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ABSTRACT

This monograph first describes the graph or network rep-
resentation of Double-Entry bookkeeping both in theory
and in practice. The representation serves as the intellectual
basis for a series of applied computational works on pattern
recognition and anomaly detection in corporate journal-
entry audit settings. The second part of the monograph
reviews the computational theory of pattern recognition
and anomaly detection built on the Minimum Description
Length (MDL) principle. The main part of the monograph
describes how the computational MDL theory is applied
to recognize patterns and detect anomalous transactions
in graphs representing the journal entries of a large set of
transactions extracted from real-world corporate entities’
bookkeeping data.

Pierre Jinghong Liang (2023), “Bookkeeping Graphs: Computational Theory and
Applications”, Foundations and Trends® in Accounting: Vol. 17, No. 2, pp 77-172.
DOI: 10.1561,/1400000070.

©2023 P. J. Liang



Full text available at: http://dx.doi.org/10.1561/1400000070

1

Introduction and Overview

This monograph grew out of a series of interdisciplinary research projects
conducted primarily at Carnegie Mellon University starting in 2017 and,
at the time of this writing, still on-going. While future work, like any
research endeavor, remains unpredictable, a theme in both the nature
of results and in how the work is conducted has emerged, which are
recorded here as the main ideas in the monograph. The main ideas are:

1. Representing journal entries as graphs unleashes the power
of modern computational graph-mining tools;

2. Academic and practical advances require interdisciplinary
teams working closely with industry practitioners.

1.1 Main Idea No. 1: Power of Graph Representation

Double-entry bookkeeping remains a foundation of the financial infras-
tructure in any modern organization. Not surprisingly, it is one of the
favorite research topics of many scholars, including Professor Yuji Ijiri
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of Carnegie Mellon. Among many of his research interests, double-entry
bookkeeping occupies a special place within Ijiri’s work, spanning its
underlying algebraic foundation (see Ijiri, 1965) to its poetic beauty
(see Ijiri, 1993). High praises of the bookkeeping system articulated by
Johann Wolfgang von Goethe and Arthur Cayley are well-celebrated.
Its important role in the rise of capitalism has been raised by Sombart,
Webber, and Schumpeter. More recently, interest in double-entry is evi-
dent in the works of Waymire and Basu (2008) and Basu and Waymire
(2021)

As recognized long ago, a deep connection between linear algebra and
double-entry bookkeeping exists; good sources are Ijiri (1967) and Ijiri
(1993). By recording each transaction in two accounts, the double-entry
system links all accounts of an entity together and in the process creates
laws that govern the relation between the transactions and account
balances. Such laws can be represented as properties of a matrix or,
equivalently, as properties of a graph, as succinctly summarized by
a famous theorem from Leonhard Euler, according to Professor John
Fellingham (2018).! Beyond its elegance, the structure proves useful in
a variety of problem-solving scenarios.?

One such scenario, the one we take up in this monograph, involves
solving the problem of pattern recognition and anomaly detection among
large sets of journal entries within an entity. As proved useful in many
applied tasks such as the analysis of the social network, recommenda-
tion systems, and telecommunication, analyzing graphs is unusually

1On page 1, Professor Fellingham states that “One way to describe a general
result is a famous theorem from Leonhard Euler: The number of nodes minus one
plus the number of enclosed regions equals the number of arcs (see, for example,
Trudeau, 2013). Another way is to use accounting words: The number of T-accounts
minus one plus the number of loops equals the number of journal entries. There
is also a linear algebraic expression about the matrix underlying the system: The
dimension of the row space plus the dimension of the null space equals the number
of columns in the matrix.”

2For example, one such use is its economic function in providing information.
That is, the structure can be thought of as part of an information source for an
economic decision-making purpose, as envisioned by Butterworth (1972). In Arya
et al. (2000a), a specific inference problem was formulated to assess the role of
double-entry bookkeeping structure. See related work in Arya et al. (2000b) and
Arya et al. (2004).
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useful and makes use of many well-developed and powerful analytic
tools. Specifically, the different computational solutions reported in this
monograph are unified by sharing a common underlying principle: the
Minimum Description Length (MDL) principle. This principle, which
originates in the 1970s proposed by Rissanen (1978), has its intellectual
roots in the Komolgorov complexity concept in the 1960s (Kolmogorov,
1965, Solomonoff, 1964, and Chaitin, 1969). The original idea is that we
can measure the patterns in any object (such as the number 7) by the
length of computer program that generates the object. A simple example
is the very short expression developed by the amazing Indian mathe-
matician Ramanujan who found the following formula around 1910. Ac-
cording to Faloutsos and Megalooikonomou (2007), the first million bits
of fractional extension of 7 can be implemented by Ramanujan’s formula

1 2v2 & (4n)!(1103 4 26390n)

T 9801 20: (n!)4396™

which is probably the shortest and fastest converging formula for m
according to Schroeder (2009). So while the first million bits of fractional
extension of 7 appear order-less, it does have a pattern, which is distilled

in the short computational program inherent in Ramanujan’s formula.
This is the core idea behind MDL, which has found wide use and
success in modern machine learning. In our work, it has proven useful
in analyzing graphs generated by the bookkeeping data. This is why we
claim that representing journal entries as graphs unleashes the power
of modern computational graph-mining tools.

