
Tutorial on Diffusion
Models for Imaging and

Vision

Full text available at: http://dx.doi.org/10.1561/0600000112

Other titles in Foundations and Trends® in Computer Graphics and
Vision

Beyond Fairness in Computer Vision: A Holistic Approach to Mitigating
Harms and Fostering Community-Rooted Computer Vision Research
Timnit Gebru and Remi Denton
ISBN: 978-1-63828-354-6

Computational Imaging Through Atmospheric Turbulence
Stanley H. Chan and Nicholas Chimitt
ISBN: 978-1-63828-999-9

Towards Better User Studies in Computer Graphics and Vision
Zoya Bylinskii, Laura Herman, Aaron Hertzmann, Stefanie Hutka
and Yile Zhang
ISBN: 978-1-63828-172-6

An Introduction to Neural Data Compression
Yibo Yang, Stephan Mandt and Lucas Theis
ISBN: 978-1-63828-174-0

Learning-based Visual Compression
Ruolei Ji and Lina J. Karam
ISBN: 978-1-63828-112-2

Vision-Language Pre-Training: Basics, Recent Advances,
and Future Trends
Zhe Gan, Linjie Li, Chunyuan Li, Lijuan Wang, Zicheng Liu
and Jianfeng Gao
ISBN: 978-1-63828-132-0

Full text available at: http://dx.doi.org/10.1561/0600000112

Tutorial on Diffusion Models for
Imaging and Vision

Stanley Chan
Purdue University

stanchan@purdue.edu

Boston — Delft

Full text available at: http://dx.doi.org/10.1561/0600000112

Foundations and Trends® in Computer Graphics and
Vision

Published, sold and distributed by:
now Publishers Inc.
PO Box 1024
Hanover, MA 02339
United States
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

The preferred citation for this publication is

S. Chan. Tutorial on Diffusion Models for Imaging and Vision. Foundations and
Trends® in Computer Graphics and Vision, vol. 16, no. 4, pp. 322–471, 2024.

ISBN: 978-1-63828-433-8
© 2025 S. Chan

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, mechanical, photocopying, recording or otherwise,
without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Center, Inc., 222
Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for internal or personal
use, or the internal or personal use of specific clients, is granted by now Publishers Inc for users
registered with the Copyright Clearance Center (CCC). The ‘services’ for users can be found on
the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system of payment
has been arranged. Authorization does not extend to other kinds of copying, such as that for
general distribution, for advertising or promotional purposes, for creating new collective works,
or for resale. In the rest of the world: Permission to photocopy must be obtained from the
copyright owner. Please apply to now Publishers Inc., PO Box 1024, Hanover, MA 02339, USA;
Tel. +1 781 871 0245; www.nowpublishers.com; sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to now
Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com; e-mail:
sales@nowpublishers.com

Full text available at: http://dx.doi.org/10.1561/0600000112

Foundations and Trends® in Computer Graphics
and Vision

Volume 16, Issue 4, 2024
Editorial Board

Editor-in-Chief
Aaron Hertzmann
Adobe Research

Editors

Marc Alexa
TU Berlin

Kavita Bala
Cornell

Ronen Basri
Weizmann Institute of
Science

Peter Belhumeur
Columbia

Andrew Blake
Microsoft Research

Chris Bregler
Facebook-Oculus

Joachim Buhmann
ETH Zurich

Michael Cohen
Facebook

Brian Curless
University of Washington

Paul Debevec
USC Institute for Creative
Technologies

Julie Dorsey
Yale

Fredo Durand
MIT

Olivier Faugeras
INRIA

Rob Fergus
NYU

William T. Freeman
MIT

Mike Gleicher
University of Wisconsin

Richard Hartley
Australian National
University

Hugues Hoppe
Microsoft Research

C. Karen Liu
Stanford

David Lowe
University of British
Columbia

Jitendra Malik
Berkeley

Steve Marschner
Cornell

Shree Nayar
Columbia

Tomas Pajdla
Czech Technical University

Pietro Perona
California Institute of
Technology

Marc Pollefeys
ETH Zurich

Jean Ponce
Ecole Normale Superieure

Long Quan
HKUST

Cordelia Schmid
INRIA

Steve Seitz
University of Washington

Amnon Shashua
Hebrew University

Peter Shirley
University of Utah

Noah Snavely
Cornell

Stefano Soatto
UCLA

Richard Szeliski
Microsoft Research

Luc Van Gool
KU Leuven and ETH Zurich

Joachim Weickert
Saarland University

Song Chun Zhu
UCLA

Andrew Zisserman
Oxford

Full text available at: http://dx.doi.org/10.1561/0600000112

Editorial Scope
Foundations and Trends® in Computer Graphics and Vision publishes survey
and tutorial articles in the following topics:

• Rendering

• Shape

• Mesh simplification

• Animation

• Sensors and sensing

• Image restoration and enhance-
ment

• Segmentation and grouping

• Feature detection and selection

• Color processing

• Texture analysis and synthesis

• Illumination and reflectance
modeling

• Shape representation

• Tracking

• Calibration

• Structure from motion

• Motion estimation and registra-
tion

• Stereo matching and reconstruc-
tion

• 3D reconstruction and image-
based modeling

• Learning and statistical meth-
ods

• Appearance-based matching

• Object and scene recognition

• Face detection and recognition

• Activity and gesture recognition

• Image and video retrieval

• Video analysis and event recog-
nition

• Medical image analysis

• Robot localization and naviga-
tion

Information for Librarians

Foundations and Trends® in Computer Graphics and Vision, 2024,
Volume 16, 4 issues. ISSN paper version 1572-2740. ISSN online version
1572-2759. Also available as a combined paper and online subscription.

Full text available at: http://dx.doi.org/10.1561/0600000112

Contents

1 Variational Auto-Encoder (VAE) 2
1.1 Building Blocks of VAE 2
1.2 Evidence Lower Bound 9
1.3 Optimization in VAE . 16
1.4 Concluding Remark . 27

2 Denoising Diffusion Probabilistic Model (DDPM) 28
2.1 Building Blocks . 31
2.2 Evidence Lower Bound 40
2.3 Distribution of the Reverse Process 48
2.4 Training and Inference . 54
2.5 Predicting Noise . 61
2.6 Denoising Diffusion Implicit Model (DDIM) 63
2.7 Concluding Remark . 70

3 Score-Matching Langevin Dynamics (SMLD) 71
3.1 Sampling from a Distribution 71
3.2 (Stein’s) Score Function 78
3.3 Score Matching Techniques 80
3.4 Concluding Remark . 87

Full text available at: http://dx.doi.org/10.1561/0600000112

4 Stochastic Differential Equation (SDE) 88
4.1 From Iterative Algorithms to Ordinary Differential

Equations . 88
4.2 What is an SDE? . 92
4.3 Stochastic Differential Equation for DDPM and SMLD . . 95
4.4 Numerical Solvers for ODE and SDE 103
4.5 Concluding Remark . 106

5 Langevin and Fokker-Planck Equations 108
5.1 Brownian Motion . 109
5.2 Masters Equation . 120
5.3 Kramers-Moyal Expansion 127
5.4 Fokker-Planck Equation 132
5.5 Concluding Remark . 141

6 Conclusion 142

Acknowledgements 144

References 145

Full text available at: http://dx.doi.org/10.1561/0600000112

Tutorial on Diffusion Models for
Imaging and Vision
Stanley Chan

School of Electrical and Computer Engineering, Purdue University,
USA; stanchan@purdue.edu

ABSTRACT

The astonishing growth of generative tools in recent years
has empowered many exciting applications in text-to-image
generation and text-to-video generation. The underlying
principle behind these generative tools is the concept of dif-
fusion, a particular sampling mechanism that has overcome
some longstanding shortcomings in previous approaches.
The goal of this tutorial is to discuss the essential ideas
underlying these diffusion models. The target audience of
this tutorial includes undergraduate and graduate students
who are interested in doing research on diffusion models or
applying these tools to solve other problems.

Stanley Chan (2024), “Tutorial on Diffusion Models for Imaging and Vision”, Foun-
dations and Trends® in Computer Graphics and Vision: Vol. 16, No. 4, pp 322–471.
DOI: 10.1561/0600000112.

Full text available at: http://dx.doi.org/10.1561/0600000112

1
Variational Auto-Encoder (VAE)

A long time ago, in a galaxy far far away, we wanted to build a generator—
a generator that generates texts, speeches, or images from some inputs
with which we give to the computer. While this may sound magical at
first, the problem has actually been studied for a long time. To kick off
the discussion of this tutorial, we shall first consider the variational
autoencoder (VAE). VAE was proposed by Kingma and Welling in
2014 [24]. According to their 2019 tutorial [23], the VAE was inspired
by the Helmholtz Machine [10] as the marriage of graphical models
and deep learning. In what follows, we will discuss VAE’s problem
setting, its building blocks, and the optimization tools associated with
the training.

