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Discrete Graphical Models — An
Optimization Perspective
Bogdan Savchynskyy

Heidelberg University; bogdan.savchynskyy@iwr.uni-heidelberg.de

ABSTRACT

This monograph is about combinatorial optimization. More
precisely, about a special class of combinatorial problems
known as energy minimization or maximum a posteriori
(MAP) inference in graphical models, closely related to
weighted and valued constraint satisfaction problems and hav-
ing tight connections to Markov random fields and quadratic
pseudo-boolean optimization. What distinguishes this mono-
graph from a number of other monographs on graphical
models is its focus: It considers graphical models, or, more
precisely, MAP-inference for graphical models, purely as
a combinatorial optimization problem. Modeling, applica-
tions, probabilistic interpretations and many other aspects
are either ignored here or find their place in examples and
remarks only.

Combinatorial optimization as a field is largely based on five
fundamental topics: (i) integer linear programming and poly-
hedral optimization; (ii) totally unimodular matrices and
the class of min-cost-flow problems; (iii) Lagrange decom-
positions and relaxations; (iv) dynamic programming and
(v) submodularity, matroids and greedy algorithms. Each
of these topics found its place in this monograph, although
to a variable extent. The covering of each respective topic

Bogdan Savchynskyy (2019), “Discrete Graphical Models — An Optimization Per-
spective”, Foundations and TrendsR© in Computer Graphics and Vision: Vol. 11, No.
3-4, pp 160–429. DOI: 10.1561/0600000084.
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reflects its importance for the considered MAP-inference
problem.

Since optimization is the primary topic of this monograph,
we mostly stick to the terminology widely used in optimiza-
tion and where it was possible we tried to avoid the graphical
models community-specific technical terms. The latter differ
from sub-community to sub-community and, in our view,
significantly complicate the information exchange between
them.

The same holds also for the presentation of material in this
monograph. If there is a choice when introducing mathe-
matical constructs or proving statements, we prefer more
general mathematical tools applicable in the whole field of
operations research rather than to stick to graphical model-
specific constructions. We additionally provide the graphical
model-specific constructions if it turns out to be easier than
the more general one. This way of presentation has two
advantages. A reader familiar with a more general technique
can grasp the new material faster. On the other hand, the
monograph may serve as an introduction to combinatorial
optimization for readers unfamiliar with this subject. To
make the monograph even more suitable for both categories
of readers we explicitly separate the mathematical optimiza-
tion background chapters from those specific to graphical
models.

We believe, therefore, that the monograph can be useful for
undergraduate and graduate students studying optimization
or graphical models, as well as for experts in optimization
who want to have a look into graphical models. Moreover,
we believe that even experts in graphical models can find
new views on the known facts as well as a novel presen-
tation of less known results in the monograph. These are
for instance (i) a simple and general proof of equivalence
of different acyclic Lagrange decompositions of a graphical
model; (ii) a general scheme for analyzing convergence of

Full text available at: http://dx.doi.org/10.1561/0600000084
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dual block-coordinate descent methods; (iii) a short and
self-contained analysis of a linear programming relaxation
for binary graphical models, its persistency properties and
its relation to quadratic pseudo-boolean optimization.

The present monograph is based on lectures given to under-
graduate students of Technical University of Dresden and
Heidelberg University. The selection of material is done in a
way that it may serve as a basis for a semester course.

Full text available at: http://dx.doi.org/10.1561/0600000084



Notation

To simplify reading of the monograph, some frequently used notations
are collected here. Some of them, which we assume to be quite standard,
are used without additional notice in the text. Others, typically more
specialized, are introduced in the monograph. For those we point out
the section and the page they are defined in.

4

Full text available at: http://dx.doi.org/10.1561/0600000084



5

Standard notation

N the set of natural numbers
Z the set of integer numbers
R the set of real numbers
Rn an n-dimensional vector space over the field of real numbers
Rn+ the set of vectors with non-negative coordinates in Rn, i.e.

