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Endorsement

“In the past few years, deep learning has rapidly evolved into the
de-facto approach for acoustic modeling in automatic speech recogni-
tion (ASR), showing tremendous improvement in accuracy, robustness,
and cross-language generalizability over conventional approaches. This
timely book is written by the pioneers of deep learning innovations
and applications to ASR, who, as early as 2010, first succeeded in large
vocabulary speech recognition using deep learning. This was accom-
plished using a special form of the deep neural net, developed by the
authors, perfectly fit for fast decoding as required by industrial deploy-
ment of ASR technology. In addition to recounting this remarkable
advance which ignited the industry-scale adoption of deep learning in
ASR, this book also provides an overview of a sweeping range of up-
to-date deep learning methodologies and its application to a variety of
signal and information processing tasks, including not only ASR but
also computer vision, language modeling, text processing, multimodal
learning, and information retrieval. This is the first and the most valu-
able book for “deep and wide learning” of deep learning, not to be
missed by anyone who wants to know the breath taking impact of deep
learning in many facets of information processing, especially ASR, all
of vital importance to our modern technological society.”

— Sadaoki Furui, President of Toyota Technological Institute at
Chicago, and Professor at the Tokyo Institute of Technology
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Abstract

This monograph provides an overview of general deep learning method-
ology and its applications to a variety of signal and information pro-
cessing tasks. The application areas are chosen with the following three
criteria in mind: (1) expertise or knowledge of the authors; (2) the
application areas that have already been transformed by the successful
use of deep learning technology, such as speech recognition and com-
puter vision; and (3) the application areas that have the potential to be
impacted significantly by deep learning and that have been experienc-
ing research growth, including natural language and text processing,
information retrieval, and multimodal information processing empow-
ered by multi-task deep learning.

L. Deng and D. Yu. Deep Learning: Methods and Applications. Foundations and
Trends R© in Signal Processing, vol. 7, nos. 3–4, pp. 197–387, 2013.
DOI: 10.1561/2000000039.
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1
Introduction

1.1 Definitions and background

Since 2006, deep structured learning, or more commonly called deep
learning or hierarchical learning, has emerged as a new area of machine
learning research [20, 163]. During the past several years, the techniques
developed from deep learning research have already been impacting
a wide range of signal and information processing work within the
traditional and the new, widened scopes including key aspects of
machine learning and artificial intelligence; see overview articles in
[7, 20, 24, 77, 94, 161, 412], and also the media coverage of this progress
in [6, 237]. A series of workshops, tutorials, and special issues or con-
ference special sessions in recent years have been devoted exclusively
to deep learning and its applications to various signal and information
processing areas. These include:

• 2008 NIPS Deep Learning Workshop;

• 2009 NIPS Workshop on Deep Learning for Speech Recognition
and Related Applications;

• 2009 ICML Workshop on Learning Feature Hierarchies;

3
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4 Introduction

• 2011 ICML Workshop on Learning Architectures, Representa-
tions, and Optimization for Speech and Visual Information Pro-
cessing;

• 2012 ICASSP Tutorial on Deep Learning for Signal and Informa-
tion Processing;

• 2012 ICML Workshop on Representation Learning;
• 2012 Special Section on Deep Learning for Speech and Language

Processing in IEEE Transactions on Audio, Speech, and Lan-
guage Processing (T-ASLP, January);

• 2010, 2011, and 2012 NIPS Workshops on Deep Learning and
Unsupervised Feature Learning;

• 2013 NIPS Workshops on Deep Learning and on Output Repre-
sentation Learning;

• 2013 Special Issue on Learning Deep Architectures in IEEE
Transactions on Pattern Analysis and Machine Intelligence
(T-PAMI, September).

• 2013 International Conference on Learning Representations;
• 2013 ICML Workshop on Representation Learning Challenges;
• 2013 ICML Workshop on Deep Learning for Audio, Speech, and

Language Processing;
• 2013 ICASSP Special Session on New Types of Deep Neural Net-

work Learning for Speech Recognition and Related Applications.

The authors have been actively involved in deep learning research and
in organizing or providing several of the above events, tutorials, and
editorials. In particular, they gave tutorials and invited lectures on
this topic at various places. Part of this monograph is based on their
tutorials and lecture material.

Before embarking on describing details of deep learning, let’s pro-
vide necessary definitions. Deep learning has various closely related
definitions or high-level descriptions:

• Definition 1 : A class of machine learning techniques that
exploit many layers of non-linear information processing for

Full text available at: http://dx.doi.org/10.1561/2000000039



1.1. Definitions and background 5

supervised or unsupervised feature extraction and transforma-
tion, and for pattern analysis and classification.