1.2 Main Idea No. 2: Interdisciplinary Collaboration with Compu-
tational Scientists and with Industry Partners

The second lesson from conducting research projects on which the cur-
rent monograph is based is the critical importance of interdisciplinary
collaboration. Considering the sizeable distance between research envi-
ronments of the accounting and computer science fields, an open-minded
and sometimes creative, outside-the-box collaboration is indispensable
in achieving any substantive, positive outcome. The success of these col-
laborations relies heavily on the following unique contributory sources:
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e Industry partners: They are the sources of practical research
questions and real-world data.

o Computer scientists: While not accounting experts, they possess
computational theories and tools that are a must to handle the part
of problem-solving that is not familiar to accounting researchers.

¢ Accounting scholars: While not computational experts, the
conceptual understanding of bookkeeping and its mathematical
representation in matrices and graphs serves as the linchpin con-
necting the practical problems posed by the industry partners
and the problem-solving tools of the computer scientists.

In conducting this work that is a departure from typically social-
science styled accounting research, which has been the dominant para-
digm since the mid-1960s, accounting researchers are likely to return to
their earlier management science roots. That is, it would be useful to:

o Adopt a worldview focusing on the information-processing role
of bookkeeping devices such as Double-entry bookkeeping, as
capturing economic activities in an efficient way,

e Focus on solving problems faced by practitioners in their daily work
(such as how to design solutions to efficiently detect anomalous
transactions in the general ledger data), and

e Deploy research methodologies more akin to engineering solu-
tions such as information/coding theory, complexity theory, graph
theory and computational tools such as graph mining.

In the end, these works reminded this author of the passages on foun-
dational accounting questions discussed in a 2002 Accounting Horizon
commentary by select accounting thinkers Joel Demski, John Felling-
ham, Yuji Ijiri and Shyam Sunder (see Demski et al., 2002). Using the
well-known Hatfield (1924) quote:

“I am sure that all of us who teach accounting in universities
suffer from the implied contempt of our colleagues, who look
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upon accounting as an intruder, a Saul among the prophets,
a pariah whose very presence detracts somewhat from the
sanctity of the academic halls.” (page 1)

as the starting point, the commentary attempted to:

“serves up a positive and ambitious outlook for accounting
as a scholarly discipline. Hatfield reminds accountants of
their proud heritage; Demski calls for renewed scholarly
leadership. We think refocusing on foundational issues in
both our educational and research endeavors will invigorate
us as individuals as well as our discipline.” (page 167)

The initial results shown in the work reported here give some comfort
that double-entry bookkeeping, a human invention at least five-hundred-
years old and the very foundation of modern accounting, still factors in
a substantial way in building cutting-edge computational solutions to
the challenging yet practical real-world problems confronting accounting
researchers and practitioners.

1.3 Artificial Intelligence in Accounting: The Backdrop

Before proceeding, I provide my own perspective on the current trans-
formation taking place in accounting practice and in academic research
and education.

1.3.1 Rise of Machine Learning in Accounting

It is beyond the scope of this work to offer a long-form review of
the intellectual history leading up to the current visible advances in
applying data-driven tools, either labeled as data-mining, machine
learning, digital transformation, or artificial intelligence (you name it!)
to accounting practice, research, and education. Here we provide a
perspective which may be useful in placing the work reported here into
the large, dynamic picture of the changing accounting landscape. This
landscape is central to the integration of these Al tools into much of the
accounting enterprise (in practice, research or education) whenever and
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wherever any part of human labor can be replaced by an automated
process with equal or higher efficiency.

One can trace back the competing approaches to applied problems we
see today all the way to the divergent paths suggested by the Al pioneers
in the fateful 1956 Summer Dartmouth workshop gathering, where
the term AI is coined. Symbolic reasoning and early expert systems
were encouraged by those with a strong theoretical starting point (by
participants like, for example, Herb Simon), while inductive systems (by
participants like, for example, Solomonoff) were also proposed, serving
as early ideas underlying the future rise of machine learning.

Machine learning, with the aid of both faster computer hardware
and the exponentially growing size of machine-readable datasets, is now
leading the race to realize Al in many parts of the business society. One
useful way to view its central function is saving labor costs, broadly
defined. Given that accounting practice, research, and education are
currently labor intensive, and have been for decades if not centuries, it
is no surprise that accounting, like many other disciplines, would be
suitable for an industry disruption given the promise of Al. Next, let us
use the labor-cost saving theme to discuss the various roles accounting
researchers can play in the pending disruption the entire profession
must face.

1.3.2 Four Roles for Academic Accountants

One way to organize our thinking about Al and accounting is to group
the enterprise into the following four distinct roles or activities for
academic accountants.

o« Help save practitioners’ labor costs To achieve this goal,
the academic researchers would create new Al tools to (better)
solve existing or new accounting problems faced by accounting
practitioners in their business environment every day. Labor costs
are the primary cost of business for these accounting profession-
als so a major innovation theme has been replacing labor with
machines. The work reported here and others, especially within
the data-mining community, starting with those referenced in
Margineantu et al. (2005) and the KDD workshop report, fall
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into this category. A recent work by Ding et al. (2019) illustrates
this approach where machine learning techniques improves an
accounting estimate using the data from insurance companies.
In a framework-setting piece, Sun (2019) points to the potential
for highly sophisticated machine learning tools like deep learn-
ing can bring to the practical work of corporate audits. In fact,
one on-going collaborative effort currently at CMU is leveraging
graph neural network, a deep learning method, to solve anomaly
detection problems when the data is both complex (journal entries
are high-dimensional objects) and massive (in terms of number of
transactions). See Section 4 for a brief description.

