Geodesic Methods in Computer Vision and Graphics
Geodesic Methods in Computer Vision and Graphics

Gabriel Peyré
Université Paris-Dauphine, France
peyre@ceremade.dauphine.fr

Mickael Péchaud
École Normale Supérieure, France
mickael.pechaud@normalesup.org

Renaud Keriven
École des Ponts ParisTech, France
keriven@imagine.enpc.fr

Laurent D. Cohen
Université Paris-Dauphine, France
cohen@ceremade.dauphine.fr

Full text available at: http://dx.doi.org/10.1561/0600000029
Editorial Scope

Foundations and Trends® in Computer Graphics and Vision will publish survey and tutorial articles in the following topics:

- Rendering: Lighting models; Forward rendering; Inverse rendering; Image-based rendering; Non-photorealistic rendering; Graphics hardware; Visibility computation
- Shape: Surface reconstruction; Range imaging; Geometric modelling; Parameterization;
- Mesh simplification
- Animation: Motion capture and processing; Physics-based modelling; Character animation
- Sensors and sensing
- Image restoration and enhancement
- Segmentation and grouping
- Feature detection and selection
- Color processing
- Texture analysis and synthesis
- Illumination and reflectance modeling
- Shape Representation
- Tracking
- Calibration
- Structure from motion
- Motion estimation and registration
- Stereo matching and reconstruction
- 3D reconstruction and image-based modeling
- Learning and statistical methods
- Appearance-based matching
- Object and scene recognition
- Face detection and recognition
- Activity and gesture recognition
- Image and Video Retrieval
- Video analysis and event recognition
- Medical Image Analysis
- Robot Localization and Navigation

Information for Librarians
Foundations and Trends® in Computer Graphics and Vision, 2009, Volume 5, 4 issues. ISSN paper version 1572-2740. ISSN online version 1572-2759. Also available as a combined paper and online subscription.
Geodesic Methods in Computer Vision and Graphics

Gabriel Peyré¹, Mickael Péchaud², Renaud Keriven³, and Laurent D. Cohen⁴

¹ Ceremade, UMR CNRS 7534, Université Paris-Dauphine, Place de Lattre de Tassigny, Paris Cedex 16, 75775, France, peyre@ceremade.dauphine.fr
² DI École Normale Supérieure, 45 rue d’Ulm, Paris, 75005, France, mickael.pechaud@normalesup.org
³ IMAGINE-LIGM, École des Ponts ParisTech, 6 av Blaise Pascal, Marne-la-Valle, 77455, France, keriven@imagine.enpc.fr
⁴ Ceremade, UMR CNRS 7534, Université Paris-Dauphine, Place de Lattre de Tassigny, Paris Cedex 16, 75775, France, cohen@ceremade.dauphine.fr

Abstract

This monograph reviews both the theory and practice of the numerical computation of geodesic distances on Riemannian manifolds. The notion of Riemannian manifold allows one to define a local metric (a symmetric positive tensor field) that encodes the information about the problem one wishes to solve. This takes into account a local isotropic cost (whether some point should be avoided or not) and a local anisotropy (which direction should be preferred). Using this local tensor field, the geodesic distance is used to solve many problems of practical interest such as segmentation using geodesic balls and Voronoi regions, sampling points at regular geodesic distance or meshing a domain with
geodesic Delaunay triangles. The shortest paths for this Riemannian distance, the so-called geodesics, are also important because they follow salient curvilinear structures in the domain. We show several applications of the numerical computation of geodesic distances and shortest paths to problems in surface and shape processing, in particular segmentation, sampling, meshing and comparison of shapes. All the figures from this review paper can be reproduced by following the Numerical Tours of Signal Processing.

http://www.ceremade.dauphine.fr/~peyre/numerical-tour/

Several textbooks exist that include description of several manifold methods for image processing, shape and surface representation and computer graphics. In particular, the reader should refer to [42, 147, 208, 209, 213, 255] for fascinating applications of these methods to many important problems in vision and graphics. This review paper is intended to give an updated tour of both foundations and trends in the area of geodesic methods in vision and graphics.
Contents

1 Theoretical Foundations of Geodesic Methods 1
 1.1 Two Examples of Riemannian Manifolds 1
 1.2 Riemannian Manifolds 5
 1.3 Other Examples of Riemannian Manifolds 12
 1.4 Voronoi Segmentation and Medial Axis 14
 1.5 Geodesic Distance and Geodesic Curves 16

2 Numerical Foundations of Geodesic Methods 21
 2.1 Eikonal Equation Discretization 21
 2.2 Algorithms for the Resolution of the Eikonal Equation 26
 2.3 Isotropic Geodesic Computation on Regular Grids 33
 2.4 Anisotropic Geodesic Computation on
 Triangulated Surfaces 38
 2.5 Computing Minimal Paths 42
 2.6 Computation of Voronoi Segmentation and Medial Axis 52
 2.7 Distance Transform 58
 2.8 Other Methods to Compute Geodesic Distances 62
 2.9 Optimization of Geodesic Distance with
 Respect to the Metric 65