• Definition 2 : “A sub-field within machine learning that is based
on algorithms for learning multiple levels of representation in
order to model complex relationships among data. Higher-level
features and concepts are thus defined in terms of lower-level
ones, and such a hierarchy of features is called a deep architec-
ture. Most of these models are based on unsupervised learning of
representations.” (Wikipedia on “Deep Learning” around March
2012.)

• Definition 3 : “A sub-field of machine learning that is based
on learning several levels of representations, corresponding to a
hierarchy of features or factors or concepts, where higher-level
concepts are defined from lower-level ones, and the same lower-
level concepts can help to define many higher-level concepts. Deep
learning is part of a broader family of machine learning methods
based on learning representations. An observation (e.g., an image)
can be represented in many ways (e.g., a vector of pixels), but
some representations make it easier to learn tasks of interest (e.g.,
is this the image of a human face?) from examples, and research
in this area attempts to define what makes better representations
and how to learn them.” (Wikipedia on “Deep Learning” around
February 2013.)

• Definition 4 : “Deep learning is a set of algorithms in machine
learning that attempt to learn in multiple levels, correspond-
ing to different levels of abstraction. It typically uses artificial
neural networks. The levels in these learned statistical models
correspond to distinct levels of concepts, where higher-level con-
cepts are defined from lower-level ones, and the same lower-
level concepts can help to define many higher-level concepts.”
See Wikipedia http://en.wikipedia.org/wiki/Deep_learning on
“Deep Learning” as of this most recent update in October 2013.

• Definition 5 : “Deep Learning is a new area of Machine Learning
research, which has been introduced with the objective of moving
Machine Learning closer to one of its original goals: Artificial

Full text available at: http://dx.doi.org/10.1561/2000000039



6 Introduction

Intelligence. Deep Learning is about learning multiple levels of
representation and abstraction that help to make sense of data
such as images, sound, and text.” See https://github.com/lisa-
lab/DeepLearningTutorials

Note that the deep learning that we discuss in this monograph is
about learning with deep architectures for signal and information pro-
cessing. It is not about deep understanding of the signal or infor-
mation, although in many cases they may be related. It should also
be distinguished from the overloaded term in educational psychology:
“Deep learning describes an approach to learning that is character-
ized by active engagement, intrinsic motivation, and a personal search
for meaning.” http://www.blackwellreference.com/public/tocnode?id=
g9781405161251_chunk_g97814051612516_ss1-1

Common among the various high-level descriptions of deep learning
above are two key aspects: (1) models consisting of multiple layers
or stages of nonlinear information processing; and (2) methods for
supervised or unsupervised learning of feature representation at
successively higher, more abstract layers. Deep learning is in the
intersections among the research areas of neural networks, artificial
intelligence, graphical modeling, optimization, pattern recognition,
and signal processing. Three important reasons for the popularity
of deep learning today are the drastically increased chip processing
abilities (e.g., general-purpose graphical processing units or GPGPUs),
the significantly increased size of data used for training, and the recent
advances in machine learning and signal/information processing
research. These advances have enabled the deep learning methods
to effectively exploit complex, compositional nonlinear functions, to
learn distributed and hierarchical feature representations, and to make
effective use of both labeled and unlabeled data.

Active researchers in this area include those at University of
Toronto, New York University, University of Montreal, Stanford
University, Microsoft Research (since 2009), Google (since about
2011), IBM Research (since about 2011), Baidu (since 2012), Facebook
(since 2013), UC-Berkeley, UC-Irvine, IDIAP, IDSIA, University
College London, University of Michigan, Massachusetts Institute of

Full text available at: http://dx.doi.org/10.1561/2000000039



1.2. Organization of this monograph 7

Technology, University of Washington, and numerous other places; see
http://deeplearning.net/deep-learning-research-groups-and-labs/ for
a more detailed list. These researchers have demonstrated empirical
successes of deep learning in diverse applications of computer vision,
phonetic recognition, voice search, conversational speech recognition,
speech and image feature coding, semantic utterance classifica-
tion, natural language understanding, hand-writing recognition, audio
processing, information retrieval, robotics, and even in the analysis of
molecules that may lead to discovery of new drugs as reported recently
by [237].