One key distinction in this type of work is that new technologies
are discovered and developed. That is, it is not typically the case
that an off-the-shelf technology (algorithm) can be applied suc-
cessfully to financial or accounting data. This is because most
successful off-the-shelf technologies are not really robust. They
may be highly successful but only in a specific application with a
very specific task within a specific domain. As a result, when ML
applications began to move into new areas beyond the traditional
domains (such as the military or healthcare space), new challenges
emerge. As an example, while graph mining has been quite popu-
lar, the bookkeeping graphs discussed in this monograph present
unusual challenges in graph mining because of the uniqueness of
the feature-set of the bookkeeping graphs. Within this category,
interdisciplinary work, as emphasized earlier in this section, can
be extremely important. Future challenges along these lines in-
clude the optimal integration of humans and the machine from a
technical or engineering perspective.

Help save own and other researchers’ labor costs Much of
the existing academic accounting research can be labor intensive
and consequently the lack of labor may prevent research to ask or
solve certain new research problems. Here we have opportunities
to adapt and deploy existing Al tools to solve existing accounting
research problems better. An obvious path is data gathering:
images, speech, natural language, etc. A good example is the long
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and varied fundamental analysis literature recently invigorated by
data mining and Al techniques. Classic works, like Ou and Penman
(1989) and Nissim and Penman (2001) and its modern extensions
such as Yan and Zheng (2017), focus almost entirely on accounting
numbers to explain current and predict firm-level future outcome
variables, like earnings and stock returns. Binz et al. (2020) also
takes an explicit machine learning approach to consider non-linear
relations between accounting ratios and returns. Another recent
model built by Cao et al. (2021) incorporates corporate financial
information, qualitative disclosure, and macroeconomic indicators.
The recent literature on robo-analysts (Coleman et al., 2020 and
Grennan and Michaely, 2020) and the effect of Al-readership on
corporate disclosure (Cao et al. 2020) are also ready examples

here.?

e Use saved up labor cost to address Al-induced new prob-
lems While the promise of Al is allowing researchers to open their
minds to new problems made possible only because of Al, the
challenges are the thorny problems to the individual or society
only brought about by the advances of Al. Like many disruptive
technologies before it, Al brings up new problems that have not

3 Another applying-ML-to-existing-research example is financial-text-as-data. For
example, Li (2008) studied the statistical associations between the linguistic features
of the annual report (10K filings) and its components, summarized as a Fog index, and
numerical information reported in the same or future annual reports such as earnings
numbers as well as the persistence of earnings over time. Later work follows this basic
framework by extending the set of textual properties of primary accounting documents.
The textual features include transparency measures (readability), tone (optimism),
and self-serving attribution. Additional work links these extracted properties to
economic variables such as book-to-market ratio, accounting accruals, return volatility,
cost of capital, litigation, and impact of financial analysts’ information processing
efficiency. Li (2010a) is an excellent introductory summary. Most research approaches
to extracting information from text involve a supervised machine learning model
in specific examples like Kogan et al. (2009) and Frankel et al. (2016) who use
support vector regressions, Li (2010b) who uses naive Bayesian model, Brown et al.
(2020) who use a combination of a topic model and supervised regression, Ke et al.
(2020) who use a multistep procedure involving a supervised model, and Garcia et al.
(2021), who use multinomial inverse regression. For a recent example of applying
text-regression to traditional topic of post-earnings-announcement-drift or PEAD,
consider Meursault et al. (2021).
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confronted us before. This affords new academic questions. Now
that AT is used in society (firms, individuals, governments, etc.),
how must we adapt and create new institutions or norms of behav-
ior to minimize its destructive aspects? Here the question about
optimal integration of human and machine may also emerge from
less of an engineering but more social-economical perspective.*

o Help save students’ time learning the accounting tools
Cognitive science has a lot to say about how students learn.
With better Al-based technology, instruction and learning can be
improved in all areas of learning, including accounting. Research
opportunities in accounting education also arise with the help of
Al At the practical level, with the simple fact that our students
will graduate to jobs and societies with an increasing presence of
Al, it is important to prepare our curriculum to better prepare
students.

1.3.3 A Long Way to Go

Every major paradigm shift in the accounting history of thoughts has
been accompanied by forces emanating from outside the accounting
discipline, in addition to internal forces. These could be outside aca-
demic forces such as the rise of information economics within academic
economics discipline, or business and societal changes, such as the rise
of capital market and thus increased importance of external financial
accounting, or the varying levels of general inflation. In this latest it-
eration, a societal-level driving force has been the marked advance in
information technology which dramatically lowers the cost of storing
and analyzing massive amounts of data.

