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Abstract

This article presents foundations, original research and trends in the
field of object categorization by computer vision methods. The research
goals in object categorization are to detect objects in images and to
determine the object’s categories. Categorization aims for the recog-
nition of generic classes of objects, and thus has also been termed
‘generic object recognition’. This is in contrast to the recognition of
specific, individual objects. While humans are usually better in generic
than in specific recognition, categorization is much harder to achieve
for today’s computer architectures and algorithms. Major problems are
related to the concept of a ‘visual category’, where a successful recog-
nition algorithm has to manage large intra-class variabilities versus
sometimes marginal inter-class differences. It turns out that several
techniques which are useful for specific recognition can also be adapted
to categorization, but there are also a number of recent developments
in learning, representation and detection that are especially tailored to
categorization.

Recent results have established various categorization methods that
are based on local salient structures in the images. Some of these meth-
ods use just a ‘bag of keypoints’ model. Others include a certain amount
of geometric modeling of 2D spatial relations between parts, or ‘constel-
lations’ of parts. There is now a certain maturity in these approaches
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and they achieve excellent recognition results on rather complex image
databases. Further work focused on the description of shape and object
contour for categorization is only just emerging. However, there remain
a number of important open questions, which also define current and
future research directions. These issues include localization abilities,
required supervision, the handling of many categories, online and incre-
mental learning, and the use of a ‘visual alphabet’, to name a few. These
aspects are illustrated by the discussion of several current approaches,
including our own patch-based system and our boundary fragment-
model. The article closes with a summary and a discussion of promising
future research directions.
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1
Introduction

This article provides a review of existing representations, algorithms,
systems and databases for visual object categorization. It describes the
state of the art in this field, which has been a long standing goal, and is
still a mainly unsolved problem in computer vision research. The time
chosen for writing is motivated by recent success in recognition from
local, salient parts, which can be considered a significant step towards
object categorization.

Who are the supposed readers of this document, and what poten-
tial benefits are there for them? Students and graduate students in
computer vision will get a thorough review of the state of the art
in visual object categorization. Researchers in computer vision might
benefit from a more complete point of view, including a number of
approaches which they have not focused on within the scope of their
own research. Researchers in related fields should find this article a
valuable reference.

But the article goes beyond a pure review of the state of the art. It
includes original research in categorization, presents a prototype system
for categorization, discusses our databases and provides experimental
results on object categorization and localization in still images.

1
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2 Introduction

1.1 Problem statement

We can define visual object categorization as the process of assign-
ing a specific object to a certain category. This process has also been
termed ‘generic object recognition’ (generic OR), and it is in contrast
to ‘specific OR’, which deals with the recognition of a specific, individ-
ual object. Examples of categories in generic OR are people, children,
dogs, cars, bikes or dishes, while specific OR might aim at recognizing
a certain individual, like Albert Einstein, or a specific object like my
car. An individual object might also be termed a specific instance of a
more generic category. Categories can also be organized in hierarchies
(child – human being – mammal), and categories might overlap – a tall
glass might be used as a vase. Throughout the remainder of this article,
we will use the terms ‘categorization’ for visual object categorization or
generic OR, and ‘specific OR’ for the recognition of individual objects.

Looking at humans, and comparing their recognition performance
with artificial systems, it turns out that humans are much better in
categorization than machines, but specific OR can often be handled
more efficiently, reliably or simply faster by an artificial vision sys-
tem. VanRullen and Thorpe [199] point out that humans can perform
ultra-rapid categorization tasks. They can decide whether a briefly
flashed image belongs to a certain category in less than 150ms, and
they provide experimental evidence for the two categories ‘animal’ and
‘means of transport’. On the other hand, there are numerous solutions
to industrial inspection, which recognize and localize specific objects
much faster and much more reliably than humans can do (see [31] for
an example of such an industrial product, and [76] for the underly-
ing theoretical foundations). A further aspect of categorization is the
sheer number of visual categories. There is evidence from cognitive
psychology that humans deal with about 30,000 different categories
(see Biederman [21]). This would require solving currently intractable
computational complexity.

This article sets out to answer the following questions: How can arti-
ficial systems perform categorization? What are the key building blocks
that are required to build a categorization system? What are the main
challenges? What are the bottlenecks and unsolved problems? This will
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1.2. Historical development 3

also shed light on the more general question: Why is categorization sim-
pler for humans than for machines and why is specific OR simpler for
machines than for humans?