3 Geodesic Segmentation 71
 3.1 From Active Contours to Minimal Paths 71
 3.2 Metric Design 78
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3 Centerlines Extraction in Tubular Structures</td>
<td>87</td>
</tr>
<tr>
<td>3.4 Image Segmentation Using Geodesic Distances</td>
<td>95</td>
</tr>
<tr>
<td>3.5 Shape Offsetting</td>
<td>98</td>
</tr>
<tr>
<td>3.6 Motion Planning</td>
<td>99</td>
</tr>
<tr>
<td>3.7 Shape From Shading</td>
<td>101</td>
</tr>
<tr>
<td>4 Geodesic Sampling</td>
<td>105</td>
</tr>
<tr>
<td>4.1 Geodesic Voronoi and Delaunay Tesselations</td>
<td>105</td>
</tr>
<tr>
<td>4.2 Geodesic Sampling</td>
<td>110</td>
</tr>
<tr>
<td>4.3 Image Meshing</td>
<td>117</td>
</tr>
<tr>
<td>4.4 Surface Meshing</td>
<td>128</td>
</tr>
<tr>
<td>4.5 Domain Meshing</td>
<td>134</td>
</tr>
<tr>
<td>4.6 Centroidal Relaxation</td>
<td>141</td>
</tr>
<tr>
<td>4.7 Perceptual Grouping</td>
<td>149</td>
</tr>
<tr>
<td>5 Geodesic Analysis of Shape and Surface</td>
<td>153</td>
</tr>
<tr>
<td>5.1 Geodesic Dimensionality Reduction</td>
<td>153</td>
</tr>
<tr>
<td>5.2 Geodesic Shape and Surface Correspondence</td>
<td>163</td>
</tr>
<tr>
<td>5.3 Surface and Shape Retrieval Using Geodesic Descriptors</td>
<td>172</td>
</tr>
<tr>
<td>References</td>
<td>185</td>
</tr>
</tbody>
</table>
This section introduces the notion of Riemannian manifold that is a unifying setting for all the problems considered in this review paper. This notion requires only the design of a local metric, which is then integrated over the whole domain to obtain a distance between pairs of points. The main property of this distance is that it satisfies a non-linear partial differential equation, which is at the heart of the fast numerical schemes considered in Section 2.

1.1 Two Examples of Riemannian Manifolds

To give a flavor of Riemannian manifolds and geodesic paths, we give two important examples in computer vision and graphics.

1.1.1 Tracking Roads in Satellite Image

An important and seminal problem in computer vision consists in detecting salient curves in images, see for instance [57]. They can be used to perform segmentation of the image, or track features. A representative example of this problem is the detection of roads in satellite images.
Theoretical Foundations of Geodesic Methods

Fig. 1.1 Example of geodesic curve extracted using the weighted metric (1.1). \(x_s \) and \(x_e \) correspond, respectively, to the red and blue points.

Figure 1.1 upper left, displays an example of satellite image \(f \), that is modeled as a 2D function \(f: \Omega \to \mathbb{R} \), where the image domain is usually \(\Omega = [0,1]^2 \). A simple model of road is that it should be approximately of constant gray value \(c \in \mathbb{R} \). One can thus build a saliency map \(W(x) \) that is low in area where there is a high confidence that some road is passing by, as suggested for instance in [72]. As an example, one can define

\[
W(x) = |f(x) - c| + \varepsilon
\]

(1.1)

where \(\varepsilon \) is a small value that prevents \(W(x) \) from vanishing.

Using this saliency map, one defines the length of a smooth curve on the image \(\gamma:[0,1] \to \Omega \) as a weighted length

\[
L(\gamma) = \int_0^1 W(\gamma(t))\|\gamma'(t)\|dt
\]

(1.2)
where $\gamma'(t) \in \mathbb{R}^2$ is the derivative of γ. We note that this measure of lengths extends to piecewise smooth curves by splitting the integration into pieces where the curve is smooth.

The length $L(\gamma)$ is smaller when the curve passes by regions where W is small. It thus makes sense to declare as roads the curves that minimize $L(\gamma)$. For this problem to make sense, one needs to further constrain γ. And a natural choice is to fix its starting and ending points to be a pair $(x_s, x_e) \in \Omega^2$

$$P(x_s, x_e) = \{ \gamma : [0, 1] \to \Omega \setminus \gamma(0) = x_s \text{ and } \gamma(1) = x_e \}, \quad (1.3)$$

where the paths are assumed to be piecewise smooth so that one can measure their lengths using (1.2).

Within this setting, a road γ^* is a global minimizer of the length

$$\gamma^* = \arg\min_{\gamma \in P(x_s, x_e)} L(\gamma), \quad (1.4)$$

which in general exists, and is unique except in degenerate situations where different roads have the same length. Length $L(\gamma^*)$ is called geodesic distance between x_s and x_e with respect to $W(x)$.

Figure 1.1 shows an example of geodesic extracted with this method. It links two points x_s and x_e given by the user. One can see that this curve tends to follow regions with gray values close to c, which has been fixed to $c = f(x_e)$.

This idea of using a scalar potential $W(x)$ to weight the length of curves has been used in many computer vision applications beside road tracking. This includes in particular medical imaging where one wants to extract contours of organs or blood vessels. These applications are further detailed in Section 3.

1.1.2 Detecting Salient Features on Surfaces

Computer graphics applications often face problems that require the extraction of meaningful curves on surfaces. We consider here a smooth surface S embedded into the 3D Euclidean space, $S \subset \mathbb{R}^3$.