What this monograph describes is only the beginning of an inter-
disciplinary approach to solve particular types of auditing problems
faced by practitioners. The eventually successful solutions are likely to
incorporate solutions from a host of interdisciplinary research efforts,

4For example, Cao et al. (2020) show a potential feedback mechanism: Higher
Al-readership causes disclosure to be more catered to machine readers (than hu-
man readers) by avoiding words that are known to be perceived negatively by
computational algorithms.
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similar to ours, to address complex accounting and auditing problems
beyond what a simple framework, like ours, can fully capture. We
have a long way to go in building a robust, new theory of accounting
which, like the iterations built by earlier generations of scholars, must
respond positively to the environment and must incorporate the best of
contemporary scientific ideas and tools into the existing best ideas in
accounting thoughts.
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A

Technical Background on Entropy, Coding, and
Code-Length

This section reviews the necessary theoretical ingredients for a com-
putational theory of pattern recognition. Readers familiar with basic
information and coding theory of Shannon (1948) may skip sections
A.1, A.2, or A.3 respectively.!

A.1 Entropy and Information Theory

We now follow Cover (1999) in describing the basic definitions and
theorems on entropy, efficient coding, and code length, all necessary in-
gredients for building a theory of pattern recognition based on minimum
description length (MDL).

We begin with a definition of Entropy of a probability distribution.

Definition A.1 (Entropy). Let X be a discrete random variable with
alphabet X and probability mass function p(z) = Pr{X =z},x € X.

1For more complete treatments, consult Cover (1999) for basic information theory
and coding, Li et al. (2019b) for more formal treatment of the theory and applications
of Kolmogorov Complexity, and Griinwald (2007) for the specific application to
Minimum description length (MDL) principle.
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a  with probability},

gX is binary with d.lSLI‘lbl%thn {p, 1-p}, If X has a distribution: X — 1? “?‘h Pmbf“b?l?‘)?-
ntropy H(X) reaches 1-bit (using base- ¢ with probabilityg,
2), its maximum at p=.5. d  with probability3.

The entropy of X is

1 1 1 1 1 1 1 1 7 .
H(X)=—=log=—-log= — =log = — = log = = — bits.
2 2 4 4 8 8 8 8 4
= 05 Thought experiment: Suppose we wish to determine the
T value of X with minimum number of binary questions?
0
0

0.5
PrX=1)

Figure A.1: Some Simple Examples of Entropy Calculation

The entropy H(X) of X is
H(X)=-> p(x)logs p(x)
reX

where b is the base of logarithm.

o Capital letter (X) denotes a random variable, lower case (z)
denotes a particular realization or outcome, and fancy script (X))
denotes its alphabet (outcome/sample space);

o Entropy is a property of a distribution p(x) (z may not be a
number) but entropy itself is the expectation of a real random
variable g(X) = logblﬁ:

HX) = Y ga)p(z) = Eplogbp(lX)
rxeX

o If the log is to the base 2 (or e, or 10), entropy is expressed in
bits (or nats or bans).

Figure A.1 shows a few examples of entropy.
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Entropy Interpretations

o Entropy is a measure of the average uncertainty in a random
variable.

o Entropy measures the number of bits on average required to
describe the random variable.

e Consider a random variable that has a uniform distribution over
32 outcomes. To identify an outcome, we need a label that takes
on 32 different values. Thus, 5-bit strings suffice as labels:

32
1 1 )
H(X) = - E 372l092§ = loge32 = 5(blt8)
i=1

e Suppose we wish to send a message indicating which of the 8
horses won the race. Assume that the probabilities are:

{1/2,1/4,1/8,1/16,1/64,1/64,1/64,1/64}
with an H(X) = 2.

— option-1: send an index of the winning horse: 3 bits for any
of the horses
— option-2: send {0,10,110,1110,111100,111101,111110,

111111} achieves a lower expected description length 2 bits
(H(X)=2).

e Also the lower bound on the average number of questions needed
to identify the variable in a game like “20 questions.”

Definitions: Joint and Conditional Entropy

Definition A.2 (Joint Entropy). The joint entropy H(X,Y) of a pair
of discrete random variables (X,Y) with a joint distribution p(x,y) is
defined by

H(X,Y)==> > plz,y)log p(z,y)

yeyzeX
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The entropy of X is

istri 1 11 1 11 1
Suppose X and Y are distributed as H(X)=—=log= — —log~— — = — —log

follows: 2 2 4 4 8
The entropy of Y is H(Y) = 2 bits;

X 4
Y 1 2 3 4 HXIY) =Y p(Y =) H(X|Y =i)
=
1 1 1 1
1 8 16 32 32 1 (1111>+1H(|111)
2 L 1 € €1 T4 \2’4'8'8) T4 \42°8'8
- 16 8 32 32 | 111
1 1 1 | +—H(—.—— )+ H(1,0,0,0)
3| 1€ 2 % 4 \4 41
1 7l><7+|><7+1><7+ x 0
4 1 0 0 0 =gxgtyxztyx?

Notice: H(Y|X) # H(X|Y),

But H(X) — H(X|Y) = H(Y) — H(Y|X)

Figure A.2: Some Simple Examples of Conditional Entropy Calculation

Definition A.3 (Conditional Entropy). If (X,Y) ~ p(x,y), the conditional
entropy H(Y|X) is defined by

HY|X) ==Y p) Y pylz)log p(ylz) = > p(z)H(y|X = z)
Xex yey XeXx

Theorem A.1 (Chain Rules).
H(X,Y)=H(X)+H(Y|X)
H(X,Y)=H(Y)+HX|Y)

H(X,Y|Z)=H(X|Z)+ H(Y|X, Z)

Figure A.2 illustrates some follow-up examples.

