Estimating the Cost of Capital Implied by Market Prices and Accounting Data
Estimating the Cost of Capital Implied by Market Prices and Accounting Data

Peter Easton
Center for Accounting Research and Education
The University of Notre Dame
Notre Dame, IN 46556-5646
USA
peaston@nd.edu
Foundations and Trends® in Accounting
Volume 2 Issue 4, 2007
Editorial Board

Editor-in-Chief:
Stefan J. Reichelstein
Graduate School of Business
Stanford University
Stanford, CA 94305
USA
reichelstein_stefan@gsb.stanford.edu

Editors
Ronald Dye, Northwestern University
David Larcker, Stanford University
Stephen Penman, Columbia University
Stefan Reichelstein, Stanford University (Managing Editor)
Editorial Scope

Foundations and Trends® in Accounting will publish survey and tutorial articles in the following topics:

- Auditing
- Corporate Governance
- Cost Management
- Disclosure
- Event Studies/Market Efficiency Studies
- Executive Compensation
- Financial Reporting
- Financial Statement Analysis and Equity Valuation
- Management Control
- Performance Measurement
- Taxation

Information for Librarians
Foundations and Trends® in Accounting, 2007, Volume 2, 4 issues. ISSN paper version 1554-0642, ISSN online version 1554-0650. Also available as a combined paper and online subscription.
Estimating the Cost of Capital Implied by Market Prices and Accounting Data*

Peter Easton

Center for Accounting Research and Education, The University of Notre Dame, Notre Dame, Indiana 46556-5646, peaston@nd.edu

Abstract

Estimating the Cost of Capital Implied by Market Prices and Accounting Data focuses on estimating the expected rate of return implied by market prices, summary accounting numbers, and forecasts of earnings and dividends. Estimates of the expected rate of return, often used as proxies for the cost of capital, are obtained by inverting accounting-based valuation models. The author describes accounting-based valuation models and discusses how these models have been used, and how they may be used, to obtain estimates of the cost of capital.

*I thank Brad Badertscher, Matt Brewer, Devin Dunn, Gus De Franco, Vicki Dickinson, Cindy Durtschi, Pengjie Gao, Joost Impiink, Lorie Marsh, Steve Monahan, Jim Ohlson, Steve Orpurt, Ken Peasnell, Stephen Penman, Greg Sommers, Jens Stephan, Gary Taylor, Laurence van Lent, Arnt Verriest, Xiao-Jun Zhang, PhD. students in the Limperg Institute Advanced Capital Markets course at Tilburg University, and participants at the University of Cincinnati 4th Annual Accounting Research Symposium, and cost of capital seminars at the National University of Singapore and Seoul National University, for very helpful discussions as I was writing this survey. Most of all, I thank Bob Lindner, for his clear and firm guidance very early in my career; this survey reflects that guidance.
3.8 Summary

4 Reverse Engineering the Abnormal Growth in Earnings Valuation Model: PE Ratios and PEG Ratios

4.1 The Abnormal Growth in Earnings Valuation Model

4.2 Formal Derivation of the Abnormal Growth in Earnings Valuation Model

4.3 The Connection Between the Abnormal Growth in Earnings Valuation Model and the Residual Income Valuation Model

4.4 A Simple Example

4.5 What is Abnormal Growth in Earnings?

4.6 The Concept of Economic Earnings

4.7 What is Growth in Abnormal Growth in Earnings?

4.8 Special Case: PE Ratios

4.9 PE Ratios and PEG Ratios

4.10 Stock Recommendations Based on the PEG Ratio

4.11 The Modified PEG Ratio

4.12 The PEG Ratio

4.13 The Gode and Mohanram Modification

4.14 Conclusions Regarding Modifications

4.15 Summary

5 Reverse Engineering the Residual Income Valuation Model to Obtain Firm-Specific Estimates of the Implied Expected Rate of Return

