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ABSTRACT

In the last two decades, we have witnessed an immense
increase in the use of multimedia content on the internet,
for multiple applications ranging from the most innocuous
to very critical ones. Naturally, this emergence has given
rise to many types of threats posed when this content can
be manipulated/used for malicious purposes. For example,
fake media can be used to drive personal opinions, ruining
the image of a public figure, or for criminal activities such as
terrorist propaganda and cyberbullying. The research com-
munity has of course moved to counter attack these threats
by designing manipulation-detection systems based on a
variety of techniques, such as signal processing, statistics,
and machine learning. This research and practice activity
has given rise to the field of multimedia forensics.

The success of deep learning in the last decade has led to
its use in multimedia forensics as well. In this survey, we
look at the latest trends and deep-learning-based techniques
introduced to solve three main questions investigated in the
field of multimedia forensics. We begin by examining the
manipulations of images and videos produced with editing
tools, reporting the deep-learning approaches adopted to

Irene Amerini, Aris Anagnostopoulos, Luca Maiano and Lorenzo Ricciardi
Celsi (2021), “Deep Learning for Multimedia Forensics”, Foundations and Trends® in
Computer Graphics and Vision: Vol. 12, No. 4, pp 309-457. DOI: 10.1561/0600000096.
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counter these attacks. Next, we move on to the issue of the
source camera model and device identification, as well as
the more recent problem of monitoring image and video
sharing on social media. Finally, we look at the most recent
challenge that has emerged in recent years: recognizing deep-
fakes, which we use to describe any content generated using
artificial-intelligence techniques; we present the methods
that have been introduced to show the existence of traces
left in deepfake content and to detect them. For each prob-
lem, we also report the most popular metrics and datasets
used today.
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1

Introduction

Over the past years, online and multimedia content has passed tradi-
tional media as a preferred source of information, especially for young
people (Richard Fletcher, 2020), and in the next few years visual con-
tent offered by social networks like Instagram could possibly overtake
other platforms as a news source. The web and social media have fa-
vored the democratization of information and have allowed much more
widespread dissemination of news (BBC-News, 2020). Although access
to this content should have promoted the dissemination of reliable and
validated content from multiple sources of information, the web and
in particular social networks have also become a dangerous source of
disinformation and dissemination of criminal content. Recently, fake
videos of political leaders like Donald Trump, Vladimir Putin and North
Korean leader Kim Jong-un have become increasingly realistic, opening
up to the possibility of manipulating elections or public opinion (Staff,
2021 and Hao, 2020). Likewise, fake images and videos can be used for
cyberbullying, military propaganda, or other criminal acts. All these
problems have something in common. The widespread use of photo and
video editing applications and the ease of use and retrieval of these
tools have made multimedia manipulation a powerful instrument in the
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hands of criminals and attackers. Fake news, fake political campaigns,
and porn videos, as well as fraud attempts are becoming much easier to
spread and produce with a high level of realism. Distinguishing between
fake and real is becoming an extremely important but difficult task.
When multimedia contents are published on the web, they can easily
go viral on social media. Also, deepfakes, which consist of fake content
artificially generated typically using modern deep-learning approaches,
have received a lot of attention in the last few years thanks to the high
level of realism reached by this technology. Sophisticated deep-learning
architectures such as autoencoders (AE) and generative adversarial
networks (GANSs) can be used to create highly realistic fake images and
videos. Building trust and enabling the assessment of the authenticity
of multimedia content is no longer an option but a real necessity.

The area of multimedia forensics combines principles and approaches
from diverse research areas such as computer vision and signal processing,
when it comes to addressing the authenticity and source of an image or
a video. The three topics that multimedia forensics investigates mostly
are the following: (1) forgery detection, which involves the detection
of the authenticity of an image or video as well as of the presence of
any manipulations; (2) source identification, which is the reconstruction
of the history of some digital content, addressing which camera model,
brand, or even specific device has captured that content, or whether it
has been downloaded from social media; (3) deepfake detection, defining
a deepfake as any synthetic medium accounting for the replacement of
a person in an existing image or video with someone else’s likeness (see
Fig. 1 for instance). Figure 1.1 shows these three main problems.

Researchers have been studying the problem of forgery detection
for more than twenty years now. Every day, thousands of professionals
around the world use editing tools such as GIMP, Photoshop, Lightroom,
After Effects Pro, and Final Cut Pro X as basic applications for their
work. Multimedia forensic researchers have tried to provide an immediate
response to all such applications, developing new tools to spot fake
content. These methods can be used to detect subtle modifications, such
as double compression or blurring, as well as more sophisticated attacks
that could be used to change the semantic of a content. The most
widespread examples of these manipulations are splicing (an object is
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Figure 1.1: An overview of multimedia forensic investigations that we present in
this work.

copied from an image and pasted into another picture), copy—move (the
reproduction of an object into the same image), and video-frame deletion
and addition in the case of video sequences. Recently, the advancements
of artificially generated manipulations have attracted the attention of
many researchers. Deepfakes are raising new alarms for the production
of fake news, and their entry into the field of large technology giants has
accelerated the design of new methods. Figure 1.2 shows some examples
of the most recent fakes that spread out over the world.