Definitions: Relative Entropy

Definition A.4 (Relative Entropy). The relative entropy or Kullback-
Leibler distance between two probability mass function p(z) and ¢(x) is
defined as

p(z) p(X)
Dpllg) = 3 pla)logs e Eplogq()

XeX
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Relative Entropy Interpretations
e D(p||q) is always non-negative;

o But D(p||q) is not a true distance because it may violate symmetry
and triangle inequality for some probability distributions;

e D(p||lg) is a measure of the inefficiency of assuming distribution ¢
when distribution p is true; and

o Under p, H(p) is the average description length, but if we instead
use ¢ by mistake, H(p) + D(p||q) is the average length.

Definitions: Mutual Information

Definition A.5 (Mutual Information). The mutual information is the
relative entropy between the joint distribution p(x,y) and the product
distribution p(x)p(y):

1Y) = Dp(a llp(@)p(v) = By plog mo s

Mutual Information Interpretations

o I(X;Y) is a measure of the amount of information that one
random variable (X) contains about another random variable
(¥).

e I(X;X) = H(X): the original entropy is sometimes referred to
as self-information.

e The reduction in the uncertainty of X due to the knowledge of Y.

— Only true on average. For a particular realization, say,
Y=y,HX|Y =y) <or > H(X).

— For example, in a court case, specific new evidence might
increase uncertainty, but on average evidence decreases un-
certainty.
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Suppose X and Y are distributed as
follows: The entropy of X is
. - 1 1 1 1 1 1 1 1 7.
Joint X=1 2 3 4 Marginal H(X):—5log5—zlogz—glog§—glogg:Ibns.
v=1 1/8 1/16 1/32 1/32 1a
2 1/16 r 1/8 1/32 1/32 1/4 The entropy of Y is H(Y) = 2 bits;
3 1/16 1/16 1/16 1/16 14
4 14 0 0 0 va Calculate: I(X;Y) = %bits = 375 bits
Marginal 1/2 1/4 1/8 1/8 1
7 11 _3,.
Check: H(XX) — H(X|Y) = i gblts
Product ~ X=1 2 3 4 Marginal
Need to verify:
¥=1 1/8 1/16 1/32 1/32 1/4
3
2 1/8 1/16 1/32 1/32 1a Ebits = H®X) — HXIY) = H(Y) — HY|X)
3 1/8 1/16 1/32 1/32 14
4 1/8 1/16 1/32 1/32 14
Marginal 1/2 1/4 1/8 8 1

Figure A.3: Some Simple Examples of Mutual Information Calculation

H(X,Y) =27/8

H(X) =7/4 H(Y)=2

Figure A.4: Relation among entropy H, joint (H(X,Y’) and conditional (H(X|Y)
entropy, and mutual information (I(X;Y"))



Full text available at: http://dx.doi.org/10.1561/1400000070

A.2. Codes and Code Length 75

Figure A.3 provides numerical examples of mutual information and
Figure A.4 provides an illustration of the relation among entropy, joint
and conditional entropy, and mutual information.

Theorem A.2 (Non-negativity of Mutual Information). Let X, Y be any
random variables
I(X;Y) >0

with equality if and only if X and Y are independent.

Theorem A.3 (Conditional Independence). Let X,Y, Z be any random
variables
I(X;Y|Z) >0

with equality if and only if X and Y are conditionally independent
given Z.

A.2 Codes and Code Length

Prior to this point, we focus on the distribution function of p(z). Recall
H(x) and other measures are all functions of p(x), not x themselves.
We did not pay any attention to what is in X other than the number of
different = € X, or its cardinality |X|.

Now we move to deal with objects in the set X. If each x € X
is complicated in that each requires lots of resources to describe and
transmit, it may be a good idea to compress x before transmitting
them to others to save resources. In this sense, data compression is
definitely an economic activity. Consider sending a voice or picture
over long distances. The economy is to convert actual voices or picture
segments into numerical strings (or codes) in such a way to minimize
the total cost of the transmission. Two human tasks emerge: (1) picking
a set of numerical strings to represent voice/picture segments; and
(2) constructing sequences of strings in an efficient way. Figure A.5
illustrates the data compression and coding tasks.

Definitions: Codes and Length

Definition A.6 (Source Code). Let D* be the set of finite-length strings
of symbols from a D-ary alphabet. Define a source code C be a discrete
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P(X)
Random

Var;)a(;:les - Nature picks x;

Codeword
using
alphabet D

stringq

Human decode string; — ’ Human send string;

string, ‘ A

Economics: Compress set X to save resources
between Humans

Figure A.5: Summary of Data Compression and Coding

random variable X mapping from X to D*. Call C(z) as the codeword
corresponding to x and ¢(x) denote the length of C(x).

Definition A.7 (Expected Code Length). Let p(z) be probability mass
function of x € X, the expected code length of a source code C(z) for
a discrete random variable X is given by

L(C) = ) p(x)l(x)

zeX

Definition A.8 (nonsingular). A code C(X) is nonsingular if every
element of the range of X maps into a different string in D*; that is,

r#1 = C(x) # C(z')

Definition A.9 (Extension). The extension C* of a code C' is a mapping
from the finite-length strings of X to finite-length strings of D, defined
by

C(x129...70) = C(x1)C(22)...C (1)

where C'(x1)C(x3)...C(x,) indicates concatenation of the corresponding
codewords.
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with probability3,

(SIS

. . . .
Code Hierarchy: If X has a distribution: X — with probabilitys,
¢ with probabilityg,

d with prohahilily%.

