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Deep Learning for Image/Video
Restoration and Super-resolution
A. Murat Tekalp

Department of Electrical and Electronics Engineering, Koç University,
Turkey; mtekalp@ku.edu.tr

ABSTRACT
Recent advances in neural signal processing led to significant
improvements in the performance of learned image/video
restoration and super-resolution (SR). An important benefit
of data-driven deep learning approaches to image processing
is that neural models can be optimized for any differentiable
loss function, including perceptual loss functions, leading to
perceptual image/video restoration and SR, which cannot
be easily handled by traditional model-based methods.
We start with a brief problem statement and a short discus-
sion on traditional vs. data-driven solutions. We next review
recent advances in neural architectures, such as residual
blocks, dense connections, residual-in-residual dense blocks,
residual blocks with generative neurons, self-attention and
visual transformers. We then discuss loss functions and eval-
uation (assessment) criteria for image/video restoration and
SR, including fidelity (distortion) and perceptual criteria,
and the relation between them, where we briefly review the
perception vs. distortion trade-off.
We can consider learned image/video restoration and SR
as learning either a nonlinear regressive mapping from de-
graded to ideal images based on the universal approximation
theorem, or a generative model that captures the probabil-
ity distribution of ideal images. We first review regressive

A. Murat Tekalp (2022), “Deep Learning for Image/Video Restoration and Super-
resolution”, Foundations and Trends® in Computer Graphics and Vision: Vol. 13,
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inference via residual and/or dense convolutional networks
(ConvNet). We also show that using a new architecture with
residual blocks based on a generative neuron model can out-
perform classical residual ConvNets in peak-signal-to-noise
ratio (PSNR). We next discuss generative inference based on
adversarial training, such as SRGAN and ESRGAN, which
can reproduce realistic textures, or based on normalizing
flow such as SRFlow by optimizing log-likelihood. We then
discuss problems in applying supervised training to real-life
restoration and SR, including overfitting image priors and
overfitting the degradation model seen in the training set.
We introduce multiple-model SR and real-world SR (from
unpaired training data) formulations to overcome these prob-
lems. Integration of traditional model-based methods and
deep learning for non-blind restoration/SR is introduced as
another solution to model overfitting in supervised learning.
In learned video restoration and SR (VSR), we first discuss
how to best exploit temporal correlations in video, includ-
ing sliding temporal window vs. recurrent architectures for
propagation, and aligning frames in the pixel domain using
optical flow vs. in the feature space using deformable convo-
lutions. We next introduce early fusion with feature-space
alignment, employed by the EDVR network, which obtains
excellent PSNR performance. However, it is well-known that
videos with the highest PSNR may not be the most appeal-
ing to humans, since minimizing the mean-square error may
result in blurring of details. We then address perceptual
optimization of VSR models to obtain natural texture and
motion. Although perception-distortion tradeoff has been
well studied for images, few works address perceptual VSR.
In addition to using perceptual losses, such as MS-SSIM,
LPIPS, and/or adversarial training, we also discuss explicit
loss functions/criteria to enforce and evaluate temporal con-
sistency. We conclude with a discussion of open problems.
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1
Introduction

Deep learning has made a significant impact not only on computer vision
and natural language processing but also on classical signal processing
problems such as image/video restoration/super-resolution (SR) and
compression. This monograph reviews recent advances and the state
of the art in image/video restoration and SR using deep learning. It
is worth noting that the nonlinear neural signal processing techniques
discussed in this monograph also apply to other inverse problems in
imaging.

This section provides an introduction to image restoration and SR
problems, including a general overview of classical model-based vs.
modern data-driven solutions. We start with the problem statement in
Section 1.1, where we pose image restoration/SR as an ill-posed inverse
problem. Linear model-based regularization of ill-posed inverse problems
is reviewed in Section 1.2. Limitations of linear, shift-invariant (LSI)
regularization are discussed in Section 1.3. Next, Section 1.4 provides
an overview of classical nonlinear model-based regularized inversion vs.
modern data-driven learned approaches. We introduce the three pillars
of learned image/video restoration and SR solutions: the architecture,
the optimization and evaluation criteria, and training in Section 1.5.
Finally, we briefly discuss other related survey articles in Section 1.6.

