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Abstract

Game theory is the theory of “strategic thinking”. Developed for mil-
itary purposes and defense, in the past it has also been used as an
alternative and complementary approach to deal with robustness in
the presence of worst-case uncertainties or disturbances in many ar-
eas such as economics, engineering, computer science, just to name a
few. However, game theory is recently gaining ground in systems and
control engineering, mostly in engineered systems involving humans,
where there is a trend to use game theoretic tools to design protocols
that will provide incentives for people to cooperate. For instance, sci-
entists tend to use game theoretic tools to design optimal traffic flows,
or predicting or avoiding blackouts in power networks or congestion in
cyber-physical networked controlled systems.

Incentives to cooperate are also crucial in dynamic resource alloca-
tion, multi-agent systems and social models (including social and eco-
nomic networks). This paper assembles the material of two graduate
courses given at the Department of Engineering Science of the Univer-
sity of Oxford in June-July 2013 and at the Department of Electrical
and Electronic Engineering of Imperial College, in October-December
2013. The paper covers the foundations of the theory of noncoopera-
tive and cooperative games, both static and dynamic. It also highlights
new trends in cooperative differential games, learning, approachability
(games with vector payoffs) and mean–field games (large number of
homogeneous players). The course emphasizes theoretical foundations,
mathematical tools, modeling, and equilibrium notions in different en-
vironments.

D. Bauso. Game Theory: Models, Numerical Methods and Applications.
Foundations and TrendsR© in Systems and Control, vol. 1, no. 4, pp. 379–522, 2014.
DOI: 10.1561/2600000003.
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1
Introduction

This first chapter is introductory and streamlines the foundations of the
theory together with seminal papers and applications. The chapter in-
troduces different types of games, such as simultaneous and sequential
games, and the corresponding representations. In addition, it makes a
clear distinction between cooperative and noncooperative games. The
introduction proceeds with the formalization of fundamental notions
like pure and mixed strategy, Nash equilibrium and dominant strategy
(strategic/normal representation and extensive/tree representation). In
the second part of this chapter, we pinpoint seminal results on the exis-
tence of equilibria. The end of the chapter is devoted to the illustration
of classical games such as the Cournot duopoly, as an example of in-
finite game, or other stylized games in strategic form known as the
coordination game, the Hawk and Dove game or the Stag-Hunt game.
We make use of the Cournot duopoly to briefly discuss the iterated
dominance algorithm.

2
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1.1. Historical note, definitions and applications 3

1.1 Historical note, definitions and applications

The foundations of game theory are in the book [von Neumann and
Morgenstern, 1944] by the mathematician John Von Neumann and the
economist Oskar Morgenstern,

Theory of games and economic behavior,
Princeton University Press, 1944.

The book builds on prior research by von Neumann published in Ger-
man [von Neumann, 1928]: Zur Theory der Gesellschaftsspiele, Math-
ematische Annalen, 1928. Quoting from [Aumann, 1987], Morgenstern
was the first economist clearly and explicitly to recognize that economic
agents must take the interactive nature of economics into account when
making their decisions. He and von Neumann met at Princeton in the
late Thirties, and started the collaboration that culminated in the The-
ory of Games.

Forerunners of the theory are considered the french philosopher and
mathematician Antoine Augustin Cournot, who first introduced the
“duopoly model” in 1838, and the german economist Heinrich Freiherr
von Stackelberg, who formulated the equilibrium concept named after
him in 1934 [von Stackelberg, 1934].

Game theory intersects several disciplines, see e.g., Table 1.1, and
conventionally involves multiple players each one endowed with its own
payoff. Thus, game theory is different from optimization where one has
one single player who optimizes its own payoff. Game theory also dif-
fers from multi-objective optimization, the latter characterized by one
player and multiple payoffs. In the ’60s another discipline was founded
dealing with multiple decision makers with a common payoff, known as
team theory [Ho, 1980, Marschak and Radner, 1972, Bauso and Pesenti,
2012].