5.1 Reverse Engineering the Residual Income Valuation Model

5.2 Approaches to the Problem of Growth Rates Beyond the Forecast Horizon

5.3 Advantages/Disadvantages

5.4 Gebhardt et al. (2001)
5.5 Why Fade to the Industry Median Return-on-Equity? 44
5.6 What is the Appropriate Industry Comparison Group? 45
5.7 Claus and Thomas (2001) 46
5.8 Growth at $r_f - 3\%$ 47
5.9 Growth Stemming from Accounting Conservatism is Not Zero 48
5.10 Firm-Specific Estimates are Unlikely to be Meaningful When the Same Growth Rate is Applied to All Firms 48
5.11 A Model that Fades to the Cost of Capital 49
5.12 Summary 49

6 Reverse Engineering the Abnormal Growth in Earnings Valuation Model to Obtain Portfolio-Level Estimates of the Implied Expected Rate of Return 51

6.1 A Method for Simultaneously Estimating the Rate of Change in Abnormal Growth in Earnings and the Expected Rate of Return 52
6.2 A Word of Caution 53
6.3 Bias in Estimates of the Expected Rate of Return Based on the PEG Ratio 53
6.4 An Illustration: P&G 54
6.5 The Regression-based Estimate for P&G 54
6.6 An Illustration: Large Sample Evidence of the Effect of Assumptions About Long-Term Growth in Earnings 55
6.7 The Importance of High r-square in the Easton (2004) Regression 55
6.8 An Example: The DJIA as of December 31, 2004 56
6.9 Summary 57

7 Reverse Engineering the Residual Income Valuation Model to Obtain Portfolio-Level Estimates of the Implied Expected Rate of Return 59
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Simultaneously Estimating the Rate of Growth in Residual Income and the Expected Rate of Return that are Implied by Market Prices, Book Value, and Forecasts of Earnings</td>
</tr>
<tr>
<td>7.2</td>
<td>Earnings Aggregation</td>
</tr>
<tr>
<td>7.3</td>
<td>Example of Earnings Aggregation: P&G</td>
</tr>
<tr>
<td>7.4</td>
<td>The ETSS Iterative Procedure</td>
</tr>
<tr>
<td>7.5</td>
<td>An Illustration: Large Sample Evidence of the Effect of Assumptions About Long-Term Growth in Residual Income</td>
</tr>
<tr>
<td>7.6</td>
<td>The Trade-off Between Using Just One Quarter or Just One Year of Earnings and Using all Available Forecast Data</td>
</tr>
<tr>
<td>7.7</td>
<td>Simultaneously Estimating the Rate of Growth in Residual Income and the Expected Rate of Return that are Implied by Market Prices, Book Value, and Current Earnings</td>
</tr>
<tr>
<td>7.8</td>
<td>A Key Issue is the Implicit Assumption that the Accounting Data Summarize the Payoffs About Which the Investor is Concerned When Determining the Value of the Stock</td>
</tr>
<tr>
<td>7.9</td>
<td>Which Earnings?</td>
</tr>
<tr>
<td>7.10</td>
<td>A Need for Caution</td>
</tr>
<tr>
<td>7.11</td>
<td>Value-Weighted Estimates of the Implied Expected Rate of Return</td>
</tr>
<tr>
<td>7.12</td>
<td>Summary</td>
</tr>
<tr>
<td>8</td>
<td>Methods for Assessing the Quality/Validity of Firm-Specific Estimates</td>
</tr>
<tr>
<td>8.1</td>
<td>The Motivation for Estimating Accounting-based Estimates of the Expected Rate of Return at the Firm Level</td>
</tr>
<tr>
<td>8.2</td>
<td>Do the Estimates of ex ante Expected Return Explain ex post Realized Return?</td>
</tr>
<tr>
<td>8.3</td>
<td>Correlated Omitted Variables Bias</td>
</tr>
</tbody>
</table>
10.2 An *ex ante* Measure of Optimism