3
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4 Introduction

1.1 Problem Statement

Inverse problems in imaging are those problems, where we want to solve
for the ideal image vector x given a nonlinear observation model

y = D(x) + v (1.1)

where y denotes the observation vector, D is a nonlinear degradation
operator, and v is the observation noise vector. In the traditional
formulation of inverse problems, the degradation (forward) model is
assumed to be linear, which can be expressed as

y = DHx + v (1.2)

where H denotes a linear degradation operator, and D is an observation
matrix. This linear observation model includes the following image
restoration problems as special cases:

• The denoising problem, where D=H=I (identity matrix).
• The deblurring problem, where D=I and the matrix H is deter-

mined by the blur point spread function (PSF).
• The super-resolution (SR) problem, where D and H represent

the sub-sampling operation and the anti-alias filter, respectively.
• The image inpainting problem, where the elements of matrix D

that correspond to missing pixels are set to zero.

1.1.1 Ill-Posed Problems

According to Hadamard, a problem is well-posed if it satisfies the fol-
lowing conditions (Tikhonov and Arsenin, 1977): i) a solution exists,
ii) the solution is unique, and iii) small perturbations (noise) in the
observations (input) results in small changes in the solution. Problems
that are not well-posed in the sense of Hadamard are called ill-posed.

Inverse problems in imaging are often ill-posed because the matrices
D and/or H may be non-square with more unknowns than the number
of equations; hence, the solution either does not exist and/or is not
unique, and/or the condition number of matrix H is large so that
the solution is highly sensitive to observation noise.

Full text available at: http://dx.doi.org/10.1561/0600000100



1.2. Model-based Regularization of Ill-Posed Inverse Problems 5

1.1.2 Non-blind vs. Blind Image Restoration and SR

We can classify inverse problems as non-blind or blind depending on
whether the degradation operator and observation noise level in Eqn. 1.1
and Eqn. 1.2 are known or not.

A low resolution (LR) image is modeled as down-sampled version of
an ideal high resolution (HR) image. We typically model the anti-alias
filtering in the down-sampling operation by a bicubic filter; hence, this
process is often referred to as bicubic downsampling. In real-world
applications, there are additional sources of blur in LR image formation,
such as motion blur or camera shake blur, which is represented by a
convolution kernel k, given by

y = (k ∗ x) ↓ +v (1.3)

where ↓ denotes bicubic downsampling. While the blur due to ↓ is a
bicubic filter, the additional source of blur, denoted by k is usually
unknown and image specific.

Non-blind image restoration and SR refers to the case where the blur
kernel k and noise level in Eqn. 1.3 are known or estimated prior to
the image restoration process. Most non-blind methods assume that
there is no additional source of blur in LR image formation, and only
model bicubic anti-alias filtering. Hence, Eqn. 1.3 simplifies as

y = (x) ↓ +v (1.4)

Blind image restoration and SR refers to the case where the blur
kernel k and noise level in Eqn. 1.3 are unknown and must be estimated
simultaneously with the image restoration and SR process.

1.2 Model-based Regularization of Ill-Posed Inverse Problems

Since the forward model (1.1) or (1.2) is in general not invertible,
one can possibly define the ordinary least squares estimate of x or
the pseudo-inverse solution given by

x̂ = (HT H)−1HT y (1.5)

However, this solution is not regularized in the sense that it is highly
sensitive to small perturbations (noise) in the observation vector y.

Full text available at: http://dx.doi.org/10.1561/0600000100



6 Introduction

Finding a solution that is well-behaved in the presence of observa-
tion noise is impossible without utilizing some prior information about
the ideal signal/image x. This is called regularization of the inverse
solution. Traditional model-based regularized inversion methods mini-
mize a cost function subject to some constraints (prior) on the solution.
Assuming the observation noise is additive, white Gaussian, and is
independent of the signal/image x, the regularized inverse solution can
be found as:

x̂(λ) = argx min
1
2 ||y − DHx||2 + λR(x) (1.6)

where R(x) is a regularization operator that imposes some prior on x.
Hence, the solution is the minimizer of a data-consistency cost term,
which measures how well the restored image matches the observations
given the degradation model, and a regularizer term, which imposes
some prior knowledge or promotes images with some desirable property.