The literature provides several formal definitions of game theory.
For instance, Maschler, Solan, and Zamir say that game theory is a
methodology using mathematical tools to model and analyze situations
involving several decision makers (DMs), called players [Maschler et al.,
2013]. According to Osborne and Rubinstein game theory is a bag of
analytical tools designed to help us understand the phenomena that we

Full text available at: http://dx.doi.org/10.1561/2600000003



4 Introduction

1 payoff n payoffs
1 player Optimization Multi-objective optimization
n players Team theory Game theory

Table 1.1: A scheme relating game theory to other disciplines.

observe when DMs interact, (DMs are rational and reason strategi-
cally) [Osborne and Rubinstein, 1994]. Here, (individual) rationality
and strategic reasoning mean that every DM is aware of his alterna-
tives, forms expectations about any unknowns, has clear preferences,
and chooses his action deliberately after some process of optimization
[Osborne and Rubinstein, 1994]. Tijs in his book defines game theory
as a mathematical theory dealing with models of conflict and coopera-
tion [Tijs, 2003].

Game theoretic models arise in numerous application domains in-
cluding:
Board and field games [Bewersdorff, 2004]. Board games like
chess or draughts or field games such as football or rugby may admit a
mathematical description via game theory, where the players’ actions
are elements of a given set, called actions’ set, and the probability of
win is the payoff that every player seeks to maximize. In rugby, for
instance, certain tactics are successful only if the opponent is playing a
certain tactic and thus the tactic choice is assimilated to a play of the
rock-paper-scissors game. Theoretical foundations are to be found in
algorithmic game theory, a research area intersecting algorithm design,
game theory and artificial intelligence [Noam et al., 2007].
Marketing and commercial operations [Osborne and Rubin-
stein, 1990, Gibbons, 1992]. Competitive firms operating on a same
market must be able to predict the impact of a new product. This in-
volves a strategic analysis of the current market demand and of the
reactions of the potential competitors in consequence of the introduc-
tion of the new product.
Politics [Morrow, 1994]. Here game theory provides useful indices to
measure the power of parties involved in a governing coalition. Voting

Full text available at: http://dx.doi.org/10.1561/2600000003



1.2. Types of games and representations 5

methods can also be rigorously analyzed through game theory. Regard-
ing social policy making, game theory offers guidelines to governmen-
tal agencies to predict and analyze the impact of specific social policy
choices, such as pension rules, education or labor reforms.
Defense [Hamilton and Mesic, 2004]. Game theory has con-
tributed the notion of “strategic thinking” consisting in putting our-
selves in the place of the opponent before making a decision, which
is a milestone in the field of defense. Military applications related to
missile pursuing fighter airplanes are also usually addressed using game
theoretic models.
Robotics and multi-agent systems [Shoham and Leyton-
Brown, 2009]. Here game theory provides models for the movement
of automated robot vehicles with distributed task assignment. Path
planning for robotic manipulation in presence of moving obstacles is
also a classical game theory application.
Networks [Di Mare and Latora, 2007, Saad et al., 2009]. Game
theory can be used to analyze the spread of innovation, or the propaga-
tion of opinions in social networks. In communication networks game
theory is frequently used to study band allocations, and in security
problems.

1.2 Types of games and representations

There are different types of games and corresponding representations.
In this section, after providing a formal description of a game in generic
terms, we distinguish between cooperative and noncooperative, simul-
taneous and sequential games and introduce the strategic or normal
representation for the former games and the extensive or tree represen-
tation for the latter games.

1.2.1 What is a game?

A (strategic form) game is a tuple 〈N, (Ai)i∈N , (ui)i∈N 〉, where

• N = {1, 2, . . . , n} is the set of players (maximizers),

• Ai is the set of actions of player i,

Full text available at: http://dx.doi.org/10.1561/2600000003



6 Introduction

• A := {a| a = (ai)i∈N , ai ∈ Ai, ∀i ∈ N} is the set of action
profiles,

• ui : A→ R is the payoff function of player i, i.e.,

(a1, . . . , an) 7→ ui(a1, . . . , an).

Note that the payoff ui is a profit (to maximize) but can also be a cost
(to minimize).

An equivalent way of writing the action profiles is

(aj)j∈N = (a1, . . . , an) = (ai, a−i),

where a−i = (aj)j∈N,j 6=i is the action profile of all players except i.