1.1 Building Blocks of VAE

We start by discussing the schematic diagram of a VAE. As shown in the
figure below, the VAE consists of a pair of models (often realized by deep
neural networks). The one located near the input is called an encoder
whereas the one located near the output is called a decoder. We denote
the input (typically an image) as a vector x, and the output (typically
another image) as a vector x̂. The vector located in the middle between

2

Full text available at: http://dx.doi.org/10.1561/0600000112

1.1. Building Blocks of VAE 3

the encoder and the decoder is called a latent variable, denoted as
z. The job of the encoder is to extract a meaningful representation for
x, whereas the job of the decoder is to generate a new image from the
latent variable z (Figure 1.1).

Figure 1.1: A variational autoencoder consists of an encoder that converts an input
x to a latent variable z, and a decoder that synthesizes an output x̂ from the latent
variable.

The latent variable z has two special roles in this setup. With respect
to the input, the latent variable encapsulates the information that can
be used to describe x. The encoding procedure could be a lossy process,
but our goal is to preserve the important content of x as much as we
can. With respect to the output, the latent variable serves as the “seed”
from which an image x̂ can be generated. Two different z’s should in
theory give us two different generated images.

A slightly more formal definition of a latent variable is given below.

Definition 1.1 (Latent Variables [23]). In a probabilistic model,
latent variables z are variables that we do not observe and hence
are not part of the training dataset, although they are part of the
model.

Example 1.1. Getting a latent representation of an image is not an
alien thing. Back in the time of JPEG compression (which is arguably a
dinosaur), we used discrete cosine transform (DCT) basis functions ϕn
to encode the underlying image/patches of an image. The coefficient
vector z = [z1, . . . , zN]T is obtained by projecting the image x onto the
space spanned by the basis, via zn = 〈ϕn,x〉. So, given an image x,
we can produce a coefficient vector z. From z, we can use the inverse
transform to recover (i.e., decode) the image (Figure 1.2).

Full text available at: http://dx.doi.org/10.1561/0600000112

4 Variational Auto-Encoder (VAE)

Figure 1.2: In discrete cosine transform (DCT), we can think of the encoder as
taking an image x and generating a latent variable z by projecting x onto the basis
functions.

In this example, the coefficient vector z is the latent variable. The
encoder is the DCT transform, and the decoder is the inverse DCT
transform.

The term “variational” in VAE is related to the subject of calculus
of variations which studies optimization over functions. In VAE, we
are interested in searching for the optimal probability distributions to
describe x and z. In light of this, we need to consider a few distributions:

• p(x): The true distribution of x. It is never known. The whole
universe of diffusion models is to find ways to draw samples from
p(x). If we knew p(x) (say, we have a formula that describes p(x)),
we can just draw a sample x that maximizes log p(x).

• p(z): The distribution of the latent variable. Typically, we make
it a zero-mean unit-variance Gaussian N (0, I). One reason is that
linear transformation of a Gaussian remains a Gaussian, and so
this makes the data processing easier. Doersch [12] also has an
excellent explanation. It was mentioned that any distribution can
be generated by mapping a Gaussian through a sufficiently compli-
cated function. For example, in a one-variable setting, the inverse
cumulative distribution function (CDF) technique [7, Chapter 4]
can be used for any continuous distribution with an invertible
CDF. In general, as long as we have a sufficiently powerful func-
tion (e.g., a neural network), we can learn it and map the i.i.d.
Gaussian to whatever latent variable needed for our problem.

• p(z|x): The conditional distribution associated with the encoder,
which tells us the likelihood of z when given x. We have no access

Full text available at: http://dx.doi.org/10.1561/0600000112

1.1. Building Blocks of VAE 5

to it. p(z|x) itself is not the encoder, but the encoder has to do
something so that it will behave consistently with p(z|x).

• p(x|z): The conditional distribution associated with the decoder,
which tells us the posterior probability of getting x given z. Again,
we have no access to it.

When we switch from the classical parameteric models to deep
neural networks, the notion of latent variables is changed to deep latent
variables. Kingma and Welling [23] gave a good definition below.

Definition 1.2 (Deep Latent Variables [23]). Deep Latent Variables
are latent variables whose distributions p(z), p(x|z), or p(z|x) are
parameterized by a neural network.

The advantage of deep latent variables is that they can model very
complex data distributions p(x) even though the structures of the prior
distributions and the conditional distributions are relatively simple (e.g.,
Gaussian). One way to think about this is that the neural networks can
be used to estimate the mean of a Gaussian. Although the Gaussian
itself is simple, the mean is a function of the input data, which passes
through a neural network to generate a data-dependent mean. So the
expressiveness of the Gaussian is significantly improved.

Let’s go back to the four distributions above. Here is a somewhat
trivial but educational example that can illustrate the idea:

Example 1.2. Consider a random variable X distributed according to a
Gaussian mixture model with a latent variable z ∈ {1, . . . ,K} denoting
the cluster identity such that pZ(k) = P[Z = k] = πk for k = 1, . . . ,K.
We assume

∑K
k=1 πk = 1. Then, if we are told that we need to look at

the k-th cluster only, the conditional distribution of X given Z is

pX|Z(x|k) = N (x |µk, σ2
kI).

The marginal distribution of x can be found using the law of total
probability, giving us

pX(x) =
K∑
k=1

pX|Z(x|k)pZ(k) =
K∑
k=1

πkN (x |µk, σ2
kI). (1.1)

Full text available at: http://dx.doi.org/10.1561/0600000112

6 Variational Auto-Encoder (VAE)

Therefore, if we start with pX(x), the design question for the encoder is
to build a magical encoder such that for every sample x ∼ pX(x), the
latent code will be z ∈ {1, . . . ,K} with a distribution z ∼ pZ(k).

To illustrate how the encoder and decoder work, let’s assume that
the mean and variance are known and are fixed. Otherwise we will need
to estimate the mean and variance through an expectation-maximization
(EM) algorithm. It is doable, but the tedious equations will defeat the
educational purpose of this illustration.

Encoder: How do we obtain z from x? This is easy because at the
encoder, we know pX(x) and pZ(k). Imagine that you only have two
class z ∈ {1, 2}. Effectively you are just making a binary decision of
where the sample x should belong to. There are many ways you can do
the binary decision. If you like the maximum-a-posteriori decision rule,
you can check

pZ|X(1|x) ≷class 1
class 2 pZ|X(2|x),

and this will return you a simple decision: You give us x, we tell you
z ∈ {1, 2}.

Decoder: On the decoder side, if we are given a latent code z ∈
{1, . . . ,K}, the magical decoder just needs to return us a sample x
which is drawn from pX|Z(x|k) = N (x |µk, σ2

kI). A different z will give
us one of the K mixture components. If we have enough samples, the
overall distribution will follow the Gaussian mixture.

This example is certainly oversimplified because real-world problems
can be much harder than a Gaussian mixture model with known means
and known variances. But one thing we realize is that if we want to
find the magical encoder and decoder, we must have a way to find the
two conditional distributions p(z|x) and p(x|z). However, they are both
high-dimensional.

In order for us to say something more meaningful, we need to impose
additional structures so that we can generalize the concept to harder
problems. To this end, we consider the following two proxy distributions:

• qφ(z|x): The proxy for p(z|x), which is also the distribution as-
sociated with the encoder. qφ(z|x) can be any directed graphical
model and it can be parameterized using deep neural networks

Full text available at: http://dx.doi.org/10.1561/0600000112

1.1. Building Blocks of VAE 7

[23, Section 2.1]. For example, we can define

(µ,σ2) = EncoderNetworkφ(x),
qφ(z|x) = N (z | µ,diag(σ2)). (1.2)

This model is a widely used because of its tractability and com-
putational efficiency.

• pθ(x|z): The proxy for p(x|z), which is also the distribution as-
sociated with the decoder. Like the encoder, the decoder can be
parameterized by a deep neural network. For example, we can
define

fθ(z) = DecoderNetworkθ(z),
pθ(x|z) = N (x | fθ(z), σ2

decI), (1.3)

where σdec is a hyperparameter that can be pre-determined or it
can be learned.

The relationship between the input x and the latent z, as well as
the conditional distributions, are summarized in Figure 1.3. There are
two nodes x and z. The “forward” relationship is specified by p(z|x)
(and approximated by qφ(z|x)), whereas the “reverse” relationship is
specified by p(x|z) (and approximated by pθ(x|z)).