Bias is the Difference Between Estimates based on Forecasts of Earnings and Estimates based on Earnings Realizations

10.4 *Ex ante* and *ex post* Measures of Bias

10.5 *Ex ante* Determination of the Effect of Bias

10.6 *Ex post* Determination of the Effect of Bias

10.7 *Ex ante* and *ex post* Comparison

10.8 Empirical Estimate of the *ex ante* Bias

10.9 Empirical Estimate of *ex post* Bias

10.10 Which Earnings are Related to Prices? Does the Market See Through the Forecast Bias?

10.11 Summary

11 Dealing with Shortcomings in Firm-Specific Estimates

11.1 Methods for Mitigating the Effects of Measurement Error

11.2 Grouping

11.3 Variables that May be Used to Form Groups

11.4 Empirical Evidence of the Effects of Grouping

11.5 Instrumental Variables

11.6 Variables that May be Used as Instruments

11.7 Empirical Evidence of the Effectiveness of Instrumental Variables

11.8 The Errors in Variables Problem May be Less Severe for Some Subsets of the Data

11.9 The Relevance of the Vast Literature on Analysts’ Forecast Errors

11.10 Sub-samples Where the Error and/or Bias May be Less

11.11 Reducing the Error and/or Reducing the Effects of the Error: An Example

11.12 Methods for Dealing with, So-called, “Sluggish” Forecasts
11.13 Critique of Methods 101
11.14 Reducing the Forecast Error by the Predicted Value from a Regression of Forecast Errors on Various Firm Characteristics 101
11.15 Combining Time-Series Forecasts and Analysts’ Forecasts 102
11.16 Summary 102

12 Methods for Determining the Effect of a Phenomenon of Interest on the Cost of Capital 105
12.1 Examples of Phenomena Studied in the Extant Literature 105
12.2 The Most Common Methodology 106
12.3 A Method for Comparing Expected Rates of Return Across Groups of Stocks 106
12.4 Controlling for Effects Other than the Effect of Interest 107
12.5 Introducing Controls in the Dummy Variable Regression 108
12.6 Additional Dummy Variables or Interaction Terms 108
12.7 Matched-Sample Design 109
12.8 The Firm as Its Own Control 109
12.9 Matching and the Firm as Its Own Control: The Dummy Variable Regression 110
12.10 Expected Growth Rates are Determined by the Data 111
12.11 Summary 111

13 Data Issues 113
13.1 Misalignment of Prices, Book Values, and Earnings Forecasts 113
13.2 An Example: P&G 114
13.3 A Close Look at the Time-Line for These Forecasts that has Ended 115
13.4 The Earnings Forecast May be for a Fiscal Period 115
13.5 Book Value will not be Known Until the Earnings Announcement Date 116
13.6 Forecasted Book Value as the Anchor 116
13.7 One Option: Calculate Implied Expected Rates of Return based on Forecasts Obtained at Year End and based on Year-End Prices 117
13.8 Disadvantages of Using Reverse Engineering based on Prices at a Particular Point in Time 118
13.9 Determining Virtual Forecasted Book Values and Virtual Forecasted Earnings at any Date: The Method Proposed by Daske et al. (2006) 118
13.10 An Example: P&G 118
13.11 Estimating Earnings to the Estimation Date 119
13.12 Estimating Virtual Book Value 120
13.13 Estimating Earnings for the Remainder of the Fiscal Period 120
13.14 Discount Daily 120
13.15 An Alternative: Adjust Prices 121
13.16 Summary 122

14 Some Thoughts on Future Directions 123
14.1 Other Sources of Earnings Forecasts: The Data 123
14.2 Mitigating Errors and Bias 124
14.3 Refocus on Operations 124

References 125
The focus of this survey is on estimating the expected rate of return implied by market prices, summary accounting numbers (such as book value and earnings), and forecasts of earnings and dividends. Estimates of the expected rate of return, which are often used as proxies for the cost of capital, are obtained by inverting accounting-based valuation models. I begin by describing accounting-based valuation models and then I discuss the way these models have been used, and how they may be used, to obtain estimates of the cost of capital.

