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ABSTRACT

Neural compression is the application of neural networks and
other machine learning methods to data compression. Recent
advances in statistical machine learning have opened up
new possibilities for data compression, allowing compression
algorithms to be learned end-to-end from data using powerful
generative models such as normalizing flows, variational
autoencoders, diffusion probabilistic models, and generative
adversarial networks. This monograph aims to introduce this
field of research to a broader machine learning audience by
reviewing the necessary background in information theory
(e.g., entropy coding, rate-distortion theory) and computer
vision (e.g., image quality assessment, perceptual metrics),
and providing a curated guide through the essential ideas
and methods in the literature thus far.

Yibo Yang, Stephan Mandt and Lucas Theis (2023), “An Introduction to Neural
Data Compression”, Foundations and Trends® in Computer Graphics and Vision:
Vol. 15, No. 2, pp 113–200. DOI: 10.1561/0600000107.
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1
Introduction

The goal of data compression is to reduce the number of bits needed
to represent useful information. Neural, or learned compression, is the
application of neural networks and related machine learning techniques
to this task. This monograph aims to serve as an entry point for machine
learning researchers interested in compression by reviewing the prereq-
uisite background and representative methods in neural compression.

The basic idea of learning-based data compression has long existed
in various forms before the current era of deep learning [224][154][37][60].
Many of the tools and techniques for neural compression, especially
for images, also draw on a rich history of learning-based approaches
in computer vision. Indeed, many problems in image processing and
restoration can be viewed as lossy image compression; e.g., image super-
resolution can be solved by learning a decoder for a fixed encoder
(the image downsampling process) [49][105]. In fact, neural networks
have already been applied to image compression in the late 1980s and
1990s [170][61], and even an early review article [96] exists. Compared
to early work, modern methods differ markedly in their scale, neural
architectures, and encoding schemes.

2
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3

Figure 1.1: Compression as generative modeling. Left: A sample drawn from the
probabilistic model underlying JPEG, which betrays an assumption of independence
among neighboring 8 by 8 pixel blocks (except for the DC components within each
row). Right: A sample generated by a recent neural compression model by Minnen
et al. [132].

Current research in neural compression is heavily inspired by ad-
vances in deep generative modeling, such as GANs [65], VAEs [99][151],
normalizing flows [104], and autoregressive models [180][140]. While
these models allow us to capture complex data distributions from sam-
ples (a key to neural compression), the research tends to focus on gener-
ating realistic data samples [139][142] or achieving high data log-density
[151][101], objectives not necessarily aligned with data compression.

Arguably the first work exploring deep generative models for data
compression appeared in 2016 [70], and the topic of neural compression
has grown considerably since then. Multiple researchers have identified
connections between variational inference and lossless [59][118] as well
as lossy [12][184][6][209] compression. This monograph hopes to further
facilitate such exchange between these fields, raising awareness of com-
pression as a fruitful application of generative modeling along with the
associated challenges.

Instead of surveying the vast literature, we aim to cover the essential
concepts and methods in neural compression, with a reader in mind
who is versed in machine learning but not necessarily data compression.
We hope to complement existing surveys that have a more specialized or
applied focus [10][117][111] by highlighting the connections to generative
modeling and machine learning in general. In most of this monograph,
we make essentially no assumption on the data other than that it

Full text available at: http://dx.doi.org/10.1561/0600000107



4 Introduction

is independently and identically distributed (i.i.d.), a typical setting
for machine learning and statistics. We center our discussions around
image compression, where most neural compression methods were first
developed, but the basic ideas we present here are data agnostic. Towards
the end, in Section 3.7, we lift the i.i.d. assumption and consider video
compression, which can be seen as an extension of the existing ideas
along the temporal dimension.

Neural compression can ease the development and optimization
of data compression algorithms in a data-driven fashion. This can be
especially useful for new or domain-specific data types, such as VR/AR
content or scientific data, where developing custom codecs may other-
wise be expensive. Indeed, learning-based approaches are being applied
to emerging data types, such as point clouds [147][72][89], implicit 3D
surfaces [178], and neural radiance fields [22]. Effectively compressing
such data may require new neural architectures [178] and/or domain
knowledge to convert the data into neural-network-friendly representa-
tions [89]. However, the essential ideas and techniques introduced here
for reducing the entropy, or bit-rate cost, of learned representations
remain the same.

