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Abstract

We review methods for kinematic tracking of the human body in video.
The review is part of a projected book that is intended to cross-fertilize
ideas about motion representation between the animation and com-
puter vision communities. The review confines itself to the earlier stages
of motion, focusing on tracking and motion synthesis; future material
will cover activity representation and motion generation.

In general, we take the position that tracking does not necessarily
involve (as is usually thought) complex multimodal inference problems.
Instead, there are two key problems, both easy to state.

The first is lifting, where one must infer the configuration of the
body in three dimensions from image data. Ambiguities in lifting can
result in multimodal inference problem, and we review what little is
known about the extent to which a lift is ambiguous. The second is
data association, where one must determine which pixels in an image
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come from the body. We see a tracking by detection approach as the
most productive, and review various human detection methods.

Lifting, and a variety of other problems, can be simplified by observ-
ing temporal structure in motion, and we review the literature on data-
driven human animation to expose what is known about this structure.
Accurate generative models of human motion would be extremely useful
in both animation and tracking, and we discuss the profound difficulties
encountered in building such models. Discriminative methods – which
should be able to tell whether an observed motion is human or not –
do not work well yet, and we discuss why.

There is an extensive discussion of open issues. In particular, we
discuss the nature and extent of lifting ambiguities, which appear to
be significant at short timescales and insignificant at longer timescales.
This discussion suggests that the best tracking strategy is to track a 2D
representation, and then lift it. We point out some puzzling phenom-
ena associated with the choice of human motion representation – joint
angles vs. joint positions. Finally, we give a quick guide to resources.
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1

Tracking: Fundamental Notions

In a tracking problem, one has some measurements that appear at each
tick of a (notional) clock, and, from these measurements, one would like
to determine the state of the world. There are two important sources
of information. First, measurements constrain the possible state of the
world. Second, there are dynamical constraints – the state of the world
cannot change arbitrarily from time to time. Tracking problems are of
great practical importance. There are very good reasons to want to, say,
track aircraft using radar returns (good summary histories include [51,
53, 188]; comprehensive reviews of technique in this context include [32,
39, 127]).

Not all measurements are informative. For example, if one wishes
to track an aircraft – where state might involve pose, velocity and
acceleration variables, and measurements might be radar returns giving
distance and angle to the aircraft from several radar aerials – some of
the radar returns measured might not come from the aircraft. Instead,
they might be the result of noise, of other aircraft, of strips of foil
dropped to confuse radar apparatus (chaff or window; see [188]), or
of other sources. The problem of determining which measurements are
informative and which are not is known as data association.

1
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2 Tracking: Fundamental Notions

Data association is the dominant difficulty in tracking objects in
video. This is because so few of the very many pixels in each frame lie on
objects of interest. It can be spectacularly difficult to tell which pixels
in an image come from an object of interest and which do not. There are
a very wide variety of methods for doing so, the details of which largely
depend on the specifics of the application problem. Surprisingly, data
association is not usually explicitly discussed in the computer vision
tracking literature. However, whether a method is useful rests pretty
directly on its success at data association – differences in other areas
tend not to matter all that much in practice.

1.1 General observations

The literature on tracking people is immense. Furthermore, the prob-
lem has quite different properties depending on precisely what kind
of representation one wishes to recover. The most important variable
appears to be spatial scale. At a coarse scale, people are blobs. For
example, we might view a plaza from the window of a building or a
mall corridor from a camera suspended from the ceiling. Each person
occupies a small block of pixels, perhaps 10–100 pixels in total. While
we should be able to tell where a person is, there isn’t much prospect of
determining where the arms and legs are. At this scale, we can expect
to recover representations of occupancy – where people spend time,
for example [424] – or of patterns of activity – how people move
from place to place, and at what time, for example [377].

At a medium scale, people can be thought of as blobs with
attached motion fields. For example, a television program of a soccer
match, where individuals are usually 50–100 pixels high. In this case,
one can tell where a person is. Arms and legs are still difficult to local-
ize, because they cover relatively few pixels, and there is motion blur.
However, the motion fields around the body yield some information as
to how the person is moving. One could expect to be able to tell where
a runner is in the phase of the run from this information – are the legs
extended away from the body, or crossing?

At a fine scale, the arms and legs cover enough pixels to be
detected, and one wants to report the configuration of the body.
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1.1. General observations 3

We usually refer to this case as kinematic tracking. At a fine spatial
scale, one may be able to report such details as whether a person is
picking up or handling an object. There are a variety of ways in which
one could encode and report configuration, depending on the model
adopted – is one to report the configuration of the arms? the legs?
the fingers? – and on whether these reports should be represented in
2D or in 3D. We will discuss various representations in greater detail
later.

Each scale appears to be useful, but there are no reliable rules of
thumb for determining what scale is most useful for what application.
For example, one could see ways to tell whether people are picking
up objects at a coarse scale. Equally, one could determine patterns of
activity from a fine scale. Finally, some quite complex determinations
about activity can be made at a surprisingly coarse scale. Tracking
tends to be much more difficult at the fine scale, because one must
manage more degrees of freedom and because arms and legs can be
small, and can move rather fast.

In this review, we focus almost entirely on the fine scale; even so,
space will not allow detailed discussion of all that has been done. Our
choice of scale is dictated by the intuition that good fine-scale tracking
will be an essential component of any method that can give general
reports on what people are doing in video. There are distinctive features
of this problem that make fine scale tracking difficult:

• State dimension: One typically requires a high dimensional
state vector to describe the configuration of the body in a
frame. For example, assume we describe a person using a
2D representation. Each of ten body segments (torso, head,
upper and lower arms and legs) will be represented by a
rectangle of fixed size (that differs from segment to segment).
This representation will use an absolute minimum of 12 state
variables (position and orientation for one rectangle, and rel-
ative orientation for every other). A more practical version of
the representation allows the rectangles to slide with respect
to one another, and so needs 27 state variables. Considerably
more variables are required for 3D models.
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4 Tracking: Fundamental Notions

• Nasty dynamics: There is good evidence that such motions
as walking have predictable, low-dimensional structure [335,
351]. However, the body can move extremely fast, with large
accelerations. These large accelerations mean that one can
stop moving predictably very quickly – for example, jump-
ing in the air during a walk. For straightforward mechanical
reasons, the body parts that move fastest tend to be small
and on one end of a long lever which has big muscles at
the other end (forearms, fingers and feet, for example). This
means that the body segments that the dynamical model
fails to predict are going to be hard to find because they are
small. As a result, accurate tracking of forearms can be very
difficult.

• Complex appearance phenomena: In most applica-
tions one is tracking clothed people. Clothing can change
appearance dramatically as it moves, because the forces the
body applies to the clothing change, and so the pattern of
folds, caused by buckling, changes. There are two important
results. First, the pattern of occlusions of texture changes,
meaning that the apparent texture of the body segment can
change. Second, each fold will have a typical shading pattern
attached, and these patterns move in the image as the folds
move on the surface. Again, the result is that the apparent
texture of the body segment changes. These effects can be
seen in Figure 1.4.

• Data association: There is usually no distinctive color or
texture that identifies a person (which is why people are noto-
riously difficult to find in static images). One possible cue
is that many body segments appear at a distinctive scale as
extended regions with rather roughly parallel sides. This isn’t
too helpful, as there are many other sources of such regions
(for example, the spines of books on a shelf). Textured back-
grounds are a particularly rich source of false structures in
edge maps. Much of what follows is about methods to handle
data association problems for people tracking.
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1.2. Tracking by detection 5

1.2 Tracking by detection

Assume we have some form of template that can detect objects rea-
sonably reliably. A good example might be a face detector. Assume
that faces don’t move all that fast, and there aren’t too many in any
given frame. Furthermore, the relationship between our representation
of the state of a face and the image is uncomplicated. This occurs, for
example, when the faces we view are always frontal or close to frontal.
In this case, we can represent the state of the face by what it looks like
(which, in principle, doesn’t change because the face is frontal) and
where it is.