1.2 Historical development

In the following, I give a very brief sketch of some major landmarks in
the history of object recognition research. This is not meant to be a
complete review, but rather some useful information to pave the way for
later discussion. One of the major early landmarks is certainly the work
of David Marr [126], who proposed viewer-centered and object-centered
representational levels (image – primal sketch – 2-1/2D sketch – 3D
object model), as well as visual modules which can be used to generate
these descriptions (e.g. ‘shape from X’ to produce a 2-1/2D sketch).
Marr’s ideas influenced at least a decade of research, and have led to a
so-called ‘reconstruction school’ which advocates that 3D reconstruc-
tion and 3D modeling of a scene (and thus of the objects in the scene)
are necessary for further reasoning.

On the other hand, there is the ‘recognition school’ which favors
working in the 2D domain, with 2D images, features and descriptors
which are extracted from these images. Their pattern classification [43]
or pattern recognition [145] approach is fundamentally different from
the reconstructionist paradigm. Much of the content of this article
actually is in the spirit of a ‘recognition school’ approach. We will
discuss, for example, the ‘bag of keypoints’ approach, in which salient
points are extracted from images, and descriptors are calculated to form
feature vectors. These feature vectors can be used to learn a discrim-
inative model from training images, and to recognize (categorize) test
images. But we will also present the generative ‘constellation’ model,
which employs a ‘light’ 2D geometry in terms of spatial 2D relations
between key parts of the object model.

Only very recently have we seen efforts to combine discriminative
and generative approaches in categorization research. This confluence
of recognition and reconstruction schools has already been predicted
by Aloimonos and Shulman [4] in 1989.
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4 Introduction

There are further milestones which should be mentioned. Biederman
[20, 21] proposed his ‘recognition by components’ (RBC) theory. Volu-
metric primitives, so-called ‘geons’ can be used to recognize objects in
a qualitative (and thus generic) way. While this theory is quite elegant,
its implementations (see [18, 39]) lacked due to low level vision prob-
lems, so that geon-based recognition has not been applied to real-world
categorization problems. Research in perceptual grouping proceeds in
a similar manner [167]. Low-level 2D primitives are grouped to build
object descriptions, either in a pure bottom-up (data driven) manner,
or top-down, including prior knowledge (models) about the expected
image content. At the other end of the spectrum of potential solutions
to OR, we find the idea of purely image- or ‘appearance’-based recogni-
tion, for instance in parametric eigenspace [143]. This idea has triggered
a vast number of extremely successful appearance-based approaches to
specific OR.

In general, there has been more research in specific OR than in
categorization in the past. Success in specific OR has influenced a
number of approaches to categorization, although most of the devel-
oped algorithms for specific OR are not directly applicable to cate-
gorization. There is a paradigm of specific OR by alignment, in which
spatial correspondence between groups of image features and model
features is found by searching for the geometric transformation that
aligns these features best. This includes affine transformations for pla-
nar objects [84] and 3D model to 2D image feature matching [121].
Another way to compare image and model features is to extract fea-
tures which are invariant against certain geometric [142] or radiometric
distortions [3]. Efficient indexing is needed, when a database of poten-
tially many object models has to be matched against features extracted
from a query image that contains a certain specific object. This can,
for instance, be done by geometric hashing [207], a technique which is
robust against partial occlusion and geometric transformations. Finally,
the success in global appearance-based recognition [143] has moti-
vated research in local appearance-based methods for specific OR [122].
At this point, we can observe that techniques for specific OR and for
categorization meet.
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1.3. Potential applications 5

In categorization, these various ideas have led to the development
of a number of recent approaches which try to:

• model appearance more locally,
• group simple geometric primitives, and
• use learning algorithms to find common patterns that can be

shared over many individuals of a category.

Within the past 5 years, we have seen a rapid development and rise in
the success of object categorization in increasingly difficult, cluttered,
and realistic scenes1. We can also observe a number of contributions
from related fields as machine learning, neurosciences and cognitive
psychology.

1.3 Potential applications

There are a number of obvious applications of categorization to image
database annotation, image retrieval and video annotation. But poten-
tial applications of categorization go far beyond that. Reliable cate-
gorization in real-time will open up applications in surveillance, driver
assistance, autonomous robots, interactive games, virtual and aug-
mented reality and telecommunications. A more general view might
include systems for ‘cognitive personal assistance’ with many potential
aspects, ranging from user support in complex environments to very
basic support capabilities for elderly or disabled people.