Parallel to this problem, the identification of the source has been
carefully studied as a forensic analysis tool. This becomes extremely
important today in a hyper-connected world where information spreads
all over the web. In some scenarios, multimedia content may constitute
proof in the court proceedings and it becomes necessary to prove not only
the authenticity of an image or video but also the source of the image or
video itself. First of all, when it comes to assessing the authenticity of
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ZUCKERBERG: N

WE'RE INCREASING TRANSPARENCY ON ADS @ BSN

ANNOUNCES NEW MEASURES TO "PROTECT ELECTIONS" 41O
- .

(a) Fake Mark Zuckerberg Bill Posters UK, Instagram
page 2019.

(b) Fake Barack Obama (left) and the
actor who is impersonating him (right) (¢) An actor (left) and a fake Donald
You Won’t Believe What Obama Says Trump (right) Trump: Deepfakes Re-
in This Video!, Youtube video 2018.  placement, Youtube video 2018.

Figure 1.2: Some of the most recent fakes that spread out over the world.

an image or video, the most advanced techniques for forgery detection
allow to identify dishomogeneities in the considered image or video as
well as any tampered features responsible for introducing differences
from the original image/patch, especially any differences that are not
so evident to the naked eye. Source identification can then be used to
determine if the content was captured with a specific camera model or
brand and even with a specific device. This can be done by exploiting
the sequence of processes that a camera uses to convert the input light
hitting the lens into an output image or video. This operation leaves
important traces on the acquired files that can be used for forensic
purposes. With the widespread adoption of social media and messaging
applications, the task of deciding whether an image or video has been
downloaded from these platforms has become important as well.
Forensic problems have been studied for a long time and they
have been surveyed in multiple works such as Stamm et al. (2013),
Verdoliva (2020), and Yang et al. (2020b). For years, researchers with
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different backgrounds have adopted signal-processing, computer-vision,
and machine-learning techniques to solve the main challenges in this
research field. Deep learning has recently come up with new designs that
are capable of automatically learning both low- and high-level features
to be analyzed to solve forensic problems.

In this survey, we present deep-learning methods for multimedia
forensics, discussing the most important trends in both architectural and
data-processing choices. We begin discussing different techniques used
to manipulate content in Section 2. Next, we discuss image and video
forgery techniques in Section 3. In Section 4, we review deep learning
methods for source identification. Finally, in Section 5 we present the
recent solutions for deepfake detection. Section 6 recaps the evaluation
metrics considered throughout the cited works and Section 7 lists the
datasets that have been mostly adopted for the above-mentioned tasks.
Finally, in Section 8 we draw the conclusions.
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8

Discussion and Conclusions

With the significant diffusion of fake multimedia content, research in
computer vision and its applications in multimedia forensics (especially
the deep learning based ones) have become a hot topic and received
a great deal of attention. Meanwhile, the enormous amount of data
we daily have access to has allowed us to generate highly realistic
forged multimedia contents as well as to devise successful methods for
automatically spotting such fakes.

This survey provides a comprehensive outlook on the literature on
forgery detection to anomaly-based architectures, from source identifi-
cation to deepfake detection, especially with respect to GAN-generated
content. It is clear that deep-learning methods are progressively bridging
the long-standing semantic gap between computable low-level visual
features and high-level image features. Despite recent progress on punc-
tual tasks, investigating and modeling complex real-world problems still
remains challenging.

Given the necessity to tackle these issues for forensic purposes as well
as the enormous profit potential relative to such applications, the studies
on multimedia forensic tasks will continue to grow and expand: in this
respect, the survey highlights the most promising directions for future