Similarly to (1.2), a curve $\tilde{\gamma} : [0, 1] \to S$ traced on the surface has a weighted length computed as

$$L(\tilde{\gamma}) = \int_0^1 W(\tilde{\gamma}(t)) \|	ilde{\gamma}'(t)\| dt, \quad (1.5)$$
where $\tilde{\gamma}'(t) \in T_{\tilde{\gamma}(t)} \subset \mathbb{R}^3$ is the derivative vector, that lies in the embedding space \mathbb{R}^3, and is in fact a vector belonging to the 2D tangent plane $T_{\tilde{\gamma}(t)}$ to the surface at $\tilde{\gamma}(t)$, and the weight W is a positive function defined on the surface domain \mathcal{S}.

Note that we use the notation $\tilde{x} = \tilde{\gamma}(t)$ to insist on the fact that the curves are not defined in a Euclidean space, and are forced to be traced on a surface.

Similarly to (1.4), a geodesic curve $\tilde{\gamma}^* = \arg\min_{\tilde{\gamma} \in \mathcal{P}(\tilde{x}_s, \tilde{x}_e)} L(\tilde{\gamma})$, (1.6)

is a shortest curve joining two points $\tilde{x}_s, \tilde{x}_e \in \mathcal{S}$.

When $W = 1$, $L(\tilde{\gamma})$ is simply the length of a 3D curve, that is restricted to be on the surface \mathcal{S}. Figure 1.2 shows an example of surface, together with a set of geodesics joining pairs of points, for $W = 1$. As detailed in Section 3.2.4, a varying saliency map $W(\tilde{x})$ can be defined from a texture or from the curvature of the surface to detect salient curves.

Geodesics and geodesic distance on 3D surfaces have found many applications in computer vision and graphics, for example, surface matching, detailed in Section 5, and surface remeshing, detailed in Section 4.
1.2 Riemannian Manifolds

It turns out that both previous examples can be cast into the same general framework using the notion of a Riemannian manifold of dimension 2.

1.2.1 Surfaces as Riemannian Manifolds

Although the curves described in Sections 1.1.1 and 1.1.2 do not belong to the same spaces, it is possible to formalize the computation of geodesics in the same way in both cases. In order to do so, one needs to introduce the Riemannian manifold $\Omega \subset \mathbb{R}^2$ associated to the surface S.

A smooth surface $S \subset \mathbb{R}^3$ can be locally described as a parametric function

$$\varphi : \Omega \subset \mathbb{R}^2 \rightarrow S \subset \mathbb{R}^3 \quad x \mapsto \tilde{x} = \varphi(x)$$

(1.7)

which is required to be differentiable and one-to-one, where Ω is an open domain of \mathbb{R}^2.

Full surfaces require several such mappings to be fully described, but we postpone this difficulty until Section 1.2.2.

The tangent plane $T_{\tilde{x}}$ at a surface point $\tilde{x} = \varphi(x)$ is spanned by the two partial derivatives of the parameterization, which define the derivative matrix at point $x = (x_1, x_2)$

$$D\varphi(x) = \left(\frac{\partial \varphi}{\partial x_1}(x), \frac{\partial \varphi}{\partial x_2}(x) \right) \in \mathbb{R}^{3 \times 2}. \quad (1.8)$$

As shown in Figure 1.3, the derivative of any curve $\tilde{\gamma}$ at a point $\tilde{x} = \tilde{\gamma}(t)$ belongs to the tangent plane $T_{\tilde{x}}$ of S at \tilde{x}.

The curve $\tilde{\gamma}(t) \in S \subset \mathbb{R}^3$ defines a curve $\gamma(t) = \varphi^{-1}(\tilde{\gamma}(t)) \in \Omega$ traced on the parameter domain. Note that while $\tilde{\gamma}$ belongs to a curved surface, γ is traced on a subset of a Euclidean domain.

Since $\tilde{\gamma}(t) = \varphi(\gamma(t)) \in \Omega$ the tangents to the curves are related via $\tilde{\gamma}'(t) = D\varphi(\gamma(t))\gamma'(t)$ and $\tilde{\gamma}'(t)$ is in the tangent plane $T_{\tilde{\gamma}(t)}$ which is spanned by the columns of $D\varphi(\gamma(t))$. The length $\sqrt{\tilde{\gamma}(t)}$ of the curve $\tilde{\gamma}$

\[\text{Full text available at: http://dx.doi.org/10.1561/0600000029}\]
is computed as

\[L(\tilde{\gamma}) = L(\gamma) = \int_0^1 \|\gamma'(t)\|_{T\gamma(t)} \, dt, \]

(1.9)

where the tensor \(T_x \) is defined as

\[\forall x \in \Omega, \quad T_x = \sqrt{W(\tilde{x})} I_\varphi(x) \quad \text{where} \quad \tilde{x} = \varphi(x), \]

and \(I_\varphi(x) \in \mathbb{R}^{2 \times 2} \) is the first fundamental form of \(S \)

\[I_\varphi(x) = (D\varphi(x))^T D\varphi(x) = \left(\begin{array}{c} \frac{\partial \varphi}{\partial x_i} (x) \frac{\partial \varphi}{\partial x_j} (x) \end{array} \right)_{1 \leq i,j \leq 2} \quad \]

(1.10)

and where, given some positive symmetric matrix \(A = (A_{i,j})_{1 \leq i,j \leq 2} \in \mathbb{R}^{2 \times 2} \), we define its associated norm

\[\|u\|_A^2 = \langle u, u \rangle_A \quad \text{where} \quad \langle u, v \rangle_A = \langle Au, v \rangle = \sum_{1 \leq i,j \leq 2} A_{i,j} u_i v_j. \]

(1.11)

A domain \(\Omega \) equipped with such a metric is called a Riemannian manifold.

