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Abstract

The problem of privacy-preserving data analysis has a long history
spanning multiple disciplines. As electronic data about individuals
becomes increasingly detailed, and as technology enables ever more
powerful collection and curation of these data, the need increases for a
robust, meaningful, and mathematically rigorous definition of privacy,
together with a computationally rich class of algorithms that satisfy
this definition. Differential Privacy is such a definition.

After motivating and discussing the meaning of differential privacy,
the preponderance of this monograph is devoted to fundamental tech-
niques for achieving differential privacy, and application of these tech-
niques in creative combinations, using the query-release problem as an
ongoing example. A key point is that, by rethinking the computational
goal, one can often obtain far better results than would be achieved by
methodically replacing each step of a non-private computation with a
differentially private implementation. Despite some astonishingly pow-
erful computational results, there are still fundamental limitations —
not just on what can be achieved with differential privacy but on what
can be achieved with any method that protects against a complete
breakdown in privacy. Virtually all the algorithms discussed herein
maintain differential privacy against adversaries of arbitrary compu-
tational power. Certain algorithms are computationally intensive, oth-
ers are efficient. Computational complexity for the adversary and the
algorithm are both discussed.

We then turn from fundamentals to applications other than query-
release, discussing differentially private methods for mechanism design
and machine learning. The vast majority of the literature on differen-
tially private algorithms considers a single, static, database that is sub-
ject to many analyses. Differential privacy in other models, including
distributed databases and computations on data streams is discussed.

Full text available at: http://dx.doi.org/10.1561/0400000042
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Finally, we note that this work is meant as a thorough introduc-
tion to the problems and techniques of differential privacy, but is not
intended to be an exhaustive survey — there is by now a vast amount of
work in differential privacy, and we can cover only a small portion of it.

C. Dwork and A. Roth. The Algorithmic Foundations of Differential Privacy. Foun-
dations and Trends R© in Theoretical Computer Science, vol. 9, nos. 3–4, pp. 211–407,
2013.
DOI: 10.1561/0400000042.
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Preface

The problem of privacy-preserving data analysis has a long history
spanning multiple disciplines. As electronic data about individuals
becomes increasingly detailed, and as technology enables ever more
powerful collection and curation of these data, the need increases for a
robust, meaningful, and mathematically rigorous definition of privacy,
together with a computationally rich class of algorithms that satisfy
this definition. Differential Privacy is such a definition.

After motivating and discussing the meaning of differential privacy,
the preponderance of the book is devoted to fundamental techniques
for achieving differential privacy, and application of these techniques in
creative combinations (Sections 3–7), using the query-release problem
as an ongoing example. A key point is that, by rethinking the com-
putational goal, one can often obtain far better results than would be
achieved by methodically replacing each step of a non-private compu-
tation with a differentially private implementation.

Despite some astonishingly powerful computational results, there
are still fundamental limitations — not just on what can be achieved
with differential privacy but on what can be achieved with any method
that protects against a complete breakdown in privacy (Section 8).

Virtually all the algorithms discussed in this book maintain
differential privacy against adversaries of arbitrary computational
power. Certain algorithms are computationally intensive, others are

3
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4

efficient. Computational complexity for the adversary and the algo-
rithm are both discussed in Section 9.

In Sections 10 and 11 we turn from fundamentals to applications
other than query-release, discussing differentially private methods for
mechanism design and machine learning. The vast majority of the lit-
erature on differentially private algorithms considers a single, static,
database that is subject to many analyses. Differential privacy in other
models, including distributed databases and computations on data
streams is discussed in Section 12.

Finally, we note that this book is meant as a thorough introduc-
tion to the problems and techniques of differential privacy, but is not
intended to be an exhaustive survey — there is by now a vast amount of
work in differential privacy, and we can cover only a small portion of it.

Full text available at: http://dx.doi.org/10.1561/0400000042



1
The Promise of Differential Privacy

“Differential privacy” describes a promise, made by a data holder, or
curator, to a data subject: “You will not be affected, adversely or oth-
erwise, by allowing your data to be used in any study or analysis,
no matter what other studies, data sets, or information sources, are
available.” At their best, differentially private database mechanisms
can make confidential data widely available for accurate data analysis,
without resorting to data clean rooms, data usage agreements, data pro-
tection plans, or restricted views. Nonetheless, data utility will eventu-
ally be consumed: the Fundamental Law of Information Recovery states
that overly accurate answers to too many questions will destroy privacy
in a spectacular way.1 The goal of algorithmic research on differential
privacy is to postpone this inevitability as long as possible.