The re-introduction of the residual income valuation model by Ohlson (1995) and the development of the abnormal growth in earnings model by Ohlson and Juettner-Nauroth (2005) have been the driving force behind the burgeoning empirical literature that reverse engineers these models to infer markets expectations of the rate of return on equity capital. The obvious advantage of this reverse-engineering approach is that estimates of the expected rate of return are based on forecasts rather than extrapolation from historical data. Prior to the development of these approaches, researchers and valuation practitioners relied on estimates based on historical data (estimated via the market model, the empirical analogue of the Sharpe–Lintner Capital
Introduction

The practical appeal of accounting-based valuation models, particularly the abnormal growth in earnings model, is that they focus on the two variables that are most commonly at the heart of valuations carried out by practicing equity analysts; namely, forecasts of earnings and forecasts of earnings growth. The question at the core of this survey is: How can these forecasts be used to obtain an estimate of the cost of capital? After addressing this question, I will examine the empirical validity of the estimates based on these forecasts and then I will explore possible means of improving these estimates.

The later part of the survey details a method for isolating the effect of any factor of interest (such as cross-listing, fraud, disclosure quality, taxes, analyst following, accounting standards, etc.) on the cost of capital.

If you are interested in understanding the key ingredients of the academic literature on accounting-based estimates of expected rate of return this survey is for you. My aim is to provide a foundation for a deeper comprehension of this literature and to give a jump start to those who may have an interest in extending this literature.

I have deliberately chosen to introduce the key ideas via examples based on actual forecasts, accounting information, and market prices for listed firms. I have found that people exposed to this literature for the first time find this a useful way to gain a sound intuitive understanding of the essential elements of the models and methods. I then show how the numerical examples are based on sound algebraic relations.

1 I do not review the large literature that examines the effect of various factors on the cost of capital. This literature developed very shortly after the first accounting based empirical estimates of the cost of capital were developed. I expect that the reader of this survey may conclude that many of these studies should be re-visited after more refined estimates of the cost of capital have been developed.

2 Many readers of this survey have observed that these numerical examples have been critical to their understanding. Some have underscored the importance of these examples when
The survey proceeds as follows:

Section 2: Valuing the firm

The survey begins by reviewing, in Section 2, the discounted cash flow valuation model and the closely related accounting-based valuation model; namely, the residual operating income valuation model. These models are used to value the operations of the firm. I have chosen to use the discounted cash flow valuation model as the starting point because most readers have at least some familiarity with the use of this valuation model.

The theoretical papers that underpin this survey are, by and large, based on the dividend capitalization model, which is a model of equity valuation, rather a model for the valuation of the firm. The key papers are Ohlson (1995) and Ohlson and Juettner-Nauroth (2005). The empirical literature has also focused on the valuation of equity. My sense is that this emphasis is primarily driven by the availability of data. The models used in the valuation of equity are discussed in Sections 3 and 4. I will discuss the related empirical literature in the later sections. There is still a great deal of room for research that focuses on the operations of the firm rather than the portion of those assets that are owned by equity shareholders. I return to this point at the end of the survey.

I demonstrate valuation of the firm in Section 2 by means of a simple example similar to those used in introductory accounting and finance courses. In this example, there are forecasts of free cash flow from operations for the next four years, together with forecasts of expected growth beyond this four-year horizon. The forecasted free cash flows are discounted to determine the present value of the firm, which is often referred to as the enterprise value. Other terms used include firm value, asset value, and value of operations.

