Policies for the Provision of Finance to Science-based Entrepreneurship
Policies for the Provision of Finance to Science-based Entrepreneurship

Alice Civera
University of Bergamo, Italy

Michele Meoli
University of Bergamo, Italy

Silvio Vismara
CCSE, University of Bergamo, Italy and University of Augsburg, Germany
Annals of Science and Technology Policy
Volume 1, Issue 4, 2017
Editorial Board

Editor-in-Chief
Albert N. Link
University of North Carolina at Greensboro
United States

Editors
David Audretsch
Indiana University
Bill Bonvillian
MIT
Barry Bozeman
Arizona State University
Kaye Husbands Fealing
Georgia Institute of Technology
John Hardin
North Carolina Board of Science and Technology
Mariagrazia Squicciarini
OECD
Wolfgang Polt
Joanneum Research Institute
Nicholas Vonortas
The George Washington University
Editorial Scope

Topics

Annals of Science and Technology Policy publishes survey and tutorial articles in the following topics:

- Literature reviews of technology and innovation policies
- Historical case studies of technology development and implementation
- Institutional histories of technology- and innovation-based organizations
- Analyses of policies attendant to technology development and adoption and diffusion
- Studies documenting the adoption and diffusion of technologies and subsequent consequences
- Studies of public and private research partnerships (cross sectional, over time, or case based)
- Assessments and evaluations of specific technology and innovation policies
- Analyses of ecosystems associated with the technology and/or innovation development
- Cross observational (e.g., cross-agency or cross-country) comparisons of technology and innovation policies

Information for Librarians

Annals of Science and Technology Policy, 2017, Volume 1, 4 issues. ISSN paper version 2475-1820. ISSN online version 2475-1812. Also available as a combined paper and online subscription.
Contents

1 Introduction 2

2 The factors fostering the establishment of science-based entrepreneurial firms 8
 2.1 Individual attributes 9
 2.2 Resource endowment 22
 2.3 Networking activities 23
 2.4 University system 24
 2.5 Contextual factors 26

3 Policies fostering the establishment of science-based entrepreneurial firms 28
 3.1 Removing obstacles and introducing enabling factors ... 29
 3.2 Creating a regional context favorable to science-based entrepreneurship 37

4 Financing science-based entrepreneurial firms 42
 4.1 Internal vs. external sources of funding 44
 4.2 Private vs. Public equity 65
 4.3 Innovative financing mechanisms 77
5 Policies fostering the provision of finance to science-based entrepreneurial firms 98
 5.1 The effectiveness of public intervention 100
 5.2 Systemic-level studies 102
 5.3 Firm-level studies 122

6 Recent political developments 130

References 135

Author Biography 153
Policies for the Provision of Finance to Science-based Entrepreneurship

Alice Civera1, Michele Meoli2 and Silvio Vismara3

1University of Bergamo, Italy
2University of Bergamo, Italy
3CCSE, University of Bergamo, Italy and University of Augsburg, Germany

ABSTRACT

Policymakers have become increasingly involved in fostering entrepreneurial activity, especially in science-based sectors. The many studies on policy measures and initiatives implemented to support science-based entrepreneurship constitute several lines of research that have not yet been integrated. Drawing primarily upon refereed articles on entrepreneurship, entrepreneurial finance, and management, our review covers four areas: (i) factors fostering the establishment of science-based entrepreneurial firms; (ii) policies fostering the establishment of science-based entrepreneurial firms; (iii) the financing of science-based entrepreneurial firms; and (iv) policies fostering the provision of finance to science-based entrepreneurial firms. This literature review describes the scope of scholarly inquiry into these topics by providing a systematic overview of the most relevant research findings and then identifies lines for future investigation.

Under pressure from changing external expectations, universities have adopted an economic development mandate in addition to their traditional missions of education and research (Rothaermel et al., 2007). Internal pressures to generate new sources of income have also increased their involvement with the technology transfer process (Powers and McDougall, 2005b). These changes have attracted the attention of researchers and policymakers interested in understanding and fostering avenues for the capitalization of university knowledge. Several national governments have enacted policies aimed at fostering technology transfer, the co-production of knowledge, and a supportive environment for new technology-based firms. The creation of more direct links between science and industry is expected to promote knowledge dissemination and contribute to national and regional economic growth (Mustar et al., 2006; O’Shea et al., 2008).

In the current era of “open innovation,” universities and researchers have recourse to several mechanisms for transferring knowledge, such as conferences and scientific publications, public interventions, training of skilled labor force, direct policy or managerial involvement, consultancy and cooperation agreements, patenting and licensing, incubators,
Introduction

and science parks (Rothaermel et al., 2007). In particular, universities have shown growing enthusiasm for pursuing riskier paths through the formation of new companies around in-house technologies (Powers and McDougall, 2005b). Such science-based startups mediate between the worlds of academic research and industry. In general, they are also expected to drive economic growth (Mustar, 1998; Shane, 2004). They represent a small but economically powerful proportion of high-tech startups, playing a key role in ensuring the dynamic efficiency and employment growth of the economic system (Mustar and Wright, 2010). Science-based entrepreneurial firms are unlikely to generate major, short-term shifts in macroeconomic performance on their own, but their indirect effect on technology-using sectors is significant. As they strive to develop radically innovative technologies, they generate social benefits far in excess of their private returns (Griliches, 1992). As a result, they have become central to research and innovation policies. The objective of this monograph is to survey the policies implemented to foster the establishment of science-based firms and finance their growth.

