.19)

The computation of the weights needs to be done according to
(1.14)). For the not normalized weights, this leads to

w; _ (2o | 21:4, U1:¢) (1.20)
(@0t | 21:4, U1:t)
Bayei’ rule np(zt | xt)p(xt ‘ Tt—1, ut)
B T(2o:t | 21:4, Ut:t)

p(To:t—1 | 21:0-1, U1:-1) (1.21)

np(ze | o) plae | 4-1,uz)
7T($t \ l’t—l,zt,ut)

p(Tot—1 | Z14—1, Ut:t—1)

1.22
7T(900;t—1 \ Zl:t—laulzt—l) ( )
Wt—1
_ np(Zt | $t)p($t | -thlaut) We_1. (1‘23)

(e | Xp—1, 2¢,ut)

As can be seen from this derivation, the weight at time ¢ is computed
as the weight at t — 1 times a ratio that results from the importance
sampling step at time .

Note that the particle filter algorithm does not specify the proposal
distribution. If we choose the motion model p(x; | xi—1,u;) as the
proposal distribution for the current time step, i.e., w(x¢ | Tr—1, 2¢, ut),
we obtain the following importance weight for the i-th sample

_ 0 [l ‘

wiﬂ _ np(z | )p([Z't | ", ) wﬂl (1.24)
plae | 0y, ur)

= np(z | 2wl (1.25)

x pla | 2wy, (1.26)

We compute the sample set at time ¢ based on the set at t—1 and as
the resampling step resets the weights of the whole set to 1/N, (1.26)
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is equivalent to
wy] < p(z | xl[f]) (1.27)

This derivation shows that by choosing the motion model to draw
the next generation of particles, we have to use the observation model
p(z¢ | ) to compute the individual weights.

1.3 Summary

We introduced particle filters as a nonparametric implementation of the
recursive Bayes filter. They use a set of weighted samples for model-
ing a belief and can represent arbitrary distributions. Each iteration of
the particle filter algorithm consists of three steps that are sequentially
executed. First, samples are drawn from a proposal distribution and
this step corresponds to the prediction step in the Bayes filter frame-
work. Second, an importance weight is computed for each sample that
accounts for the fact that the target distribution is different from the
proposal distribution. This step typically implements the correction
step of the Bayes filter. Finally, the resulting sample set is obtained
by drawing the weighted samples with replacement. The probability of
drawing a sample is proportional to its weight.
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