94
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research. First, as new and more complex generative manipulations
and techniques emerge, simpler tools will become less effective. To
address this problem, more complex multistream architectures have
shown their potential. Therefore, more complex structures, tools, and
data must be integrated to take advantage of all subtle information
available to address multimedia-forensics problems. Along with the
increasing complexity of media manipulation and generation techniques,
the number of new tools and techniques being introduced makes it
even more difficult to design deep-learning forgery-detection models
that are robust to new attacks never seen before. In fact, despite
the promising results, the main limitation of deep-neural networks
originates from their high dependency on training data. The high
number of operations (malevolent and innocent) that can be performed
on an input, makes it practically impossible to reproduce all possible
examples at training time. Consequently, higher robustness should be
pursued by other means. Furthermore, to cope with rapid advances
in manipulation technology, deep networks should be able to adapt to
new manipulations, without complete retraining, which may simply
be impossible because of lack of training data or lead to catastrophic
forgetfulness. Still in this direction, the works reviewed in this survey,
have been mostly applied in controlled settings. Thus, new techniques
are needed to apply multimedia forensics in the wild. One attempt to
cope with the complexity of the real world is to take into consideration
multiple media at a time. For example, to decide on the authenticity of
the news, we can rely not just on an image or video content, but also
on the text or audio attached to it. In this direction, DARPA recently
launched a new initiative on semantic forensics." The challenge is not
just to decide on the authenticity of an image or video, but to capture
all semantic inconsistencies that can be discovered in a multimodal
media asset. A multimodal approach can be particularly useful to detect
deepfakes, where a video and an audio track are typically available. Also,
semantic inconsistencies can be used in the future to detect anomalies
on deepfakes of the entire human body, without examining only the
human face.

"https://www.darpa.mil /program/semantic-forensics


https://www.darpa.mil/program/semantic-forensics

Full text available at: http://dx.doi.org/10.1561/0600000096

96 Discussion and Conclusions

One of the major current limitations of deep learning is their lack
of interpretability. The complexity of deep learning-models makes it
difficult to understand why they produce an output value. This problem
is particularly relevant in multimedia forensics given the fact that they
are often used for law-related applications. This means that it is often
not sufficient that a classifier reports an image as fake or that a video
is from a certain social network but to also report the features and
the procedures that led to such an output. Furthermore, being able to
interpret the logic of a deep neural network would allow to improve its
design and training phase, and provide higher robustness with respect to
malicious attacks. On a related issue, deep neural networks open up new
vulnerabilities that can be exploited by an attacker. Despite the neural
networks’ ability to learn forensic features directly from data, intelligent
attackers can use this to their advantage. Because the space of possible
inputs to a neural network is substantially larger than the set of images
used to train it, an attacker can create modified images that fall into an
unseen space and force the neural network to misclassify. One method
of accomplishing this involves introducing adversarial perturbations
into an image (see Goodfellow et al., 2015). With respect to this, GANs
can become a new threat not just by generating very realistic images
or videos, but also as counter forensics tools (see Barni et al., 2018 for
more details). They have already been used to remove forensic traces
left by median filtering Kim et al., 2018, and it is very likely that
more GAN-based counter-forensic attacks will be developed in the near
future.
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A

Computer Vision and Signal Processing for Media
Forensics

Multimedia forensic is a research area that requires a basic understand-
ing of computer-vision and signal-processing techniques. To facilitate
the understanding of readers new to these two fields, in this section
we want to introduce some basic background. Obviously, this section
is not intended as an exhaustive treatment of these two disciplines,
see the relevant books for more details (e.g., Goodfellow et al., 2016).
Specifically, in the next pages, we cover basic deep-learning topics for
computer-vision applications and some basic signal-processing concepts
that we refer to in the main text.

A.1 Deep-Learning Architectures for Computer Vision

Deep learning solves the fundamental problem in representation learning
by learning representations that are expressed in terms of other, simpler
forms. From a mathematical point of view, an artificial neural network
is a mathematical function mapping some set of input values to output
values. The function is constructed by composing many simpler functions.
We can think of each application of a different mathematical function
as providing a new representation of the input.

98
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Feedforward neural networks are typically constructed by composing
together many different functions, also informally called neurons. The
model is associated with a directed acyclic graph describing how the
functions are composed together. The network can be structured in
several layers of neurons. The overall length of the chain gives the depth
of the model. The first layer of a feedforward network is called the input
layer and the last one the output layer. The layers in between the input
and the output layers are called hidden layers. Each neuron in a layer
typically performs two basic operations, a linear transformation and a
nonlinear transformation. For example, given an input x, the output of
a layer will be ) = o(W7'x +b), where z = W'z +b is a linear function
and o(z) is a nonlinear function also called activation function.

In this section, we discuss different architecture choices and explain
how each of these configurations can be most useful in solving a specific
problem.

A.1.1 Fully Connected Networks

Fully connected networks (FCNs) are an essential method of deep learn-
ing. The main advantage of FCNs is that they are independent of the
structure, that is, there is no need to make special assumptions about
the input (for example, that the input consists of images or videos).
They owe their name to the fact that each neuron in a certain layer is
connected with all the neurons of the layer that precedes it and each
neuron of the layer that follows it. As a result, these networks are fully
connected. Figure A.1 shows an example of an FCN.