Figure 1.3: In a variational autoencoder, the variables x and z are connected by
the conditional distributions p(x|z) and p(z|x). To make things work, we introduce
proxy distributions pθ(x|z) and qφ(z|x).

Example 1.3. Suppose that we have a random variable x ∈ Rd and a
latent variable z ∈ Rd such that

x ∼ p(x) = N (x |µ, σ2I),
z ∼ p(z) = N (z | 0, I).

Full text available at: http://dx.doi.org/10.1561/0600000112

8 Variational Auto-Encoder (VAE)

We want to construct a VAE. By this, we mean that we want to build two
mappings Encoder(·) and Decoder(·). The encoder will take a sample x
and map it to the latent variable z, whereas the decoder will take the
latent variable z and map it to the generated variable x̂. If we knew
what p(x) is, then there is a trivial solution where z = (x− µ)/σ and
x̂ = µ+ σz. In this case, the true distributions can be determined and
they can be expressed in terms of delta functions:

p(x|z) = δ(x− (σz + µ)),
p(z|x) = δ(z− (x− µ)/σ).

Suppose now that we do not know p(x) so we need to build an
encoder and a decoder to estimate z and x̂. Let’s first define the encoder.
Our encoder in this example takes the input x and generates a pair
of parameters µ̂(x) and σ̂(x)2, denoting the parameters of a Gaussian.
Then, we define qφ(z|x) as a Gaussian:

(µ̂(x), σ̂(x)2) = Encoderφ(x),
qφ(z|x) = N (z | µ̂(x), σ̂(x)2I).

For the purpose of discussion, we assume that µ̂ is an affine function of
x such that µ̂(x) = ax + b for some parameters a and b. Similarly, we
assume that σ̂(x)2 = t2 for some scalar t. This will give us

qφ(z|x) = N (z | ax + b, t2I).

For the decoder, we deploy a similar structure by considering

(µ̃(z), σ̃(z)2) = Decoderθ(z),
pθ(x|z) = N (x | µ̃(z), σ̃(z)2I).

Again, for the purpose of discussion, we assume that µ̃ is affine so that
µ̃(z) = cz + v for some parameters c and v and σ̃(z)2 = s2 for some
scalar s. Therefore, pθ(x|z) takes the form of:

pθ(x|z) = N (z | cx + v, s2I).

We will discuss how to determine the parameters later.

Full text available at: http://dx.doi.org/10.1561/0600000112

1.2. Evidence Lower Bound 9

1.2 Evidence Lower Bound

How do we use these two proxy distributions to achieve our goal of
determining the encoder and the decoder? If we treat φ and θ as
optimization variables, then we need an objective function (or the loss
function) so that we can optimize φ and θ through training samples.
The loss function we use here is called the Evidence Lower BOund
(ELBO) [23]:

Definition 1.3 (Evidence Lower Bound). The Evidence Lower Bound
is defined as

ELBO(x) def= Eqφ(z|x)

[
log p(x, z)

qφ(z|x)

]
. (1.4)

You are certainly puzzled how on the Earth people can come up
with this loss function!? Let’s see what ELBO means and how it is
derived.

In a nutshell, ELBO is a lower bound for the prior distribution
log p(x) because we can show that

log p(x) = some magical steps to be derived

= Eqφ(z|x)

[
log p(x, z)

qφ(z|x)

]
+ DKL(qφ(z|x)‖p(z|x)) (1.5)

≥ Eqφ(z|x)

[
log p(x, z)

qφ(z|x)

]
def= ELBO(x),

where the inequality follows from the fact that the KL divergence
is always non-negative. Therefore, ELBO is a valid lower bound for
log p(x). Since we never have access to log p(x), if we somehow have
access to ELBO and if ELBO is a good lower bound, then we can
effectively maximize ELBO to achieve the goal of maximizing log p(x)
which is the gold standard. Now, the question is how good the lower
bound is. As you can see from the equation and also Figure 1.4, the
inequality will become an equality when our proxy qφ(z|x) can match

Full text available at: http://dx.doi.org/10.1561/0600000112

10 Variational Auto-Encoder (VAE)

Figure 1.4: Visualization of log p(x) and ELBO. The gap between the two is
determined by the KL divergence DKL(qφ(z|x)‖p(z|x)).

the true distribution p(z|x) exactly. So, part of the game is to ensure
qφ(z|x) is close to p(z|x).

The derivation of Equation (1.5) is as follows.

Theorem 1.1 (Decomposition of Log-Likelihood). The log likelihood
log p(x) can be decomposed as

log p(x) = Eqφ(z|x)

[
log p(x, z)

qφ(z|x)

]
︸ ︷︷ ︸

def=ELBO(x)

+ DKL(qφ(z|x)‖p(z|x)). (1.6)

Proof. The trick is to use our magical proxy qφ(z|x) to poke around
p(x) and derive the bound.

log p(x) = log p(x)×
∫
qφ(z|x)dz︸ ︷︷ ︸

=1

multiply 1

=
∫

log p(x)︸ ︷︷ ︸
some constant wrt z

× qφ(z|x)︸ ︷︷ ︸
distribution in z

dz

move log p(x) into integral
= Eqφ(z|x)[log p(x)], (1.7)

where the last equality is the fact that
∫
a× pZ(z)dz = E[a] = a for any

random variable Z and a scalar a.

Full text available at: http://dx.doi.org/10.1561/0600000112

1.2. Evidence Lower Bound 11

See, we have already got Eqφ(z|x)[·]. Just a few more steps. Let’s use
Bayes theorem which states that p(x, z) = p(z|x)p(x):

Eqφ(z|x)[log p(x)] = Eqφ(z|x)

[
log p(x, z)

p(z|x)

]
(Bayes Theorem)

= Eqφ(z|x)

[
log p(x, z)

p(z|x) ×
qφ(z|x)
qφ(z|x)

]
(Multiply and divide qφ(z|x))

= Eqφ(z|x)

[
log p(x, z)

qφ(z|x)

]
︸ ︷︷ ︸

ELBO

+ Eqφ(z|x)

[
log qφ(z|x)

p(z|x)

]
︸ ︷︷ ︸

DKL(qφ(z|x)‖p(z|x))

,

(1.8)

where we recognize that the first term is exactly ELBO, whereas the
second term is exactly the KL divergence. Comparing Equation (1.8)
with Equation (1.5), we complete the proof.

Example 1.4. Using the previous example, we can minimize the gap
between log p(x) and ELBO(x) if we knew p(z|x). To see that, we note
that log p(x) is

log p(x) = ELBO(x) + DKL(qφ(z|x)‖p(z|x)) ≥ ELBO(x).

The equality holds if and only if the KL-divergence term is zero. For
the KL divergence to be zero, it is necessary that qφ(z|x) = p(z|x).
However, since p(z|x) is a delta function, the only possibility is to have

qφ(z|x) = N
(

z
∣∣∣ x− µ

σ
, 0

)
= δ

(
z− x− µ

σ

)
, (1.9)

i.e., we set the standard deviation to be t = 0. To determine pθ(x|z),
we need some additional steps to simplify ELBO.

We now have ELBO. But this ELBO is still not too useful because
it involves p(x, z), something we have no access to. So, we need to do a
little more work.

Full text available at: http://dx.doi.org/10.1561/0600000112

12 Variational Auto-Encoder (VAE)

Theorem 1.2 (Interpretation of ELBO). ELBO can be decomposed
as

ELBO(x) = Eqφ(z|x)[log
a Gaussian︷ ︸︸ ︷
pθ(x|z)]︸ ︷︷ ︸

how good your decoder is

− DKL
(a Gaussian︷ ︸︸ ︷
qφ(z|x) ‖

a Gaussian︷︸︸︷
p(z)

)
︸ ︷︷ ︸

how good your encoder is

.

(1.10)

Proof. Let’s take a closer look at ELBO

ELBO(x) def= Eqφ(z|x)

[
log p(x, z)

qφ(z|x)

]
(definition)

= Eqφ(z|x)

[
log p(x|z)p(z)

qφ(z|x)

]
p(x, z) = p(x|z)p(z)

= Eqφ(z|x) [log p(x|z)] + Eqφ(z|x)

[
log p(z)

qφ(z|x)

]
(split expectation)

= Eqφ(z|x) [log pθ(x|z)]− DKL(qφ(z|x)‖p(z)),

(definition of KL)

where we replaced the inaccessible p(x|z) by its proxy pθ(x|z).