Under these circumstances, we can build a tracker quite simply.
We maintain a pool of tracks. We detect all faces in each incoming
frame. We match faces to tracks, perhaps using an appearance model
built from previous instances and also – at least implicitly – a dynam-
ical model. This is where our assumptions are important; we would
like faces to be sufficiently well-spaced with respect to the kinds of
velocities we expect that there is seldom any ambiguity in this match-
ing procedure. This matching procedure should not require one-one
matches, meaning that some tracks may not receive a face, and some
faces may not be allocated a track. For every face that is not attached
to a track, we create a new track. Any track that has not received a
face for several frames is declared to have ended (Algorithm 1 breaks
out this approach).

This basic recipe for tracking by detection is worth remembering.
In many situations, nothing more complex is required, and the recipe is
used without comment in a variety of papers. As a simple example, at
coarse scales and from the right view, background subtraction and look-
ing for dark blobs of the right size is sufficient to identify human heads.
Yan and Forsyth use this observation in a simple track-by-detection
scheme, where heads are linked across frames using a greedy algo-
rithm [424]. The method is effective for obtaining estimates of where
people go in public spaces.

The method will need some minor improvements and significant
technical machinery as the relationship between state and image mea-
surements grows more obscure. However, in this simple form, the
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6 Tracking: Fundamental Notions

Assumptions: We have a detector which is reasonably reliable
for all aspects that matter. Objects move relatively slowly with
respect to the spacing of detector responses. As a result, a detector
response caused either by another object or by a false positive
tends to be far from the next true position of our object.

First frame:
Create a track for each detector response.

N’th frame:
Link tracks and detector responses. Typically, each track gets
the closest detector response if it is not further away than some
threshold. If the detector is capable of reporting some distinguish-
ing feature (colour, texture, size, etc.), this can be used too.
Spawn a new track for each detector response not allocated to a
track.
Reap any track that has not received a measurement for some
number of frames.

Cleanup: We now have trajectories in space time. Link any
where this is justified (perhaps by a more sophisticated dynamical
or appearance model, derived from the candidates for linking).

Algorithm 1: The simplest tracking by detection

method gives some insight into general tracking problems. The trick of
creating tracks promiscuously and then pruning any track that has not
received a measurement for some time is a quite general and extremely
effective trick. The process of linking measurements to tracks is the
aspect of tracking that will cause us the most difficulty (the other
aspect, inferring states from measurements, is straightforward though
technically involved). This process is made easier if measurements have
features that distinctively identify the track from which they come.
This can occur because, for example, a face will not change gender
from frame to frame, or because tracks are widely spaced with respect
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1.2. Tracking by detection 7

to the largest practical speed (so that allocating a measurement to the
closest track is effective).

All this is particularly useful for face tracking, because face detec-
tion – determining which parts of an image contain human faces,
without reference to the individual identity of the faces – is one of
the substantial successes of computer vision. Neither space nor energy
allow a comprehensive review of this topic here. However, the typical
approach is: One searches either rectangular or circular image windows
over translation, scale and sometimes rotation; corrects illumination
within these windows by methods such as histogram equalization; then
presents these windows to a classifier which determines whether a face
is present or not. There is then some post-processing on the classifier
output to ensure that only one detect occurs at each face. This gen-
eral picture appears in relatively early papers [299, 331, 332, 382, 383].
Points of variation include: the details of illumination correction; appro-
priate search mechanisms for rotation (cf. [334] and [339]); appropriate
classifiers (cf. [259, 282, 333, 339] and [383]); building an incremen-
tal classification procedure so that many windows are rejected early
and so consume little computation (see [186, 187, 407, 408] and the
huge derived literature). There are a variety of strategies for detect-
ing faces using parts, an approach that is becoming increasingly com-
mon (compare [54, 173, 222, 253, 256] and [412]; faces are becoming
a common category in so-called object category recognition, see, for
example, [111]).

1.2.1 Background subtraction

The simplest detection procedure is to have a good model of the back-
ground. In this case, everything that doesn’t look like the background
is worth tracking. The simplest background subtraction algorithm is
to take an image of the background and then subtract it from each
frame, thresholding the magnitude of the difference (there is a brief
introduction to this area in [118]). Changes in illumination will defeat
this approach. A natural improvement is to build a moving average
estimate of the background, to keep track of illumination changes (e.g.
see [343, 417]; gradients can be incorporated [250]). In outdoor scenes,
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8 Tracking: Fundamental Notions

this approach is defeated by such phenomena as leaves moving in the
wind. More sophisticated background models keep track of maximal
and minimal values at each pixel [146], or build local statistical models
at each pixel [59, 122, 142, 176, 177, 375, 376].

Under some circumstances, background subtraction is sufficient to
track people and perform a degree of kinematic inference. Wren et al.
describe a system, Pfinder, that uses background subtraction to iden-
tify body pixels, then identifies arm, torso and leg pixels by building
“blobby” clusters [417]. Haritaoglu et al. describe a system called W4,
which uses background subtraction to segment people from an outdoor
view [146]. Foreground regions are then linked in time by applying
a second order dynamic model (velocity and acceleration) to propa-
gate median coordinates (a robust estimate of the centroid) forward in
time. Sufficiently close matches trigger a search process that matches
the relevant foreground component in the previous frame to that in the
current frame. Because people can pass one another or form groups,
foreground regions can merge, split or appear. Regions appearing, split-
ting or merging are dealt with by creating (resp. fusing) tracks. Good
new tracks can be distinguished from bad new tracks by looking for-
ward in the sequence: a good track continues over time. Allowing a
tracker to create new tracks fairly freely, and then telling good from
bad by looking at the future in this way is a traditional, and highly
useful, trick in the radar tracking community (e.g. see the comprehen-
sive book by Blackman and Popoli [39]). The background subtraction
scheme is fairly elaborate, using a range of thresholds to obtain a good
blob (Figure 1.1). The resulting blobs are sufficiently good that the
contour can be parsed to yield a decomposition into body segments.
The method then segments the contours using convexity criteria, and
tags the segments using: distance to the head – which is at the top of
the contour; distance to the feet – which are at the bottom of the con-
tour; and distance to the median – which is reasonably stable. All this
works because, for most configurations of the body, one will encounter
body segments in the same order as one walks around the contour
(Figure 1.2). Shadows are a perennial nuisance for background subtrac-
tion, but this can be dealt with using a stereoscopic reconstruction, as
Haritaoglu et al. show ([147]; see also [178]).
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1.2. Tracking by detection 9

Fig. 1.1 Background subtraction identifies groups of pixels that differ significantly from a
background model. The method is most useful for some some cases of surveillance, where

one is guaranteed a fixed viewpoint and a static background changing slowly in appearance.

On the left, a background model; in the center, a frame; and on the right, the resulting
image blobs. The figure is taken from Haritaoglu et al. [146]; in this paper, authors use

an elaborate method involving a combination of thresholds to obtain good blobs. Figure 1.2

illustrates a method due to these authors that obtains a kinematic configuration estimate
by parsing the blob. Figure from “W4: Real-time surveillance of people and their activities”,

Haritaoglu et al., IEEE Trans. Pattern Analysis and Machine Intelligence, 2000, c© 2000
IEEE.

Fig. 1.2 For a given view of the body, body segments appear in the outline in a predictable

manner. An example for a frontal view appears on the left. Haritaoglu et al identify vertices
on the outline of a blob using a form of convexity reasoning (right (b) and right (c)), and
then infer labels for these vertices by measuring the distance to head (at the top), feet (at

the bottom) and median (below right). These distances give possibly ambiguous labels for

each vertex; by applying a set of topological rules obtained using examples of multiple views
like that on the left, they obtain an unambiguous labelling.Figure from “W4: Real-time

surveillance of people and their activities”, Haritaoglu et al., IEEE Trans. Pattern Analysis
and Machine Intelligence, 2000, c© 2000 IEEE.
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10 Tracking: Fundamental Notions

1.2.2 Deformable templates

Image appearance or appearance is a flexible term used to refer to
aspects of an image that are being encoded and should be matched.
Appearance models might encode such matters as: Edge position;
edge orientation; the distribution of color at some scale (perhaps as
a histogram, perhaps as histograms for each of some set of spatially
localized buckets); or texture (usually in terms of statistics of filter
outputs.