{x ∈ Rn : xi ≥ 0, i = 1, 2, . . . , n}; for n = 1 the notation
simplifies to R+

x ∈ AB For any set A and any finite set B, this notation stands for
a vector x with |B| coordinates indexed by elements of B,
for each b ∈ B it holds that xb ∈ A. The only exception
from this rule is the notation ∆B, see below.

x ≥ y comparison operations are applied coordinate-wise to vec-
tors and point-wise to functions

J·K denotes the Iverson brackets, that is, for any predicate A
it holds that JAK = 1 if A is true, otherwise JAK = 0

〈c, x〉 the inner product, i.e. 〈c, x〉 =
∑n
i=1 cixi

∇f gradient of the function f
O(·) for two functions f : N → N and g : N → N one writes

f = O(g), if there is a constant c > 0 and a number n0 ∈ N
such that f(n) ≤ c · g(n) for all n ≥ n0

Standard abbreviations

w.r.t. with respect to
w.l.o.g. without loss of generality
s.t. subject to

Full text available at: http://dx.doi.org/10.1561/0600000084
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Notation defined in the monograph

Nb(u) set of graph vertexes incident to vertex u, see §1.1,
page 9

δG(y), δ(y) binary representation of the labeling y, i.e. a binary
vector with non-zero coordinates corresponding to the
labels yu, u ∈ Yu, and label pairs (yu, yv), uv ∈ E , see
page 49;

I the set of indexes of the cost vector of a graphical model;
|I| is equal to the number of coordinates of the cost
vector, see §1.1 on page 11

vrtx(P ) set of vertexes of the polyhedron P , see Definition 3.19
on page 32

∆n n-dimensional simplex, see Definition 3.21 on page 33
∆X |X |-dimensional simplex, with coordinates indexed by

elements of X , see Definition 3.21 on page 33
conv(X) convex hull of X, see Definition 3.28 on page 34
mi[θw] binary vector with non-zero coordinates corresponding

to locally minimal values of the cost vector θw, see
page 95

nz[µ] binary vector with non-zero coordinates corresponding
to the non-zero coordinates of µ, see page 95

cl(ξ) arc-consistency closure of a binary vector ξ, see Defini-
tion 6.11 on page 99

J the set of indexes of the Lagrange dual vector for the
MAP-inference problem; |J | is equal to the number of
coordinates in the dual vector, see §6.1 on page 85〈

1
2

〉
, 〈0.7〉 angular brackets are used in figures for coordinates of

primal relaxed solutions, see e.g. Figure 4.1, 4.2, 6.4,
12.3
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1
Introduction to Inference for Graphical Models

There are many problems in computer science, which can be formulated
in the form of so-called Discrete Graphical Models. Examples can be
found in bio-informatics, communication theory, statistical physics,
computer vision, signal processing, information retrieval and machine
learning.

Discrete graphical models as a modeling tool naturally appear when

• the target object (the object we model) consists of many small
parts,

• each part must be labeled by a label from a finite set, and

• parts (and, therefore, their labels) are mutually dependent.

Example 1.1 (Image segmentation). Image segmentation is a classi-
cal image analysis task: Each pixel of an input image must be as-
signed a label of an object visible in the image. For instance, if we
consider images of street scenes, these labels could belong to the set
{pedestrian, car, tree, building}.

The target object is an image, i.e. a two-dimensional array of pixels.
Each pixel constitutes an elementary part of the image and must be

7
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8 Introduction to Inference for Graphical Models

labeled with a label from a finite set. The simplest assumption about
image segments, i.e. groups of pixels having the same label, is the so
called “compactness assumption”. It states that it is more probable that
neighboring pixels are labeled with the same label than with different
ones.

Example 1.2 (Depth reconstruction). Depth reconstruction is another
important image analysis problem. In the classical setting there are (at
least) two images taken from different viewpoints. The task is to match
pixels from these two images to each other. Assuming the positions of
cameras and their focal lengths are known, this allows us to estimate
depth of the scene, which was photographed with the cameras.

As in the previous example, the target object is a two-dimensional
pixel array, where each pixel constitutes an elementary part of the object
and must be labeled with a label from a finite set. Here, the meaning
of the labels is different: Each label represents depth information of the
associated pixel in an image, i.e. how far the depicted observation is
placed from the camera. Usually the set of labels is chosen as natural
numbers in a given interval, for instance, {0, 1, . . . , 255}.

Assuming that the observed surface is smooth, one would expect
the difference |s− s′| between labels s and s′ in neighboring pixels to
be small. The opposite would mean a jump in depth, or, in other words,
non-smoothness of the surface.

Example 1.3 (Cell tracking problem in bio-imaging). Given is a sequence
of images that show the development of a living organism from an early
embryo consisting of only a few cells to a fully grown animal. During
this sequence, the images show moving and splitting cells.

Under the assumption that the image is already pre-segmented, i.e.
the cells were already found in each image, the task at hand is to track
each individual cell and its descendants from the first to the last frame.