This is a beautiful result. We just showed something very easy to
understand. Let’s look at the two terms in Equation (1.10):

• Reconstruction. The first term is about the decoder. We want
the decoder to produce a good image x if we feed a latent z into
the decoder (of course!!). So, we want to maximize log pθ(x|z).
It is similar to maximum likelihood where we want to find the
model parameter to maximize the likelihood of observing the
image. The expectation here is taken with respect to the samples
z (conditioned on x). This shouldn’t be a surprise because the
samples z are used to assess the quality of the decoder. It cannot
be an arbitrary noise vector but a meaningful latent vector. So, z
needs to be sampled from qφ(z|x).

Full text available at: http://dx.doi.org/10.1561/0600000112

1.2. Evidence Lower Bound 13

• Prior Matching. The second term is the KL divergence for the
encoder. We want the encoder to turn x into a latent vector z
such that the latent vector will follow our choice of distribution,
e.g., z ∼ N (0, I). To be slightly more general, we write p(z) as the
target distribution. Because the KL divergence is a distance (which
increases when the two distributions become more dissimilar), we
need to put a negative sign in front so that it increases when the
two distributions become more similar.

Example 1.5. Following up on the previous example, we continue to
assume that we knew p(z|x). Then the reconstruction term in ELBO
will give us

Eqφ(z|x)[log pθ(x|z)] = Eqφ(z|x)[logN (x | cz + v, s2I)]

= Eqφ(z|x)

[
−1

2 log 2π − log s− ‖x− (cz + v)‖2

2s2

]

= −1
2 log 2π − log s− c2

2s2 Eqφ(z|x)

[∥∥∥∥z− x− v
c

∥∥∥∥2
]

= −1
2 log 2π − log s− c2

2s2 Eδ(z−x−µ
σ)

[∥∥∥∥z−x− v
c

∥∥∥∥2
]

= −1
2 log 2π − log s− c2

2s2

[∥∥∥∥x− µ
σ
− x− v

c

∥∥∥∥2
]

≤ −1
2 log 2π − log s,

where the upper bound is tight if and only if the norm-square term is
zero, which holds when v = µ and c = σ. For the remaining terms, it
is clear that − log s is a monotonically decreasing function in s with
− log s → ∞ as s → 0. Therefore, when v = µ and c = σ, it follows
that Eqφ(z|x)[log pθ(x|z)] is maximized when s = 0. This implies that

pθ(x|z) = N (x | σz + µ, 0)
= δ(x− (σz + µ)). (1.11)

Limitation of ELBO. ELBO is practically useful, but it is not
the same as the true likelihood log p(x). As we mentioned, ELBO is

Full text available at: http://dx.doi.org/10.1561/0600000112

14 Variational Auto-Encoder (VAE)

exactly equal to log p(x) if and only if DKL(qφ(z|x)‖p(z|x)) = 0 which
happens when qφ(z|x) = p(z|x). In the following example, we will show
a case where the qφ(z|x) obtained from maximizing ELBO is not the
same as p(z|x).

Example 1.6 (Limitation of ELBO). In the previous example, if we have
no idea about p(z|x), we need to train the VAE by maximizing ELBO.
However, since ELBO is only a lower bound of the true distribution
log p(x), maximizing ELBO will not return us the delta functions as we
hope. Instead, we will obtain something that is quite meaningful but
not exactly the delta functions.

For simplicity, let’s consider the distributions that will return us
unbiased estimates of the mean but with unknown variances:

qφ(z|x) = N
(

z
∣∣∣ x− µ

σ
, t2I

)
,

pθ(x|z) = N
(
x
∣∣∣ σz + µ, s2I

)
.

This is partially “cheating” because in theory we should not assume
anything about the estimates of the means. But from an intuitive angle,
since qφ(z|x) and pθ(x|z) are proxies to p(z|x) and p(x|z), they must
resemble some properties of the delta functions. The closest choice is
to define qφ(z|x) and pθ(x|z) as Gaussians with means consistent with
those of the two delta functions. The variances are unknown, and they
are the subject of interest in this example.

Our focus here is to maximize ELBO which consists of the prior
matching term and the reconstruction term. For the prior matching
error, we want to minimize the KL-divergence:

DKL(qφ(z|x)‖p(z)) = DKL

(
N
(

z
∣∣∣ x− µ

σ
, t2I

) ∥∥∥ N (z | 0, I)
)
.

The KL-divergence of two multivariate Gaussians N (z|µ0,Σ0) and
N (z|µ1,Σ1) has a closed form expression which can be found in
Wikipedia:

DKL(N (µ0,Σ0)‖N (µ1,Σ1))

= 1
2

(
Tr(Σ−1

1 Σ0)− d+ (µ1 − µ0)TΣ−1
1 (µ1 − µ0) + log detΣ1

detΣ0

)
.

Full text available at: http://dx.doi.org/10.1561/0600000112

1.2. Evidence Lower Bound 15

Using this result (and with some algebra), we can show that

DKL

(
N
(

z
∣∣∣ x− µ

σ
, t2I
) ∥∥∥ N (z | 0, I)

)
= 1

2

[
t2d− d+

∥∥∥x− µ
σ

∥∥∥2
− 2 d log t

]
,

where d is the dimension of x and z. To minimize the KL-divergence,
we take derivative with respect to t and show that

∂

∂t

{
1
2

[
t2d− d+

∥∥∥∥x− µ
σ

∥∥∥∥2
− 2 log t

]}
= t · d− d

t
.

Setting this to zero will give us t = 1√
d
. Therefore, we can show that

qφ(z|x) = N
(

z
∣∣∣ x− µ

σ
, I
)
.

For the reconstruction term, we can show that

Eqφ(z|x)[log pθ(x|z)] = Eqφ(z|x)

[
log 1

(
√

2πs2)d
exp

{
−‖x− (σz + µ)‖2

2s2

}]

= Eqφ(z|x)

[
−d2 log 2π − d log s− ‖x− (σz + µ)‖2

2s2

]

= −d2 log 2π − d log s− σ2

2s2 Eqφ(z|x)

[∥∥∥∥z− x− µ
σ

∥∥∥∥2
]

= −d2 log 2π − d log s− σ2

2s2

× Trace
{
Eqφ(z|x)

[(
z− x− µ

σ

)(
z− x− µ

σ

)T]}

= −d2 log 2π − d log s− σ2

2s2 · d,

because the covariance of z ∼ qφ(z|x) is I and so the trace will give us
1. Taking derivatives with respect to s will give us

d

ds

{
−d2 log 2π − d log s− σ2

2s2

}
= −d

s
+ dσ2

s3 = 0.

Equating this to zero will give us s = σ. Therefore,

pθ(x|z) = N
(
x | σz + µ, σ2I

)
.

Full text available at: http://dx.doi.org/10.1561/0600000112

16 Variational Auto-Encoder (VAE)

As we can see in this example and the previous example, while the
ideal distributions are delta functions, the proxy distributions we obtain
have a finite variance. This finite variance adds additional randomness
to the samples generated by the VAE. There is nothing wrong with
this VAE—we do it correctly by maximizing ELBO. It is just that
maximizing the ELBO is not the same as maximizing log p(x).

1.3 Optimization in VAE

In the previous two subsections we introduced the building blocks of
VAE and ELBO. The goal of this subsection is to discuss how to train
a VAE and how to do inference.

VAE is a model that aims to approximate the true distribution
p(x) so that we can draw samples. A VAE is parameterized by (φ,θ).
Therefore, training a VAE is equivalent to solving an optimization
problem that encapsulates the essence of p(x) while being tractable.
However, since p(x) is not accessible, the natural alternative is to
optimize the ELBO which is the lower bound of log p(x). That means,
the learning goal of VAE is to solve the following problem.

Definition 1.4. The optimization objective of VAE is to maximize
the ELBO:

(φ,θ) = argmax
φ,θ

∑
x∈X

ELBO(x), (1.12)

where X = {x(`) | ` = 1, . . . , L} is the training dataset.

Intractability of ELBO’s Gradient. The challenge associated
with the above optimization is that the gradient of ELBO with respect
to (φ,θ) is intractable. Since the majority of today’s neural network
optimizers use first order methods and backpropagate the gradient to
update the network weights, an intractable gradient will pose difficulties
in training the VAE.