Nonsingular, But Not Uniquely Decodable,
X Singular Uniquely Decodable But Not Instantaneous  Instantaneous
Unicueh a 0 0 10 0
niquely
deony b 0 010 00 10
c 0 01 11 110
d 0 10 110 1

Figure A.6: Code Hierarchy

Definition A.10 (Uniquely Decodable). A code C(X) is Uniquely De-
codable if the extension of C'(X) is nonsingular.

So any encoded C-string in a uniquely decodable code has only one
possible source z-string producing it but one may have to look at the
entire string to determine even the first symbol in the corresponding
source string

Definition A.11 (Prefix Code). A code C'(X) is a prefiz or instantaneous
code if no codeword is a prefix of any other codeword.

An instantaneous code can be decoded without reference to future
codewords or it is self-punctuating or (in a case of bad naming) Prefiz-
free.

Figure A.6 illustrates the Code Hierarchy described above.

Examples of Source Codes and the Length Consider these two
examples:

o A Two-state example: suppose X = {red, blue}, here is a sim-
ple example of a source code: C(red) = 00; C(blue) = 11 with
alphabet D = {0, 1}.

e A Four-state example is shown in Figure A.7.
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a  with probability},

If X is binary with d.lSLl‘lbl%thn {p, 1-p}, If X has a distribution: X — b vx?th probfqh?l?l)?.
Entropy H(X) reaches 1-bit (using base- ¢ with probabilityg,
2), its maximum at p=.5. d  with probability3.

The entropy of X is

1 1 1 1 1 1 1
- ——log- og —
2 4 4 8 8 8 8

1
H(X) = —5102

= 05 Let’s code X with C(a) = 0; C(b) = 10; C(c) = 110; C(d) = 111;
: The expected L (C) = 1.75 bits = H(X)

‘Why not use C(b) = 1 to save code-length?

Answer: what if we need to code a sequence of X’s:

0.5 1 For example: the bit string 0110111100110 is uniquely
PriX=1) decoded as “acdbac”

Figure A.7: Code Hierarchy Examples

A.3 Kraft Inequality and Optimal Codes

We wish to construct instantaneous codes of minimum expected length
to describe a given source. It is clear that we cannot assign short
codewords to all source symbols and still be prefix-free. The set of
codeword lengths possible for instantaneous codes is limited by the
following inequality.

Theorem A.4 (Kraft Inequality). For any instantaneous code (prefix
code) C(X) over an alphabet of size D (that is C' : X — D* where
|X| = m), the codeword lengths ¢1, lo, ..., £, must satisfy the inequality

Y Dhi<1

T, €EX
Conversely, given a set of codeword lengths that satisfy this equality,
there exists an instantaneous code with these word lengths.

From the Krafts theorem, any codeword set that satisfies the prefix
condition has to have the corresponding set of code-lengths satisfy the
Kraft inequality: finding codewords is the same as finding the lengths
of codewords. So the problem of finding prefix codes with the minimum
expected length becomes the same thing as finding/assigning a set of
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lengths ¢4, {5, ..., £, satisfying the Kraft inequality and whose expected
length L(C') is minimized.

Theorem A.5 (Optimal Prefix Code). The expected length L of any
instantaneous D-ary (such as binary, ternary, etc.) code for a random
variable X is greater than or equal to the entropy Hp(X); that is

L > Hp(X)
with equality if and only if D™% = p;, Vi € {1,2,...,m}.

To find the codes, solve a standard constrained optimization problem:

el,?ga,.i.r.l,em Z il (minimize expected code length)
4 . .
s.t. Z D% <1 (respecting Kraft Inequality)

1eX

Assuming the constraint binds, use Lagrange multiplier approach:

L= pili+ A <Z Dt — 1)

1€EX

oL
7 pi — AD"%log.D =0
Dti=_Pi_ = 1/logeD

~ Mog.D
pi=D""% — £; = —logpp;

Value function evaluated at the optimal £;: L* = Y pff = Hp(X).
This is a remarkable result. Optimal (data) compressing of A is linked
to Entropy via efficient coding. This exhibits the enduring power of the
Entropy concept.

Now how to find the optimal codes?

Definition A.12 (D-adic). A probability distribution p(X) is D-adic if
each of the probabilities is equal to D~" for some n.

Here is a procedure for finding an optimal code:
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o The D-adic distribution that is closest (in the relative entropy
sense) to the distribution of X.

e Construct the code by choosing the first available node in the
sequence as in the proof of the Kraft inequality.

This procedure is not easy, since the search for the closest D-adic
distribution is not obvious. Alternatives include a good suboptimal
procedure (Shannon-Fano coding) and the a simple procedure called
Huffman coding which actually finds THE optimal prefix code (for a
known distribution).