1.2.2 Noncooperative vs. cooperative

A first major distinction is between noncooperative and cooperative
game theory. In noncooperative games i) every player seeks its best
response based on the available information and in order to maximize
its own payoff, ii) there are no binding agreements on optimal joint
actions, iii) pre-play communication is possibly allowed.

In cooperative games (which in turn divide into games with trans-
ferable (TU) and nontransferable (NTU) utilities) i) the players seek
optimal joint actions (NTU), or reasonable cost/reward sharing rules
(TU) that make the coalitions stable, ii) pre-play communication is
allowed, and iii) side payments are also allowed (TU).

Note that while noncooperative game theory dominates almost ev-
ery textbook in game theory, and is by far more widespread than coop-
erative game theory, there is a large consensus on the idea that coop-
erative game theory has a broader range of applications. Only recently
cooperative game theory has attracted the attention of scientists from
disciplines other than economics, and has become a major design tool
in engineered systems [Saad et al., 2009].

Example 1.1. (Prisoners’ dilemma) This is one of the most com-
mon and simple strategic models developed by Merrill Flood and
Melvin Dresher of the RAND Corporation in 1950. The prison-sentence
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1.2. Types of games and representations 7

interpretation, and thus the corresponding name is due to Albert W.
Tucker. The story is the following one: two criminals are arrested un-
der the suspicion of having committed a crime for which the maximal
sentence is four years. Each one may choose whether to cooperate with
(C) or defect (D) the other fellow. If both defect (D,D), the sentence
is mitigated to three years (each one gets one year of freedom). If both
cooperate (C,C), the suspects are released after one year due to lack of
evidence (each one gets three years of freedom). If only one cooperates,
(C,D) or (D,C), the one who defects is released immediately (four years
of freedom), while the other is sentenced to the maximal punishment
(zero years of freedom). The game is represented in bimatrix form as
displayed in Fig. 7.1. In a purely noncooperative context, every player

Figure 1.1: Prisoners’ dilemma: cooperative vs. noncooperative solutions.

will choose to defect (D) considering that he has no guarantee on the
other’s choice and therefore the resulting solution is (D,D). Differently,
in a cooperative scenario, where both players can collude and negotiate
joint actions, it is likely that both will end up cooperating (C,C).

1.2.3 Simultaneous vs. sequential games

A second major distinction is between simultaneous games and sequen-
tial games. In simultaneous games i) decisions are made once and for
all and at the same time by all players; ii) there is no state nor any
concept of strategy; iii) these games admit a common representation
in normal form (also called strategic or bimatrix form). The Prison-
ers’ dilemma is a classical example of simultaneous games in strategic
form, see Fig. 1.1. Here the rows and the columns are associated to the
actions or decisions of the players and the entries of the bimatrix are
the payoffs. The representation does not carry any inbuilt information
structure.

Full text available at: http://dx.doi.org/10.1561/2600000003



8 Introduction

On the other hand, sequential games are those where i) one has
a specific order of events, ii) as a consequence, the game has a state
variable that collects information on earlier decisions, iii) latter players
may know perfectly or imperfectly the actual state (full or partial in-
formation), iv) decisions are made depending on the state from which
the notion of strategy, namely a mapping from states to actions, v)
such games are conveniently represented in extensive or tree form, see
Fig. 1.2.

Here the nodes are the states and are labeled with the player who
is to act; the branches are the actions; the payoffs are associated to leaf
nodes and depend on the whole history of actions taken. The represen-
tation has an inbuilt information structure. Fig. 1.2 depicts a two-player
extensive game where player 1 plays first (stage 1) and can select either
left L or right R. Player 2 plays second (stage 2) and can in turn select
left l or right r in both states 1 and 2, which yields four possible actions
l1, r1, l2, r2.

Figure 1.2: Example of extensive/tree form representation.

Nevertheless it is sometimes possible to derive an equivalent strate-
gic form representation for an extensive game once we consider strate-
gies rather than decisions. This is illustrated later on in Example 1.3
and Fig. 1.4. There we have four strategies for player 2, i.e., l1l2 (always
left), l1r2 (left only in state 1, that is when player 1 picks L), l2r1 (left
only in state 2, that is when player 1 picks R), and r1r2 (always right).