Although being independent of structure makes FCNs widely appli-
cable, they tend to have lower performance than special networks tuned
to the structure of a specific problem space. In fact, because of their
structure, these networks are not robust to input data for which there
is a two-dimensional or three-dimensional relationship such as images
and videos. Furthermore, these networks do not take into account the
dependence of input sequences such as text or video sequences. For
these reasons, in computer-vision applications these networks are not
commonly used to classify input features. Usually, these networks are
used after a convolutional neural network or a recurrent neural network
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that work as feature extractors, that is, they learn how to extract rele-
vant features that are useful to classify the input. Then, the FCN takes
the feature vector as input and predicts the corresponding class.

Even if the FNCs are very often used as classifiers, it is still possible
to apply them for regression problems or to train a network to project
inputs into a latent space as happens, for example, in some applications
that use Siamese networks.

Output layer

Hidden layer

Input layer

Figure A.1: An example of an FCN with a hidden layer of five hidden units (Zhang
et al., 2020).

A.1.2 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a specific kind of neural
network for processing data that has a known grid-like structure. The
most representative class of this family is image data, which can be
thought of as a two-dimensional grid of pixels. These networks use a
mathematical operation called convolution in place of a general matrix
multiplication in at least one of their layers. Given a two-dimensional
image I and a kernel K the convolution between I and K is defined as
follows:

(I xK)(i,7) :ZZI(m,n)K(i—m,j—n)
:ZZI(i—m,j—n)K(m,n).

Convolution leverages three important ideas that can help improve a
computer-vision system: (1) sparse interactions, (2) parameter sharing,
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and (3) equivariant representations. Traditional neural-network layers
use matrix multiplication by a matrix of parameters with a separate
parameter describing the interaction between each input unit and each
output unit, meaning that every output unit interacts with every input
unit. CNNs, however, typically have sparse interactions (also referred
to as sparse connectivity or sparse weights), which is accomplished
by making the kernel size smaller than the input size. Thanks to this
strategy, we can use the same parameters for more than one input
unit in a model (also referred as parameter sharing). In a traditional
neural network, each element of the weight matrix is used exactly once
when computing the output of a layer. It is multiplied by one element
of the input and then never reused. For CNNs, the particular form of
parameter sharing causes the layer to have a property called equivariance
to translation. To say a function is equivariant means that if the input
changes, the output changes in the same way. Figure A.2 shows an
example of a CNN.

convolution pooling dense
convolution

dense

dense
=
o}
g =

Figure A.2: Example of a CNN consisting of two convolutional layers; and a dense
block consisting of three fully-connected layers (Zhang et al., 2020; Lecun et al.,
1998).

pooling

B
m
"=

6@14x14
S2 feature map

120 - F5 full
84 - F6 full

28x28 image 6@28x28 16@1010
C1 feature map C3 feature map

16@5x5
S4 feature map

A.1.3 Recurrent Neural Networks

Similarly to CNNs, recurrent neural networks (RNNs) are specialized
neural networks for processing sequential data of the form 2™, ... 2®.
At each time step t, the state of a hidden unit 2 depends on its state at
time ¢t — 1, that is:

h(t) = O'h(Whh . h(tfl) + Whe - a:(t) + bh)
= o ([WinWha! - [hD20] + by)
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where oy, is a nonlinear (activation) function, 2 represents the input
at time t, Wy, W}, are the weight matrices associated to the actual
hidden state At~V and input z® respectively, and by, a parameter
vector. Forward propagation typically begins with a specification of the
initial state h(©).

Depending on the problems on which they are applied, RNNs can
be structured in different ways: (1) RNNs that generate an output at
each time step and have recurrent connections between hidden units,
(2) RNNs that produce an output at each time step and have recurrent
connections only from the output at one time step to the hidden units at
the next time step, and (3) RNNs with recurrent connections between
hidden units, that read an entire sequence and then produce a single
output. Figure A.3 shows an example of an RNN applied to character-
level language processing.

Time step 1 2 3 4 5 6

Label a c h i n e

Output
layer

Hidden
layer

Input m

Figure A.3: Example character-level language RNN. The input and label sequences
are machin and achine, respectively (Zhang et al., 2020).