A.4 Shannon-Fano Codes

Definition A.13 (Shannon Code). Let p; denote the Pr(X = z;) where
X ={z1, 22, ..., Ty }. Shannon Code assigns codeword length to x; with:

b = logl
b

Shannon coding may be much worse than the optimal code for some
particular symbols. For example, consider two symbols, one of which
occurs with probability 0.9999 and the other with probability 0.0001.
Then, using Shannon Coding gives codeword lengths of 1 bit and 14 bits.
The optimal codeword length is obviously one bit for both symbols. So
the Shannon codeword for the infrequent symbol is much longer in the
Shannon code than in the optimal code. Figure A.8 is an illustration of

Shannon-Fano-Elias Coding.

Competitive Optimality of Shannon Code

e Consider the following two-person zero-sum game: Two people
are given a probability distribution and are asked to design an
instantaneous code for the distribution.

e A source symbol is drawn from this distribution, and the payoff to
player A is 1 or -1, depending on whether the codeword of player
A is shorter or longer than the codeword of player B. The payoff
is zero for ties.
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Shannon-Fano-Elias Coding

Fx)

Fx)
Fix)

Flx—1)]

1 2 x x

Figure A.8: The Basic Idea of Calibrating a Model Economy

Theorem A.6 (Competitive Optimality of Shannon Code). Let
l(x) = logﬁ be the codeword lengths associated with the Shan-
non code, and let ¢'(z) be the codeword lengths associated with
any other uniquely decodable code. Then

1
2071

Prl(X)>0(X)+c) <

e Hence, no other code can do much better than the Shannon code
most of the time.

As a practical manner, Shannon-Fano-Elias coding is widely used
in practice due to its ease of use, especially if expected coding length,
not necessarily the codes themselves, is the key consideration. This
is precisely the case in pattern recognition applications in machine
learning. From here, we connect to Section 2.3 on the 1960s idea of
Kolmogorov complexity, a giant discovery in its own right, but serves
as the bridge between the original description length ideas of Shannon
(1948) to the applied use of description length in pattern recognition
inherent in the MDL principle of Rissanen (1978).
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B

Formal Problem Statements and Solutions

This appendix provides the formal problem statements and analytic
solutions.

B.1 Use MDL Approach to Detect Meta-data Anomalies

Definition B.1 (Bookkeeping Example). A database D is a collection of
n journal entries where each entry has m column features (such as fi is
effective date; fo is name of the approver; f3 account debited;...). Each
feature f € F has a domain dom(f) of possible values (e.g., there are 400
different accounts and 10 approvers). arity(|accounts debited|) = 400:

e The domains are not necessarily distinct between features: some
accounts are both debited or credited; some approvers are also
initiators.

o An item is a feature-value pair can be {account-debited = cash}.

o An itemset (a pattern) is a pair {account-debited = cash; approver
= doe; ...}

Step 1: Define what a model is: The model is a two-column
code-table (CT):

o The first column contains patterns (p), i.e., itemsets (F'), ordered
by descending by length and by support;

o The second column contains the codeword code(p);

e Usage of p € CT: number of t € D containing p in their cover.

82
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Table B.1: The Code Table for CompreX

Table 1: An illustrative database D and an example code table
CT for a set of three features, F'={f1, f2, f3}.

Data Code Table
fifofs p(F =) | code(p) wusage(p) L(code(p))

abx abx 0 4 1 bit
abx ac 10 2 2 bits
abx X 110 1 3 bits
abx y 111 1 3 bits
acx

acy

CompreX exploits correlation among some features by building
multiple codes, probably smaller tables for each highly correlated group
of features instead of a single table for all features (Table B.1).

Definition B.2 (Feature Partitioning). A feature partitioning P =
{F1, Fy,...,F} of a set of features F is a collection of subsets of F
where:

o Each subset contains one or more features: VF; € P, F; # 0;
o All subsets are pairwise disjoint: Vi # j, F; N Fj = 0; and
o Every feature belongs to a subset: UF; = F.

Step 2: Data encoding scheme: designing a system to encode the
patterns and to encode the data using such patterns, with prefix-free
codes as basic ingredients.

Step 3: Search algorithm: The search space for finding the best
code table for a given set of features, let alone for finding the optimal
partitioning of features, is quite large:

— Finding the optimal code table for a set of |F;| features involves
finding all the possible patterns with different value combinations
up to length |F;| and choosing a subset of those patterns that
would yield the minimum total cost on the database induced on
F;.
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— Furthermore, the number of possible partitioning of a set of m

B.2

features is the well-known Bell number.

While the search space is prohibitively large, it neither has a
structure nor exhibits monotonicity properties which could help
us in pruning. As a result, we resort to heuristics. Our approach
builds the set of code tables in a greedy bottom-up, iterative
fashion.

— Start with P = {f1, fa, ..., fm }-
— Calculate IG(F;, F;) = H(F;) + H(F;) — H(F;, F;) = M(F;
F;) for a pair of feature-subsets of the partition.

— See Akoglu et al. (2012) for details.

Use MDL Approach to Detect Graph Anomalies

Definition B.3 (Bookkeeping Example). A database G is a collection of J

journal entries where each entry is represented as a graph G; = (V}, E;)

with at least two nodes and one directed edge.

A node u € V; corresponds to an account such as cash or accounts
recetvable;

A directed edge (u,v) € E; corresponds to a credit to account u
and a debit to account v;

m(u,v) represents the number of edges from u to v within a same
journal entry G/;

U;Vj corresponds to the set of all accounts in the company’s chart
of accounts (COA);

T denotes the set of account labels: T = {assets, liabilities, equi-
ty} for example.