Let’s elaborate more about the intractability of the gradient. We
first substitute Definition 1.3 into the above objective function. The

Full text available at: http://dx.doi.org/10.1561/0600000112

1.3. Optimization in VAE 17

gradient of ELBO is:1

∇θ,φ ELBO(x) = ∇θ,φ

{
Eqφ(z|x)

[
log pθ(x, z)

qφ(z|x)

]}
= ∇θ,φ

{
Eqφ(z|x)

[
log pθ(x, z)− log qφ(z|x)

]}
. (1.13)

The gradient contains two parameters. Let’s first look at θ. We can
show that

∇θ ELBO(x) = ∇θ
{

Eqφ(z|x)
[

log pθ(x, z)− log qφ(z|x)
]}

= ∇θ
{∫ [

log pθ(x, z)− log qφ(z|x)
]
· qφ(z|x)dz

}
=
∫
∇θ
{

log pθ(x, z)− log qφ(z|x)
}
· qφ(z|x) dz

= Eqφ(z|x)
[
∇θ
{

log pθ(x, z)− log qφ(z|x)
}]

= Eqφ(z|x)
[
∇θ
{

log pθ(x, z)
}]

≈ 1
L

L∑
`=1
∇θ
{

log pθ(x, z(`))
}
, where z(`) ∼ qφ(z|x),

(1.14)

where the last equality is the Monte Carlo approximation of the expec-
tation.

In the above equation, if pθ(x, z) is realized by a computable model
such as a neural network, then its gradient ∇θ{log pθ(x, z)} can be
computed via automatic differentiation. Thus, the maximization can be
achieved by backpropagating the gradient.

The gradient with respect to φ is more difficult. We can show that

∇φ ELBO(x) = ∇φ
{

Eqφ(z|x)
[

log pθ(x, z)− log qφ(z|x)
]}

= ∇φ
{∫ [

log pθ(x, z)− log qφ(z|x)
]
· qφ(z|x)dz

}
=
∫
∇φ
{

[log pθ(x, z)− log qφ(z|x)] · qφ(z|x)
}
dz

1The original definition of ELBO uses the true joint distribution p(x, z). In
practice, since p(x, z) is not accessible, we replace it with its proxy pθ(x, z) which is
a computable distribution.

Full text available at: http://dx.doi.org/10.1561/0600000112

18 Variational Auto-Encoder (VAE)

6=
∫
∇φ
{

log pθ(x, z)− log qφ(z|x)
}
· qφ(z|x) dz

= Eqφ(z|x)
[
∇φ
{

log pθ(x, z)− log qφ(z|x)
}]

= Eqφ(z|x)
[
∇φ
{
− log qφ(z|x)

}]
≈ 1
L

L∑
`=1
∇φ
{
− log qφ(z(`)|x)

}
, where z(`) ∼ qφ(z|x).

(1.15)

As we can see, even though we wish to maintain a similar structure
as we did for θ, the expectation and the gradient operators in the
above derivations cannot be switched. This forbids us from doing any
backpropagation of the gradient to maximize ELBO.

Reparameterization Trick. The intractability of ELBO’s gradient
is inherited from the fact that we need to draw samples z from a
distribution qφ(z|x) which itself is a function of φ. As noted by Kingma
and Welling [24], for continuous latent variables, it is possible to compute
an unbiased estimate of ∇θ,φ ELBO(x) so that we can approximately
calculate the gradient and hence maximize ELBO. The idea is employ
an technique known as the reparameterization trick [24].

Recall that the latent variable z is a sample drawn from the distri-
bution qφ(z|x). The idea of reparameterization trick is to express z as
some differentiable and invertible transformation of another random
variable ε whose distribution is independent of x and φ. That is, we
define a differentiable and invertible function g such that

z = g(ε,φ,x), (1.16)

for some random variable ε ∼ p(ε). To make our discussions easier, we
pose an additional requirement that

qφ(z|x) ·
∣∣∣∣det

(
∂z
∂ε

)∣∣∣∣ = p(ε), (1.17)

where ∂z
∂ε is the Jacobian, and det(·) is the matrix determinant. This

requirement is related to change of variables in multivariate calculus.
The following example will make it clear.

Full text available at: http://dx.doi.org/10.1561/0600000112

1.3. Optimization in VAE 19

Example 1.7. Suppose z ∼ qφ(z|x) def= N (z | µ, diag(σ2)). We can
define

z = g(ε,φ,x) def= ε� σ + µ, (1.18)
where ε ∼ N (0, I) and “�” means elementwise multiplication. The
parameter φ is φ = (µ,σ2). For this choice of the distribution, we can
show that by letting ε = z−µ

σ :

qφ(z|x) ·
∣∣∣∣det

(
∂z
∂ε

)∣∣∣∣ =
d∏
i=1

1√
2πσ2

i

exp
{
−(zi − µi)2

2σ2
i

}
·
d∏
i=1

σi

= 1
(
√

2π)d
exp

{
−‖ε‖

2

2

}
= N (0, I) = p(ε).

With this re-parameterization of z by expressing it in terms of ε,
we can look at ∇φEqφ(z|x)[f(z)] for some general function f(z). (Later
we will consider f(z) = − log qφ(z|x).) For notational simplicity, we
write g(ε) instead of g(ε,φ,x) although we understand that g has three
inputs. By change of variables, we can show that

Eqφ(z|x)[f(z)] =
∫
f(z) · qφ(z|x) dz

=
∫
f(g(ε)) · qφ(g(ε)|x) dg(ε), let z = g(ε)

=
∫
f
(
g(ε)

)
· qφ(g(ε)|x) ·

∣∣∣∣det
(
∂g(ε)
∂ε

)∣∣∣∣ dε
(Jacobian due to change of variable)

=
∫
f(z) · p(ε) dε (use Equation (1.17))

= Ep(ε) [f(z)] . (1.19)

So, if we want to take the gradient with respect to φ, we can show that

∇φEqφ(z|x)[f(z)] = ∇φEp(ε) [f(z)] = ∇φ
{∫

f(z) · p(ε) dε
}

=
∫
∇φ {f(z) · p(ε)} dε

=
∫
{∇φf(z)} · p(ε) dε

= Ep(ε) [∇φf(z)] , (1.20)

Full text available at: http://dx.doi.org/10.1561/0600000112

20 Variational Auto-Encoder (VAE)

which can be approximated by Monte Carlo. Substituting f(z) =
− log qφ(z|x), we can show that

∇φEqφ(z|x)[− log qφ(z|x)] = Ep(ε) [−∇φ log qφ(z|x)]

≈ − 1
L

L∑
`=1
∇φ log qφ(z(`)|x),

where z(`) = g(ε(`),φ,x)

= − 1
L

L∑
`=1
∇φ

[
log p(ε(`))− log

∣∣∣∣∣det ∂z(`)

∂ε(`)

∣∣∣∣∣
]

= 1
L

L∑
`=1
∇φ

[
log

∣∣∣∣∣det ∂z(`)

∂ε(`)

∣∣∣∣∣
]
.

So, as long as the determinant is differentiable with respect to φ, the
Monte Carlo approximation can be numerically computed.

Example 1.8. Suppose that the parameters and the distribution qφ are
defined as follows:

(µ,σ2) = EncoderNetworkφ(x)
qφ(z|x) = N (z | µ,diag(σ2)).

We can define z = µ+σ� ε, with ε ∼ N (0, I). Then, we can show that

log
∣∣∣∣det ∂z

∂ε

∣∣∣∣ = log
∣∣∣∣det(∂(µ+ σ � ε)

∂ε

)∣∣∣∣
= log |det(diag {σ})|

= log
d∏
i=1

σi =
d∑
i=1

log σi.

Therefore, we can show that

∇φEqφ(z|x)[− log qφ(z|x)] ≈ 1
L

L∑
`=1
∇φ

[
log

∣∣∣∣∣det ∂z(`)

∂ε(`)

∣∣∣∣∣
]

= 1
L

L∑
`=1
∇φ

[
d∑
i=1

log σi

]

Full text available at: http://dx.doi.org/10.1561/0600000112

1.3. Optimization in VAE 21

= ∇φ

[
d∑
i=1

log σi

]

= 1
σ
�∇φ

{
σφ(x)

}
,

where we emphasize that σφ(x) is the output of the encoder which is a
neural network.

As we can see in the above example, for some specific choices of the
distributions (e.g., Gaussian), the gradient of ELBO can be significantly
easier to derive.

VAE Encoder. After discussing the reparameterizing trick, we can
now discuss the specific structure of the encoder in VAE. To make
our discussions focused, we assume a relatively common choice of the
encoder:

(µ, σ2) = EncoderNetworkφ(x)
qφ(z|x) = N (z | µ, σ2I).

The parameters µ and σ are technically neural networks because they
are the outputs of EncoderNetworkφ(·). Therefore, it will be helpful if
we denote them as

µ = µφ︸︷︷︸
neural network

(x),

σ2 = σ2
φ︸︷︷︸

neural network

(x),

Our notation is slightly more complicated because we want to emphasize
that µ is a function of x; You give us an image x, our job is to return you
the parameters of the Gaussian (i.e., mean and variance). If you give us a
different x, then the parameters of the Gaussian should also be different.
The parameter φ specifies that µ is controlled (or parameterized) by φ.