A.2 Common Deep Learning Backbones

Neural networks are often combined into complex design schemes that
help them learn better the task they are solving. Every year, new
architectures are published for solving new problems or achieving higher
performance than previous models. In this section, we present some of
the most common architectures used in the architectures of the survey.
Obviously, our goal is not to provide an exhaustive discussion of all the
backbones that can be used in computer vision or multimedia forensics,
but to offer a quick guide to learn about the most used architectures in
the works that we survey.
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A.2.1 VGG

The VGG network (see Figure A.4) was designed by Simonyan and Zis-
serman, 2014. The input image passes through a stack of convolutional
layers that use 3 x 3 filters, which is the smallest size to capture the
notion of left/right, up/down, center. The convolution stride is fixed to
1 pixel and the padding is 1 pixel.! Each of the convolutional blocks is
followed by a max-pooling layer which is performed over a 2 x 2 pixel
window, with stride 2. The stack of convolutional layers (which can be
constructed with different depths) is followed by three fully connected
layers: the first two have 4096 channels each and the third has 1000
neurons corresponding to the output number of classes of the ImageNet
dataset. The final layer is the softmax layer. In one of the configurations
(VGG16), the network also uses 1 x 1 convolution filters, which can
be seen as a linear transformation of the input channels (followed by
nonlinearity). All hidden layers are followed by ReLU activations. This
network can be configured with different depths varying from 11 weight
layers to 19 weight layers. The width of the convolutional layers (the
number of channels) is rather small, starting from 64 in the first layer
and then increasing by a factor of 2 after each max-pooling layer, until
it reaches 512. Depending on the number of layers N, this network is
typically referred to as VGGN. The most common configurations are
VGG16 and VGG19.

VGG

1
| ——
[
————
2 x 2 MaxPool, stride 2
t
e i
| E——
—
3 3 Gonv, pad 1 —t

Figure A.4: Example of the VGG architecture from building blocks to the entire
model (Zhang et al., 2020).

1 Stride and padding are parameters of CNNs; see Goodfellow et al., 2016.
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A.2.2 ResNet

He et al., 2015 introduced ResNets (see Figure A.5) to solve the
vanishing-gradient problem: When a neural network is too deep, the
gradients are easily reduced to zero for the early layers of the network,
with the result that the weights no longer update their values and,
therefore, the model stops learning. The key idea is to use shortcut
connections from early layers up to deeper (later) layers. Formally,
denoting the desired underlying mapping as H(z), we let the stacked
nonlinear layers fit another mapping of F(z) = H(z) — x. The original
mapping is recast into F'(x) 4+ x. The dimensions of z and F(z) must be
equal, thus the ResNet performs a linear projection Wy by the shortcut
connections to match the dimensions:

y=F(z,{W;}) + W - x.

where F'(z,{W;}) represents the residual mapping to be learned. For
example, it may represent two layers of the form F' = Wy - o (W - x), in
which o denotes the ReLu function.

Skip connections between layers add the outputs from previous
layers to the outputs of stacked layers. This allows information to be
propagated to later levels without running into the problem of vanishing
gradients thus allowing us to train deeper networks than was previously
possible. He et al., 2015 designed a plain network with 3 x 3 filters by
following two simple design rules: (1) for the same output feature map
size, the layers have the same number of filters and (2) if the feature
map size is halved, the number of filters is doubled so as to preserve the
time complexity per layer. The network performs downsampling directly
by convolutional layers that have a stride of 2. The network ends with a
global average pooling layer and a 1000-dimensional fully connected layer
with softmax. Shortcut connections between layers increase the depth
of the network. The ResNet network can be configured with different
depths varying from 18 to 152 layers. Depending on the number of layers
N, the network is typically referred to as ResNet-IN. Very commonly,
the network is used as ResNet-18, ResNet-50, or ResNet-100.

Figure A.5 shows two examples of residual blocks. ResNet follows
VGG’s convolutional layer design. The residual block has two 3 x 3
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convolutional layers with the same number of output channels. Each
convolutional layer is followed by a batch normalization layer and a
ReLU activation function. Then, a residual connection propagates the
input of these two convolution operations directly before the final ReLLU
activation function. This kind of design requires that the output of the
two convolutional layers has to be of the same shape as the input, so that
they can be added together. To change the number of output channels,
an additional 1 x 1 convolutional layer can be used to transform the
input into the desired shape for the addition operation.

! |
! |
! |
| |
! |
! |
! |
! |
! |
: | RelLU | : | 1x 1 Conv
! |
! |
! |
! |
| |
! |
! |
! |

Figure A.5: Example ResNet blocks. A regular block (left) and a residual block
(right) (Zhang et al., 2020).