The geodesic curve \(\tilde{\gamma}^* \) traced on the surface \(S \) defined in (1.6) can equivalently be viewed as a geodesic \(\gamma^* = \varphi^{-1}(\tilde{\gamma}^*) \) traced on the Riemannian manifold \(\Omega \). While \(\tilde{\gamma}^* \) minimizes the length (1.5) in the 3D embedding space between \(\tilde{x}_s \) and \(\tilde{x}_e \), the curve \(\gamma^* \) minimizes the Riemannian length (1.9) between \(x_s = \varphi^{-1}(\tilde{x}_s) \) and \(x_e = \varphi^{-1}(\tilde{x}_e) \).
1.2.2 Riemannian Manifold of Arbitrary Dimensions

Local description of a manifold without boundary. We consider an arbitrary manifold \(S \) of dimension \(d \) embedded in \(\mathbb{R}^n \) for some \(n \geq d \). This generalizes the setting of the previous Section 1.2.1 that considers \(d = 2 \) and \(n = 3 \). The manifold is assumed for now to be closed, which means without boundary.

As already done in (1.7), the manifold is described locally using a bijective smooth parametrization

\[
\varphi : \Omega \subset \mathbb{R}^d \rightarrow \mathcal{S} \subset \mathbb{R}^n
\]

so that \(\varphi(\Omega) \) is an open subset of \(\mathcal{S} \).

All the objects we consider, such as curves and length, can be transposed from \(\mathcal{S} \) to \(\Omega \) using this application. We can thus restrict our attention to \(\Omega \), and do not make any reference to the surface \(\mathcal{S} \).

For an arbitrary dimension \(d \), a Riemannian manifold is thus locally described as a subset of the ambient space \(\Omega \subset \mathbb{R}^d \), having the topology of an open sphere, equipped with a positive definite matrix \(T_x \in \mathbb{R}^{d \times d} \) for each point \(x \in \Omega \), that we call a tensor field. This field is further required to be smooth.

Similarly to (1.11), at each point \(x \in \Omega \), the tensor \(T_x \) defines the length of a vector \(u \in \mathbb{R}^d \) using

\[
\|u\|_{T_x}^2 = \langle u, u \rangle_{T_x} \quad \text{where} \quad \langle u, v \rangle_{T_x} = \langle T_x u, v \rangle = \sum_{1 \leq i,j \leq d} (T_x)_{i,j} u_i v_j.
\]

This allows one to compute the length of a curve \(\gamma(t) \in \Omega \) traced on the Riemannian manifold as a weighted length where the infinitesimal length is measured according to \(T_x \)

\[
L(\gamma) = \int_0^1 \|\gamma'(t)\|_{T_{\gamma(t)}} \, dt. \tag{1.12}
\]

The weighted metric on the image for road detection defined in Section 1.1.1 fits within this framework for \(d = 2 \) by considering \(\Omega = [0,1]^2 \) and \(T_x = W(x)^2 \text{Id}_2 \), where \(\text{Id}_2 \in \mathbb{R}^{2 \times 2} \) is the identity matrix. In this case, \(\Omega = \mathcal{S} \), and \(\varphi \) is the identity application. The parameter domain metric defined from a surface \(\mathcal{S} \subset \mathbb{R}^3 \) considered in Section 1.1.2 can
also be viewed as a Riemannian metric as we explained in the previous section.

Global description of a manifold without boundary. The local description of the manifold as a subset \(\Omega \subset \mathbb{R}^d \) of an Euclidean space is only able to describe parts that are topologically equivalent to open spheres.

A manifold \(S \in \mathbb{R}^n \) embedded in \(\mathbb{R}^n \) with an arbitrary topology is decomposed using a finite set of overlapping surfaces \(\{ S_i \} \), topologically equivalent to open spheres such that

\[
\bigcup_i S_i = S. \tag{1.13}
\]

A chart \(\varphi_i : \{ \Omega_i \} \rightarrow S_i \) is defined for each of sub-surface \(S_i \).

Figure 1.4 shows how a 1D circle is locally parameterized using several 1D segments.

Manifolds with boundaries. In applications, one often encounters manifolds with boundaries, for instance images defined on a square, volume of data defined inside a cube, or planar shapes.

The boundary \(\partial \Omega \) of a manifold \(\Omega \) of dimension \(d \) is itself by definition a manifold of dimension \(d - 1 \). Points \(x \) strictly inside the manifold are assumed to have a local neighborhood that can be parameterized over a small Euclidean ball. Points located on the boundary are parameterized over a half Euclidean ball.