Full text available at: http://dx.doi.org/10.1561/2600000003



1.3. Nash equilibrium and dominance 9

Thus, the set of “actions” for player 2 is A2 = {l1l2, l1r2, r1l2, r1r2},
while the one for player 1 is simply A1 = {L,R}.

Simultaneous games can also be played repeatedly over time in
which case we address such games as repeated games. Repeated games
admit an extensive form representation as shown below for the Prison-
ers’ dilemma example in Fig. 1.3. Here payoffs or utilities are usually
summed up over the rounds within a finite horizon or infinite horizon
(discounted sum or long-term average) time window.

Figure 1.3: Extensive/tree form representation of the repeated Prisoners’ dilemma.

1.3 Nash equilibrium and dominance

We review here basic solution concepts such as the Nash equilibrium
and dominant strategy.

1.3.1 Nash equilibrium (NE)

In a Nash equilibrium “unilateral deviations” do not benefit any of the
players. Unilateral deviations mean that only one player changes its
own decision while the others stick to their current choices.

Definition 1.1. (Nash equilibrium [Nash Jr., 1950, 1951]) The
action profile/outcome (a∗1, a∗2, . . . , a∗n) is an NE if none of the players
by deviating from it can gain anything, i.e.,

ui(a∗i , a∗−i) ≥ ui(ai, a∗−i), ∀ai ∈ Ai, ∀i ∈ N.

Let us introduce the best response set

Bi(a−i) := {a∗i ∈ Ai|ui(a∗i , a−i) = max
ai∈Ai

ui(ai, a−i)}.

Full text available at: http://dx.doi.org/10.1561/2600000003



10 Introduction

Then in an NE all players play a best response, namely

a∗i ∈ Bi(a∗−i), ∀i ∈ N.

Example 1.2. In the Prisoners’ dilemma the solution (D,D) is a Nash
equilibrium, as player 1 by deviating from it would get 0 years of free-
dom rather than 1 (stick to second column and move vertically to first
row) and therefore would be worse off. Likewise for player 2.

Example 1.3. In the extensive game of Fig. 1.4, player 2 has four strate-
gies, i.e., l1l2 (always left), l1r2 (left only in state 1, that is when
player 1 picks L), l2r1 (left only in state 2, that is when player 1
picks R), and r1r2 (always right). Thus, the set of “actions” for player
2 is A2 = {l1l2, l1r2, r1l2, r1r2}, while the one for player 1 is simply
A1 = {L,R}. The game admits one Nash equilibrium (R, r1l2). This
can be computed via dynamic programming backwardly. In state 1
(node down left), player 2’s rational choice is r1 (red line) as he gets
2 rather than 1 if he were to play l1. In state 2, player 2 could play l2
and get 8 or r2 and get 3, then his rational choice is l2 (red line). In
stage 1 (top node), player one gets 4 by playing R, and 3 by playing L,
so his best response is R (red line). The equilibrium payoffs are then
(4, 8).

Figure 1.4: Nash equilibrium in an extensive tree game.

Full text available at: http://dx.doi.org/10.1561/2600000003



1.3. Nash equilibrium and dominance 11

The representation in normal form of the game (left) shows another
solution, (R, l1l2), returning the same payoffs as the equilibrium, which
is not a Nash equilibrium as player 2 would benefit from changing from
l1 to r1. So, in principle there may exist solutions that are not equilibria
and which are equivalent to equilibria in terms of payoffs.

A weaker equilibrium solution concept is available in the literature,
namely the so-called ε-Nash equilibrium.

Definition 1.2. (ε-Nash equilibrium [Başar and Olsder, 1999,
Chap. 4.2]) For a given ε ≥ 0, the action profile/outcome
(aε1, aε2, . . . , aεn) is an ε-NE if none of the players by deviating from
it can gain more than ε, i.e.,

ui(aεi , aε−i) ≥ ui(ai, aε−i)− ε, ∀ai ∈ Ai, ∀i ∈ N.

Needless to say, for ε = 0, the ε-Nash equilibrium coincides with
the Nash equilibrium.

1.3.2 Existence of equilibria and mixed strategies

The first seminal result on game theory is the minmax theorem by John
Von Neumann, 1928, establishing the existence of equilibrium points
for zero-sum games. These are games where the sum of the payoffs of
the players is always zero. The result makes use of the notion of mixed
strategies, namely strategies defined by a probability distribution over
the finite set of the feasible strategies.