A.2.3 Inception

Parts of interest in an image can have extremely large variations in
their size. This variety in the area of interest can make difficult the
determination of the right kernel size for the convolution operation.
A larger kernel is preferred for information that is distributed more
globally, whereas a smaller kernel is preferred for information that is dis-
tributed more locally. The idea of the inception network (also known as
GoogLeNet; see Szegedy et al., 2014) is to have filters with multiple sizes
operating on the same layer, called the inception layer. An inception
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layer performs a convolution on the input with three different kernel
sizes: 1 x 1, 3 x 3, and 5 x 5. Additionally, max pooling is also performed
in parallel to the filters. However, CNNs are computationally expensive.
In GoogLeNet, 1 x 1 convolution is used as a dimensionality-reduction
module to reduce the computation. By reducing the computation bot-
tleneck, depth and width can be increased. Thus, Szegedy et al., 2014
limit the number of input channels by adding an extra 1 x 1 convolution
before the 3 x 3 and 5 x 5 convolutions. The 1 x 1 convolutions require
much less computation than 5 x 5 convolutions, and applying them
before the other filters reduces the size of input channels. The 1 x 1
convolution is also applied after the max-pooling layer. After that, all
feature maps at different paths are concatenated together as the input
of the next module. Figure A.6 shows an example of the inception block.

]

Concatenation

|3><3Conv,pad1 | |5x500nv,pad2| | 1x 1 Conv |
1x 1 Conv 1 T 1
| 1x 1 Conv | | 1x 1 Conv | | 3 x 3 MaxPool, pad 1 |

] J

Figure A.6: Example of the structure of the inception block (Zhang et al., 2020).

In GoogLeNet (Figure A.7), global average pooling is used at the
end of network by averaging each feature map from 7 x 7 to 1 x 1.

The Inception network described so far is also known as Inception-
v1. Subsequently, several enhancements of this version were introduced
also known as Inception-v2 and Inception-v3 (Szegedy et al., 2015),
Inception-v4 and Inception-ResNet (Szegedy et al., 2016).

A frequently used variation of Inception is called Xception (Chol-
let, 2016), which stands for extreme inception. In a traditional CNNs,
convolutional layers seek out correlations across both space and depth.
In Inception, 1 x 1 convolutions project the original input onto several
separate, smaller input spaces, and from each of these input spaces
some other type of filter transforms those smaller 3D blocks of data.
Xception takes this one step further. Instead of partitioning input data
into multiple compressed chunks, it maps the spatial correlations for
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Global AvgPool

3 x 3 MaxPool

Figure A.7: The GoogLeNet architecture (Zhang et al., 2020).

each output channel separately, and then performs a 1 x 1 depthwise
convolution to capture cross-channel correlation. This is equivalent to
an existing operation known as a depthwise separable convolution, which
consists of a depthwise convolution (a spatial convolution performed
independently for each channel) followed by a pointwise convolution
(a 1 x 1 convolution across channels). See Chollet, 2016 for further
information.

A.2.4 Long Short-Term Memory Networks

Long short-term memory networks (LSTMs) Hochreiter and Schmid-
huber, 1997 are a special kind of RNN, capable of learning long-term
dependencies. Typical RNNs suffer from short-term memory. If a se-
quence is long enough, they will have a hard time carrying information
from earlier time steps to later ones. LSTMs are designed to avoid
the long-term dependency problem. They have internal mechanisms
called gates that can regulate the flow of information. These gates can
learn what data in a sequence are important to keep or throw away. By
doing that, they can pass relevant information down the long chain of
sequences to make predictions.
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The LSTM has four types of gates (see Figure A.8):

o Forget gate (F;). This gate decides what information should be
thrown away or kept. Information from the previous hidden state
and information from the current input is passed through a sigmoid

function.
Fy = o(XiWap + Hy1Why + by)

o Input gate (I;). It decides what values will be updated. The
previous hidden state and current input are passed into a sigmoid
function. This decides what values will be updated by transforming
them to be between 0 and 1.

I = o(XiWyi + Hi—1Wh; + b;)

o Cell state or long-term memory (Cy). The cell state is pointwise
multiplied by the forget vector. This has the possibility of dropping
values in the cell state if it is multiplied by values close to 0. Then
it takes the output from the input gate and computes a pointwise
addition with the candidate memory cell C; = tanh (X Wy +
H;_1Whe + b.) , which updates the cell state to new values that
the neural network finds relevant.

Ci=FoC_1+1; @ét

o Output gate (Oy). It decides what the next hidden state should
be. It passes the previous hidden state and the current input into
a sigmoid function. Then it passes the newly modified cell state
to the tanh function. The output of the tanh is multiplied with
the sigmoid output to decide what information the hidden state
should carry. The output is the hidden state. The new cell state
and the new hidden state are then carried over to the next time
step.

Or = 0(XiWao + Hi—1Who + bo)

Finally, the output hidden state can be simply calculated as Hy =
O; ® tanh(C}). If the output gate approximates 1 then it passes all
memory information through to the predictor, whereas if the output
gate is close to 0, it retains all the information only within the memory
cell and performs no further processing.
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Figure A.8: Example of a hidden state in an LSTM model (Zhang et al., 2020).