One of the first regularization methods is Tikhonov regularization,
which, in the case D=I, is given by (Tikhonov and Arsenin, 1977):

x̂(λ) = (HT H + λLT L)−1HT y (1.7)

where L is a linear regularization operator expressed in matrix form and
λ is a parameter that controls the tradeoff between data consistency and
regularization, i.e., noise sensitivity. For example, L can be the Laplacian
operator that estimates high frequency image components. In this case,
minimizing the energy of high frequency image components can be
viewed as imposing a smoothness constraint as an image prior.

Direct computation of (1.7) requires inversion of the large matrix
(HT H+λLT L). There are two common approaches to avoid inversion of
this large matrix: i) employing an iterative solution, ii) diagonalization
using the discrete Fourier transform assuming the matrix is circulant.
Under certain assumptions, this regularized inverse solution can be
obtained by a linear, shift-invariant regularized inverse filter.

Full text available at: http://dx.doi.org/10.1561/0600000100



1.3. Limitations of Linear Shift-invariant Regularized Inverse Filters 7

1.3 Limitations of Linear Shift-invariant Regularized Inverse Filters

Let’s express the observation model (1.2), in the case D=I, in scalar
form as a convolution

y(n1, n2) = h(n1, n2) ∗ ∗x(n1, n2) + v(n1, n2) (1.8)

Taking the 2-D discrete Fourier transform of both sides, we obtain

Y (ejω1 , ejω2) = H(ejω1 , ejω2)X(ejω1 , ejω2) + V (ejω1 , ejω2) (1.9)

If we process the observed image by a linear, shift-invariant restoration
filter Φ(ejω1 , ejω2), the estimated image can be expressed as

X̂(ejω1 , ejω2) = Φ(ejω1 , ejω2)Y (ejω1 , ejω2) (1.10)

If we now substitute Eqn. 1.9 for Y (ejω1 , ejω2), we get

X̂(ejω1 , ejω2) = Φ(ejω1 , ejω2)[H(ejω1 , ejω2)X(ejω1 , ejω2) +V (ejω1 , ejω2)]
(1.11)

In order to analyze the artifacts due to processing with a linear,
shift-invariant filter Φ(ejω1 , ejω2), we add and subtract X(ejω1 , ejω2)
to the right hand side to obtain (Tekalp and Sezan, 1990):

X̂(ejω1 , ejω2) = X(ejω1 , ejω2)
+[Φ(ejω1 , ejω2)H(ejω1 , ejω2) − 1]X(ejω1 , ejω2)
+Φ(ejω1 , ejω2)V (ejω1 , ejω2) (1.12)

The second term at the right-hand side is signal-dependent regularization
error (ringing artifacts). The third term is filtered noise artifacts. If
we let Φ(ejω1 , ejω2) = H−1(ejω1 , ejω2) (inverse filter) then the second
term disappears, but the third term dominates and masks the signal
x(n1, n2). Hence, the trade-off between the last two terms is a theoretical
limitation of LSI regularized solutions (Tekalp and Sezan, 1990).

In order to overcome this theoretical limitation of LSI inverse filters,
many adaptive or nonlinear methods have been proposed within the past
30 years. They are briefly discussed in the next section.

Full text available at: http://dx.doi.org/10.1561/0600000100



8 Introduction

1.4 Nonlinear Model-based vs. Data-driven Approaches

Traditional nonlinear model-based regularized inversion methods have
been applied to solve image/video restoration and SR problems for over
50 years. We can broadly classify available solutions as: i) iterative meth-
ods that impose deterministic constraints or priors about the ideal image,
ii) methods based on statistical estimation theory, and iii) example-
based methods based on machine learning (but not end-to-end deep
learning). Examples of such methods include maximum a posteriori
probability (MAP) estimation, sparse modeling (Papyan et al., 2018),
adaptive filters (Erdogmus and Principe, 2006), and example-based
machine learning (Freeman et al., 2002; Liu et al., 2007).

Iterative methods can be used to impose constraints on the solution.
Early iterative regularization methods include nonlinear Landweber iter-
ations, iterative back-projection, or projection onto convex sets (POCS)
methods. Iterative solutions to variational optimization formulations,
such as the total variation (TV) regularization, have also been proposed.
TV regularization suppresses oscillations (noise) in the solution while
allowing for discontinuities (edges). Later, iterative solutions based
on sparse and redundant image representation have become popular.
Sparse redundant representations constrain the signal to the form

x = Aγ (1.13)

where x ∈ Rn, γ ∈ Rm such that m > n, and the n × m matrix A
is a dictionary of atoms. The vector γ is sparse with only few (say k)
nonzero elements; thus, x is constrained to be a linear combination of
k atoms from a learned dictionary A.