Suppose that we are given the `-th training sample x(`). From this
x(`) we want to generate a latent variable z(`) which is a sample from
qφ(z|x). Because of the Gaussian structure, it is equivalent to say that

z(`) ∼ N
(
z
∣∣∣ µφ(x(`)), σ2

φ(x(`))I
)
. (1.21)

Full text available at: http://dx.doi.org/10.1561/0600000112

22 Variational Auto-Encoder (VAE)

The interesting thing about this equation is that we use a neural
network EncoderNetworkφ(·) to estimate the mean and variance of the
Gaussian. Then, from this Gaussian we draw a sample z(`), as illustrated
in Figure 1.5.

A more convenient way of expressing Equation (1.21) is to realize
that the sampling operation z ∼ N (µ, σ2I) can be done using the
reparameterization trick.

Reparameterization Trick for High-dimensional Gaussian:

z ∼ N (µ, σ2I) ⇐⇒ z = µ+ σε, ε ∼ N (0, I). (1.22)

Using the reparameterization trick, Equation (1.21) can be written
as

z(`) = µφ(x(`)) + σφ(x(`))ε, ε ∼ N (0, I).

Proof. We will prove a general case for an arbitrary covariance matrix
Σ instead of a diagonal matrix σ2I.

For any high-dimensional Gaussian z ∼ N (z|µ,Σ), the sampling
process can be done via the transformation of white noise

z = µ+ Σ
1
2 ε, (1.23)

where ε ∼ N (0, I). The half matrix Σ
1
2 can be obtained through eigen-

decomposition or Cholesky factorization. If Σ has an eigen-decomposition
Σ = USUT , then Σ

1
2 = US

1
2 UT . The square root of the eigen-

value matrix S is well-defined because Σ is a positive semi-definite
matrix.

Figure 1.5: Implementation of a VAE encoder. We use a neural network to take the
image x and estimate the mean µφ and variance σ2

φ of the Gaussian distribution.

Full text available at: http://dx.doi.org/10.1561/0600000112

1.3. Optimization in VAE 23

We can calculate the expectation and covariance of x:

E[z] = E[µ+ Σ
1
2 ε] = µ+ Σ

1
2 E[ε]︸︷︷︸

=0

= µ,

Cov(z) = E[(z− µ)(z− µ)T] = E
[
Σ

1
2 εεT (Σ

1
2)T
]

= Σ
1
2 E[εεT]︸ ︷︷ ︸

=I

(Σ
1
2)T = Σ.

Therefore, for diagonal matrices Σ = σ2I, the above is reduced to

z = µ+ σε, where ε ∼ N (0, I). (1.24)

Given the VAE encoder structure and qφ(z|x), we can go back to
ELBO. Recall that ELBO consists of the prior matching term and the
reconstruction term. The prior matching term is measured in terms of the
KL divergence DKL (qφ(z|x)‖p(z)). Let’s evaluate this KL divergence.

To evaluate the KL divergence, we (re)use a result which we sum-
marize below:

Theorem 1.3 (KL-Divergence of Two Gaussian). The KL diver-
gence for two d-dimensional Gaussian distributions N (µ0,Σ0) and
N (µ1,Σ1) is

DKL
(
N (µ0,Σ0) ‖ N (µ1,Σ1)

)
= 1

2
(
Tr(Σ−1

1 Σ0)− d+ (µ1 − µ0)TΣ−1
1 (µ1 − µ0)

quad+ log detΣ1
detΣ0

)
. (1.25)

Substituting our distributions by considering

µ0 = µφ(x), Σ0 = σ2
φ(x)I

µ1 = 0, Σ1 = I,

we can show that the KL divergence has an analytic expression

DKL
(
qφ(z|x) ‖ p(z)

)
= 1

2
(
σ2
φ(x)d− d+ ‖µφ(x)‖2 − 2d log σφ(x)

)
,

(1.26)

Full text available at: http://dx.doi.org/10.1561/0600000112

24 Variational Auto-Encoder (VAE)

where d is the dimension of the vector z. The gradient of the KL-
divergence with respect to φ does not have a closed form but they can
be calculated numerically:

∇φDKL
(
qφ(z|x) ‖ p(z)

)
= 1

2∇φ
(
σ2
φ(x)d−d+‖µφ(x)‖2−2d log σφ(x)

)
.

(1.27)
The gradient with respect to θ is zero because there is nothing dependent
on θ.

VAE Decoder. The decoder is implemented through a neural
network. For notation simplicity, let’s define it as DecoderNetworkθ(·)
where θ denotes the network parameters. The job of the decoder network
is to take a latent variable z and generate an image fθ(z):

fθ(z) = DecoderNetworkθ(z). (1.28)

The distribution pθ(x|z) can be defined as

pθ(x|z) = N (x | fθ(z), σ2
decI), for some hyperparameter σdec.

(1.29)
The interpretation of pθ(x|z) is that we estimate fθ(z) through a network
and put it as the mean of the Gaussian. If we draw a sample x from
pθ(x|z), then by the reparameterization trick we can write the generated
image x̂ as

x̂ = fθ(z) + σdecε, ε ∼ N (0, I).
Moreover, if we take the log of the likelihood, we can show that

log pθ(x|z) = logN (x | fθ(z), σ2
decI)

= log 1√
(2πσ2

dec)d
exp

{
−‖x− fθ(z)‖2

2σ2
dec

}

= −‖x− fθ(z)‖2

2σ2
dec

− log
√

(2πσ2
dec)d︸ ︷︷ ︸

independent of θ so we can drop it

. (1.30)

Going back to ELBO, we want to compute Eqφ(z|x)[log pθ(x|z)]. If
we straightly calculate the expectation, we will need to compute an
integration

Eqφ(z|x)[log pθ(x|z)]=
∫

log
[
N (x | fθ(z), σ2

decI)
]
· N (z | µφ(x), σ2

φ(x))dz

Full text available at: http://dx.doi.org/10.1561/0600000112

1.3. Optimization in VAE 25

=−
∫ ‖x− fθ(z)‖2

2σ2
dec

· N
(
z
∣∣∣ µφ(x), σ2

φ(x)
)
dz + C,

where the constant C coming out of the log of the Gaussian can be
dropped. By using the reparameterization trick, we write z = µφ(x) +
σφ(x)ε and substitute it into the above equation. This will give us2

Eqφ(z|x)[log pθ(x|z)] = −
∫ ‖x− fθ(z)‖2

2σ2
dec

· N
(
z
∣∣∣ µφ(x), σ2

φ(x)
)
dz

≈ − 1
M

M∑
m=1

‖x− fθ(z(m))‖2

2σ2
dec

(1.31)

= − 1
M

M∑
m=1

‖x− fθ
(
µφ(x) + σφ(x)ε(m)

)
‖2

2σ2
dec

.

The approximation above is due to Monte Carlo where the random-
ness is based on the sampling of the ε ∼ N (ε | 0, I). The index M

specifies the number of Monte Carlo samples we want to use to approx-
imate the expectation. Note that the input image x is fixed because
Eqφ(z|x)[log pθ(x|z)] is a function of x.

The gradient of Eqφ(z|x)[log pθ(x|z)] with respect to θ is relatively
easy to compute. Since only fθ depends on θ, we can do automatic
differentiation. The gradient with respect to φ is slightly harder, but
it is still computable because we use chain rule and go into µφ(x) and
φφ(x).

Inspecting Equation (1.31), we notice one interesting thing that the
loss function is simply the `2 norm between the reconstructed image
fθ(z) and the ground truth image x. This means that if we have the
generated image fθ(z), we can do a direct comparison with the ground
truth x via the usual `2 loss as illustrated in Figure 1.6.

Training the VAE. Given a training dataset X = {(x(`))}L`=1
of clean images, the training objective of VAE is to maximize the
ELBO

argmax
θ,φ

∑
x∈X

ELBOφ,θ(x),

2The negative sign here is not a mistake. We want to maximize
Eqφ(z|x)[log pθ(x|z)], which is equivalent to minimize the negative of the `2 norm.