A.3 Signal Processing for Multimedia Forensics

Signal processing is an important part of multimedia forensics. Indeed,
image data can be represented as a signal that can be modeled by waves.
For grayscale images, we can model them as a matrix of values, where
the element at position (4,7) in the matrix corresponds to the pixel at
position (7, j) in the image, and the value of that matrix element is the
pixel’s intensity. For example, 0 may correspond to black pixels, and 255
to white pixels. Pixel intensities between 0 and 255 are interpreted as
colors between black and white. Figure A.9 shows an example applied
on a grayscale image.

A similar approach can be used for color images modelling colors
as separate signals or as a three-dimensional signal (one dimension for
each color channel).

For most concepts (discrete Fourier transform, filters, etc.) consult
textbooks on signal and image processing Vetterli et al., 2018; Szeliski,
2011. Here we present some more specific concepts that may help in
reading this survey.

A.3.1 Discrete Cosine Transform

Discrete cosine transform (DCT) is a signal-processing operation that
expresses a finite sequence of data points in terms of a sum of cosine
functions oscillating at different frequencies. The DCT is a type of
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(b) Signal representation.

(c) Row of pixels from image A.9a.

(a) Greyscale image (Shanker, 2021).

Figure A.9: An example (Shanker, 2021) grayscale image (A.9a). Given a pixel’s
row of pixels extracted from the image ((A.9c)), it can be represented as a signal
(A.9D).

Fourier-related transformation and is commonly used as a lossy com-
pression technique. A Fourier transform is the process of decomposing
a digital signal into the sum of some trigonometric functions. A Fourier
transform is called a transform because it transforms the data from one
form (the amplitude or pixel intensity over time) into a list of frequency
coefficients controlling their contribution. The DCT has the property
that most of the visually significant information about the image is
concentrated in just a few coefficients of the DCT. For this reason, in
image processing applications, DCT is very often used as a form of lossy
compression technique. As an example, the DCT is at the heart of the
international standard JPEG and MPEG algorithms. In the frequency
representation of an image, some of the higher frequency components,
such as the smaller changes in amplitude leading up to peaks, are less
important, and could be removed without losing visual components
that are needed to understand the image content. Once that the image
has been decomposed into a collection of trigonometric functions, it
becomes easy to remove less important frequency functions that don’t
contribute as much to the core structures of the image.

The DCT is a linear transformation that transforms a vector of
length n of pixel intensities (a row of pixels of an image), and returns
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a different vector of length n containing the coeflicients for n different
cosine functions. Thus, the vector is encoded by an n x n matrix, in
which each row corresponds to a cosine function of a different frequency.
Using n cosine functions is the key to being able to get our data back
in terms of amplitudes after converting it to cosine coefficients. To
represent each cosine wave as a row in the n X n matrix X, we compute

T 1
X, = il =
j = cos (nz (]-i— 2))

where ¢ and j indicate rows and columns of the matrix respectively. In

it as:

the equation above, each row corresponds to a different cosine function
and the higher values of ¢ correspond to cosine waves of higher frequency.

The last step, after calculating the DCT matrix, is to calculate the
decomposition and the correct coefficients for each of the component
waves. The decomposition can be easily computed by taking the dot
product of the input vector of pixel intensities and X;. The dot product
of these two components can be interpreted as a measure of similarity
between the two vectors, that is, if the pixel data is coincident with the
values in one particular wave, it will be 0. Therefore, by computing this
dot product, we can figure out what coefficient to use for that particular
wave. This technique, can be similarly applied on two-dimensional
matrices (i.e., two-dimensional image signals) by performing the DCT
twice, once along the rows, and once along the columns.

To compress the image, we take the K most significant cosine waves
in X;, and save the coefficients. To get the compressed image back, we
pad the matrix with Os to get an n x n matrix (the original image’s
size), and then apply on it the inverse DCT transform to obtain the
compressed image.

A.3.2 PRNU

When an photograph is taken by a camera, it is processed through
a sequence of operations illustrated in Section 4. These operations
may introduce noise and various imperfections to the image. Even if
the imaging sensor takes a picture of an absolutely evenly lit scene,
the resulting digital image will typically still exhibit small changes in
intensity between individual pixels. This is partly because of the shot
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noise created by the electronic circuits, which is a random component,
and partly because of the pattern noise created by the image sensors,
a fixed component that remains approximately the same if multiple
pictures of the exact same scene are taken. This implies that the pattern
noise is impressed in every image the sensor takes and, thus, can be
used for camera identification. Averaging over multiple images reduces
the random components and enhances the pattern noise.