Theorem 1.1. (Minmax theorem [von Neumann, 1928]) Each
matrix game has a saddle point in the mixed strategies.

From a computational perspective, saddle points can be obtained
via linear programming, which is the topic of Chap. 3 (see also Chap. 6,
Tijs, 2003). The computation of NE is based on linear complementarity
programming, which we will also discuss in Chap. 3 (see also Chap. 7,
Tijs, 2003).

Existence of equilibria can be proven starting from the Kakutani’s
fixed point theorem 1941. The Kakutani’s theorem analyzes sufficient
conditions for a set-valued function, defined on a convex and compact
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12 Introduction

subset of a Euclidean space, to have a fixed point, i.e. a point which is
mapped to a set containing it.

Theorem 1.2. (Kakutani’s Fixed point theorem, 1941) Let K
be a non-empty subset of a finite dimensional Euclidean space. Let
f : K → K be a correspondence, with x ∈ K 7→ f(x) ⊆ K, satisfying
the following conditions:

• K is a compact and convex set
• f(x) is non-empty for all x ∈ K
• f(x) is a convex-valued correspondence: for all x ∈ K, f(x) is a
convex set
• f(x) has a closed graph: that is, if {xn, yn} → {x, y} with yn ∈
f(xn), then y ∈ f(x)

Then, f has a fixed point, that is, there exists some x ∈ K, such that
x ∈ f(x).

Rather than the formal proof we provide a graphical illustration for
a simple scalar case of the main ideas used in the proof. Let x be plotted
in the horizontal axis, and f(x) in the vertical axis as in Fig. 1.5. Fixed
points, if exist, must solve f(x) = x and therefore can be found at the
intersection between the function f(x) and the dotted line. On the left,
the function f(x) is not convex-valued and therefore it does not admit
a fixed point. On the right, the function f(x) does not have a closed
graph which again implies that there exist no fixed point.

The Kakutani’s theorem has been successively used by John Nash
to prove the existence of a Nash equilibrium for nonzero-sum games.
Essentially, the Nash’s equilibrium theorem establishes the existence of
at least one Nash equilibrium provided that i) the set of actions Ai are
compact and convex subsets of Rn, as it occurs in continuous (infinite)
games, or games in mixed extension (we will expand more on it later);
ii) payoffs ui(ai, a−i) are continuous and concave in ai for fixed strategy
a−i of the opponents.

Theorem 1.3. (Equilibrium point theorem [Nash Jr., 1950])
Each finite bimatrix game has an NE in the mixed strategies.
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f(x) = x f(x) = x

Figure 1.5: Graphical illustration of Kakutani’s theorem. Function f(x) is not con-
vex valued (left), f(x) has no closed graph (right). Courtesy by Asu Ozdaglar, slides
of the course 6.254 Game Theory with Eng. Applications, MIT OpenCourseWare
(2010).

Proof. We here provide only a sketch of the proof. Let us introduce the
best response set,

Bi(a−i) := {a∗i ∈ Ai|ui(a∗i , a−i) = max
ai∈Ai

ui(ai, a−i)}.

We can then apply the Kakutani’s fixed point theorem to the best
response correspondence B : ∆ ⇒ ∆, ∆ =

∏
i∈N ∆i (∆i is the simplex

in the R|Ai|)
B(a) =

(
Bi(a−i)

)
i∈N

.

An important property of mixed strategy Nash equilibria is that
every action in the support of any player’s equilibrium mixed strategy
is a best response and yields that player the same payoff (cf. [Osborne
and Rubinstein, 1994, Lemma 33.2]). We will henceforth refer to such
a property as Indifference Principle.