A deformable template or snake is a parametric model of image
appearance usually used to localize structures. For example, one might
have a template that models the outline of a squash [191, 192] or the
outline of a person [33], place the template on the image in about the
right place, and let a fitting procedure figure out the best position,
orientation and parameters.

We can write this out formally as follows. Assume we have some
form of template that specifies image appearance as a function of some
parameters. We write this template – which gives (say) image bright-
ness (or color, or texture, and so on) as a function of space x and some
parameters θ – as T (x|θ). We score a comparison between the image
at frame n, which we write as I(x, tn), and this template using the a
scoring function ρ

ρ(T (x|θ), I(x, tn)).

A point template is built as a set of active sites within a model
coordinate frame. These sites are to match keypoints identified in the
image. We now build a model of acceptable sets of active sites obtained
as shape, location, etc., changes. Such models can be built with, for
example, the methods of principal component analysis (see, for
example, [185]). We can now identify a match by obtaining image key-
points, building a correspondence between image keypoints and active
sites on the template, and identifying parameters that minimize the
fitting error.

An alternative is a curve template, an idea originating with the
snakes of [191, 192]. We choose a parametric family of image curves –
for example, a closed B-spline – and build a model of acceptable shapes,
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1.2. Tracking by detection 11

using methods like principal component analysis on the control points.
There is an excellent account of methods in the book of Blake and
Isard [41]. We can now identify a match by summing values of some
image-based potential function over a set of sample points on the curve.
A particularly important case occurs when we want the sample points
to be close to image points where there is a strong feature response –
say an edge point. It can be inconvenient to find every edge point in the
image (a matter of speed) and this class of template allows us to search
for edges only along short sections normal to the curve – an example
of a gate.

Deformable templates have not been widely used as object detec-
tors, because finding a satisfactory minimum – one that lies on the
object of interest, most likely a global minimum – can be hard. The
search is hard to initialize because one must identify the feature points
that should lie within the gate of the template. However, in tracking
problems this difficulty is mitigated if one has a dynamical model of
some form. For example, the object might move slowly, meaning that
the minimum for frame n will be a good start point for frame n + 1.
As another example, the object might move with a large, but near con-
stant, velocity. This means that we can predict a good start point from
frame n + 1 given frame n. A significant part of the difficulty is caused
by image features that don’t lie on the object, meaning that another
useful case occurs in the near absence of clutter – perhaps background
subtraction, or the imaging conditions, ensures that there are few or
no extra features to confuse the fitting process.

Baumberg and Hogg track people with a deformable template built
using a B-spline as above, with principal components used to determine
the template [33]. They use background subtraction to obtain an outline
for the figure, then sample the outline. For this kind of template, cor-
respondence is generally a nuisance, but in some practical applications,
this information can be supplied from quite simple considerations. For
example, Baumberg and Hogg work with background subtracted data
of pedestrians at fairly coarse scales from fixed views [33]. In this case,
sampling the outline at fixed fractions of length, and starting at the
lowest point on the principal axis yields perfectly acceptable correspon-
dence information.
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12 Tracking: Fundamental Notions

1.2.2.1 Robustness

We have presented scoring a deformable template as a form of least
squares fitting problem. There is a basic difficulty in such problems.
Points that are dramatically in error, usually called outliers and tra-
ditionally blamed on typist error [153, 330], can be overweighted in
determining the fit. Outliers in vision problems tend to be unavoid-
able, because nature is so generous with visual data that there is usu-
ally something seriously misleading in any signal. There are a variety of
methods for managing difficulties created by outliers that are used in
building deformable template trackers. An estimator is called robust
if the estimate tends to be only weakly affected by outliers. For exam-
ple, the average of a set of observations is not a robust estimate of the
mean of their source (because if one observation is, say, mistyped, the
average could be wildly incorrect). The median is a robust estimate,
because it will not be much affected by the mistyped observation.

Gating – the scheme of finding edge points by searching out some
distance along the normal from a curve – is one strategy to obtain
robustness. In this case, one limits the distance searched. Ideally, there
is only one edge point in the search window, but if there are more one
takes the closest (strongest, mutatis mutandis depending on application
details). If there is nothing, one accepts some fixed score, chosen to
make the cost continuous. This means that the cost function, while
strictly not differentiable, is not dominated by very distant edge points.
These are not seen in the gate, and there is an upper bound on the error
any one site can contribute.

An alternative is to use an m-estimator. One would like to score
the template with a function of squared distance between site and mea-
sured point. This function should be close to the identity for small val-
ues (so that it behaves like the squared distance) and close to some
constant for large values (so that large values don’t contribute large
biases). A natural form is

ρ(u) =
u

u + σ

so that, for d2 small with respect to σ, we have ρ(d2) ≈ d2 and for
d2 large with respect to σ we have ρ(d2) ≈ 1. The advantage of this
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1.2. Tracking by detection 13

approach is that nearby edge points dominate the fit; the disadvantage
is that even fitting problems that are originally convex are no longer
convex when the strategy is applied. Numerical methods are conse-
quently more complex, and one must use multiple start points. There
is little hope of having a convex problem, because different start points
correspond to different splits of the data set into “important” points
and outliers; there is usually more than one such split. Again, large
errors no longer dominate the estimation process, and the method is
almost universally applied for flow templates.

1.2.2.2 The Hausdorff distance

The Hausdorff distance is a method to measure similarity between
binary images (for example, edge maps; the method originates in
Minkowski’s work in convex analysis, where it takes a somewhat differ-
ent form). Assume we have two sets of points P and Q; typically, each
point is an edge point in an image. We define the Hausdorff distance
between the two sets to be

H(P,Q) = max(h(P,Q),h(Q,P ))

where

h(P,Q) = max
p∈P

min
q∈Q

|| p − q ||.

The distance is small if there is a point in Q close to each point in
P and a point in P close to each point in P . There is a difficulty with
robustness, as the Hausdorff distance is large if there are points with no
good matches. In practice, one uses a variant of the Hausdorff distance
(the generalized Hausdorff distance) where the distance used is the
k-th ranked of the available distances rather than the largest. Define
F th

k to be the operator that orders the elements of its input largest to
smallest, then takes the k’th largest. We now have

Hk(P,Q) = max(hk(P,Q),hk(Q,P ))

where

hk(P,Q) = F th
k (min

q∈Q
|| p − q ||)
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(for example, if there are 2n points in P , then hn(P,Q) will give the
median of the minimum distances). The advantage of all this is that
some large distances get ignored.

Now we can compare a template P with an image Q by determin-
ing some family of transformations T (θ) and then choosing the set of
parameters θ̂ that minimizes

Hk(T (θ) ◦ P,Q).

This will involve some form of search over θ. The search is likely
to be simplified if – as applies in the case of tracking – we have a fair
estimate of θ̂ to hand.

Huttenlocher et al. track using the Hausdorff distance [165]. The
template, which consists of a set of edge points, is itself allowed
to deform. Images are represented by edge points. They identify
the instance of the latest template in the next frame by searching
over translations θ of the template to obtain the smallest value of
Hk(T (θ) ◦ P,Q). They then translate the template to that location,
and identify all edge points that are within some distance of the cur-
rent template’s edge points. The resulting points form the template for
the next frame. This process allows the template to deform to take into
account, say, the deformation of the body as a person moves. Perfor-
mance in heavily textured video must depend on the extent to which
the edge detection process suppresses edges and the setting of this dis-
tance parameter (a large distance and lots of texture is likely to lead
to catastrophe).