Fig. 1.4 The circle is a 1-dimensional surface embedded in \(\mathbb{R}^2 \), and is thus a 1D manifold. In this example, it is decomposed in four sub-surfaces which are topologically equivalent to sub-domains of \(\mathbb{R} \), through charts \(\varphi_i \).
Such manifolds require some extra mathematical care, since geodesic curves (local length minimizers) and shortest paths (global length minimizing curves), defined in Section 1.2.3, might exhibit tangential discontinuities when reaching the boundary of the manifold.

Note however that these curves can still be computed numerically as described in Section 2. Note also that the characterization of the geodesic distance as the viscosity solution of the Eikonal equation still holds for manifolds with boundary.

1.2.3 Geodesic Curves

Globally minimizing shortest paths. Similarly to (1.4), one defines a geodesic $\gamma^* (t) \in \Omega$ between two points $(x_s, x_e) \in \Omega^2$ as the curve between x_s and x_e with minimal length according to the Riemannian metric (1.9):

$$\gamma^* = \arg\min_{\gamma \in \mathcal{P}(x_s, x_e)} L(\gamma).$$ (1.14)

As an example, in the case of a uniform $T_x = Id_d$ (i.e., the metric is Euclidean) and a convex Ω, the unique geodesic curve between x_s and x_e is the segment joining the two points.

Existence of shortest paths between any pair of points on a connected Riemannian manifold is guaranteed by the Hopf-Rinow theorem [134]. Such a curve is not always unique, see Figure 1.5.

Locally minimizing geodesic curves. It is important to note that in this paper the notion of geodesics refers to minimal paths, that

![Diagram](image.png)

Fig. 1.5 Example of non-uniqueness of a shortest path between two points: there is an infinite number of shortest paths between two antipodal points on a sphere.
are curves minimizing globally the Riemannian length between two points. In contrast, the mathematical definition of geodesic curves usually refers to curves that are local minimizer of the geodesic lengths. These locally minimizing curves are the generalization of straight lines in Euclidean geometry to the setting of Riemannian manifolds.

Such a locally minimizing curve satisfies an ordinary differential equation, that expresses that it has a vanishing Riemannian curvature.

There might exist several local minimizers of the length between two points, which are not necessarily minimal paths. For instance, on a sphere, a great circle passing by two points is composed of two local minimizer of the length, and only one of the two portion of circle is a minimal path.

1.2.4 Geodesic Distance

The geodesic distance between two points x_s, x_e is the length of γ^*.

$$d(x_s, x_e) = \min_{\gamma \in \mathcal{P}(x_s, x_e)} L(\gamma) = L(\gamma^*).$$

This defines a metric on Ω, which means that it is symmetric $d(x_s, x_e) = d(x_e, x_s)$, that $d(x_s, x_e) > 0$ unless $x_s = x_e$ and then $d(x_s, x_e) = 0$, and that it satisfies the triangular inequality for every point y

$$d(x_s, x_e) \leq d(x_s, y) + d(y, x_e).$$

The minimization (1.15) is thus a way to transfer a local metric defined point-wise on the manifold Ω into a global metric that applies to arbitrary pairs of points on the manifold.

This metric $d(x_s, x_e)$ should not be mistaken for the Euclidean metric $||x_s - x_e||$ on \mathbb{R}^n, since they are in general very different. As an example, if r denotes the radius of the sphere in Figure 1.5, the Euclidean distance between two antipodal points is $2r$ while the geodesic distance is πr.

1.2.5 Anisotropy

Let us assume that Ω is of dimension 2. To analyze locally the behavior of a general anisotropic metric, the tensor field is diagonalized as

$$T_x = \lambda_1(x)e_1(x)e_1(x)^T + \lambda_2(x)e_2(x)e_2(x)^T,$$

(1.16)
where $0 < \lambda_1(x) \leq \lambda_2(x)$. The vector fields $e_i(x)$ are orthogonal eigenvectors of the symmetric matrix T_x with corresponding eigenvalues $\lambda_i(x)$. The norm of a tangent vector $v = \gamma'(t)$ of a curve at a point $x = \gamma(t)$ is thus measured as

$$\|v\|_{T_x} = \lambda_1(x) |\langle e_1(x), v \rangle|^2 + \lambda_2(x) |\langle e_2(x), v \rangle|^2.$$

A curve γ is thus locally shorter near x if its tangent $\gamma'(t)$ is collinear to $e_1(x)$, as shown in Figure 1.6. Geodesic curves thus tend to be as parallel as possible to the eigenvector field $e_1(x)$. This diagonalization (1.16) carries over to arbitrary dimension d by considering a family of d eigenvector fields.

For image analysis, in order to find significant curves as geodesics of a Riemannian metric, the eigenvector field $e_1(x)$ should thus match the orientation of edges or of textures, as this is the case for Figure 1.7, right.

The strength of the directionality of the metric is measured by its anisotropy $A(x)$, while its global isotropic strength is measured using its energy $W(x)$

$$A(x) = \frac{\lambda_2(x) - \lambda_1(x)}{\lambda_2(x) + \lambda_1(x)} \in [0, 1] \quad \text{and} \quad W(x)^2 = \frac{\lambda_2(x) + \lambda_1(x)}{2} > 0.$$ (1.17)

A tensor field with $A(x) = 0$ is isotropic and thus verifies $T_x = W(x)^2 \text{Id}_2$, which corresponds to the setting considered in the road tracking application of Section 1.1.1.