Next, I illustrate the residual operating income valuation model using the same example. Again, the focus is on valuing the operations. I show, through the example, that free cash flow from operations is

3 I demonstrate valuation of the firm in Section 2 by means of a simple example similar to those used in introductory accounting and finance courses. In this example, there are forecasts of free cash flow from operations for the next four years, together with forecasts of expected growth beyond this four-year horizon. The forecasted free cash flows are discounted to determine the present value of the firm, which is often referred to as the enterprise value. Other terms used include firm value, asset value, and value of operations.

Next, I illustrate the residual operating income valuation model using the same example. Again, the focus is on valuing the operations. I show, through the example, that free cash flow from operations is
equal to net operating profit after taxes (NOPAT) adjusted for the accrual components, which may also be referred to as non cash-flow components, of operating income. I use this equality to show how the residual operating income valuation model is derived from the free cash flow valuation model.

Section 3: Changing the focus to the valuation of equity and introducing reverse engineering

The structure of Section 3 closely parallels Section 2. Focus is shifted from valuation of the firm to valuation of equity. Most of the remaining sections focus on valuing equity and, in turn, on calculating the implied expected rate of return on equity capital. The parallels between Sections 2 and 3 should be borne in mind when reading the remainder of the survey. I begin Section 3 by introducing the dividend capitalization model from which I derive the residual income valuation model. The parallels between: (1) the valuation of the firm based on the discounted cash flow valuation model and the valuation of equity based on the dividend capitalization model; and (2) the derivation of the residual operating income valuation model from the discounted cash flow valuation model and the derivation of the residual income model from the dividend capitalization model, become apparent.

This survey is on estimating the cost of capital implied by market prices and accounting data. The empirical literature that estimates the cost of capital based on market prices and accounting data reverse engineers the accounting-based valuation models to obtain estimates of the implied expected rate of return, which, in turn is used as a proxy for the cost of capital. The concept of reverse engineering is introduced at the end of Section 3. Reverse engineering to obtain the implied expected rate of return depends critically on the maintained assumption about the growth rate beyond the period for which forecasts are available. The effect of the growth-rate assumption on estimates of the implied expected rate of return becomes evident in the example.

Although the term cost of capital is commonly used to describe the implied expected rates of return, they are not the cost of capital unless the market prices are efficient and the earnings forecasts are the market’s earnings expectations. A more precise term would be
“the internal rate of return implied by market prices, accounting book values and analysts’ forecasts of earnings.” Since many of the earnings forecasts used in the extant literature are made by analysts who are in the business of making stock buy/sell recommendations, estimates of the expected rate of return implied by these analysts’ forecasts and market prices are, arguably, not estimates of the cost of capital. It would seem reasonable to suggest, for example, that analysts may base their recommendations on the difference between the internal rate of return implied by market prices, accounting book values and analysts’ forecasts of earnings and the cost of equity capital.

Section 4: Reverse engineering the abnormal growth in earnings valuation model: PE ratios and PEG ratios

The residual income valuation model anchors the valuation of equity on book value of equity and makes adjustments to this valuation via future expected residual income. The abnormal growth in earnings model, which is also derived from the dividend capitalization model, anchors the valuation of equity on capitalized future earnings and then makes adjustments to this value via future expected abnormal growth in earnings.

In Section 4, I derive and illustrate the abnormal growth in earnings valuation model, focusing on the meaning of abnormal growth in earnings. Reverse engineering the abnormal growth in earnings valuation model to obtain estimates of the expected rate of return and expected growth beyond the earnings forecast horizon is also illustrated. Valuations based on the price-earnings (PE) ratio and on the PEG ratio (the PE ratio divided by short-term earnings growth) are special cases of the abnormal growth in earnings valuation model. I show in Section 4 that reverse engineering these ratios to obtain estimates of the expected rate of return may rely on assumptions that are not descriptively valid. I illustrate modifications that may improve these estimates of the expected rate of return.