1.3 Tracking using flow

The difficulty with tracking by detection is that one might not have a
deformable template that fully specifies the appearance of an object.
It is quite common to have a template that specifies the shape of the
domain spanned by the object and the type of its transformation, but
not what lies within. Typically, we don’t know the pattern, but we do
know how it moves. There are several important examples:

• Human body segments tend to look like a rectangle
in any frame, and the motion of this rectangle is likely
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to be either Euclidean or affine, depending on imaging
circumstances.

• A face in a webcam tends to fill a blob-like domain and
undergo mainly Euclidean transformations. This is useful for
those building user interfaces where the camera on the mon-
itor views the user, and there are numerous papers dealing
with this. The face is not necessarily frontal – computer users
occasionally look away from their monitors – but tends to be
large, blobby and centered.

• Edge templates, particularly those specifying outlines, are
usually used because we don’t know what the interior of the
region looks like. Quite often, as we have seen, we know how
the template can deform and move. However, we cannot score
the interior of the domain because we don’t know (say) the
pattern of clothing being worn.

In each of these cases, we cannot use tracking by detection as above
because we do not posess an appropriate template. As a matter of
experience, objects don’t change appearance much from frame to frame
(alternatively, we should use the term appearance to apply to properties
that don’t change much from frame to frame). All this implies that parts
of the previous image could serve as a template if we have a motion
model and domain model. We could use a correspondence model to link
pixels in the domain in frame n with those in the domain in frame n + 1.
A “good” linking should pair pixels that have similar appearances.
Such considerations as camera properties, the motion of rigid objects,
and computational expense suggest choosing the correspondence model
from a small parametric family.

All this gives a formal framework. Write a pixel position in the n’th
frame as xn, the domain in the n’th frame as Dn, and the transfor-
mation from the n’th frame to the n + 1’th frame as Tn→n+1(·;θn).
In this notation θn represent parameters for the transformation from
the n’th frame to the n + 1’th frame, and we have that xn+1 =
Tn→n+1(xn;θn).

We assume we know Dn. We can obtain Dn+1 from Dn as
Tn→n+1(Dn;θn). Now we can score the parameters θn representing the
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change in state between frames n + 1 and n by comparing Dn with
Dn+1 (which is a function of θn). We compute some representation
of image information R(x), and, within the domain Dn+1 compare
R(xn+1) with R(Tn→n+1(xn;θn)), where the transformation is applied
to the domain Dn.

1.3.1 Optic flow

Generally, a frame-to-frame correspondence should be thought of as
a flow field (or an optic flow field) – a vector field in the image
giving local image motion at each pixel. A flow field is fairly clearly
a correspondence, and a correspondence gives rise to a flow field (put
the tail of the vector at the pixel position in frame n, and the head at
the position in frame n + 1). The notion of optic flow originates with
Gibson (see, for example, [128]).

A useful construction in the optic flow literature assumes that image
intensity is a continuous function of position and time, I(x, t). We then
assume that the intensity of image patches does not change with move-
ment. While this assumption may run into troubles with illumination
models, specularities, etc., it is not outrageous for small movements.
Furthermore, it underlies our willingness to compare pixel values in
frames. Accepting this assumption, we have

dI

dt
=∇I · dx

dt
+

∂I

∂t
= 0

(known as the optic flow equation, e.g. see [160]). Flow is represented
by dx/dt. This is important, because if we confine our attention to an
appropriate domain, comparing I(T (x;θn), tn+1) with I(x, tn) involves,
in essence, estimating the total derivative. In particular,

I(T (x;θn), tn+1) − I(x, tn) ≈ dI

dt
.

Furthermore, the equivalence between correspondence and flow sug-
gests a simpler form for the transformation of pixel values. We regard
T (x;θn) as taking x from the tail of a flow arrow to the head. At short
timescales, this justifies the view that T (x;θn) = x + δx(θn).
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1.3.2 Image stabilization

This form of tracking can be used to build boxes around moving objects,
a practice known as image stabilization. One has a moving object on
a fairly uniform background, and would like to build a domain such that
the moving object is centered on the domain. This has the advantage
that one can look at relative, rather than absolute, motion cues. For
example, one might take a soccer player running around a field, and
build a box around the player. If one then fixes the box and its contents
in one place, the vast majority of motion cues within the box are cues to
how the player’s body configuration is changing. As another example,
one might stabilize a box around an aerial view of a moving vehicle;
now the box contains all visual information about the vehicle’s identity.

Efros et al. use a straightforward version of this method, where
domains are rectangles and flow is pure translation, to stabilize boxes
around people viewed at a medium scale (for example, in a soccer
video) [100]. In some circumstances, good results can be obtained by
matching a rectangle in frame n with the rectangle in frame n + 1
that has smallest sum-of-squared differences – which might be found
by blank search, assisted perhaps by velocity constraints. This is going
to work best if the background is relatively simple – say, the constant
green of a soccer field – as then the background isn’t a source of noise,
so the figure need not be segmented (Figure 1.3). For more complex
backgrounds, the approach may still work if one performs background
subtraction before stabilization. At a medium scale it is very difficult to
localize arms and legs, but they do leave traces in the flow field. The sta-
bilization procedure means that the flow information can be computed
with respect to a torso coordinate system, resulting in a representation
that can be used to match at a kinematic level, without needing an
explicit representation of arm and leg configurations (Figure 1.3).

1.3.3 Cardboard people

Flow based tracking has the advantage that one doesn’t need an explicit
model of the appearance of the template. Ju et al. build a model of
legs in terms of a set of articulated rectangular patches (“cardboard
people”) [190]. Assume we have a domain D in the n’th image I(x, tn)
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Fig. 1.3 Flow based tracking can be useful for medium scale video. Efros et al. stabilize boxes

around the torso of players in football video using a sum of squared differences (SSD) as

a cost function and straightforward search to identify the best translation values. As the
figure on the left shows, the resulting boxes are stable with respect to the torso. On the

top right, larger versions of the boxes for some cases. Note that, because the video is at

medium scale, it is difficult to resolve arms and legs, which are severely affected by motion
blur. Nonetheless, one can make a useful estimate of what the body is doing by computing

an estimate of optic flow (bottom right, Fx, Fy), rectifying this estimate (bottom right,

F+
x , F−x , F+

y , F−y ) and then smoothing the result (bottom right, Fb+x , etc.). The result
is a smoothed estimate of where particular velocity directions are distributed with respect to

the torso, which can be used to match and label frames. Figure from “Recognizing Action

at a Distance”, Efros et al., IEEE Int. Conf. Computer Vision 2003, c© 2003 IEEE.

and a flow field δx(θ) parametrized by θ. Now this flow field takes D to
some domain in the n + 1’th image, and establishes a correspondence
between pixels in the n’th and the n + 1’th image. Ju et al. score∑

D

ρ(In+1(x + δx(θ)) − In(x))

where ρ is some measure of image error, which is small when the two
compare well and large when they are different. Notice that this is a
very general approach to the tracking problem, with the difficulty that,
unless one is careful about the flow model the problem of finding a
minimum might be hard. To our knowledge, the image score is always
applied to pixel values, and it seems interesting to wonder what would
happen if one scored a difference in texture descriptors.

Typically, the score is not minimized directly, but is approximated
with the optic flow equation and with a Taylor series. We have∑

D

ρ(I(x + δx(θ), tn+1) − In(x, tn))
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Fig. 1.4 On the left, a 2D flow based model of a leg, called a “cardboard people” model

by Ju et al [190]; there is a lower leg, an upper leg and a torso. Each domain is roughly
rectangular, and the domains are coupled with an energy term to ensure they do not drift

apart. The model is tracked by finding the set of deformation parameters that carve out a

domain in the n + 1’th frame that is most like the known domain in the n’th frame. On the
right, two frames from a track, with the left column showing the original frame and the

right column showing the track. Notice how the pattern of buckling folds on the trouser leg

changes as the leg bends; this leads to quite significant changes in the texture and shading
signal in the domain. These changes can be a significant nuisance. Figure from “Cardboard

People: A Parameterized Model of Articulated Image Motion”, Ju et al., IEEE Int. Conf.