Figure 1.7 shows examples of metric with a constant energy $W(x) = W$ and an increasing anisotropy $A(x) = A$. As the anisotropy

Fig. 1.6 Schematic display of a local geodesic ball for an isotropic metric or an anisotropic metric.
1.3 Other Examples of Riemannian Manifolds

One can find many occurrences of the notion of Riemannian manifold to solve various problems in computer vision and graphics. All these methods build, as a pre-processing step, a metric T_x suited for the problem to solve, and use geodesics to integrate this local distance information into globally optimal minimal paths. Figure 1.8 synthesizes different possible Riemannian manifolds. The last two columns correspond to examples already considered in Sections 1.1.1 and 1.2.5.

1.3.1 Euclidean Distance

The classical Euclidean distance $d(x_s, x_e) = \|x_s - x_e\|$ in $\Omega = \mathbb{R}^d$ is recovered by using the identity tensor $T_x = \text{Id}_d$. For this identity metric, shortest paths are line segments. Figure 1.8 first column, shows this simple setting. This is generalized by considering a constant metric $T_x = T \in \mathbb{R}^{2 \times 2}$, in which case the Euclidean metric is measured according to T, since $d(x_s, x_e) = \|x_s - x_e\|_T$. In this setting, geodesics between two points are straight lines.

1.3.2 Planar Domains and Shapes

If one uses a locally Euclidean metric $T_x = \text{Id}_2$ in 2D, but restricts the domain to a non-convex planar compact subset $\Omega \subset \mathbb{R}^2$, then
1.3 Other Examples of Riemannian Manifolds

Fig. 1.8 Examples of Riemannian metrics (top row), geodesic distances and geodesic curves (bottom row). The blue/red color-map indicates the geodesic distance to the starting red point. From left to right: Euclidean \((T_x = \text{Id}_2 \) restricted to \(\Omega = [0,1]^2 \)), planar domain \((T_x = \text{Id}_2 \) restricted to \(\mathcal{M} \subset [0,1]^2 \)), isotropic metric \((\Omega = [0,1]^2, T(x) = W(x)\text{Id}_2, \) see Equation (1.1)), Riemannian manifold metric \((T_x \) is the structure tensor of the image, see Equation (4.37)).

The geodesic distance \(d(x_s, x_e) \) might differ from the Euclidean length \(\| x_s - x_e \| \). This is because paths are restricted to lie inside \(\Omega \), and some shortest paths are forced to follow the boundary of the domain, thus deviating from line segment (see Figure 1.8, second column).

This shows that the global integration of the local length measure \(T_x \) to obtain the geodesic distance \(d(x_s, x_e) \) takes into account global geometrical and topological properties of the domain. This property is useful to perform shape recognition, that requires some knowledge of the global structure of a shape \(\Omega \subset \mathbb{R}^2 \), as detailed in Section 5.

Such non-convex domain geodesic computation also found application in robotics and video games, where one wants to compute an optimal trajectory in an environment consisting of obstacles, or in which some positions are forbidden [153, 161]. This is detailed in Section 3.6.

1.3.3 Anisotropic Metric on Images

Section 1.1.1 detailed an application of geodesic curve to road tracking, where the Riemannian metric is a simple scalar weight computed from some image \(f \). This weighting scheme does not take advantage of the
local orientation of curves, since the metric \(W(x)\|\gamma'(t)\| \) is only sensitive to the amplitude of the derivative.

One can improve this by computing a 2D tensor field \(T_x \) at each pixel location \(x \in \mathbb{R}^{2 \times 2} \). The precise definition of this tensor depends on the precise applications, see Section 3.2. They generally take into account the gradient \(\nabla f(x) \) of the image \(f \) around the pixel \(x \), to measure the local directionality of the edges or the texture. Figure 1.8, right, shows an example of metric designed to match the structure of a texture.

1.4 Voronoi Segmentation and Medial Axis

1.4.1 Voronoi Segmentation

For a finite set \(S = \{x_i\}_{i=0}^{K-1} \) of starting points, one defines a segmentation of the manifold \(\Omega \) into Voronoi cells

\[
\Omega = \bigcup_i \mathcal{C}_i \quad \text{where} \quad \mathcal{C}_i = \{x \in \Omega \mid \forall j \neq i, d(x, x_j) \geq d(x, x_i)\}. \tag{1.18}
\]

Each region \(\mathcal{C}_i \) can be interpreted as a region of influence of \(x_i \). Section 2.6.1 details how to compute this segmentation numerically, and Section 4.1.1 discusses some applications.

This segmentation can also be represented using a partition function

\[
\ell(x) = \arg\min_{0 \leq i < K} d(x, x_i). \tag{1.19}
\]

For points \(x \) which are equidistant from at least two different starting points \(x_i \) and \(x_j \), i.e., \(d(x, x_i) = d(x, x_j) \), one can pick either \(\ell(x) = i \) or \(\ell(x) = j \). Except for these exceptional points, one thus has \(\ell(x) = i \) if and only if \(x \in \mathcal{C}_i \).

Figure 1.9, top row, shows an example of Voronoi segmentation for an isotropic metric.