We articulate our review along four dimensions. First, we examine the literature on science-based entrepreneurial firms and explain how it reflects a research focus on this type of firm. Second, we describe policies for fostering the establishment of science-based entrepreneurial firms and position them in different contexts. Third, we move to the financing problems of science-based entrepreneurial firms and review the literature on how these firms can manage to overcome their financial constraints. Fourth, we conclude by discussing the policies aimed at fostering the provision of finance to science-based entrepreneurial firms.

First, the perceived importance of academic entrepreneurship to national economies is reflected in the explosion of research publications seeking to better understand and address the forces that shape this activity. The literature is divided into several distinct foci: the role of national legislation in stimulating academic enterprise (Shane, 2004), the factors in the university environment that facilitate the creation of business activities (O’Shea et al., 2005), the institutional conditions under which spinoffs are incubated (Lockett et al., 2005), the characteristics of individual academics who become entrepreneurs (Landry...
et al., 2006), and the benefits that firms derive from affiliation with an academic institution (Mian, 1997). This monograph belongs to the last research stream.

A number of studies emphasize the impact of individual attributes and dispositions on science-based entrepreneurship. Given that scientist-entrepreneurs are actively involved in knowledge creation and dissemination, one would expect their academic affiliation to influence the performance of their business ventures. When they decide to invest a large amount of time or even shift their career path in order to create a business, they are likely to have a viable business plan (Zhang, 2009). Nevertheless, a scientific background may have downsides. First and foremost, the academic founders of a company may not have enough business or commercial experience to properly exploit their innovations (Ensley and Hmieleski, 2005; Zahra et al., 2007). Being more innovative is not enough to achieve superior performance; in the context of labor specialization, prestigious research achievements are not necessarily linked to an inclination or talent for business. Moreover, academics involved in creating new ventures may not be motivated solely or primarily by an entrepreneurial vision (i.e., to maximize profits). For example, they may be attracted mainly by the prospect of enhancing their academic position (Meyer, 2003). Accordingly, this section reviews the relevant literature on the establishment of science-based entrepreneurial firms.

Second, fostering technology entrepreneurship as a means to release currently unexploited opportunities hidden in individuals, shelved technologies, and resource combinations (Audretsch et al., 2005; 2011) has become a major issue for (regional) public policymakers. In particular, spinoffs from universities and Public Research Organizations (PROs) are receiving growing interest from policymakers, and many measures for encouraging their formation and development have been adopted (Shane, 2004). Although research-based spinoffs are unlikely to generate major, short-term shifts in macroeconomic performance by themselves, their indirect effect on technology-using sectors is significant. The most notable and successful case is the rise of the US biotech industry, which has critically contributed to the birth of the myth of academic spinoffs as an effective means of promoting innovative
Introduction

high-tech industries. Indeed, academic spinoffs have been crucial to the genesis of the US biotech industry, since they allowed knowledge and information flows to be as direct as possible. This acceptance of the importance of scientific entrepreneurship to national economies is reflected in the increase in the number of research publications seeking to better understand and address the forces shaping the activities of science-based firms. Researchers in the field of technology entrepreneurship have conducted detailed studies of, for example, the factors fostering (successful) technology-based university spinoffs (Rothaermel et al., 2007; Shane, 2004), corporate spinoff creation (e.g., Zahra et al., 2007), spinoff creation from research institutions (e.g., Clarysse et al., 2005; Lockett et al., 2005), and the role of science parks and incubators (e.g., Bergek and Norrman, 2008; Phan et al., 2005). The literature on corporate and university spinoffs has been growing in diverse directions, as will be surveyed in this section. The regional contexts of the role of science parks and regional clusters will also be discussed.

Third, the existence of asymmetric information in capital markets means that financial institutions might not adequately assess their investment projects. This effect is most important for small and innovative businesses, due to the lack of reliable information about their real status and performance (Hernandez-Canovas and Martinez-Solano, 2007). Providing convincing signals about the quality of an innovation project is costly and sometimes leads to market failure due to the “lemon problem” (Akerlof, 1970; Spence, 1973; Stiglitz, 2000). Nevertheless, access to financing is a key determinant of growth in any new technology-based firm (Wright et al., 2006). The debate over financing largely concerns understanding, evaluating, and improving the external funding environment confronting innovative startups in the absence of sufficient internally generated cash flows. Many discussions have revolved around the unsuitability of debt for early-stage financing (Stiglitz and Weiss, 1981), whereby debt holders bear the downside risk but do not share the upside of successful innovation (Berger and Udell, 1998). Prospects for contractual funding such as securing collateral loans against appropriate assets are severely limited for science-based entrepreneurial firms since most of their resources are intangible and tend to have limited
salvage value because of their highly specific nature (Hubbard, 1998). We conclude with an overview of innovative financing mechanisms such as microfinance, crowdfunding, and peer-to-peer lending.