Face and Gesture, 1996, c© 1996 IEEE.

is approximately equal to∑
D

ρ(
dI

dt
) =

∑
D

ρ(
∂I

∂x
δx(θn) +

∂I

∂y
δy(θn) +

∂I

∂t
)

(this works because ∆t = 1). Now assume that a patch has been marked
out in a frame; then one can determine its configuration in the next
by minimizing this error summed over the domain. The error itself
is easily evaluated using smoothed derivative estimates. As we show
below, we can further simplify error evaluation by building a flow model
with convenient form. To track an articulated figure, Ju et al. attach a
further term that encourages relevant vertices of each separate patch to
stay close. Similarly, Black et al construct parametric families of flow
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fields and use them to track lips and legs, in the latter case yielding a
satisfactory estimate of walk parameters [40]. In both cases, the flow
model is view dependent. Yacoob and Davis build a view independent
parametric flow field models to track views of walking humans [420].
As one would expect, this technique can be combined with others;
for example, the W4S system of Haritaoglu et al. uses a “cardboard
people” model to track torso configurations within the regions described
above [147].

1.3.4 Building flow templates

We have seen how to construct tracks given parametric models of flow.
But how is one to obtain good models? One strategy is to take a pool
of examples of the types of flow one would like to track, and try to find
a set of basis flows that explains most of the variation (for examples,
see [190]). In this case, and writing θi for the i’th component of the
parameter vector and Fi for the i’th flow basis vector field, one has

δx =
∑

i

θiFi.

Now write ∇I for the image gradient and exploit the optic flow
equation and a Taylor series as above. We get

ρ

(∑
i

θi((∇I)TFi) +
∂I

∂t

)
.

As Ju et al. observe, this can be done with a singular value decom-
position (and is equivalent to principal components analysis). A second
strategy is to assume that flows involve what are essentially 2D effects –
this is particularly appropriate for lateral views of human limbs – so
that a set of basis flows that encodes translation, rotation and some
affine effects is probably sufficient. One can obtain such flows by writing

δx =
(

u(x)
v(x)

)
=
(

a0 + a1x + a2y + a6x
2 + a7xy

a3 + a4x + a5y + a6xy + a7y
2

)
.

This model is linear in the parameters (the ai), which is convenient;
it provides a reasonable encoding of flows resulting from 3D motions
of a 2D rectangle (see Figure 1.5). One may also learn linearized flow
models from example data [420].
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Fig. 1.5 Typical flows generated by the model (u(x),v(x)T = (a0 + a1x + a2y + a6x2 +

a7xy,a3 + a4x + a5y + a6xy + a7y2)). Different values of the ai give different flows,

and the model can generate flows typical of a 2D figure moving in 3D. We write a =
(a0,a1,a2,a3,a4,a5,a6,a7). Divergence occurs when the image is scaled; for example,

a = (0,1,0,0,0,1,0,0). Deformation occurs when one direction shrinks and another grows
(for example, rotation about an axis parallel to the view plane in an orthographic camera);

for example, a = (0,1,0,0,0,−1,0,0). Curl can result from in plane rotation; for example,

a = (0,0,−1,0,1,0,0,0). Yaw models rotation about a vertical axis in a perspective camera;
for example a = (0,0,0,0,0,1,0). Finally, pitch models rotation about a horizontal axis in

a perspective camera; for example a = (0,0,0,0,0,0,1). Figure from “Cardboard People: A

Parameterized Model of Articulated Image Motion”, Ju et al., IEEE Int. Conf. Face and
Gesture, 1996, c© 1996 IEEE.

1.3.5 Flow models from kinematic models

An alternative method to build such templates is to work in 3D, and
exploit the chain rule, as in the work of Bregler and Malik [49, 48].
We start with a segment in 3D, which is in some configuration and
viewed with some camera. Each point on the segment produces some
image value. We could think of the image values as a function –
the appearance map – defined on the segment. This allows us to
see viewing the segment as building a mapping from the points on
the segment to the image domain. The image values are obtained by
taking each point in the image, finding the corresponding point (if
any) on the segment, and then evaluating the appearance map at this
point.
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Fig. 1.6 Bregler and Malik formulate parametric flow models by modelling a person as

a kinematic chain and then differentiating the maps from segment to image [49]. They
then track by searching for the parameter update that best aligns the current image pixels

with those of the previous frame under this flow model. There is no dynamical model.

This means that complex legacy footage, like these frames from the photographs of Eduard
Muybridge [270, 269], can be tracked. Muybridge’s frames are difficult to track because

the frame-frame timing is not exact, and the figures can move in quite complex ways (see

Figure 3.6). Figure from “Tracking People with Twists and Exponential Maps”, Bregler
and Malik, Proc. Computer Vision and Pattern Recognition, 1998, c© 1998 IEEE.

All this leads to an important formal model, again under the
assumption that motions in 3D do not affect the appearance map in any
significant way. We have a parametrized family of maps from points on
the body to the image. A flow field in the image is a vector field induced
by a change in the choice of parameters (caused by either a change in
joint configuration or a camera movement). We will always assume that
the change in parameters from frame to frame is small. At this point,
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we must introduce some notation. Write the map that takes points
on the segment to points in the n’th image as Ts→I(·;θn), where θn

are parameters representing camera configuration, intrinsics, etc. The
point p on the segment appears in image n at xn = Ts→I(p;θn) and in
image n + 1 at xn+1 = Ts→I(p;θn+1). The tail of the flow arrow is at
xn and the head is at xn+1. The change in parameters, ∆θ = θn+1 − θn

is small. Then the flow is

xn+1 − xn = Ts→I(p;θn+1) − Ts→I(p;θn) ≈ ∇θTs→I · ∆θ

where the gradient, ∇θTs→I , is evaluated at (p,θn).

1.3.5.1 Tracking a derivative flow model

The main point here is that the flow at xn can be obtained by fix-
ing the relevant point p on the object, then considering the map taking
the parameters to the image plane – the derivative of Ts→I(p; ·). This
is important, because the flow ∇θTs→I · ∆θ is a linear function of ∆θ.
We now have the outline of a tracking algorithm:

• Start at frame n = 0 and some known configuration θ0 = θ̂.
• Fit: Fit the best value of ∆θ to the flow between the frame n

and frame n + 1 using the flow model given by the derivative
evaluated at θn.

• Update: Update the parameters by θn+1 = θn + ∆θ and set
n to n + 1.

This should be seen as a primitive integrator, using Euler’s method
and inheriting all the problems that come with it. This view confirms
the reasonable suspicion that fast movements are unlikely to be tracked
well unless that sampling rate is high.

1.3.5.2 The flow model from the chain rule

In the special case of segments lying on a kinematic tree – a series of
links attached by joints of known parametric form, where there are no
loops – the chain rule means that the derivative takes a special form.
Each segment in a kinematic tree has its own coordinate system, and
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the joint is represented by a map from a link’s world coordinate system
to that of its parent. The parent of segment k is segment k − 1. They are
connected by a joint whose parameters at frame n are θk,n. In general, in
a kinematic tree, points on segments are affected by parameters at joints
above them in the tree. Furthermore, we can obtain a transformation
to the image by recursively concatenating transformations. Write the
camera as Tw→i. Then the transformation taking a point of link k in
frame n to the image can be written as

Tk→i = Tw→i ◦ Tk−1→w ◦ Tk→k−1.

Notice that the only transformation that depends on θk,n here is
Tk→k−1.