Section 5: Reverse-engineering accounting-based valuation models to obtain firm-specific estimates of the implied expected rate of return

Section 5 focuses on reverse engineering the residual income valuation model and the abnormal growth in earnings valuation model to obtain
firm-specific estimates of the implied expected rate of return on equity, which, in turn, may be used as estimates of the cost of equity capital. I present a critical assessment of the most commonly used reverse-engineering methods.

Sections 6 and 7: Reverse engineering the valuation models to obtain portfolio-level estimates of the implied expected rate of return

Section 6 describes methods of reverse engineering the abnormal growth in earnings valuation model to obtain portfolio-level estimates of the implied expected rate of return. Section 7 describes two methods for reverse engineering the residual income valuation model to obtain portfolio-level estimates of the expected rate of return. The clear advantage of these methods is that they simultaneously estimate the expected rate of return and the expected growth rate implied by the data. Estimating both of these rates avoids the need for making inevitably erroneous assumptions about the expected growth rate beyond the earnings forecast horizon. The growth rates are the expected rate of change in abnormal growth in earnings and the expected residual income growth rate.

Section 8: Methods for assessing the quality/validity of firm-specific estimates

Section 8 describes and evaluates two approaches to assessing the validity/reliability of firm-specific estimates of the expected rate of return on equity capital. The first method asks: Do the estimates of ex ante expected return explain ex post realized return? The second method, which is more common in the literature, asks: What is the correlation between the estimates of the expected rate of return and commonly used risk proxies? I show that the second method has serious shortcomings and conclude that the method that relies on explanatory power for ex post realized returns, after controlling for omitted correlated variables, is the best extant method for evaluation of the estimates.

Section 9: Measurement error in firm-specific estimates of the expected rate of return

Section 9 focuses on the firm-specific estimates of the implied expected rate of return in the extant literature and summarizes results of
analyses of their quality and validity. Unfortunately, the news is bad; the firm-specific estimates are quite poor, and thus unreliable. I hasten to add, however, that this is not a reason to abandon the use of these estimates. The lack of reliability is a reflection of the fact that the research literature is in its infancy; there are significant opportunities for research that has the aim of improving these estimates. Section 11 provides some suggestions.

Section 10: Bias in estimates of the expected rate of return due to bias in earnings forecasts

Evidence of bias, that is systematic or nonzero average error, in estimates of the implied expected rate of return is presented and discussed in this section. This evidence complements the evidence of error at the firm-specific level discussed in Section 9.

Section 11: Dealing with shortcomings in firm-specific estimates

Section 11 suggests ways of dealing with the shortcomings in firm-specific estimates of the implied expected rate of return and ways of mitigating the effects of bias in portfolio-level estimates. Possible directions for future research are also discussed.

Section 12: Methods for determining the effect of a phenomenon of interest on the cost of capital

Much of the research literature asks the question: What is the effect of a phenomenon of interest (for example, disclosure quality, cross-listing, adoption of IFRS) on the cost of equity capital? Section 12 describes a method for determining these effects. The method compares estimates of the implied expected rate of return among groups of stocks, which differ in the phenomenon of interest. The method also permits introduction of control variables to deal with differences among the groups of stocks.

Section 13: Data Issues

Section 13 describes data issues that are often, in fact usually, encountered when estimating rates of return implied by accounting data and market prices. These issues are often overlooked even though they may be important as a practical matter. Ways of dealing with these issues
8 Introduction

are discussed. The main focus is on developing a method that facilitates daily estimation of the implied expected rate of return using only publicly available information at the estimation date.

Section 14: Some thoughts on future directions

Section 14 provides a brief summary and speculates on possible directions for future research.
References

References

Foundations and Trends in Accounting.

McGraw-Hill.

Richardson, S., S. Teoh, and P. Wysocki (2004), ‘The walk-down to beatable analyst forecasts: The role of equity issuances and insider trading incentives’.

Williams, M. (2004), ‘Discussion of “The role of information precision in determining the cost of equity capital”’.