The two main ingredients of pattern noise are fized pattern noise
(FPN) and photo-response nonuniformity (PRNU). The FPN is caused
by dark currents, that is, by pixel-to-pixel differences when the sensor
array is not exposed to light. As it is an additive noise, very commonly,
consumer cameras suppress it automatically by subtracting a dark
frame from every image they take. Therefore, the dominant part of the
pattern noise of an image is the PRNU. It is caused primarily by pixel
nonuniformity (PNU), which is the different sensitivity of pixels to light
caused by the inhomogeneity of silicon wafers and imperfections during
the sensor manufacturing process. Because of its origin, it is unlikely that
even sensors coming from the same wafer would exhibit correlated PNU
patterns. So, the PNU noise is not affected by ambient temperature or
humidity, but light refraction on dust particles and optical surfaces and
zoom settings contribute to the PRNU noise. Since these low-frequency
components are not a characteristic of the sensor, if we capture this noise
pattern, we can create a distinctive link between a camera and its photos.

Formally, given a digital image I taken from camera a C, it can be
modeled as:

I:Iden+ldenK+0

where I it the acquired image, I%" is the denoised image, K is the

PRNU and 6 represents other noise terms (e.g., shot noise). PRNU is
usually estimated from N images captured with the same camera. The
estimate can be computed with two simple steps: (1) the application of
high-pass filtering W; = I; — I#" on each image i, followed by (2) an
estimate operation:

Wi

K=
N(I)?
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The PRNU fingerprint K is obtained through a minimum variance
estimator as indicated in the equation above, where N is the number of
images used for the estimation.

A.3.3 JPEG Compression

JPEG is an acronym for joint photographic experts group and it refers
to the JPEG file interchange format (JFIF). Usually, the files with the
. jpg extension are JFIF files. It was created as a standard for digital
image compression. JPEG is lossy compression technique, meaning that
the image changes and loses some detail as a result of the compression.
JPEG compression is actually composed of three different compression
techniques, which are applied in successive layers: (1) chrominance
subsampling, (2) DCT and quantization, and (3) delta, run-length,
and Huffman encoding. Chrominance subsampling is the process of
representing an image’s color components at a lower resolution than its
actual luminance components. This step is used to reduce the file size of
colored images. For grayscale images, this step can be skipped. This step
begins by converting the image from RGB to YUV color space. Because
the human eye is more sensitive to luminance than to chrominance,
typically JPEGs discard most of the chrominance information before
any other compression takes place, so the image contains only half
as much color information as it originally did. This first step already
reduces the amount of information of the image to be stored. Next, the
image is partitioned into 8 x 8 nonoverlapping pixel blocks and the DCT
of each block is computed, resulting into a set of 64 subbands of DCT
coefficients. The DCT coefficients are then quantized by dividing them
by the entry in a quantization matrix that corresponds to the coefficient’s
subband and then rounding the resulting value to the nearest integer.
Because the human visual system has different sensitivities to luminance
and color distortions, different quantization tables are generally used to
quantize the luminance and chrominance layers. Finally, each quantized
DCT coeflicient is converted to binary and then reordered into a single
bit stream using the zigzag scan order 2. The third and last compression

2See https://www.ece.ucdavis.edu/cerl/reliablejpeg/compression/ for further
details.
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layer is lossless. Initially, each DCT coefficient is converted from an
absolute value to a relative value: Adjacent blocks in an image tend
to have a high degree of correlation, so the protocol encodes the DCT
term of a given block as a difference from the previous DCT term; the
difference is typically a very a very small number and can be stored
in a small number of bits—we call this encoding delta encoding. This
process will typically create a lot of differences of value equal to zero.
The next step encodes zeros into a run-length encoding, that is, it only
stores the count of consecutive (differences of) zero values. Finally, the
image is compressed with Huffman encoding, which is stored in the
JPEG header.

MPEG (moving picture experts group) is a standard for video coding.
It is used to compress video sequences and it is very similar to JPEG.
The main difference with videos is that it also performs block-based
motion compensation (see Sullivan et al., 2012): it encodes the difference
between each block and a predicted set of pixel values obtained from a
shifted block in the previous frame. In fact, the encoder splits the video
frame sequence into smaller segments called group of pictures (GOP).
Each GOP starts with an I-frame which is an image independently
encoded using a process similar to JPEG compression and continues with
the predicted frames (P-frames) and bidirectional frames (B-frames).
P-frames are predicted from preceding frames and B-frames can be
predicted from I-frames or P-frames preceding or following them in
the GOP. Check the MPEG official web page® of the MPEG group for
further details.

In Section 2.1 you will find more details on how compression can be
used in multimedia forensics applications.

3https://www.mpegstandards.org
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