There is an advantage to changing notation at this point. Write
Tk→k−1 as Tk. The root of the tree is at segment one, and we can write
T1→w as T1 and Tw→i as T0. We continue to divide up the parameters
θ into components, θk,n being the components associated with segment
k in the n’th frame (θ0,n are viewing parameters in frame n). We can
now see the map from point p on segment k to the image as

Tk→i(p;θ) = T0(T1(T2(. . . ;θ2);θ1);θ0).

This is somewhat inconvenient to write out, and it is helpful to keep
track of intermediate values. Introduce the notation

pl = Tk→l(p;θ)

for the point p in the coordinate system of the l’th link.
Our transformations have two types of argument: the points in

space, and the camera parameters. It is useful to distinguish between
two types of derivative. Write the partial derivative of a transformation
T with respect to its spatial arguments as DT . In coordinates, T would
take the form (f1(x1,x2,x3,θ),f2(x1,x2,x3,θ),f3(x1,x2,x3,θ)), and this
derivative would be the matrix whose i, j’th element is ∂fi/∂xj . Sim-
ilarly, write the partial derivative of a transformation T with respect
to parameters θ as Dθ. If we regard θ as a vector of parameters whose
j’th entry is θj , then in coordinates this derivative would be the matrix
whose i, j’th element is ∂fi/∂θj .

Full text available at: http://dx.doi.org/10.1561/0600000005



1.3. Tracking using flow 25

This orgy of notation leads to a simple form for the flow. Write the
flow at point x – which is the image of point p on segment k – in frame
n as v(x,θn). Then

v(x,θn) = DθT0(p0;θ0) · ∆θ0 + DxT0 ◦ DθT1(p1;θ1)∆θ1

. . . + DxT0 ◦ DxT1 ◦ . . .DxTk−1 ◦ DθTk(p;θk)∆θk.

Our indexing scheme hasn’t taken into account the fact that we’re
dealing with a tree, but this doesn’t matter; we need care only about
links on the path from the relevant segment to the root. Furthermore,
there is a relatively efficient algorithm for computing this derivative. We
pass from the leaves to the root computing intermediate configurations
pl for each point p and the relevant parameter derivatives. We then
pass from the root to the leaves concatenating spatial derivatives and
summing.

1.3.5.3 Rigid-body transformations

All the above takes a convenient and simple form for rigid-body trans-
formations (which are likely to be the main interest in human tracking).
We use homogeneous coordinates to represent points in 3D, and so a
rigid body transformation takes the form

T (p,θ) =
[
R t
0 1

]
p

where R is an orthonormal matrix with determinant one (a rotation
matrix). The parameters are the parameters of the rotation matrix and
the coefficients of the vector t. This means the spatial derivative is the
same as the transformation, which is convenient.

The derivatives with respect to the parameters are also relatively
easily dealt with. Recall the definition of the matrix exponential as
an infinite sum,

exp(M) = I + M +
1
2
M2 + M3 + . . . +

1
n
Mn . . .

where the sum exists. Now it is straightforward to demonstrate that if

M =
[
A t
0 0

]
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and if A is antisymmetric, then exp(M) is a rigid-body transformation.
The elements of the antisymmetric matrix parametrize the rotation,
and the rightmost column is the translation. This is useful, because

∂ (expM(θ))
∂θ

=
(

∂M(θ)
∂θ

)
expM(θ)

which gives straightforward forms for the parameter derivatives.

1.4 Tracking with probability

It is convenient to see tracking as a probabilistic inference problem. In
particular, we have a sequence of states X0,X1, . . . ,XN produced by
some dynamical process. These states are unknown – they are some-
times called hidden states for this reason – but there are measure-
ments Y0,Y1, . . . ,YN . Two problems follow naturally:

• Tracking, where we wish to determine some representation
of P (Xk|Y0, . . . ,Yk);

• Filtering, where we wish to determine some representation
of P (Xk|Y0, . . . ,YN ) (i.e. we get to use ”future” measurements
to infer the state).

These problems are massively simplified by two important assumptions.

• We assume measurements depend only the hidden state, that
is, that P (Yk|X0, . . . ,XN ,Y0, . . . ,YN ) = P (Yk|Xk).

• We assume that the probability density for a new
state is a function only of the previous state; that is,
P (Xk|X0, . . . ,Xk−1) = P (Xk|Xk−1), or, equivalently, that Xi

form a Markov chain.

Now tracking involves three steps:
Prediction: where we construct some prediction of the future state

given past measurements, or equivalently, construct a representation of
P (Xk|Y0, . . . ,Yk−1). Straightforward manipulation of probability com-
bined with the assumptions above yields that the prior or predictive
density is

P (Xk|Y0, . . . ,Yk−1) =
∫

P (Xk|Xk−1)P (Xk−1|Y0, . . . ,Yk−1)dXk−1.
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Data association: where we use the predictive density – which is
sometimes called the prior – and anything else likely to be helpful,
to determine which of a pool of measurements contribute to the value
of Yk.

Correction: where we incorporate the new measurement into
what is known, or, equivalently, construct a representation of
P (Xk|Y0, . . . ,Yk). Straightforward manipulation of probability com-
bined with the assumptions above yields that the posterior is

P (Xk|Y0, . . . ,Yk) =
P (Yk|Xk)P (Xk|Y0, . . . ,Yk−1)∫

P (Yk|Xk)P (Xk|Y0, . . . ,Yk−1)dXk
.

1.4.1 Linear dynamics and the Kalman filter

All this is much simplified in the case that the emission model is linear,
the dynamic model is linear, and all noise is Gaussian. In this case,
all densities are normal and the mean and covariance are sufficient to
represent them. Both tracking and filtering boil down to maintenance
of these parameters. There is a simple set of update rules (given in
Algorithm 2; notation below), the Kalman filter.

Notation: We write X ∼ N(µ;Σ) to mean that X is a normal ran-
dom variable with mean µ and covariance Σ. Both dynamics and emis-
sion are linear, so we can write

Xk ∼ N(AkXk−1;Σ
(d)
k )

and

Yk ∼ N(BkXk;Σ
(m)
k ).

We will represent the mean of P (Xi|y0, . . . ,yi−1) as X
−
i and the

mean of P (Xi|y0, . . . ,yi) as X
+
i – the superscripts suggest that they

represent our belief about Xi immediately before and immediately after
the i’th measurement arrives. Similarly, we will represent the standard
deviation of P (Xi|y0, . . . ,yi−1) as Σ−i and of P (Xi|y0, . . . ,yi) as Σ+

i . In
each case, we will assume that we know P (Xi−1|y0, . . . ,yi−1), meaning
that we know X

+
i−1 and Σ+

i−1.
Filtering is straightforward. We obtain a backward estimate

by running the filter backward in time, and treat this as another
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Dynamic Model:

xi ∼ N(Dixi−1,Σdi
)

yi ∼ N(Mixi,Σmi)

Start Assumptions: x−0 and Σ−0 are known
Update Equations: Prediction

x−i = Dix+
i−1

Σ−i = Σdi
+ Diσ

+
i−1Di

Update Equations: Correction

Ki = Σ−i M
T
i

[
MiΣ−i M

T
i + Σmi

]−1

x+
i = x−i + Ki

[
yi −Mix−i

]
Σ+

i = [Id − KiMi]Σ−i

Algorithm 2: The Kalman filter updates estimates of the mean and
covariance of the various distributions encountered while tracking a
state variable of some fixed dimension using the given dynamic model.

measurement. Extensive detail on the Kalman filter and derived
methods appears in [32, 127].

1.4.2 Data association

Data association involves determining which pixels or image measure-
ments should contribute to a track. That data association is a nuisance
is a persistent theme of this work. Data association is genuinely difficult
to handle satisfactorily – after all, determining which pixels contribute
to which decision seems to be a core – and often very difficult – com-
puter vision problem. The problem is usually particularly difficult when
one wishes to track people, for several reasons. First, standard data
association techniques aren’t really all that much help, as for almost
every aspect the image domain covered by a person changes shape
very aggressively, and can do so very fast. Second, there seem to be a
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lot of background objects that look like some human body parts; for
example, kinematic tracking of humans in office scenes is very often
complicated by the fact that many book spines (or book shelves) can
look like forearms.