The cells are the elementary parts of the considered object. Each
cell in a given image frame is labeled with pointers to one or two cells
in the next frame. One pointer means that the cell only moved, and
two pointers correspond to a cell division. The simplest tracking model
forbids two different cells to have the same descendants. This rule defines
dependencies between object parts.

Full text available at: http://dx.doi.org/10.1561/0600000084



1.1. Basic definitions 9

Figure 1.1: Example of a graphical model with grid structure. On the left, graph
nodes are denoted with inclined rectangles, lines connecting nodes correspond to
graph edges. On the right, two neighboring nodes are shown. Black circles inside
rectangles correspond to the labels s in the node u (left rectangle) and t in the node
v (right rectangle). Dashed lines correspond to each label pair s, t with an assigned
pairwise cost θuv(s, t).

1.1 Basic definitions

Graph Let G = (V, E) be an undirected graph consisting of a finite set
of nodes V and a set of edges E ⊆

(V
2
)
. The set E will also be called a

neighborhood structure of V . For convenience, we will typically use lower
case letters u and v for nodes of the graph, and write uv to denote an
edge {u, v} ∈ E connecting u and v. Since the graph is undirected, uv
and vu denote the same edge. The notation Nb(u) will be used for the
set of nodes {v | uv ∈ E} connected to the node u.

The graph G is considered as a model of the considered target object,
where the nodes represent the elementary object parts and edges stand
for mutually dependencies between them.

In Examples 1.1 and 1.2 the graph G may have the grid structure
of the underlying two-dimensional pixel array. In Example 1.3 cells of
one image frame are neighbors, since their labels depend on each other.

Labels and unary costs A finite set of labels Yu is associated with
each node u ∈ V . Our preference for each label is expressed by the unary
cost function θu : Yu → R, which is defined for each node u ∈ V. The
value θu(s) determines the cost, which we pay for assigning label s ∈ Yu
to the node u. Sometimes we will use very high costs to implicitly forbid

Full text available at: http://dx.doi.org/10.1561/0600000084



10 Introduction to Inference for Graphical Models

certain labels oder label pairs. The notation ∞ will be used to denote
such high costs.

Unary costs are usually defined by what is known from observation.
In Example 1.1, typically, the color distribution in the vicinity of a given
pixel defines the cost of each possible label. The difference between
color distributions from two or more images of the same scene taken
from different viewpoints determines the unary costs in Example 1.2.
Unary costs are often called the “data term” to emphasize that they
depend on the input data or observation.

Dependence and pairwise costs Dependencies between labels
assigned to different graph nodes are modeled with pairwise cost
functions θuv : Yu × Yv → R, which are defined for each edge uv ∈ E of
the graph.

A simple (although not always the best) way to model the compact-
ness assumption in Example 1.1 is to assign

θuv(s, t) =

0, s = t

α, s 6= t
(1.1)

for any pair of labels (s, t) ∈ Yu × Yv with some α > 0. A simple way
to model a smooth surface in depth reconstruction in Example 1.2 is to
assign

θuv(s, t) = |s− t| , (1.2)

to penalize large differences between depth in the neighboring nodes.
In the cell tracking example the pairwise costs should forbid the

same labels to be assigned to neighboring nodes when no cell division
happens:

θuv(s, t) =

0, s 6= t

∞, s = t .
(1.3)

This disallows that cells u and v “glue” to the same “parent” cell s = t.
In case of cell division, this pairwise cost function can be extended in a
natural way to disallow intersection of cell descendants.

These examples show that pairwise costs often incorporate the
prior information about a considered object, therefore, they are often

Full text available at: http://dx.doi.org/10.1561/0600000084



1.1. Basic definitions 11

collectively referred to as the prior. However, this is not always the
case. For instance, much better segmentation results can be obtained if
the parameter α in (1.1) depends on the color distribution of the input
image, i.e. on uv.

Costs and cost functions are also called potentials and potential
functions. We prefer the term cost since it is more widely used in
general optimization literature.