Statistical estimation methods pose image/video restoration and SR
as finding the minimum mean square error (MMSE) estimate, given by

x̂MMSE = argx̂ min E{(x − x̂)2} (1.14)

or the maximum a posteriori probability (MAP) estimate, given by

x̂MAP = argx min ln p(x|y) = argx min (ln p(y|x) + ln p(x)) (1.15)

Note that when the distributions are Gaussian, the first and second
terms in Eqn. (1.15) correspond to those in Eqn. (1.6).

Full text available at: http://dx.doi.org/10.1561/0600000100



1.4. Nonlinear Model-based vs. Data-driven Approaches 9

Example-based learning has also been shown to yield good results.
Nevertheless, classical model-based solutions require iterations (more
computation) during inference and their performance is limited since
single-image SR is a severely ill-posed inverse problem.

The latest advance in the state-of-the-art in nonlinear image/video
restoration and SR is based on deep learning driven by big data. It only
became possible to obtain deep learned SR results that are superior to
those of traditional model-based approaches within the last 5-6 years
leveraging the recent advances in deep neural network architectures
and training methods including optimizers, wide availability of large
datasets, and powerful GPU computing.

Learned image restoration and SR tasks can be posed as a nonlinear
regression problem or a generative modeling problem. We can gain
insight on how deep learning helps to achieve state of the art image
restoration and SR results leveraging data-driven regression paradigm by
means of the following example. Suppose we want to predict the weight
of a person given his/her height and age. Given a dataset with weight,
height and ages of people, we can fit a surface in 3-D to given data. If we
fit a linear model, this would be a plane in 3-D as depicted in Figure 1.1.
A nonlinear regression framework would allow fitting an arbitrary 3-D
surface to the given data. Given the height and age of a new person not
in the training dataset, we can project the height and age to the 3-D
prediction surface to get a reading of the predicted weight. The shape of

Figure 1.1: Illustration of linear regression in a 3-dimensional space.
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10 Introduction

the 3-D surface, which determines the accuracy of the predicted weight,
depends on the form of the nonlinear predictor, the loss function used
in fitting, and of course the goodness of the available training data.

Regressive inference for learned image restoration and SR works
similarly, where we have input (LR) and output (HR) image pairs. Each
corresponding LR-HR image pair is represented by a point in a very high
dimensional space (each pixel is a dimension). For example, if we have
100 × 100 patches, that would constitute a 10,000 dimensional space.
A deep learning model defines a prediction manifold that is fitted to
these sample points in the very high-dimensional space. In analogy with
the above example, the accuracy of the predicted HR images depends
on the architecture of the neural network (the form of the predictor),
the optimization criterion, and the available datasets.

Alternatively, generative inference works by first learning a model
to represent the distribution of the ideal image conditioned on a given
degraded image, and then sampling one or more plausible solutions
from this distribution during inference.

The inference process in model-based methods and learned methods
are in stark contrast. In traditional model-based methods, there is no
training process, but we need to solve a different optimization problem
for each test image. While this requires significantly more computation
during inference, it provides flexibility to use a different degradation
model for each test image. In learned methods, we typically assume all
training and test images are subject to the same degradation process,
and the training step requires significant computation, but the inference
process is very fast. Hence, classical model-based and deep learning
approaches have different strengths and weaknesses.

1.5 Three Pillars of Learned Image Restoration and SR

The three pillars of learned image restoration and SR are the network
architecture, the optimization criteria, and training methodology and
data. We provide a brief introduction to each of these pillars, depicted
in Figure 1.2, in the following subsections.
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1.5. Three Pillars of Learned Image Restoration and SR 11

Figure 1.2: Three pillars of learned image restoration and SR.

1.5.1 Network Architectures: Regressive vs. Generative Models

In a very broad way, we can classify deep SR network architectures
as regressive models and generative models. Regressive models are
feedforward networks that learn a nonlinear mapping from the space of
LR images to the space of HR images. They include residual networks,
dense networks, and their variations. On the other hand, generative
models learn the probability distribution of HR images conditioned on
LR images. Thus, generative SR models enable sampling one or more
HR images from the estimated conditional distribution of HR images.
We provide an overview of recent advances in deep neural network
architectures that contribute to achieving the state-of-the-art results in
image/video restoration and SR in Section 2.