1.4 Outline of this review article

The article is structured in three major parts (Sections 2 – 4). I start
with an in-depth analysis of major issues related to solving the problem
of categorization mentioned in Section 2. This analysis provides at the
same time an introduction to the main topics, which are then discussed
in detail in Section 3 which presents the major building blocks for

1 This may partly be related to recent European research initiatives. There has been sub-
stantial funding of basic research in ‘Cognitive Vision’ within the 5th framework program
of the European Union, with an even broader perspective of ‘Cognitive Systems’ in the
current, 6th framework program. There has been strong support of categorization research
within these programs.
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6 Introduction

categorization systems. Finally, Section 4 presents two major aspects
of our own research in categorization: a region-based approach, and
categorization with a boundary-fragment-model.

You will probably recognize that the subject is quite broad and
heterogeneous (ranging from the representation of scale in images, over
machine learning, to 2D spatial models for categorization). Thus, there
is no isolated section on the ‘state of the art’ and related work. I prefer,
rather, to cite relevant publications throughout the whole article, which
is hopefully more useful to you, the potential reader.

Finally, there is a common thread, which should provide some extra
value for those who manage to read the complete article sequentially.
However, many sections stand on their own and may also be consulted
individually.
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[149] S. Obdržálek and J. Matas, “Sub-linear indexing for large scale object recog-

nition,” in Proc. BMVC, pp. 1–10, 2005.
[150] S. M. Oh, J. M. Rehg, T. Balch, and F. Dellaert, “Learning and inference in

parametric switching linear dynamic systems,” in Proc. ICCV, 2005.

Full text available at: http://dx.doi.org/10.1561/0600000003



References 97

[151] K. Ohba and K. Ikeuchi, “Detectability, uniqueness, and reliability of eigen
windows for stable verification of partially occluded objects,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 9, pp. 1043–1047, 1997.

[152] A. Opelt, Generic object recognition, Ph.D. thesis, Graz University of Tech-
nology, 2006.

[153] A. Opelt, M. Fussenegger, A. Pinz, and P. Auer, “Weak hypotheses and boost-
ing for generic object detection and recognition,” in ECCV’04, (T. Pajdla and
J. Matas, eds.), pp. 71–84, Springer, 2004.

[154] A. Opelt and A. Pinz, “Object localization with boosting and weak supervision
for generic object recognition,” in Proc. SCIA, 2005.

[155] A. Opelt, A. Pinz, M. Fussenegger, and P. Auer, “Generic object recogni-
tion with Boosting,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 3,
pp. 416–431, 2006.

[156] A. Opelt, A. Pinz, and A. Zisserman, “A boundary-fragment-model for object
detection,” in Proc. ECCV, pp. 575–588, 2006.

[157] A. Opelt, A. Pinz, and A. Zisserman, “Incremental learning of object detectors
using a visual shape alphabet,” in Proc. CVPR, 2006. Best paper prize –
runner up.

[158] S. Osher and N. Paragios, eds., Geometric level set methods in imageing vision
and graphics, Springer, 2003.

[159] N. C. Oza and S. Russell, “Online bagging and boosting,” in Proc. Workshop
on Artificial Intelligence and Statistics, 2001.

[160] N. Paragios and R. Deriche, “Geodesic active contours and level sets for the
detection and tracking of moving objects,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 22, no. 3, pp. 266–280, 2000.

[161] P. Perona, “A concise taxonomy of visual recognition,” http://vasc.ri.cmu
.edu/∼hebert/04workshop/presentations/Perona-Sicily-Oct04.pdf, presented
at the International Object Recognition Workshop, Sicily, October 1004,
http://www.pascal-network.org/Workshops/IOR04/Programme/, pages vis-
ited May 10, 2005.

[162] P. J. Phillips, H. Moon, P. J. Rauss, and S. Rizvi, “The FERET evaluation
methodology for face recognition algorithms,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 22, no. 10, pp. 1090–1104, 2000.

[163] A. Pinz and J.-P. Andreu, “Qualitative spatial reasoning to infer the camera
position in generic object recognition,” in Proceedings ICPR’98, pp. 770–773,
1998.

[164] A. Rosenfeld, Multiresolution image processing and analysis, Springer, 1984.
[165] P. M. Roth, H. Grabner, D. Skocaj, H. Bischof, and A. Leonardis, “Online

conservative learning for person detection,” in Proc. VS-PETS Workshop at
ICCV, 2005.