Step 1: Define what a model is: The model is a two-column
Motif-table (MT € MT):
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o The first column contains small graph structures, i.e., motifs (g),
a connected, directed, node-labeled, simple graph, with possible
self-loops on the nodes.

o The second column contains the codeword codepsr(g) (or ¢) with
length #(g).

Step 2: Data encoding scheme: Design an encoding scheme to
encode the motifs table as well as graphs using the motifs using a given
motif-table efficiently to convert each graph into their corresponding
code-word.

Step 3: Search algorithm.

Definition B.4 (Formal Problem Statement). Given a set of J node-
labeled, directed, multi-graphs in F, find a motif table MT € MT such
that the total compression cost in bits given below is minimized:

il T D = LA+ 0 HEAD
J

e The key idea of the motif table was to economize over frequencies
of sub-graphs commonly used in lots of real journal entries (leading
to patterns).

Use Compression to Detect Anomalies Compression based
techniques are naturally suited for anomaly and rare instance detection.
This is how we exploit the dictionary based compression framework for
this task:

e In a given Motif table, the patterns with short code words, that is
those that have high usage, represent the sub-graphs in the graph
database that can effectively compress the majority of the data
points.

e Consequently, the graphs in a graph database can be scored by
their encoding cost for anomalousness.

o Formally, for every tuple t € D, compute the anomaly score:

score(Gj) = L(G;|MT) = Z L(code(g)|MT)
geEM:g€ecover(Gy)
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e The higher the score, the more likely it is “to arouse suspicion
that it was generated by a different mechanism”.

B.3 Use MDL Approach to Evaluate Account Classification

Problem Statement Given a large graph that is node-labeled, directed,
multi-graphs, create a summary graph which is a representative summary
that facilitates the visualization.

Definition B.5 (Formal: Summary Graph). Let G = {V, £} be a directed
graph with multiplicity m(e) € N and node type l(u) € T. A Summary
graph is a graph Gy = {Vs, s} where every super node v € Vs is
annotated by four components:

e [(v) € T is depicted by color;
o |S,| denote the number of nodes it contains, depicted by size;
o The glyph pu(v) € M depicted by shape; and

o The representative multiplicity m(v) of the edges it summarizes,
depicted by a scalar inside the glyph.

» Each super edge e € & is annotated by m(e) be the representative
multiplicity of the edges between super nodes it captures, depicted
by a scalar on the super edge.

Now we define decomposition of a given summary graph.

Definition B.6 (Formal: Decompression). A Summary graph Gs = {Vs,
Es} with the annotation above decompresses uniquely and unambigu-
ously into G" = dec(Gs){V, £’} according to simple and intuitive rules:

e Every super node expands to the set of nodes it contains, all of
which also inherit the super-node’s type;

e The nodes are then connected according to the super-node’s glyph
(for out(in)-stars a node defined as the hub points to (is pointed
by) all other nodes, for cliques all possible directed edges are
added between the nodes, and for disconnected sets no edges are

added);
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e Super-edges expand to sets of edges that have the same direction.
(If the source/target glyphs involved are not stars, all nodes
contained in source glyph point to all nodes contained in target
glyph. For stars, expanded incoming and out-going super-edges
are only connected to the star’s hub); and

o All expanded edges obtain their corresponding “parent” super-
node or super-edge representative multiplicity.

Two-part MDL: TG-sum In summary, to apply the MDL principle
to a learning task (i.e., the summary graph), we proceed in three main
steps.

e Step 1: Define what the model is: The model here consists
of a list of subsets (v’s) of original nodes (V) to merge, a list of
glyphs (u’s) to design for a given graph G.

e Step 2a: How to encode summarization error given sum-
mary graph: Define a suitable encoding scheme, designing a
system to encode the patterns and to encode the data using such
patterns, with prefix-free codes as basic ingredients.

e Step 2b: How to encode a summary graph based on the
model: Design a search algorithm, allowing to identify in the
data a collection of patterns that yield a good compression under
the chosen encoding scheme.

e Step 3: Search for the best model.

Definition B.7 (Formal Problem Statement). Given a node-labeled,
directed, multi-graph G, find a summary graph G, such that the
encoding cost in bits given below is minimized:

Js = argmin L(G,) + L(G]H)

s.t. H = dec(G.)
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B.4 Benchmark Comparisons

As is standard in algorithmic work, benchmark comparisons are con-
ducted where the same data is subjected to investigation by alternate
detection algorithms. The following Table B.2 lists competing algo-
rithms used in each of the two approaches we developed specifically for
the bookkeeping data. The three technical papers provide additional
details for these benchmarks.

Table B.2: Benchmark Algorithms Used

CODEtect TG-sum
SMT Navlakha et al. (2008)
SUBDUE SUBDUE
iForest SNAP
iForest+G2V CoSum
iForest+DGK VoG
ENTROPY GraSS

MULTI-EDGES Liu et al. (2012D)




Full text available at: http://dx.doi.org/10.1561/1400000070

C

Software Codes

This appendix provides links to codes omitted in the main text. The
codes for the algorithms described are available at:

o CompreX: http://www.andrew.cmu.edu/user/lakoglu/tools/Co
mpreX_ 12 tbox.tar.gz

o CODEtect: https://bit.ly/2PObPZQ

o TG-SUM: https://bit.ly/2U0X4u6

89
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