1.5.2 Optimization Criteria: Distortion vs. Perception

Unlike classical model-based methods, that optimize either l2 or l1 dis-
tortion subject to some regularization prior, learned image restoration
and SR allows optimization with respect to any differentiable loss func-
tion. Parameters of the network can be optimized purely for distortion
(fidelity) or a combination of fidelity and perceptual criteria. Blau and
Michaeli (2018) show that distortion and perceptual quality are at odds
with each other leading to perception-distortion tradeoff. Specifically,
they study the optimal probability for correctly discriminating the out-
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12 Introduction

puts of an image restoration algorithm from real images and show that
as the mean distortion decreases, this probability increases indicating
worse perceptual quality. Achieving the best trade-off between highest
fidelity and perceptual quality is an interesting research problem. Fi-
delity and perceptual optimization criteria and perception-distortion
tradeoff are reviewed in more detail in Section 3.

1.5.3 Training Methods and Data: Supervised vs. Unsupervised

A vast majority of published literature on learned image restoration and
SR perform supervised training from a synthetically generated LR, HR
paired image dataset. This dataset depends on a particular blur kernel
and noise level that is used to generate LR images from corresponding
HR images. SR models obtained this way perform incredibly well,
outperforming conventional model-based methods by a large margin,
when the test set of images are also generated using the same degradation
process. However, if the degradation in the test set of images differ from
those in the training set, then SR performance deteriorates. We call
this dependence of SR performance on the degradation model used in
the training set as model overfitting.

When it comes to real-world problems, this approach of training SR
models based on synthetically generated LR-HR image pairs is of limited
use due to model overfitting, because real LR images are degraded by
blur and noise, which are unknown in the practical setting. Furthermore,
in the real-world SR setting, there is no ground-truth; hence there is no
paired data available for training. Hence, in the real-world setting we
have blind image restoration/SR problem without ground-truth data.

Recently, more researchers have started working on blind image
restoration/SR methods that require no training, or can be trained
without an external training set, or can be trained by unpaired datasets.
These methods can be classified as: i) two-step approaches, where
the blur kernel is estimated first and then used in a non-blind SR model,
or ii) methods that iteratively correct the blur kernel estimate based
on the LR image and the most recent estimate of the SR image. Both
supervised and unsupervised training of image and video SR models
are discussed in Section 4 and Section 5, respectively.
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1.6 Related Recent Survey Articles

Other survey articles have appeared in the literature while we are
working on this manuscript. Some of them introduce a taxonomy for
deep learned SR models grouping them into categories, some benchmark
SR algorithms, and some are in preprint.

Wang et al. (2021) provide a nice overview of the SISR literature;
however, their paper does not cover transformer-based architectures,
and touches upon video SR and real-world SR issues very briefly.

In deep journey into SR (Anwar et al., 2021), the authors introduce
a new taxonomy of the SR algorithms based on their architectures. They
also provide a systematic evaluation of more than 30 SISR algorithms
on six publicly available datasets given LR-HR image pairs. However,
the assessment of results was only performed in terms of PSNR and
SSIM; they do not discuss perception-distortion tradeoff, and they do
not address real-world SR or video SR.

Liu et al. (2020) propose a taxonomy and classify video SR methods
into six sub-categories according to the ways they utilize inter-frame
information in a preprint article. They also compare more than 30 video
SR algorithms. Blind image SR (Liu et al., 2021a) is another preprint
article that surveys image SR methods that can deal with an unknown
degradation. The authors propose a taxonomy to categorize existing
methods into three different classes according to the ways they model
the degradation process.

Unlike these surveys, we do not benchmark a set of algorithms or
propose a new taxonomy, but we focus on the understanding of founda-
tional ideas and provide a comprehensive overview of basic principles
of regressive (predictive) and generative SR network architectures, ap-
proaches to enforce temporal consistency in video SR, full-reference
and no-reference image/video quality assessment (QA) measures, and
differentiable QA measures that can be used as optimization loss func-
tions. We also discuss the real-world SR problem and survey how to
deal with the cases of known degradation model and blind SR as well as
unsupervised learning approaches for real-world SR in detail. We believe
this monograph can be used as reference material in an advanced image
processing class.
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