Example 1.4. The example illustrated in Fig. 1.6 is borrowed from
[Bressan, 2010] and describes a two-player continuous infinite game
where the set of actions are segments in R (see horizontal and vertical
axes). Level curves show that the maxima are attained at point P
and Q for player 1 and 2 respectively. Note that the Nash equilibrium,
which is point R, has horizontal and vertical tangents to the level curves
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P

Q

R

a1

a2

Figure 1.6: Two-player continuous infinite game. Level curves of player 1 (solid)
and player 2 (dashed), action space of player 1 (horizontal axis), and of player 2
(vertical axis). Global maximum is P for player 1 and Q for player 2 while the
NE is point R. Courtesy by Alberto Bressan, Noncooperative Differential Games. A
Tutorial (2010) [Bressan, 2010].

of player 1 and 2 passing through it. From belonging to a horizontal
tangent we know that the horizontal coordinate of point R is the best
response of player 1 to player 2. Likewise, from belonging to a vertical
tangent, the vertical coordinate of R is the best response of player 2 to
player 1.

1.3.3 Dominant strategies

While the concept of equilibrium involves action profiles, the property
of dominance is a characteristic related to a single action. Thus we say
that an action profile is an NE, and that a given action is dominant.
Dominance is a strong property, in that we know that an action profile
made by dominant strategies is an NE but the converse is not true, i.e.,
we can have an NE that does not involve dominant strategies.
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Definition 1.3. (Weak Dominance) Given two strategies, a∗i , ai ∈
Ai, we say that a∗i weakly dominates ai if it is at least as good as ai for
all choices of the other players a−i ∈ A−i,

ui(a∗i , a−i) ≥ ui(ai, a−i), ∀a−i ∈ A−i.

If the above inequality holds strictly, then we say that a∗i (strictly)
dominates ai.

Example 1.5. In the Prisoner’s Dilemma, strategy D is a dominant
strategy.

Figure 1.7: D is a dominant strategy in the Prisoner’s dilemma.

We say that a strategy is (weakly) dominant if it (weakly) dominates
all other strategies. Note that a profile of dominant strategies is a Nash
equilibrium. However, the converse is not true. Dominance is used in
the renowned iterated dominance algorithm, which at each iteration
eliminates subsets of dominated solutions by pruning the corresponding
node in a so-called exploration tree. The term “pruning” is common in
the parlance of combinatorial optimization, where the search for the
optimum is graphically represented by an exploration tree. Here nodes
describe families of solutions, and if, based on estimates, a family does
not contain the optimum, then one says that the corresponding node
is pruned. Back to the game theoretic setting, it is well known that a
rationalizable/serially undominated strategy survives to the algorithm
pruning. This is illustrated next for the Cournot duopoly.

1.4 Cournot duopoly and iterated dominance

Consider two manufacturers or firms i = 1, 2 competing on a same
market. The production quantity of firm i is qi. From the “law of de-
mand”, we assume that the sale price of firm i is ci = 30 − (q1 + q2).
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B1(a2)

B2(a1)

a1

a2

Figure 1.8: Reaction curves or best response for the Cournot duopoly.

Then, the payoff of firm i obtained by selling the produced quantity
qi at the price ci is given by ui(qi, qj) = ciqi = 30qi − q2

i − qiqj . Note
that this payoff is concave in qi. Taking the derivative equal to zero,
namely, ∂ui

qi
= 0, it yields the best response q∗i = Bi(qj) = 15 − qj/2.

The Nash equilibrium is (10, 10), namely the intersection of the best
response functions (see Fig. 1.8).

1.4.1 Iterated dominance algorithm

Figure 1.9 illustrates the iterated dominance algorithm on the Cournot
duopoly model. To every iteration corresponds one round of elimina-
tion, which eliminates dominated strategies. Let us denote Sji the set
of actions of player i that have survived to the elimination rounds up
to iteration j. Then, one round of elimination yields S1

1 = [0, 1/2],
S1

2 = [0, 1/2] (left). Indeed, player 1 knows that any production rate
greater than 1/2 is a dominated action for player 2 as B2(a1) lives in
the range [0, 1/2]. We can repeat the same reasoning for player 2. Thus
the search for equilibria can be restricted to the new domain [0, 1/2]
for both players (dotted square on the left plot). A second round yields
S2

1 = [1/4, 1/2], S2
2 = [1/4, 1/2] (right). Actually, after restricting the

best responses to the dotted square (left), every player knows that the
best response of its opponent lives in the range [1/4, 1/2]. Thus the
new search domain is [1/4, 1/2] for both players which corresponds to
the square (solid line) on the right plot. Repeating the same reasoning
iteratively, the algorithm is proven to converge to the Nash equilibrium.
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B1(a2)

B2(a1)

1
2

1
4

1
2

1
4

1
2
1
4 B2(a1)

B1(a2)

Figure 1.9: Iterated dominance algorithm illustrated on the Cournot duopoly
model. Courtesy by Asu Ozdaglar, slides of the course 6.254 Game Theory with
Eng. Applications, MIT OpenCourseWare (2010).