Differential privacy addresses the paradox of learning nothing about
an individual while learning useful information about a population. A
medical database may teach us that smoking causes cancer, affecting
an insurance company’s view of a smoker’s long-term medical costs.
Has the smoker been harmed by the analysis? Perhaps — his insurance

1This result, proved in Section 8.1, applies to all techniques for privacy-preserving
data analysis, and not just to differential privacy.

5

Full text available at: http://dx.doi.org/10.1561/0400000042



6 The Promise of Differential Privacy

premiums may rise, if the insurer knows he smokes. He may also be
helped — learning of his health risks, he enters a smoking cessation
program. Has the smoker’s privacy been compromised? It is certainly
the case that more is known about him after the study than was known
before, but was his information “leaked”? Differential privacy will take
the view that it was not, with the rationale that the impact on the
smoker is the same independent of whether or not he was in the study.
It is the conclusions reached in the study that affect the smoker, not
his presence or absence in the data set.

Differential privacy ensures that the same conclusions, for example,
smoking causes cancer, will be reached, independent of whether any
individual opts into or opts out of the data set. Specifically, it ensures
that any sequence of outputs (responses to queries) is “essentially”
equally likely to occur, independent of the presence or absence of any
individual. Here, the probabilities are taken over random choices made
by the privacy mechanism (something controlled by the data curator),
and the term “essentially” is captured by a parameter, ε. A smaller ε

will yield better privacy (and less accurate responses).
Differential privacy is a definition, not an algorithm. For a given

computational task T and a given value of ε there will be many differ-
entially private algorithms for achieving T in an ε-differentially private
manner. Some will have better accuracy than others. When ε is small,
finding a highly accurate ε-differentially private algorithm for T can be
difficult, much as finding a numerically stable algorithm for a specific
computational task can require effort.

1.1 Privacy-preserving data analysis

Differential privacy is a definition of privacy tailored to the problem
of privacy-preserving data analysis. We briefly address some concerns
with other approaches to this problem.

Data Cannot be Fully Anonymized and Remain Useful. Generally
speaking, the richer the data, the more interesting and useful it is.
This has led to notions of “anonymization” and “removal of person-
ally identifiable information,” where the hope is that portions of the

Full text available at: http://dx.doi.org/10.1561/0400000042



1.1. Privacy-preserving data analysis 7

data records can be suppressed and the remainder published and used
for analysis. However, the richness of the data enables “naming” an
individual by a sometimes surprising collection of fields, or attributes,
such as the combination of zip code, date of birth, and sex, or even the
names of three movies and the approximate dates on which an indi-
vidual watched these movies. This “naming” capability can be used in
a linkage attack to match “anonymized” records with non-anonymized
records in a different dataset. Thus, the medical records of the gover-
nor of Massachussetts were identified by matching anonymized medical
encounter data with (publicly available) voter registration records, and
Netflix subscribers whose viewing histories were contained in a collec-
tion of anonymized movie records published by Netflix as training data
for a competition on recommendation were identified by linkage with
the Internet Movie Database (IMDb).

Differential privacy neutralizes linkage attacks: since being differ-
entially private is a property of the data access mechanism, and is
unrelated to the presence or absence of auxiliary information available
to the adversary, access to the IMDb would no more permit a linkage
attack to someone whose history is in the Netflix training set than to
someone not in the training set.

Re-Identification of “Anonymized” Records is Not the Only Risk. Re-
identification of “anonymized” data records is clearly undesirable, not
only because of the re-identification per se, which certainly reveals
membership in the data set, but also because the record may contain
compromising information that, were it tied to an individual, could
cause harm. A collection of medical encounter records from a specific
urgent care center on a given date may list only a small number of
distinct complaints or diagnoses. The additional information that a
neighbor visited the facility on the date in question gives a fairly nar-
row range of possible diagnoses for the neighbor’s condition. The fact
that it may not be possible to match a specific record to the neighbor
provides minimal privacy protection to the neighbor.

Queries Over Large Sets are Not Protective. Questions about specific
individuals cannot be safely answered with accuracy, and indeed one

Full text available at: http://dx.doi.org/10.1561/0400000042



8 The Promise of Differential Privacy

might wish to reject them out of hand (were it computationally fea-
sible to recognize them). Forcing queries to be over large sets is not
a panacea, as shown by the following differencing attack. Suppose it
is known that Mr. X is in a certain medical database. Taken together,
the answers to the two large queries “How many people in the database
have the sickle cell trait?” and “How many people, not named X, in the
database have the sickle cell trait?” yield the sickle cell status of Mr. X.