Since unary and pairwise costs are functions of discrete variables,
they can be seen as vectors. Therefore we can treat the unary cost
function θu as a unary cost vector (θu(s), s ∈ Yu). Similar reasoning
holds also for each pairwise cost function, which can be considered as a
pairwise cost vector θuv = (θuv(s, t), (s, t) ∈ Yu × Yv). Unless we use
the word vector or function, the context will determine whether we refer
to a vector or a function θu (or θuv). All unary vectors stacked together
form the vector of all unary costs θV = (θu, u ∈ V). The vector θE of all
pairwise costs is defined similarly as (θuv, uv ∈ E). Stacking together
the latter two results in a long cost vector θ = (θV , θE) with dimension
I :=

∑
u∈V |Yu|+

∑
uv∈E |Yuv|.

Labeling In the following, we will often use the notation YA for all
possible label assignments to a subset of nodes A ⊆ V. Formally, YA
stands for the Cartesian product

∏
u∈A Yu. In particular, Yuv denotes

Yu × Yv and is the set of all possible pairs of labels in nodes u and v.
A vector y ∈ YV of labels assigned to all nodes of the graph is called
labeling. We will refer to coordinates of this vector with the node index,
i.e. yu stands for the label assigned to the node u. One may also speak
about partial labelings, if only a subset A of the nodes is labeled.

Definition 1.4 (Graphical model). The triple (G,YV , θ) consisting of a
graph G, discrete space of all labelings YV and a corresponding cost
vector θ, is called a graphical model.

Definition 1.5 (Energy minimization problem). The problem

y∗ = arg min
y∈YV

[
E(y; θ) :=

∑
u∈V

θu(yu) +
∑
uv∈E

θuv(yu, yv)
]

(1.4)

Full text available at: http://dx.doi.org/10.1561/0600000084



12 Introduction to Inference for Graphical Models

Figure 1.2: Labeling of the graphical model from Figure 1.1. Selected labels are
marked as black circles and connected with solid lines. Each black circle corresponds
to a unary cost and each solid line to a pairwise cost in the sum in the energy
minimization problem (1.4).

of finding a labeling y∗ with minimal total cost will be called energy
minimization or maximum a posteriori (MAP) inference problem for
the graphical model (G,YV , θ).

For the sake of notation we will sometimes use the short form of (1.4)

y∗ = arg min
y∈YV

[
E(y; θ) :=

∑
w∈V∪E

θw(yw)
]

(1.5)

with yw being equal to yu, if w corresponds to a node, i.e. w = u ∈ V,
and yuv, if w corresponds to an edge, i.e. w = uv ∈ E .

Problems equivalent or very closely related to (1.4) have also other
names depending on the corresponding community they are studied
in: maximum likelihood explanation (MLE) inference (machine learn-
ing, natural language processing community), weighted/valued/partial
constraint satisfaction problem (constraint satisfaction community).

1.2 Probabilistic interpretation

The name MAP-inference stems from the probabilistic interpretation of
the problem (1.4). With the energy E(y; θ) one typically associates the
exponential probability distribution

p(y) = 1
Z(θ) exp (−E(y; θ)) , (1.6)

Full text available at: http://dx.doi.org/10.1561/0600000084



1.3. Combinatorial complexity of MAP-inference 13

where the normalizer Z(θ) is known as partition function.
According to the distribution (1.6), problem (1.4) is equivalent to

finding the most probable labeling y, i.e. the one maximizing p(y). Since
E has the separable form (1.5) the expression (1.6) takes the form of
the Gibbs distribution

p(y) = 1
Z(θ)

∏
w∈V∪E

Θw(yw) (1.7)

with Θw = exp(−θw). This explains the also frequently used name
“factors” for the cost functions and their exponents Θw.

The probabilistic interpretation (1.6) gives rise to several other
probabilistic inference problems motivated by Bayesian statistical deci-
sion making theory. One computational problem, often referred to as
marginalization inference, consists of computing marginal distributions

p̂u(s) :=
∑

y∈YV : yu=s
p(y) (1.8)

for each node u and label s of a graphical model. These kinds of problems,
although closely related to MAP-inference, are beyond the scope of this
monograph.

1.3 Combinatorial complexity of MAP-inference

The number of possible labelings y in (1.4) grows exponentially with
the cardinality of V, as it is equals

∏
v∈V |Yv|. It results in L|V| in case

all nodes have the same number of labels |Yu| = L, ∀u ∈ V.
However, an exponentially large set of solutions is not sufficient for

polynomial NP-hardness of a problem. For example, the shortest path
between two nodes in a directed graph with positive edge weights has
an exponentially large set of solutions, but is polynomially solvable by
Dijkstra’s algorithm.

Below we show that the MAP-inference (1.4) is, indeed,NP-hard. To
do so, it is sufficient to show that some NP-complete decision problem
is polynomially reducible to MAP-inference.