JPEG [92] serves as a good motivating example of the lossy com-
pression pipeline (depicted in Figure 1.2). First introduced in 1992, it is
still one of the most widely used image compression standards [90]. At
the heart of JPEG are linear mappings which losslessly transform pixels
into coefficients and back. The coefficients are first quantized to integers,
incurring some information loss. Then they are further compressed
losslessly by a combination of run-length encoding and entropy coding
(the latter is discussed in Section 2.1.1).

The linear portion of the encoding process consists of several steps.
First, each pixel is transformed from RGB to YCC coefficients consisting
of a luma component (Y) and two color components (C). After this
color transform, each channel is treated independently, and optional
downsampling is applied to the color channels. Next, each channel is
divided into 8 × 8 pixel blocks, and each block independently undergoes
a discrete cosine transform (DCT). The transform coefficients are then

Full text available at: http://dx.doi.org/10.1561/0600000107
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Figure 1.2: A typical pipeline in both neural and classical lossy image compression.
An encoder transformation f (for example, the DCT or a neural network) maps
images to coefficients z, which are first quantized to ẑ, and then entropy encoded
into bits using an entropy model P . A reconstruction x̂ is obtained using a decoder g
that aims for a small distortion ρ between the data x and its lossy reconstruction x̂.
In addition, neural compression can also involve an adversarial critic D, encouraging
realism and high perceptual quality.

linearly scaled and finally rounded to integers. Given an image x, the
encoder thus performs

ẑ = ⌊DACx⌉, (1.1)

where C is the pixelwise color transform, A is the block- and channelwise
DCT, and D is a diagonal matrix scaling the coefficients. The decoder
applies the transforms in reverse,

x̂ = C−1A⊤D−1ẑ. (1.2)

Readers familiar with machine learning will be reminded of autoen-
coders [29][158] and it is natural to consider learned neural networks in
place of the linear transforms. As we will see later, there are indeed close
connections between lossy compression and variational autoencoders
(VAEs) [12][184][6][211], though other generative models have a role to
play as well. What we call “coefficients” in the context of compression
are often called “latent variables” in the context of generative models.
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6 Introduction

Like generative models, JPEG defines a probability distribution over co-
efficients which represents assumptions about the latent representation.
Just as in VAEs, we can use this distribution to draw samples from the
model underlying JPEG, with an example shown in Figure 1.1.

Overview. This introduction is organized into two main parts,
lossless (Section 2) and lossy (Section 3) compression, with the latter
relying on the former for compressing lossy representations of the data
(see Figure 1.2). We begin by reviewing basic coding theory (Section
2.1), and learn how we can turn the problem of lossless compression into
learning a discrete data distribution, with the help of entropy-coding. For
this to work in practice, we decompose the potentially high-dimensional
data distribution using tools from generative modeling, including auto-
regressive models (Section 2.2), latent-variable models, (Section 2.3),
and other models (Section 2.4). Each model class differs in its compati-
bility with different entropy-coding algorithms, and offers a different
trade-off between the compression bit-rate and computational efficiency.
Lossy compression introduces additional desiderata, the most common
being the distortion of reconstructions, based on which the classical
rate-distortion theory and algorithms such as vector quantization and
transform coding are reviewed (Section 3.1). We then introduce neural
lossy compression as a natural extension of transform coding (Section
3.2) and discuss the techniques necessary for end-to-end learning of
quantized representations (Section 3.3), as well as lossy compression
schemes that attempt to bypass quantization (Section 3.4). We then
explore additional desiderata, such as the perceptual quality of recon-
structions (Section 3.5), and the usefulness of learned representations for
downstream tasks (Section 3.6), before briefly reviewing video compres-
sion (Section 3.7). Finally, we conclude in Section 4 with the challenges
and open problems in neural compression that may drive its future
advances.
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