In tracking by detection, almost all computation is directed at data
association, which is achieved by minimizing ρ with respect to the tem-
plate’s parameters – the support of ρ identifies the relevant pixels. Sim-
ilarly, in tracking using flow, data association is achieved by choosing
the parameters of a flow model to get a good match between domains in
frames n and n + 1 – the definition of the domain cuts out the relevant
pixels. When these methods run awry, it is because the underlying data
association methods have failed. Either one cannot find the template,
or one cannot get good parameters for the flow model.

There are a variety of simple data association strategies which
exploit the presence of probability models. In particular, we have an
estimate of P (Xn|Y0, . . . ,Yn−1) and we know P (Yn|Xn). From this we
can obtain an estimate of P (Yn|Y0, . . .Yn−1), which gives us hints as to
where the measurement might be.

One can use a gate – we look only at measurements that lie in a
domain where P (Yn|Y0, . . . ,Yn−1) is big enough. This is a method with
roots in radar tracking of missiles and aeroplanes, where one must deal
with only a small number (compared with the number of pixels in
an image!) of returns, but the idea has been useful in visual tracking
applications.

One can use nearest neighbours. In the classical version, we have
a small set of possible measurements, and we choose the measurement
with the largest value of P (Yn|Y0, . . . ,Yn−1). This has all the dangers of
wishful thinking – we are deciding that a measurement is valid because
it is consistent with our track – but is often useful in practice. This
strategy doesn’t apply to most cases of tracking people in video because
the search to find the maximising Yn – which would likely be an image
region – could be too difficult (but see Section 3). However, it could be
applied when one is tracking markers attached to the body – in this
case, we need to know which marker is which, and this information
could be obtained by allocating a measurement to the marker whose
predicted position is closest.
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One can use probabilistic data association, where we use a
weighted combination of measurements within a gate, weighted using
(a) the predicted measurement and (b) the probability a measurement
has dropped out. Again, this method has the dangers of wishful think-
ing, and again does not apply to most cases of tracking people; how-
ever, it could again be applied when one is tracking markers attached
to the body.

1.4.3 Multiple modes

The Kalman filter is the workhorse of estimation, and can give useful
results under many conditions. One doesn’t need a guarantee of lin-
earity to use a Kalman filter – if the logic of the application indicates
that a linear model is reasonable, there is a good chance a Kalman
filter will work. Rohr used a Kalman filter to track a walking person
successfully, evaluating the measurement by matches to line segments
on the outline [322, 323].

More recently, the method tends not to be used because of concerns
about multiple modes. The representation adopted by a Kalman filter
(the mean and covariance, sufficient statistics for a Gaussian distri-
bution) tends to represent multimodal distributions poorly. There are
several reasons one might encounter multiple modes.

First, nonlinear dynamics – or nonlinear measurement processes,
or both – can create serious problems. The basic difficulty is that
even quite innocuous looking setups can produce densities that are
not normal, and are very difficult to represent and model. For exam-
ple, let us look at only the hidden state. Assume that this is one
dimensional. Now assume that state updates are deterministic, with
Xi+1 = Xi + εsin(Xi). If ε is sufficiently small, we have that for 0 <

Xi < π, Xi < Xi+1 < π; for −π < Xi < 0, −π < Xi+1 < Xi; and so on.
Now assume that P (X0) is normal. For sufficiently large k, P (Xk)
will not be; there will be “clumps” of probability centered around the
points (2j + 1)π for j an integer. These clumps will be very difficult to
represent, particularly if P (X0) has very large variance so that many
clumps are important. Notice that what is creating a problem here is
that quite small non-linearities in dynamics can cause probability to be
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concentrated in ways that are very difficult to represent. In particular,
nonlinear dynamics are likely to produce densities with complicated suf-
ficient statistics. There are cases where nonlinear dynamics does lead
to densities that can be guaranteed to have finite-dimensional suffi-
cient statistics (see [35, 83, 84]); to our knowledge, these have not been
applied to human tracking.

Second, there are practical phenomena in human tracking that tend
to suggest that non-normal distributions are a significant part of the
problem. Assume we wish to track a 3D model of an arm in a sin-
gle image. The elbow is bent; as it straightens, it will eventually run
into an end-stop – the forearm can’t rotate further without damage.
At the end-stop, the posterior on state can’t be a normal distribu-
tion, because a normal distribution would have some support on the
wrong side of the end-stop, and this has a significant effect on the
shape of the posterior (see Figure 2.5). Another case that is likely,
but not guaranteed, to cause trouble is a kinematic singularity.
For example, if the elbow is bent, we will be able to observe rota-
tion about the humerus, but current observation models will make this
unobservable if the elbow is straight (because the outline of the arm
will not change; no current method can use the changes in appear-
ance of the hand that will result). The dimension of the state space
has collapsed. The posterior might be a normal distribution in this
reduced dimension space, but that would require explicitly represent-
ing the collapse. The alternative, a covariance matrix of reduced rank,
creates unattractive problems of representation. Deutscher et al. pro-
duce evidence that, in both cases, posteriors are not, in fact, normal
distributions, and show that an extended Kalman filter can lose track
in these cases [90].

Third, kinematic ambiguity in the relations between 3D and 2D are
a major source of multiple modes. Assume we are tracking a human
figure using a 3D representation of the body in a single view. If, for
example, many 3D configurations correspond exactly to a single 2D
configuration, then we expect the posterior to have multiple modes.
Section 2 discusses this issue in extensive detail.

Fourth, the richest source of multiple modes is data associa-
tion problems. An easy example illustrates how nasty this problem
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can be. Assume we have a problem with linear dynamics and a
linear measurement model. However, at each tick of the clock we
receive more than one measurement, exactly one of which comes
from the process being studied. We will continue to write the states
as Xi, the measurements as Yi; but we now have δi, an indica-
tor variable that tells which measurement comes from the process
(and is unknown). P (XN |Y1..N , δ1..N ) is clearly Gaussian. We want
P (XN |Y1..N ) =

∑
histories P (XN |Y1..N , δ1..N )P (δ1..N |Y1..N ), which is

clearly a mixture of Gaussians. The number of components is expo-
nential in the number of frames – there is one component per history –
meaning that P (XN |Y1..N ) could have a very large number of modes.

The following two sections discuss main potential sources of multi-
modal behaviour in great detail. Section 2 discusses the relations
between 2D and 3D models of the body, which are generally agreed
to be a source of multiple modes. Section 3 discusses data association
methods. In this section, there is a brief discussion of the particle fil-
ter, a current favorite method for dealing with multi-modal densities.
There are other methods: Benes̆ describes a class of nonlinear dynam-
ical model for which the posterior can be represented with a sufficient
statistic of constant finite dimension [35]. Daum extends the class of
models for which this is the case ([83, 84]; see also [338] for an appli-
cation and [106] for a comparison with the particle filter). Extensive
accounts of particle filters appear in [93, 231, 319].
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[265] M. Müller, T. Röder, and M. Clausen, “Efficient content-based retrieval of
motion capture data,” ACM Trans. Graph., vol. 24, no. 3, pp. 677–685, 2005.

[266] F. Multon, L. France, M.-P. Cani, and G. Debunne, “Computer animation of
human walking: a survey,” Journal of Visualization and Computer Animation
(JVCA), vol. 10, pp. 39–54, Published under the name Marie-Paule Cani-
Gascuel, 1999.

[267] J. L. Mundy and C.-F. Chang, “Fusion of intensity, texture, and color in
video tracking based on mutual information,” in Applied Imagery Pattern
Recognition Workshop, pp. 10–15, 2004.