In addition to the reference list provided at the end of this mono-
graph, which may be outdated not long after the publication of this
monograph, there are a number of excellent and frequently updated
reading lists, tutorials, software, and video lectures online at:

• http://deeplearning.net/reading-list/
• http://ufldl.stanford.edu/wiki/index.php/

UFLDL_Recommended_Readings
• http://www.cs.toronto.edu/∼hinton/
• http://deeplearning.net/tutorial/
• http://ufldl.stanford.edu/wiki/index.php/UFLDL_Tutorial

1.2 Organization of this monograph

The rest of the monograph is organized as follows:
In Section 2, we provide a brief historical account of deep learning,

mainly from the perspective of how speech recognition technology has
been hugely impacted by deep learning, and how the revolution got
started and has gained and sustained immense momentum.

In Section 3, a three-way categorization scheme for a majority of
the work in deep learning is developed. They include unsupervised,
supervised, and hybrid deep learning networks, where in the latter cat-
egory unsupervised learning (or pre-training) is exploited to assist the
subsequent stage of supervised learning when the final tasks pertain to
classification. The supervised and hybrid deep networks often have the

Full text available at: http://dx.doi.org/10.1561/2000000039



8 Introduction

same type of architectures or the structures in the deep networks, but
the unsupervised deep networks tend to have different architectures
from the others.

Sections 4–6 are devoted, respectively, to three popular types of
deep architectures, one from each of the classes in the three-way cat-
egorization scheme reviewed in Section 3. In Section 4, we discuss
in detail deep autoencoders as a prominent example of the unsuper-
vised deep learning networks. No class labels are used in the learning,
although supervised learning methods such as back-propagation are
cleverly exploited when the input signal itself, instead of any label
information of interest to possible classification tasks, is treated as the
“supervision” signal.

In Section 5, as a major example in the hybrid deep network cate-
gory, we present in detail the deep neural networks with unsupervised
and largely generative pre-training to boost the effectiveness of super-
vised training. This benefit is found critical when the training data
are limited and no other appropriate regularization approaches (i.e.,
dropout) are exploited. The particular pre-training method based on
restricted Boltzmann machines and the related deep belief networks
described in this section has been historically significant as it ignited
the intense interest in the early applications of deep learning to speech
recognition and other information processing tasks. In addition to this
retrospective review, subsequent development and different paths from
the more recent perspective are discussed.

In Section 6, the basic deep stacking networks and their several
extensions are discussed in detail, which exemplify the discrimina-
tive, supervised deep learning networks in the three-way classification
scheme. This group of deep networks operate in many ways that are
distinct from the deep neural networks. Most notably, they use target
labels in constructing each of many layers or modules in the overall
deep networks. Assumptions made about part of the networks, such as
linear output units in each of the modules, simplify the learning algo-
rithms and enable a much wider variety of network architectures to
be constructed and learned than the networks discussed in Sections 4
and 5.

Full text available at: http://dx.doi.org/10.1561/2000000039



1.2. Organization of this monograph 9

In Sections 7–11, we select a set of typical and successful applica-
tions of deep learning in diverse areas of signal and information process-
ing. In Section 7, we review the applications of deep learning to speech
recognition, speech synthesis, and audio processing. Subsections sur-
rounding the main subject of speech recognition are created based on
several prominent themes on the topic in the literature.

In Section 8, we present recent results of applying deep learning to
language modeling and natural language processing, where we highlight
the key recent development in embedding symbolic entities such as
words into low-dimensional, continuous-valued vectors.

Section 9 is devoted to selected applications of deep learning to
information retrieval including web search.

In Section 10, we cover selected applications of deep learning to
image object recognition in computer vision. The section is divided to
two main classes of deep learning approaches: (1) unsupervised feature
learning, and (2) supervised learning for end-to-end and joint feature
learning and classification.

Selected applications to multi-modal processing and multi-task
learning are reviewed in Section 11, divided into three categories
according to the nature of the multi-modal data as inputs to the deep
learning systems. For single-modality data of speech, text, or image,
a number of recent multi-task learning studies based on deep learning
methods are reviewed in the literature.

Finally, conclusions are given in Section 12 to summarize the mono-
graph and to discuss future challenges and directions.

This short monograph contains the material expanded from two
tutorials that the authors gave, one at APSIPA in October 2011 and
the other at ICASSP in March 2012. Substantial updates have been
made based on the literature up to January 2014 (including the mate-
rials presented at NIPS-2013 and at IEEE-ASRU-2013 both held in
December of 2013), focusing on practical aspects in the fast develop-
ment of deep learning research and technology during the interim years.

Full text available at: http://dx.doi.org/10.1561/2000000039
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