1.5 Examples

The rest of this chapter illustrates classical examples of strategic games
such as: the battle of the sexes, the coordination or typewriter game, the
Hawk and dove or chicken game, and the Stag-Hunt game.

Example 1.6. (Battle of the sexes) A couple agrees to meet in the
evening either to go shopping S or to attend a cricket match C. The
husband (column player) prefers to go to the cricket game while the
wife (row player) would like to go shopping. In any case, both wish to
go to the same place. Payoffs measure the happiness of the two. If they
both go shopping, i.e. (SS), the woman is happy 2 and the husband
is happy 1, while if they both go to the cricket game the happiness
levels swap, 2 for the husband and 1 for the woman. If they end up in
different places the level of happiness of both is 0.

S C

S (2,1) (0,0)
C (0,0) (1,2)

Example 1.7. (Coordination game or Typewriter game) Usually
presented as a stylized model for diffusion of innovation, when and
where is it convenient to adopt a new technology, this game considers a
couple which agrees to meet in the evening either to go to a Mozart’s or
to a Mahler’s concert. Both players have a small preference for Mozart
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and if they both select (Mozart,Mozart), then each level of happiness
is 2. The levels of happiness are a bit lower, say 1, if they both go to a
Mahler concert, i.e., (Mahler,Mahler). Going to two different concerts
returns a level of happiness equal to 0 to both. The action profiles
(Mozart,Mozart) and (Mahler,Mahler) are both NE solutions.

Mozart Mahler

Mozart (2,2) (0,0)
Mahler (0,0) (1,1)

Example 1.8. (Hawk and dove or chicken game) The underlying
idea is that while each player prefers not to give in to the other, the
worst possible outcome occurs when both players do not yield. The
game simulates a situation where two drivers drive towards each other
and the one who swerves at the last moment is addressed “chicken”.
The same game under the name “Hawk and Dove" describes a sce-
nario where two contestants can choose a nonaggressive or aggressive
attitude. The game was useful to illustrate the strategic scenario dur-
ing the cold war and in particular in occasion of the Cuban Missile
Crisis. The game is mostly meaningful in the case where the cost of
fighting exceeds the prize of victory, i.e., C > V > 0. If both player
decide for a nonaggressive behavior and share the prey, i.e. they opt
for (Dove,Dove), their mutual reward is half of the prize of victory,
V/2. If one yields, (Hawk,Dove) or (Dove,Hawk) the winner gets the
entire prey, V and the loser is left with zero reward. If both players are
aggressive and end up fighting, (Hawk,Hawk), each will pay a cost
equal to half of the prize of victory subtracted to the cost of fight. The
game admits two NE solutions, (Hawk,Dove) and (Dove,Hawk).

Hawk Dove

Hawk
(
V−C

2 , V−C2

)
(V, 0)

Dove (0, V )
(
V
2 ,

V
2

)
Example 1.9. (Stag-Hunt game) Used to analyze and predict social
cooperation, this game illustrates situations where two individuals can
go out on a hunt and collaborate or not collaborate. Each hunter can
decide to hunt a stag or hunt a hare without knowing what the other
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is going to do. If both cooperate and go for a stag, (Stag, Stag), they
will share a large prey and each revenue is 3/2. If both go for a hare
(Hare,Hare) the revenue to share is lower and equal to 1. If they go for
different preys, (Stag,Hare) or (Hare, Stag) the one who goes for the
smaller prey (the hare) gets the entire prey for himself, while the other
is left with nothing as hunting a stag alone is not possible. He must
have the cooperation of his partner in order to succeed. An individual
can get a hare by himself, but a hare is worth less than a stag.

Stag Hare

Stag
(

3
2 ,

3
2

)
(0,1)

Hare (1,0)
(
1, 1
)
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