This partition function \(\ell(x) \) can be extended to the case where \(S \) is not a discrete set of points, but for instance the boundary of a 2D shape. In this case, \(\ell(x) \) is not integer valued but rather indicates the location of the closest point in \(S \). Figure 1.9, bottom row, shows an example for a Euclidean metric restricted to a non-convex shape, where \(S \) is the boundary of the domain. In the third image, the colors are mapped to the points of the boundary \(S \), and the color of each point \(x \) corresponds to the one associated with \(\ell(x) \).
1.4 Voronoi Segmentation and Medial Axis

1.4.2 Medial Axis

The medial axis is the set of points where the distance function U_S is not differentiable. This corresponds to the set of points $x \in \Omega$ where two distinct shortest paths join x to S.

The major part of the medial axis is thus composed of points that are at the same distance from two points in S

$$\left\{ x \in \Omega \setminus \exists(x_1, x_2) \in S^2 \left| \begin{array}{l} x_1 \neq x_2 \\ d(x, x_1) = d(x, x_2) \end{array} \right. \right\} \subset \text{MedAxis}(S). \quad (1.20)$$

This inclusion might be strict because it might happen that two points $x \in \Omega$ and $y \in S$ are linked by two different geodesics.

Finite set of points. For a discrete finite set $S = \{x_i\}_{i=0}^{N-1}$, a point x belongs to $\text{MedAxis}(S)$ either if it is on the boundary of a Voronoi cell, or if two distinct geodesics are joining x to a single point of S. One thus has the inclusion

$$\bigcup_{x_i \in S} \partial C_i \subset \text{MedAxis}(S) \quad (1.21)$$

where C_i is defined in (1.18).
For instance, if $S = \{x_0, x_1\}$ and if T_x is a smooth metric, then MedAxis(S) is a smooth mediatrix hyper surface of dimension $d - 1$ between the two points. In the Euclidean case, $T_x = \text{Id}_d$, it corresponds to the separating affine hyperplane.

As detailed in Section 4.1.1 for a 2D manifold and a generic dense enough configuration of points, it is the union of portion of mediatrixes between pairs of points, and triple points that are equidistant from three different points of S.

Section 2.6.2 explains how to compute numerically the medial axis.

Shape skeleton. The definition (1.20) of MedAxis(S) still holds when S is not a discrete set of points. The special case considered in Section 1.3.2 where Ω is a compact subset of \mathbb{R}^d and $S = \partial \Omega$ is of particular importance for shape and surface modeling. In this setting, MedAxis(S) is often called the skeleton of the shape S, and is an important perceptual feature used to solve many computer vision problems. It has been studied extensively in computer vision as a basic tool for shape retrieval, see for instance [252]. One of the main issues is that the skeleton is very sensitive to local modifications of the shape, and tends to be complicated for non-smooth shapes.

Section 2.6.2 details how to compute and regularize numerically the skeleton of a shape. Figure 1.9 shows an example of skeleton for a 2D shape.

1.5 Geodesic Distance and Geodesic Curves

1.5.1 Geodesic Distance Map

The geodesic distance between two points defined in (1.15) can be generalized to the distance from a point x to a set of points $S \subset \Omega$ by computing the distance from x to its closest point in Ω, which defines the distance map

$$U_S(x) = \min_{y \in S} d(x, y).$$

(1.22)

Similarly a geodesic curve γ^* between a point $x \in \Omega$ and S is a curve $\gamma^* \in \mathcal{P}(x, y)$ for some $y \in S$ such that $L(\gamma^*) = U_S(x)$.

Full text available at: http://dx.doi.org/10.1561/0600000029
1.5 Geodesic Distance and Geodesic Curves

Fig. 1.10 Examples of geodesic distances and curves for a Euclidean metric with different starting configurations. Geodesic distance is displayed as an elevation map over $\Omega = [0,1]^2$. Red curves correspond to iso-geodesic distance lines, while yellow curves are examples of geodesic curves.

Figure 1.8 bottom row, shows examples of geodesic distance map to a single starting point $S = \{x_s\}$.

Figure 1.10 is a three-dimensional illustration of distance maps for a Euclidean metric in \mathbb{R}^2 from one (left) or two (right) starting points.

1.5.2 Eikonal Equation

For points x outside both the medial axis $\text{MedAxis}(S)$ defined in (1.20) and S, one can prove that the geodesic distance map U_S is differentiable, and that it satisfies the following non-linear partial differential equation

$$\|\nabla U_S(x)\|_{T_x^{-1}} = 1,$$ \hspace{1cm} \text{with boundary conditions } U_S(x) = 0 \text{ on } S, \hspace{1cm} (1.23)

where ∇U_S is the gradient vector of partial differentials in \mathbb{R}^d.

Unfortunately, even for a smooth metric T_x and simple set S, the medial axis $\text{MedAxis}(S)$ is non-empty (see Figure 1.10 right, where the geodesic distance is clearly not differentiable at points equidistant from the starting points). To define U_S as a solution of a PDE even at points where it is not differentiable, one has to resort to a notion of weak solution. For a non-linear PDE such as (1.23), the correct notion of weak solution is the notion of viscosity solution, developed by Crandall and Lions [82, 83, 84].