Full text available at: http://dx.doi.org/10.1561/0600000112

26 Variational Auto-Encoder (VAE)

Figure 1.6: Implementation of a VAE decoder. We use a neural network to take
the latent vector z and generate an image fθ(z). The log likelihood will give us a
quadratic equation if we assume a Gaussian distribution.

where the summation is taken with respect to the entire training dataset.
The individual ELBO is based on the sum of the terms we derived
above

ELBOφ,θ(x) = Eqφ(z|x)[log pθ(x|z)]− DKL
(
qφ(z|x) ‖ p(z)

)
. (1.32)

Here, the reconstruction term is:

Eqφ(z|x)[log pθ(x|z)] ≈ − 1
M

M∑
m=1

‖x− fθ
(
µφ(x) + σφ(x)ε(m)

)
‖2

2σ2
dec

,

(1.33)

whereas the prior matching term is

DKL
(
qφ(z|x) ‖ p(z)

)
= 1

2
(
σ2
φ(x)d− d+ ‖µφ(x)‖2 − 2d log σφ(x)

)
.

(1.34)

To optimize for θ and φ, we can run stochastic gradient descent. The
gradients can be taken based on the tensor graphs of the neural net-
works. On computers, this is done automatically by the automatic
differentiation.

Let’s summarize these.

Theorem 1.4 (VAE Training). To train an VAE, we need to solve
the optimization problem

argmax
θ,φ

∑
x∈X

ELBOφ,θ(x),

Full text available at: http://dx.doi.org/10.1561/0600000112

1.4. Concluding Remark 27

where

ELBOφ,θ(x) = − 1
M

M∑
m=1

‖x− fθ
(
µφ(x) + σφ(x)ε(m)

)
‖2

2σ2
dec

+ 1
2
(
σ2
φ(x)d− d+ ‖µφ(x)‖2 − 2d log σφ(x)

)
.

(1.35)

Figure 1.7: Using VAE to generate image is as simple as sending a latent noise
code z through the decoder.

VAE Inference. The inference of an VAE is relatively simple. Once
the VAE is trained, we can drop the encoder and only keep the decoder,
as shown in Figure 1.7. To generate a new image from the model, we
pick a random latent vector z ∈ Rd. By sending this z through the
decoder fθ, we will be able to generate a new image x̂ = fθ(z).

1.4 Concluding Remark

For readers who are looking for additional references, we highly rec-
ommend the tutorial by Kingma and Welling [23] which is based on
their original VAE paper [24]. A shorter tutorial by Doersch et al. [12]
can also be helpful. [23] includes a long list of good papers including a
paper by Rezende and Mohamed [32] on normalizing flow which was
published around the same time as Kingma and Welling’s VAE paper.

VAE has many linkages to the classical variational inference and
graphical models [45]. VAE is also relevant to the generative adversarial
networks (GAN) by Goodfellow et al. [15]. Kingma and Welling com-
mented in [23] that VAE and GAN have complementary properties;
while GAN produces better perceptual quality images, there is a weaker
linkage with the data likelihood. VAE can meet the data likelihood
criterion better but the samples are at times not perceptually as good.

Full text available at: http://dx.doi.org/10.1561/0600000112

References

[1] M. S. Albergo, N. M. Boffi, and E. Vanden-Eijnden, Stochastic
interpolants: A unifying framework for flows and diffusions, 2023,
url: https://arxiv.org/abs/2303.08797.

[2] B. Anderson, “Reverse-time diffusion equation models,” Stochastic
Process. Appl., vol. 12, no. 3, May pp. 313–326, 1982, url: https://
www.sciencedirect.com/science/article/pii/0304414982900515.

[3] K. Atkinson, W. Han, and D. Stewart, Numerical Solution of
Ordinary Differential Equations. Wiley, 2009, url: https://hom
epage.math.uiowa.edu/~atkinson/papers/NAODE_Book.pdf.

[4] C. Bishop, Pattern Recognition and Machine Learning. Springer,
2006.

[5] C. A. Bouman and G. T. Buzzard, “Generative plug and play:
Posterior sampling for inverse problems,” in 2023 59th Annual
Allerton Conference on Communication, Control, and Computing
(Allerton), pp. 1–7, 2023, url: https://arxiv.org/abs/2306.07233.

[6] R. Brown, “A brief account of microscopical observations on the
particles contained in the pollen of plants and the general existence
of active molecules in organic and inorganic bodies,” Edinburgh
New Philosophical Journal, pp. 358–371, 1828.

[7] S. H. Chan, Introduction to Probability for Data Science. Michigan
Publishing, 2021, url: https://probability4datascience.com/.

145

Full text available at: http://dx.doi.org/10.1561/0600000112

https://arxiv.org/abs/2303.08797
https://www.sciencedirect.com/science/article/pii/0304414982900515
https://www.sciencedirect.com/science/article/pii/0304414982900515
https://homepage.math.uiowa.edu/~atkinson/papers/NAODE_Book.pdf
https://homepage.math.uiowa.edu/~atkinson/papers/NAODE_Book.pdf
https://arxiv.org/abs/2306.07233
https://probability4datascience.com/

146 References

[8] S. H. Chan, X. Wang, and O. Elgendy, “Plug-and-Play ADMM
for image restoration: Fixed point convergence and applications,”
IEEE Trans. Computational Imaging, vol. 3, no. 5, pp. 84–98,
2017, url: https://arxiv.org/abs/1605.01710.

[9] H. Chung and J. C. Ye, “Score-based diffusion models for acceler-
ated mri,” Medical Image Analysis, vol. 80, p. 102479, 2022, url:
https://arxiv.org/abs/2110.05243.

[10] P. Dayan, G. E. Hinton, R. M. Neal, and R. S. Zemel, “The
Helmholtz machine,” Neural Computation, vol. 7, no. 5, pp.889–
904, 1995.

[11] M. Delbracio and P. Milanfar, “Inversion by direct iteration: An
alternative to denoising diffusion for image restoration,” Transac-
tions on Machine Learning Research (TMLR), 2023, url: https://
openreview.net/forum?id=VmyFF5lL3F.

[12] C. Doersch, Tutorial on variational autoencoders, 2016, url:
https://arxiv.org/abs/1606.05908.

[13] L. Donati, From Chapman-Kolmogorov equation to Master equa-
tion and Fokker-Planck equation, url: https://www.zib.de/userp
age/donati/stochastics2023/03/lecture_notes/L03_dCKeq.pdf.

[14] A. Einstein, “On the movement of small particles suspended in
stationary liquids required by the molecular-kinetic theory of
heat,” Annalen der Physik, pp. 549–560, 1905.

[15] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-
Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative ad-
versarial nets,” in Advances in Neural Information Processing
Systems (NeurIPS), vol. 27, 2014, url: https://arxiv.org/abs/
1406.2661.

[16] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic
models,” in Advances in Neural Information Processing Systems
(NeurIPS), 2020, url: https://arxiv.org/abs/2006.11239.

[17] J. Hu, B. Song, X. Xu, L. Shen, and J. A. Fessler, Learning image
priors through patch-based diffusion models for solving inverse
problems, 2024, url: https://arxiv.org/abs/2406.02462.

Full text available at: http://dx.doi.org/10.1561/0600000112

https://arxiv.org/abs/1605.01710
https://arxiv.org/abs/2110.05243
https://openreview.net/forum?id=VmyFF5lL3F
https://openreview.net/forum?id=VmyFF5lL3F
https://arxiv.org/abs/1606.05908
https://www.zib.de/userpage/donati/stochastics2023/03/lecture_notes/L03_dCKeq.pdf
https://www.zib.de/userpage/donati/stochastics2023/03/lecture_notes/L03_dCKeq.pdf
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/2006.11239
https://arxiv.org/abs/2406.02462

References 147

[18] A. Hyvärinen, “Estimation of non-normalized statistical models by
score matching,” Journal of Machine Learning Research (JMLR),
vol. 6, no. 24, pp. 695–709, 2005, url: https://jmlr.org/papers/
volume6/hyvarinen05a/hyvarinen05a.pdf.

[19] Z. Kadkhodaie and E. P. Simoncelli, Solving linear inverse prob-
lems using the prior implicit in a denoiser, 2020, url: https://
arxiv.org/abs/2007.13640.

[20] T. Karras, M. Aittala, T. Aila, and S. Laine, “Elucidating the
design space of diffusion-based generative models,” in Advances
in Neural Information Processing Systems (NeurIPS), 2022, url:
https://arxiv.org/abs/2206.00364.

[21] B. Kawar, M. Elad, S. Ermon, and J. Song, “Denoising diffusion
restoration models,” in Advances in Neural Information Processing
Systems (NeurIPS), 2022, url: https://arxiv.org/abs/2201.11793.