[166] U. Rutishauser, D. Walther, C. Koch, and P. Perona, “Is bottom-up attention
useful for object recognition?,” in Proc. CVPR, 2004.

[167] S. Sarkar and K. Bowyer, Computing perceptual organization in computer
vision, World Scientific, 1994.

[168] F. Scalzo and J. H. Piater, “Statistical learning of visual feature hierarchies,”
in Proc. CVPR, 2005.

Full text available at: http://dx.doi.org/10.1561/0600000003



98 References

[169] F. Schaffalitzky and A. Zisserman, “Multi-view matching of unordered image
sets, or ‘How do I organize my holiday snaps?’,” in ECCV (1), pp. 414–431,
2002.

[170] C. Schmid and R. Mohr, “Local grayvalue invariants for image retrieval,”
IEEE Transactions on Pattern Analysis & Machine Intelligence, vol. 19, no. 5,
pp. 530–535, 1997.

[171] C. Schmid, R. Mohr, and C. Bauckhage, “Evaluation of interest point detec-
tors,” Int. J. Computer Vision, vol. 37, no. 2, pp. 151–172, 2000.

[172] H. Schneiderman and T. Kanade, “Object detection using the statistics of
parts,” Int. J. Computer Vision, vol. 56, no. 3, pp. 151–177, 2004.

[173] G. Schweighofer, A. Opelt, and A. Pinz, “Improved object categorization by
unsupervised object localization,” in Proc. Int. Workshop on Learning for
Adaptable Visual Systems LAVS’04, (St. Catherine’s College, Cambridge),
2004.

[174] E. Seemann, B. Leibe, K. Mikolajczyk, and B. Schiele, “An evaluation of local
shape-based features for pedestrian detection,” in Proc. BMVC, 2005.

[175] A. Selinger and R. C. Nelson, “Improving appearance-based object recognition
in cluttered background,” in Proc. ICPR, pp. 1–8, 2000.

[176] M. E. Sereno, T. Trinath, M. Augath, and N. K. Logothetis, “Three-
dimensional shape representation in monkey cortex,” Neuron, vol. 36,
pp. 635–652, 2002.

[177] T. Serre, L. Wolf, and T. Poggio, “A new biologically motivated framework for
robust object recognition,” in In Proc. Computer Vision and Pattern Recog-
nition, CVPR, 2005.

[178] C. E. Shannon, “Communication in the presence of noise,” Proceedings of the
IRE, pp. 10–21, 1949.

[179] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 22, no. 8, pp. 888–905, 2000.

[180] J. Shi and C. Tomasi, “Good features to track,” in Proc. CVPR, pp. 593–600,
1994.

[181] J. Shotton, A. Blake, and R. Cipolla, “Contour-based learning for object detec-
tion,” in Proc. ICCV, 2005.

[182] J. Shotton, J. Winn, C. Rother, and A. Criminisi, “TextonBoost: Joint appear-
ance, shape and context modeling for multi-class object recognitoin and
segmentation,” in Proc. 9th ECCV, pp. 1–15, 2006.

[183] A. Siebert, “Retrieval of gamma corrected images,” Pattern Recognition Let-
ters, vol. 22, no. 2, pp. 249–256, 2001.

[184] J. Sivic, B. C. Russell, A. A. Elfros, A. Zisserman, and W. T. Freeman, “Dis-
covering objects and their location in images,” in Proc. ICCV, 2005.

[185] J. Sivic and A. Zisserman, “Video Google: A text retrieval approach to object
matching in videos,” in Proceedings of the International Conference on Com-
puter Vision, pp. 1470–1477, Oct. 2003.

[186] S. M. Smith and J. M. Brady, “SUSAN – a new approach to low level image
processing,” Int. J. Computer Vision, vol. 23, no. 1, pp. 45–78, 1997.

[187] L. Stark and K. Bowyer, “Generic recognition through qualitative reasoning
about 3-d shape and object function,” in Proc. CVPR, pp. 251–256, 1991.

Full text available at: http://dx.doi.org/10.1561/0600000003



References 99

[188] E. B. Sudderth, A. Torralba, W. T. Freeman, and A. S. Willsky, “Learning
hierarchical models of scenes, objects, and parts,” in Proc. ICCV, 2005.