[268] K. Murphy, Y. Weiss, and M. Jordan, “Loopy belief propagation for approxi-
mate inference: An empirical study,” in Proceedings of the Annual Conference
on Uncertainty in Artificial Intelligence, pp. 467–475, 1999.

[269] E. Muybridge, Animals in Motion. Dover, 1957.
[270] E. Muybridge, The Human Figure in Motion. Dover, 1989.
[271] R. M. Neal, “Annealed importance sampling,” Statistics and Computing,

vol. 11, no. 2, pp. 125–139, 2001.
[272] R. M. Neal, “Probabilistic inference using Markov chain Monte Carlo meth-

ods,” Computer science tech report CRG-TR-93-1, University of Toronto,
1993.

[273] R. M. Neal, “Sampling from multimodal distributions using tempered transi-
tions,” Statistics and Computing, vol. 6, pp. 353–366, 1996.

[274] R. M. Neal, “Annealed importance sampling,” Tech. Rep., Technical Report
No. 9805 (revised), Dept. of Statistics, University of Toronto, 1998.

[275] J. T. Ngo and J. Marks, “Physically realistic motion synthesis in animation,”
Evol. Comput., vol. 1, no. 3, pp. 235–268, 1993.

[276] J. T. Ngo and J. Marks, “Spacetime constraints revisited,” in SIGGRAPH ’93:
Proceedings of the 20th annual conference on Computer graphics and interac-
tive techniques, (New York, NY, USA), pp. 343–350, ACM Press, 1993.

[277] S. A. Niyogi and E. H. Adelson, “Analyzing gait with spatiotemporal sur-
faces,” in Proc. IEEE Workshop on Nonrigid and Articulated Motion, pp. 64–
69, 1994.

[278] S. A. Niyogi and E. H. Adelson, “Analyzing and recognizing walking figures
in XYT,” Media Lab Vision and Modelling TR-223, MIT, 1995.

[279] M. Oren, C. P. Papageorgiou, P. Sinha, E. Osuna, and T. Poggio, “Pedestrian
detection using wavelet templates,” in IEEE Conf. on Computer Vision and
Pattern Recognition, pp. 193–199, 1997.

[280] M. Oren, C. P. Papageorgiou, P. Sinha, E. Osuna, and T. Poggio, “A trainable
system for people detection,” in DARPA IU Workshop, pp. 207–214, 1997.

[281] J. O’Rourke and N. I. Badler, “Model-based image analysis of human motion
using constraint propagation,” IEEE T. Pattern Analysis and Machine Intel-
ligence, vol. 2, no. 6, pp. 522–536, November1980.

[282] E. Osuna, R. Freund, and F. Girosi, “Training support vector machines: an
application to face detection.,” in IEEE Conf. on Computer Vision and Pat-
tern Recognition, pp. 130–6, 1997.

Full text available at: http://dx.doi.org/10.1561/0600000005



170 References

[283] C. J. Pai, H. R. Tyan, Y. M. Liang, H. Y. M. Liao, and S. W. Chen, “Pedestrian
detection and tracking at crossroads,” in IEEE Int. Conf. Image Processing,
pp. 101–104, 2003.

[284] C. J. Pai, H. R. Tyan, Y. M. Liang, H. Y. M. Liao, and S. W. Chen, “Pedestrian
detection and tracking at crossroads,” Pattern Recognition, vol. 37, no. 5,
pp. 1025–1034, May 2004.

[285] M. G. Pandy and F. C. Anderson, “Dynamic simulation of human movement
using large-scale models of the body,” in Proc. IEEE Intl. Conference on
Robotics and Automation, pp. 676–681, 2000.

[286] M. Pandy, F. C. Anderson, and D. G. Hull, “A parameter optimization
approach for the optimal control of large-scale musculoskeletal systems,” J. of
Biomech. Eng., pp. 450–460, 1992.

[287] C. P. Papageorgiou, T. Evgeniou, and T. Poggio, “A trainable object detection
system,” in DARPA IU Workshop, pp. 1019–1024, 1998.

[288] C. P. Papageorgiou, M. Oren, and T. Poggio, “A general framework for object
detection,” in Int. Conf. on Computer Vision, pp. 555–562, 1998.

[289] C. P. Papageorgiou and T. Poggio, “A pattern classification approach to
dynamical object detection,” in Int. Conf. on Computer Vision, pp. 1223–
1228, 1999.

[290] C. P. Papageorgiou and T. Poggio, “Trainable pedestrian detection,” in IEEE
Int. Conf. Image Processing, pp. 35–39, 1999.

[291] C. P. Papageorgiou, “A trainable system for object detection in images and
video sequences constantine,” Tech. Rep., MIT, 2000. Ph. D.

[292] C. Papageorgiou and T. Poggio, “A trainable system for object detection,”
Int. J. Computer Vision, vol. 38, no. 1, pp. 15–33, June 2000.

[293] V. Parenti-Castelli, A. Leardini, R. D. Gregorio, and J. J. O’Connor, “On the
modeling of passive motion of the human knee joint by means of equivalent
planar and spatial parallel mechanisms,” Auton. Robots, vol. 16, no. 2, pp. 219–
232, 2004.

[294] S. I. Park, H. J. Shin, T. H. Kim, and S. Y. Shin, “On-line motion blending for
real-time locomotion generation: Research Articles,” Comput. Animat. Virtual
Worlds, vol. 15, no. 3–4, pp. 125–138, 2004.

[295] S. I. Park, H. J. Shin, and S. Y. Shin, “On-line locomotion generation
based on motion blending,” in SCA ’02: Proceedings of the 2002 ACM SIG-
GRAPH/Eurographics symposium on Computer animation, pp. 105–111, New
York, NY, USA: ACM Press, 2002.

[296] C. B. Phillips, J. Zhao, and N. I. Badler, “Interactive real-time articulated
figure manipulation using multiple kinematic constraints,” in SI3D ’90: Pro-
ceedings of the 1990 symposium on Interactive 3D graphics, (New York, NY,
USA), pp. 245–250, ACM Press, 1990.

[297] S. D. Pietra, V. D. Pietra, and J. Lafferty, “Inducing features of random fields,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19,
no. 4, pp. 380–393, 1997.

[298] R. Plänkers and P. Fua, “Tracking and modeling people in video sequences,”
Comput. Vis. Image Underst., vol. 81, no. 3, pp. 285–302, 2001.

Full text available at: http://dx.doi.org/10.1561/0600000005



References 171

[299] T. Poggio and K.-K. Sung, “Finding human faces with a gaussian mixture
distribution-based face model,” in Asian Conf. on Computer Vision, pp. 435–
440, 1995.

[300] R. Polana and R. C. Nelson, “Detecting activities,” in DARPA IU Workshop,
pp. 569–574, 1993.

[301] R. Polana and R. C. Nelson, “Detecting activities,” in IEEE Conf. on Com-
puter Vision and Pattern Recognition, pp. 2–7, 1993.

[302] R. Polana and R. C. Nelson, “Detecting activities,” J. Visual Communication
Image Representation, vol. 5, pp. 172–180, 1994.

[303] R. Polana and R. C. Nelson, “Low level recognition of human motion,” in
IEEE Workshop on Articulated and Non-Rigid Motion, 1994.

[304] R. Polana and R. C. Nelson, “Recognition of nonrigid motion,” in ARPA94,
pp. 1219–1224, 1994.

[305] R. Polana and R. C. Nelson, “Detection and recognition of periodic, nonrigid
motion,” Int. J. Computer Vision, vol. 23, no. 3, pp. 261–282, 1997.

[306] R. Polana and R. Nelson, “Recognizing activities,” in Proceedings IAPR Inter-
national Conference on Pattern Recognition, pp. 815–818, 1994.

[307] N. S. Pollard and F. Behmaram-Mosavat, “Force-based motion editing for
locomotion tasks,” in In Proceedings of the IEEE International Conference on
Robotics and Automation, 2000.
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