[22] D. P. Kingma, T. Salimans, B. Poole, and J. Ho, “Variational
diffusion models,” in Advances in Neural Information Processing
Systems (NeurIPS), 2021, url: https://arxiv.org/abs/2107.00630,

[23] D. P. Kingma and M. Welling, “An introduction to variational au-
toencoders,” Foundations and Trends in Machine Learning, vol. 12,
no. 4, pp. 307–392, 2019, url: https://arxiv.org/abs/1906.02691.

[24] D. P. Kingma and M. Welling, “Auto-encoding variational Bayes,”
in International Conference on Learning Representations (ICLR),
2014, url: https://openreview.net/forum?id=33X9fd2-9FyZd.

[25] A. Kolmogorov, Foundations of the Theory of Probability. Dover,
2018, The original version was published in 1933 in German. url:
https://dn790007.ca.archive.org/0/items/foundationsofthe00k
olm/foundationsofthe00kolm.pdf.

[26] C. Lu, Y. Zhou, F. Bao, J. Chen, C. Li, and J. Zhu, “DPM-Solver:
A fast ODE solver for diffusion probabilistic model sampling in
around 10 steps,” in Advances in Neural Information Processing
Systems (NeurIPS), 2022, url: https://arxiv.org/abs/2206.00927.

[27] C. Luo, Understanding diffusion models: A unified perspective,
2022, url: https://arxiv.org/abs/2208.11970.

Full text available at: http://dx.doi.org/10.1561/0600000112

https://jmlr.org/papers/volume6/hyvarinen05a/hyvarinen05a.pdf
https://jmlr.org/papers/volume6/hyvarinen05a/hyvarinen05a.pdf
https://arxiv.org/abs/2007.13640
https://arxiv.org/abs/2007.13640
https://arxiv.org/abs/2206.00364
https://arxiv.org/abs/2201.11793
https://arxiv.org/abs/2107.00630
https://arxiv.org/abs/1906.02691
https://openreview.net/forum?id=33X9fd2-9FyZd
https://dn790007.ca.archive.org/0/items/foundationsofthe00kolm/foundationsofthe00kolm.pdf
https://dn790007.ca.archive.org/0/items/foundationsofthe00kolm/foundationsofthe00kolm.pdf
https://arxiv.org/abs/2206.00927
https://arxiv.org/abs/2208.11970

148 References

[28] C. Meng, R. Rombach, R. Gao, D. Kingma, S. Ermon, J. Ho, and
T. Salimans, “On distillation of guided diffusion models,” in IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 14297–14306, 2023, url: https://arxiv.org/abs/2210.03142.

[29] G. Nagy, MTH 235 differential equations, 2024, url: https://
users.math.msu.edu/users/gnagy/teaching/ade.pdf.

[30] R. Pawula, “Generalizations and extensions of the Fokker-Planck-
Kolmogorov equations,” IEEE Transactions on Information The-
ory, vol. 13, no. 1, pp. 33–41, 1967.

[31] L. E. Reichl, A Modern Course in Statistical Physics, 2nd ed.
John Wiley and Sons, Inc, 1998.

[32] D. Rezende and S. Mohamed, “Variational inference with nor-
malizing flows,” in Proceedings of International Conference on
Machine Learning (ICML), pp. 1530–1538, 2015, url: https://
arxiv.org/abs/1505.05770.

[33] H. Risken, The Fokker-Planck Equations: Methods of solutions
and applications, 2nd ed. Springer, 1989.

[34] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer,
“High-resolution image synthesis with latent diffusion models,” in
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 10684–10695, 2022, url: https://arxiv.org/abs/
2112.10752.

[35] C. Saharia, W. Chan, S. Saxena, L. Li, J. Whang, E. L. Denton,
K. Ghasemipour, R. Gontijo Lopes, B. Karagol Ayan, T. Salimans,
J. Ho, D. J. Fleet, and M. Norouzi, “Photorealistic text-to-image
diffusion models with deep language understanding,” in Advances
in Neural Information Processing Systems (NeurIPS), vol. 35, pp.
36479–36494, 2022, url: https://arxiv.org/abs/2205.11487.

[36] T. Salimans and J. Ho, “Progressive distillation for fast sampling of
diffusion models,” in International Conference on Learning Repre-
sentations (ICLR), 2022, url: https://arxiv.org/abs/2202.00512.

[37] Y. Sanghvi, Y. Chi, and S. H. Chan, “Kernel diffusion: An alter-
nate approach to blind deconvolution,” in European Conference
on Computer Vision (ECCV), 2024, url: https://arxiv.org/abs/
2312.02319.

Full text available at: http://dx.doi.org/10.1561/0600000112

https://arxiv.org/abs/2210.03142
https://users.math.msu.edu/users/gnagy/teaching/ade.pdf
https://users.math.msu.edu/users/gnagy/teaching/ade.pdf
https://arxiv.org/abs/1505.05770
https://arxiv.org/abs/1505.05770
https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/2205.11487
https://arxiv.org/abs/2202.00512
https://arxiv.org/abs/2312.02319
https://arxiv.org/abs/2312.02319

References 149

[38] M. von Smoluchowski, “Zur kinetischen theorie der brownschen
molekularbewegung und der suspensionen,” Annalen der Physik,
1906, pp. 756–780.

[39] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Gan-
guli, “Deep unsupervised learning using nonequilibrium thermody-
namics,” in Proceedings of International Conference on Machine
Learning (ICML), vol. 37, pp. 2256–2265, 2015, url: https://
arxiv.org/abs/1503.03585.

[40] J. Song, C. Meng, and S. Ermon, “Denoising diffusion implicit
models,” in International Conference on Learning Representations
(ICLR), 2023, url: https://openreview.net/forum?id=St1giar
CHLP.

[41] Y. Song and S. Ermon, “Generative modeling by estimating gradi-
ents of the data distribution,” in Advances in Neural Information
Processing Systems (NeurIPS), 2019, url: https://arxiv.org/abs/
1907.05600.

[42] Y. Song and S. Ermon, “Improved techniques for training score-
based generative models,” in Advances in Neural Information
Processing Systems (NeurIPS), 2020, url: https://arxiv.org/abs/
2006.09011.

[43] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon,
and B. Poole, “Score-based generative modeling through stochastic
differential equations,” in International Conference on Learning
Representations (ICLR), 2021, url: https ://openreview .net/
forum?id=PxTIG12RRHS.

[44] P. Vincent, “A connection between score matching and denoising
autoencoders,” Neural Computation, vol. 23, no. 7, pp. 1661–
1674, 2011, url: https ://www. iro .umontreal . ca/~vincentp/
Publications/smdae_techreport.pdf.

[45] M. J. Wainwright and M. I. Jordan, “Graphical models, exponen-
tial families, and variational inference,” Foundations and Trends
in Machine Learning, vol. 1, no. 1–2, pp. 1–305, 2008, url: https://
cba.mit.edu/events/03.11.ASE/docs/Wainwright.1.pdf.

Full text available at: http://dx.doi.org/10.1561/0600000112

https://arxiv.org/abs/1503.03585
https://arxiv.org/abs/1503.03585
https://openreview.net/forum?id=St1giarCHLP
https://openreview.net/forum?id=St1giarCHLP
https://arxiv.org/abs/1907.05600
https://arxiv.org/abs/1907.05600
https://arxiv.org/abs/2006.09011
https://arxiv.org/abs/2006.09011
https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=PxTIG12RRHS
https://www.iro.umontreal.ca/~vincentp/Publications/smdae_techreport.pdf
https://www.iro.umontreal.ca/~vincentp/Publications/smdae_techreport.pdf
https://cba.mit.edu/events/03.11.ASE/docs/Wainwright.1.pdf
https://cba.mit.edu/events/03.11.ASE/docs/Wainwright.1.pdf

150 References

[46] M. Welling and Y. W. Teh, “Bayesian learning via stochastic
gradient Langevin dynamics,” in Proceedings of International
Conference on Machine Learning (ICML), pp. 681–686, 2011,
url: https://www.stats.ox.ac.uk/~teh/research/compstats/
WelTeh2011a.pdf.

[47] Y. Zhu, K. Zhang, J. Liang, J. Cao, B. Wen, R. Timofte, and
L. V. Gool, “Denoising diffusion models for plug-and-play image
restoration,” in IEEE Conference on Computer Vision and Pat-
tern Recognition Workhsop (CVPRW), pp. 1219–1229, 2023, url:
https://arxiv.org/abs/2306.07233.

Full text available at: http://dx.doi.org/10.1561/0600000112

https://www.stats.ox.ac.uk/~teh/research/compstats/WelTeh2011a.pdf
https://www.stats.ox.ac.uk/~teh/research/compstats/WelTeh2011a.pdf
https://arxiv.org/abs/2306.07233