[189] B. M. ter Haar Romeny, ed., Geometry-driven diffusion in computer vision,
Kluwer, 1994.

[190] J. Thureson and S. Carlsson, “Appearance based qualitative image description
for object class recognition,” in Proc. ECCV, pp. 518–529, 2004.

[191] A. Torralba, K. P. Murphy, and W. T. Freeman, “Sharing features: Efficient
boosting procedures for multiclass object detection,” in Proc. CVPR, 2004.

[192] Z. Tu, “Probabilistic boosting-tree: Learning discriminative models for classi-
fication, recognition, and clustering,” in Proc. ICCV, 2005.

[193] M. Turk and A. Pentland, “Eigenfaces for recognition,” Journal of Cognitive
Neuroscience, vol. 3, no. 1, pp. 71–86, 1991.

[194] T. Tuytelaars, Local, invariant features for registration and recognition, Ph.D.
thesis, K.U. Leuven, 2000.

[195] T. Tuytelaars and L. Van Gool, “Content-based image retrieval based on local
affinely invariant regions,” in Proc. ICVS, pp. 493–500, 1999.

[196] T. Tuytelaars and L. Van Gool, “Wide baseline stereo matching based on
local, affinely invariant regions,” in Proc. 11th BMVC, pp. 412–425, 2000.

[197] T. Tuytelaars and L. Van Gool, “Matching widely separated views based on
affine invariant regions,” Int. J. Computer Vision, vol. 59, no. 1, pp. 61–85,
2004.

[198] I. Ulusoy and C. M. Bishop, “Generative versus discriminative methods for
object recognition,” in Proc. CVPR, 2005.

[199] R. VanRullen and S. J. Thorpe, “Is it a bird? Is it a plane? Ultra-rapid
visual categorisation of natural and artificial objects,” Perception, vol. 30,
pp. 655–668, 2001.

[200] V. N. Vapnik, The nature of statistical learning theory, Springer, 1999.
[201] M. M. Veloso, P. E. Rybski, and F. von Hundelshausen, “FOCUS: A gener-

alized method for object discovery for robots that observe and interact with
humans,” in Proc. HRI’06, ACM, 2006.

[202] D. Vernon, “Cognitive vision – the development of a discipline,” http://europa
.eu.int/information society/istevent/2004/cf/document.cfm?doc id=568,
page visited August 1st, 2006.

[203] P. Viola and M. Jones, “Rapid object detection using a boosted cascade of
simple features,” in Proceedings IEEE Conf. on Computer Vision and Pattern
Recognition, 2001.

[204] M. Weber, M. Welling, and P. Perona, “Unsupervised learning of models for
recognition,” in ECCV (1), pp. 18–32, 2000.

[205] J. Winn, A. Criminisi, and T. Minka, “Object categorization by learned uni-
versal visual dictionary,” in Proc. ICCV, 2005.

[206] A. Witkin, “Scale-space filtering,” in Proc. 8th IJCAI, pp. 1019–1022, 1983.
[207] H. J. Wolfson and I. Rigoutsos, “Geometric hashing: An overview,” IEEE

Computational Science & Engineering, vol. 4, no. 4, pp. 10–21, 1997.
[208] R. A. Young, “The Gaussian derivative model for spatial vision: I. retinal

mechanisms,” Spatial Vision, vol. 2, pp. 273–293, 1987.

Full text available at: http://dx.doi.org/10.1561/0600000003



100 References

[209] A. L. Yuille and T. A. Poggio, “Scaling theorems for zero-crosssings,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 8, no. 1, pp. 15–25,
1986.

[210] W. Zhang, B. Yu, G. J. Zelinsky, and D. Samaras, “Object class recognition
using multiple layer boosting with heterogeneous features,” in Proc. CVPR,
pp. 323–330, 2005.

Full text available at: http://dx.doi.org/10.1561/0600000003


	Introduction
	Problem statement
	Historical development
	Potential applications
	Outline of this review article

	Categorization as an Issue of …
	… classification
	… learning
	… representation
	… localization
	… datasets
	… evaluation
	… system integration

	Building Blocks for Categorization
	Scale in space and time
	Saliency, key-features, points and regions of interest
	Object models
	Learning and recognition

	A Prototype System for Categorization
	Region-based image categorization
	Detection and localization with a Boundary-Fragment-Model (BFM)
	Discussion

	Final Remarks
	Acknowledgements
	References