Query Auditing Is Problematic. One might be tempted to audit the
sequence of queries and responses, with the goal of interdicting any
response if, in light of the history, answering the current query would
compromise privacy. For example, the auditor may be on the lookout
for pairs of queries that would constitute a differencing attack. There
are two difficulties with this approach. First, it is possible that refusing
to answer a query is itself disclosive. Second, query auditing can be
computationally infeasible; indeed if the query language is sufficiently
rich there may not even exist an algorithmic procedure for deciding if
a pair of queries constitutes a differencing attack.

Summary Statistics are Not “Safe.” In some sense, the failure of
summary statistics as a privacy solution concept is immediate from
the differencing attack just described. Other problems with summary
statistics include a variety of reconstruction attacks against a database
in which each individual has a “secret bit” to be protected. The utility
goal may be to permit, for example, questions of the form “How many
people satisfying property P have secret bit value 1?” The goal of the
adversary, on the other hand, is to significantly increase his chance
of guessing the secret bits of individuals. The reconstruction attacks
described in Section 8.1 show the difficulty of protecting against even
a linear number of queries of this type: unless sufficient inaccuracy is
introduced almost all the secret bits can be reconstructed.

A striking illustration of the risks of releasing summary statistics
is in an application of a statistical technique, originally intended for
confirming or refuting the presence of an individual’s DNA in a foren-
sic mix, to ruling an individual in or out of a genome-wide association
study. According to a Web site of the Human Genome Project, “Single
nucleotide polymorphisms, or SNPs (pronounced “snips”), are DNA

Full text available at: http://dx.doi.org/10.1561/0400000042



1.1. Privacy-preserving data analysis 9

sequence variations that occur when a single nucleotide (A,T,C, or G)
in the genome sequence is altered. For example a SNP might change
the DNA sequence AAGGCTAA to ATGGCTAA.” In this case we say
there are two alleles: A and T. For such a SNP we can ask, given a
particular reference population, what are the frequencies of each of the
two possible alleles? Given the allele frequencies for SNPs in the ref-
erence population, we can examine how these frequencies may differ
for a subpopulation that has a particular disease (the “case” group),
looking for alleles that are associated with the disease. For this reason,
genome-wide association studies may contain the allele frequencies of
the case group for large numbers of SNPs. By definition, these allele
frequencies are only aggregated statistics, and the (erroneous) assump-
tion has been that, by virtue of this aggregation, they preserve privacy.
However, given the genomic data of an individual, it is theoretically
possible to determine if the individual is in the case group (and, there-
fore, has the disease). In response, the National Institutes of Health
and Wellcome Trust terminated public access to aggregate frequency
data from the studies they fund.

This is a challenging problem even for differential privacy, due to
the large number — hundreds of thousands or even one million — of
measurements involved and the relatively small number of individuals
in any case group.

“Ordinary” Facts are Not “OK.” Revealing “ordinary” facts, such as
purchasing bread, may be problematic if a data subject is followed over
time. For example, consider Mr. T, who regularly buys bread, year after
year, until suddenly switching to rarely buying bread. An analyst might
conclude Mr. T most likely has been diagnosed with Type 2 diabetes.
The analyst might be correct, or might be incorrect; either way Mr. T
is harmed.

“Just a Few.” In some cases a particular technique may in fact provide
privacy protection for “typical” members of a data set, or more gen-
erally, “most” members. In such cases one often hears the argument
that the technique is adequate, as it compromises the privacy of “just
a few” participants. Setting aside the concern that outliers may be pre-
cisely those people for whom privacy is most important, the “just a few”
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10 The Promise of Differential Privacy

philosophy is not intrinsically without merit: there is a social judgment,
a weighing of costs and benefits, to be made. A well-articulated defini-
tion of privacy consistent with the “just a few” philosophy has yet to
be developed; however, for a single data set, “just a few” privacy can be
achieved by randomly selecting a subset of rows and releasing them in
their entirety (Lemma 4.3, Section 4). Sampling bounds describing the
quality of statistical analysis that can be carried out on random sub-
samples govern the number of rows to be released. Differential privacy
provides an alternative when the “just a few” philosophy is rejected.

1.2 Bibliographic notes

Sweeney [81] linked voter registration records to “anonymized” medical
encounter data; Narayanan and Shmatikov carried out a linkage attack
against anonymized ranking data published by Netflix [65]. The work
on presence in a forensic mix is due to Homer et al. [46]. The first
reconstruction attacks were due to Dinur and Nissim [18].
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