Fourth, for the reasons discussed above, science-based entrepreneurial firms frequently seek external equity investors willing to bet on future value creation opportunities (Carpenter and Petersen, 2002). Both private (e.g., venture capital) and public (e.g., stock exchanges) equity are possible. These are strictly interconnected, as venture capitalists are more likely to invest when there is an active equity market that permits them to exit by selling their shares (Black and Gilson, 1998). Accordingly, many public policies (especially in the EU) have adopted the explicit goal of developing risk capital markets capable of sustaining entrepreneurship and facilitating the expansion of existing small firms (European Commission, 2005). Several stock exchanges have set up market segments dedicated to small firms, with lower listing barriers. In the last decade, almost every European country has launched an alternative second-tier market, thereby at least partially fulfilling the aforementioned EU goal (Paleari et al., 2008). This development has created a favorable setting for enabling science-based entrepreneurial firms to attract investment through initial public offerings. In this section, we describe the policies implemented in various countries to foster the provision of public equity to science-based entrepreneurial firms. Special attention will be paid to governmental venture capital as an example of direct intervention, about which we review the literature while distinguishing systemic-level studies from firm-level studies. Most of the literature on technology transfer has focused on demand-side public interventions, such as technology transfer offices, incubators, accelerators, and other initiatives of network development, as well as matchmaking between prospective entrepreneurs and investors. This section aims to refocus the attention of technology transfer scholars onto supply-side policies seeking to increase the supply of financing to entrepreneurial ventures (Meoli et al., 2013). In particular, we highlight the role of Governmental Venture Capital (GVC) funds in order to inform the broader public about the impact of public policy concerning Venture Capital (VC) and provide policymakers with an international
and comparative perspective on the effects of government efforts, which may be used to guide future interventions. First, we review the research on this topic and provide a picture of GVC programs around the world. Then, we identify several open research questions and widen the scope to encompass the role of public policies in developing VC markets and fostering access to public equity markets. For several reasons, the equity gap faced by science-based entrepreneurial firms cannot be entirely solved by the private VC market. In response, many governments have set up programs to foster VC financing through the establishment of GVC funds (Cumming et al., 2009). Besides addressing the financial gap problem, GVCs can pursue investments that will ultimately yield social payoffs and positive externalities for society as a whole. The drawback of these instruments, however, is that they may crowd out rather than stimulate private investments. The rationale and appropriateness of these programs are at the center of an academic debate, which we review in this section.

Finally, a brief section will conclude the review by discussing the main recent political developments, namely “Trumpism” and Brexit, and their impact on the global market.

References

References

Mustar, P. 1998. “Partnerships, configurations and dynamics in the creation and development of SMEs by researchers a study of academic entrepreneurs in France”. Industry and Higher Education. 12(4): 217–221.

References

Full text available at: http://dx.doi.org/10.1561/110.00000004

Author Biography

Alice Civera is a Ph.D. student at the Department University of Economics and Technology Management, University of Bergamo, and at the Department of Economics and Management, University of Pavia. She is a member of the Research Group on Higher Education. Her research interests are both Academic Entrepreneurship and Higher Education, with a particular focus on the funding mechanisms in terms of pricing models.

Michele Meoli is Assistant Professor of Corporate Finance at the Department of Economics and Technology Management, University of Bergamo, and Deputy Director of the CisAlpino Institute for Comparative Studies in Europe (CCSE), University of Bergamo and University of Augsburg, where he coordinates the Research Group on Higher Education. His research interests include corporate finance, corporate governance, academic entrepreneurship, higher education and science policy. He has been a Guest Editor for Special Issues on Technological Forecasting and Social Change and on Higher Education Quarterly. His recent scientific works appeared in several international journals, including Corporate Governance: An International Review, Economic

Silvio Vismara is Professor of Entrepreneurial Finance at the University of Bergamo, Adjunct Professor at the University of Augsburg (Germany), and at the Indiana University (USA). Silvio is associate editor of Small Business Economics and of Financial Review, and editorial review board member of Entrepreneurship Theory and Practice, of Journal of Technology Transfer, and of Journal of Industrial and Business Economics. He has been the guest editor of special issues in Small Business Economics, Corporate Governance An International Review, Journal of Technology Transfer, Eurasian Business Review, and Journal of Industrial and Business Economics. Silvio has published over 80 articles in leading refereed academic journals in finance, management, and economics, such as Academy of Management Journal, Entrepreneurship Theory and Practice, Financial Management, Journal of Corporate Finance, Journal of Banking and Finance. His research on IPOs and crowdfunding has been covered by The Economist, Financial Times, and Investors Chronicle. He is scientific consultant for the Italian Stock Exchange and advisory board member of the equity crowdfunding platform Wearestarting.