A continuous function u is a viscosity solution of the Eikonal equation (1.23) if and only if for any continuously differentiable mapping $\varphi \in C^1(\Omega)$ and for all $x_0 \in \Omega \setminus S$ local minimum of $u - \varphi$ we have

$$\|\nabla \varphi(x_0)\|_{T_{x_0}^{-1}} = 1$$

Full text available at: http://dx.doi.org/10.1561/0600000029
For instance in 1D, $d = 1$, $\Omega = \mathbb{R}$, the distance function
\[u(x) = U_S(x) = \min(|x - x_1|, |x - x_2|) \]
from two points $S = \{x_1, x_2\}$ satisfies $|u'| = 1$ wherever it is differentiable. However, many other functions satisfies the same property, for example v, as shown on Figure 1.11. Figure 1.11, top, shows a $C^1(\mathbb{R})$ function φ that reaches a local minimum for $u - \varphi$ at x_0. In this case, the equality $|\varphi'(x_0)| = 1$ holds. This condition would not be verified by v at point x_0. An intuitive vision of the definition of viscosity solution is that it prevents appearance of such inverted peaks outside S.

An important result from the viscosity solution of Hamilton–Jacobi equation, proved in [82, 83, 84], is that if S is a compact set, if $x \mapsto T_x$ is a continuous mapping, then the geodesic distance map U_S defined in (1.22) is the unique viscosity solution of the following Eikonal equation
\[
\begin{align*}
\forall x \in \Omega, & \quad \|\nabla U_S(x)\|_{T_x^{-1}} = 1, \\
\forall x \in S, & \quad U_S(x) = 0.
\end{align*}
\] (1.24)

In the special case of an isotropic metric $T_x = W(x)^2 Id_d$, one recovers the classical Eikonal equation
\[
\forall x \in \Omega, \quad \|\nabla U_S(x)\| = W(x).
\] (1.25)

For the Euclidean case, $W(x) = 1$, one has $\|\nabla U_S(x)\| = 1$, whose viscosity solution for $S = \{x_s\}$ is $U_{x_s}(x) = \|x - x_s\|$.

Fig. 1.11 Schematic view in 1D of the viscosity solution constrain.
1.5.3 Geodesic Curves

If the geodesic distance U_S is known, for instance by solving the Eikonal equation, a geodesic γ^* between some end point x_e and S is computed by gradient descent. This means that γ^* is the solution of the following ordinary differential equation

$$
\begin{cases}
\forall t > 0, & \frac{d\gamma^*(t)}{dt} = -\eta t v(\gamma^*(t)), \\
\gamma^*(0) = x_e.
\end{cases}
$$

(1.26)

where the tangent vector to the curve is the gradient of the distance, twisted by T_x^{-1}

$$
v(x) = T_x^{-1} \nabla U_S(x),
$$

and where $\eta t > 0$ is a scalar function that controls the speed of the geodesic parameterization. To obtain a unit speed parameterization, $\|(\gamma^*)'(t)\| = 1$, one needs to use

$$
\eta_t = \|v(\gamma^*(t))\|^{-1}.
$$

If x_e is not on the medial axis MedAxis(S), the solution of (1.26) will not cross the medial axis for $t > 0$, so its solution is well defined for $0 \leq t \leq t_{xe}$, for some t_{xe} such that $\gamma^*(t_{xe}) \in S$.

For an isotropic metric $T_x = W(x)^2 \text{Id}_d$, one recovers the gradient descent of the distance map proposed in [74]

$$
\forall t > 0, \quad \frac{d\gamma^*(t)}{dt} = -\eta \nabla U_S(\gamma^*(t)).
$$

Figure [1.10] illustrates the case where $T_x = \text{Id}_2$: geodesic curves are straight lines orthogonal to iso-geodesic distance curves, and correspond to greatest slopes curves, since the gradient of a function is always orthogonal to its level curves.
References

References

References

References

References

References

Full text available at: http://dx.doi.org/10.1561/0600000029
References

References

References

References

References

References

References

References

[230] E. Prados, F. Camilli, and O. Faugeras, “A unifying and rigorous shape from
shading method adapted to realistic data and applications,” Journal of Math-

[231] E. Prados, C. Lenglet, J.-P. Pons, N. Wotawa, R. Deriche, O. Faugeras, and
S. Soatto, “Control theory and fast marching techniques for brain connectivity
mapping,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, New York, NY, June, 2006, vol. 1, pp. 1076–1083, IEEE,
June 2006.

unoccluded object representation and recognition.” CVGIP: Graphical Models

equations on triangulated meshes,” SIAM Journal on Numerical Analysis,

[236] J. Reif and Z. Sun, “Movement planning in the presence of flows,” Algorithm-

shape matching,” in Symposium on Solid and Physical Modeling, (L. Kobbelt

multidimensional scaling using vector extrapolation,” Technical Report CIS-
2008-01, Department of Computer Science, Technion, Israel, 2008.

dimensionality reduction by topologically constrained isometric embedding,”

[244] E. Rouy and A. Tourin, “A viscosity solutions approach to shape-from-
shading,” SIAM Journal on Numerical Analysis, vol. 29, no. 3, pp. 867–884,

[246] Y. Rubner, C. Tomasi, and L. J. Guibas, “The earth mover’s distance as a
metric for image retrieval,” International Journal of Computer Vision, vol. 40,
References

References

References