In the following construction we will show that the Hamiltonian
cycle problem reduces to MAP-inference in polynomial time.
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Figure 1.3: Illustration of the reduction of the Hamiltonian cycle problem to MAP-
inference for a graph with 5 nodes. Edges of the MAP-inference graph G are divided
into two groups: between nodes u and u+ 1 (bold edges) and all others (thin edges).
The corresponding pairwise costs are illustrated on the right (see also main text).

Definition 1.6 (Hamiltonian cycle). A Hamiltonian cycle in a graph G
is a cycle which visits each node exactly once.

The problem of deciding whether a given directed graph has a
Hamiltonian cycle is known to beNP-complete. To showNP-hardness of
MAP-inference, it is sufficient to reduce the Hamiltonian cycle problem
to it.

Let G′ = (V ′, E ′) be the graph for which one should solve the
Hamiltonian cycle problem. Let us construct the following graphical
model (see Figure 1.3): For the graph G = (V, E) it holds that V = V ′
and E =

(V
2
)
. In other words, graph G contains the same nodes as graph

G′ and is fully connected. Moreover, we will order all nodes of the
graph G, i.e. V = {1, 2, . . . , |V|}. This order is the order of nodes in the
Hamiltonian cycle we are searching for. We will assume the operation
u+ 1 to be defined modulo |V|, i.e. u+ 1 defines the next element of
the Hamiltonian cycle. In other words, if u < |V| then u+ 1 is the next
natural number after u and for u = |V| the element u+ 1 is equal to 1.

The set of labels Yu := V ′ is the same for each node u ∈ V. Its
elements index nodes of the graph G′. A label s assigned to a node
u ∈ V encodes that the u-th node in the Hamiltonian cycle corresponds
to the node s of the graph G′.
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Unary costs are equal to 0. Pairwise costs are split into two groups.
For a pair of nodes {u, u+ 1} ∈ E the cost reads

θu,u+1(s, t) =

0, (s, t) ∈ E ′

∞, (s, t) /∈ E ′ .
(1.9)

It guarantees that two neighboring nodes of the Hamiltonian cycle are
connected by an edge in the graph G′.

To guarantee that no node is included twice in the Hamiltonian
cycle, we set up other pairwise costs for v 6= u + 1 and u 6= v + 1 as
follows:

θuv(s, t) =

0, s 6= t

∞, s = t
. (1.10)

Such type of pairwise costs is sometimes called the uniqueness con-
straints, since these costs enforce that each label is selected at most
ones.

Let y be some labeling of the graphical model G such that E(y, θ) <
∞. Then the sequence (y1, y2, . . . , y|V|) is the Hamiltonian cycle by
construction: there is an edge between yu and yu+1 in G′, and the set
{y1, y2, . . . , y|V|} is exactly the set V ′.

All labelings have either value 0 or ∞. Therefore, the solution of
the MAP-inference problem answers the question whether there is a
labeling y such that E(y, θ) < ∞, and, therefore, whether there is a
Hamiltonian cycle in the graph G′.

Note that the same reduction of the Hamiltonian cycle problem to
the MAP-inference could have also be done without using the infinite
costs. Instead, any positive finite cost (e.g. 1) could be used in place of
infinities. In this case the solution of the MAP-inference problem answers
the question whether there is a labeling y such that E(y, θ) = 0, which
is equivalent to the existence of a Hamiltonian cycle in the graph G′.

1.4 Bibliography and further reading

For further examples of applications of graphical models in computer
vision and image processing we refer to the collection [10]. Books [77,
47] can be recommended to learn more about the probabilistic view on

Full text available at: http://dx.doi.org/10.1561/0600000084



16 Introduction to Inference for Graphical Models

graphical models. The monograph [135] concentrates on the exponential
family (1.6) of distributions and its relation to graphical models.

A classical source to learn about the computational complexity of
combinatorial problems is [27], a modern exposition is given in [5]. The
most recent and comprehensive analysis of complexity of the MAP-
inference problem is provided in [70].

The text books [25] and [103] can be recommended to learn about
Bayesian decision theory.

The reduction of the Hamiltonian cycle problem to MAP-inference
is reproduced from the lectures on structural pattern recognition given
by Prof. Michail Schlesinger at National Technical University of Ukraine
“Igor Sikorsky Kyiv Polytechnic Institute” where the author studied
mathematics and computer science.
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